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Abstract—NumPy simplifies and accelerates mathematical calculations in
Python, but only for rectilinear arrays of numbers. Awkward Array provides a
similar interface for JSON-like data: slicing, masking, broadcasting, and per-
forming vectorized math on the attributes of objects, unequal-length nested lists
(i.e. ragged/jagged arrays), and heterogeneous data types.

Awkward Arrays are columnar data structures, like (and convertible to/from)
Apache Arrow, with a focus on manipulation, rather than serialization/transport.
These arrays can be passed between C++ and Python, and they can be used in
functions that are JIT-compiled by Numba.

Development of a GPU backend is in progress, which would allow data anal-
yses written in array-programming style to run on GPUs without modification.

Index Terms—NumPy, Numba, Pandas, C++, Apache Arrow, Columnar data,
AOS-to-SOA, Ragged array, Jagged array, JSON

Introduction

NumPy [np] is a powerful tool for data processing, at the center of
a large ecosystem of scientific software. Its built-in functions are
general enough for many scientific domains, particularly those that
analyze time series, images, or voxel grids. However, it is difficult
to apply NumPy to tasks that require data structures beyond N-
dimensional arrays of numbers.

More general data structures can be expressed as JSON and
processed in pure Python, but at the expense of performance and
often conciseness. NumPy is faster and more memory efficient
than pure Python because its routines are precompiled and its
arrays of numbers are packed in a regular way in contiguous mem-
ory. Some expressions are more concise in NumPy’s "vectorized"
notation, which describe actions to perform on whole arrays, rather
than scalar values.

In this paper, we describe Awkward Array [ak1], [ak2], a
generalization of NumPy’s core functions to the nested records,
variable-length lists, missing values, and heterogeneity of JSON-
like data. The internal representation of these data structures is
columnar, very similar to (and compatible with) Apache Arrow
[arrow]. But unlike Arrow, the focus of Awkward Array is to
provide a suite of data manipulation routines, just as NumPy’s
role is focused on transforming arrays, rather than standardizing a
serialization format.
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Our goal in developing Awkward Array is not to replace
NumPy, but to extend the set of problems to which it can be
applied. We use NumPy’s extension mechanisms to generalize its
interface in a way that returns identical output where the appli-
cability of the two libraries overlap (i.e. rectilinear arrays), and
the implementation of non-structure-changing, numerical math is
deferred to NumPy itself. Thus, all the universal functions (ufuncs)
in the SciPy project [scipy] and its ecosystem can already be
applied to Awkward structures because they inherit NumPy and
SciPy’s own implementations.

Origin and development

Awkward Array was intended as a way to enable particle physics
analyses to take advantage of scientific Python tools. Particle
physics problems are inherently structured, frequently needing
nested loops over variable-length lists. They also involve big data,
typically tens to hundreds of terabytes per analysis. Traditionally,
this required physicists to do data analysis in Fortran (with
custom libraries for data structures [hydra] before Fortran 90) and
C++, but many physicists are now moving to Python for end-
stage analysis [phypy]. Awkward Array provides the link between
scalable, interactive, NumPy-based tools and the nested, variable-
length data structures that physicists need.

Since its release in September 2018, Awkward Array has
become one of the most popular Python libraries for particle
physics, as shown in Figure 1. The Awkward 0.x branch was
written using NumPy only, which limited its development because
every operation must be vectorized for performance. We (the
developers) also made some mistakes in interface design and
learned from the physicists’ feedback.

Spurred by these shortcomings and the popularity of the
general concept, we redesigned the library as Awkward 1.x in
a half-year project starting in August 2019. The new library is
compiled as an extension module to allow us to write custom
precompiled loops, and its Python interface is improved: it is
now a strict generalization of NumPy, is compatible with Pandas
[pandas] (Awkward Arrays can be DataFrame columns), and is
implemented as a Numba [numba] extension (Awkward Arrays
can be used in Numba’s just-in-time compiled functions).

Although the Awkward 1.x branch is feature-complete, serial-
ization to and from a popular physics file format (ROOT [root],
which represents over an exabyte of physics data [root-EB]) is
not. Adoption among physicists is ongoing, but the usefulness of
JSON-like structures in data analysis is not domain-specific and
should be made known to the broader community.

https://youtu.be/WlnUF3LRBj4
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Fig. 1: Adoption of Awkward 0.x, measured by PyPI statistics,
compared to other popular particle physics packages (root-numpy,
iminuit, rootpy) and popular data science packages.

Demonstration using a GeoJSON dataset

To show how Awkward Arrays can be applied beyond particle
physics, this section presents a short exploratory analysis of
Chicago bike routes [bikes] in GeoJSON format. GeoJSON has
a complex structure with multiple levels of nested records and
variable-length arrays of numbers, as well as strings and missing
data. These structures could not be represented as a NumPy array
(without dtype=object, which are Python objects wrapped in
an array), but there are reasons to want to perform NumPy-like
math on the numerical longitude, latitude coordinates.

To begin, we load the publicly available GeoJSON file,
import urllib.request
import json

url = "https://raw.githubusercontent.com/Chicago/" \
"osd-bike-routes/master/data/Bikeroutes.geojson"

bikeroutes_json = urllib.request.urlopen(url).read()
bikeroutes_pyobj = json.loads(bikeroutes_json)

and convert it to an Awkward Array. The two main data types
are ak.Array (a sequence of items, which may contain records)
and ak.Record (a single object with named, typed fields, which
may contain arrays). Since the dataset is a single JSON object, we
pass it to the ak.Record constructor.
import awkward1 as ak
bikeroutes = ak.Record(bikeroutes_pyobj)

The record-oriented structure of the JSON object, in which fields
of the same object are serialized next to each other, has now been
transformed into a columnar structure, in which data from a single
field across all objects are contiguous in memory. This requires
more than one buffer in memory, as heterogeneous data must be
split into separate buffers by type.

The structure of this particular file (expressed as a Datashape,
obtained by calling ak.type(bikeroutes)) is
{"type": string,
"crs": {

"type": string,
"properties": {"name": string}},

"features": var * {
"type": string,
"properties": {

"STREET": string,
"TYPE": string,
"BIKEROUTE": string,
"F_STREET": string,

"T_STREET": option[string]},
"geometry": {

"type": string,
"coordinates":

var * var * var * float64}}}

We are interested in the longitude, latitude coordinates, which
are in the "coordinates" field of the "geometry" of the
"features", at the end of several levels of variable-length lists
(var). At the deepest level, longitude values are in coordinate 0
and latitude values are in coordinate 1.

We can access each of these, eliminating all other fields, with
a NumPy-like multidimensional slice. Strings in the slice select
fields of records and ellipsis (...) skips dimensions as it does in
NumPy.
longitude = bikeroutes["features", "geometry",

"coordinates", ..., 0]
latitude = bikeroutes["features", "geometry",

"coordinates", ..., 1]

The longitude and latitude arrays both have type 1061 *
var * var * float64; that is, 1061 routes with a variable
number of variable-length polylines.

At this point, we might want to compute the length of each
route, and we can use NumPy ufuncs to do that, despite the
irregular shape of the longitude and latitude arrays. First,
we subtract off the mean and convert degrees into a unit of distance
(82.7 and 111.1 are conversion factors at Chicago’s latitude).
km_east = (longitude - np.mean(longitude)) * 82.7
km_north = (latitude - np.mean(latitude)) * 111.1

Subtraction and multiplication defer to np.subtract and
np.multiply, respectively, and these are ufuncs, overrid-
den using NumPy’s __array_ufunc__ protocol [nep13]. The
np.mean function is not a ufunc, but it, too, can be overridden
using the __array_function__ protocol [nep18]. All ufuncs
and a handful of more generic functions can be applied to
Awkward Arrays.

To compute distances between points in an array a in NumPy,
we would use an expression like the following,
differences = a[1:] - a[:-1]

which views the same array without the first element (a[1:])
and without the last element (a[:-1]) to subtract "between the
fenceposts." We can do so in the nested lists with
differences = km_east[:, :, 1:] - km_east[:, :, :-1]

even though the first two dimensions have variable lengths.
They’re derived from the same array (km_east), so they have
the same lengths and every element in the first term can be paired
with an element in the second term.

Two-dimensional distances are the square root of the sum of
squares of these differences,
segment_length = np.sqrt(

(km_east[:, :, 1:] - km_east[:, :, :-1])**2 +
(km_north[:, :, 1:] - km_north[:, :, :-1])**2)

and we can sum up the lengths of each segment in each polyline
in each route by calling np.sum on the deepest axis.
polyline_length = np.sum(segment_length, axis=-1)
route_length = np.sum(polyline_length, axis=-1)

The same could be performed with the following pure Python
code, though the vectorized form is shorter, more exploratory, and
8× faster (Intel 2.6 GHz i7-9750H processor with 12 MB cache
on a single thread); see Figure 2.
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Fig. 2: Scaling of Awkward Arrays and pure Python loops for the bike
routes calculation shown in the text.

route_length = []
for route in bikeroutes_pyobj["features"]:

polyline_length = []
for polyline in route["geometry"]["coordinates"]:

segment_length = []
last = None
for lng, lat in polyline:

km_east = lng * 82.7
km_north = lat * 111.1
if last is not None:

dx2 = (km_east - last[0])**2
dy2 = (km_north - last[1])**2
segment_length.append(

np.sqrt(dx2 + dy2))
last = (km_east, km_north)

polyline_length.append(sum(segment_length))
route_length.append(sum(polyline_length))

The performance advantage is due to Awkward Array’s precom-
piled loops, though this is mitigated by the creation of intermediate
arrays and many passes over the same data (once per user-
visible operation). When the single-pass Python code is just-in-
time compiled by Numba and evaluated over Awkward Arrays,
the runtime is 250× faster than pure Python (same architecture).

Scope: data types and common operations

Awkward Array supports the same suite of abstract data types and
features as "typed JSON" serialization formats—Arrow, Parquet,
Protobuf, Thrift, Avro, etc. Namely, there are

• primitive types: numbers and booleans,
• variable-length lists,
• regular-length lists as a distinct type (i.e. tensors),
• records/structs/objects (named, typed fields),
• fixed-width tuples (unnamed, typed fields),
• missing/nullable data,
• mixed, yet specified, types (i.e. union/sum types),
• virtual arrays (functions generate arrays on demand),
• partitioned arrays (for off-core and parallel analysis).

Like Arrow and Parquet, arrays with these features are laid out
as columns in memory (more on that below).

Like NumPy, the Awkward Array library consists of a primary
Python class, ak.Array, and a collection of generic operations.
Most of these operations change the structure of the data in the
array, since NumPy, SciPy, and others already provide numerical
math as ufuncs.

Awkward functions include

• basic and advanced slices (__getitem__) including
variable-length and missing data as advanced slices,

• masking, an alternative to slices that maintains length but
introduces missing values instead of dropping elements,

• broadcasting of universal functions into structures,
• reducers of and across variable-length lists,
• zip/unzip/projecting free arrays into and out of records,
• flattening and padding to make rectilinear data,
• Cartesian products (cross join) and combinations (self

join) at axis >= 1 (per element of one or more arrays).

Conversions to other formats, such as Arrow, and interoper-
ability with common Python libraries, such as Pandas and Numba,
are also in the library’s scope.

Columnar representation, columnar implementation

Awkward Arrays are columnar, not record-oriented, data struc-
tures. Instead of concentrating all data for one array element in
nearby memory (as an "array of structs"), all data for a given
field are contiguous, and all data for another field are elsewhere
contiguous (as a "struct of arrays"). This favors a pattern of data
access in which only a few fields are needed at a time, such as the
longitude, latitude coordinates in the bike routes example.

Additionally, Awkward operations are performed on columnar
data without returning to the record-oriented format. To illustrate,
consider an array of variable-length lists, such as the following toy
example:
[[1.1, 2.2, 3.3], [4.4], [5.5, 6.6], [7.7, 8.8, 9.9]]

Instead of creating four C++ objects to represent the four lists, we
can put all of the numerical data in one buffer and indicate where
the lists start and stop with two integer arrays:
starts: 0, 3, 4, 6
stops: 3, 4, 6, 9
content: 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9

For an array of lists of lists, we could introduce two levels
of starts and stops arrays, one to specify where the outer
square brackets start and stop, another to specify the inner square
brackets. Any tree-like data structure can be built in this way;
the hierarchy of nested array groups mirrors the hierarchy of the
nested data, except that the number of these nodes scales with
the complexity of the data type, not the number of elements in
the array. Particle physics use-cases require thousands of nodes
to describe complex collision events, but billions of events in
memory at a time. Figure 3 shows a small example.

In the bike routes example, we computed distances using slices
like km_east[:, :, 1:], which dropped the first element
from each list. In the implementation, list objects are not created
for the sake of removing one element before translating back into
a columnar format; the operation is performed directly on the
columnar data.

For instance, to drop the first element from each list in an array
of lists a, we only need to add 1 to the starts:
starts: 1, 4, 5, 7
stops: 3, 4, 6, 9
content: 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9

Without modifying the content, this new array represents
[[ 2.2, 3.3], [ ], [ 6.6], [ 8.8, 9.9]]

because the first list starts at index 1 and stops at 3, the second
starts at 4 and ends at 4, etc. The "removed" elements are still
present in the content array, but they are now unreachable,
much like the stride tricks used for slicing in NumPy.



AWKWARD ARRAY: JSON-LIKE DATA, NUMPY-LIKE IDIOMS 81

ak.Array (high-level wrapper)

ListArray RecordArray

ListArray

NumpyArray

NumpyArray

content

contents["x"]

contents["y"]
starts

content

starts
stops

stops

Fig. 3: Hierarchy for an example data structure: an array of lists of records, in which field "x" of the records are numbers and field "y" of
the records are lists of numbers. This might, for example, represent [[], [{"x": 1, "y": [1]}, {"x": 2, "y": [2, 2]}]],
but it also might represent an array with billions of elements (of the same type). The number of nodes scales with complexity, not data volume.

Leaving the content untouched means that the precompiled
slice operation does not depend on the content type, not even
whether the content is a numeric array or a tree structure, as in
Figure 3. It also means that this operation does not cascade down
such a tree structure, if it exists. Most operations leave nested
structure untouched and return views, rather than copies, of most
of the input buffers.

Architecture of Awkward 1.x

In August 2019, we began a half-year project to rewrite the
library in C++ (Awkward 1.x), which is now complete. Whereas
Awkward 0.x consists of Python classes that call NumPy on
internal arrays to produce effects like the slice operation described
in the previous section, Awkward 1.x consists of C++ classes that
perform loops in custom compiled code, wrapped in a Python
interface through pybind11.

However, the distinction between slow, bookkeeping code and
fast math enforced by Python and NumPy is a useful one: we
maintained that distinction by building Awkward 1.x in layers that
separate the (relatively slow) polymorphic C++ classes, whose job
is to organize and track the ownership of data buffers, from the
optimized loops in C that manipulate data in those buffers.

These layers are fully broken down below and in Figure 4:

• The high-level interface is in Python.
• The array nodes (managing node hierarchy and owner-

ship/lifetime) are in C++, accessed through pybind11.
• An alternate implementation of array navigation was writ-

ten for Python functions that are compiled by Numba.
• Array manipulation algorithms (without memory manage-

ment) are independently implemented as "cpu-kernels" and
"cuda-kernels" plugins. The kernels’ interface is pure C,
allowing for reuse in other languages.

The separation of "kernels" from "navigation" has two advan-
tages: (1) optimization efforts can focus on the kernels, since these
are the only loops that scale with data volume, and (2) CPU-based
kernels can, in principle, be swapped for GPU-based kernels. The
latter is an ongoing project.

Numba for just-in-time compilation

Some expressions are simpler in "vectorized" form, such as the
Awkward Array solution to the bike routes calculation. Others are
simpler to express as imperative code. This issue arose repeatedly
as physicists used Awkward Array 0.x in real problems, both

overrides NumPy's ufuncs
has a column dtype in Pandas
registered as a type in Numba

ak.Array in Python

operate on CPU pointers

cpu-kernels

operate on GPU pointers

cuda-kernels

C++ classes Numba models

extern "C" interface

pybind11

user interface

data navigation
and/or ownership

array manipulation

Fig. 4: Components of Awkward Array, as described in the text. All
components have been implemented except for the "cuda-kernels."

because they were more familiar with imperative code (in C++)
and because the problems truly favored non-vectorized solutions.
For instance, walking up a tree, looking for nodes of a particular
type (such as a tree of particle decays) is hard to express in
vectorized form because some elements of a test array reach the
stopping condition before others; preventing them from continuing
to walk the tree adds complexity to a data analysis. Any problem
that must "iterate until converged" is also of this form.

These problems are readily solved by Numba, a just-in-time
compiler for Python, but Numba cannot compile code involving
arrays from Awkward 0.x. To solve physics problems, we had to
break the array abstraction described above. Ensuring that Numba
would recognize Awkward 1.x arrays was therefore a high priority,
and it is a major component of the final system.

Numba has an extension mechanism for registering new types
and overloading operators for new types. We added Numba ex-
tensions for the ak.Array and ak.Record types, overloading
__getitem__ (square bracket) and __getattr__ (dot) oper-
ators and iterators, so that users can walk over the data structures
with conventional loops.

Returning to the bike routes example, the following performs
the same calculation with Numba:
import numba as nb

@nb.jit
def compute_lengths(bikeroutes):

# allocate output array
route_length = np.zeros(len(bikeroutes["features"]))

# loop over routes
for i in range(len(bikeroutes["features"])):

route = bikeroutes["features"][i]
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# loop over polylines
for polyline in route["geometry"]["coordinates"]:

first = True
last_east = 0.0
last_north = 0.0

for lng_lat in polyline:
km_east = lng_lat[0] * 82.7
km_north = lng_lat[1] * 111.1

# compute distances between points
if not first:

dx2 = (km_east - last_east)**2
dy2 = (km_north - last_north)**2
distance = np.sqrt(dx2 + dy2)
route_length[i] += distance

# keep track of previous value
first = False
last_east = km_east
last_north = km_north

return route_length

This expression is not concise, but it is 250× faster than the pure
Python solution and 30× faster than even the Awkward Array
(precompiled) solution. It makes a single pass over all buffers,
maximizing CPU cache efficiency, and it does not allocate or
fill any intermediate arrays. This is possible because nb.jit
compiles specialized machine code for this particular problem.

Combining Awkward Array with Numba has benefits that
neither has alone. Ordinarily, complex data structures would have
to be passed into Numba as Python objects, which means a
second copy of the data that must be "unboxed" (converted into
a compiler-friendly form) and "boxed" (converted back). If the
datasets are large, this consumes memory and time. Awkward
Arrays use less memory than the equivalent Python objects (5.2×
smaller for the bike routes) and they use the same internal
representation (columnar arrays) inside and outside functions just-
in-time compiled by Numba.

The disadvantage of Numba and Awkward Arrays in Numba is
that neither support the whole language: Numba can only compile
a subset of Python and the NumPy library and Awkward Arrays
are limited to imperative-style access (no array-at-a-time func-
tions) and homogeneous data (no union type). Any code that works
in a just-in-time compiled function works without compilation, but
not vice-versa. Thus, there is a user cost to preparing a function
for compilation, which can be seen in a comparison of the code
listing above with the pure Python example in the original bike
routes section. However, this finagling is considerably less time-
consuming than translating a Python function to a language like
C or C++ and converting the data structures. It favors gradual
transition of an analysis from no just-in-time compilation to a
judicious use of it in the parts of the workflow where performance
is critical.

ArrayBuilder: creating columnar data in-place

Awkward Arrays are immutable; NumPy’s ability to assign ele-
ments in place is not supported or generalized by the Awkward
Array library. (As an exception, users can assign fields to records
using __setitem__ syntax, but this replaces the inner tree with
one having the new field.) Restricting Awkward Arrays to read-
only access allows whole subtrees of nodes to be shared among
different versions of an array.

To create new arrays, we introduced ak.ArrayBuilder,
an append-only structure that accumulates data and creates
ak.Arrays by taking a "snapshot" of the current state. The
ak.ArrayBuilder is also implemented for Numba, so just-
in-time compiled Python can build arbitrary data structures.

The ak.ArrayBuilder is a dynamically typed object,
inferring its type from the types and order of data appended to
it. As elements are added, the ak.ArrayBuilder builds a tree
of columns and their types to refine the inferred type.

# type of b.snapshot()
b # 0 * unknown
b.begin_record() # 0 * {}
b.field("x") # 0 * {"x": unknown}
b.integer(1) # 0 * {"x": int64}
b.end_record() # 1 * {"x": int64}
b.begin_record() # 1 * {"x": int64}
b.field("x") # 1 * {"x": int64}
b.real(2.2) # 1 * {"x": float64}
b.field("y") # 1 * {"x": float64, "y": ?unknown}
b.integer(2) # 1 * {"x": float64, "y": ?int64}
b.end_record() # 2 * {"x": float64, "y": ?int64}
b.null() # 3 * ?{"x": float64, "y": ?int64}
b.string("hello") # 4 * ?union[{"x": float64,

# "y": ?int64}, string]

In the above example, an initially empty ak.ArrayBuilder
named b has unknown type and zero length. With
begin_record, its type becomes a record with no fields. Call-
ing field adds a field of unknown type, and following that with
integer sets the field type to an integer. The length of the array
is only increased when the record is closed by end_record.

In the next record, field "x" is filled with a floating point
number, which retroactively updates previous integers to floats.
Calling b.field("y") introduces a field "y" to all records,
though it has option type because this field is missing for all
previous records. The third record is missing (b.null()), which
refines its type as optional, and in place of a fourth record, we
append a string, so the type becomes a union.

Internally, ak.ArrayBuilder maintains a similar tree of
array buffers as an ak.Array, except that all buffers can grow
(when the preallocated space is used up, the buffer is reallocated
and copied into a buffer 1.5× larger), and content nodes can be
replaced from specialized types to more general types. Taking a
snapshot shares buffers with the new array, so it is a lightweight
operation.

Although ak.ArrayBuilder is compiled code and calls
into it are specialized by Numba, its dynamic typing has a
runtime cost: filling NumPy arrays is faster. ak.ArrayBuilder
trades runtime performance for convenience; faster array-building
methods would have to be specialized by type.

High-level behaviors

One of the surprisingly popular uses of Awkward 0.x has been to
add domain-specific methods to records and arrays by subclassing
their hierarchical node types. These can act on scalar records
returning scalars, like a C++ or Python object,
# distance between points1[0] and points2[0]
points1[0].distance(points2[0])

or they may be "vectorized," like a ufunc,
# distance between all points1[i] and points2[i]
points1.distance(points2)

This capability has been ported to Awkward 1.x and expanded
upon. In Awkward 1.x, records can be named (as part of more
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general "properties" metadata in C++) and record names are linked
to Python classes through an ak.behavior dict.
class Point:

def distance(self, other):
return np.sqrt((self.x - other.x)**2 +

(self.y - other.y)**2)

class PointRecord(Point, ak.Record):
pass

class PointArray(Point, ak.Array):
pass

ak.behavior["point"] = PointRecord
ak.behavior["*", "point"] = PointArray

points1 = ak.Array([{"x": 1.1, "y": 1},
{"x": 2.2, "y": 2},
{"x": 3.3, "y": 3}],

with_name="point")

points2 = ak.Array([{"x": 1, "y": 1.1},
{"x": 2, "y": 2.2},
{"x": 3, "y": 3.3}],

with_name="point")

points1[0].distance(points2[0])
# 0.14142135623730964

points1.distance(points2)
# <Array [0.141, 0.283, 0.424] type='3 * float64'>

points1.distance(points2[0]) # broadcasting
<Array [0.141, 1.5, 2.98] type='3 * float64'>

When an operation on array nodes completes and the result is
wrapped in a high-level ak.Array or ak.Record class for
the user, the ak.behavior is checked for signatures that link
records and arrays of records to user-defined subclasses. Only the
name "point" is stored with the data; methods are all added at
runtime, which allows schemas to evolve.

Other kinds of behaviors can be assigned through different
signatures in the ak.behavior dict, such as overriding ufuncs,
# link np.absolute("point") to a custom function
def magnitude(point):

return np.sqrt(point.x**2 + point.y**2)

ak.behavior[np.absolute, "point"] = magnitude

np.absolute(points1)
# <Array [1.49, 2.97, 4.46] type='3 * float64'>

as well as custom broadcasting rules, and Numba extensions
(typing and lowering functions).

As a special case, strings are not defined as an array type,
but as a parameter label on variable-length lists. Behaviors that
present these lists as strings (overriding __repr__) and define
per-string equality (overriding np.equal) are preloaded in the
default ak.behavior.

Awkward Arrays and Pandas

Awkward Arrays are registered as a Pandas extension, so they
can be losslessly embedded within a Series or a DataFrame
as a column. Some Pandas operations can be performed on
them—particularly, NumPy ufuncs and any high-level behaviors
that override ufuncs—but best practices for using Awkward Arrays
within Pandas are largely unexplored. Most Pandas functions were
written without deeply nested structures in mind.

It is also possible (and perhaps more useful) to translate
Awkward Arrays into Pandas’s own ways of representing nested

structures. Pandas’s MultiIndex is particularly useful: variable-
length lists translate naturally into MultiIndex rows:
ak.pandas.df(ak.Array([[[1.1, 2.2], [], [3.3]],

[],
[[4.4], [5.5, 6.6]],
[[7.7]],
[[8.8]]]))

# values
# entry subentry subsubentry
# 0 0 0 1.1
# 1 2.2
# 2 0 3.3
# 2 0 0 4.4
# 1 0 5.5
# 1 6.6
# 3 0 0 7.7
# 4 0 0 8.8

and nested records translate into MultiIndex column names:
ak.pandas.df(ak.Array([{"I":

{"a": _, "b": {"c": _}},
"II":

{"x": {"y": {"z": _}}}}
for _ in range(0, 50, 10)]))

# I II
# a b x
# c y
# z
# entry
# 0 0 0 0
# 1 10 10 10
# 2 20 20 20
# 3 30 30 30
# 4 40 40 40

In the first of these two examples, empty lists in the Awkward
Array do not appear in the Pandas output, though their existence
may be inferred from gaps between entry and subentry indexes.
When analyzing both lists and non-list data, or lists of different
lengths, it is more convenient to translate an Awkward Array into
multiple DataFrames and JOIN those DataFrames as relational
data than to try to express it all in one DataFrame.

This example highlights a difference in applicability between
Pandas and Awkward Array: Pandas is better at solving problems
with long-range relationships, joining on relational keys, but the
structures that a single DataFrame can represent (without resorting
to Python objects) is limited. Awkward Array allows general data
structures with different length lists in the same structure, but most
calculations are elementwise, as in NumPy.

GPU backend

One of the advantages of a vectorized user interface is that it is
already optimal for calculations on a GPU. Imperative loops have
to be redesigned when porting algorithms to GPUs, but CuPy,
Torch, TensorFlow, and JAX demonstrate that an interface con-
sisting of array-at-a-time functions hides the distinction between
CPU calculations and GPU calculations, making the hardware
transparent to users.

Partly for the sake of adding a GPU backend, all instances
of reading or writing to an array’s buffers were restricted to the
"array manipulation" layer of the project (see Figure 4). The first
implementation of this layer, "cpu-kernels," performs all opera-
tions that actually access the array buffers, and it is compiled into
a physically separate file: libawkward-cpu-kernels.so,
as opposed to the main libawkward.so, Python extension
module, and Python code.

In May 2020, we began developing the "cuda-kernels" li-
brary, provisionally named libawkward-cuda-kernels.so
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Fig. 5: CPU kernels by algorithmic complexity, as of February 2020.

(to allow for future non-CUDA versions). Since the main code-
base (libawkward.so) never dereferences any pointers to its
buffers, main memory pointers can be transparently swapped for
GPU pointers with additional metadata to identify which kernel
to call for a given set of pointers. Thus, the main library does
not need to be recompiled to support GPUs and it can manage
arrays in main memory and on GPUs in the same process, which
could be important, given the limited size of GPU memory. The
"cuda-kernels" will be deployed as a separate package in PyPI
and Conda so that users can choose to install it separately as an
"extras" package.

The kernels library contains many functions (428 in the
"extern C" interface with 124 independent implementations,
as of May 2020) because it defines all array manipulations. All of
these must be ported to CUDA for the first GPU implementation.
Fortunately, the majority are easy to translate: Figure 5 shows that
almost 70% are simple, embarrassingly parallel loops, 25% use a
counting index that could be implemented with a parallel prefix
sum, and the remainder have loop-carried dependencies or worse
(one used dynamic memory, but it has since been rewritten). The
kernels were written in a simple style that may be sufficiently
analyzable for machine-translation, a prospect we are currently
investigating with pycparser.

Transition from Awkward 0.x

Awkward 0.x is popular among physicists, and some data analyses
have come to depend on it and its interface. User feedback, how-
ever, has taught us that the Awkward 0.x interface has some incon-
sistencies, confusing names, and incompatibilities with NumPy
that would always be a pain point for beginners if maintained,
yet ongoing analyses must be supported. (Data analyses, unlike
software stacks, have a finite lifetime and can’t be required to
"upgrade or perish," especially when a student’s graduation is at
stake.)

To support both new and ongoing analyses, we gave the
Awkward 1.x project a different Python package name and PyPI
package name from the original Awkward Array: awkward1
versus awkward. This makes it possible to install both and
load both in the same process (unlike Python 2 and Python
3). Conversion functions have also been provided to aid in the
transition.

We are already recommending Awkward 1.x for new physics
analyses, even though serialization to and from the popular ROOT
file format is not yet complete. Nevertheless, the conversion
functions introduce an extra step and we don’t expect widespread
adoption until the Uproot library natively converts ROOT data to
and from Awkward 1.x arrays.

Eventually, however, it will be time to give Awkward 1.x
"official" status by naming it awkward in Python and PyPI. At
that time, Awkward 0.x will be renamed awkward0, so that a
single
import awkward0 as awkward

would be required to maintain old analysis scripts.
As an incentive for adopting Awkward 1.x in new projects,

it has been heavily documented, with complete docstring and
doxygen coverage (already exceeding Awkward 0.x).

Summary

By providing NumPy-like idioms on JSON-like data, Awkward
Array satisfies a need required by the particle physics community.
The inclusion of data structures in array types and operations was
an enabling factor in this community’s adoption of other scientific
Python tools. However, the Awkward Array library itself is not
domain-specific and is open to use in other domains. We are
very interested in applications and feedback from the wider data
analysis community.
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