58

PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

CLAIMED, a visual and scalable component library for
Trusted Al

Romeo Kienzlert, lvan Nesic’

Abstract—CLAIMED is a component library for artificial intelligence, machine
learning, "extract, transform, load" processes and data science. The goal is
to enable low-code/no-code rapid prototyping by providing ready-made com-
ponents for various business domains, supporting various computer languages,
working on various data flow editors and running on diverse execution engines.
To demonstrate its utility, we constructed a workflow composed exclusively of
CLAIMED components. For this purpose, we made use of a publicly available
Computed Tomography (CT) scans dataset [covidata] and created a deep learn-
ing model, which is supposed to classify exams as either COVID-19 positive or
negative. The pipeline was built with Elyra’s Pipeline Visual Editor, with support
for local, Airflow and Kubeflow execution.

Index Terms—Kubernetes, Kubeflow, JupyterLab, Elyra, KFServing, TrustedAl,
Al Explainability, Al Fairness, Al Adversarial Robustness

Introduction

In our Hospital Research Department we regularly have Citizen
Data Scientists (CDS) [citizends] (in our case, mostly medi-
cal doctors) working on large corpora of clinical data. Often,
monolithic scripts are used for prototyping, lacking quality and
reproducibility. Therefore, in cooperation with CDS we’ve defined
the following requirements for a new way of applying data-driven
clinical research:

e low-code / no-code environment for rapid prototyping with
visual editing and jupyter notebooks

o seamless scaling during development and deployment

« GPU support

o pre-build components for various business domains

« support for the complete python and R tooling including
Apache Spark, TensorFlow, PyTorch, pandas and scikit-
learn

« seamless extensibility

« reproducibility of work

« data lineage

« collaboration support

We’ve evaluated the following software tools but we found that
these tools, even when used in conjunction, support only a subset
of our requirements: Slurm [slurm], Snakemake [snakemake],

* Corresponding author: romeo.kienzler @ ch.ibm.com
IBM, Center for Open Source Data and Al Technologies (CODAIT)
§ University Hospital of Basel

Copyright© 2021 Romeo Kienzler et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

QSub [gsub], HTCondor [htcondor], Apache Nifi [nifi], NodeRED
[nodered], KNIME [knime], Galaxy [galaxy], Reana [reana],
WEKA [weka], Rabix [rabix], Nextflow [nextflow], OpenWDL
[openwdl], CWL [cwl] or Cromwell [cromwell].

To not reinvent the wheel but rather fill the gap, we have built
an extensible component library to be used in low-code / no-code
environments called CLAIMED - the visual Component Library
for Artificial Inteligence (AI), Machine Learning (ML), Extract,
Transform, Load (ETL) and Data Science. In the following sec-
tion we elaborate on the implementation details followed by a
description of an exemplary pipeline to showcase the capabilities
of CLAIMED. We continue to elaborate on different ideas how
CLAIMED can be improved in the "Future Work" section, finally
followed by the conclusion.

Implementation

Before we address how CLAIMED fulfills the previously defined
requirements and how the exemplary workflow has been con-
structed, we will introduce some terms and technologies.

Technology breakdown

Containerization and Kubernetes: Virtualization opened
up a lot of potential for managing the infrastructure, mainly the
ability to run different operating systems on the same hardware
at the same time. Next step of isolation can be performed for
each of the microservices running on the server, but instead
of managing access rights and resources on the host operating
system, we can containerize these in separate packages with their
own environments. Practical effect of this is that we are running
each of the microservices as if they have their own dedicated
virtual machine, but without the overhead of such endeavour. This
is accomplished by running containers on top of the host operating
system. An example of the containerization platform is Docker.

With the opportunity to run a vast number of containers,
arose the need of their orchestration. The system needs to be
constantly monitored and adjusted so that it stays in a desired state.
Containers need to be scaled up and down, the communication
has to be managed, they have to be scheduled, authentication
needs to be managed, there is the need for load balancing etc.
There are multiple optins on the market, but Kubernetes is the
market leader in this domain. It was donated to Cloud Native
Computing Foundation (CNCF) [cncf] by Google, which means
a lot of Google’s know-how and years of experience went into it.
The system can run on public, on-premises or on hybrid clouds.
On-premises installation is very important for institutions dealing

mailto:romeo.kienzler@ch.ibm.com

CLAIMED, A VISUAL AND SCALABLE COMPONENT LIBRARY FOR TRUSTED Al

with sensitive data. For IBM, Kubernetes is also strategic. IBM
acts as a Kubernetes runtime provider in the cloud and - through
the acquisition of RedHat - has become the major vendor for
on-premises Kubernetes. IBM is now able to deliver software
solutions - so called "Cloud Paks" - on top of Kubernetes, mak-
ing them run everywhere (hybrid cloud). Therefore, IBM joined
CNCEF [ibmcncf], and moved all Watson Services to Kubernetes.
This makes IBM the 3rd largest committer to Kubernetes. Not
only for IBM but also for us, Kubernetes enables the hybrid cloud
scenario of transparently moving workload across different on-
premises, remote and cloud data centers seamlessly.

Deep Learning with TensorFlow: TensorFlow is the sec-
ond incarnation of the Google Brain project’s scalable distributed
training and inference system named DistBelief [tf]. It supports
myriad of hardware platforms, from mobile phones to GPU/TPU
clusters, for both training and inference. It can even train and
run models in browser, without the data ever leaving the user’s
environment. Apart from being a valuable tool in research domain,
it is also being used in demanding production environments. On
a development side, representing machine learning algorithms in
tree-like structures makes it a good expression interface. Lastly, on
the performance vs usability side, both graph and eager modes are
supported. Eager mode allows for easier debugging since the code
is executed in Python control flow, as opposed to the TensorFlow
specific graph control flow [tfeager]. The advantages of graph
mode is usage in distributed training, performance optimization
and production deployment. In-depth analysis of these two modes
can be found here [tfbook].

Kubeflow: Having a compute cluster capable of scaling
at container level granularity calls for a workflow execution
engine leveraging the advantages of containerization and container
orchestration by integrating with Kubernetes seamlessly. This is
where Kubeflow [kubeflow] kicks in. It is a machine learning
pipeline management and execution system running as first class
citizen on top of Kubernetes. Beside making use of Kubernetes
scalability, it allows for defining reproducible work products
as machine learning pipelines, where results and intermediate
artifacts of the executions are stored in a metadata repository.

Jupyter Notebooks / JupyterLab: When it comes to col-
laboration and reproducibility, document centric coding tools
like Apache Zeppelin or Jupyter Notebooks are a great choice.
Recently, JupyterLab [jupyter] started setting the standard for the
research and data science community [jupyter_standard]. There-
fore we consider Jupyter Lab not only as an Integrated Devel-
opment Environment (IDE) but more as a technology standard
practitioners love to work with.

Elyra: Visual editing using drag and drop editing in "no
code" / "low code" environments is gaining popularity [lowcode].
As a representative of such environments we introduce Elyra.
Elyra [elyra] started as a set of extensions for the JupyterLab
ecosystem. Here we concentrate on the pipeline editor, developed
by IBM in Open Source under supervision of the authors, which
allows for expression of machine learning workflows using a
drag and drop editor. Inspired by CWL [cwl] and OpenWDL
[openwdl], Elyra uses an open and interchangeable, JSON based
format to represent the workflows. This allows Elyra to transpile
workflows to different execution engines like Kubeflow or Airflow.
This means non-programmers can understand and create machine
learning workflows on their own without coding and at the same
time making use of Kubernetes massive scalability. Elyra also
ships with a browser extension for visualizing such pipelines in the

59

50 100 150 200 250 300 350

Fig. 1: Example on how LIME helps to identify classification relevant
areas of an image.

browser (e.g. from a github repository) to improve collaboration.

Al Explainability: Despite the good performance, deep
learning models are viewed as being black box approaches. Tech-
nically, deep learning models are a series of non-linear feature
space transformations, but an intuitive understanding of each of
the individual processing steps is not trivial. There are techniques
with which we can look over a deep learning model’s shoulder.
The one we are using is called LIME [lime]. LIME takes the
existing classification model and permutes images taken from the
validation set (therefore the real class label is known to LIME) as
long as a misclassification is happening. That way LIME can be
used to create heat maps as image overlays to indicate regions of
images which are most relevant for the classifier. In other words,
we identify regions of the image the classifier is looking at.

As Fig. 1 illustrates, the most relevant areas in an image for
classifying for COVID-19 are areas containing bones over lung
tissue which indicates a problem with that particular classifier.

Al Fairness and Bias: "Bias is a disproportionate weight in
favor of or against an idea or thing, usually in a way that is closed-
minded, prejudicial, or unfair" [bias]. But what we want from our
model is to be fair and unbiased towards protected attributes like
race, age, socioeconomic status, religion and so on. So wouldn’t
it be easier if we just "hid" those columns from the model during
the training? Unfortunately the problem is convoluted. Protected
attributes are often encoded inside the other attributes (latent
features). For example, race, religion and socioeconomic status
are latently encoded in attributes like zip codes, contact methods
or types of products purchased. Therefore, fairness assessment
and bias detection is quite challenging. Luckily, a huge number
of single number metrics exist to assess bias in data and models.
Here, we are using the AIF360 [aif360] library. IBM donated it to
the Linux Foundation Al, which puts it under open governance.

Al Adversarial Robustness: Another pillar of Trusted Al
is adversarial robustness. For example, as researchers found out,
adversarial noise can be introduced in data (data poisoning)
or models (model poisoning) to influence models decisions in
favor of the adversarial. Libraries like the Adversarial Robustness
Toolbox ART [art] support all state-of-the-art attacks and defenses.

Requirements and System Architecture

In the following section we cover the system architecture and it’s
requirements. There are two major components: execution engine
and integrated tools.

Execution Engine: An execution engine takes a pipeline
description and executes it on top of physical machines, reads

60 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)
Requirement KF AF Slurm SM Qsub HTCondor Reana Requirement Nifi NodeRED KNIME Galaxy Elyra
Kubernetes Sup- X X X X X Kubernetes Sup- X X
port port
GPU support X X X X X X X GPU support X X
Component X Component X X X X X
Library Library
Reproducibility X X X X X Reproducibility X X X X
Data Lineage X X Data Lineage X X X

Visual Editing X X X X X
Jupyter X
Notebooks

TABLE 1: Fulfilment of requirements for execution engines. (Abbre-
viations: KF=Kubeflow, AF=Airflow, SM=Snakemake)

source data and creates output data. The following requirements
have been defined in order to assess the adequacy of the execution
engine.

« Kubernetes Support
We defined Kubernetes as the lowest layer of abstraction
because that way the executor layer is agnostic of the
underlying Infrastructure as a service (laaS) architecture.
In addition, Kubernetes provides better resource utilization
if multiple pipelines are run in parallel on the system. We
can consume Kubernetes as a service (aaS) offered by a
variety of Cloud providers like IBM, Amazon, Google,
Microsoft, OVH or Linode. A lot of workload for this
particular project has been envisioned to be outsourced to
SciCore [scicore] - a scientific computing data center part
of the Swiss Personalized Health Network (SPHN) [sphn]
and the Swiss Institute of Bioinformatics [sib]. Best to our
knowledge, their cluster runs on OpenStack and provides
Kubernetes as part of it (Magnum). University Hospital of
Basel has on-premises RedHat OpenShift platform.

« GPU support
GPU support is essential since a large fraction of the
workload is training of deep learning neural networks with
TensorFlow and PyTorch. Training those models on CPU
doesn’t make sense economically and ecologically.

o Component Library
Predefined, ready to use components, are convenient to
use, they save time and, if well tested, reduce the proba-
bility of an error. Kubeflow for example has components
for parallel training of TensorFlow models (TFJob), par-
allel execution of Apache Spark jobs as a pipeline step,
parallel hyperparameter tuning (Katib) and model serving
(KFServing/ KNative)

« Reproducibility
From a legal point of view, in certain domains, it is
necessary to reconstruct a certain decision, model or output
dataset for verification and audit. Therefore the ability to
reproduce and re-run a pipeline is a critical requirement.
Of course, there are other examples where this is impera-
tive, like in science.

o Data Lineage
Although a subset of reproducibility, Data Lineage is a
crucial feature when it comes to visualizing the changes
the datasets went through during the pipeline execution.

Integrated tools: Integrated tools are tools which include
a visual data flow editor, a component library and an execution
engine. Prominent candidates in the open source space are Apache
Nifi, NodeRED, KNIME and Galaxy.

TABLE 2: Fulfilment of requirements for integrated tools.

,docker
Il
Jupyter Py
*.ipynb \ / [reﬂ .
¥ \\‘
& python oy r . >
= @
EIyra Kubeflow kubernetes

nnnnnnnnnnnnnnnnnnn

Fig. 2: Runtime architecture of CLAIMED.

The following additional requirements have been defined for a
suitable tool:

o Low-Code/No-Code/Visual Editing
Citizen data scientists (in our demo example, medical
doctors) need to work with the tool, so visual editing
is necessary. But apart from being a visual editing tool,
support for creating custom pipeline components on the
fly using R and python is necessary as well.

« Jupyter Notebooks
Researchers in general like to implement tasks in jupyter
notebooks. This makes support for JupyterLab, as well as
having an easy way of making Jupyter notebooks part of
the data processing pipeline, a key requirement.

Final technology choice: As it can be seen from the tables
1 and 2, only Kubeflow on the execution engine side, and Elyra as
the integrated tool are capable of covering all of the requirements.
Therefore we select this pair as our primary technology choice.

Elyra’s pipeline editor supports drag and drop functionality, for
adding arbitrary scripts (shell, R, python) and Jupyter notebooks
to the canvas. Each script gets a container image assigned to be
executed in. At the moment, Elyra supports pipeline submissions
to Airflow and Kubeflow.

Together with Kubeflow and JupyterLab (where Elyra runs as
an extension), all our requirements are fulfilled.

As it can be seen on Figure 2, Elyra - specifically the pipeline
editor of the Elyra Extension to JupyterLab - allows for visually
building data pipelines with a set of assets like notebooks and
scripts dragged onto a canvas and transparently published to
Kubeflow, as a Kubeflow pipeline.

The only thing missing is a set of re-usable notebooks for
different kinds of tasks and this is where CLAIMED comes in.

CLAIMED, A VISUAL AND SCALABLE COMPONENT LIBRARY FOR TRUSTED Al

©[W] input-covid-che... ® > [A] transform-apply... ® > [fitteripynb D > [A] transform-image...
> [A] predict-images.i.. ® > [A] metric-aifseo.p.. ®
> || train-mobilenet... :® > [M] condition-blessi.. ®
> [A] metric-aixzeo-ii.. @
Filename
train-mobilenet_v2.ipynb
Runtime Image > [A] metric-confusic... ®

continuumio/anaconda3:2020.07
64
GPU
RAM(GB)
128
File Dependencies
codait_utils.ipynb
Include Subdirectories in Dependencies
Environment Variables

Output Files
model.zip

> [A] notification-ema... @) > [deploy-kiserving... ©

Fig. 3: The exemplary TrustedAl pipeline for the health care use case.

We’ve published CLAIMED as an open source library [complib].
In the next sections we will introduce the demo use case, along
with how components found in CLAIMED have been used to
implement this pipeline.

System Implementation and Demo Use Case
A TrustedAl image classification pipeline

As mentioned, pipelines are a great way to introduce reproducibil-
ity, scaling, auditability and collaboration in machine learning.
Pipelines are often a central part of a MLOps strategy. This holds
for TrustedAl pipelines too, since reproducibility and auditability
are even more important in this case. Figure 3 illustrates the
exemplary TrustedAl pipeline we have built using the compo-
nent library and Figure 4 is a screenshot taken from Kubeflow
displaying the pipeline after finishing it’s run.

Pipeline Components

This section exemplifies each existing category with at least one
component which has been used for this particular pipeline. There
are also other components that are not part of the pipeline, so they
are not introduced here. Please note that the core feature of our
software is threefold:

o the CLAIMED component library

o Elyra with it’s capability to use CLAIMED to create a
pipeline and push it to Kubeflow

« the pipeline itself

Input Components: There are input components for differ-
ent types of data source, like files and databases.

In this particular case, we’re pulling data directly from the
GitHub repository via a public and permanent link [covidata]. We
only pull the metadata.csv and images directory.

Transform Components: Sometimes, transformations on
the metadata, or any other structured dataset, are necessary.
Therefore, we provide a generic transformation component - in
the example, we used it to change to format of the categories
as the original file contained forward slashes which made it hard
to use on the underlying operating system. This is performed by
specifying a column name and a function that has to be applied.

Filter Components: Similar to changing content of rows
in a dataset, removing rows is also a common task in data
engineering. The filter stage allows doing exactly that. It is enough
to provide a predicate - specifically for our case the predicate
~metadata.filename.str.contains ('.gz"') removes
invalid images.

61

Experiments > covidl9-trustedai-0222205445

0222205445

<& Experiments
Graph Run output Config

input-covid-che... @

l

transform-apply @

|

filter o

(o]
transform-images &
train-mobilenet-.. &
predict-images (]
metric-aif360 (] metric-aix36o-i.. @ metric-confusio... @
condition-blessing @
notification-email &
deploy-kfserving @
) Runtime exe raph. Only steps that are currently runni have already completed are showr
Fig. 4: The pipeline once executed in Kubeflow.
data

— No Finding
| |— oeeeeel-3.jpg

| — 000001-6.]pg

— Pneumonia_Viral COVID-19
|

|

— 00870a9c. jpg
I— 01E392EE-69F9-4E33-BFCE-E5C968654078. jpeg

Fig. 5: Example of directory structure supported by TensorFlow
Dataset API.

Image Transformer Components: One supported standard
for the conversion of image datasets into the TensorFlow’s dataset
supported format, is to organize images into directories represent-
ing their classes [tfimgprep]. TensorFlow Dataset is an API that
allows for a convenient way to create datasets from various input
data, apply transformations and preprocessing steps and make
iteration over the data easier and memory efficient [tfdataset].

In our example, the data isn’t in the required format. It is
organized as a directory full of images and alongside it is a CSV
file which defines the attributes. Available attributes are exam
finding, sex and age, from which we only require the finding
for our example. The images are then arranged by following
the previously described directory structure, as illustrated by Fig.
5. After performing this step, the data can be consumed by the
Tensorflow Dataset API.

62
exec('input shape = ('+image shape+',3)"')

model = tf.keras.applications.MobileNetV2(
input shape=input_shape, alpha=1.0, include top=False,
input tensor=None, pooling=None, classes=num classes,
classifier activation="'softmax"'

)

model = my net(model, num classes=num classes)

Fig. 6: Source code of the wrapped training component.

Training Components: Understanding, defining and train-
ing deep learning models is not a simple task. Training a deep
learning image classification model requires a properly designed
neural network architecture. Luckily, the community trends to-
wards predefined model architectures, which are parameterized
through hyper-parameters. At this stage, we are using the Mo-
bileNetV2, a small deep learning neural network architecture with
the set of the most common parameters. It ships with the Ten-
sorFlow distribution - ready to use, without any further definition
of neurons or layers. As shown in Figure 6, only a couple of
parameters need to be specified.

Although possible, hyper-parameter search is not considered in
this processing stage. The reason being, we want to make use of
Kubeflow’s hyper-parameter search capabilities leveraged through
Katib [katib] in the future.

Evaluation Components: A model needs to be evaluated
before it goes into production. Evaluating classification perfor-
mance against the target labels has been a common metric since
the early days of machine learning, therefore we have also de-
veloped evaluation components, with confusion matrix support
for instance. But taking TrustedAl measures into account is a
newly emerging practice. Therefore, components for Al Fairness
[aif360], Al Explainability [aix360] and Al Adversarial Robust-
ness [art] have been also added to the component library.

Blessing Components: In Trusted Al (but not limited to)
it is important to obtain a blessing of assets like generated data,
models or reports to be published and used by other subsystems
or humans. Therefore, a blessing component uses the results of
the evaluation components to decide if the assets are ready for
publishing.

Publishing Components: Depending on the asset type,
publishing means either persisting a dataset to a data store,
deploying a machine learning model for consumption of other
subsystems, or publishing a report to be consumed by humans.
Here, we exemplify this category by a KFServing [kfserving]
component which publishes the trained TensorFlow deep learning
model to Kubernetes. KFServing, on top of KNative, is partic-
ularly interesting as it draws from Kubernetes capabilities, like
canary deployment and scalability (including scale to zero), in
addition to built-in Trusted Al functionality.

Future Work

We have financial support to add functionality to CLAIMED in
multiple dimensions. Below we give a summary of the next steps.

Extend component library

To this date, at least one representative component for each cate-
gory has been released. Components are added to the library on
a regular basis. The components due to be published are: Parallel
Tensorflow Training with TFJob, Parallel Hyperparameter Tuning
with Katib and Parallel Data Processing with Apache Spark.

PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

o docker
Jupyter) *r [ref]
*.lpynb \
s
*,py . ”

@ python

Acumos Al

BASH |

,,,,,,,,,,,,,,,,,,, o
= e O
=
= GalaxyReE
Elyra Watson Orchestrator

Fig. 7: C3 - The CLAIMED Component Compiler transpiles and
publishes pipeline components for different target platforms

Component exporter for Kubeflow

Containerizing notebooks and scripts is a frequent task in the data
science community. In our environment, this involves attaching the
arbitrary assets, like jupyter notebooks and scripts, to a container
image and then transpiling a Kubeflow component out of it. We
are currently in the process of implementing a tool that would
facilitate this workflow. The name of the tool is C3 [c3], and it
stands for CLAIMED component compiler. Currently, transpiling
from notebooks to Kubeflow Pipeline components is supported. In
addition, publishing these components to component repositories
will also be possible. C3 already supports publishing components
to Machine Learning Exchange (MLX) [mlx], an open source asset
repository for notebooks, pipelines, data sets, machine learning
models and pipeline components. Figure 7 illustrates the concept.

Import/Export of components to/from Galaxy

As seen in Table 2, Galaxy covers a majority of our requirements
already. Unfortunately, Galaxy components - called "tools" -
are very skewed towards genomics. Adding new components
and extending functionality onto other domains would make the
tool interesting for a wider audience. Reverse is also true, the
existing component library Galaxy is extensive, well established
and tested. It makes sense to automatically transpile those tools as
components into CLAIMED. We are currently looking into adding
import/export support between CLAIMED and Galaxy into C3.

UX improvements of the Elyra pipeline editor

The components are isolated, so only explicitly shared information
can be put into context for all of them. In order for the com-
ponents’ executor, e.g. Kubflow, to do this, it must be provided
a configuration. We envision for Elyra to automatically deduce
interesting parameters from the code and from the environment,
upon which it would create dynamic forms. For example, fields
like checkboxes and dropdowns where one can select input and
output files mentioned in the code. Currently, only environment
variables are provided in a rudimentary UI with one text field per
variable. One proposal is to introduce an optional configuration
block to the scripts and notebooks. It would then be interpreted by
Elyra and the appropriate UI would be rendered.

One successful example of such implementation is Galaxy’s
UI [galaxy_ui]. A complex UI behavior is expressed by XML
configuration. So we are also exploring an option of either using
Galaxy’s XML Schema or defining a new one and support the
transformation from one into the other.

CLAIMED, A VISUAL AND SCALABLE COMPONENT LIBRARY FOR TRUSTED Al

Add CWL support to the Elyra pipeline editor

CWL is a powerful workflow expression language supported
already by various tools we’ve evaluated. Currently, Elyra uses its
own, proprietary pipeline representation format. Adding support of
CWL to Elyra would improve interoperability between different
software components. For example, the Reana execution engine
used in the particle physics community, and Galaxy (partially)
already support CWL. This means it would be possible to export
pipelines from Elyra to Reana, without the need of transpiling the
pipeline. Alternatively, Elyra could integrate export and import of
CWL into its pipeline editor.

Import 3rd party component libraries

Since the only thing needed for arbitrary code to become a
CLAIMED component is to be wrapped in a container image
and to be assigned with meta data, it is possible for 3rd party
component libraries like those from KNIME or Nifi and to be
imported into CLAIMED. This also holds true for Kubeflow
components. It is also possible to wrap different components
from KNIME, Nifi or similar tools in this manner and use it
within Elyra, as well as in the other execution engines CLAIMED
supports.

Create more (exemplary) pipelines

At the moment, CLAIMED ships with three exemplary pipelines.
The health care inspired TrustedAl pipeline which was covered
in this paper, a pipeline to visualize and predict soil temperature
from a historic data set and an [oT sensor data analysis pipeline.
The next pipeline in line is a genomics pipeline for the Swiss Insti-
tute of Bioinformatics affiliates University Hospital Berne/Berne
University and potentially for particle physics at CERN.

Conclusion

We’ve build a trustable, low-code, scalable and open source
component library, targeting visual data pipeline systems. We’ve
showcased the library’s capabilities by building a domain specific
pipeline on Elyra, an emerging visual pipeline editor and running
it on widely used Kubeflow execution engine. We believe that
future import/export functionality of CLAIMED will improve
reproducibility of data centric work even further.

REFERENCES

[art] Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc Tran, Beat
Buesser, Ambrish Rawat, Martin Wistuba, Valentina Zant-
edeschi, Nathalie Baracaldo, Bryant Chen, Heiko Ludwig,
Ian M. Molloy, Ben Edwards Adversarial Robustness Tool-
box, arXiv:1807.01069, November 2019

Rachel K. E. Bellamy et al. Al Fairness 360: An Extensi-
ble Toolkit for Detecting, Understanding, and Mitigating
Unwanted Algorithmic Bias, arXiv:1810.01943, October
2018

Vijay Arya et al. One Explanation Does Not Fit All: A
Toolkit and Taxonomy of AI Explainability Techniques,
arXiv:1909.03012, September 2019

[bias] Steinbock, Bonnie (1978). Speciesism and the
Idea of Equality, Philosophy, 53 (204): 247-256,
doi:10.1017/S0031819100016582

Cloud Native Computing Foundation, https://www.cncf.io.
Last accessed 18 Feb 2021
https://github.com/elyra-ai/component- library

Elyra Al https://github.com/elyra-ai. Last accessed 18 Feb
2021

[aif360]

[aix360]

[encf]

[complib]
[elyra]

[kubernetes]

[jupyter]

[kfserving]

[lime]

[kubeflow]
[katib]

[tf]

[ibmcncf]

[ect]

[slurm]

[snakemake]

[gsub]
[htcondor]

[galaxy]

[reana]

[nifi]
[nodered]

[knime]

[weka]

[rabix]

[nextflow]

[openwdl]
[ewl]

63

David Bernstein et al. Containers and Cloud: From LXC to
Docker to Kubernetes, IEEE Cloud Computing (Volume: 1,
Issue: 3), September 2014)

Thomas Kluyver et al. Jupyter Notebooks — a publish-
ing format for reproducible computational workflows, Po-
sitioning and Power in Academic Publishing: Players,
Agents and Agendas, 87-90, doi:10.3233/978-1-61499-
649-1-87, 2016

Clive Cox and Dan Sun and Ellis Tarn and Animesh
Singh and Rakesh Kelkar and David Goodwin, Serverless
inferencing on Kubernetes, Workshop on "Challenges in
Deploying and Monitoring Machine Learning System" at
ICML 2020

Marco Tulio Ribeiro et al. "Why Should I Trust
You?": Explaining the Predictions of Any Classifier,
Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, San Francisco, CA, USA, pp. 1135-1144 (2016),
doi:10.1145/2939672.2939778

Debo Dutta and Xinyuan Huang, Consistent Multi-Cloud
Al Lifecycle Management with Kubeflow, OpML, 2019
George et al. A Scalable and Cloud-Native Hyperparame-
ter Tuning System, arXiv:2006.02085, June 2020

Martin Abadi et al. TensorFlow: Large-Scale Ma-
chine Learning on Heterogeneous Distributed Systems,
arXiv:1603.04467v2, March 2016

IBM joining CNCF, https://developer.ibm.com/
technologies/containers/blogs/ibms-dedication-to-open-
source-and-its-involvement-with-the-cncf Last accessed
18 Feb 2021
https://github.com/cloud-annotations/elyra-classification-
training/tree/developer_article

"Yoo, Andy B. and Jette, Morris A. and Grondona, Mark,
SLURM: Simple Linux Utility for Resource Management,
Job Scheduling Strategies for Parallel Processing, Springer,
2003

Koster, Johannes and Rahmann, Sven, Snakemake—a scal-
able bioinformatics workflow engine, Journal of Bioinfor-
matics, Number 19, Volume 28, Pages 2520-2522}, August
2012

https://en.wikipedia.org/wiki/Qsub

E M Fajardo et al, How much higher can HTCondor fly?,
2015 Journal of Physics.: Conference Series, Volume 664,
June 2014

Enis Afgan et al. The Galaxy platform for accessi-
ble, reproducible and collaborative biomedical analyses:
2018 update, Nucleic Acids Research, 46):W537-W544,
doi:10.1093/nat/gky379, July 2018

Tibor Simko et al. REANA: A System for Reusable Re-
search Data Analyses, 23rd International Conference on
Computing in High Energy and Nuclear Physics (CHEP
2018), (214):06034, doi:10.1051/epjconf/201921406034,
September 2019

https://nifi.apache.org/

Z. Chaczko and R. Braun, Learning data engineering:
Creating IoT apps using the node-RED and the RPI
technologies, 16th International Conference on Informa-
tion Technology Based Higher Education and Training
(ITHET), 1-8, doi: 10.1109/ITHET.2017.8067827, 2017
Michael R. Berthold et al. KNIME - the Kon-
stanz information miner: version 2.0 and beyond,
ACM SIGKDD Explorations Newsletter, (11):26-31,
doi:10.1145/1656274.1656280, June 2009

Mark Hall et al. The WEKA data mining software: an up-
date, ACM SIGKDD Explorations Newsletter, (11):10-18,
doi:10.1145/1656274.1656278, June 2009

Gaurav Kaushik et al., RABIX: AN OPEN-SOURCE
WORKFLOW EXECUTOR SUPPORTING RECOM-
PUTABILITY AND INTEROPERABILITY OF WORK-
FLOW DESCRIPTIONS, Proceedings of the Pacific
Symposium on Biocomputing 2017, (22):154-165,
doi:10.1142/9789813207813_0016, November 2017

Di Tommaso, P., Chatzou, M., Floden, E. et al. Nextflow
enables reproducible computational workflows., Nature
Biotechnology, (35):316-319, doi:10.1038/nbt.3820, 2017
https://openwdl.org/

https://www.commonwl.org/

https://www.cncf.io
https://github.com/elyra-ai/component-library
https://github.com/elyra-ai
https://developer.ibm.com/technologies/containers/blogs/ibms-dedication-to-open-source-and-its-involvement-with-the-cncf
https://developer.ibm.com/technologies/containers/blogs/ibms-dedication-to-open-source-and-its-involvement-with-the-cncf
https://developer.ibm.com/technologies/containers/blogs/ibms-dedication-to-open-source-and-its-involvement-with-the-cncf
https://github.com/cloud-annotations/elyra-classification-training/tree/developer_article
https://github.com/cloud-annotations/elyra-classification-training/tree/developer_article
https://en.wikipedia.org/wiki/Qsub
https://nifi.apache.org/
https://openwdl.org/
https://www.commonwl.org/

64

[cromwell]
[covidata]

[tfeager]

[tfdataset]

[tfimgprep]

[galaxy_ui]

[c3]
[tfbook]

[vscode]
[scicore]
[sphn]
[sib]
[citizends]

[jupyter_standard]

[lowcode]

[mlx]

https://cromwell.readthedocs.io/en/stable/

Joseph Paul Cohen et al. COVID-19 Image Data
Collection: Prospective Predictions Are the Future,
arXiv:2006.11988, 2020

Akshay Agrawal et al. TensorFlow Eager: A Multi-Stage,
Python-Embedded DSL for Machine Learning, Proceed-
ings of the 2nd SysML Conference, arXiv:1903.01855,
2019

Steven W. D. Chien et al. Characterizing Deep-Learning
1I/0 Workloads in TensorFlow, IEEE/ACM 3rd Interna-
tional Workshop on Parallel Data Storage - Data In-
tensive Scalable Computing Systems (PDSW-DISCS),
doi:10.1109/PDSW-DISCS.2018.00011 2018
https://www.tensorflow.org/api_docs/python/tf/keras/
preprocessing/image_dataset_from_directory
https://github.com/bgruening/galaxytools/blob/
c1027a3t78bca2fd8a53f076ef718ea5adbf4a8a/tools/
sklearn/pca.xml#L75

https://github.com/romeokienzler/c3

Romeo Kienzler and Jerome Nilmeier, What’s New
In TensorFlow 2.x?, O’Reilly Media, Inc., ISBN:
9781492073710, July 2020

https://code.visualstudio.com/

https://scicore.unibas.ch/

https://sphn.ch/

https://www.sib.swiss/

Mullarkey, Matthew T. et al., Citizen Data Scientist: A
Design Science Research Method for the Conduct of Data
Science Projects, Extending the Boundaries of Design Sci-
ence Theory and Practice, 191-205, Springer International
Publishing, ISBN 978-3-030-19504-5, 2019

Perkel, Jeffrey M. Why Jupyter is data scientists’ compu-
tational notebook of choice. Nature, Volume 563, Number
7732, Page 145+, 2018

Apurvanand Sahay et al. Supporting the understand-
ing and comparison of low-code development platforms,
171-178, IEEE 46th Euromicro Conference on Soft-
ware Engineering and Advanced Applications (SEAA),
doi:10.1109/SEAAS51224.2020.00036, 2020
https://github.com/machine-learning-exchange/mlx,
Accessed: 29 of June, 2021

PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

https://cromwell.readthedocs.io/en/stable/
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image_dataset_from_directory
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image_dataset_from_directory
https://github.com/bgruening/galaxytools/blob/c1027a3f78bca2fd8a53f076ef718ea5adbf4a8a/tools/sklearn/pca.xml#L75
https://github.com/bgruening/galaxytools/blob/c1027a3f78bca2fd8a53f076ef718ea5adbf4a8a/tools/sklearn/pca.xml#L75
https://github.com/bgruening/galaxytools/blob/c1027a3f78bca2fd8a53f076ef718ea5adbf4a8a/tools/sklearn/pca.xml#L75
https://github.com/romeokienzler/c3
https://code.visualstudio.com/
https://scicore.unibas.ch/
https://sphn.ch/
https://www.sib.swiss/
https://github.com/machine-learning-exchange/mlx

	Introduction
	Implementation
	Technology breakdown
	Requirements and System Architecture

	System Implementation and Demo Use Case
	A TrustedAI image classification pipeline
	Pipeline Components

	Future Work
	Extend component library
	Component exporter for Kubeflow
	Import/Export of components to/from Galaxy
	UX improvements of the Elyra pipeline editor
	Add CWL support to the Elyra pipeline editor
	Import 3rd party component libraries
	Create more (exemplary) pipelines

	Conclusion
	References

