156

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Software Engineering as Research Method: Aligning
Roles in Econ-ARK

Sebastian Benthall¥¥*, Mridul Seth*

https://youtu.be/nxXr0LNdQUU

Abstract—While general purpose scientific software has enjoyed great suc-
cess in industry and academia, domain specific scientific software has not yet
become well-established in many disciplines where it has potential. Based on
a survey of the literature as well as the authors’ experiences contributing to
Econ-ARK, a structural modeling toolkit for Economics, we argue that this is
due to the well-documented skills gap that prevents researchers, publishers,
and professors from making the most of the opportunities afforded by scientific
software. When researchers professionalize their code, it enables more cumula-
tive progress in research and facilitates technology transfer. When publishers
release interactive computational artifacts, it enables constructionist learning
of the material. When students are trained in software engineering, they can
participate fully in the reproduction of their scientific field. This is especially
the case for fields where scientific knowledge is represented in software code,
as in the case of Economics. The skills gap will not be closed until software
engineering is considered a core skill for the discipline. Software engineering
should be reconceived as a research method.

Index Terms—computational method, computional thinking, constructionist
learning, research software engineering

Computing in Education and Science

Ever since [Pap82] introduced constructionist learning using com-
puters, educators have been enticed by the possibility that students
could learn valuable knowledge by playing with software. While
originally used as a tool for teaching mathematics, it was not long
before Papert’s Logo tool was also used in scientific education,
teaching students not just about the abstract mathematical sphere,
but about the physical world [ROP90]. The legacy of Logo is alive
and well in NetLogo [TWO04], which is used by both students
and researchers alike in the study of complex and agent-based
systems, and in the Python agent-based modeling (ABM) toolkit
Mesa [DMJK15].!

Since, the ubiquity of computing and its increasingly central
role in industry has prompted the spread of ideas that were
once specific to computer science into other disciplines. [Win06]
coined the term "computational thinking" for the general skills
of managing abstraction, modularity, scalability, and robustness

« Corresponding author: spb413 @nyu.edu
§ New York University School of Law
Econ-ARK

Copyright © 2020 Sebastian Benthall et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

1. An example of an ABM is the Wolf Sheep Predation model, which is
used to explore the stability of predator-prey ecosystems [Wil97].

+

of systems. Now it refers to the cross-disciplinary use of these
computational concepts [Guz08] [SGB13]. The question raised by
computational thinking is how much computer science education
is necessary for these cross-disciplinary uses of computation.
Logo, after all, not only introduced students to mathematics, but
also programming. But did it teach computational thinking?

The industrial demand for students educated in handling "Big
Data" systems has since prompted a generalization of statistics
beyond its discipline in a way that’s analogous to the general-
ization of computer science. [Jor16] discusses this new industry
demand for "inferential thinking". Together, computational think-
ing and inferential thinking have been reimagined by some as
the foundation for a new form of cross-disciplinary data science
curriculum [AD17] [EVDSLBI19]. A key technological feature
of these new curricula are digital notebooks that enable users
to compose computational narratives that make computing more
cognitively digestible to humans [PG15]. Now, Jupyter notebooks
are widely used for collaboration on research and, in some places,
as part of pedagogy.

Open source scientific software development has benefited
from the influx of capital due to industry interest in data science
applications. Software packages such as Numpy [WCV11], Pan-
das [McK11], and Scikit-learn [PVG™11] have become popular
as industrial tools. At the same time, these tools have provided a
foundation and aspirational example for more domain specific sci-
entific libraries, such as astropy [RTG ™ 13], Biopython [CACT09],
PsychoPy [Pei07], and SunPy [MPSC™"13]. Scientific educators
continue to see potential in the use of these tools to support the
education of their students not only about computation, but about
the world [Bar16], in a return to Papert’s constructionist paradigm.

This vision of scientific research and education supported by
open source domain specific scientific libraries faces two signifi-
cant obstacles. The first is the development and sustainability of
the software itself. Open source software projects in general are
not guaranteed to succeed; most fail to gain wide adoption or reach
sustainability [SE12]. In addition to these general difficulties,
scientific software suffers from the fact that researchers who write
and modify software often do not have formal training in software
development. As a result, scientific software is often hampered by
technical debt. These problems are mitigated by national initiatives
to train scientists in software engineering skills, such as the UK’s
Software Sustainability Institute, as well as Software Carpentry
[Will4]. There is further work to be done in institutional design
around filling this skills gap [KCN'16]. But it is known that
computational thinking skills alone are not sufficient for successful

https://youtu.be/nxXr0LNdQUU
mailto:spb413@nyu.edu

SOFTWARE ENGINEERING AS RESEARCH METHOD: ALIGNING ROLES IN ECON-ARK

scientific software. Software engineering skills are necessary to
produce software that is usable beyond the lab or research group
that originates it, which is a necessary path towards software
sustainability [Ben19].

A second obstacle integrating software tools into scientific
practice is that software-based learning requires additional educa-
tion infrastructure. [SNLT18] document the challenges in provid-
ing JupyterHub with automatic grading extensions at universities
and colleges; they find that many institutions do not have the
resources or deep IT expertise necessary to build and maintain
this infrastructure. The growing necessity of cloud-based compu-
tational notebooks for assignments and exploration in scientific
education therefore raises concerns about social equity.

This paper explores these general themes through an analysis
of Econ-ARK [CKK 18] as a case study. Econ-ARK is a domain
specific software toolkit currently most widely used in Economics.
Launched in 2014, the project has recently experienced a phase
transition in development practices because of the onboarding
of research software engineers. The collaborations between Eco-
nomics professors and software engineers have revealed a broad
scope of potential in computational research, publication, and
pedagogy. It has also exposed how disciplinary training in Eco-
nomics does not include many concepts necessary to realizing that
potential. We conclude that the gaps between disciplinary training
and the conditions for realizing this potential can be partially
closed by framing software engineering as a research method.

Econ-ARK: Discipline Specifics

The Econ-ARK project [CKK 18] is a toolkit for the structural
modeling of optimizing economic choices by heterogenous agents.
A primary goal of its flagship software library HARK (Heteroge-
nous Agent Research toolKit) is to support economic research
into heterogeneous agent (HA) modeling [HomO6], which be-
came a research priority after the 2008 financial crisis revealed
the weaknesses in the then-dominant representative agent (RA)
based paradigm.” It has been designed so that researchers and
students can take a hands-on approach to economic modeling in
software [CW18]. Econ-ARK is in some respects a port of Dynare
[ABJ"11], an earlier computing library for economic models, into
Python.

Econ-ARK lies roughly in the Papertian educational tradition,
similar to other agent-based modeling software such as NetLogo
[TWO04] and Mesa [DMJK15]. However, in Econ-ARK models,
agents optimize their behavior strategically with respect to pre-
dicted effects over time. In this respect, Econ-ARK has some
characteristics of a reinforcement learning or artificial intelligence
toolkit.

Example. A paradigmatic, simple example of the kind of
problem studied using Econ-ARK is the microeconomic dynamic
stochastic optimization problem of calculating the mathematically
optimal amount to save [Carl1].

This problem can be characterized by the equations:

1-p

c
Ule) = 1f—p
meyr = R(my—ci)+ pryi
Pry1 = VYDt

where U is a utility function, p is a coefficient of risk aversion, ¢;
is the amount of resources the agent chooses to consume in each

2. These weaknesses had been known since the work of [Kir92].

157

period ¢, m; is the amount of market resources available to the
agent at each time period, p; is the level of income at each time
period, ¥ is the growth rate of income over time, and R is a rate of
return on savings.

These equations define a Markov Decision Problem (MDP),
which can be transformed into a Bellman equation given a dis-
count factor 3:

Vilmi,p:) = maxe,U(c;)+ BVig1(my1, prs1)

The optimal consumer choice can be solved via dynamic program-
ming.

However, it is possible to reduce the complexity of this prob-
lem significantly through mathematical analysis. Because income
is growing geometrically, it is possible to remove one of the state
variables p from the model, and solve for the MDP with the
following transition function:

R
;(m,—@,)—ﬁ—l

My =
The consumption function ¢ can then be solved in a reduced
(1-dimensional) state space. The optimal consumption function
for the original problem is then recoverable as ¢; = ¢ * p;. It is
the goal of the Econ-ARK software to bundle the analytically
reduced solution with the original model as a way of representing
and making available the substantive knowledge gained in the
mathematical derivation.

Models in HARK are, at a certain level of mathematical
abstraction, equivalent to Markov Decision Problems (MDP).
However, generic MDP software is not adequate for research in
this field, for several reasons.

« Substantive, policy-oriented structural modeling. Un-
like many recent fields of data science, in which generic
model-fitting and machine-learning techniques are applied
to a large data set for the purpose of maximizing predictive
potential, this branch of Economics operates with rela-
tively scarce data and a drive for model veracity. Besides
the academic field of researchers, the intended audience
for these models are national central banks and other
policy-makers. For example, one policy application of
these models is predicting the impact of the CARES stim-
ulus bill on consumption [CCSW20]. These models are
scientifically valued for their ability to approximate real
social dynamics, and for their ability to build consensus
towards policy-making, in addition to their goodness of fit
to available data.

o Analytical results informing solvers. Like many other
sciences, this branch of Economics has a theoretical com-
ponent consisting in mathematical proofs about the models
in question. In addition to providing interpretable insight
into the invariant properties of a model, these results also
inform the design of model solvers and the user expe-
rience. For example, a mathematical result might reveal
under what parameter conditions a model has a degenerate
solution; the software will warn the user if they attempt to
solve the model in such a case. Elsewhere, an analytical
result might provide a shortcut such that it is possible
to write a solution algorithm with lower computational
complexity than a generic one would have.

o Continuous space decisions. Most MDP solvers and
simulators assume a discrete control and state space. The

158

economic problems studied using HARK are most often
defined with continuous control and state spaces, and
with continuous random variables as exogenous shocks.
HARK therefore includes a variety of discretization and
interpolation tools that support the transformation between
discrete and continuous representations.

The upshot of these conditions is that Econ-ARK software is
not only a tool for researchers doing empirical scientific work.
Rather, its software is an encoding of substantive research re-
sults in mathematical theory. A software implementation, which
integrates the results in a larger body of work and is subject to
robust software testing, is an additional form of validation of the
correctness and salience of a finding. This entails that the success
of Econ-ARK will imply a practical change to the research field:
students will study models that have been published in Python by
researchers in order to learn insights about the economy.

Case Study: Roles in Econ-ARK

Econ-ARK has been broadly conceived as a collection of projects
that supports this computational approach to education and re-
search in economic structural modeling. The project has been
organized around several different version-controlled software
repositories. The software in these repositories is written mostly
in Python, though there is also a great deal of expository content
and sometimes older code in other languages such as MATLAB
and Mathematica.

We have identified several different roles that people take
on when interacting with Econ-ARK. The same individual or
"natural person” might take on different roles at different times,
but nevertheless these categories have been useful as ideal types
[Hek83] with which to reason about requirements and skills.

Researcher. The role at the heart of the Econ-ARK system is
that of the Researcher. This user is trying to advance the frontier
of economic thinking by drawing on deep domain knowledge
(Economics) as well as general training in computational and
inferential thinking, applied math, and perhaps other fields. Re-
search with Econ-ARK may be nebulously defined because while
the question of how to implement a class of economic models
efficiently and robustly in Python is a research question in its
own right, these implementations are rarely considered first-order
research contributions. Researchers work within a complex field of
economic capital incentives (such as university salaries and grant
funding) and symbolic capital incentives (scholar recognition for
published work) [Bou04]. At the time of this article’s publi-
cation, the institutional mechanisms for training and rewarding
Economics researchers to work in the medium of robust software
are few. As a consequence there is a skills gap: researchers often
have programming ability, but not the software engineering and
IT training that is necessary to fully realize the vision of the
software’s potential [CHH " 13].

Publisher. One way to untie the Gordian knot of incentives
around Econ-ARK research is to provide a more reliable and
efficent path towards recognized scholarly publication that uses
it. One proposal has been that economists begin a Journal of Open
Source Economics [Isk19], modeled loosely on the Journal of
Open Source Software (JOSS), which gives academic publication
credit to the creators of scientific software tools. Preliminary
efforts towards such a journal have been attempted through the
Econ-ARK sub-project REMARK (Replications and Explorations
Made using the ARK), which organizes contributed directories

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

of material that meet a minimal ’publishable’ standard of repro-
ducibility. This approach has surfaced many challenges, mainly
regarding the technical requirements of reliably hosting Python
environments for each publishable unit, and managing depen-
dencies across those environments. These technical challenges
of publication require IT skills that are in general not available
to researchers who may be technically capable of programming
models that show substantive academic results.

Teacher and Student. In an academic context, the pedagogi-
cal use case is as important as the researcher’s use case. While the
researcher is building new models to communicate new discover-
ies, the teacher guides students to learn skills and ideas that are
already known. Two of the hurdles faced by teachers attempting
to use Econ-ARK pedagogically are the creation and grading
of assignments and assisting students with the availability of an
adequate computing environment that does not distract them from
the course materials. Technical solutions have been developed
for both hurdles. nbgrader enables the creation of assignments
with Jupyter notebooks [Ham16] [BBB ' 19]. JupyterHub has been
deployed to allow students to get around the hardware limitations
of their laptops and the difficulties of setting up a local coding
environment [Kim18]. Notably, both technical solutions, which
have been developed only in the past few years, require skills
that are not part of normal disciplinary training in economics.
Economics professors currently require others to fill the social
role that enables these tools to be useful.

Software engineer. The elephant in the room in all discussions
of scientific software and computational education is that building
and deploying robust software is its own complex field that
often shares few disciplinary roots with the domain sciences.
These skills are often specific to technologies that originated in
industry or open source technology production, not in academia.
For example, the version control system Git was not originally
an academic project, but it nevertheless is now ubiquitously used
for computational academic research through its popularization
via GitHub. The workflow patterns of collaboratively developing
software using GitHub and managing release cycles are not part
of any conventional Economics curriculum, and yet researchers
increasingly need to learn and use these in order to participate
in computational research. Software engineering skills are not
only useful for these infrastructural requirements of publication
and pedagogy. Integrating new features, expressing substantive
disciplinary material, and making these features available for new
users requires these skills. In other words, software engineering
skills are required to make a software project robust and reusable
across many different labs and groups of researchers [Benl19].
This has led to calls in some places for a better supported
and formalized role for Research Software Engineers [PHH16]
[BHG'12].

This division of roles and skills raises some quandaries for
computational economics. Publication, pedagogy, and the sus-
tainability of the domain specific software library Econ-ARK all
require software engineering skills. But there is no point at which
new entrants into this discipline are trained in these skills. They
must be learned informally by researchers who are not incentivized
to do so, or they must be hired from an external talent pool trained
in other disciplines or at another workplace.

This interrupts the cycle, from student to researcher to pro-
fessor who teaches more students, which is necessary for the
autonomy of Economics as a field of knowledge. If at every point
in the process -- even at the point where new discoveries are

SOFTWARE ENGINEERING AS RESEARCH METHOD: ALIGNING ROLES IN ECON-ARK

integrated into the core software library -- there is a dependence
on an externally sourced skillset, then the discipline will fail to
reproduce scholars with the competence to participate in its own
field.

Case Study: Econ-ARK infrastructure

The Econ-ARK infrastructure is built around creating a sustainable
community with respect to various use cases and the challenges
of creating sustainable scientific software in Economics. We have
discussed some of the challenges of bridging work across user
roles of Researchers, Publishers, Professors and Software Engi-
neers. Here. we illustrate these general points with examples from
our software and infrastructure practices.

Decoupling scientific content from code. A lot of scientific
code is written as part of academic research projects where the
incentives aren’t closely aligned with those of creating scientific
software. The recent case of UK COVID microsimulation code
[MRCT] brings out a stronger need of creating scientific software
with the correct incentives. The decision to draw the line between
a research artifact and a software is a hard decision which varies a
lot between different scientific domains and requires a high level
overlap of the researcher, publisher and software engineer roles.

When scientific code written by researchers is geared towards
the publishable end result like a paper, it can lead to short-sighted
design choices that in a broader software context are known as
"technical debt" [KNO12]. An illustration is this example of a
difference between a script and a modular function [Sci].

to calculate the moving

import pandas as pd

data = pd.read_csv('stocks_data.csv')

x = data['APPL'].rolling(window=5) .mean ()
y = data['GOOG'].rolling (window=5) .mean ()
print (x, vy)

Running this script prints out the moving average time series of the
two stocks. We can also create a software package which achieves
the similar thing in a more modular way.

move_avg.py
import pandas as pd

def calculate_MA (data,

Cal

stock, days):

culates the moving average for a stock

return data[stock].rolling(window=days) .mean ()

We can achieve similar results using our new package move_avg,
but this isn’t restricted to our specific hard coded variables (num-
ber of days, stock, input data).

import pandas as pd
from move_avg import calculate_MA

data = pd.read_csv('stocks_data.csv')
print (calculate_MA (data, 'APPL', 5))
print (calculate_MA (data, 5))

"GOOG',
Initial decisions like hard coding variables in the code while
creating the research artifact (which happens in a lot of academic
research projects) lead away from creating a well defined reusable
scientific software library. This seems trivial for people with a

159

software engineering background but not necessarily for others.
We know this is a hard problem to solve in domain specific
scientific code where the boundaries between a research paper and
code could be blurry. To tackle this is Econ-ARK, we extracted
generalized code from research artifacts to create our software
package HARK [CKK ™' 18] and maintained the research artifacts
which heavily rely on HARK as REMARKs (Replications and
Explorations Made using the ARK).

This decoupling exercise also helps with the reproducibility of
research projects as it gives other researchers the necessary tools
to examine the research artifacts. The decoupling can also enable
the use of empirical data and model fitting techniques, expanding
the functional scope of the original script.

Reproducible builds of scientific content. The reproducibil-
ity crisis has been plaguing academic research for some time
and the current ecosystem of software packaging and distribu-
tion certainly does not help it. To tackle this in Econ-ARK we
have used containerization technologies like Docker. Tools like
Repo2Docker [Jup] further help us with creating reproducible
builds of scientific content. Creating and working with these tools
still requires a basic background with software engineering, and
end users like students and researchers in economics may not have
the required background. We made tools to lower the barrier by
using pre-built containers and one-click (or one-command) repro-
ducible research artifacts [EA]. This effort has required a strong
overlap between Researchers and Software Engineers in a project.
Pushing for reproducibility in the community benefits students by
lowering the barriers to access research and publishers/researchers
by creating tools required to address the reproducibility crisis.

Interactive scientific publication. The publication of the
Econ-ARK-based analysis of the consumption response to
the CARES Act [CCSW20] was accompanied by an online
Dashboard? that allows users to change parameters of the model
and visualize their impact on policy outcomes. This Dashboard
was deployed using Binder and developed by an Econ-ARK
Research Software Engineer. This dashboard supports the con-
structionist learning of the substance of the model. Here, that
paradigm is applied to convey knowledge not to students, but to
public policy makers and other economists.

This new way of presenting economic models may be more
digestible to a wider audience than a traditional research pub-
lication. However, researchers are not trained to create these
Dashboards as they are trained to write research papers. This
limits the scholarly impact of domain specific research software,
as many computational models are not being presented in this rich
interactive way.

Teaching resources. To keep the wheels turning in a research
discipline we require effective pedagogical resources, especially
in domains which are increasingly using scientific software to
further research. After creating pedagogical content we are faced
with the next hard challenge of creating an effective teaching
infrastructure. The créme de la créme of the SciPy community
has faced installation problems with software packages and it
is not hard to create a monster out of your local environment.
But luckily tools like MyBinder and JupyterHub have drastically
reduced the work required to set up a stable environment required
for teaching courses that depend heavily on scientific software.
At Econ-ARK we have used MyBinder (publicly and privately

3. https://mybinder.org/v2/gh/econ-ark/Pandemic/master?urlpath=voila%
2Frender%?2FCode%2FPython%2Fdashboard.ipynb

https://mybinder.org/v2/gh/econ-ark/Pandemic/master?urlpath=voila%2Frender%2FCode%2FPython%2Fdashboard.ipynb
https://mybinder.org/v2/gh/econ-ark/Pandemic/master?urlpath=voila%2Frender%2FCode%2FPython%2Fdashboard.ipynb

160

hosted) extensively for teaching graduate economics courses and
it has significantly reduced the overhead required for local setup,
especially for students who are the primary users of a domain
specific scientific software like HARK. We have also effectively
used containerization for standardizing student assignments which
streamlines the work for both students and teachers.

Discussion

Is research software engineering becoming a core skill for research
that involves writing code? The skills for navigating many practi-
cal elements of software engineering are necessary for equipping a
digital classroom, effectively publishing results, and contributing
new features to scientific libraries. Yet they are currently con-
sidered a peripheral part of disciplinary education in Economics.
Researchers and professors are not taught these skills as part of
their training as students. This contributes to a systemic skills gap
between the discipline and technology.

One potential solution to this problem would be to introduce
more software engineering training into the core curriculum for
graduate students. Some Economics departments already offer a
course on Computational Methods, analogous to earlier courses on
Mathematical Methods, Econometrics, or other methods. As the
pragmatic needs of computational methods increasingly require
such activities as setting up local development environments,
preparing cloud computing infrastructure, and utilizing autodoc-
umentation, version control and package management tools, these
techniques could be included as part of a computational methods
curriculum.

This is a departure from both the computational thinking
[Win06] approach, which emphasizes abstract, conceptual skills
explicitly in contrast to the mechanical skills of programming,
let alone software engineering. It is also a departure from con-
structionist learning [Pap82], in that the method of learning is not
childlike play but what is instead most often considered a form
of laborious work. Rather, it is perhaps best conceived and taught
in the paradigm of situated learning [LW91], or an apprenticeship
based model. In this model, students engage in "legitimate periph-
eral participation" by working with tools under the mentorship
of experts, gradually becoming more central in the community of
practice. This model has been applied to both software engineering
education and open source community participation [YKO03].

Preparing scientists with more general software engineering
skills would pave the way for more general acceptance of compu-
tational narrative [PG15] as a core method in scientific practice.
In the social sciences especially, this would open research fields
to wider ranges of discoveries through computational methods.
[Eps06] has argued that computational modeling in social science
is the natural successor to game theoretic and rational choice
modeling, which has a long social scientific history, allowing a
wider range of models with greater realism and theoretical insight.
While [HomO06] and [Tes06] have shown the applicability of these
methods to economics in particular, progress has been limited
by the lack of research software engineering skills available in
the field. To unlock the potential of computational science, re-
search software engineering must become recognized as a research
method.

Another incentive for making software engineering more cen-
tral as a research method for scientific practice is that mature soft-
ware products are a vector for technology transfer from academic
labs to the market [DR04]. As national funding agencies anticipate

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

a pivot towards bringing scientific results to market a top priority
[Amb20] it raises questions about what research methods are most
commercially relevant.

We are definitely not the first push for more training to
scientific researchers about general software design and best
practices (software versioning, continuous integration, testing).
Organizations like Software Carpentry [Wil14] have been success-
ful in this domain. Creating sustainable domain specific scientific
software requires a systematic decoupling of reusable library code
from research artifacts so users from different backgrounds can
successfully work with the software. Researchers writing code
with knowledge about software design will have more success in
creating a sustainable community. Our contribution in this paper is
to discuss how software design can be reconceived as a scientific
method, as opposed to a peripheral skill.

REFERENCES
[ABJT11] Stéphane Adjemian, Houtan Bastani, Michel Juillard, Ferhat
Mihoubi, George Perendia, Marco Ratto, and Sébastien Ville-
mot. Dynare: Reference manual, version 4. 2011.

Ani Adhikari and John DeNero. Computational and Inferential
Thinking: The Foundations of Data Science, 2017. URL.: https:
/Iwww.inferentialthinking.com/.

Mitch Ambrose. Lawmakers propose dramatic expansion
of nsf to boost us technology, May 2020. URL:
https://www.aip.org/fyi/2020/lawmakers-propose-dramatic-
expansion-nsf-boost-us-technology.

Lorena A Barba. Computational thinking: I do not
think it means what you think it means, 2016. URL:
https://lorenabarba.com/blog/computational-thinking-i-do-
not- think-it-means-what-you- think-it-means/.

Douglas S Blank, David Bourgin, Alexander Brown, Matthias
Bussonnier, Jonathan Frederic, Brian Granger, Thomas L Grif-
fiths, Jessica Hamrick, Kyle Kelley, M Pacer, et al. nbgrader:
A tool for creating and grading assignments in the jupyter
notebook. The Journal of Open Source Education, 2(11), 2019.
doi:10.21105/jose.00032.

Sebastian Benthall. Software incubator workshop: A synthe-
sis, Feb 2019. URL: http://urssi.us/blog/2019/02/25/software-
incubator-workshop-a-synthesis/.

Rob Baxter, N Chue Hong, Dirk Gorissen, James Hetherington,
and Ilian Todorov. The research software engineer. In Digital
Research Conference, Oxford, pages 1-3, 2012.
Pierre Bourdieu. Science of science and reflexivity.
2004.

Peter JA Cock, Tiago Antao, Jeffrey T Chang, Brad A Chap-
man, Cymon J Cox, Andrew Dalke, Iddo Friedberg, Thomas
Hamelryck, Frank Kauff, Bartek Wilczynski, et al. Biopython:
freely available python tools for computational molecular bi-
ology and bioinformatics. Bioinformatics, 25(11):1422-1423,
2009. doi:10.1093/bioinformatics/btpl63.
Christopher D Carroll. Solution methods for microeconomic
dynamic stochastic optimization problems, 2011. URL: http:
/Iwww.econ.jhu.edu/people/ccarroll/solvingmicrodsops.pdf.
Christopher D Carroll, Edmund Crawley, Jiri Slacalek, and
Matthew N White. Modeling the consumption response to the
cares act. COVID Economics, 2020.

Stephen Crouch, Neil Chue Hong, Simon Hettrick, Mike
Jackson, Aleksandra Pawlik, Shoaib Sufi, Les Carr, David
De Roure, Carole Goble, and Mark Parsons. The software
sustainability institute: changing research software attitudes
and practices. Computing in Science & Engineering, 15(6):74—
80, 2013. doi1:10.1109/MCSE.2013.133.

Christopher D. Carroll, Alexander M. Kaufman, Jacqueline L.
Kazil, Nathan M. Palmer, and Matthew N. White. The Econ-
ARK and HARK: Open Source Tools for Computational Eco-
nomics. In Fatih Akici, David Lippa, Dillon Niederhut, and M
Pacer, editors, Proceedings of the 17th Python in Science Con-
ference, pages 25 — 30, 2018. doi:10.25080/Majora-
4afl1f417-004.

[AD17]

[Amb20]

[Bar16]

[BBBT19]

[Ben19]

[BHG'12]

[Bou04] Polity,

[CACT09]

[Carl1]

[CCSW20]

[CHH'13]

[CKK™'18]

https://www.inferentialthinking.com/
https://www.inferentialthinking.com/
https://www.aip.org/fyi/2020/lawmakers-propose-dramatic-expansion-nsf-boost-us-technology
https://www.aip.org/fyi/2020/lawmakers-propose-dramatic-expansion-nsf-boost-us-technology
https://lorenabarba.com/blog/computational-thinking-i-do-not-think-it-means-what-you-think-it-means/
https://lorenabarba.com/blog/computational-thinking-i-do-not-think-it-means-what-you-think-it-means/
http://dx.doi.org/10.21105/jose.00032
http://urssi.us/blog/2019/02/25/software-incubator-workshop-a-synthesis/
http://urssi.us/blog/2019/02/25/software-incubator-workshop-a-synthesis/
http://dx.doi.org/10.1093/bioinformatics/btp163
http://www. econ. jhu. edu/people/ccarroll/solvingmicrodsops.pdf
http://www. econ. jhu. edu/people/ccarroll/solvingmicrodsops.pdf
http://dx.doi.org/10.1109/MCSE.2013.133
http://dx.doi.org/10.25080/Majora-4af1f417-004
http://dx.doi.org/10.25080/Majora-4af1f417-004

SOFTWARE ENGINEERING AS RESEARCH METHOD: ALIGNING ROLES IN ECON-ARK

[CW18]

[DMIJK15]

[DRO4]

[EA]

[Eps06]

[EVDSLB19]

[Guz08]

[Ham16]

[Hek83]

[HomO6]

[Isk19]

[Jorl6]

[Jup]

[KCNT16]

[Kim18]

[Kir92]

[KNO12]

[LWO1]

[McK11]

[MPSC*13]

Hands-
URL:

Christopher D Carroll and Matthew N White.
on heterogeneous agent macroeconomics, 2018.
https://safe-frankfurt.de/fileadmin/user_upload/editor_
common/Events/Chris_Carrol_Syllabus.pdf.

David Masad and Jacqueline Kazil. Mesa: An Agent-Based
Modeling Framework. In Kathryn Huff and James Bergstra,
editors, Proceedings of the 14th Python in Science Confer-
ence, pages 51 — 58, 2015. doi:10.25080/Majora-
Tb98e3ed-009.

Jean-Michel Dalle and Guillaume Rousseau. Toward collab-
orative open-source technology transfer. Collaboration, Con-
flict and Control, pages 34-42, 2004. doi:10.1049/ic:
20040262.

Econ-ARK. BufferStockTheory reproduce. URL:
https://github.com/llorracc/BufferStock Theory/blob/master/
reproduce.sh.

Joshua M Epstein. Generative social science: Studies in agent-
based computational modeling. Princeton University Press,
2006. doi:10.23943/princeton/9780691158884.
001.0001.

Eric Van Dusen, Anthony Suen, Alan Liang, and Amal Bhatna-
gar. Accelerating the Advancement of Data Science Education.
In Chris Calloway, David Lippa, Dillon Niederhut, and David
Shupe, editors, Proceedings of the 18th Python in Science
Conference, pages 1 — 4, 2019. doi:10.25080/Majora—
7ddc1ldd1-000.

Mark Guzdial. Education paving the way for computational
thinking. Communications of the ACM, 51(8):25-27, 2008.
doi:10.1145/1378704.1378731.

Jessica B Hamrick. Creating and grading ipython/jupyter
notebook assignments with nbgrader. In Proceedings of the
47th ACM Technical Symposium on Computing Science Ed-
ucation, pages 242-242, 2016. doi:10.1145/2839509.
2850507.

Susan J Hekman. Weber’s ideal type: A contemporary re-
assessment. Polity, 16(1):119-137, 1983. doi:10.2307/
3234525.

Cars H Hommes. Heterogeneous agent models in economics
and finance. Handbook of Computational Economics, 2:1109—
1186, 2006. doi:10.1016/s1574-0021(05) 02023~x.
Fedor Iskhakov. The journal of open source economics
journal charter, 2019. URL: https://github.com/joseconomics/
JOSEcon-Project-Charter/blob/master/josecon_charter.pdf.
Michael I Jordan. On computational thinking, inferential
thinking and data science. In Proceedings of the 28th ACM
Symposium on Parallelism in Algorithms and Architectures,
pages 4747, 2016. doi:10.1145/2935764.2935826.
Jupyter. repo2docker. ~ URL: https://github.com/jupyter/
repo2docker.

Daniel Katz, Sou-Cheng Choi, Kyle Niemeyer, James Het-
herington, Frank Loffler, Dan Gunter, Ray Idaszak, Steven
Brandt, Mark Miller, Sandra Gessing, et al. Report on the third
workshop on sustainable software for science: Practice and
experiences (wssspe3). Journal of Open Research Software,
4(1),2016. doi:10.5334/jors.118.

Alicia Kim. The jupyterhub journey: Starting small and
scaling up, May 2018. URL: https://data.berkeley.edu/news/
jupyterhub-journey-starting-small-and-scaling.

Alan P Kirman. Whom or what does the representative individ-
ual represent? Journal of economic perspectives, 6(2):117-136,
1992.

Philippe Kruchten, Robert L Nord, and Ipek Ozkaya. Technical
debt: From metaphor to theory and practice. leee software,
29(6):18-21, 2012. doi:10.1109/ms.2012.167.

Jean Lave and Etienne Wenger. Situated learning: Legitimate
peripheral participation. Cambridge University Press, 1991.
doi:10.1017/cbo9780511815355.

Wes McKinney. pandas: a foundational python library for
data analysis and statistics. Python for High Performance and
Scientific Computing, 14(9), 2011.

Stuart Mumford, David Pérez-Suérez, Steven Christe, Florian
Mayer, and Russell J. Hewett. SunPy: Python for Solar
Physicists. In Stéfan van der Walt, Jarrod Millman, and Katy
Hulff, editors, Proceedings of the 12th Python in Science Con-
ference, pages 70 — 73, 2013. doi:10.25080/Majora-
8b375195-00c.

[MRC]
[Pap82]

[Pei07]

[PGI15]

[PHH16]

[PVG*t11]

[ROP90]

[RTG'13]

[Sci]

[SE12]

[SGB13]

[SNLT18]

[Tes06]

[TWO04]

[WCVII]

[Wil97]

[Wil14]

[Win06]

[YKO3]

161

UK MRC. Covidsim microsimulation model. URL: https://
github.com/mrc-ide/covid-sim.

Seymour Papert. Mindstorms. NY: Basic Books, 1982. doi:
10.1007/978-3-0348-5357-6.

Jonathan W Peirce. Psychopy—psychophysics software in
python. Journal of Neuroscience Methods, 162(1-2):8-13,
2007. doi:10.1016/3.jneumeth.2006.11.017.
Fernando Perez and Brian E Granger. Project jupyter: Compu-
tational narratives as the engine of collaborative data science,
2015. URL: http://archive.ipython.org/JupyterGrantNarrative-
2015.pdf.

Olivier Philippe, Neil Chue Hong, and Simon Hettrick. Prelim-
inary analysis of a survey of uk research software engineers.
In 4th Workshop on Sustainable Software for Science: Practice
and Experience, 2016.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vin-
cent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel,
Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. The Journal of Machine
Learning Research, 12:2825-2830, 2011.

Mitchel Resnick, Stephen Ocko, and Seymour Papert.
LEGO/logo-learning through and about design. Epistemology
and Learning Group, MIT Media Laboratory Cambridge, MA,
1990.

Thomas P Robitaille, Erik J Tollerud, Perry Greenfield, Michael
Droettboom, Erik Bray, Tom Aldcroft, Matt Davis, Adam
Ginsburg, Adrian M Price-Whelan, Wolfgang E Kerzendorf,
et al. Astropy: A community python package for astronomy.
Astronomy & Astrophysics, 558:A33, 2013.

SciPy. Scipy lecture notes. URL: https://scipy-lectures.org/
intro/language/reusing_code.html.

Charles M Schweik and Robert C English. Internet suc-
cess: a study of open-source software commons. MIT Press,
2012. doi:10.7551/mitpress/9780262017251.
001.0001.

Amber Settle, Debra S Goldberg, and Valerie Barr. Beyond
computer science: computational thinking across disciplines.
In Proceedings of the 18th ACM Conference on Innovation and
Technology in Computer Science Education, pages 311-312,
2013. doi:10.1145/2462476.2462511.

Anthony Suen, Laura Norén, Alan Liang, and Andrea Tu.
Equity, Scalability, and Sustainability of Data Science Infras-
tructure. In Fatih Akici, David Lippa, Dillon Niederhut, and M
Pacer, editors, Proceedings of the 17th Python in Science Con-
ference, pages 15 — 17, 2018. doi:10.25080/Majora-—
4afl1£417-002.

Leigh Tesfatsion. Agent-based computational economics: A
constructive approach to economic theory. Handbook of Com-
putational Economics, 2:831-880, 2006. doi:10.1016/
s1574-0021(05) 02016-2.

Seth Tisue and Uri Wilensky. Netlogo: Design and implemen-
tation of a multi-agent modeling environment. In Proceedings
of the Agent 2004 Conference on Social Dynamics: Interaction,
Reflexivity and Emergence, volume 2004, pages 7-9, 2004.
Stéfan van der Walt, S Chris Colbert, and Gael Varoquaux.
The numpy array: a structure for efficient numerical computa-
tion. Computing in Science & Engineering, 13(2):22-30, 2011.
doi:10.1109/mcse.2011.37.

Uri Wilensky. Netlogo wolf sheep predation model,
1997. URL: http://ccl.northwestern.edu/netlogo/models/
WolfSheepPredation.

Greg Wilson. Software
F1000Research, 3, 2014.
£f1000research.3-62.v2.
Jeannette M Wing. Computational thinking. Communications
of the ACM, 49(3):33-35, 2006. doi1:10.1145/1118178.
1118215.

Yunwen Ye and Kouichi Kishida. Toward an understanding
of the motivation of open source software developers. In
Proceedings of the 25th International Conference on Soft-
ware Engineering, 2003, pages 419-429. IEEE, 2003. doi:
10.1109/1cse.2003.1201220.

lessons learned.
doi:10.12688/

carpentry:

https://safe-frankfurt.de/fileadmin/user_upload/editor_common/Events/Chris_Carrol_Syllabus.pdf
https://safe-frankfurt.de/fileadmin/user_upload/editor_common/Events/Chris_Carrol_Syllabus.pdf
http://dx.doi.org/10.25080/Majora-7b98e3ed-009
http://dx.doi.org/10.25080/Majora-7b98e3ed-009
http://dx.doi.org/10.1049/ic:20040262
http://dx.doi.org/10.1049/ic:20040262
https://github.com/llorracc/BufferStockTheory/blob/master/reproduce.sh
https://github.com/llorracc/BufferStockTheory/blob/master/reproduce.sh
http://dx.doi.org/10.23943/princeton/9780691158884.001.0001
http://dx.doi.org/10.23943/princeton/9780691158884.001.0001
http://dx.doi.org/10.25080/Majora-7ddc1dd1-000
http://dx.doi.org/10.25080/Majora-7ddc1dd1-000
http://dx.doi.org/10.1145/1378704.1378731
http://dx.doi.org/10.1145/2839509.2850507
http://dx.doi.org/10.1145/2839509.2850507
http://dx.doi.org/10.2307/3234525
http://dx.doi.org/10.2307/3234525
http://dx.doi.org/10.1016/s1574-0021(05)02023-x
https://github.com/joseconomics/JOSEcon-Project-Charter/blob/master/josecon_charter.pdf
https://github.com/joseconomics/JOSEcon-Project-Charter/blob/master/josecon_charter.pdf
http://dx.doi.org/10.1145/2935764.2935826
https://github.com/jupyter/repo2docker
https://github.com/jupyter/repo2docker
http://dx.doi.org/10.5334/jors.118
https://data.berkeley.edu/news/jupyterhub-journey-starting-small-and-scaling
https://data.berkeley.edu/news/jupyterhub-journey-starting-small-and-scaling
http://dx.doi.org/10.1109/ms.2012.167
http://dx.doi.org/10.1017/cbo9780511815355
http://dx.doi.org/10.25080/Majora-8b375195-00c
http://dx.doi.org/10.25080/Majora-8b375195-00c
https://github.com/mrc-ide/covid-sim
https://github.com/mrc-ide/covid-sim
http://dx.doi.org/10.1007/978-3-0348-5357-6
http://dx.doi.org/10.1007/978-3-0348-5357-6
http://dx.doi.org/10.1016/j.jneumeth.2006.11.017
http://archive.ipython.org/JupyterGrantNarrative-2015.pdf
http://archive.ipython.org/JupyterGrantNarrative-2015.pdf
https://scipy-lectures.org/intro/language/reusing_code.html
https://scipy-lectures.org/intro/language/reusing_code.html
http://dx.doi.org/10.7551/mitpress/9780262017251.001.0001
http://dx.doi.org/10.7551/mitpress/9780262017251.001.0001
http://dx.doi.org/10.1145/2462476.2462511
http://dx.doi.org/10.25080/Majora-4af1f417-002
http://dx.doi.org/10.25080/Majora-4af1f417-002
http://dx.doi.org/10.1016/s1574-0021(05)02016-2
http://dx.doi.org/10.1016/s1574-0021(05)02016-2
http://dx.doi.org/10.1109/mcse.2011.37
http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation
http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation
http://dx.doi.org/10.12688/f1000research.3-62.v2
http://dx.doi.org/10.12688/f1000research.3-62.v2
http://dx.doi.org/10.1145/1118178.1118215
http://dx.doi.org/10.1145/1118178.1118215
http://dx.doi.org/10.1109/icse.2003.1201220
http://dx.doi.org/10.1109/icse.2003.1201220

	Computing in Education and Science
	Econ-ARK: Discipline Specifics
	Case Study: Roles in Econ-ARK
	Case Study: Econ-ARK infrastructure
	Discussion
	References

