
PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021) 49

Natural Language Processing with Pandas
DataFrames

Frederick Reiss‡∗, Bryan Cutler§, Zachary Eichenberger¶‡

F

Abstract—Most areas of Python data science have standardized on using Pan-
das DataFrames for representing and manipulating structured data in memory.
Natural Language Processing (NLP), not so much.

We believe that Pandas has the potential to serve as a universal data
structure for NLP data. DataFrames could make every phase of NLP easier, from
creating new models, to evaluating their effectiveness, to building applications
that integrate those models. However, Pandas currently lacks important data
types and operations for representing and manipulating crucial types of data in
many of these NLP tasks.

This paper describes Text Extensions for Pandas, a library of extensions to
Pandas that make it possible to build end-to-end NLP applications while repre-
senting all of the applications’ internal data with DataFrames. We leverage the
extension points built into Pandas library to add new data types, and we provide
important NLP-specfific operations over these data types and and integrations
with popular NLP libraries and data formats.

Index Terms—natural language processing, Pandas, DataFrames

Background and Motivation

This paper describes our work on applying general purpose data
analysis tools from the Python data science stack to Natural
Language Processing (NLP) applications. This work is motivated
by our experiences working on NLP products from IBM’s Watson
portfolio, including IBM Watson Natural Language Understanding
[Intb] and IBM Watson Discovery [Inta].

These products include many NLP components, such as state-
of-the-art machine learning models, rule engines for subject matter
experts to write business rules, and user interfaces for displaying
model results. However, the bulk of the development work on
these products involves not the core NLP components, but data
manipulation tasks, such as converting between the output formats
of different models, manipulating training data, analyzing the
outputs of models for correctness, and serializing data for transfer
across programming language and machine boundaries.

Although the raw input to our NLP algorithms is text in a
natural language, most of the code in our NLP systems operates
over machine data. Examples of this machine data include:

• Relational tables of training data in formats like CoNLL-U
[NdMG+20]

* Corresponding author: frreiss@us.ibm.com
‡ IBM Research
§ IBM
¶ University of Michigan

Copyright © 2021 Frederick Reiss et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

• Model outputs formatted as tables for comparison against
training data

• Arrays of dense tensors that represent BERT embeddings
[DCLT19]

• Graphs that represent dependency-based parse trees
• Relational tables that represent document structure

This focus on data manipulation tasks instead of core AI
algorithms is not unique to IBM, or indeed to NLP [SHG+15].
However, NLP is unique in the quantity of redundant data struc-
tures and low-level algorithms that different systems reimplement
over and over again. One can see this trend clearly in open source
NLP libraries, where free access to internal code also exposes
the internal data structures. Each of the major NLP libraries
implements its own custom data structures for basic NLP concepts.

Consider the concept of a span: a region of a document, usu-
ally expressed as a range of characters or tokens. NLP systems use
spans to represent the locations of information they extract from
text. This information includes tokens, named entities, arguments
to semantic role labeling predicates, and many others.

Here is how some popular Python NLP libraries represent
spans:

• spaCy [HMVLB20] has a Python class named Span that
represents a range of tokens. The locations of these tokens
are stored inside the class Doc. The __getitem__
method of Doc returns instances of the class Token,
which encodes the location of the token as a beginning
character offset and a length in characters [Exp21].

• Stanza [QZZ+20] has a Python class also named Span
that represents a range of characters. Information about
the tokens that are contained within the character range is
stored in the tokens property of the Span as objects of
type Token [Mai21a]. These classes, Span and Token,
are different from the spaCy classes with the same names.

• nltk [LB02] models text as a Python list. Depending on
the stage of processing, the elements of the list can be
Python strings or tuples. Spans over tokens are represented
by slices of the list, and information about character
locations is generally not available [BKL09].

• transformers [WDS+20] does not generally model
spans; instead it leaves that choice up to the
user. One exception to this policy is the library’s
TokenClassificationPipeline class, which has
a method group_entities that returns a Python dic-
tionary for each entity. The fields start and end in

mailto:frreiss@us.ibm.com

50 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

this dictionary hold the span of the entity, measured in
characters [Hug21].

• TensorFlow Text [Mai21b] represents lists of spans as
either a pair of one-dimensional tensors (for tokenization)
or as a single two-dimensional tensor (for span comparison
operations). The elements of the tensors can represent byte,
character, or token offsets. Users need to track which type
of offset is stored in a given tensor [Mai21c].

All of these representations are incompatible with each other.
Users who want to use any two of these libraries together will
need to write code to convert between their outputs. Users are
also left to invent their own algorithms for even the most basic
operations over spans, including serializing them, finding their
covered text, determining whether two spans overlap, and finding
matches between two sets of spans.

The redundancy that these libraries display at the level of in-
dividual spans is pervasive across all the more complex structures
that they extract from text. Both users and library developers spend
considerable amounts of time reading the documentation for these
different data structures, writing code to convert between them,
and reimplementing basic operations over them.

An Alternative Approach

The Python data science community has developed effective tools
for managing and analyzing data in memory, chief among them
being the DataFrame library Pandas [pdt21b]. Could we use
these general-purpose tools instead of continually reinventing data
structures and algorithms for basic NLP tasks?

We prototyped some use cases and quickly discovered that
NLP-related data involves domain-specific concepts; and some of
these concepts are inconvenient to express in Pandas. For example,
the span concept that we described in the previous section is a
crucial part of many applications. The closest analog to a span
in Pandas’ data model is the interval type, which represents
an interval using a pair of numbers. When we prototyped some
common NLP applications using interval to represent spans,
we needed additional code and data structures to track the relation-
ships between intervals and target strings; as well as between spans
and different tokenizations. We also needed code to distinguish
between intervals measured in characters and in tokens. All of this
additional code negated much of the benefit of the general-purpose
tool.

To reduce the amount of code that users would need to write,
we started working on extensions to Pandas to better represent
NLP-specific data and to support key operations over that data.
We call the library that we eventually developed Text Extensions
for Pandas.

Extending Pandas

Text Extensions for Pandas includes three types of extensions:

• NLP-specific data types (dtypes) for Pandas DataFrames
• NLP-specific operations over these new data types
• Integrations between Pandas and common NLP libraries

Pandas includes APIs for library developers to add new data
types to Pandas, and we used these facilities to implement the
NLP-specific data types in Text Extensions for Pandas.

The core component of the Pandas extension
type system is the extension array. The Python class
pandas.api.extensions.ExtensionArray defines

key operations for a columnar array object that backs a Pandas
Series [pdt21a]. Classes that extend ExtensionArray
and implement a relatively short list of required operations can
serve as the backing stores for Pandas Series objects while
supporting nearly all the operations that Pandas built-in types
support, including filtering, slicing, aggregation, and binary I/O.

Indeed, many of the newer built-in types in Pandas, such
as the interval and categorical, are implemented as
subclasses of ExtensionArray. Text Extensions for Pandas
includes three different extension types based on this API. The
first two extension types are for spans with character- and token-
based offsets, respectively. The third extension type that we add
represents tensors.

Spans

We implement character-based spans with a Python class called
SpanArray, which derives from Pandas’ ExtensionArray
base class. A SpanArray object represents a column of span
data, and it stores this data internally using three NumPy
[HMvdWea20] arrays, plus a shared reference to the underlying
text.

The three arrays that represent a column of span data consist
of arrays of begin and end offsets (in characters), plus a third array
of indices into a table of unique target strings. The SpanArray
object also stores a shared reference to this table of strings.

The string table is necessary because a Pandas Series can
contain spans over many target strings. The spans in the Series
might come from multiple documents, or they may come from
multiple fields of the same document. Users need to be able
to perform operations over the containing DataFrames without
performing many string equality checks or creating many copies
of the text of each document. Representing the target text of each
span as an index into the table allows us to quickly check whether
two spans are over the same string. The string table also allows
the SpanArray class to track exactly which unique strings the
array’s spans cover. Keeping track of this set of strings is important
for efficient serialization, as well as for efficiently appending one
SpanArray to another. As an additional optimization, slicing
and filtering operations over a SpanArray do not modify the
string table; a slice of an array will share the same table as the
original array.

In addition to spans with character offsets, we also support
spans whose begin and end offsets are measured in tokens. Most
machine learning models and rule engines for NLP do not operate
over sequences of characters but over sequences of tokens—ranges
of characters that correspond to elements like words, syllables, or
punctuation marks. Character-based spans are useful for compar-
ing, visualizing, and combining the outputs of multiple models,
because those models may use different tokenizations internally.
When analyzing the inputs and outputs of a single model (or
rule set, in the case of a rule-based NLP system), tokens are
a more appropriate unit for the begin and end offsets of spans.
Representing spans with token offsets allows for operations like
computing token distances between spans and can prevent errors
that could lead to spans not starting or ending on a token boundary.
The loss functions used to train most NLP models also tend to
operate over tokens.

There can be multiple different tokenizations of the same
document, even within a single application. When storing token-
based span offsets, it is important to retain information about

NATURAL LANGUAGE PROCESSING WITH PANDAS DATAFRAMES 51

which tokenization of which document each token offset corre-
sponds to. The TokenSpanArray class represents each distinct
tokenization of a document with an instance of SpanArray
containing the locations of the tokens. The representation of the
token-based spans themselves consists of three NumPy arrays,
holding begin and end offsets (in tokens) and a pointer to the
SpanArray containing the token offsets.

Although it stores the locations of spans as token offsets, the
TokenSpanArray class can generate character-based begin and
offsets on demand from its internal tables of token locations. This
facility allows TokenSpanArray to be used in any code that
works over instances of SpanArray. For example, code that
detects pairs of overlapping spans can easily work over arbitrary
combinations of token- and character-based spans, which is useful
when merging the outputs of models that represent span offsets
differently.

The internal structure of our SpanArray and
TokenSpanArray extension arrays allows for efficient
vectorized implementations of common Pandas operations like
slicing, filtering, and aggregation. Slicing operations over a
SpanArray produce a new SpanArray with views of the
original SpanArray object’s internal NumPy arrays, avoiding
unnecessary copying of span data.

Tensors

Tensors—dense n-dimensional arrays—are another common con-
cept in modern NLP. The deep learning models that drive much of
state-of-the-art NLP today take tensors as inputs and outputs and
operate internally over other tensors. Embeddings—data structures
that encode information about a block of text as a dense vector
amenable to analysis with algorithms that expect dense input—are
a key part of many NLP algorithms and can be efficiently repre-
sented with tensors. Tensors are also useful for more traditional
types of NLP data, such as n-grams and one-hot-encoded feature
vectors.

Our TensorArray extension array class represents a Pandas
Series where each element is a tensor. Internally, we represent
the entire Series’ data as a single dense NumPy array. The
TensorArray class translates Pandas array operations to vectorized
operations over the underlying NumPy array. Because CPython
[cd21], the most common runtime for Python, uses an intepreter
to run Python code, these vectorized operations are much more
efficient than iterating over a list of tensors.

Since the individual data items in a TensorArray are actu-
ally slices of a larger NumPy array, our tensor data type integrates
seamlessly with third party libraries that accept NumPy arrays.
For example, Figure 1 shows how our tensor data type works with
the matplotlib [Hun07] plotting library in a Jupyter notebook.

Some libraries, notably xarray [HH17], provide Pandas-like
dataframes specialized for numeric tensor or array data. These
libraries are useful for cases where dataframes consist almost
entirely of tensor data. Our TensorArray extension type is a
complementary alternative for applications where the data is a
mixture of tensors, spans, and built-in Pandas data types with a
wide variety of different schemas. For example, figure 2 shows
an example of a DataFrame that mixes spans, tensors, and Pandas
categorical types to store features of the tokens in a document. For
applications that need this kind of mixture of data, our tensor type
allows users to leverage Pandas’ collection of built-in operations
and third-party visualizations, while still operating efficiently over
tensor-valued data series.

Fig. 1: Example of using our tensor data type to store a time
series while visualizing those time series with the matplotlib
[Hun07] library in a Jupyter notebook. In the top half of the
window is a DataFrame where each cell of the rightmost four
columns contains an entire time series of COVID-19 case data as a
tensor. The bottom half of the screen shows the results of plotting
these tensors directly out of the DataFrame. This example note-
book is available at https://github.com/CODAIT/covid-notebooks/
blob/master/notebooks/analyze_fit_us_data.ipynb.

Fig. 2: Slice of a DataFrame of information about tokens con-
structed with our library’s integration with the transformers
library for masked language models. Each row of the DataFrame
represents a token in the document. The leftmost column uses our
span extension type to store the position of the token. The right-
most column stores a BERT embedding at that token position.
The columns in between hold token metadata that was created by
aligning the corpus’ original tokenization with the language model’s
tokenization, then propagating the corpus labels between pairs of
aligned tokens. The notebook in which this example appears (avail-
able at https://github.com/CODAIT/ text-extensions-for-pandas/blob/
master/notebooks/Model_Training_with_BERT.ipynb) shows how to
use this DataFrame as the input for training a named entity recogni-
tion model with the sklearn library.

Serialization

Many areas of modern NLP involve large collections of docu-
ments, and common NLP operations can expand the size of this
data by orders of magnitude. Pandas includes facilities for efficient
serialization of Pandas data types using Apache Arrow [Com21].
Text Extensions for Pandas uses this support to convert data from
the library’s extension types into Arrow format for efficient storage
and transfer.

Efficient binary I/O can make reading and writing NLP corpora
orders of magnitude faster. Figure 3 compares the amount of time
required to read the training fold of the CoNLL-2003 corpus
[TKSDM03] from a local filesystem when the corpus is stored
in three different formats. Reading the corpus with Pandas and the

https://github.com/CODAIT/covid-notebooks/blob/master/notebooks/analyze_fit_us_data.ipynb
https://github.com/CODAIT/covid-notebooks/blob/master/notebooks/analyze_fit_us_data.ipynb
https://github.com/CODAIT/text-extensions-for-pandas/blob/master/notebooks/Model_Training_with_BERT.ipynb
https://github.com/CODAIT/text-extensions-for-pandas/blob/master/notebooks/Model_Training_with_BERT.ipynb

52 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

47.7

3.59 0.06
0

10
20
30
40
50
60

DocBin (spaCy) CoNLL (nltk) Parquet (Pandas)

Ti
m

e
(s

ec
)

File Format and Reader

Time to Read the “train” Fold
of the CoNLL-2003 Corpus

Fig. 3: Comparison of the amount of time required to read the training
fold of the CoNLL-2003 named entity recognition corpus into memory,
when the corpus is stored in three different file formats. Binary I/O
with Pandas and the Apache Parquet file format is 2-3 orders of
magnitude faster than the other file formats tested.

Apache Parquet binary file format is 60 times faster than reading
the original CoNLL-format text file with nltk and 800 times
faster than reading the corpus in DocBin format with spaCy.

Text Extensions for Pandas also supports reading files in
the text-based formats known as CoNLL and CoNLL-U. Many
benchmark datasets for NLP are released in these formats. Text
Extensions for Pandas can convert these files into DataFrames
with one line per token, using our span extension type to store
the location of a given token and the location of the sentence that
contains the token.

Spanner Algebra

In addition to representing span data, NLP applications need to
filter, transform, and aggregate this data, often in ways that are
unique to NLP.

The document spanners formalism [FKRV15] extends the
relational algebra with additional operations to cover a wide gamut
of critical NLP operations.

Since it is an extension of the relational algebra, much of
document spanners can already be expressed with Pandas core
operations. We have implemented several of the remaining parts
of document spanners as operations over Pandas Series of data
type Span.

Specifically, we have NLP-specific join operations (sometimes
referred to as "merge") for identifying matching pairs of spans
from two input sets, where the spans in a matching pair have
an overlap, containment, or adjacency relationship. These join
operations are crucial for combining the results of multiple NLP
models, and they also play a role in rule-based business logic.
For example, a domain expert might need to find out matches
of one model that overlap with matches of a different model. If
the output spans are in the "span" columns of two DataFrames,
model_1_out and model_2_out, then the user can find all
such matching pairs by running the following line of code:

import text_extensions_for_pandas as tp

Find output spans of model 1 that contain output
spans of model 2.
This expression returns a DataFrame with two
columns, span_1 and span_2, both of type span.
span_pairs = tp.spanner.contain_join(

model_1_out["span"], model_2_out["span"],
"span_1", "span_2")

We include two implementations of the extract operator, which
produces a set of spans over the current document that satisfy a
constraint. Our current implementations of extract support extract-
ing the set of spans that match a regular expression or a gazetteer
(dictionary).

We include a version of the consolidate operator, which takes
as input a set of spans and removes overlap among the spans
by applying a consolidation policy. This operator is useful for
business logic that combines the results of multiple models and/or
extraction rules as well as for resolving ambiguity when a single
model produces overlapping spans in its output.

Other Span Operations

We support span operations that are not part of the document
spanners formalism but are important for key NLP tasks. These
operations include:

• aligning spans based on one tokenization of the document
to a different tokenization

• lemmatizing spans—that is, converting the text that the
span covers to a normalized form

• converting sequences of tokens tagged with inside-outside-
beginning (IOB) tags [RM95] into spans of entities, and
vice versa.

Jupyter Notebook Integration

Jupyter notebooks have built-in facilities for displaying Pandas
DataFrames. Our extensions to Pandas also work with these
facilities. If the last line of a notebook cell returns a DataFrame
containing span and tensor data, then Jupyter will display an
HTML representation of the DataFrame, including cells that
contain our extension types. Figure 2 shows how a DataFrame
containing a column of spans and a column of tensors renders as
HTML when shown in a Juypter notebook.

Other Python development tools, including Visual Studio
Code, PyCharm, and Google Colab, use extended versions of the
Jupyter DataFrame display facilities to show DataFrames in their
own user interfaces. Our extension types also work with these
interfaces.

There is also an ecosystem of interactive libraries for exploring
and visualizing Pandas DataFrames. Examples of such libraries
include D-Tale [dt21a], Qgrid [dt21b], and the Spyder [Con21]
Variable Explorer. These libraries also work with our extension
types. Figure 4 shows an example of using Text Extensions for
Pandas to display span data with the D-Tale interactive data
analysis tool [dt21a].

Because our extension types for tensors use NumPy’s ndarray
type for individual cell values, these extension types work with
many tools that accept NumPy arrays. Figure 1 shows an example
of storing time series in the cells of a DataFrame and plotting
those time series directly out of the DataFrame using the graphics
library matplotlib in a Jupyter notebook.

It is often useful to visualize spans in the context of the source
text. We use Jupyter’s built-in application programming interface
(API) for HTML rendering to facilitate this kind of visualization.
If the last expression in a notebook cell returns a SpanArray or
TokenSpanArray object, then Jupyter will automatically display
the spans in the context of the target text, as shown in Figure 5.

NATURAL LANGUAGE PROCESSING WITH PANDAS DATAFRAMES 53

Fig. 4: Displaying a DataFrame containing span data in the D-Tale
interactive visualizer [dt21a]. Our extension types for NLP work with
third-party libraries without requiring any changes to those libraries.

Fig. 5: Displaying the contents of a Pandas Series of span data in
the context of the target document, using the integration between Text
Extensions for Pandas and Jupyter’s APIs for HTML display. The
spans shown in this example represent all pronouns in sentences that
contain the name "Arthur". We generated this set by cross-referencing
the outputs of two models using Pandas operations. This notebook can
be found at https://github.com/CODAIT/ text-extensions-for-pandas/
blob/master/notebooks/Analyze_Text.ipynb.

Taken together with JupyterLab’s ability to display multiple
widgets and views of the same notebook, these facilities allow
users to visualize NLP data from several perspectives at once, as
shown in Figure 11.

NLP Library Integrations

Text Extensions for Pandas provides facilities for transforming the
outputs of several common NLP libraries into Pandas DataFrames
to represent NLP concepts.

spaCy

spaCy [HMVLB20] is a Python library that provides a suite of
NLP models intended for production use. Users of spaCy access
most of the library’s functionality through spaCy language models,
Python objects that encapsulate a pipeline of rule-based and
machine learning models. A spaCy language model takes natural
language text as input and extracts features such as parts of speech,
named entities, and dependency relationships from the text. These
features are useful in various downstream NLP tasks.

Our spaCy integration converts the output of a spaCy language
model into a DataFrame of token information. Figure 6 shows an

Fig. 6: Example of converting the output of a spaCy language
model. Each row of the DataFrame holds information about a
single token, including the span of the token and the span of
the containing sentence. The code for this example is avail-
able at https://github.com/CODAIT/ text-extensions-for-pandas/blob/
master/notebooks/ Integrate_NLP_Libraries.ipynb.

example of using this integration to process the first paragraph
of the Wikipedia article for the film Monty Python and the Holy
Grail.

Converting from spaCy’s internal representation to
DataFrames allows usage of Pandas operations to analyze
and transform the outputs of the language model. For example,
users can use Pandas’ filtering, grouping, and aggregation to
count the number of nouns in each sentence:
Filter tokens to those that are tagged as nouns
nouns = tokens[tokens["pos"] == "NOUN"]

Compute the number of nouns in each sentence
nouns.groupby("sentence").size() \

.to_frame(name="num_nouns")

Or they could use our span-specific join operations and Pan-
das’ merge function to match all pronouns in the document with
the person entities that are in the same sentence:
import text_extensions_for_pandas as tp

Find person names
entities = tp.io.conll.iob_to_spans(tokens)
person_names = entities[

entities["ent_type"] == "PERSON"]["span"]

Find all pronouns
pronouns = tokens[tokens["tag"] == "PRP"] \

[["span", "sentence"]]

Find all sentences
sentences = tokens[["sentence"]].drop_duplicates() \

["sentence"]

Match names and pronouns in the same sentence
pronoun_person_pairs = (

pronouns.rename(columns={"span": "prounoun"})
.merge(tp.spanner.contain_join(

sentences, person_names,
"sentence", "person")))

We also support using spaCy’s DisplaCy visualization library to
display dependency parse trees stored in DataFrames. Users can
filter the output of the language model using Pandas operations,
then display the resulting subgraph of the parse tree in a Jupyter
notebook. This display facility will work with any DataFrame that
encodes a dependency parse as a Pandas Series of token spans,
token IDs, and head IDs.

transformers

transformers [WDS+20] is a library that provides imple-
mentations of many state of the art masked language models

https://github.com/CODAIT/text-extensions-for-pandas/blob/master/notebooks/Analyze_Text.ipynb
https://github.com/CODAIT/text-extensions-for-pandas/blob/master/notebooks/Analyze_Text.ipynb
https://github.com/CODAIT/text-extensions-for-pandas/blob/master/notebooks/Integrate_NLP_Libraries.ipynb
https://github.com/CODAIT/text-extensions-for-pandas/blob/master/notebooks/Integrate_NLP_Libraries.ipynb

54 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

such as BERT [DCLT19] and RoBERTa [LOG+19]. In addition
to the language models themselves, transformers includes
dedicated tokenizers for these models, most of which use subword
tokenizers like SentencePiece [KR18] to improve accuracy.

Text Extensions for Pandas can transform two types of outputs
from the transformers library for masked language models
into Pandas DataFrames. We can convert the output of the library’s
tokenizers into DataFrames of token metadata, including spans
marking the locations of each token.

Our tensor data type can also represent embeddings from
the encoder stage of a transformers language model. Since
the language models in transformers have a limited se-
quence length, we also include utility functions for dividing
large DataFrames of token information into fixed-size windows,
generating embeddings for each window, and concatenating the
resulting embeddings to produce a new column for the original
DataFrame. Figure 2 shows a DataFrame of token features that
includes both a span column with token location and a tensor
column with embeddings at each token position.

IBM Watson Natural Language Understanding

Watson Natural Language Understanding [Intb] is an API that
provides access to prebuilt NLP models for common tasks across
a wide variety of natural languages. Users can use these APIs to
process several thousands documents per month for free, with paid
tiers of the service available for higher data rates.

Our Pandas integration with Watson Natural Language Un-
derstanding can translate the outputs of all of Watson Natural
Language Understanding’s information extraction models into
Pandas DataFrames. The supported models are:

• syntax, which performs syntax analysis tasks like tokeniza-
tion, lemmatization, and part of speech tagging.

• entities, which identifies mentions of named entities such
as persons, organizations, and locations.

• keywords, which identifies instances of a user-configurable
set of keywords as well as information about the sentiment
that the document expresses towards each keyword.

• semantic_roles, which performs semantic role labeling,
extracting subject-verb-object triples that describe events
which occur in the text.

• relations, which identifies relationships betwen pairs of
named entities.

Converting the outputs of these models to DataFrames makes
building notebooks and applications that analyze these outputs
much easier. For example, with two lines of Python code, users
can produce a DataFrame with information about all person names
that a document mentions:

import text_extensions_for_pandas as tp

The variable "response" holds the JSON output
of the Natural Language Understanding service.
Convert to DataFrames and retrieve the DataFrame
of entity mentions.
entities = tp.io.watson.nlu.parse_response(response) \

["entity_mentions"]

Filter entity mentions down to just mentions of
persons by name.
persons = entities[entities["type"] == "Person"]

Figure 7 shows the DataFrame that this code produces when run
over an IBM press release.

Fig. 7: DataFrame of person names in a document created
by converting the output of the Watson Natural Language
Understanding’s entities model to a DataFrame of entity
mentions. We then used Pandas filtering operations to select the entity
mentions of type "Person". The first column holds spans that tell
where in the document each mention occurred. The original press
release can be found at https://newsroom.ibm.com/2020-12-02-IBM-
Named-a-Leader-in-the-2020-IDC-MarketScape-For-Worldwide-
Advanced-Machine-Learning-Software-Platform.

Fig. 8: Excerpt from DataFrame containing the names of 301 ex-
ecutives extracted from 191 IBM press releases. To generate this
table, we first converted the outputs of Watson Natural Language
Understanding’s entities model, which finds mentions of person
names, and the product’s semantic_roles model, which extracts
information about the context in which words occur. Then we used a
series of standard Pandas operations, plus operations from spanner
algebra, to cross-reference the outputs of the two models. Code and a
full explanation of this use case can be found in the article "Market
Intelligence with Pandas and IBM Watson on the IBM Data and AI
blog [RC21].

With a few additional steps, users can combine the results
of multiple models to produce sophisticated document analysis
pipelines. Figure 8 shows a DataFrame with the names of 301
executives extracted from 191 IBM press releases by cross-
referencing the outputs of Watson Natural Language Understand-
ing’s entities and semantic_roles models. All of the
analysis steps that went into producing this result were done with
high-level operations from Pandas and Text Extensions for Pandas.
Source code for this example is available on our blog post about
this use case [RC21].

IBM Watson Discovery

IBM Watson Discovery [Inta] is a document management platform
that uses intelligent search and text analytics to eliminate barriers
to sharing data between teams and to retrieve information buried
inside enterprise data. One of the key features of the IBM Watson
Discovery product is Table Understanding, a document enrich-
ment model that identifies and parses human-readable tables of
data in PDF and HTML documents.

Text Extensions for Pandas can convert the output of Wat-
son Discovery’s Table Understanding enrichment into Pandas
DataFrames. This facility allows users to reconstruct the contents
and layout of the original table as a DataFrame, which is useful
for debugging and analysis of these outputs. Figure 9 shows an

https://newsroom.ibm.com/2020-12-02-IBM-Named-a-Leader-in-the-2020-IDC-MarketScape-For-Worldwide-Advanced-Machine-Learning-Software-Platform
https://newsroom.ibm.com/2020-12-02-IBM-Named-a-Leader-in-the-2020-IDC-MarketScape-For-Worldwide-Advanced-Machine-Learning-Software-Platform
https://newsroom.ibm.com/2020-12-02-IBM-Named-a-Leader-in-the-2020-IDC-MarketScape-For-Worldwide-Advanced-Machine-Learning-Software-Platform

NATURAL LANGUAGE PROCESSING WITH PANDAS DATAFRAMES 55

Fig. 9: An example table from a PDF document in its original,
human-readable form (left) and after using Text Extensions for Pandas
to convert the output of Watson Discovery’s Table Understanding
enrichment into a Pandas DataFrame.

Fig. 10: DataFrame containing ten years of IBM revenue bro-
ken down by geography, obtained by loading ten years of
IBM annual reports int IBM Watson Discovery; converting the
outputs of Watson Discovery’s Table Understanding enrichment
to DataFrames; then cleaning and deduplicating the resulting
data using Pandas. The code that produced this result can
be found at https://github.com/CODAIT/ text-extensions-for-pandas/
blob/master/notebooks/Understand_Tables.ipynb.

example DataFrame from this process next to the original table in
the source PDF document.

Our conversion also produces the "shredded" representation of
the table as a DataFrame with one line for each cell of the original
table. This data format facilitates data integration and cleaning
of the extracted information. Pandas’ facilities for data cleaning,
filtering, and aggregation are extremely useful for turning raw
information about extracted tables into clean, deduplicated data
suitable to insert into a database. Figure 10 shows how, by cleaning
and merging this shredded representation of a revenue table across
multiple IBM annual reports, one can construct a DataFrame with
ten years of revenue information broken down by geography.

Usage in Natural Language Processing Research

We are using Text Extensions for Pandas in ongoing research on
semisupervised identification of errors in NLP corpora. Pandas’
data analysis facilities provide a powerful substrate for cross-
referencing and analyzing the outputs of NLP models in order
to pinpoint potentially-incorrect labels.

One example of this type of application is work that we and
several other coauthors recently published on correcting errors in
the highly-cited CoNLL-2003 corpus for named entity recognition
[RXC+20]. We identified over 1300 errors in the corpus and
published a corrected version of the corpus. We also revisited
recent results in named entity recognition using the corrected
corpus.

Nearly every step of our analysis used Text Extensions for
Pandas. We started by using our library’s input format support to
read the model results from the 16 teams in the dataset’s original
2003 competition. Then we used Text Extensions for Pandas to
convert these outputs from labeled tokens to DataFrames of <span,

Fig. 11: Example of using our extensions to Pandas and JupyterLab
to create an ad-hoc interface for inspecting potentially incorrect
labels in a named entity recognition corpus. The top three panes of
this JupyterLab session display three different views of a collection
of named entities for human evaluation. All of these views are
driven off of Pandas DataFrames of <span, entity type> pairs. The
bottom pane is where human evaluators flag incorrectly labeled
entities. This Jupyter notebook is part of an in-depth tutorial avail-
able at https://github.com/CODAIT/ text-extensions-for-pandas/ tree/
master/ tutorials/corpus.

label> pairs, with one such pair for each entity mention. Using
spanner algebra, we cross-referenced these entity mentions with
the entity mentions to find cases where there was strong agreement
among the teams’ models coupled with disagreement with the
corpus labels. A large fraction of these cases involved incorrect
corpus labels.

Since we did not have model outputs for the training
fold of the corpus, we used our library’s integration with the
transformers library to retokenize this part of the corpus with
the BERT tokenizer. Then we used spanner algebra to match the
corpus’s token labels with the corresponding subword tokens from
the BERT tokenizer. Again, we used our library’s integration with
transformers to add a column to our DataFrame of tokens
containing BERT embeddings at each token position as tensors.
Then we used scikit-learn [PVG+11] to train an ensemble
of 17 token classification models over multiple different Gaussian
random projections. By cross-referencing the outputs of these
models, again using Pandas and spanner algebra, we were able
to identify a large number of additional incorrect labels in the test
fold.

We also used Text Extensions for Pandas’ integration with
Jupyter to build an interface for human review of the suspicious
labels that our analysis of model outputs had flagged. Figure 11
shows this interface in action.

The code that we used in this paper is available as a col-
lection of Jupyter notebooks at https://github.com/CODAIT/text-
extensions-for-pandas/tree/master/tutorials/corpus. We are cur-
rently working to extend the techniques we developed in order
to cover a wider variety of token classification corpora and to
incorporate several of the techniques used in our paper into the
Text Extensions for Pandas library [MRX+21].

Conclusion

This paper has introduced our library, Text Extensions for Pandas.
Text Extensions for Pandas provides a collection of extension
data types, NLP-specific operations, and NLP library integrations
that turn Pandas DataFrames into a universal data structure for
managing the machine data that flows through NLP applications.

https://github.com/CODAIT/text-extensions-for-pandas/blob/master/notebooks/Understand_Tables.ipynb
https://github.com/CODAIT/text-extensions-for-pandas/blob/master/notebooks/Understand_Tables.ipynb
https://github.com/CODAIT/text-extensions-for-pandas/tree/master/tutorials/corpus
https://github.com/CODAIT/text-extensions-for-pandas/tree/master/tutorials/corpus
https://github.com/CODAIT/text-extensions-for-pandas/tree/master/tutorials/corpus
https://github.com/CODAIT/text-extensions-for-pandas/tree/master/tutorials/corpus

56 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

Text Extensions for Pandas is freely available as both an in-
stallable Python package and as source code. We publish packages
on the PyPI and Conda-Forge package repositories. Since our
library is implemented in pure Python, these packages work on
most operating systems.

The source code for Text Extensions for Pandas is available
at https://github.com/CODAIT/text-extensions-for-pandas under
version 2 of the Apache license. We welcome community con-
tributions to the code as well as feedback from users about bugs
and feature requests.

REFERENCES

[BKL09] Steven Bird, Ewan Klein, and Edward Loper. Natural Lan-
guage Processing with Python. O’Reilly Media, Inc., 1st
edition, 2009.

[cd21] Python core developers. Cpython, 2021. URL: https://github.
com/python/cpython.

[Com21] Apache Arrow Committers. Apache arrow, 2021. URL: https:
//arrow.apache.org/.

[Con21] Spyder Project Contributors. Spyder, 2021. URL: https://
github.com/spyder-ide/spyder.

[DCLT19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In NAACL-HLT, pages
4171–4186, Minneapolis, Minnesota, June 2019. Association
for Computational Linguistics. URL: https://www.aclweb.org/
anthology/N19-1423, doi:10.18653/v1/N19-1423.

[dt21a] The D-Tale development team. D-tale, 2021. URL: https:
//github.com/man-group/dtale.

[dt21b] The Qgrid development team. Qgrid, 2021. URL: https://
github.com/quantopian/qgrid.

[Exp21] Explosion.io. SpaCy api documentation: Containers, 2021.
URL: https://spacy.io/api/doc.

[FKRV15] Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn
Vansummeren. Document spanners: A formal approach to
information extraction. J. ACM, 62(2), May 2015. URL: https:
//doi.org/10.1145/2699442, doi:10.1145/2699442.

[HH17] S. Hoyer and J. Hamman. xarray: N-D labeled arrays and
datasets in Python. Journal of Open Research Software,
5(1), 2017. URL: http://doi.org/10.5334/jors.148, doi:10.
5334/jors.148.

[HMvdWea20] Charles R. Harris, K. Jarrod Millman, and Stéfan J.
van der Walt et al. Array programming with
NumPy. Nature, 585(7825):357–362, September 2020.
URL: https://doi.org/10.1038/s41586-020-2649-2, doi:10.
1038/s41586-020-2649-2.

[HMVLB20] Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and
Adriane Boyd. spaCy: Industrial-strength Natural Language
Processing in Python, 2020. URL: https://doi.org/10.5281/
zenodo.1212303, doi:10.5281/zenodo.1212303.

[Hug21] Huggingface. Transformers api documenta-
tion: Tokenclassificationpipeline, 2021. URL:
https://huggingface.co/transformers/main_classes/pipelines.
html#tokenclassificationpipeline.

[Hun07] J. D. Hunter. Matplotlib: A 2d graphics environment. Com-
puting in Science & Engineering, 9(3):90–95, 2007. doi:
10.1109/MCSE.2007.55.

[Inta] International Business Machines Corp. IBM Watson Discov-
ery. URL: https://www.ibm.com/cloud/watson-discovery.

[Intb] International Business Machines Corp. IBM Watson Natural
Language Understanding. URL: https://www.ibm.com/cloud/
watson-natural-language-understanding.

[KR18] Taku Kudo and John Richardson. SentencePiece: A simple
and language independent subword tokenizer and detokenizer
for neural text processing. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pages 66–71, Brussels, Bel-
gium, November 2018. Association for Computational Lin-
guistics. URL: https://www.aclweb.org/anthology/D18-2012,
doi:10.18653/v1/D18-2012.

[LB02] Edward Loper and Steven Bird. Nltk: The natural language
toolkit. In In Proceedings of the ACL Workshop on Effective
Tools and Methodologies for Teaching Natural Language
Processing and Computational Linguistics. Philadelphia: As-
sociation for Computational Linguistics, 2002.

[LOG+19] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettle-
moyer, and Veselin Stoyanov. Roberta: A robustly opti-
mized BERT pretraining approach. CoRR, abs/1907.11692,
2019. URL: http://arxiv.org/abs/1907.11692, arXiv:1907.
11692.

[Mai21a] Stanza Maintainers. Source code for basic data structres
in stanza. https://github.com/stanfordnlp/stanza/blob/main/
stanza/models/common/doc.py, 2021.

[Mai21b] TensorFlow Text Maintainers. TensorFlow text, 2021. URL:
https://github.com/tensorflow/text.

[Mai21c] TensorFlow Text Maintainers. TensorFlow text api documen-
tation, 2021. URL: https://www.tensorflow.org/text/api_docs/
python/text.

[MRX+21] Karthik Muthuraman, Frederick Reiss, Hong Xu, Bryan Cut-
ler, and Zachary Eichenberger. Data cleaning tools for token
classification tasks. In DaSH-LA, 2021.

[NdMG+20] Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Jan
Hajic, Christopher D. Manning, Sampo Pyysalo, Sebastian
Schuster, Francis M. Tyers, and Daniel Zeman. Universal
dependencies v2: An evergrowing multilingual treebank col-
lection. CoRR, abs/2004.10643, 2020. URL: https://arxiv.org/
abs/2004.10643, arXiv:2004.10643.

[pdt21a] The pandas development team. Pandas api documentation:
Extending pandas, 2021. URL: https://pandas.pydata.org/
pandas-docs/stable/development/extending.html.

[pdt21b] The pandas development team. pandas-dev/pandas: Pan-
das 1.2.4, April 2021. URL: https://doi.org/10.5281/zenodo.
4681666, doi:10.5281/zenodo.4681666.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[QZZ+20] Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. Stanza: A python natural lan-
guage processing toolkit for many human languages. CoRR,
abs/2003.07082, 2020. URL: https://arxiv.org/abs/2003.
07082, arXiv:2003.07082.

[RC21] Frederick Reiss and Bryan Cutler. Market intelligence with
pandas and ibm watson. 2021.

[RM95] Lance A. Ramshaw and Mitchell P. Marcus. Text chunking
using transformation-based learning. CoRR, cmp-lg/9505040,
1995. URL: http://arxiv.org/abs/cmp-lg/9505040.

[RXC+20] Frederick Reiss, Hong Xu, Bryan Cutler, Karthik Muthura-
man, and Zachary Eichenberger. Identifying incorrect labels
in the CoNLL-2003 corpus. In Proceedings of the 24th Con-
ference on Computational Natural Language Learning, pages
215–226, Online, November 2020. Association for Computa-
tional Linguistics. URL: https://www.aclweb.org/anthology/
2020.conll-1.16, doi:10.18653/v1/2020.conll-1.
16.

[SHG+15] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd
Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young,
Jean-Francois Crespo, and Dan Dennison. Hidden technical
debt in machine learning systems. In Proceedings of the 28th
International Conference on Neural Information Processing
Systems - Volume 2, NIPS’15, page 2503–2511, Cambridge,
MA, USA, 2015. MIT Press.

[TKSDM03] Erik F. Tjong Kim Sang and Fien De Meulder. Introduc-
tion to the CoNLL-2003 shared task: Language-independent
named entity recognition. In Proceedings of the Seventh
Conference on Natural Language Learning at HLT-NAACL
2003, pages 142–147, 2003. URL: https://www.aclweb.org/
anthology/W03-0419.

[WDS+20] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim
Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam
Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien
Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Hugging-

https://github.com/CODAIT/text-extensions-for-pandas
https://github.com/python/cpython
https://github.com/python/cpython
https://arrow.apache.org/
https://arrow.apache.org/
https://github.com/spyder-ide/spyder
https://github.com/spyder-ide/spyder
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
http://dx.doi.org/10.18653/v1/N19-1423
https://github.com/man-group/dtale
https://github.com/man-group/dtale
https://github.com/quantopian/qgrid
https://github.com/quantopian/qgrid
https://spacy.io/api/doc
https://doi.org/10.1145/2699442
https://doi.org/10.1145/2699442
http://dx.doi.org/10.1145/2699442
http://doi.org/10.5334/jors.148
http://dx.doi.org/10.5334/jors.148
http://dx.doi.org/10.5334/jors.148
https://doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
http://dx.doi.org/10.5281/zenodo.1212303
https://huggingface.co/transformers/main_classes/pipelines.html#tokenclassificationpipeline
https://huggingface.co/transformers/main_classes/pipelines.html#tokenclassificationpipeline
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
https://www.ibm.com/cloud/watson-discovery
https://www.ibm.com/cloud/watson-natural-language-understanding
https://www.ibm.com/cloud/watson-natural-language-understanding
https://www.aclweb.org/anthology/D18-2012
http://dx.doi.org/10.18653/v1/D18-2012
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://github.com/stanfordnlp/stanza/blob/main/stanza/models/common/doc.py
https://github.com/stanfordnlp/stanza/blob/main/stanza/models/common/doc.py
https://github.com/tensorflow/text
https://www.tensorflow.org/text/api_docs/python/text
https://www.tensorflow.org/text/api_docs/python/text
https://arxiv.org/abs/2004.10643
https://arxiv.org/abs/2004.10643
http://arxiv.org/abs/2004.10643
https://pandas.pydata.org/pandas-docs/stable/development/extending.html
https://pandas.pydata.org/pandas-docs/stable/development/extending.html
https://doi.org/10.5281/zenodo.4681666
https://doi.org/10.5281/zenodo.4681666
http://dx.doi.org/10.5281/zenodo.4681666
https://arxiv.org/abs/2003.07082
https://arxiv.org/abs/2003.07082
http://arxiv.org/abs/2003.07082
http://arxiv.org/abs/cmp-lg/9505040
https://www.aclweb.org/anthology/2020.conll-1.16
https://www.aclweb.org/anthology/2020.conll-1.16
http://dx.doi.org/10.18653/v1/2020.conll-1.16
http://dx.doi.org/10.18653/v1/2020.conll-1.16
https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/W03-0419

NATURAL LANGUAGE PROCESSING WITH PANDAS DATAFRAMES 57

face’s transformers: State-of-the-art natural language process-
ing, 2020. arXiv:1910.03771.

http://arxiv.org/abs/1910.03771

	Background and Motivation
	An Alternative Approach
	Extending Pandas

	Spans
	Tensors
	Serialization
	Spanner Algebra
	Other Span Operations

	Jupyter Notebook Integration
	NLP Library Integrations
	spaCy
	transformers
	IBM Watson Natural Language Understanding
	IBM Watson Discovery

	Usage in Natural Language Processing Research
	Conclusion
	References

