
2 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Securing Your Collaborative Jupyter Notebooks in the
Cloud using Container and Load Balancing Services

Haw-minn Lu‡∗, Adrian Kwong‡, José Unpingco‡

F

Abstract—Jupyter has become the go-to platform for developing data applica-
tions but data and security concerns, especially when dealing with healthcare,
have become paramount for many institutions and applications dealing with
sensitive information. How then can we continue to enjoy the data analysis and
machine learning opportunities provided by Jupyter and the Python ecosystem
while guaranteeing auditable compliance with security and privacy concerns?
We will describe the architecture and implementation of a cloud based plat-
form based on Jupyter that integrates with Amazon Web Services (AWS) and
uses containerized services without exposing the platform to the vulnerabilities
present in Kubernetes and JupyterHub. This architecture addresses the HIPAA
requirements to ensure both security and privacy of data. The architecture uses
an AWS service to provide JSON Web Tokens (JWT) for authentication as well
as network control. Furthermore, our architecture enables secure collaboration
and sharing of Jupyter notebooks. Even though our platform is focused on
Jupyter notebooks and JupyterLab, it also supports R-Studio and bespoke ap-
plications that share the same authentication mechanisms. Further, the platform
can be extended to other cloud services other than AWS.

Index Terms—data science, infrastructure, jupyter, rstudio

Introduction

This paper focuses on secure implementation of Jupyter Note-
books and Jupyter Labs in a cloud based platform and more
specifically on Amazon Web Services (AWS) though many archi-
tectures and methods described here are applicable to other cloud
platforms. As Jupyter is the mainstay of scientific programming in
python, the ability to analyze data in a secure environment enables
the researcher to access data that is either sensitive or encumbered
by compliance to regulations such as Health Insurance Portability
and Accountability Act (HIPAA) which might otherwise not be
available.

Security is paramount for applications that process sensitive
data in areas such as defense, finance, and healthcare. Broadly
speaking, security regulations can be characterized in terms of
authentication (verifying the credentials of users and their access
to resources), encryption (data is encrypted at rest and in transit),
auditing (providing surveillance of key resources) and vulnerabil-
ity mitigation (antivirus and security updates).

In the architecture section, we describe how our architecture
using AWS Elastic Container Service (ECS) facilitates encryption
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at-rest and in-transit and integrates an application load balancer
(ALB) for authentication.

In the Applications and Authentication section, we dive into
the details of the ALB and how JSON Web Tokens (JWT) facilitate
integration with Jupyter and RStudio.

In the Security and Compliance section, we address the en-
cryption of the underlying cloud architecture, auditing capabilities,
and mitigation of vulnerabilities.

Our specific implementation satisfies privacy and security
concerns and can serve as a starting point to develop customized
solutions for related use cases.

Background

To implement a cloud based Jupyter compute platform is not
difficult. Project Jupyter includes Jupyter Hub, which provides a
proxy and container management. In particular the Zero to Jupyter
Hub with Kubernetes project, [Pro20] provides a framework to
implement Jupyter Hub on a Kubernetes platform. It is intended
as a quick method to deploy a cluster of Jupyter notebooks or
Jupyter labs easily. However, it has many significant drawbacks.

First, Kubernetes is notoriously difficult to secure and has
many vulnerabilities that are not addressed by default as evidenced
by these recommendations for securing a Kubernetes cluster
[Mar18]. One of the primary reasons is Kubernetes is immensely
complex.

Second, Zero to Jupyter Hub with Kubernetes to date does
not have a simple solution to the problem of encryption in transit
(encryption of all data over a network). All proposed solutions
(e.g., istio or weave) rely on yet another overlay in Kubernetes
making the solution even more complicated.

Literature on securing Jupyter in the cloud is scant but so-
lutions to individual issues can sometimes be found searching
through blogs, github issues and help sites. In this paper, the
reader is given a solution that can meet most security concerns in
one place, while not placing an undue burden on the end user or the
system administrator. The mantra of security through simplicity is
adopted.

Architecture

There are two distinct levels of architecture described. The cloud
architecture comprises the various cloud services which is the
lower layer of virtualization. The container architecture is the top
layer virtualization built on top of the cloud architecture.
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Fig. 1: Cloud Architecture.

Cloud Architecture

The basic cloud architecture is shown in Fig. 2. It consists of an
identity provider (IDP) used to authenticate a user, an application
load balancer (ALB) to regulate user access through authentica-
tion, and a fleet of elastic cloud computer compute (EC2) instances
to instantiate the containers. Finally, ECS manages the containers
deployed on the EC2 cluster.

Elastic Container Service: ECS is a container orches-
tration service. A container is instantiated as an ECS task. ECS
provides a resource called a task definition that allow for the
configuration of the container image, the environment variables,
command override and container port.

Taking the most naive approach, ECS can be instructed to start
a task based on a task definition. After the task has fully started,
the host among the EC2 instances and the mapped port (the port
on the EC2 node which is mapped to the container port) is known.
At this point, one could write a monitoring function to detect when
a task has started, retrieve the specific host and mapped port and
create a listener rule for the application load balancer.

Instead of this cumbersome procedure, ECS provides another
resource called a service. A service can manage many aspects
of tasks within ECS including the number of tasks and a target
group associated with the service. For our purposes managing the
number means selecting a desired count of 1 or 0 depending on
whether the container is running or has been automatically culled
due to inactivity. A target group is a collection of host ports or
serverless AWS Lambda functions, to which a listener rule can
direct network traffic. In short by specifying a target group to a
service, the host and mapped port are automatically assigned to
the target group when a task has fully started.

Application Load Balancer: AWS’s ALB can comprise
multiple listeners to support multiple protocols. To maintain secu-
rity, enforcement of HTTPS should be maintained either by not
including a listener for HTTP or providing an HTTP listener that
redirects all requests to HTTPS.

AWS’s ALB, through a listener, is able to direct exter-
nal HTTPS requests to various components. Based on lis-
tener rules, a request can be directed on the basis of
both the hostname and the path. As an example, we
use a path to specify a user and a service such as
Jupyter (for example, domain.com/user_id/Jupyter or

domain.com/user_id/rstudio), this allows us to give
each user their own container.

Each listener rule maps a path, hostname or both to a particular
target group. Since we use an ECS service, we can assign a
particular service to a target group. The service then manages
which ports and EC2 instances are part of the target group.

While the ALB can enforce encryption from the end user to
the ALB, the container application (e.g., Jupyter) should also
be configured to listen only for HTTPS. In this manner, the
communication from the end user to the ALB is encrypted as
is the communication from the ALB to the container application,
ensuring end to end encryption.

Furthermore the application load balancer is also configured
to perform authentication from an OpenID Connect (OIDC) com-
pliant IDP. This eliminates the need for multiple messages to be
passed when using either SAML or OAuth. Upon authentication,
the ALB attaches three fields to the header of the http request
x-amzn-oidc-accesstoken, x-amzn-oidc-identity
and x-amzn-oidc-data which can be used by the end applica-
tion to confirm the user’s identity and validate the authentication.
An example of this process as implemented in a Jupyter notebook
is described below.

For our IDP, we use Okta since it allows us to federate identity
services to additional sign on services. This allows us to onboard
collaborators and allow the collaborators to manage their users.

Shared Storage: In order to facilitate persistence across
containers and also collaboration, ECS orchestrates containers on
EC2 instances instead of AWS’s Fargate product (Fargate facili-
tates containers in a serverless fashion but does not provide a host
to mount an ObjectiveFS file system). Persistent storage can be
mounted on the underlying EC2 instances. Individual containers
can access the persistent storage by bind mounting the persistent
storage. To meet security compliance of encryption at rest, the
persistent storage should be encrypted. We elected to use the third
party ObjectiveFS for cost reasons though native AWS resources
such as elastic file system (EFS) can be used provided that both
the file system and the network communications to the file system
are encrypted. [Ser20c] ObjectiveFS is a secure file system backed
by AWS simple storage service (S3). It should be noted to meet
encryption in transit compliance requirements that any network
attached storage must have network communications encrypted.
For example, the base network file system (nfs) protocol is not.

As a specific example with Jupyter notebooks we mount per-
sistent storage as /media/home/. For a given user say user_a
we bind mount /home/jovyan to /media/home/user_a
so that while in the container the user sees /home/jovyan the
home directory the users files are actually stored in the persistent
storage in a user_a subdirectory. This configuration has two
advantages. Only one persistent volume is needed to support all
users’ home directories minimizing costs and within the container
all users see /home/jovyan thus eliminating the need to build a
separate Jupyter container image for each user.

With this configuration, multiple services can use the same
home directory. For example, in our R Studio deployment
/home/rstudio is also mapped to /media/home/user_a.
Furthermore, we also can provide a persistent volume for
shared directories. For example, for all users on project_a
we bind mount /home/jovyan/projects/project_a to
/media/projects/project_a where the persistent volume
is mounted to /media/projects.
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Fig. 2: Cloud Architecture.

Resource Summary: To securely implement the above
cloud architecture, each container instance for each user has a
set of resources associated with it. First, a task definition is
created for each user, this enables customized bind mounts as
described above. Additionally, custom environment variables or
task commands can also be supplied through the task definition.
The task definition can also direct logging the the appropriate
AWS CloudWatch stream.

Each user also has a ECS service, ALB listener rule and target
group associated with it. This allows the seamless management of
connecting a user to the desired container instance.

Finally each service has an AWS IAM role associated with
it, this ensures the user has only the access rights to our AWS
cloud that are need by the user. Beyond the rights to operate the
container task, additional rights might include access to certain S3
storage or certain AWS Secrets Manager. As an example, we use
the AWS Secrets Manager to manage user’s credentials to various
databases and public/private keys.

To simplify management of the per user resources, an AWS
CloudFormation template is used to ensure consistency and uni-
formity among cloud resources whenever a new container in-
stance/user combination is spun up. As an example, our Cloud-
Formation template contains an IAM role, listener rule, target
group, task definition, and an ECS service. Each template is then
customized to spin up a CloudFormation stack for each user and
application combination.

Container Architecture

The architecture in terms of container comprises a persistent
hub container, an optional ephemeral provisioner container, and
an assortment of semi-persistent application containers such as
Jupyter notebook. In an alternative deployment, AWS Lambda
functions can be functionally substituted for the hub container,
but for the sake of simplicity only the container version of the hub
is described.

The application containers are described as semi-persistent as
they can be started on demand and culled when one or more
inactivity criteria has been reached. This can be achieved by
updating the associated service to have a desired count of 1 to
start or a desired count of 0 to cull.

We adopted a url path routing convention to access each
application such as domain.com/user_id/application

Container Management: The heart of the system is the
hub container. To facilitate ALB authentication, two listener rules
are provided. One rule allows anyone to connect, so that the hub
can present a login page (with single sign on and IDP this looks
like a single login button). The login action redirects the browser
to a url which forces authentication via the ALB. Though this step
is not necessary, it provides a cue that makes for a smoother user
experience.

Since the hub container may be given privileges to set IAM
roles for the application services, the role under which the hub
service runs can have a boundary policy attached to it [Ser20d].
This ensures that any role created by the hub service is constrained
to include the boundary policy. This prevents the hub from being
able to create an arbitrary role should the container become
compromised.

The provisioner container is an ephemeral task which is run
with the persistent storage mounted. The provisioner can create
a home directory for a user the first time the user logs in
and provision the directory with any necessary files. While the
functionality of the provisioner container could be incorporated in
the hub container. Separation allows the provisioner to run with
minimal cloud privileges (IAM role) and allows the hub to have
no access to the shared home directory, so in the event the hub
container is compromised the user’s file system is not exposed.
Also, with separation the hub does not have to have access to
the file system so it can be refactored and deployed as a Lambda
function. Furthermore the provisioner container runs very briefly
further limiting the vulnerability window.

Once authenticated, the user can elect to connect to an appli-
cation container. This can occur under three circumstances: the
user’s application container is still running, the user’s application
container has been culled, or the user has never started the
application before. If the container is still running, the user is
immediately redirected to the container. If the container has been
culled, the service is updated to a desired count of 1. If the
application has never been started by the user, resources to spin
up the service are created such as by creating a CloudFormation
stack.

Additionally, an option to "decommission" an application can
be presented where the CloudFormation stack can be deleted.

Culling: The best practice for culling an application is to
have the application upon exiting, set the desired count to 0 of its
corresponding service.

For the example of Jupyter, the start up scripts for both Jupyter
notebook and Jupyter lab contains the following snippet with
main imported from different places:
if __name__ == '__main__':

sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$',
'', sys.argv[0])

sys.exit(main())

Rather than just exiting after main completes, a modified start up
script updates the desired count of the corresponding service to
0. Since boto3 essentially wraps API calls to AWS, a delay
before termination is needed to ensure the update API call is
received before terminating the task. Failure to change the desired
count will only result in the service restarting the container upon
termination.
if __name__ == '__main__':

sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$',
'', sys.argv[0])

main()
session = boto3.Session()
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ecs = session.client("ecs", region_name)
ecs.update_service(cluster=cluster_name,

service=service_name,
desiredCount=0)

# Sleep for 2 minutes give service time to update
time.sleep(120)

Code to retrieve the region_name, cluster_name, and
service_name, are omitted for clarity, but they can be retrieved
from environment variables (set in task definition), passed via
sys.argv or even by calls to boto3. Though the first two
options are simpler.

The above modification to the start up scripts
ensures that when Jupyter exits the task count is
zero. However, in order for this to be meaningful
culling parameters in the Jupyter configuration such as
c.NotebookApp.shutdown_no_activity_timeout
c.MappingKernelManager.cull_connected,
c.MappingKernelManager.cull_idle_timeout
and c.MappingKernelManager.cull_interval, as
well as setting a shell timeout (e.g., TMOUT environment variable
are set) in the event a terminal is open.

Authentication and Applications

As mentioned above, the bulk of the authentication is performed
by the ALB. However, it is important for the individual application
to validate a request forwarded by the ALB, for two reasons.
Validation prevents potential security vulnerabilities due to a
misconfiguration in the system or exposes security vulnerabili-
ties during the initial system debugging. Additionally, validation
ensures that the identity of the user is what is expected. The ALB
ensures that the user has validly authenticated, but it is up to the
application to ensure that the correct user has connected.

Validation is achieved through the JWT token presented in the
x-amzn-oidc-data header by the ALB. These JWT tokens
are signed by a public key retrievable from AWS ensuring that
only the ALB could have signed them. Within the JWT token, the
kid field represents the key ID for the public key. To validate, the
key ID should be extracted and corresponding public key should
be retrieved from AWS. With the public key, the JWT token can
then be validated. We use the python-jose module available on
PyPi. The sub field in the JWT token is the same as the OIDC ID
which is also presented in the x-amzn-oidc-identity field.
The application should then verify this is OIDC ID associated with
the expected user.

To deploy an application securely in our infrastructure, in
addition to validating the authentication, the application container
should meet four more requirements. It should have a configurable
base url as the ALB will forward requests to the application with
the base url prefix. It should communicate to the ALB over HTTPS
to ensure end to end encryption. It should provide a url to respond
to pings sent by the ALB for health checks. It should validate that
the mounted home container belongs to the user.

The solution to the last requirement is for our provisioner
to write an .id file in the user’s home directory containing the
user’s ID. This file is written by root and is only readable. The
application upon startup or authenticaation can verify that the user
has the correct home directory mounted. This requirement is a
safeguard against misconfiguration and can be omitted if one is
confident that the system is not misconfigured.

Jupyter

Implementing authentication for Jupyter notebook/lab is par-
ticularly challenging as they do not combe with a pluggable
authentication module, unlike JupyterHub. In order to imple-
ment validation, the source file login.py must be modi-
fied. This file is usually located in the notebook/auth/
directory in your site-packages or dist-packages di-
rectory. Since Jupyter notebook and JupyterLab are not truly
separate applications (in fact they are interchangeable using
the path /tree or /lab), the same login.py file fa-
cilitates authentication for both. If you build using a stan-
dard docker image such as jupyter/base-notebook
or any of its derivative notebooks, this directory would
be /opt/conda/lib/python3.x/site-packages direc-
tory. Please note that the specific python version may vary depen-
dent on which version of the docker container is used and whether
subsequent additional install modules might force a rollback of
python versions.

The specific modification to the login.py file in-
volves replacing two methods, the get method and the
get_user_token class method of the LoginHandler class.

Unaltered, the method get determines whether the
current_user is set indicating the user has been logged in.
If not authenticated, the function presents a login page. Our mod-
ification simply adds an additional check that if current_user
is not set, we validate the JWT token in header to determine
additionally whether the user is authenticated. It should also be
noted that the function is also decorated as a coroutine to make
the function asynchronous as the verification may require network
access to retrieve a public key.
@tornado.gen.coroutine
def get(self):

authenticated = False
if self.current_user:

authenticated = True
else:

if self.verify_jwt():
authenticated=True

if authenticated:
next_url = self.get_argument('next',

default=self.base_url)
self._redirect_safe(next_url)

else:
self._render()

The other method to be replaced is the get_user_token.
Unaltered, the method returns the authorization token used as part
of a notebook/lab minimal authentication scheme. This token is
normally supplied as a query string in the URL or through the
login page. We bypass this mechanism altogether. Instead, we
examine the request header for a JWT token supplied by AWS
and validate it. If it is successful we provide a token. As far as
the rest of the notebook code the value of the token is not used so
we supply a random string. Our version of get_user_token
uses a local cache to store retrieved public keys and previously the
previously decoded user ID.
@classmethod
def get_user_token(cls, handler):

"""Identify the user based on
Authorization header

Returns:
- uuid if authenticated
- None if not
"""
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authenticated = False
if cls.verify_oidc(handler):

authenticated = True
else:

oidc_jwt = handler.request.headers\
.get('x-amzn-oidc-data')

if oidc_jwt:
try:

header = jwt.get_unverified_headers( \
oidc_jwt)

except JOSEError:
return None

kid = header.get('kid')
if kid and kid == user_cache.get('kid') \

and user_cache.get('pk'):
try:

token = jwt.decode(oidc_jwt,
user_cache['pk'])

except JOSEError:
return None

oidc_id = handler.request.headers\
.get('x-amzn-oidc-identity')

if token['sub'] == oidc_id:
authenticated = True
user_cache['jwt'] = oidc_jwt
user_cache['user_id'] = oidc_id

if authenticated:
return uuid.uuid4().hex

else:
return None

In addition to the two modified methods, we supply two
helper methods verify_jwt for get and verify_oidc for
get_user_token. They perform the token validation and cache
management. Additional code which can read identifiers in persis-
tent volumes and verify they match the user who is authenticated
can also be added to ensure two authenticated users don’t have
access to the other’s containers.
def verify_jwt(self):

global user_cache
oidc_id = self.request.headers\

.get('x-amzn-oidc-identity')
oidc_jwt = self.request.headers\

.get('x-amzn-oidc-data')

if not oidc_jwt:
self.log.warning("No JWT Token in Header")
return False

if (user_cache.get('user_id') == oidc_id and \
user_cache.get('jwt') == oidc_jwt):
return True

try:
header = jwt.get_unverified_headers(oidc_jwt)

except JOSEError as e:
self.log.error("JWT failed to decode: {}"\

.format(e))
return False

kid = header.get('kid')
if not kid:

self.log.error("No Key ID in JWT token")
return False

if kid != user_cache.get('kid'):
if 'pk' in user_cache:

del user_cache['pk']

if not 'pk' in user_cache:
try:

r = requests.get(PK_SERVER + kid)
# TODO treat return code
user_cache['pk'] = r.text
user_cache['kid'] = kid

except requests.RequestException as e:

proxy

RStudio
server

app/ping

/user_id/rstudio/auth-sign-in

/user_id/rstudio

Fig. 3: Inside the RStudio Container

self.log.error("Requests Error: {}"\
.format(e))

return False

try:
token = jwt.decode(oidc_jwt,

user_cache['pk'])
except JOSEError as e:

self.log.info("JWT failed to validate: {}"\
.format(e))

return False

if token['sub'] != oidc_id:
self.log.error("User ID in token doesn't "

"match user ID in header")
return False

user_cache['user_id'] = oidc_id
user_cache['jwt'] = oidc_jwt

@classmethod
def verify_oidc(cls, handler):

global user_cache
oidc_id = handler.request.headers\

.get('x-amzn-oidc-identity')
oidc_jwt = handler.request.headers\

.get('x-amzn-oidc-data')

if not oidc_id or not oidc_jwt:
return False

if oidc_id != user_cache.get('user_id'):
return False

if oidc_jwt != user_cache.get('jwt'):
return False

try:
header = jwt.get_unverified_headers(oidc_jwt)

except JOSEError:
return False

kid = header.get('kid')
if kid != user_cache.get('kid'):

return False

return True

To meet the other requirements for Jupyter, the base_url
configuration needs to be set to ensure that the route is properly
interpreted. Furthermore, we use this base_url as the health
check url which responds with a 302 code. A self-signed certifi-
cate is automatically generated when the container starts and that
certificate is then used to configure Jupyter to run over HTTPS.
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RStudio

Our implementation of RStudio Server on the same cloud platform
is non-invasive to the code base, but more complicated architec-
turally. Since RStudio does not have a way to set the base URL of
the application, a proxy is required to rewrite the HTTPS request
paths. We use an nginx proxy to rewrite requests to RStudio
Server using the proxy_redirect directive.

Figure shows the application structure within the RStudio
container. A proxy communicates with the ALB and routes some
requests to a custom app used for authentication and handling the
health checks and others to the RStudio server. Since communi-
cations between the proxy, app and RStudio server are all within
the container and not exposed, they do not require encryption to
satisfy compliance. A self-signed certificate is created upon con-
tainer startup that enables nginx to communicate over HTTPS to
the ALB.

For authentication, RStudio Server maintains authentication
session information in a cookie. So with nginx we capture, the
auth-sign-in URL and redirect it to an lightweight webapp
whose sole function is to authenticate the user, set the cookie and
redirect the browser to RStudio Server. Since the app is necessary
in this configuration, we also configure the app to respond to a
/ping request issued by the ALB target group’s health check.

The authentication code is nearly identical to the
verify_jwt function written above for Jupyter. The cookie
consists of three pieces, a user ID (which we retain as
the default rstudio as we retained jovyan for the
Jupyter notebook, to prevent the need to build a separate
docker image for each user), the expiry and an HMAC
256 signature, signed with a secret typically stored at
/var/lib/rstudio-server/secure-cookie-key in-
side the container. The following snippet of code implements this.
from urllib.parse import quote
from Crypto.Hash import HMAC
from Crypto.Hash import SHA256
import base64
import datetime

utc = datetime.datetime.utcnow()
expiry = utc + datetime.timedelta(days)
now = expiry.strftime('%a, %d %b %Y %H:%M:%S GMT')
dig = base64.b64encode( \

HMAC.new(secret,
"{0}{1}".format(username, now),
digestmod=SHA256).digest())

cookie = quote("{0}|{1}|{2}".format(username,
now,
dig.decode()),

'|')
response.set_cookie('user-id', cookie)

The days is the number of days til the cookie expires, and
username is the user name (i.e. rstudio). In the above snippet,
the cookie is attacked to a Flask response.

Virtual Network Computing (VNC) Containers

There are many desktop apps for Linux which may also be useful
to deploy via a web application on a cloud cluster such as pre-
sented here. The following implementation allows the deployment
of such applications such as Orange and Falcon through the use of
a web VNC client to a VNC server running in a container.

This is based on the Docker Headless VNC Container project
[Con19] as a blueprint using the xfce4 window manager. Since it
appears that the project has been inactive for over a year we adopt

novnc

OS

vnc
server

6901

5901

Fig. 4: Inside a VNC Container

its Dockerfile as a starting point but do not use the docker
images as a building block.

Figure 4 shows the application structure within a headless
VNC container. NoVNC [noV20] is used as a web to vnc
proxy which connects via VNC to a local vnc server which in
accordance to the Docker Headless VNC Container project is
tigerVNC [Tig20]. Through the VNC server graphically oriented
operating system commands and applications can be executed.
In our container tigerVNC is unchanged and is installed just
as it is in the headerless project’s Dockerfile. The noVNC
project comprises a novnc and websockify component. No
changes were made to the novnc component except to alter the
parameters use to start websockify. Therefore the focus of the
customization is on the websockify component.

Fortunately, websockify permits authentication plugins.
The plugin is a simple class with an authenticate
method which accepts the headers, target_host and
target_port as parameters. Upon success it returns and on
failure it raises an AuthenticationError exception. Since
the body of the code is essentially the same as the verify_jwt
method descirbed for Jupyter, the code is not repeated here.

It should be noted that in the container by default the VNC
server listens on port 5901 and the novnc client listens on port
6901. It is recommended that only port 6901 be exposed so that
only the novnc client can directly communicate with the VNC
server as the VNC password in this environment is not well
protected. By only exposing port 6901, knowledge of the VNC
password can not be exploited to bypass the authentication.

Furthermore, the web server within the websockify project
is located in websockifyserver.py and is based on
SimpleHTTPServer. It may be desirable to create a custom
handler or custom do_GET method to handle issues such as pro-
viding a base URL, health check URL for the ALB’s target group,
or to implement templating if desired. A self-signed certificate is
generated in a launch.sh as self.pem which the webserver will
automatically detect and run using HTTPS.

Once this base container image is built with those customiza-
tions. Applications such as Orange or Falcon can be added, thus
not limiting the cloud system to web applications.

Custom Applications

In developing your own bespoke applications, a layer of authenti-
cation can be employed. In consideration of developing or adapt-
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ing your own application, you should provide an unauthenticated
URL for the ALB’s health check and be equipped to configure the
base URL. Authentication can be easily plugged into most web
server frameworks.

As a simple example, using flask authentication can be in-
corporated into a custom login_required decorator, so that
for any protected URL the request is authenticated before being
processed. Once again the decorator could be implemented with
code similar to that of jwt_verify described above.

Security and Compliance

In our cloud architecture, the bulk of the security and compliance
is built into the EC2 instances serving as nodes behind the ALB
and built into features of the ALB. By keeping most of the
security external to the containers, container images need less
customization for security purposes making it easier to support
a wide variety of container images and container apps.

The preferred method to implement security, compliance, and
even maintenance services on an EC2 instance is to install the
appropriate software in an Amazon machine image (AMI). By
building a customized AMI based off an optimized Amazon
ECS reference AMI [Ser20b] but including the desired additional
services installed, an fully equipped EC2 instance can be spun up
quickly and features such as autoscaling can easily be applied.

Specifics to security and compliance implementations are
described in the following subsections including encryption at rest,
access controls, auditing and other agents.

Encryption at Rest

As previoiusly mentioned, persistent storage and associated file
system protocol are encrypted give both encryption in transit and
encryption at rest for the persistent storage. However, it is also
important that the base file system of the EC2 instances are also
encrypted to fully ensure encryption at rest. There are two impor-
tant aspects of ensuring encryption at rest for the base file system.
First the attached file system such as elastic block storage (EBS)
must be encrypted. This is accomplished by selecting encryption
when creating the EC2 instance or within a launch configuration.
Fortunately, AWS now offers an account-level option where EBS
volumes are encrypted by default for any EBS volumes created
in that given account. We highly recommend this option as it will
mitigate the chances of misconfiguration.

Furthermore, the AMI used to create EC2 instances must also
be encrypted. A common technique for doing so is to build an
machine snapshot will all the agents and services desired then
encrypt the snapshot. Regardless for what techinque is used.
the AMI’s should be encrypted to satisfy any requirements for
encryption at rest.

Access Control

Another security concern is controlling the internet access from
the container. The reason is two fold. First, controlling access
allows us to prevent users from within a container from accessing
potentially malicious websites. Second, should a container become
compromised we want to mitigate the compromised container’s
ability to escalate privileges or pivot to other services within
the organization. While AWS through the use of security groups
and access control lists provide a coarse ability to regulate what
destinations are accessible, we favor more fine grain control.

There are two aspects of this finer grain control, first we use
an on-host firewall to control outbound access from the hosted

containers. Second we funnel all traffic from each container to a
proxy.

For the firewall, we use iptables using the following
commands:

iptables --insert DOCKER-USER --in-interface docker0 \
-o eth0 -j DROP

iptables --insert DOCKER-USER \
--destination 169.254.169.254 --jump REJECT \
--reject-with icmp-port-unreachable

iptables -t nat -A PREROUTING -i docker0 \
-d 172.17.0.1 -p tcp --dport 8888 -j RETURN

iptables -t nat -A PREROUTING -i docker0 \
-d 172.17.0.1 -p tcp -j DNAT --to-destination :2

The first command blocks all internet traffic coming from the
docker0 interface (where the containers must route through) to
the eth0 interface which is the external interface. The second
command (see [Cos18]) blocks access to the node specific meta-
data service, which typical contains information about the EC2
instance and credentials for that instance.d. Blocking this prevents
a compromised container from accessing the metadata about the
EC2 instances blocking a potential escalation in privileges to that
of the EC2 node. The third and fourth commands allows the
container access to the EC2 instance (which in the docker world
is IP address 172.17.0.1) only on port 8888, where the proxy
is configured to listen. All other access is routed to port 2 which
has no active listeners.

On the container side, the environment variables
http_proxy and https_proxy must be set to forward
all http and https request to the EC2 instance at port 8888. In
addition the no_proxy environment variable should be set to
allow some traffic not to be forced into the proxy. Of course,
localhost (and corresponding IP address 127.0.0.1) do
not require proxy as the traffic doesn’t leave the container. In
addition, the metadata IP address 169.254.169.254 should
be allowed out so that the iptables rule regarding the metadata
traffic can be enforced. Finally, the IP address 169.254.169.2
is used by the ECS agent.

Two methods can be used to address the environment vari-
ables. Either we can add the environment variables to the task
definition when an application service created or it can defined in
the container’s Dockerfile with the following lines:

ENV http_proxy=http://172.17.0.1:8888/
ENV https_proxy=http://172.17.0.1:8888/
ENV no_proxy=localhost,127.0.0.1,\
169.254.169.254,169.254.170.2

Because of the iptables rules a misconfiguration that fails to
set the proper environment variables results in loss of access and
not a vulnerability.

The proxy can then determine whether to route the connection
request directly externally or through an external outbound gate-
way which could include a company firewall so that broad based
policies could be applied. For the proxy we selected tinyproxy
because it is lightweight and allows gateway credentials to be em-
bedded in the proxy configuration pushing the burden of gateway
credentials to the proxy and not the container or application of the
container.

Auditing

Beyond security reasons, many regulations such as HIPAA require
auditing for compliance. Our approach is two fold. We use the
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ALB logging capabilities to track access to application containers
and authentication. We use a logging agent to track potential
privilege escalation or other security concerns on the underlying
EC2 host.

The ALB provides logging [Ser20a] which will log all access
to the application containers to an S3 bucket. Because in our
architecture all authentication is performed using the ALB all
authentication attempts both successful and more importantly
failures are also logged to the bucket. Many third party log
management tools are configurable to digest logs stored in this
manner including Loggly, Splunk, Sumo Logic.

Another good practice is to set the target S3 bucket in a
separate AWS account and only grant privileges to the logging
account to write to the bucket but not delete. This ensure that even
if a container or the EC2 instance is compromised, the logs can
not be tampered with.

To supplement the auditing and monitoring capability one or
more logging agents are installed on the EC2 instance. Essentially,
this agent transmits logs of interest such as the system log
syslog to an external log management system. Through this
mechanism behaviours such as privilege escalation (e.g. sudo)
are tracked. We use both the native AWS logging agent and a third
party logging agent.

With both mechanisms in place, the preferred log management
system can be configured to provide alarms when severe incidents
occurs and generate reports of incidents as may be required by
compliance requirements.

Other Useful Agents

Building a custom AMI image to spin up an EC2 instance to sup-
port our ECS cluster affords the opportunity to install additional
agents to meet security, compliance and maintenance needs. Our
best practices is to the include the following additional agents in
the AMI. Some of agents are provided by AWS while some are
third party.

ECS Agent: The AWS ECS agent is required in order for
the EC2 instance to serve ECS containers. However, periodically
updating the ECS agent is important in that potential vulnera-
bilities may be fixed and newer agents offer more features to
aid in maintenance. Furthermore, proper configuration of features
can aid in security as well. For example, the ECS agent can be
configure so that the maximum lifetime of an EC2 instance is set.
This is particularly useful if the AMIs for the EC2 instances are
constantly being updated with security patches etc. The limited
lifetime guarantees that the EC2 instances running will not be
based on an AMI that is too out of date.

Systems Manager Agent: Another useful AWS Agent
that can be employed is the AWS Systems Manager Agent (SSM)
[Ser20e]. The SSM agent allows the “Systems Manager to update,
manage and configure” the EC2 instances. This agent makes
it easier to maintain EC2 instances in a centralized manner.
Once again keeping an EC2 instance up to date helps reduce
vulnerabilities on the node.

Anti-virus: An antivirus or antimalware agent is also
recommended. The antivirus should be one that is container aware
and that the container awareness feature should be active. This
would facilitate pinpointing the specific container that may be
compromised. Container systems such as docker are not complete
virtualizations. Processes that run in a container run as processes
in the native host, as such an antivirus agent inside can monitor

processes that occur “inside a container”. Container aware an-
tivirus agents makes mitigation in a container environment easier.
In our particular configuration, we use Sophos as the antivirus but
you may have your own preferences.

Intrusion Detection: Another useful agent to be deployed
on the EC2 instance is an intrusion detection agent. Like this
antivirus agent, an intrusion detection agent that has container
awareness capabilities is desirable and should have the capability
activated. The intrusion detection agent looks for activities that
are anomalous and when high risk activity is detected, it will
gather as much information around the incident as it can. We use
ThreatStack for our intrusion detection.

Conclusion

Presented here is a secure, collaborative infrastructure for deploy-
ing a cloud computation resources vital to our organization for
scientific analysis of health related data on the Jupyter platform.
The primary purpose of our infrastructure is to provide Jupyter
in this environment as well as other tools such as RStudio. Our
Data Science and infrastructure team is small so building a com-
pliant infrastructure that requires little maintenance is paramount.
Equally important is to safeguard against opening vulnerabilities
due to misconfigurations. By following the suggestions presented
here, misconfigurations err on the side of loss of functionality
rather than introducing vulnerabilities.

The architecture presented here was successful in a recently
performed penetration test. We hired a third party company that
specializes in penetration testing and gave them normal user rights
to a Jupyter notebook container and challenged them to escaped
the container. The penetration testers was unable to escape the
container to other parts of the system or escalate privileges to gain
additional access to resources.

While the recommendations and architecture shown here rely
heavily on AWS resources. No doubt elements and counterparts
can be found in other cloud services such as Google Cloud and
Microsoft Azure.

Snippets of code, Dockerfile, commands and other resources
presented here and the corresponding poster are available at
West Health’s github repository at https://github.com/WestHealth/
scipy2020/tree/master/cloud_infrastructure.
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