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Abstract—We present Delta, a Python framework that connects magnetic
fusion experiments to high-performance computing (HPC) facilities in order
leverage advanced data analysis for near real-time decisions. Using the ADIOS
I/0 framework, Delta streams measurement data with over 300 MByte/sec
from a remote experimental site in Korea to Cori, a Cray XC-40 supercomputer
at the National Energy Energy Research Scientific Computing Centre in Cali-
fornia. There Delta dispatches cython data analysis kernels using an mpidpy
PoolExecutor in order to perform a spectral data analysis workflow. Internally
Delta uses queues and worker threads for data communication. With this ap-
proach we perform a common spectral analysis suite on imaging measurements
more than 100 times faster than with a single-core implementation.

Index Terms—streaming analysis, mpi4py, queue, adios, HPC

Magnetic Fusion Energy research and its data analysis needs

Research on magnetic fusion energy combines physics, engineer-
ing, and even economics to deploy a virtually unlimited, clean, and
competitively priced energy source to the grid. Python is well es-
tablished in the fusion community through projects like plasmapy
[PPY] or OMFIT [Menl15]. We introduce another Python library
for fusion energy reserch, Delta - the aDaptive nEar-real. Time
Analysis framework - and show how it can be used to stream
data from an experiment to a remote high performance computing
(HPC) resource [git].

There, Delta executes a routine spectral analysis workflow
in near real-time. By making data analysis results available in
near real-time, Delta allows scientists to make more informed
decisions on follow-up experiments and could accelerate scientific
discovery. To illustrate the use-case for Delta in fusion energy
research, we start with a primer of fusion energy, introduce
tokamak devices that are used to perform fusion experiments,
describe a diagnostic that is installed in many tokamaks. With
this at hand, we describe how near real-time data analysis can be
used to accelerate experimental fusion energy workflows.

If one could harvest the energy from controlled nuclear fusion
reactions you would have a potentially unlimited, environmentally
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friendly energy source. Fusion reactions release energy when two
light nuclei merge into a heavier one. As part of the reaction,
a fraction of the reactants nuclear binding energy is converted
into kinetic energy of the products. Fission reactions on the other
hand, which power todays nuclear power plants, release binding
energy when a heavy nucleus decays into lighter products. Typical
energies involved in nuclear reactions are measured in MeV,
multiple orders of magnitude larger than the characteristic eV
energy scale for chemical reactions. Thus, the energy yield for a
nuclear reaction is much larger than for chemical reaction, which
occur when fossil fuels are burnt. Fuel for fusion reactions are
readily extracted from sea water, which is available in virtually
inexhaustible quantities. Since the energy yield of a fusion reaction
is so large, only little fusion plasma needs to be confined to power
a fusion reactor. To produce 1 GW of fusion power, enough to
power about 700,000 homes, just 2 kg of fusion plasma would
need to be burned per day [Entl18]. Thus, a catastrophic event
such as total loss of plasma confinement can cause no more than
local damage to the plasma vessel.

To fuse positively charged atoms into one heavier re-
quires enormous energy. For the most feasible fusion reactions,
Deuterium-Tritium, temperatures upwards of 100 million degrees
are required. Such a requirement unfortunately excludes any
material container to confine a fusion fuel. The most promising
approach is to confine the fusion fuel in the state of a plasma -
a hot gas where the atoms are stripped of their electrons. Such a
plasma can be confined in a strong magnetic field, shaped like a
donut. Confined like this, there is no possibility for an uncontrolled
chain reaction. If a significant amount of plasma would leak out
of the vessel, the accompanying temperature drop would stop any
fusion reactions. At the same time there are only a few grams
of plasma confined and it does not have enough stored energy to
cause damage other than to the structure of the confinement vessel.

The best performing plasma confinement devices, tokamaks,
have a toroidal shape, similar to a donut. Tokamaks (a transliter-
ation of the Russian acronym for toroidal chamber with magnetic
coils), such as KSTAR [KSTAR] have a major radius R=1-
1.5m and a minor radius a=0.2-0.7m. In experiments at these
facilities, researchers configure parameters such as the plasma
density or the shaping and strength of the magnetic field and
study the behaviour of the plasma in this setup. During a typical
experimental workflow, about 20-30 plasma discharges, so-called
shots are performed on a given day where each shot lasts for
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Task Time-scale

real-time control millisecond
seconds, minutes

hours, days, weeks

live/inter-shot analysis
scientific discovery

TABLE 1: Time-scales on which analysis results of fusion data is
required for different tasks.

a couple of seconds up to minutes. Numerous measurements of
the plasma and the mechanical components of the tokamak are
performed during each discharge. After a cool-down phase of a
few minutes (tokamaks contain cryogenic components) the device
is ready for the next shot.

A common diagnostic in magnetic fusion experiments is a
so-called Electron Cyclotron Emission (ECE) diagnostic [Cos74].
They measure emission intensity by free electrons in the plasma,
which allows one to infer their temperature as a function of
radius. Physical models of the plasma describe it partially through
the temperature. This measurement allows one to interpret the
experiment in terms of such models. Modern ECE systems, such
as the one installed in the KSTAR tokamak [ Yun14] have hundreds
of spatial channels and sample data on a microsecond time-scale,
producing data streams upwards of 500 MB/sec.

Analyzing large datasets, as produced by ECE diagnostics
in between shots and generating actionable information in time
for the next shot is a challenging task. The Delta framework
aims to facilitate the analysis of such large datasets in near real-
time." This use-case falls in between two other common data
analysis workflows in fusion energy research, listed in Tab. 1.
Real-time control systems for plasma control require data on
a millisecond time scale. This time scale is a hard constraint
and limits the amount of data the algorithms can ingest. Post-
shot batch analysis of measurements on the other hand serves
scientific discovery, such as extraction about the plasma from
ECE data. The data and the analysis methods are selected on
a per-case basis and are often performed manually hours, days,
weeks, months, or years after an experiment has concluded. A
goal of Delta is to facilitate scientific discovery at time-scale
faster than the experimental cadence. Providing timely analysis
results of plasma measurements to experimentalists aids them
in making informed decisions about the next plasma shot. As
an example of the workflows that we wish to facilitate with
Delta we refer to a series of experiments performed at the TAE
facility [Ball7]. There, the so-called optometrist algorithm
was used as a stochastic optimizer in conjunction with expert
judgement of domain scientists to assess the performance of a
just concluded plasma shot and optimize the machine parameters
in order to increase the performance of the following shot. By
making advanced data analysis results available in near real-time
to domain scientists, Delta will allow to improve workflows at
experimental fusion facilities.

Designing the Delta framework

We are designing the Delta framework in a bottom-up approach,
tailoring it to facilitate a specific spectral analysis workflow
that uses measurements from an ECEI diagnostic. While plasma
diagnostics operated at fusion experiments produce a heteroge-
neous set of data streams, the ECEI spectral analysis workflow
is representative for a large set of workflows used to analyze
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different measurements. HPC environments also differ for exam-
ple in their local area network topologies, the speed of network
links between data-transfer nodes to compute node, compute node
interconnects, and their network security policies. Furthermore
granted allocations of compute time for research projects make
it impractical to start with a top-down approach that generalizes
well to arbitrary HPC platforms (though we endeavor to build
the framework with flexibility and extensibility in mind). In the
remainder of this section we describe the data analysis workflow
for ECEI data, the targeted network and deployment architecture
and give an overview of how Delta connects them together.

Electron Cyclotron Emission Imaging

The Electron Cyclotron Emission Imaging diagnostic installed
in KSTAR measures the electron temperature 7, on a 0.15m by
0.5m grid, resolved using 8 horizontal and 24 vertical channels
[Yun10], [Yunl14]. Each individual channel produces an intensity
time series I, ,(;) where h and v index the horizontal and vertical
channel number and t; = iA; denotes the time where the intensity
is sampled with A; =~ 1us being the sampling time. Digitized
with a 16-bit digitizer, this diagnostic produces a data stream
of 1836 MByte/sec. The spatial view of this diagnostic covers
a significant area of the plasma cross-section which allows it to
directly visualize the large-scale structures of the plasma. Besides
analyzing the normalized intensity, several quantities calculated
off the Fourier transformed intensity X (), here @ denotes the
angular frequency, are used to study the plasma dynamics. The
cross-power S, the coherence C, the cross-phase P and the cross-
correlation R are defined respectively for channel pair combina-
tions of Fourier transformed intensity signals X and Y as

Swy(w) = E[X ()Y *(w)], ()
Ciy(0) =[Sy (@) |/ Sux (@) / 1/ Syy (@), ®)
Py (@) = arctan(Im(Sxy(@))/Re(Sxy (@), 3)
and
Ryy(t) =IFFT (S (®)). )

Here E denotes an ensemble average, T denotes complex conjuga-
tion, Re and Im denote the real and imaginary part of a complex
number and /FFT denotes the inverse Fourier transform. In
practice we use a short-time Fourier transformation (STFT) which
averages the Fourier coefficients obtained from FFTs calculated
on slightly shifted time windows. Spectral quantities calculated
off local 7, fluctuations, such as the cross coherence or the cross
phases, are used to identify macro-scale structures, so called
magnetic islands, as well as micro-scale instabilities in the plasma
[Chol7]. Understanding the physics resulting in magnetic islands
is important for plasma confinement, and avoiding sudden loss of
plasma control, known as a disruption.

Targeted HPC architecture

We implement Delta for streaming data from KSTAR to the
National Energy Research Scientific Computing Centre (NERSC).
NERSC operates Cori [cori], a Cray XC-40 supercomputer that is
comprised of 2,388 Intel Xeon "Haswell" processor nodes, 9,688
Intel Xeon Phi "Knight’s Landing" (KNL) nodes and ranks 16 on
the Top500 list [top500]. Figure 1 illustrates the targeted network
topology. Data transfers from KSTAR and NERSC originate
and end at their respective Data Transfer Node (DTN). DTNs
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Where CPU RAM NIC
KSTAR DTN Xeon E5-2640 v4 128GB 100 Gbit
NERSC DTN Xeon E5-2680 v2 128GB 2 * 100 Gbit
2 * 10 Gbit
Cori compute Xeon E5-2698 v3 128GB Cray Aries

32 threads

TABLE 2: Hardware and network interconnections of the data
transfer nodes (DTNs) and compute nodes

are servers deployed and configured specifically for transferring
data over networks [dtn]. As such, they feature large-bandwidth
network interfaces, both for internal and external connections.
Table 2 lists the hardware of the DTNs and Cori’s compute
nodes. 100Gbit/s links connect both DTNs via the internet. At
NERSC, the DTN is connected to Cori with dual 10 Gbit/s NICs.
Coris individual compute nodes are connected with a Cray Aries
interconnect, peaking at > 45 TB/s.

Connecting science experiments to HPC resources

Delta uses three separate software components to connect
KSTAR to Cori. A generator running on the KSTAR DTN,
a middleman running on the NERSC DTN, and a processor
running on Cori. To avoid performance hits when touching the
filesystem, De 1t a streams data between its components. By using
only in-memory data transfers this avoids performance hits when
touching the file system. Performance variability of file-based I/O
on HPC systems is however a well studied problem [Xiel2] .
Furthermore, the workflow at hand and anticipated workflows
require frequent transfer of relatively small data packets. By
relying on streaming data transfers, Delta aims to avoid jitter
due to I/O bottlenecks.

The generator stages measurement data and sends it to the
middleman. The middleman forwards the data to the processor.
The processor receives the data, executes the appropriate analysis
kernels and stores the analysis results. De1ta uses ADIOS [adios]
to facilitate high bandwidth streaming on the paths marked with
orange arrows in 1. ADIOS is a unified input/output system that
transports and transforms groups of self-describing data variables
across different media with performance as a main goal. It is
commonly used in the Department of Energy for high performance
parallel I/O. Its transport interface is step-based, which resembles
the generation of scientific data. ADIOS implements multiple
transport mechanisms as engines which take advantage of un-
derlying network communication mechanisms to provide optimal
performance. For the topology at hand, De1ta configures ADIOS
to use the DataMan engine for both, trans-oceanic data and intra-
datacenter transfer. Switching the engine used by ADIOS is trivial
and requires only the change of a single line in a configuration
file.
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Implementaion details

After providing an overview of the Delta framework and in-
troducing its components in the previous section we continue by
describing their implementation in the this section and benchmark
their performance in the following section.

Components of the De1ta framework

We continue by discussing the architecture of the generator
and the processor shown in Fig. 2. Here we omit the
middleman as it only relays the data stream.

The generator is a single-threaded application that sources
data using a loader instance which handles all diagnostic spe-
cific data transformations and stages it for streaming. For the ECEI
diagnostic the tranformations includes for example calculating a
channel-dependent normalization and the aggregation of data into
time chunks, N, blocks of s, consecutive samples. A writer
instance handles all streaming I/O using ADIOS. Pseudo-code for
the generator looks like this:

1 loader = loader_ecei (cfg["ECEI"])
2writer = writer_gen(cfg["transport_tx"])
3writer.Open ()

s

5 batch_gen = loader.batch_generator ()
6 for batch in batch_gen:

7 writer.BeginStep ()
8 writer.put (batch)
9 writer.EndStep ()

Here, cfg is a framework-wide json configuration file. Diagnostic-
specific parameters are stored in the ECEI section. ADIOS pa-
rameters for the writer are stored in the transport_tx section.
Since all data transformations are applied inside the loader class
the generator appears to be agnostic about what kind of diagnostic
data it gets. However, the number of data batches is specific to
the data at hand. Furthermore, the pseudo-code example above
demonstrates the step-centered design of the ADIOS library. It
encapsulates each time chunk in a single time step.

The middleman runs on the NERSC DTN and relays
data streams from the generator to the processor. Using the
classes available in Delta the pseudo-code looks similar to the
generator with a reader instance replacing the loader..

The processor runs on Cori. It reads time chunks from an
ADIOS stream, publishes them in a queue and submits analysis
tasks to a pool of worker threads. As illustrated in Fig. 2 a
reader object receives time chunks data and passes them to
a task_1list instance, which submits all data analysis routines
on the executors. Pseudo-code for the processor looks like this

1 def consume (Q, task_list):
2 while True:

3 try:

4 msg = Q.get (timeout=timeout_in_secs)
5 except queue.Empty:

6 break

7 task_list.submit (msg)

8 Q.task_done ()

9

11 def main () :
12 executor_fft = MPIPoolExecutor (max_workers=NF)
13 executor_anl = MPIPoolExecutor (max_workers=NA)

14 a2_reader = reader (cfg["transport_rx"])

15 a2_reader.Open ()

16 task_list = task_list_spectral (executor_anl,
17 executor_fft,
18 cfqg)

20 dg = Queue.Queue ()
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Fig. 1: The network topology for which the Delta framework is designed. Data is streamed in the direction indicated by the orange arrow. At
KSTAR, measurement data is staged from its DTN to the NERSC DTN. Internally at NERSC, the data stream is forwarded to compute nodes
at Cori and analyzed. Orange arrows mark sections of the network where ADIOS facilitates high-performance streaming. Black arrows denote

standard TCP/IP connections.
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Fig. 2: Schematic of the Delta framework. The generator runs at the data staging site and transmits time chunks via the ADIOS channels
SSSSS_ECEI_NN. Here SSSSS denotes the shot number and NN enumerates the ADIOS channels. The processor runs at the HPC site, recieves

the data and submits it for processing through a task_11ist. .

21 workers =
2 for

[

_ in range(n_thr):

23 w = threading.Thread (target=consume,
24 args=(dqg, task_list))
25 w.start ()

26 workers.append (w)

27

28

29 while True:

30 stepStatus = reader.BeginStep ()

31 if stepStatus:

32 stream_data = a2_reader.Get (varname)
33 dg.put_nowait ( (stream_data,

34 reader.CurrentStep()))
35 reader.EndStep ()

36 else:

37 break

38

39 worker. join ()

40 dg.join ()

To access the many cores available, processor is launched as
an MPI program under control of mpi4py. futures: srun -n
NP -m mpidpy.futures processor.py. The mpidpy
documentation suggests to run as mpiexec -n 1 -usize
NP processor.py but unfortunately Cori’s job system sup-
ports neither mpiexec nor defining the universe size by environ-
ment variables. The number of MPI ranks should be approximately
equal to the workers requested in the PoolExecutors, NP == NF +
NA - 1.

Then a2_reader is instantiated with
cfgltransport_rx], mirroring the configuration of the
writer. After defining a queue for inter-process communication, a

group of worker threads is started. In the main loop a2_reader
consumes incoming time chunk data from the ADIOS stream
and enqueues them. At the same time, the array of worker tasks
dequeues time chunks data and passes it to the task_1list.

The data analysis code is implemented by cython kernels
which are described in a later subsection. While the low-level
implementation of Egs. (1) - (4) is in cython, Delta encapsulates
them by the task class. Sans initialization the relevant class
interface is implemented as

class task():

1
2 ...

3 def calc_and_store(self, data, **kwargs):
4 result = self.kernel (data, =*xkwargs)

5 self.storage_backend.store (result, tidx)
6

7 def submit (self, executor, data, tidx):

8 ..

9 = [executor.submit (self.calc_and_store,
10 ch_it, tidx)

11 for ch_it in self.get_dispatch_sequence () ]

data,

The call of an analysis kernel happens in calc_and_store.
Once the kernel returns, the analyzed data is immediately stored.
This allows us to submit a large number of analysis task in parallel
in a fire-and-forget way. Implementing analysis and stor-
age as separate functions would introduce dependencies between
futures returned by executor. submit. Grouping analysis and
storage together guarantees that once calc_and_store returns,
the data has been analyzed and stored. In order to minimize data
communication, submit launches calc_and_store for an
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exhaustive list of channel pair combinations which is accessed
by get_dispatch_sequence ().

Since the ECEI analysis tasks for the workflow at hand expects
Fourier transformed data, the analysis kernels are called sequen-
tially right after the Fourier transformed data becomes available.
This logic is implemented by the task_1list class:

1 from scipy.signal import stft

class task_list():

2
3

4

5 def submit (self, data, tidx):

6 fft_future = self.executor_fft.submit (stft,

7 data,

8 *xkwargs)
9

10 for task in self.task_list:

1 task.submit (self.executor_anl,

12 fft_future.result (), tidx)

Executing the analysis tasks after the Fourier transformation fur-
ther reduces interdependencies in the workflow, i.e. this implemen-
tation awaits only a single future. Without collecting the analysis
tasks in a list one may for example execute Fourier transformations
prior to launching each individual analysis kernel. This particular
choice would increase the number of Fourier transformations by a
factor of four and may seem like a poor choice. On the other hand
would this result in less communication across the MPI ranks and
may perform better in situations where communication between
MPI ranks becomes a bottleneck.

Explored alternative architectures

Delta relies on the futures interface defined in PEP 3148
to launch data analysis kernels on an HPC resource [PEP3148].
Since both Cori and ADIOS are designed for MPI application
we use the mpidpy [mpidpy] implementation. Being a standard
interface, other implemenations like concurrent.futures
can readily be used. The Python Standard Library defines the
interface as executor.submit (fn, *args xxkwargs).
Delta wraps PEP 3148 submit calls in wrapper methods of the
task and task_list class in order to pass kernel-dependent
keyword arguments and in order to facilitate more flexible launch
configuration on multiple executors.

Besides mpidpy we explored executing
task.calc_and_store calls on a Dask [dask] cluster.
Exposing concurrent.futures-compatible interface, both
libraries can be interchanged with little work. Running on a single
node we found little difference in execution speed. However once
the dask-distributed cluster was deployed on multiple nodes we
observed a significant slowdown due to network traffic overhead.
We did not investigate this problem any further.

As an alternative to using a queue with threads, we also
explored using asynchronous I/O. In this scenario, the main task
would define a coroutine receiving the data time chunks and
a second one dispatching them to an executor. In our tested
implementation, the coroutines would run in a main loop and
communicate via a queue. Our experiments showed no measurable
difference against a threaded implementation. On the other hand,
the threaded implementation fits more naturally in the multi-
processing design approach.

Using data analysis codes Delta
In a broad sense, data analysis can be described as applying a
transformation F to some data d,

y:F(d;ll,...,A/n), (5)

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

given some parameters A; ...A,. Translating the relation between
the F' and d into an object-oriented setting is not always straight-
forward and one needs to have the application in mind when de-
signing a library. The approach taken by general-purpose packages
such as scipy or scikit-learn is to implement a transfor-
mation F as a class and interface to data through its member
functions. Taking Principal Component Analysis in scikit-learn as
an example, the default way of applying it to data is

from sklearn.decomposition import PCA

X = np.array([...])

pca = PCA(n_components=2)

pca.fit_transform(X)

This approach has proven itself useful and is the common way of
organizing libraries. Delta deviates slightly from this approach
and calls transformations in the calc_and_store member
function of the task_ece1i class. The specific kernel to be called
is configured in the objects initialization:

from kernels import kernel crossphase,

class task():

def _ _init_ (self, cfqg):

if (cfg["analysis"] == "cross-phase"):
self.kernel = kernel_crossphase

elif (cfg["analysis"] == cross—-power"):
self.kernel = kernel.crosspower

def calc_and_store(self, data, ...):

result = self.kernel(data, ...)
At the time of writing, Delta only implements a workflow
for ECEI data and this design choice minimizes the number of
classes present in the framework. Grouping the data analysis
methods by diagnostic also allows to execute diagnostic-specific
pre-transformations that are best performed after transfer to the
processor collectively. One may wish for example to distribute
calculations of the 18336 channel pair combinations among mul-
tiple task instances. This approach lets us seamlessly do that.
Once the requirements and use cases have stabilized we will
explore suitable generalizations such as object factories for the
task_1list class.

In summary, the architecture of Delta implements data
streaming using time-stepping interface of ADIOS and data analy-
sis using PEP 3148 compatible executors. In order to increase per-
formance we choose to use two PoolExecutors. The first executor
is used to execute short Fourier Transformations of the the input
data for the entire analysis task group. The second pool executor
is available for running the analysis kernels and immediate storage
of the results.

Performance analysis

While the overall performance of the framework can be measured
by the walltime of the analysis workflow at hand, the complex
composition of the framework requires us to understand the
performance of its building blocks. Referring to figure 2, 10
performance of the ADIOS library, the asynchronous receive-
publish-submit strategy implemented by processor and finally the
speed of individual analysis kernels contribute to the workflow
walltime. Furthermore, the workflow walltime may be sensitive
to the individual components interacting with one another. For
example, even though the processor design aims to facilitate high-
velocity data streams by using queues and multiple worker threads,
a fast data stream ingested by the processor may negatively affect
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the performance of the PoolExecutors by submitting too many
tasks in a short time. It may well be that slower data streaming
rate result in a smaller workflow walltime. Given these consid-
erations we start be investigating the performance of individual
components in this section and finally investigate the performance
of the framework on the ECEI workflow.

Performance of the WAN connection

As a first step we measure the practically available bandwidth
between the KSTAR and NERSC DTNs using the network per-
formance tool iperf3 [iperf]. Multiple data streams are often nec-
essary to exhaust high-bandwidth networks. Varying the number
of senders from 1 to 8, we measure data transfer rates from 500
MByte/sec using 1 process up to a peak rate of 1500 MByte/sec
using 8 processes, shown in Figure 3. Using 1 thread we find
that the data transfer rate is approximately 500 MByte/sec with
little variation throughout the benchmark. Running the 2 and 4
process benchmark we see initial transfer rates of more than 1000
MByte/sec. After about 5 to 8 seconds, TCP observes network
congestion and falls back to fast recovery mode where the transfer
rates increase to the approximately the initial transfer rates until
the end of the benchmark run. The 8 process benchmark shows
a qualitatively similar behaviour but the congestion avoidance
starts at approximately 15 seconds where the transfer enters a fast
recovery phase.

< 1500 +
b
<
as)
= 1000 -
~
£
& 500 —
% — 1 proc. — 4 proc.
= 2 proc. — 8 proc.
0 -
T T T T
0 10 20 30
time 5

Fig. 3: Data transfer rates between the KSTAR and NERSC DTNs
measured using iperf3 using 1, 2, 4, and 8 processes

While we measured the highest bandwidth when transferring
with 8 process, Delta currently only implements single process
data transfers.

Data Analysis Kernels

As seen in the code-example above, Delta implements data
analysis routines as computational kernels. These are implemented
in cython to circumvent the global interpreter lock and utilize
multiple cores. Measuring the average execution time over 10 runs
on a Cori compute node we find that the kernels demonstrate a
strong scaling for up to 16 threads, shown in Fig. 4. Using more
32 threads results in sub-linear speedup.

Performance of the ECEI workflow

Having established the performance of the individual components
we continue by benchmarking the performance of Delta per-
forming the entire ECEI analysis workflow. The task at hand is to
calculate Eqgs.(1) - (4) for 18836 unique channel pair combinations
per time chunk. Each time chunk consists of s.;, = 10,000 samples
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Fig. 4: Runtime of the multi-threaded kernels for coherence C, cross-
power S and cross-phase P compared against numpy implementations.

Scenario Walltime Nep Bandwidth
file 347s 500 350 MByte/sec
2-node 358s 485 95 MByte/sec
3-node 339s 463 450 MByte/sec

TABLE 3: Performance metrics for the ECEI workflow in the bench-
marked scenarios.

for 192 individual channels. A total of N, = 500 time chunks are
to be processed, for a total of about 5 GByte of data.

The performance of Delta depends on the individual perfor-
mance of multiple components, such as the data streaming veloc-
ity, lag introduced by using queue inter-process communication,
spawning processes on the executors, MPI communication as well
as their interplay with one another. Having benchmarked individ-
ual components in the previous section, we now benchmark the
runtime of Delta performing the ECEI spectral analysis work-
flow in three scenarios. In the £ile scenario, the processor
reads data from a local ADIOS file. No data is streamed. In the
2-node scenario, data is streamed from the generator running
on the NERSC DTN to Cori. In the 3—node scenario, data is
streamed from the KSTAR DTN to the NERSC DTN and forwared
to Cori - this is the scenario shown in 2. Both the 2- and 3—-node
scenario use ADIOS DataMan engine for data streaming. All runs
are performed on an allocation using 32 Cori nodes partitioned
into 128 MPI ranks with 16 Threads each for a total of 2048 CPU
cores.

Table 3 lists the Walltime and the number of proccessed time
chunk N, and the utilized bandwidth. Walltime refers to the
walltime as measured by the processor and N, gives the
number of time chunks analyzed by the processor. The utilized
bandwidth refers to the I/O speed achieved when reading from
disk in the £ile scenario, the average data transfer rate from the
NERSC DTN to Cori in the 2—node scenario and as the average
data transfer rate from the KSTAR DTN to the NERSC DTN in
the 3-node scenario.

The measured walltime for the file-based workflow is 352s,
358s for the 2-node scenario and 339s for the 3-node scenario.
Only minor packet loss occurs using the current implementation
of the DataMan engine. In order to mitigate packet loss the
generator pauses a tenth of a second after sending any packet
from the NERSC DTN to Cori, resulting in a bandwidth of 95
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Fig. 5: Horizontal bars mark the time that the a given time chunk n,
spends in the queue of the processor. The color legend is shown in
Figure 6

MByte/sec for the 2—-node scenario. In the 3—-node scenario
we show that Delta can ingest high velocity data streams from
KSTAR to NERSC and perform analysis on them. As in the
2-node scenario, we limit the bandwidth from the NERSC DTN
to Cori by pausing a fraction of a second before relaying a time
chunk. On average, Delta performs the entire analysis workflow
as fast in a streaming setting as it does when reading from the
local file system. The average time to analyze a single time chunk
is about 0.7 seconds, independent of the workflow.

Figure 5 shows the amount of time that data for a given
time chunk, n., = 1...N,;, spends in the queue of the processor.
All three scenarios show a similar trend - the amount of time
a time chunk spends in the queue increases with the time when
it is enqueued. This suggests that data is streamed faster to the
processor than the MPI ranks perform data analysis. This
implies that the queue acts as a cache for the incoming time chunk
data. Running the £ile scenario, the processor loads data almost
immediatetly after it starts up. For the 2-node and 3-node
scenarios the start time of the components on their respective
machines is not coordinated. This causes the first time chunk data
to arrive at varying times for the three scenarios.

As time chunks are dequeued, they are subject to a STFT.
Figure 6 denotes the time where the STFT of each time chunk is
performed with horizontal bars. The beginning of a horizontal bar
indicates where the STFT with the time chunk data is submitted
on executor_fft and the end of a bar marks the time STFT
is finished. Common for all three scenarios is that the STFTs
with the longest execution time are the ones for the first time
chunks received. Also, the majority of the STFTs is executed in
approximately one second. Equivalent STFT evaluations outside
Delta take about 0.15s on Cori. On average the STFT when called
from the streaming workflow is slower by a factor of 6. We
believe that this long execution time is in part explained by MPI
communication overhead.

Finally, Figures 7, 8 and 9 show the utilization of the MPI
ranks over time. The MPI ranks execute the STFT and analysis
kernels, the figures only show the time where analysis kernels
are executed. All three scenarios show a low usage of available
MPI ranks, approximately 16 - 20 in the beginning of the run.
After all time chunks are dequeued and Fourier transformed, all
available MPI ranks are used. Color encodes the different analysis
kernels. For example, green bars show time at which a cross-
correlation kernel is executed. The majority of the compuation
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Fig. 6: Horizontal bars mark the during which the STFT for each time
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Fig. 7: MPI rank utilization for the £1i1e scenario. Colored bars mark
the execution time of analysis kernels. Blue bars denote cross-phase,
orange bars denote cross-power; green bars denote cross-correlation
and red bars denote coherence.

time is consumed by cross-correlation kernels. This observation
agrees with the performance analysis that showed that the cross-
correlation kernel is the most time consuming.

Conclusions and future work

We demonstrate that Delta can facilitate near real-time analysis
of high-velocity streaming data. In our experiments we achieved
streaming rates of about 350 MByte/sec and execute a spectral
analysis workflow on ECEI measurements in less than 4 minutes.

Performing the analysis in the streaming scenario, illustrated

128 3 L EE .3

1 FEe- D FEEH

96 FeE_elfbr L

= 3 FciF=LCEg ko
5 E crE=EI - EFE S
LE R S
— E ETEE-E-EL |
o ] [ E=E L CEE -
= ] LFECF-FEE L
32 1 Er rE=EECE

; gwe-T-LZ S 2 EEE ¢

] #m oz FEL - CE L3
D_'|||||||||||||||||||||||||||||||||||||

0 50 100 150 200 250 300 350
Walltime /s

Fig. 8: MPI rank utilization for the 2—-node scenario. The color
encoding of the analysis kernels is the same as in Figure 7
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Fig. 9: MPI rank utilization for the 3-node scenario. The color
encoding of the analysis kernels is the same as in Figure 7

in Figure 1, comes with only a negligible performance impact
as compared to using local filesystem I0. ADIOS manages to
utilize about 70% of the available bandwidth for data streaming
from KSTAR to NERSC in the streaming analysis workflow.
mpidpy PoolExecutors facilitate an flexible execution of work
items on Cori, as required for our workflow where data arrive at
high velocity. Furthermore, python queues reliably facilitate inter-
process communication and act as a data cache under the tested
IO loads.

In the current form, there are multiple shortcomings of the
framework that need to be addressed. Firstly, the DataMan engine
received an experimental feature to mitigate packet loss. Secondly,
implementation details of MPI on Cori limit us to effectively a
single PoolExecutor. We are planning to investigate this more
closely and aim to properly separate the execution space of the
STFT and the analysis kernels. Thirdly, the framework will be
generalized in order to facilitate more data analysis tasks. Finally,
we are working on adapting Delta for next generation HPC
facilities which heavily rely on graphical processing units to
provide processing power.

Another issue we plan to address is to make Delta more
adaptive. This includes developing machine learning algorithm
for data compression and to decide which data batches are to be
offloaded to HPC resources for in-depth analysius. For example,
ECEI time chunk data that is not likely to be relevant for magnetic
island studies could be analyzed with fast, coarse routines at a
local workstation while relevant data could be forwarded to in-
depth analysis routines.
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