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Quasi-orthonormal Encoding for Machine Learning
Applications
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Abstract—Most machine learning models, especially artificial neural networks,
require numerical, not categorical data. We briefly describe the advantages and
disadvantages of common encoding schemes. For example, one-hot encoding
is commonly used for attributes with a few unrelated categories and word
embeddings for attributes with many related categories (e.g., words). Neither
is suitable for encoding attributes with many unrelated categories, such as
diagnosis codes in healthcare applications. Application of one-hot encoding for
diagnosis codes, for example, can result in extremely high dimensionality with
low sample size problems or artificially induce machine learning artifacts, not
to mention the explosion of computing resources needed. Quasi-orthonormal
encoding (QOE) fills the gap. We briefly show how QOE compares to one-hot
encoding. We provide example code of how to implement QOE using popular
ML libraries such as Tensorflow and PyTorch and a demonstration of QOE to
MNIST handwriting samples.

Index Terms—machine learning, classification, categorical encoding

Introduction

While most popular machine learning methods such as deep
learning require numerical data as input, categorical data is very
common. For example, a person’s vitals could be a combination
of both, they could include height, weight (numerical) and gender,
race (categorical). The challenge is to convert the categorical data
into a vector of some sort.

One-hot encoding which is discussed in the next section is very
commonly used in machine learning but has the drawback that it
can increase the dimensionality of the data by the cardinality of
the category. For small category, this is not a significant issue but
when categories with high cardinality are present, many problems
can arise as described below.

Quasiorthonormal encoding (QOE) is a generalization of the
one-hot encoding and exploits the fact that in high dimensional
vector spaces, two random vectors are almost always orthogonal.
The concept originated with Kůrková and Kainen [KK96]. In
many ways, QOE functions the same as one-hot encoding but
does not increase the dimensionality of the data to the same
degree as one-hot encoding. Historically, QOE was considered
for a method of encoding words but modern techniques such as
word embeddings are now considered the state of the art method
for encoding language.
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Some advantages to QOE include a reduction of dimensional-
ity over that of using one-hot encoding thus limiting effects of the
“curse of dimensionality”1 or the problem of high dimension low
sample size (HDLSS). The advantage over other encodings such
as binary, hash, etc. is that it does not induce artificial geometric
relationships that can cause downstream bias in the results because
each label in a category remains mathematically near orthogonal
to the other labels.

We will briefly survey classic encoding methods, discuss
the theoretical aspects of QOE, and present a detailed example
implementation of QOE in tensorflow.

Background

Coding methods can be categorized as classic, contrast, Bayesian
and word embeddings. Classic, contrast and Bayseian encoding
are given a good overview treatment by Hale’s blog [Hal18] with
examples to be found as part of the scikit-learn category
encoding package [McG16]. Both contrast encoding and Bayesian
encoding use the statistics of the data to facilitate encoding. These
two categories may be of use when more statistical analysis is
required, however there has not been widespread adoption of these
encoding techniques for machine learning.

Word embeddings are their own special category. [GK19].
Word embeddings are used to represent words, phrases or even
entire documents as a vector so that similar meanings/concepts
are mapped to vectors that are close in the target vector space.
Additionally, it is adapted for encoding a large categorical features
(i.e., words) into a relatively lower dimensional space.

The remainder of the section will describe some common
classic categorical encodings

Ordinal Encoding

To begin our overview of fundamental encoding methods, we start
with Ordinal (Label) Encoding. Ordinal encoding is the simplest
and perhaps most naive approach encoding for a categorical
feature --- one simply assigns a number to each member of a
category. This is often how data from surveys are encoded into
spreadsheets for easy storage and calculation of basic statistics.
An associated data dictionary is used to convert the values back
and forth between a number and a category. Take for example the
case of gender, male could be encoded as 1 and female as 2, with
a data dictionary as follows: {'male': 1, 'female': 2}

1. Mukhtar [Muk19] gives a good explanation of the curse of dimensionality
as applied to data science.
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Make Ordinal One-Hot

Toyota 1 (1,0,0,0,0)
Honda 2 (0,1,0,0,0)
Subaru 3 (0,0,1,0,0)
Nissan 4 (0,0,0,1,0)
Mitsubishi 5 (0,0,0,0,1)

TABLE 1: Examples of Ordinal and One-Hot Encodings

Make Ordinal as Binary Binary Code

Toyota 1 001 (0,0,1)
Honda 2 010 (0,1,0)
Subaru 3 011 (0,1,1)
Nissan 4 100 (1,0,0)
Mitsubishi 5 101 (1,0,1)

TABLE 2: Example of Binary Codes

Suppose we have three categories of ethnic groups: White,
Black, and Asian. Under ordinal encoding, suppose White is
encoded as 1, Black is encoded as 2 and Asian is encoded as 3.
If a machine learning classification is somehow confused between
Asian and White and decides to split the difference and report
the in-between value (2) which encodes Black. The issue is that
arbitrary gradation between 1 and 3 introduces a natural interpo-
lation (2) that may be nonsense. Thus, the natural ordering of the
numbers imposes an ordered geometrical relationship between the
categories that does not apply.

Nonetheless there are situations where ordinal encoding makes
sense. For example, a ‘rate your satisfaction’ survey typically
encodes five levels (1) terrible, (2) acceptable (3) mediocre, (4)
good, (5) excellent.

One Hot Encoding

This is the most common encoding used in machine learning. One
hot encoding takes a category with cardinality N and encodes each
categorical value with an N-dimensional vector with a single ‘1’
and the remainder ‘0’s. Take as an example encoding five makes of
Japanese Cars: Toyota, Honda, Subaru, Nissan, Mitsubishi. Table
1 shows a comparison of coding between ordinal and one-hot
encodings.

The advantage is that one hot encoding does not induce an
implicit ordering or between categories. The primary disadvantage
is that the dimensionality of the problem has increased with corre-
sponding increases in complexity, computation and “the curse of
high dimensionality”. This easily leads to the high dimensionality
low sample size (HDLSS) situation, which is a problem for most
machine learning methods.

Binary Encoding, Hash Encoding, BaseN Encoding

Somewhere in between these two are binary encoding, hash
encoding, and baseN encoding. Binary encoding simply labels
each category with a unique binary code and converts the binary
code to a vector. Using the previous example of the Japanese car
makes, table 2 shows an example of binary encoding.

Hash encoding assigns each category an ordinal value that
is then converted into a binary hash value that is encoded as
an n-tuple in the same fashion as the binary encoding. You can

as Ternary Balanced
Make Ordinal Ternary Code Ternary Code

Toyota 1 01 (0,1) (0,1)
Honda 2 02 (0,2) (0,-1)
Subaru 3 10 (1,0) (1,0)
Nissan 4 11 (1,1) (1,1)
Mitsubishi 5 12 (1,2) (1,-1)

TABLE 3: Example of Ternary Codes

view hash encoding as binary encoding applied to the hashed
ordinal value. Hash encoding has several advantages. First, it
is open ended so new categories can be added later. Second,
the resultant dimensionality can be much lower than one-hot
encoding. The chief disadvantage is that categories can collide
if two categories accidentally map into the same hash value. This
is a hash collision and must be fixed separately using a resolution
mechanism. Bernardi’s blog [Ber18] provides a good treatment of
hash coding.

Finally, baseN encoding is a generalization of binary encoding
that uses a number base other than 2 (binary). Table 3 is an
example of the Japanese car makes using base 3.

A disadvantage of all three of these techniques is that while it
does reduce the dimension of the encoded feature, artificial geo-
metric relationships may creep in between unrelated categories.
For example, (0.7,0.7) may be confusion between Toyota
and Honda or a weak Subaru result, although the effect is not
as pronounced as ordinal encoding.

Decoding

Of course, with categorical encoding, the ability to decode an
encoded vector back to a category can be very important. If the
categorical variable is only an input to a machine learning system,
retrieving a category may not be very important. For example, one
may have a product rating model which delivers a rating based on
a number of variables, some numeric like price, but others might
be categorical like color, but since the output does not require
category decoding, it is not important.

In an application such as categorization or imputation [GW18],
retrieving the category from a vector is crucial. In training a
modern classification model, a categorical output is often subject
to an activation function which converts a vector into a probability
of each category such as a softmax function. Essentially, the
softmax is a continuous and differentiable version of a “hard
max” function which would assign a 1 to the vector representing
the most likely category and a 0 to all the other categories. The
conversion to a probability distribution allows the use of a negative
log likelihood loss function rather than the standard root mean
squared error.

Typically, other classic encoding methods use thresholds to
rectify a vector first into a binary or n-ary value then decode the
vector back to a label in accordance to the encoding. This makes
these values difficult to use as outputs of machine learning systems
such as neural networks that rely on gradients due to lack of
differentiability. Also, the decoding process is difficult to convert
to a probability distribution, making negative log-likelihood or
crossentropy loss functions more difficult to use.
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Theory

In this section, we will briefly define and discuss quasiorthogonal-
ity, show how it relates to one-hot encoding and describe how this
relationship can be used to develop a categorical encoding with
lower cardinality.

Quasiorthogonality

In a suitably high dimensional space, two randomly selected
vectors are very likely to be nearly orthogonal or quasiorthogonal.
In such an n-dimensional vector space, there are sets of K vectors
which are mutually quasiorthogonal where K� n. A more formal
definition can be stated as follows. Given an ε , two vectors x and
y are said to be quasiorthogonal if |x·y|

‖x‖‖y‖ < ε . This extends the or-
thogonality principle by allowing the inner product to not exactly
equal zero. As an extension, we can define a quasiorthonormal
basis by a set of normal vectors {qi} for i = 1, . . . ,K such that
|qi · q j| < ε and ||qi|| = 1, for all i, j ∈ {1, . . . ,K}, where in
principle for large enough n, K� n.

The question of how large a quasiorthonormal basis can be
found for a given n-dimensional vector space and ε is answered in
part by the mathematical literature. [KK20] derived a lower bound
for K as a function of ε and n. Namely,

K ≥ enε2
.

This means that given an ε , the size of potential quasiorthonormal
basis grows at least exponentially as n grows.

One Hot Encoding Revisited

Exploiting quasiorthogonality in categorical encoding is analysis
to using orthonormal basis in one-hot encoding. In a typical
machine learning scenario, one hot encoding maps a variable with
n categories into a set of unit vectors in a n-dimensional space:
L = {li} for i = 1 . . .n, then the one hot encoding EL : L 7→ Rn

given by li 7→ ui where ui is an orthonormal basis in Rn. The
simplest basis used is ui = (0,0, . . . ,1,0, . . . ,0) where the 1 is in
the ith position which is know as the standard basis for Rn.

Mapping of a vector back to the original category uses the
argmax function, so for a vector z, argmax(z) = i where zi > z j
for all j 6= i and the vector z decodes to largmax(z). Of course,
the argmax function is not easily differentiable which presents
problems in ML learning algorithms that require derivatives. To
fix this, a softer version is used called the softargmax or now as
simply softmax and is defined as follows:

softmax(z)i =
ezi

∑
n
j=1 ez j

(1)

for i = 1,2, . . . ,n and z = (z1,z2, . . . ,zn) ∈ Rn where z is the
vector being decoded. The softmax function decodes a one-hot
encoded vector into a probability density function which enables
application of negative log likelihood loss functions or cross
entropy losses.

Though one-hot encoding uses unit vectors with one 1 in the
vector hence a hot component. The formalization of the one hot
encoding above allows any orthonormal basis to be used. So to
use a generalized one-hot encoding with orthonormal basis ui,
one would map the label j to u j for encoding where the ui no
longer have to take the standard basis form. To decode an encoded
value in this framework, we would take

i = argmax(z ·u1,z ·u2, . . . ,z ·un). (2)

Make Ordinal One-Hot QOE

Toyota 1 u1 q1

Honda 2 u2 q2

Subaru 3 u3 q3

Nissan 4 u4 q4

Mitsubishi 5 u5 q5

TABLE 4: Example of Quasiorthonormal Encoding

This reduces to argmax(z) for the standard basis. Thus, the
softmax function can be expressed as the following,

softmax(z)i =
ez·ui

∑
n
j=1 ez·u j

. (3)

Encoding

The principle behind QOE is simple. A quasiorthonormal basis
{qi} is substituted for the orthonormal basis {ui} described above.
So given a quasiorthonormal basis, we can define a QOE for a set
L = {li} by li 7→ qi.

Decoding z under QOE would use a qargmax function anal-
ogous to the argmax function for one-hot encoding as shown in
equation 4, which is nearly identical to equation 2.

i = argmax(z ·q1,z ·q2, . . . ,z ·qn) (4)

Analogous to the softmax function shown of equation 3, is a
qsoftmax function which can be expressed as

qsoftmax(z)i =
ez·qi

∑
K
j=1 ez·q j

(5)

The only real difference in the formulation is that while still
operating in Rn we are encoding K > n labels.

Returning to our example of Japanese car makes, table 4 shows
one-hot encoding and QOE of the five manufacturers. In the table,
encodings are represented simply as vectors where ui are unit
vectors in R5 and qi are a set of quasiorthonormal vectors in R3.
It can be shown that such a quasiorthonormal can be found in
[SHS20] with the minimum mutual angle of 66◦. In short, the
difference between one-hot encoding and QOE is that the one-hot
requires 5 dimensions and in this case QOE requires only 3.

Implementation

Mathematical

While equations 4 and 5 describe precisely mathematically how to
implement decoding and activation functions. A literal implemen-
tation would not exploit the modern vectorized and accelerated
computation available in such packages as numpy, tensorflow
[AAB+15] and pytorch.

To better exploit built-in functions of these packages, we define
the following n×K change of coordinates matrix

Q =


∣∣∣∣ ∣∣∣∣ ∣∣∣∣

q1 q2 · · · qK∣∣∣∣ ∣∣∣∣ ∣∣∣∣

 .
This transformation makes it easier to convert a set of parallel
operations into matrix operations for which these aforementioned
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computational packages are well suited. Mathematically, the trans-
formation maps the representation of a category encoded by QOE
to a vector representing one hot encoding. Understanding this
transformation makes it simple to express argmax or softmax
function’s quasiorthoromal variant by equations 6 and 7, respec-
tively.

qargmax(z) = argmax(Qz) (6)

and
qsoftmax(z) = softmax(Qz). (7)

The tensorflow and pytorch packages both supply opti-
mized softmax functions as does scipy when using numpy ar-
rays, making implementation of QOE not only easy, but efficient.
Not only will using native functions accelerated performance, it
can exploit features such as auto differentiation built into the native
functions --- a useful property when using the qsoftmax function
as an activation function.

Since the matrix manipulation operations and input/output
shape definitions differ from package to package, we provide a
qsoftmax implementation in several popular packages. In order to
facilitate the most general format possible, in our examples, we
will express the quasiorthogonal basis as a list of list, but the input
and the output is expressed in the appropriate native class (e.g.
numpy.ndarray in numpy).

Numpy

For numpy, the implementation is straight-forward and follows
equation 7 almost literally and is given below.
def qsoftmax(x, basis):

qx = np.matmul(np.asarray(basis),x)
return softmax(qx)

Since qsoftmax given above requires the basis as a parameter as
well as the input vector, it is a parameterized activation function. In
many packages, only unparameterized functions can be used. The
following function factory or metafunction can be used to return
a qsoftmax function for a given basis, rather than encoding the
function above in a lambda expression.
def qsoftmax(basis):

def func(x):
qx = np.matmul(np.asarray(basis),x)
return softmax(qx)

return func

The softmax function used above can be found in
scipy.special.softmax or can easily be written as
def softmax(x):

ex=np.exp(x)
return ex/np.sum(ex)

Tensorflow

For tensorflow, the following segment of code is an im-
plementation of the qsoftmax functions. By using native
tensorflow functions, the resultant qsoftmax function will
be automatically differentiated in a backwards neural network
pass. It is also worth noting that quite often due to the way
tensorflow performs batch processing, the input to the activa-
tion function is not a vector but an array of vectors as a Tensor
class.
def qsoftmax(x, basis):

qx = tf.matmul(tf.constant(basis), x,
transpose_b=True)

return tf.nn.softmax(tf.transpose(qx))

A metafunction version of qsoftmax is also presented as this is
used below in our example of MNIST handwriting classification
employing QOE.
def qsoftmax(basis):

def func(x):
qx = tf.matmul(tf.constant(basis), x,

transpose_b=True)
return tf.nn.softmax(tf.transpose(qx))

return func

Pytorch

Presented below is a version of the qsoftmax function imple-
mented using pytorch primitives. The use of the squeeze and
unsqueeze operations convert between a 1-dimensional vector
and a 2-dimension matrix having one column. This function is
only designed to accept vector inputs. In some models, especially
image related models, outputs of some layers may be multidimen-
sional arrays. If your use case requires a multidimensional input
to the qsoftmax function the code may need alteration.
def qsoftmax(x, basis):

qx = torch.mm(torch.tensor(basis),
x.unsqueeze(0).t()).t().squeeze()

return torch.nn.functional.softmax(qx,dim=0)

Construction of an Quasiorthonormal set

It is difficult to find explicit constructions of quasiorthonormal
sets in the literature. Several methods are mentioned by Kainen
[Kai92], but these constructions are theoretical and hard to follow.
There are a number of combinatorial problems related to such as
spherical codes [Eri20] and Steiner Triple Systems [LR17], which
strive to find optimal solutions. These are extremely complicated
mathematical constructions and not every optimal solution has
been found.

Since in a high dimensional space, two random vectors are
likely to be quasiorthogonal, it is tempting to take a brute force
approach and simply randomly select k vectors at random and
test the set. This approach is reasonable for small dimensions or
small k. However, the set must have every vector be mutually
quasiorthogonal and combinatoric complications quickly set in.

Suppose, the probability of any two vectors being quasiorthog-
onal to a given ε is p. Since there are

(k
2

)
pairs of vectors, the

probability that you have a quasiorthogonal set is p(
k
2). To put in

concrete terms, if two random vectors have a 99% chance of being
quasiorthogonal. Picking a set of 20 is only 14% and 30 is around
1%. Other factors conspire to make this difficult including the in-
creasing computational complexity and the geometric differences
between a cube and sphere become more pronounced as k and N
grow.

As a practical matter, optimal solutions are not necessary as
long as the desired characteristics of the quasiorthonormal basis
are obtained. As an example, while an optimal solution finds 28
quasiorthonormal vectors with dot products of 0.5 or under are
possible in seven dimensions, you may only need 10 vectors.
In other words, a suboptimal solution may yield fewer vectors
that are possible for a given dimension, or a larger dimension
may be required to obtain the desired number of vectors that is
theoretically needed.

One practical way to construct a quasiorthonormal basis is
to use spherical codes which has been studied in greater detail.
Spherical codes try to find a set of points on the n-dimensional
hypersphere such that the minimum distance between two points
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is maximized. In most constructions of spherical codes, a given
point’s antipodal point is also in that code set. So in order to get
a quasiorthogonal set, for each pair of antipodal points, only one
element of the pair is selected. Perhaps to better understand the
relationship, between quasiorthonormal basis and spherical codes
is that a set of spherical codes can be constructed by taking every
vector in a quasiorthonormal basis and add its antipodal point.

The area of algorithmically finding a quasiorthonormal basis is
scant as is finding suboptimal spherical codes. However, one such
method was investigated by Gautam and Vaintrob [GV12]. Per-
haps the easiest way to obtain a quasiorthonormal basis is to use
spherical codes as described above but obtain the spherical code
from the vast compliation of sphere codes by Sloane [SHS20].

Simple Example and Comparison

To demonstrate how QOE can be used in machine learning, we
provide a simple experiment/demonstration. This demonstration
in addition to showing how to construct a classification system
using QOE gives an sense of the effect of QOE on accuracy.
As an initial experiment, we applied QOE to classification of
the Modified National Institute of Standards and Technology
(MNIST) handwriting dataset [LC10], using the 60000 training
examples with 10000 test examples. As there are 10 categories,
we needed sets of quasiorthonormal bases with 10 elements. We
took the spherical code for 24 points in 4-dimensions, giving us 12
quasi-orthogonal vectors. The maximum pairwise dot product was
0.5 leading to an angle of 60◦. We also took the spherical code
for 56 points in 7-dimensions, giving 28 quasi-orthogonal vectors.
The maximum pairwise dot product was .33 leading to an angle
of a little over 70◦.

We used a hidden layer with 64 units with a ReLU activation
function. Next there is a 20% dropout layer to mitigate overtrain-
ing, then an output layer whose width depends on the encoding
used. We selected for this demonstration to use one of the simplest
models hence there are no convolutional or pooling layers used
as often seen in other sample MNIST handwriting classifiers.
The following example is implemented using tensorflow and
keras.

Validating the QSoftmax Function

We begin by validating the qsoftmax function as provided
above. This is done by first constructing a reference model built
on tensorflow and keras in the standard way. In fact this
example is nearly identical to the presented in the Quickstart for
Beginners guide [Ten19] for tensorflow with the exception
that we employ a separate Activation for clarity.
normal_model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(64, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10)
tf.keras.layers.Activation(tf.nn.softmax)

])

To validate that the qsoftmax function and the use of a Lambda
layer is properly used, the qsoftmax metafunction is used with
the identity matrix to represent the basis. Mathematically, the
resultant qsoftmax function in the Lambda layer is exactly the
softmax function. The code is shown below:
sanity_model = tf.keras.models.Sequential([

tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(64, activation=tf.nn.relu),

Number of One Hot 7-Dimensional 4-Dimensional
Epochs Encoding QOE QOE

10 97.53% (97.30%) 97.24% (96.94%) 95.65% (95.15%)
20 97.68% (98.02%) 97.49% (97.75%) 95.94% (96.15%)

TABLE 5: Results of MNIST QOE Experiment

tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10)
tf.keras.layers.Lambda(qsoftmax(numpy.identity(10,

dtype=numpy.float32)))
])

This should function identically as the reference model because
it tests that the qsoftmax function operates as expected (which it
does in this case). This is useful for troubleshooting if you have
difficulty.

Examples on Quasiorthonormal Basis

To recap, for the two QOE experiments we take a set of 10
mutually quasiorthonormal vectors from a four dimensional space,
and from a seven dimensional space all derived from spherical
codes from tables mentioned above, and only took 10 vectors.
For the code, the basis for each experiment are labeled basis4
and basis7, respectively. This leads to the following models,
basis4_model and basis7_model.
basis4_model = tf.keras.models.Sequential([

tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(64, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(4),
tf.keras.layers.Lambda(qsoftmax(basis4))

])
basis7_model = tf.keras.models.Sequential([

tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(64, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(7),
tf.keras.layers.Lambda(qsoftmax(basis7))

])

Table 5 shows the mean of the accuracy over three training runs
of the validation data with training data in parentheses.

From these results, it is clear that there is some degradation in
performance as the number of dimensions is reduced, but clearly
QOE can be used leading to a tradeoff between accuracy and
resource reduction from the reduction of dimensionality.

Extending to Spherical Encodings

A Deeper Look at Softmax

In principle, to recover a category from a potentially noisy encoded
vector, the dot product of the encoded vector against each basis
vector in accordance with equation 2 whether the basis is orthonor-
mal or quasiorthonormal. If one takes a deeper dive into equations
3 and 5, it is interesting to see what these functions are doing.
Figure 1 shows on the left, randomly selected values in a circle of
radius 6. On the right shows the vectors after the softmax function
is applied. Clearly with a few stragglers, most points either move
very close to either of the basis vectors (0,1) or (1,0). Upon
a cursory sampling of the output of the last Dense layer prior
to application of the softmax function, shows that each vector
component averages about 5.5 so a radius of 6 approximates the
what a softmax function might encounter.
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Fig. 1: Softmax on an orthonormal basis
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Fig. 2: Softmax on a quasiorthogonal basis

Similarly, figure 2 shows the same type of distribution of
randomly selected values and the right shows the effect after
a quasiorthonormal softmax is applied with three basis vectors.
Since the qsoftmax function maps the two dimensional input
into a three-dimensional space, the three-dimensional vectors are
mapped back down to two dimensions using the quasiorthonormal
basis. Again with the exception of a few stragglers, most points
move very close to one of the three basis vectors.

Because the expectation on one-hot encoding is that the value
of a given vector component be either 0 or 1 and that negative val-
ues are not expected even in a noisy environment. This is evident
in figure 1, where the results are all in the first quadrant (i.e. no
negative values). This raises the question could the negative values
be exploited with minimal detrimental effects?

While equation 5 is intended to accept a quasiorthonormal
basis, functionally there is no reason why this equation need
be limited to a quasiorthonormal basis. The equation still make
sense if {qi} were replaced by any collection of normal vectors.
However, the question remains as to how well that would work.
So to exploit the negative regions of the coordinate system, we
can see graphically what would happen if we add the antipodal
vectors (−1,0) and (0,−1) to our standard orthonormal basis,
{(1,0),(0,1)}. Applying the same type of random vector analysis
to the qsoftmax function we get figure 3.
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Fig. 3: Softmax on encoded values using an orthonormal basis and
antipodal points

Make One-Hot Spherical
Code

Toyota (1,0,0,0,0) (1,0,0)
Honda (0,1,0,0,0) (-1,0,0)
Subaru (0,0,1,0,0) (0,1,0)
Nissan (0,0,0,1,0) (0,-1,0)
Mitsubishi (0,0,0,0,1) (0,0,1)

TABLE 6: Examples of Spherical Codes

Number of One Hot 5-Dimensional 3-Dimensional
Epochs Encoding Spherical Code Spherical Code

10 97.53% (97.30%) 96.51% (96.26%) 95.37% (94.83%)
20 97.68% (98.02%) 96.82% (97.11%) 95.74% (95.83%)

TABLE 7: Results of MNIST Spherical Coding Experiment

So why not just use a random set of normal vectors? Despite
the intuition a truly random selection will have some clustering.
Geometrically, the set of normal vectors should be as evenly
distributed as possible which is precisely what spherical codes
are.

While it is likely that spherical codes for encoding work fine as
an output such as in classification, there is an implicit relationship
imposed by antipodal vector pairs especially when used as an
input to a system. If you consider the spherical encoding offered
in Table 6, the vector for Toyota is the negative of the vector for
Honda. This is essentially telling any number system that Honda
is the negative of Toyota, which may not be desirable.

With this risk in mind, we can further extend the idea to a
quasiorthogonal basis by adding the antipodal vectors for each
vector in the basis. The result not only doubles the number of
vectors that can be used for encoding, it reduces the problem of
finding a basis to that of finding spherical codes.

Spherical Codes

Spherical codes can be used in place of quasiorthonormal codes
simply by allowing the qi to be a collection of spherical codes
not necessarily quasiorthonormal basis. Table 6 shows how the
example of the five Japanese car makes could be encoded with a
simple spherical code.

Since spherical codes can substitute directly into the equations
for QOE, it is a simple matter to implement spherical codes {si}
instead of quasiorthonormal basis, {qi}. As such it is a simple
matter to run the same experiment on the MNIST handwriting
samples as we did for QOE. First, a set of codes are defined in
an ndarray called code5 and code3. The variable code5
consists of the standard orthonormal basis in 5 dimensions along
with their antipodal unit vector to produce a set of 10 vectors in 5
dimensions. The variable code3 is taken from [SHS20] for the 3
dimensional spherical codes with 10 vectors. Once these codes are
defined, they can be substituted for basis4 and basis7 in the
sample code above. Table 7 shows the results of the experiment
with training accuracy shown in parentheses.

In this case, the 5-dimensional spherical codes performed close
to the one-hot encoding by not as closely as the 7-dimension QOE
codes. The 3-dimensional spherical codes performed on par with
the 4-dimensional QOE codes.
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While the extreme dimensionality reduction from 10 to 4 or 10
to 3 did not yield comparable performance to one-hot encoding,
more modest reductions such as 10 to 7 and 10 to 5 did. It is
worth considering that quasiorthogonal or spherical codes are
much harder to find in low dimensions. One should note that,
though we went from 10 to 7 dimensions, we did not fully exploit
the space spanned by the quasiorthogonal vector set. Otherwise,
we would likely have had the similar results if the categorical
labels had a cardinality of 28 rather than 10.

Conclusion

These reduced dimensionality codes are not expected to improve
accuracy when the training data is plentiful, but to save com-
putation and representation by reducing the dimensionality of
the coded category. As an example, in applications such as au-
toencoders and specifically the imputation architectures presented
by [GW18] and [mLPU19], where the dimensionality not only
dictates the number of outputs and inputs but also the number
of hidden layers, a reduction in dimensionality has a profound
impact on the size of the model used. Beyond that, the reduced di-
mensionality codes such as QOE and spherical codes can address
problems such as the curse of dimensionality and HDLSS where
for small sample sizes it may improve accuracy.

Though for the exercises presented here, the reduction of
dimensionality is modest and may not seem worth the trouble.
The real benefit of these codes is in extremely high cardinality
situations on the order of hundreds, thousands and beyond, such
as zip codes, area codes, or medical diagnostic codes.

Practically speaking, while algorithms to generate spherical
codes and quasiorthonormal sets are few, [SHS20] has a vast
complication of spherical codes. At the extreme end, a spherical
code with 196,560 vectors is available in 24 dimensions, enough to
encode nearly 100,000 labels using QOE or 200,000 labels using
spherical codes, in just 24 dimensions!

In sum, the advantages of QOE and spherical codes are that
they can reduce the dimensionality of the vector representation
as compared to one-hot encoding, while not inducing artificial
geometric relationships as ordinal or binary codes can. The dis-
advantage is that the accuracy of decoding an encoded vector
in a noisy environment (such as classification output) is slightly
less than one-hot encoding. This tradeoff ability makes QOE and
spherical codes useful tools to be included in a data scientists
toolbox alongside other established categorical coding techniques.

Experiments and code samples are made available at https://
github.com/WestHealth/scipy2020/tree/master/quasiorthonormal.
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[KK96] V. Kůrková and P. C. Kainen. A geometric method to obtain error-
correcting classification by neural networks with fewer hidden
units. In Proceedings of International Conference on Neural
Networks (ICNN’96), volume 2, pages 1227–1232 vol.2, 1996.
doi:10.1109/ICNN.1996.549073.

[KK20] Paul C. Kainen and Věra Kůrková. Quasiorthogonal Dimension,
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