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Abstract—Perturbations of organellar structures within a cell are useful indica-
tors of the cell’s response to viral or bacterial invaders. Of the various organelles,
mitochondria are meaningful to model because they show distinct migration
patterns in the presence of potentially fatal infections, such as tuberculosis.
Properly modeling and assessing mitochondria could provide new information
about infections that can be leveraged to develop tests, treatments, and vac-
cines. Traditionally, mitochondrial structures have been assessed via manual
inspection of fluorescent microscopy imagery. However, manual microscopy
studies are labor-intensive and fail to provide a high-throughput for screenings.
Thus, demonstrating the need for techniques that are more automated and
utilize quantitative metrics for analysis. Yet, modeling mitochondria is no trivial
task; mitochondria are amorphous, spatially diffuse structures that render tradi-
tional shape-based, parametric modeling techniques ineffective. We address the
modeling task by using OrNet (Organellar Networks), a Python framework that
utilizes probabilistic, graph-theoretic techniques to cast mitochondrial dynamics
in the mold of dynamic social networks. We propose quantitative temporal and
spatial anomaly detection techniques that leverage the graph connectivity infor-
mation of the social networks to reveal time points of anomalous behavior and
spatial regions where organellar structures undergo significant morphological
changes related to a relevant change in environment or stimulus. We demon-
strate the advantages of these techniques with the results of exhaustive graph-
theoretic analyses over time in three different mitochondrial conditions. This
methodology provides the quantification, visualization, and analysis techniques
necessary for rigorous spatiotemporal modeling of diffuse organelles.

Introduction

Morphological perturbations of organellar structures inside cells
are useful for characterizing infection patterns and, ultimately,
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developing therapies. In particular, tuberculosis, an infectious
disease caused by Mycobacterium tuberculosis (Mtb), induces
distinct structural changes of the mitochondria in invaded cells
[FCGQR15]. This is significant because tuberculosis is respon-
sible for approximately 1.5 million human fatalities annually,
with growing resistance to current antibacterial treatment regi-
mens [FCGQR15]. Studying the permanent changes in subcellular
structures pre- versus post-infection will set the stage for genetic
screens, whereby these changes can be studied under different
mutations of the Mtb pathogen; with enough such studies and
a subsequent understanding of how the Mtb pathogen affects its
host, we can leverage that knowledge to develop tests, treatments,
and vaccines.

Prior works have shown that the Mtb pathogen alters the shape
of mitochondrial structures to disrupt vital functions provided by
the organelle so that it can successfully invade a host [Dub16],
[CAA18]. Modeling these perturbed subcellular structures for
analysis is difficult because mitochondria are amorphous, spatially
diffuse structures whose morphology exists within a dynamic
continuum, ranging from fragmented individual mitochondrion
to complex interconnected networks [FS12]. The morphology of
mitochondria transitions between many states along its spectrum,
as a result of fission and fusion events [SBM+08], [SNY08] and
the observation of these morphological changes is referred to as
mitochondrial dynamics [FS12]. Thus, understanding mitochon-
drial dynamics is useful for gaining insight regarding a host’s
response to infections and cellular invasions. Figure 1 depicts
the morphological changes of mitochondria in two different cells
that underwent either fission or fusion to illustrate mitochondrial
dynamics.

Early approaches to assessing mitochondrial dynamics in-
volved manually observing fission and fusion events in live
microscopy imagery. A notable early study tagged two distinct
groups of mitochondria with red and green fluorescent proteins
before introducing the two groups together in the presence of
polyethylene glycol (PEG) to induce fusion, then manually ob-
served the resultant heterogeneous fluorescent structures to un-
derstand mitochondrial dynamics [LLFR02]. However, manual
microscopy studies are labor-intensive and fail to provide a high-
throughput for screenings [FS12]. These shortcomings have moti-
vated many to research methodologies that are more automated by
quantitatively modelling and assessing live microscopy imagery
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Fig. 1: Frames from two different live microscopy videos depicting
the mitochdonria before and after morphological events.

of mitochondria [ADATLBR+18], [SBM+08], [MLS10].
Assessment of mitochondrial dynamics via live microscopy

has been studied from various scientific perspectives. Most studies
utilized confocal fluorescent microscopy to capture the morpho-
logical changes of the mitochondria [SCE+17]. One imagery-
based approach proposed a quantitative methodology that mea-
sured the lengths of all mitochondria present in a cell, both
prior to and post the occurrence of either a fission or fusion
event, to determine whether the mitochondria fused or fragmented
[SBM+08]. Limitations of that approach was that it required
manually denoting regions of interest to assess only a subset
of the mitochondria present, and it intentionally excluded any
mitochondria located in dense clusters because of the difficulty
in determining the precise shapes and dimensions of individ-
ual mitochondrion. Another quantitative approach also leveraged
confocal microscopy imagery to utilize a technique known as
FRAP, or fluorescence recovery after photobleaching, to assess
mitochondrial dynamics [MLS10]. This specific FRAP approach
involved bleaching the cell in a designated region and monitoring
the recovery of fluorescence as fluorescently tagged mitochondria
migrate from unbleached areas to the bleached zones [MLS10].
However, such an approach can be jeopardized by the motility
of mitochondria and its environment; unexpected movement from
mitochondria, or even the entire cell, can disrupt a FRAP analysis
requiring the sample being assessed to be discarded. Both of
these early approaches risk overlooking crucial morphological
information because only a subset of the mitochondria present
in the cell can be used for analysis.

In more recent literature, a novel methodology was proposed
that modeled the morphology of mitochondria by casting all
local diffuse clusters of mitochondria present in a cell as nodes
within an evolving graph, known as a dynamic social network
[ADATLBR+18]. Dynamic social networks are well-suited for
modeling mitochondria because the granularity of the clusters
being modeled can be adjusted by increasing or decreasing the

number of nodes used. These networks overcome the limitations
of prior approaches because they do not require any manual
intervention nor are they negatively affected by organellar motility.
Additionally, this approach does not seek to assess only specific
well-behaved mitochondria, but any that are visible in clusters
around the cell regardless of their morphological state (i.e. frag-
mented, fused, etc.). Our work seeks to elucidate mitochondrial
dynamics by providing quantitative methodologies to measure
spatial and temporal regions of anomalous morphological behavior
via spectral analysis of dynamic social networks.

Data Acquisition

In our efforts to demonstrate the morphological spectrum that
mitochondria undergo, we have amassed a collection of confocal
imaging videos of live HeLa cells fluorescently tagged with the
protein DsRed2-Mito-7. We maintained three distinct groups of
cells: a group that was not exposed to any external stimulant,
referred to as our control group; a group that was exposed to
listeriolysin O (llo), a pore-forming toxin, to induce mitochondrial
fragmentation; and a group that was exposed to mitochondrial-
division inhibitor 1 (mdivi) to induce mitochondrial fusion. Live
imaging videos of each cell was recorded with a Nikon A1R
confocal microscope. The imaging occurred in an environment
that maintained 37 degrees celsius and 5% CO2. Every imaging
video consists of at least 20,000 frames, of dimensions 512x512,
captured at 100 frames per second. In all of our imagery, each
red “dot” depicts a single mitochondrion within a cell. For scale,
the length of mitochondria is typically between 500 nm to 1 mm
or greater, and the average diameter is approximately 500 nm
[MLS10], [DC07].

Spectral Analysis of Social Networks

Mitochondrial structures can respond in drastic, unpredictable
ways to an environmental change or an external stimulus, and
our work seeks to characterize these responses from both the
spatial and temporal contexts. We were able to explore those
perspectives by analyzing microscopy imagery, primarily videos,
of fluorescently tagged live HeLa cells post-exposure to drug
treatments that induced either fusion or fragmentation of the
mitochondria in the cells [ADATLBR+18]. We modeled and
analyzed the mitochondria using OrNet (Organellar Networks),
an open-source Python framework built on libraries within the
scientific Python ecosystem that models subcellular organelles as
dynamic social networks [FHD+20].

OrNet utilizes a probabilistic approach, involving Gaussian
mixture models (GMMs), to construct mitochondrial cluster
graphs [ADATLBR+18], [FHD+20]. GMMs were utilized to
determine spatial regions of the microscopy imagery that cor-
responded to the mitochondrial clusters by iteratively updating
the parameters of underlying mixture distributions until they
converged. This approach assumes that the spatial locations of mi-
tochondria are normally distributed with respect to their associated
clusters [ADATLBR+18]. The post-convergence parameters of the
mixture distributions, specifically the means and covariances, were
then used for constructing the social network graph. The means
corresponded to the center spatial coordinates of mitochondrial
clusters, and for this reason they were selected to be the nodes in
the graphs. The edges, which represent the relationships between
clusters, were defined by the Hellinger distance between the
respective mixture distributions. This modeling process occurred



SPECTRAL ANALYSIS OF MITOCHONDRIAL DYNAMICS: A GRAPH-THEORETIC APPROACH TO UNDERSTANDING SUBCELLULAR PATHOLOGY 93

for every frame in a microscopy video; therefore, each frame
updates the state of the network’s graph at a discrete point in
time. Traced over time, the dynamics of the social networks,
appearing as perturbations in connected nodes via changes in the
edge weights, OrNet tracks the changes of the spatial relationships
between mitochondrial clusters.

By modeling the spatiotemporal relationships of mitochondria
as a dynamic social network, the graph states could be repre-
sented as Laplacian matrices. A Laplacian matrix is a useful
representation of a graph that enables the analysis of its properties
via spectral graph theory techniques. Eigendecomposition, or the
factorization of a matrix into its eigenvalues and eigenvectors,
is a graph theoretic technique that is the cornerstone of our
proposed methodologies. Eigendecomposition of a graph Lapla-
cian yields vital information about the connectedness of that
graph [CGotMS97]. In the context of mitochondrial dynamics,
the connectedness of a graph provides a quantitative description
about the morphology at a given time. By leveraging such quanti-
tative descriptions, our techniques are able to indicate spatial and
temporal regions demonstrating anomalous behavior.

Temporal Anomaly Detection

Detecting when morphology-altering events occur is an important
aspect to understanding mitochondrial dynamics. Temporal indi-
cators of organellar activity improve qualitative assessments of
microscopy imagery by eliminating the need to manually inspect
every frame, only those that immediately precede or succeed an
anomalous event. Additionally, the effects of local events on the
global mitochondrial structure are more distinct. This process of
indicating time points when distinct organellar activity is occurring
is a temporal anomaly detection task. We addressed this task
by utilizing the graph connectivity information provided by the
eigenvalue vectors to detect anomalous behaviors.

Eigendecomposition of each mitochondrial cluster graph that
comprises the dynamic social network results in a number of
eigenvalue vectors and eigenvector matrices that correspond to
the number of graph states in the network. Because these vectors
and matrices have a natural ordering, the information is essentially
a time series dataset. We highlight anomalous time points in the
data by first computing the average of each eigenvalue vector,
then indicating time points whose averages are statistical outliers.
Outliers are determined by computing the z-score, or standard
score, for every time point based on the distance between the
average of its associated eigenvalue vector and the mean of a few
preceding averages; if the distance exceeds some threshold value,
typically two standard deviations, then it is considered an outlier.
The number of preceding averages used is predetermined by a
fixed window size. This sliding window approach enables adaptive
thresholding values to be computed for declaring anomalous
behavior that are derived from local morphological events, rather
than a fixed global constant.

In essence, this approach utilizes the eigenvalues to character-
ize the magnitude of spatial transformations experienced by the
morphology. Therefore, morphology-altering events, like fission
and fusion, are likely to be discovered by highlighting time points
where eigenvalue vectors are demonstrating anomalous behavior.

The Python code we utilized to perform temporal anomaly
detection is below: this function computes anomalous time points
and displays the subsequent eigenvalue time-series and outlier
signal plots. The parameters to the function are the time-series of

eigenvalue vectors that correspond to the dynamic social network,
a window size, and a threshold value. An example of the plots
generated by this code is shown in Figure 2.

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

def temporal_anomaly_detection(eigen_vals, window,
threshold):

'''
Generates a figure comprised of a time-series plot
of the eigenvalue vectors, and an outlier detection
signals plot.

Parameters
----------
eigen_vals: NumPy array (NXM)

Matrix comprised of eigenvalue vectors.
N represents the number of frames in the
corresponding video, and M is the number of
mixture components.

window: int
The size of the window to be used for anomaly
detection.

threshold: float
Value used to determine whether a signal value
is anomalous.

Returns
-------
NoneType object
'''
eigen_vals_avgs = [np.mean(x) for x in eigen_vals]
moving_avgs = np.empty(shape=(eigen_vals.shape[0],),

dtype=np.float)
moving_stds = np.empty(shape=(eigen_vals.shape[0],),

dtype=np.float)
z_scores = np.empty(shape=(eigen_vals.shape[0],),

dtype=np.float)
signals = np.empty(shape=(eigen_vals.shape[0],),

dtype=np.float)

moving_avgs[:window] = 0
moving_stds[:window] = 0
z_scores[:window] = 0
for i in range(window, moving_avgs.shape[0]):

moving_avgs[i] = \
np.mean(eigen_vals_avgs[i - window:i])

moving_stds[i] = \
np.std(eigen_vals_avgs[i - window:i])

z_scores[i] = \
eigen_vals_avgs[i] - moving_avgs[i]

z_scores[i] /= moving_stds[i]

for i, score in enumerate(z_scores):
if score > threshold:

signals[i] = 1
elif score < threshold * -1:

signals[i] = -1
else:

signals[i] = 0

sns.set()
fig = plt.figure()
ax = fig.add_subplot(211)
ax.plot(eigen_vals)
ax.set_ylabel('Magnitude')
ax = fig.add_subplot(212)
ax.plot(z_scores)
ax.set_xlabel('Frame')
ax.set_ylabel('Signal')
plt.show()
plt.close()
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Fig. 2: The top plot illustrates the eigenvalue time-series data of an llo cell that experienced a mitochondrial fission event, and the bottom
plot shows the corresponding outlier signal plot. Peaks in the signal plot represent time points declared anomalous by the temporal anomaly
detection technique.

Spatial Anomaly Detection

After indicating discrete times points where the morphology
experienced significant perturbations, quantitatively determining
the spatial locations of significant structural changes is crucial
for assessing mitochondrial dynamics. Mitochondria are spatially
diffuse structures that occupy a vast amount of the cell and, as
a result, many areas of the cell require detailed inspection to
identify all significant spatial changes. However, many structural
perturbations go unnoticed when evaluated with purely qualitative
metrics because of the large search space and the inherent diffi-
culty in tracking microscopic objects. Thus, we sought to provide
a quantitative technique to indicate spatial regions demonstrating
anomalous morphological behavior.

Anomalous morphological behavior can be defined as spatial
regions shifting suddenly, or major structural changes taking place
in the underlying social network: edges being dropped or formed,
nodes appearing or disappearing. The process of tracking such
regions is, in essence, an object detection task because specific
mitochondrial clusters are being monitored as the global structure
evolves over time. By treating this task as such, we utilized
bounding boxes to highlight the regions of significance. The coor-
dinates of the bounding boxes were computed based on the pixel
coordinates denoted by the GMMs that corresponded to the spatial
locations of the mitochondrial clusters. Therefore, a bounding box
can be displayed for each mitochondrial cluster determined by
the GMM. However, rendering every bounding box can obfuscate
the regions demonstrating anomalous behavior because some of
the mitochondrial cluster boundaries may overlap. As a result,
we utilized only the most significant, non-overlapping regions for
analysis.

Regions demonstrating the most significant amount of struc-
tural variance are determined via analysis of the eigenvector
matrices. The number of eigenvector matrices corresponds with
the number of graph states recorded in the social network. Each
row in an eigenvalue matrix is related to a mixture distribution,
and by extension a spatial region of the imagery. To determine
the regions demonstrating the most amount of variance, the total

Fig. 3: Image on the left shows the initial spatial location and size of
a bounding box for a mitochondrial cluster from the first frame of a
mdivi cell’s microscopy video, which depicts a mitochondrial fusion
event, and the image on the right shows the spatial location and size
of a bounding box corresponding to the same cluster on the final
frame of the video. This figure highlights the ability of our spatial
anomaly detection technique to accurately track the mitochondria as
it undergoes morphological transformations.

euclidean distance of each row vector between graph states is
computed. Ultimately, the spatial regions that corresponded to the
eigenvector rows demonstrating the highest amounts of variance
were selected as regions of interest to be highlighted by the
bounding boxes.

Below is the code utilized to perform spatial anomaly detec-
tion: this function draws bounding boxes for the mitochondrial
cluster regions in a microscopy video. The parameters for the
function are the file path to the input video; means and covariance
matrices from the GMM; the eigenvector matrices; an integer that
indicates the maximum number of boxes to display; the path to the
directory where the output video will be saved; and the number of
standard deviations away from center spatial coordinates, in both
dimensions, to construct the box boundaries. Figure 3 displays
frames of a video generated by this code.
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import imageio
import numpy as np

def spatial_anomaly_detection(vid_path, means,
covars, eigen_vecs, k,
outdir_path,
std_threshold=3):

'''
Draws bounding boxes around the mixture component
regions demonstrating the most variance.

Parameters
----------
vid_path: string

Path to the input video.
means: NumPy array (NxMx2)

Pixel coordinates corresponding to the mixture
component means. N is the number of video
frames, M the number of mixture components,
and 2 denotes the 2D pixel coordinate.

covars: NumPy array (NxMx2x2)
Covariance matrices of the guassian mixture
components. N is the number of video frames,
M is the number of mixture components, and 2x2
denotes the covariance matrix.

eigen_vecs: NumPy array (NxMxM)
Eigenvector matrix. N represents the number of
frames in the corresponding video, M is the
number of mixture components.

k: int
Number of the most significant non-overlapping
regions to display bounding boxes for. The
actual number may be less than k, if the video
does not contain that many non-overlapping
regions.

outdir_path: string
Directory path to save the bounding box video.

std_threshold: float
The number of standard deviations to use
to compute the spatial region of the bounding
box. Default is three.

'''

input_vid_title = os.path.split(vid_path)[1]
out_vid_title = \

input_vid_title.split('.')[0] + '.mp4'
out_vid_path = os.path.join(outdir_path,

out_vid_title)
with imageio.get_reader(vid_path) as reader, \

imageio.get_writer(
out_vid_path, mode='I', fps=1) as writer

fps = reader.get_meta_data()['fps']
size = reader.get_meta_data()['size']
distances = \

absolute_distance_traveled(eigen_vecs)
descending_distances_indices = \

np.flip(np.argsort(distances))
region_indices = find_initial_boxes(

means,
covars,
size,
descending_distances_indices,
k

)
num_of_boxes = len(region_indices)
box_colors = \

np.random.randint(
256,
size=(num_of_boxes),
3,

)

for i, frame in enumerate(reader):
current_frame = frame
for index, j in enumerate(region_indices):

row_bounds, col_bounds = \

compute_region_boundaries(
means, covars, size, i, j

)
row_diff = row_bounds[1] - row_bounds[0]
col_diff = col_bounds[1] - col_bounds[0]

color = box_colors[index]
current_frame[

row_bounds[0]:row_bounds[1],
col_bounds[0],
:,

] = color
current_frame[

row_bounds[0]:row_bounds[1],
col_bounds[1],
:,

] = color
current_frame[

row_bounds[0],
col_bounds[0]:col_bounds[1],
:,

] = color
current_frame[

row_bounds[1],
col_bounds[0]:col_bounds[1],
:,

] = color

writer.append_data(current_frame)

Experiments

We first evaluated the temporal anomaly detection methodology
by plotting the eigenvalue time-series and outlier signal for each
cell. For our experiments, we utilized a window size of 20 and a
threshold value of 2. An example of the plots generated is shown in
Figure 2. Next, we evaluated the video frames that corresponded
with each anomalous time point in every video. In each frame,
significant changes in the morphology are visible, especially in the
llo and mdivi videos. This is meaningful because the morphology
of mitochondria changes subtly between frames, making it a
tedious task to manually determine when any important event oc-
curred. However, the anomalous time points indicate specific video
frames where morphological changes are visible: the anomalous
llo video frames illustrate the fragmentation process by depicting
the clusters at distinct times where they are visibly smaller, and
conversely, the anomalous mdivi frames highlight times where
the clusters are noticeably larger. To illustrate the process of
temporally tracking morphological activity, Figure 4 displays all of
the frames in a llo cell’s microscopy video that correspond to time
points declared anomalous by our temporal anomaly detection
technique.

Unexpectedly, we noticed anomalous behavior was indicated
in a subset of our control videos. This was not anticipated because
the control cells were not exposed to any stimuli, and their
mitochondrial structures did not display any significant changes
during the duration of the videos. This phenomenon highlighted
the sensitivity of our approach; any significant movement of the
mitochondria, such as a sudden migration, is likely to be detected
as an anomalous event. Therefore, the temporal indicators will
denote frames where morphological events are occurring, but
they should not be relied on solely for any behavioral inference
regarding the mitochondria’s morphology.

Our spatial anomaly detection methodology was evaluated by
inspecting the regions highlighted by the bounding boxes in each
cell type. The effectiveness of this approach was demonstrated
through assessment of the llo and mdivi videos because mito-
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Fig. 4: Frames from an llo video that were declared anomalous by the temporal anomaly detecton technique. These frames correspond to the
same cell whose eigenvalue time-series and outlier signal plots were displayed in Figure 2.

chondrial clusters of both types were displaced as their videos
progressed. Mitochondria in the llo videos fragment and become
much smaller, and in some instances this occurs until the clusters
are no longer visible; in mdivi videos many of the smaller clusters
merge with larger ones, effectively, making some regions of the
cell no longer occupied by any mitochondrial structures. Yet, the
bounding boxes were able to adapt accordingly to these spatial
changes because the spatiotemporal relationships of clusters were
captured within the dynamic social networks. The coordinates
of the bounding boxes were computed using the parameters,
specifically the mean and covariance, of the corresponding mix-
ture distributions. As a result, the boxes were able to track the
mitochondrial clusters as they moved around the cell or shrunk
in size. In many cases, the clusters moved completely outside
the area highlighted by initial bounding boxes, so the ability to
adjust the shape and spatial locations of the boxes allows for the
regions demonstrating anomalous behavior to always remain the
areas being highlighted. Figure 3 depicts the spatial location and
size of a bounding box corresponding to a mitochondrial region
within a mdivi cell both before and after a fusion event occurs.

Discussion

Both the temporal and spatial anomaly detection methodologies
have proven effective in quantitatively characterizing mitochon-
drial dynamics, however, the extent of their effectiveness is largely
dependent on the selection of adequate parameters. For the tem-

poral methodology the free parameters are the threshold value,
window size. A threshold value too high will result in none of the
time points being declared anomalous, while too low will result
in a high number of frames being considered anomalous, even
though the morphology may have only changed slightly between
the time points. The window size is important for determining
how distinct the current time point’s eigenvalues are compared
to those of the previous frames, and it behaves similarly to the
threshold parameters: if the value is too high or low, the number of
time points declared anomalous can change drastically. The spatial
anomaly detection methodology has only one free parameter, the
threshold value used to determine size of the bounding boxes.
Due to the assumption that the spatial locations of mitochondria
within each cluster are normally distributed [ADATLBR+18], we
found that three standard deviations away from the mean, with
respect to each dimension, is sufficient for a bounding box to
encompass all the mitochondria that are members of the cluster
being highlighted. Ultimately, these approaches are sensitive to the
parameters selected, and the usage of adequate values can enhance
the anomaly detection process.

Conclusion

The morphology of mitochondria is perturbed in distinct ways
by the presence of bacterial or viral infections in the cell,
and modeling these structural changes can aid in understanding
both the infection strategies of the pathogen, and cellular re-
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sponse. Modeling mitochondria poses many challenges because
it is an amorphous, diffuse subcellular structure. Yet, dynamic
social networks are well-suited for the task because they are
capable of representing the global structure of mitochondria by
flexibly modeling the many local clusters present in the cell.
This extensible modeling approach enables the spatiotemporal
relationships of the mitochondrial clusters to be explored using
theoretic graph techniques. We proposed quantitative spatial and
temporal anomaly detection methodologies that could be utilized
in conjunction with traditional qualitative metrics to elucidate
mitochondrial dynamics. We ultimately hope to use these spectral
analytics and the OrNet software package to conduct large-scale
genomic screens of Mycobacterium tuberculosis mutants, in an
effort to build a deeper understanding of how the pathogen invades
cells and induces cell death at the genetic level. This work is one
of the first steps toward that ultimate goal.
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