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Abstract—pandas is an essential tool in the data scientist’s toolkit for modern
data engineering, analysis, and modeling in the Python ecosystem. However,
dataframes can often be difficult to reason about in terms of their data types and
statistical properties as data is reshaped from its raw form to one that’s ready
for analysis. Here, I introduce pandera, an open source package that provides
a flexible and expressive data validation API designed to make it easy for data
wranglers to define dataframe schemas. These schemas execute logical and
statistical assertions at runtime so that analysts can spend less time worrying
about the correctness of their dataframes and more time obtaining insights and
training models.

Index Terms—data validation, data engineering

Introduction

pandas [WM10] has become an indispensible part of the data
scientist’s tool chain, providing a powerful interface for data
processing and analysis for tabular data. In recent years numerous
open source projects have emerged to enhance and complement
the core pandas API in various ways. For instance, pyjanitor
[EJMZBSZZS19] [pyj], pandas-ply [pdpa], and siuba [sba]
are projects that provide alternative data manipulation interfaces
inspired by the R ecosystem, pandas-profiling [pdpb] au-
tomatically creates data visualizations and statistics of dataframes,
and dask [Roc15] provides parallelization capabilities for a
variety of data structures, pandas dataframes among them.

This paper introduces a data validation tool called pandera,
which provides an intuitive, flexible, and expressive API for
validating pandas data structures at runtime. The problems that
this library attempts to address are two-fold. The first is that
dataframes can be difficult to reason about in terms of their
contents and properties, especially when they undergo many steps
of transformations in complex data processing pipelines. The
second is that, even though ensuring data quality is critical in
many contexts like scientific reporting, data analytics, and machine
learning, the data validation process can produce considerable
cognitive and software development overhead. Therefore, this tool
focuses on making it as easy as possible to perform data validation
in a variety of contexts and workflows in order to lower the barrier
to explicitly defining and enforcing the assumptions about data.

* Corresponding author: niels.bantilan@gmail.com
‡ Talkspace
§ pyOpenSci

Copyright © 2020 Niels Bantilan. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

In the following sections I outline the theoretical underpin-
nings and practical appications of data validation, describe in
more detail the specific architecture and implementation of the
pandera package, and compare and contrast it with similar tools
in the Python and R ecosystems.

Data Validation Definition

Data validation is the process by which the data analyst decides
whether or not a particular dataset fulfills certain properties that
should hold true in order to be useful for some purpose, like
modeling or visualization. In other words, data validation is a
falsification process by which data is deemed valid with respect
to a set of logical and statistical assumptions [VdLDJ18]. These
assumptions are typically formed by interacting with the data,
where the analyst may bring to bear some prior domain knowledge
pertaining to the dataset and data manipulation task at hand.
Notably, even with prior knowledge, exploratory data analysis is
an essential part of the workflow that is part of the data wrangling
process.

More formally, we can define data validation in its most simple
form as a function:

v(x)� {True,False} (1)

Where v is the validation function, x is the data to validate, and the
output is a boolean value. As [vdLdJ19] points out, the validation
function v must be a surjective (onto) function that covers the
function’s entire range in order to be meaningful. To see why,
consider a validation function that always returns True or always
returns False. Such a function cannot falsify any instantiation
of the dataset x and therefore fails to provide any meaningful
information about the validity of any dataset1. Although the above
formulation covers a wide variety of data structures, this paper
will focus on tabular data.

Types of Validation Rules

[vdLdJ19] distinguishes between technical validation rules and
domain-specific validation rules. Technical validation rules de-
scribe the variables, data types, and meta-properties of what
constitutes a valid or invalid data structure, such as uniqueness
and nullability. On the other hand, domain-specific validation rules

1. There are nuances around how to formulate the domain of the function
v. For a more comprehensive formal treatment of data validation, refer to
[vdLdJ19] and [VdLDJ18]
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describe properties of the data that are specific to the particular
topic under study. For example, a census dataset might contain
age, income, education, and job_category columns that
are encoded in specific ways depending on the way the census was
conducted. Reasonable validation rules might be:

• The age and income variables must be positive integers.
• The age variable must be below 1222.
• Records where age is below the legal working age should

have NA values in the income field.
• education is an ordinal variable that must be a

member of the ordered set {none, high school,
undergraduate, graduate}.

• job_category is an unordered categorical
variable that must be a member of the set
{professional, manegerial, service,
clerical, agricultural, technical}.

We can also reason about validation rules in terms of the
statistical and distributional properties of the data under validation.
We can think about at least two flavors of statistical validation
rules: deterministic, and probabilistic. Probabilistic checks explic-
itly express uncertainty about the statistical property under test
and encode notions of stochasticity and randomness. Conversely,
deterministic checks express assertions about the data based on
logical rules or functional dependencies that do not explicitly
incorporate any assumptions about randomness into the validation
function.

Often times we can express statistical properties about data
using deterministic or probabilistic checks. For example, "the
mean age among the graduate sample tends to be higher
than that of the undergraduate sample in the surveyed pop-
ulation" can be verified deterministically by simply computing
the means of the two samples and applying the logical rule
mean(agegraduate) > mean(ageundergraduate). A probabilistic ver-
sion of this check would be to perform a hypothesis test, like a
t-test with a pre-defined alpha value. Most probabilistic checks
can be reduced to deterministic checks, for instance by simply
evaluating the truth/falseness of a validation rule using the test
statistic that results from the hypothesis test and ignoring the
p-value. Doing this simplifies the validation rule but trades off
simplicity for being unable to express uncertainty and statistical
significance. Other examples of such probabilistic checks might
be:

• The income variable is positively correlated with the
education variable.

• income is negatively correlated with the dummy variable
job_category_service, which is a variable derived
from the job_category column.

Data Validation in Practice

Data validation is part of a larger workflow that involves process-
ing raw data to produce of some sort of statistical artifact like
a model, visualization, or report. In principle, if one can write
perfect, bug-free code that parses, cleans, and reshapes the data
to produce these artifacts, data validation would not be necessary.
In practice, however, data validation is critical for preventing the
silent passing of an insidious class of data integrity error, which

2. The age of the oldest person: https://en.wikipedia.org/wiki/List_of_the_
verified_oldest_people

Fig. 1: Data validation as an iterative software development process.

is otherwise difficult to catch without explicitly making assertions
at runtime. These errors could lead to misleading visualizations,
incorrect statistical inferences, and unexpected behavior in ma-
chine learning models. Explicit data validation becomes even
more important when the end product artifacts inform business
decisions, support scientific findings, or generate predictions about
people or things in the real world.

Consider the process of constructing a dataset for training a
machine learning model. In this context, the act of data validation
is an iterative loop that begins with the analyst’s objective and a
mental model of what the data should "look" like. She then writes
code to produce the dataset of interest, simultaneously inspecting,
summarizing, and visualizing the data in an exploratory fashion,
which in turn enables her to build some intuition and domain
knowledge about the dataset.

She can then codify this intuition as a set of assumptions,
implemented as a validation function, which can be called against
the data to ensure that they adhere to those assumptions. If the
validation function evaluates to False against the data during
development time, the analyst must decide whether to refactor the
processing logic to fulfill the validation rules or modify the rules
themselves3.

In addition to enforcing correctness at runtime, the resulting
validation function also documents the current state of assump-
tions about the dataset for the benefit of future readers or main-
tainers of the codebase.

The role of the analyst, therefore, is to encode assumptions
about data as a validation function and maintain that function
as new datasets pass through the processing pipeline and the

3. In the latter scenario, the degenerate case is to remove the validation
function altogether, which exposes the program to the risks associated with
silently passing data integrity errors. Practically, it is up to the analyst to
determine an appropriate level of strictness that catches cases that would
produce invalid outputs.

https://en.wikipedia.org/wiki/List_of_the_verified_oldest_people
https://en.wikipedia.org/wiki/List_of_the_verified_oldest_people
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definition of valid data evolves over time. One thing to note here
is that using version control software like git [git] would keep
track of the changes of the validation rules, enabling maintainers
or readers of the codebase to inspect the evolution of the contract
that the data must fulfill to be considered valid.

Design Principles

pandera is a flexible and expressive API for pandas data
validation, where the goal is to provide a data engineering tool that
(i) helps pandas users reason about what clean data means for their
particular data processing task and (ii) enforce those assumptions
at run-time. The following are the principles that have thus far
guided the development of this project:

• Expressing validation rules should feel familiar to
pandas users.

• Data validation should be compatible with the different
workflows and tools in the data science toolbelt without a
lot of setup or configuration.

• Defining custom validation rules should be easy.
• The validation interface should make the debugging pro-

cess easier.
• Integration with existing code should be as seamless as

possible.

These principles articulate the use cases that I had when
surveying the Python ecosystem for pandas data validation tools.

Architecture

pandera helps users define schemas as contracts that a pandas
dataframe must fulfill. This contract specifies deterministic and
statistical properties that must hold true to be considered valid
with respect to a particular analysis. Since pandera is primarily
a data engineering tool, the validation function defined in Equation
(1) needs to be slightly refactored:

s(v,x)→

{
x, if v(x) = true
error, otherwise

(2)

Where s is a schema function that takes the validation function
from Equation (1) and some data as input and returns the data
itself if it is valid and an error otherwise. In pandera, the
error is implemented as a SchemaError exception that contains
the invalid data as well as a pandas dataframe of failure cases
that contains the index and failure case values that caused the
exception.

The primary rationale for extending validation functions in
this way is that it enables users to compose schemas with data
processing functions, for example, s◦ f (x) is a composite function
that first applies a data processing function f to the dataset x
and then validates the output with the schema s. Another possible
composite function, f ◦ s(x), applies the validation function to x
before applying the f , effectively guaranteeing that inputs to f
fulfill the contract enforced by s.

This formulation of data validation facilitates the interleaving
of data processing and validation code in a flexible manner,
allowing the user to decide the critical points of failure in a
pipeline where data validation would make it more robust to
abherrant data values.

Fig. 2: High-level architecture of pandera. In the simplest case,
raw data passes through a data processor, is checked by a schema
validator, and flows through to the next stage of the analysis pipeline
if the validation checks pass, otherwise an error is raised.

Core Features

DataFrameSchemas as Contracts

The main concepts of pandera are schemas, schema compo-
nents, and checks. Schemas are callable objects that are initialized
with validation rules. When called with compatible data as an
input argument, a schema object returns the data itself if the
validation checks pass and raises a SchemaError when they
fail. Schema components behave in the same way as schemas but
are primarily used to specify validation rules for specific parts of
a pandas object, e.g. columns in a dataframe. Finally, checks
allow the users to express validation rules in relation to the type
of data that the schema or schema component are able to validate.

More specifically, the central objects in pandera are the
DataFrameSchema, Column, and Check. Together, these
objects enable users to express schemas upfront as contracts of
logically grouped sets of validation rules that operate on pandas
dataframes. For example, consider a simple dataset containing data
about people, where each row is a person and each column is an
attribute about that person:
import pandas as pd

dataframe = pd.DataFrame({
"person_id": [1, 2, 3, 4],
"height_in_feet": [6.5, 7, 6.1, 5.1],
"date_of_birth": pd.to_datetime([

"2005", "2000", "1995", "2000",
]),
"education": [

"highschool", "undergrad", "grad", "undergrad",
],

})

We can see from inspecting the column names and data values that
we can bring some domain knowledge about the world to express
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our assumptions about what are considered valid data.
import pandera as pa
from pandera import Column

typed_schema = pa.DataFrameSchema(
{

"person_id": Column(pa.Int),

# numpy and pandas data type string
# aliases are supported
"height_in_feet": Column("float"),
"date_of_birth": Column("datetime64[ns]"),

# pandas dtypes are also supported
# string dtype available in pandas v1.0.0+
"education": Column(

pd.StringDtype(),
nullable=True

),
},

# coerce types when dataframe is validated
coerce=True

)

typed_schema(dataframe) # returns the dataframe

Validation Checks

The typed_schema above simply expresses the columns that
are expected to be present in a valid dataframe and their associated
data types. While this is useful, users can go further by making
assertions about the data values that populate those columns:
import pandera as pa
from pandera import Column, Check

checked_schema = pa.DataFrameSchema(
{

"person_id": Column(
pa.Int,
Check.greater_than(0),
allow_duplicates=False,

),
"height_in_feet": Column(

"float",
Check.in_range(0, 10),

),
"date_of_birth": Column(

"datetime64[ns]",
Check.less_than_or_equal_to(

pd.Timestamp.now()
),

),
"education": Column(

pd.StringDtype(),
Check.isin([

"highschool",
"undergrad",
"grad",

]),
nullable=True,

),
},
coerce=True

)

The schema definition above establishes the following properties
about the data:

• the person_id column is a positive integer, which is a
common way of encoding unique identifiers in a dataset.
By setting allow_duplicates to False, the schema
indicates that this column is a unique identifier in this
dataset.

• height_in_feet is a positive float whose maximum
value is 10 feet, which is a reasonable assumption for the
maximum height of human beings.

• date_of_birth cannot be a date in the future.
• education can take on the acceptable values in the set

{"highschool", "undergrad", "grad"}. Sup-
posing that these data were collected in an online form
where the education field input was optional, it would
be appropriate to set nullable to True (this argument
is False by default).

Error Reporting and Debugging

If a dataframe passed into the schema callable object does not
pass the validation checks, pandera provides an informative
error message:
invalid_dataframe = pd.DataFrame({

"person_id": [6, 7, 8, 9],
"height_in_feet": [-10, 20, 20, 5.1],
"date_of_birth": pd.to_datetime([

"2005", "2000", "1995", "2000",
]),
"education": [

"highschool", "undergrad", "grad", "undergrad",
],

})

checked_schema(invalid_dataframe)

# Exception raised:
SchemaError:
<Schema Column: 'height_in_feet' type=float>
failed element-wise validator 0:
<Check _in_range: in_range(0, 10)>
failure cases:

index count
failure_case
20.0 [1, 2] 2
-10.0 [0] 1

The causes of the SchemaError are displayed as a dataframe
where the failure_case index is the particular data value that
failed the Check.in_range validation rule, the index column
contains a list of index locations in the invalidated dataframe of
the offending data values, and the count column summarizes the
number of failure cases of that particular data value.

For finer-grained debugging, the analyst can catch the excep-
tion using the try...except pattern to access the data and
failure cases as attributes in the SchemaError object:
from pandera.errors import SchemaError

try:
checked_schema(invalid_dataframe)

except SchemaError as e:
print("Failed check:", e.check)
print("\nInvalidated dataframe:\n", e.data)
print("\nFailure cases:\n", e.failure_cases)

# Output:
Failed check: <Check _in_range: in_range(0, 10)>

Invalidated dataframe:
person_id height_in_feet date_of_birth education

0 6 -10.0 2005-01-01 highschool
1 7 20.0 2000-01-01 undergrad
2 8 20.0 1995-01-01 grad
3 9 5.1 2000-01-01 none

Failure cases:
index failure_case

0 0 -10.0
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1 1 20.0
2 2 20.0

In this way, users can easily access and inspect the invalid
dataframe and failure cases, which is especially useful in the
context of long method chains of data transformations:
raw_data = ... # get raw data
schema = ... # define schema

try:
clean_data = (

raw_data
.rename(...)
.assign(...)
.groupby(...)
.apply(...)
.pipe(schema)

)
except SchemaError as e:

# e.data will contain the resulting dataframe
# from the groupby().apply() call.
...

Pipeline Integration

There are several ways to interleave pandera validation code
with data processing code. As shown in the example above, one
can use a schema by simply using it as a callable. Users can
also sandwich data preprocessing code between two schemas;
one schema that ensures the raw data fulfills certain assumptions,
and another that ensures the processed data fulfills another set of
assumptions that arise as a consequence of the data processing.
The following code provides a toy example of this pattern:
in_schema = pa.DataFrameSchema({

"x": Column(pa.Int)
})

out_schema = pa.DataFrameSchema({
"x": Column(pa.Int),
"x_doubled": Column(pa.Int),
"x_squared": Column(pa.Int),

})

raw_data = pd.DataFrame({"x": [1, 2, 3]})
processed_data = (

raw_data
.pipe(in_schema)
.assign(

x_doubled=lambda d: d["x"] * 2,
x_squared=lambda d: d["x"] ** 2,

)
.pipe(out_schema)

)

For more complex pipelines that handle multiple steps of data
transformations with functions, pandera provides a decorator
utility for validating the inputs and outputs of functions. The above
example can be refactored into:
@pa.check_input(in_schema)
@pa.check_output(out_schema)
def process_data(raw_data):

return raw_data.assign(
x_doubled=lambda df: df["x"] * 2,
x_squared=lambda df: df["x"] ** 2,

)

processed_data = process_data(raw_data)

Custom Validation Rules

The Check class defines a suite of built-in methods for common
operations, but expressing custom validation rules are easy. In

the simplest case, a custom column check can be defined simply
by passing a function into the Check constructor. This function
needs to take as input a pandas Series and output either a
boolean or a boolean Series, like so:
Column(checks=Check(lambda s: s.between(0, 1)))

The element_wise keyword argument changes the expected
function signature to a single element in the column, for example,
a logically equivalent implementation of the above validation rule
would be:
Column(

checks=Check(
lambda x: 0 <= x <= 1, element_wise=True

)
)

Check objects can also be used in the context of a
DataFrameSchema, in which case the function argument
should take as input a pandas DataFrame and output a boolean,
a boolean Series, or a boolean DataFrame.
# assert that "col1" is greater than "col2"
schema = pa.DataFrameSchema(

checks=Check(lambda df: df["col1"] > df["col2"])
)

Currently, in the case that the check function returns a boolean
Series or DataFrame, all of the elements must be True in
order for the validation check to pass.

Advanced Features

Hypothesis Testing

To provide a feature-complete data validation tool for data sci-
entists, pandera subclasses the Check class to define the
Hypothesis class for the purpose of expressing statistical
hypothesis tests. To illustrate one of the use cases for this feature,
consider a toy scientific study where a control group receives a
placebo and a treatment group receives a drug that is hypothesized
to improve physical endurance. The participants in this study then
run on a treadmill (set at the same speed) for as long as they can,
and running durations are collected for each individual.

Even before collecting the data, we can define a schema that
expresses our expectations about a positive result:
from pandera import Hypothesis

endurance_study_schema = pa.DataFrameSchema({
"subject_id": Column(pa.Int),
"arm": Column(

pa.String,
Check.isin(["treatment", "control"])

),
"duration": Column(

pa.Float, checks=[
Check.greater_than(0),
Hypothesis.two_sample_ttest(

# null hypothesis: the mean duration
# of the treatment group is equal
# to that of the control group.
sample1="treatment",
relationship="greater_than",
sample2="control",
groupby="arm",
alpha=0.01,

)
]

)
})

Once the dataset is collected for this study, we can then pass
it through the schema to validate the hypothesis that the group
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receiving the drug increases physical endurance, as measured by
running duration.

As of version 0.4.0, the suite of built-in hypotheses is lim-
ited to the two_sample_ttest and one_sample_ttest,
but creating custom hypotheses is straight-forward. To illustrate
this, another common hypothesis test might be to check if a sample
is normally distributed. Using the scipy.stats.normaltest function,
one can write:
import numpy as np
from scipy import stats

dataframe = pd.DataFrame({
"x1": np.random.normal(0, 1, size=1000),

})

schema = pa.DataFrameSchema({
"x1": Column(

checks=Hypothesis(
test=stats.normaltest,
# null hypothesis:
# x1 is normally distributed with
# alpha value of 0.01
relationship=lambda k2, p: p > 0.01

)
),

})

schema(dataframe)

Conditional Validation Rules

If we want to validate the values of one column conditioned on
another, we can provide the other column name in the groupby
argument. This changes the expected Check function signature
to expect an input dictionary where the keys are discrete group
levels in the conditional column and values are pandas Series
objects containing subsets of the column of interest. Returning
to the endurance study example, we could simply assert that the
mean running duration of the treatment group is greater than that
of the control group without assessing statistical significance:
simple_endurance_study_schema = pa.DataFrameSchema({

"subject_id": Column(pa.Int),
"arm": Column(

pa.String,
Check.isin(["treatment", "control"])

),
"duration": Column(

pa.Float, checks=[
Check.greater_than(0),
Check(

lambda duration_by_arm: (
duration_by_arm["treatment"].mean()
> duration_by_arm["control"].mean()

),
groupby="arm"

)
]

)
})

Functional dependencies are a type of conditional validation
rule that expresses a constraint between two sets of variables
in a relational data model [Arm74] [BFG+07]. For example,
consider a dataset of biological species where each row is a
species and each column is a classification in the classic hierarchy
of kingdom -> phylum -> class -> order ... ->
species. We can assert that "if two species are in the same
phylum, then they must be in the same kingdom":
species_schema = pa.DataFrameSchema({

"phylum": Column(pa.String),

"kingdom": Column(
pa.String,
Check(

# there exists only one unique kingdom
# for species of the same phylum
lambda kingdoms: all(

kingdoms[phylum].nunique() == 1
for phylum in kingdoms

),
# this can also be a list of columns
groupby="phylum"

)
)

})

However, in order to make the assertion "if two species are in
the same order, then they must be in the same class and
phylum", we have to use dataframe-level checks since the above
pattern can only operate on values of a single column grouped by
one or more columns.
species_schema = pa.DataFrameSchema(

checks=Check(
lambda df: (

df.groupby("order")
[["phylum", "class"]]
.nunique() == 1

)
)

)

Use Case Vignettes

This section showcases the types of use cases that pandera is
designed to address via hypothetical vignettes that nevertheless
illustrate how pandera can be beneficial with respect to the
maintainability and reproducibility of analysis/model pipeline
code. These vignettes are based on my experience using this
library in research and production contexts.

Catching Type Errors Early

Consider a dataset of records with the fields age, occupation,
and income, where we would like to predict income as a
function of the other variables. A common type error that arises,
especially when processing unnormalized data or flat files, is the
presence of values that violate our expectations based on domain
knowledge about the world:
data = """age,occupation,income
30,nurse,90000
25,data_analyst,75000
45 years,mechanic,45000
21 year,community_organizer,41000
-100,wait_staff,27000
"""

In the above example, the age variable needs to be cleaned so that
its values are positive integers, treating negative values as null.
import pandas as pd
import pandera as pa
from io import StringIO

schema = pa.DataFrameSchema(
{

"age": pa.Column(
pa.Float,
pa.Check.greater_than(0),
nullable=True,

),
"occupation": pa.Column(pa.String),
"income": pa.Column(pa.Float),

},

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.normaltest.html
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coerce=True
)

pd.read_csv(StringIO(data)).pipe(schema)
# ValueError:
# invalid literal for int() with base 10: '45 years'

Defining a data cleaning function would be standard practice, but
here we can augment this function with guard-rails that would
catch age values that cannot be cast into a float type and convert
negative values to nulls.
@pa.check_output(schema)
def clean_data(df):

return df.assign(
age=(

df.age.str.replace("years?", "")
.astype("float64").mask(lambda x: x < 0)

)
)

training_data = (
pd.read_csv(StringIO(data)).pipe(clean_data)

)

The implementation of clean_data now needs to adhere to
the schema defined above. Supposing that the data source is
refreshed periodically from some raw data feed, additional records
with age values like 22 years and 7 months would be
caught early in the data cleaning portion of the pipeline, and the
implementation within clean_data would have to be refactored
to normalize these kinds of more complicated values.

Though this may appear to be a trivial problem, validation
rules on unstructured data types like text benefit greatly from
even simple validation rules, like checking that values are non-
empty strings and contain at least a minimum number of tokens,
before sending the text through a tokenizer to produce a numerical
vector representation of the text. Without these validation checks,
these kinds of data integrity errors would pass silently through the
pipeline, only to be unearthed after a potentially expensive model
training run.

Reusable Schema Definitions

In contexts where the components of an ML pipeline are handled
by different services, we can reuse and modify schemas for the
purposes of model training and prediction. Since schemas are just
python objects, schema definition code can be placed in a module
e.g. schemas.py, which can then be imported by the model
training and prediction modules.
# schemas.py
feature_schema = schema.remove_columns(["income"])
target_schema = pa.SeriesSchema(pa.Int, name="income")

# model_training.py
from schemas import feature_schema, target_schema

@pa.check_input(feature_schema, "features")
@pa.check_input(target_schema, "target")
def train_model(features, target):

estimator = ...
estimator.fit(features, target)
return estimator

# model_prediction.py
from schemas import feature_schema, target_schema

@pa.check_input(feature_schema, "features")
@pa.check_output(target_schema)
def predict(estimator, features):

predictions = estimator.predict(features)
return pd.Series(predictions, name="income")

Unit Testing Statistically-Typed Functions

Once functions are decorated with check_input or
check_output, we can write unit tests for them by generating
synthetic data that produces the expected results. For example,
here is a test example using pytest [pyt]:
# test_clean_data.py
import pandera as pa
import pytest

def test_clean_data():
valid_data = pd.DataFrame({

"age": ["20", "52", "33"],
"occupation": ["barista", "doctor", "chef"],
"income": [28000, 150000, 41000],

})
clean_data(valid_data)

# non-normalized age raises an exception
invalid_data = valid_data.copy()
invalid_data.loc[0, "age"] = "20 years and 4 months"
with pytest.raises(ValueError):

clean_data(invalid_data)

# income cannot be null
invalid_null_income = valid_data.copy()
invalid_null_income.loc[-1, "income"] = None
with pytest.raises(pa.errors.SchemaError):

clean_data(invalid_null_income)

This last use case would be further enhanced by property-based
testing libraries like hypothesis [MHDC19] [MHDpb+20] that
could be used to generate synthetic data against which to test
schema-decorated functions.

Documentation

Documentation for pandera is hosted on ReadTheDocs, where
tutorials on core and experimental features are available, in addi-
tion to full API documentation.

Limitations

The most notable limitation of pandera is the computational
cost of running validation checks at runtime. This limitation
applies to any data validation code, which trades off increased
run-time for type safety and data integrity. The project currently
uses airspeed-velocity [asv] for a few basic run-time
and memory usage benchmarks, but more extensive performance
profiling is warranted to give users a better sense of this trade-off.
The other trade-off to consider is the additional development time
associated with defining robust and meaningful schemas versus
the time spent debugging silent data integrity issues, which is
particularly costly in areas like machine learning where model
debugging occurs after training a model.

A related limitation is that type-checking schemas are practical
for large datasets (e.g. datasets that do not fit onto disk in a
modern laptop), but validation checks that verify statistics on
one or more columns can become expensive. For this reason, the
default Check function signature is expected to be a Series in
order to encourage users to use the optimized pandas.Series
methods. In theory, pandera schemas can be coupled with
parallelization tools like dask [Roc15] to perform data validation
in these settings.

Two other limitations of the current state of the package are
that:

• The built-in Hypothesis methods are currently lim-
ited in scope, and implementing wrapper methods to

https://pandera.readthedocs.io/
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the scipy implementations of commonly used distribu-
tional tests (e.g. normality test, chi-squared test, and KL-
divergence) would encourage the use of hypothesis tests in
schemas.

• Expressing functional dependencies is currently inelegant
and would benefit from a higher-level abstraction to im-
prove usability.

Roadmap

The pandera project started as a naive excursion into seeing
whether pandas dataframes could be statically typed, as gradual
typing is becoming adopted by the Python community since
the typing module was introduced in Python 3.5. The project
evolved into a tool that emphasizes the verification of the statistical
properties of data, which requires run-time validation.

The direction of this project has been driven, in large part, by
its contributors, and will continue to be via feature requests on the
github repo. There are a number of experimental features that are
currently available in version 0.4.0+ that aim to speed up the
iteration loop of defining schemas at development time through
interactive analysis:

• schema inference: the pandera.infer_schema func-
tion takes as input a dataframe and outputs an automati-
cally generated draft schema that the user can iterate on.

• yaml/module serialization: this feature enables the user to
write schemas (inferred or otherwise) to a yaml file or
python script, which are editable artifacts to iterate on.

Additionally, a few feature proposals would benefit from
discussion and feedback from the wider scientific computing and
data science community:

• Synthetic data generation based on schema definitions
[issue 200].

• Domain-specific schemas, types, and checks, e.g. for the
machine learning use case, provide first-class support for
validation checks between target and feature variables
[issue 179].

• Expressing a tolerance level for the proportion of values
that fail a validation Check [issue 183].

There are several ways to contribute for interested readers:

• Improving documentation by adding examples, fixing
bugs, or clarifying the the writing.

• Feature requests: e.g. requests for additional built-in
Check and Hypotheses methods.

• Submit new issues or pull requests for existing issues.

Related Tools

This project was inspired by the schema and pandas_schema
Python packages and the validate R package [vdLdJ19]. Ini-
tially when assessing the Python landscape for pandas-centric
data validation tools, I found that they did not match my use cases
because they (a) often resulted in verbose and over-specified vali-
dation rulesets, (b) introduced many new library-specific concepts
and configuration steps, (c) lacked documentation of core func-
tionality and usage patterns, and/or (d) are no longer maintained.

Here is my assessment of data validation tools that are cur-
rently being maintained in the Python ecosystem:

• great_expectations [ge]: this is a mature, batteries-
included data validation library centered around the con-
cept of expectations. It provides a UI to manage validation
rules and supports integrations with many database sys-
tems and data manipulation tools. This framework extends
the pandas.DataFrame class to include validation
methods prefixed with expect_* and a suite of built-in
rules for common use cases. Defining custom validation
rules involves subclassing the PandasDataset class
and defining specially-decorated methods with function
signatures that adhere to library-specific standards.

• schema [sch]: a light-weight data validator for generic
Python data structures. This package and pandera share
the schema interface where the schema object returns the
data itself if valid and raises an Exception otherwise.
However, this library does not provide additional function-
ality for pandas data structures.

• pandas_schema [ps]: a pandas data validation library
with a comprehensive suite of built-in validators. This
package was the inspiration for the schema component
design where a Column object specifies properties of
a dataframe column, albeit the specific implementations
are considerably different. It provides built-in validators
and supports defining custom validation rules. Unlike
pandera which outputs the validated data, the output
of validating a dataframe with pandas_schema is an
iterable of errors that are intended to be inspected via
print statements.

The key features that differentiate pandera from similar
packages in the Python ecosystem are the following:

• check_input and check_output function decora-
tors enable seamless integration with existing data pro-
cessing/analysis code.

• Check validation rules are designed primarily for cus-
tomizability, with built-in methods as a convenience for
common validation rules.

• Hypothesis validation rules provide a tidy-first [W+14]
interface for hypothesis testing.

• Ease of debugging, as SchemaErrors contain the inval-
idated data as well as a tidy dataframe of the failure cases
with their corresponding column/index locations.

• Schema inference and serialization capabilities enable the
creation of draft schemas that users can iterate on and
refine.

• Clear and comprehensive documentation on core and ad-
vanced features.

Conclusion

This paper introduces the pandera package as a way of express-
ing assumptions about data and falsifying those assumptions at
run time. This tool is geared toward helping data engineers and
data scientists during the software development process, enabling
them to make their data proprocessing workflows more readable,
robust, and maintainable.
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