
58 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Network visualizations with Pyvis and VisJS

Giancarlo Perrone‡∗, Jose Unpingco‡, Haw-minn Lu‡

F

Abstract—Pyvis is a Python module that enables visualizing and interactively
manipulating network graphs in the Jupyter notebook, or as a standalone web
application. Pyvis is built on top of the powerful and mature VisJS JavaScript
library, which allows for fast and responsive interactions while also abstracting
away the low-level JavaScript and HTML. This means that elements of the ren-
dered graph visualization, such as node/edge attributes can be specified within
Python and shipped to the JavaScript layer for VisJS to render. This declarative
approach makes it easy to quickly explore graph visualizations and investigate
data relationships. In addition, Pyvis is highly customizable so that colors, sizes,
and hover tooltips can be assigned to the rendered graph. The network graph
layout is controlled by a front-end physics engine that is configurable from a
Python interface, allowing for the detailed placement of the graph elements. In
this paper, we outline use cases for Pyvis with specific examples to highlight key
features for any analysis workflow. A brief overview of Pyvis’ implementation
describes how the Python front-end binding uses simple Pyvis calls.

Index Terms—networks, graphs, relationship

Introduction

Successful Data Science is about discovering meaningful rela-
tionships in data. Visually representing these relationships using
a network graph helps to accelerate understanding and make
data driven decisions. Many research areas take advantage of
the insight that network analysis techniques can offer. Fields
in social networking, cognitive studies, telecommunications, and
biological systems all leverage the applications of network the-
ory and computation. Representing these relationships using a
network graph is fundamental to all approaches, but generating
an interactive and fluid graph visualization can be challenging,
especially for large datasets. We introduce Pyvis, based upon the
mature VisJS [vis20b] JavaScript library which enables fluid and
interactive visualizations of complex network graphs. Pyvis seeks
to simplify the interactive process by implementing an existing
JavaScript graphics library to abstract away the low-level front
end components, leaving the construction of these network data
structures to Python.

The Pyvis network data structure matches the JavaScript
VisJS object. This makes it easy to interpret and implement the
underlying data structures from the Python layer, since the actual
front end component is generated by the JavaScript library. A
resulting static HTML document shows the network graph, with
interactions such as dragging, zooming, hovering, and clicking.

* Corresponding author: gperrone@westhealth.org
‡ Gary and Mary West Health Institute

Copyright © 2020 Giancarlo Perrone et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

These interactions help visualize dense complex networks that are
hard to explore using static graphics.

Before open-sourcing Pyvis, we used it successfully to un-
derstand relationships among hundreds of variables in a complex
survey. Although we maintained an efficient data structure to
represent the trends in the survey responses, we still needed a way
to visualize and interact with additional metadata. Pyvis made it
easy to abstract our existing data structure into nodes and edges
with our desired metadata and then render the visualization with
VisJS to easily identify the interrelationships. In this paper, we
describe the design of Pyvis with examples showing the data
structures which are rendered by VisJS.

In the following section, we demonstrate how to get up and
running with Pyvis in a smaller scope by showing off the common
methods of creating a network. This will also include some
exposure to the customizability options that makes Pyvis so useful.

In the Layout section, we will see exactly how nodes and
edges can be spatially specified by interacting with various physics
parameters interpreted by the front end engine.

Integrations with Jupyter and NetworkX will be presented to
establish Pyvis compatibility with popular data science workflows.

Finally, a thought out example will include the interpretation
of a practical Game of Thrones relationship dataset to demonstrate
a Pyvis use case from the ground up. This minimal example will
be a base case for the features that Pyvis supports.

Pyvis Usage

Installing Pyvis is straight-forward with details at the project
documentation website [Gia18]. All of the following examples
will utilize familiar Python data structures with some connections
to the popular and powerful NetworkX package [HSS08]. The
basic Network class is the container for graph and front end
properties. All networks must be instantiated as a Network class
instance:
from pyvis.network import Network
g = Network()

Nodes can be added by providing an integer or string id and an
optional label.
g.add_node(1)
g.add_node(2)
print(g)

{
"Nodes": [

1,
2

],
"Edges": [],
"Height": "500px",

mailto:gperrone@westhealth.org

NETWORK VISUALIZATIONS WITH PYVIS AND VISJS 59

Fig. 1: Multiple nodes and attributes added at once

Fig. 2: Edges with a custom weight

"Width": "500px"
}

The add_nodes method consumes a list of nodes (Fig 1):

nodes = ["a", "b", "c", "d"]
g.add_nodes(nodes)
g.add_nodes("hello")

Keyword arguments can be used to add properties to the nodes in
Network:

g = Network()
g.add_nodes(

[1,2,3],
value=[10, 100, 400], # values adjust node size
x=[21.4, 154.2, 11.2],
y=[100.2, 23.54, 32.1],
label=["NODE 1", "NODE 2", "NODE 3"],
color=["#00ff1e", "#162347", "#dd4b39"]

)
g.show("example.html")

The following node properties influence the resulting
visualization:

• size - The raw circumference of a single node
• value - Circumference of node but scaled according to all

values
• title - The title displays over each node while mousing over

it
• x - X coordinate of node for custom layouts
• y - Y coordinate of node for custom layouts
• label - A label appearing under each node
• color - The color of the node

Nodes must exist in the network instance in order to add edges

g.add_edge(1, 2)
will adjust edge thickness
g.add_edge(2, 3, weight=5)

Edges can be added all at once by supplying a list of tuples to a
call to add_edges(). The following is an equivalent result (Fig 2):

g.add_edges([(1, 2), (2, 3, 5)])
g.show("example.html")

Notice how an optional element is included in the 3-tuple above
(2, 3, 5) representing the weight of the edge. This additional edge
data allows for expressing weighted networks and is clearly
noticeable in the visualization.

Layout

In situations where your network involves complex connections,
Pyvis allows you to manually explore these relationships with
intuitive mouse interactions. Nodes can be dragged into more
visible positions if the view is obstructed.
All of this is made possible by the front end engine provided by
VisJS. Their extensive documentation defines several options for
supplying layout and physics configurations to instances of a
network. These physics options are fundamental to VisJS, so
tweaking the physics of the rendered simulation is as simple as
providing the parameters to the specific solver.

The physics options dictates how a user can interact with the
objects in the graph. The intent of the physic options is to
make manipulating graph objects feel more intuitive when moving
nodes around. As an example, the user can manipulate a portion
of a graph that is densely populated to view a graph segment
of the interest more clearly. VisJS implements several physical
simulations such as Barnes Hut [BH86]. Others are mentioned in
the VisJS documentation [vis20a].
We can configure the physics engine from within Pyvis:

g = Network()
physics solvers supported:
barnesHut, forceAtlas2Based, repulsion,
hierarchicalRepulsion
g.barnes_hut(
gravity=-80000,
central_gravity=0.3,
spring_length=250,
spring_strength=0.001,
damping=0.09,
overlap=0,
)
print(g.options.physics)
{'enabled': True,
'stabilization':
<pyvis.physics.Physics.Stabilization
object at 0x7f99e6a03f90>,
'barnesHut': <pyvis.physics.Physics.barnesHut
object at 0x7f99e6de3710>}

In order to avoid the scenario of "guessing" parameter values for
an optimal network physics configuration, VisJS offers a useful
interaction for experimenting with theses values.
These interactions are enabled via Pyvis (Fig 3):

choose to only show the physics options
g.show_buttons(filter_=["physics"])

Here, we choose to display the options for the physics component
of the network. Omitting a filter in the call will display the
configuration of the entire network including nodes, edges,
layout, and interaction. The JSON options displayed in the
visualization represent the current configuration depending on the
displayed sliders. You can copy/paste those options to supply
your network with custom settings:

60 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Fig. 3: Live layout GUI with physics filter

g.set_options(
"""
var options = {

"physics": {
"repulsion": {

"centralGravity": 1.3,
"springConstant": 0.08,
"nodeDistance": 90,
"damping": 0.19

},
"maxVelocity": 45,
"minVelocity": 0.19,
"solver": "repulsion",
"timestep": 0.34

}
}
"""

)
print(g.options)

{'physics': {'repulsion': {'centralGravity': 1.3,
'springConstant': 0.08,
'nodeDistance': 90,
'damping': 0.19},
'maxVelocity': 45,
'minVelocity': 0.19,
'solver': 'repulsion',
'timestep': 0.34}}

The methods of a Network instance construct an internal
structure compatible with VisJS, demonstrated by the consistent
pattern of JSON outputs seen above.

NetworkX Support

Although Pyvis supports its own methods for constructing a
network data structure, you might feel more comfortable using the
more established and dedicated NetworkX package. Pyvis allows
you to define a NetworkX graph instance to then supply it to Pyvis
(Fig 4).
import networkx as nx
from pyvis.network import Network

nxg = nx.random_tree(20)
g=Network(directed=True)
g.from_nx(nxg)
g.show("networkx.html")

Pyvis current behavior recognizes the basic topology of a
NetworkX graph, not accounting for any custom attributes

Fig. 4: NetworkX graph rendered with Pyvis

Fig. 5: Network rendered in Jupyter Notebook cell

provided. Any other attributes like node color, size, and layout
would need to be manually added to the resulting Pyvis graph.
Future plans are to fully integrate NetworkX graphs to fully
interpret them, preserving attributes in the resulting Pyvis
visualizations.

Jupyter Support

For efficient prototyping of visualized graphs, Pyvis aims to
utilize Jupyter’s front-end IFrame features to embed the graph
in a notebook output cell. With that in mind, embedding a Pyvis
visualization into a Jupyter notebook is essentially the same as
described above. The only difference is that one should pass
in a notebook argument during instantiation. The result of the
visualization is shown in the output cell below the show()
invocation. Pyvis upon the call to show() writes the HTML that
serves an IFrame, which displays the result in the output cell (Fig
5).
One thing to keep in mind is that an HTML file is always
generated due to the dependence on the VisJS JavaScript
bindings.

Example

To get a better understanding of the flow of a typical Pyvis
network visualization, we can take a look at the following code
snippet to show off a typical application of the features. I have
taken a Game of Thrones dataset ([Bev] Storm of Swords
Dataset) defining the relationships between characters and the
frequencies between them to create a network to naturally

NETWORK VISUALIZATIONS WITH PYVIS AND VISJS 61

Fig. 6: Game of Thrones network dictates relationships between
characters

express this. Specifically, it is a csv file containing pairs of
characters and a weight between them. The final visualization
contains 107 nodes. (Fig 6)

from pyvis.network import Network
import pandas as pd

got_net = Network(
height="750px",
width="100%",
bgcolor="#222222",
font_color="white"

)

set the physics layout of the network
got_net.barnes_hut()
got_data = pd.read_csv("stormofswords.csv")

sources = got_data['Source']
targets = got_data['Target']
weights = got_data['Weight']

edge_data = zip(sources, targets, weights)

for e in edge_data:
src = e[0]
dst = e[1]
w = e[2]

got_net.add_node(src, src, title=src)
got_net.add_node(dst, dst, title=dst)
got_net.add_edge(src, dst, value=w)

neighbor_map = got_net.get_adj_list()

add neighbor data to node hover data
for node in got_net.nodes:

node["title"] += " Neighbors:
" + \
"
".join(neighbor_map[node["id"]])

node["value"] = len(neighbor_map[node["id"]])

got_net.show("gameofthrones.html")

In the network, the size of a node correlates to the number of
relationships it contains. This calculation benefits from the use of
an adjacency list to easily record the information pertaining to
each node’s neighbors. To see this, the character "Tyrion"

Fig. 7: Zooming into Game of Thrones network offers concise view

contains many connections, resulting in a larger node.
Furthermore, Tyrion’s strongest connections are easily noticed by
the thick edges, and it is easy to see that Tyrion and Sansa are a
strong relationship in the network.
At a glance, the resulting relationship network looks too
intertwined to make any practical conclusions. However, the
beauty of Pyvis is that each and every component of the network
can be focused. For example, zooming in to a dense portion of
the network, we can hover over a particular node to get a glimpse
of the scenario. (Fig 7)

This hover tooltip offers the context behind a particular node. We
can see the immediate neighbors for each and every node since
we provided a title attribute during the network construction.
This simple example can be expanded upon to create more
custom interactions tailored to specific needs of a dataset.
The network also uses weights. By providing a value attribute to
each node we can see these values being represented by a node’s
size. In the code I used the amount of neighbors to dictate the
node weight. This is a strong visual cue which makes it easy to
see which nodes have the most connections.
The edge weights are assigned in a similar manner, although the
dataset already provided the connection strength between nodes.
These edge weights are distinguishable in the final visualization,
once again proving the usefulness of Pyvis’ front-end features.

Under the Hood

VisJS reduces the definition of a network to a declarative set of
objects. Nodes, Edges, and an Options JSON object are given to
the VisJS Network constructor. The following basic example from
their documentation proves this:
// create an array with nodes
var nodes = new vis.DataSet([

{id: 1, label: 'Node 1'},
{id: 2, label: 'Node 2'},

]);

// create an array with edges
var edges = new vis.DataSet([

{from: 1, to: 2},
]);

62 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

// create a network
var container = document.getElementById('mynetwork');

// provide the data in the vis format
var data = {

nodes: nodes,
edges: edges

};
var options = {};

// initialize your network!
var network = new vis.Network(container, data, options);

This pattern makes Jinja [Pro] templating an obvious candidate
for generalizing a set of JavaScript declarations. VisJS
documentation provides a complete set of supported attributes for
each data structure, so incorporating them into the Python layer
involves representing each object as Python objects which are
then serialized and sent to Jinja to handle the templating.
A simple example of this process in action is outlined below:

self.html = template.render(nodes=nodes, edges=edges)

In this case, a template HTML file is rendered with node and
edge data matching a format compatible with a VisJS Network
instance.

Conclusion

Pyvis is a powerful python module for visualizing and interac-
tively manipulating network graphs in a standalone web applica-
tion or a Jupyter notebook. Pyvis brings the power of VisJS to
Python, thus enabling data scientists who use Jupyter to interac-
tively visualize network graphs with all the fluid interactions of
a pure-JavaScript application. Future directions for Pyvis include
supporting the front end interactivity with more JavaScript enabled
features, and optimization/caching of node positions for larger
networks. Those with JavaScript and VisJS knowledge would be
able to provide insight towards prospective front end features,
since these will leverage actual VisJS references. As Pyvis use
case grows in scope, additional features and suggestions will be
requested, paving the path for a robust version of Pyvis meeting
user experience expectations.

Code samples presented here, and with the correspond-
ing poster presentation, as well as other supplemental ma-
terial are available at West Health’s github repository at
https://github.com/WestHealth/scipy2020/tree/master/pyvis.

REFERENCES

[Bev] Andrew Beveridge. Network of thrones. URL: https://www.
macalester.edu/~abeverid/thrones.html.

[BH86] J K Barnes and Piet Hut. A hierarchical o(n log n) force-
calculation algorithm. Nature, 324:446–449, 1986. doi:10.
1038/324446a0.

[Gia18] Giancarlo Perrone. Pyvis interactive network visualizations, 2018.
URL: https://pyvis.readthedocs.io/en/latest/.

[HSS08] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring
network structure, dynamics, and function using networkx. In Gaël
Varoquaux, Travis Vaught, and Jarrod Millman, editors, Proceedings
of the 7th Python in Science Conference, pages 11 – 15, Pasadena,
CA USA, 2008. doi:10.25080/issn.2575-9752.

[Pro] The Pallets Projects. jinja. URL: https://jinja.palletsprojects.com/.
[vis20a] vis.js community. Network - physics, 2020. URL: https://visjs.

github.io/vis-network/docs/network/physics.html.
[vis20b] vis.js community. vis.js, 2020. URL: https://visjs.org.

https://github.com/WestHealth/scipy2020/tree/master/pyvis/
https://www.macalester.edu/~abeverid/thrones.html
https://www.macalester.edu/~abeverid/thrones.html
http://dx.doi.org/10.1038/324446a0
http://dx.doi.org/10.1038/324446a0
https://pyvis.readthedocs.io/en/latest/
http://dx.doi.org/10.25080/issn.2575-9752
https://jinja.palletsprojects.com/
https://visjs.github.io/vis-network/docs/network/physics.html
https://visjs.github.io/vis-network/docs/network/physics.html
https://visjs.org

	Introduction
	Pyvis Usage
	Layout
	NetworkX Support
	Jupyter Support
	Example
	Under the Hood
	Conclusion
	References

