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Falsify your Software: validating scientific code with
property-based testing

Zac Hatfield-Dodds**

Abstract—Where traditional example-based tests check software using
manually-specified input-output pairs, property-based tests exploit a general
description of valid inputs and program behaviour to automatically search for
falsifying examples. Given that Python has excellent property-based testing
tools, such tests are often easier to work with and routinely find serious bugs
that all other techniques have missed.

| present four categories of properties relevant to most scientific projects,
demonstrate how each found real bugs in Numpy and Astropy, and propose
that property-based testing should be adopted more widely across the SciPy
ecosystem.

Index Terms—methods, software, validation, property-based testing

Introduction

Much research now depends on software for data collection, analy-
sis, and reporting; including on software produced and maintained
by researchers. This has empowered us enormously: it is hard to
imagine an analysis that was possible af all a generation ago which
could not be accomplished quickly by a graduate student today.

Unfortunately, this revolution in the power and sophistication
of our software has largely outstripped work on validation. While
it would be unthinkable to publish research based on custom-built
and unvalidated physical instruments, this is routine in software.
As an effect, [Soel5] estimates that

Any reported scientific result could very well be
wrong if data have passed through a computer, and these
errors may remain largely undetected'. It is therefore
necessary to greatly expand our efforts to validate scien-
tific software.

I argue that property-based testing [Mac] is more effective
for validation of Python programs than using only traditional
example-based tests?, and support this argument with a variety
of examples from well-known scientific Python projects.

This is a recent development: while the concept of property-
based testing dates back to 1999 [CHOO], early tools required deep
computer-science expertise. Since 2015, Hypothesis [MHDC19]
has made state-of-the-art testing technology available and acces-
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sible to non-experts in Python, and has added multiple features
designed for testing scientific programs® since 2019.

What is property-based testing?

Where example-based tests check for an exact expected output,
property-based tests make less precise but more general assertions.
By giving up hand-specification of the expected output, we gain
tests that can be run on a wide range of inputs.

This generality also guides our tests to the right level of
abstraction, and gives clear design feedback: where example-based
tests map one input to one output regardless of complexity, every
special case or interacting feature has to be addressed. Clean
abstractions which allow you to say "for all ...", without caveats,
stand in clear contrast and are a pleasure to test.

Tests which use random data are usually property-based, but
using a library designed for the task has several advantages:

« aconcise and expressive interface for describing inputs

o tests are never flaky - failing examples are cached and
replayed, even if the test failed on a remote build server

o automatic shrinking facilitates debugging by presenting a
minimal failing example for each distinct error

Automating these tedious tasks makes finding bugs consid-
erably faster, and debugging both easier and more fun. When
Hypothesis world-class shrinker [MD20] hands you a failing
example, you know that every feature is relevant - if any integer
could be smaller (without the test passing) it would be; if any list
could be shorter or sorted (ditto) it would be, and so on.

Why is this so effective?

Examples I wouldn’t think of reveal bugs I didn’t know were
possible. It turns out that general descriptions of your data have
several advantages over writing out specific examples, and that
these are even stronger for research code.

Input descriptions are concise. Writing out a Hypothesis
"strategy"* describing objects like a Numpy array or a Pandas
dataframe is often less code than a single instance, and clearly
expresses to readers what actually matters. The sheer tedium of
writing out representative test cases, without resorting to literally
random data, is a substantial deterrent to testing data analysis code;
with property-based testing you don’t have to.

1. and indeed [BNNL " 19] reported such a bug, affecting around 160 papers.

2. i.e. common workflows using pytest. If you have no automated tests at
all, fix that first, but your second test could reasonably use Hypothesis.

3. e.g. numeric-aware error reporting, first-class support for array shapes
including broadcasting and gufunc signatures, dtypes and indexers, etc.
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The system is designed to find bugs. Hypothesis also comes
packed with well-tuned heuristics and tools for finding bugs which
uniformly random data would almost never find - literal ’edge
cases’ in the space of possible inputs. In one memorable case a
new user was testing coordinate transformation logic, which fails
for singular matrices (a set of measure zero). Hypothesis knows
nothing at all about matrices, or even the topic of the test, but
promptly generated a failing example anyway.

Describe once, test everywhere. In a codebase with M
variations on the core data structures and N features, example-
based tests have M X N tests to write - and it’s all too easy to forget
to test the interaction of lesser-known features’. With property-
based tests those M variations can be designed into the strategies
which describe your data, scaling as M + N and ensuring that
nothing is forgotten®.

This scaling effect makes effective testing much easier for new
contributors, who do not need to consider all possible feature
interactions - they will arise naturally from the shared input
descriptions. For example, Hypothesis’ Numpy extension includes
tools to describe arrays, array shapes including broadcasting and
generalised ufunc signatures, scalar and structured dtypes, and
both basic and advanced indexing. Thinking carefully about what
inputs should be supported is usually a valuable exercise in itself!

We face multiple sources of uncertainty. When experimental
results come out weird, unpicking the unexpected behaviour of
your research domain from the possibility of equipment error or
software bugs is hard enough already. Property-based tests let you
verify more general behaviours of your code, and focus on the
domain rather than implementation details.

Properties and Case Studies

In this section I present four categories of properties. While not an
exhaustive list’, they are relevant to a very wide range of scientific
software - and when tested often uncover serious errors.

I also present case studies of real-world bugs® from the
SciPy stack, especially from foundational libraries like Numpy
[O1i06] and Astropy [ART'13] [PWSG™18]. While seriously
under-resourced given their importance to essentially all research
in their fields [Num] [eal6], they are well-engineered and no more
defect-prone than any comparable software. If it can happen to
them, it can certainly happen to you.

The bugs presented below were each discovered, reported, and
fixed within a few days thanks to a community-driven and open
source development model; and projects from Astropy to Xarray -
via Numpy and Pandas - have begun to adopt property-based tests.

Outputs within expected bounds

For many functions, the simplest property to check is that their
output is within some expected bound. These may be computa-

4. for historical reasons, Hypothesis calls input descriptions ’strategies’

5. e.g. signalling NaNs, zero-dimensional arrays, structured Numpy dtypes
with field titles in addition to names, explicit dtype padding or endianness, etc.
Possible combinations of such features are particularly neglected.

6. test “fixture’ systems scale similarly, but are less adaptable to individual
tests and can only be as effective as the explicit list of inputs they are given.

7. anotable omission is the "null property’, where you execute code on valid
inputs but do not make any assertions on its behaviour. This is shockingly
effective at triggering internal errors, even before use of assertions in the code
under test - and a simple enough technique to explain in a footnote!

8. preferring those which can be demonstrated and explained in only a few
lines, though we have found plenty more which cannot.

tional or logical bounds like the limits of probability as [0, 1], or
might be physical bounds like the temperature —273.15°C.

Consider the softmax function, as described by the SciPy
documentation’. This function is often used to convert a vector of
real numbers into a probability distribution, so we know that sum
should always be (approximately) equal to one. Let’s test that with
an example-based and a property-based test:

from hypothesis import given, strategies as st
import hypothesis.extra.numpy as npst

def softmax(x):

return np.exp(x) / np.exp(x).sum/()

def test_softmax_example () :
assert softmax(np.arange(5)) .sum() == 1

@given (npst.arrays (
dtype=float,
shape=npst.array_shapes(),
elements=st.floats(

allow_nan=False, allow_infinity=False

)

def test_softmax_property(arr) :
total = softmax(arr).sum()
np.testing.assert_almost_equal (total, 1)

While our example-based test passes for small arrays of small in-
tegers, the naive algorithm is numerically unstable! Our property-
based test fails almost instantly, showing us the minimal ex-
ample of overflow with np.exp ([710.1). If we instead use
np.exp(x - x.max () ), the test passes.

I will not argue that this kind of testing can substitute for
numerical analysis, but rather that it can easily be applied to
routines which would otherwise not be analysed at all.

A more sophisticated example of bounds testing comes
from recent work in Astropy'®, using Hypothesis to check that
conversions between different time scales did not unexpect-
edly lose precision'!. Astropy contributors wrote custom strate-
gies to incorporate bias towards leap-seconds (unrepresentable
in datetime.datetime), and an assert_almost_equal
helper which uses hypothesis.target () to guide the search
process towards larger errors.

These tests found that round-trip conversions could be off by
up to twenty microseconds over several centuries'” due to loss of
precision in datetime.timedelta.total_seconds().
This effort also contributed to improved error reporting around
the “threshold problem’'3, where a minimal failing example does
not distinguish between subtle and very serious bugs.

Round-trip properties

Whenever you have a pair of inverse functions, think of round-
trip testing. If you save and then load data, did you lose any? If

9. docs.scipy.org/doc/scipy/reference/generated/scipy.special.softmax.html

10. culminating in github.com/astropy/astropy/pull/10373

11. as background, Python’s builtin datetime.datetime type repre-
sents time as a tuple of integers for year, month, ..., seconds, microseconds; and
assumes UTC and the current Gregorian calendar extended in both directions.
By contrast astropy.time.Time represents time with a pair of 64-bit
floats; supports a variety of civil, geocentric, and barycentric time scales; and
maintains sub-nanosecond precision over the age of the universe!

12. while a 20us error might not sound like much, it is a hundred billion
times the quoted precision, and intolerable for e.g. multi-decade pulsar studies.

13. described in hypothesis.works/articles/threshold-problem/ and addressed
by github.com/HypothesisWorks/hypothesis/pull/2393
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you convert between two formats, or coordinate systems, can you
convert back?

These properties are remarkably easy to test, vitally important,
and often catch subtle bugs due to the complex systems interac-
tions. It is often worth investing considerable effort to describe
all valid data, so that examples can be generated with very rare
feature combinations.

If you write only one test based on this paper, try to save and
load any valid data.

I have consistently found testing IO round-trips to be among
the easiest and most rewarding property tests I write. My own
earliest use of Hypothesis came after almost a month trying to
track down data corruption issues in multi-gigabyte PLY files.
Within a few hours I wrote a strategy to generate PLY objects,
executed the test, and discovered that our problems were due to
mishandling of whitespace in the file header'*.

Even simple tests are highly effective though - consider as an
example

@given (st.text (st.characters())
.map (lambda s: s.rstrip("\x00")))
def test_unicode_arrays_property(string):
assert string == np.array([string]) [0]

This is a more useful test that it might seem: after working around
null-termination of strings, we can still detect a variety of issues
with length-aware dtypes, Unicode version mismatches, or string
encodings. A very similar test did in fact find an encoding error'>,
which was traced back to a deprecated - and promptly removed -

compatibility workaround to support 'narrow builds’ of Python 2.

Differential testing

Running the same input through your code and through a trusted -
or simply different - implementation is another widely applicable
property: any difference in the outputs indicates that at least one of
them has a bug. Common sources of alternative implementations
include:

Another project or language. If you aim to duplicate func-
tionality from an existing project, you can check that your results
are identical for whatever overlap exists in the features of the two
projects. This might involve cross-language comparisons, or be as
simple as installing an old version of your code from before a
significant re-write.

A toy or brute-force implementation which only works for
small inputs might be out of the question for *production’ use, but
can nonetheless be useful for testing. Alternatively, differential
testing can support ambitious refactoring or performance optimi-
sations - taking existing code with "obviously no bugs" and using
it to check a faster version with "no obvious bugs".

Varying unrelated parameters such as performance hints
which are not expected to affect the calculated result. Combining
this and the previous tactic, try comparing single-threaded vs.
multi-threaded mode - while some care is required to ensure
determinism it is often worth the effort.

As our demonstration, consider the numpy . e i nsum function
and two tests. The example-based test comes from the Numpy
test suite; and the property-based test is a close translation - it
still requires two-dimensional arrays, but allows the shapes and
contents to vary. Note that both are differential tests!

14. github.com/dranjan/python-plyfile/issues/9
15. github.com/numpy/numpy/issues/15363
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def test_einsum_example () :
p = np.ones (shape=(10, 2))
g = np.ones (shape=(1, 2))
assert_array_equal (
np.einsum("ij,i3->3", p, q,
np.einsum("1ij,1j->3", p, q,

optimize=True),
optimize=False)

)

Qgiven (
data=st.data(),
dtype=npst.integer_dtypes(),
shape=npst.array_shapes (min_dims=2, max_dims=2),

def test_einsum_property (data,
p = data.draw (npst.arrays (dtype,
g = data.draw(npst.arrays (dtype,
assert_array_equal( ... ) # as

dtype, shape):

shape))
shape))
above

When an  optimisation to  avoid  dispatching to
numpy.tensordot over a dimension of size one was
added, the example-based test kept passing - despite
the bug if 1 in operands[n] instead of if 1 in
operands [n] .shape!®. This bug could only be triggered
with optimize=True and an input array with a dimension of
size one, xor containing the integer 1. This kind of interaction is
where property-based testing really shines.

There’s another twist to this story though: the bug was actually
identified downstream of Numpy, when Ryan Soklaski was testing
that Tensors from his auto-differentiation library MyGrad [Sok]
were in fact substitutable for Numpy arrays!’. He later said of
property-based tests that!®

It would have been impossible for me to implement
a trustworthy autograd library for my students to learn
from and contribute to if it weren’t for Hypothesis.

Metamorphic properties

A serious challenge when testing research code is that the correct
result may be genuinely unknown - and running the shiny new
simulation or analysis code is the only way to get any result at
all. One very powerful solution is to compare several input-output
pairs, instead of attempting to analyse one in isolation:

A test oracle determines whether a test execution
reveals a fault, often by comparing the observed program
output to the expected output. This is not always practi-
cal... Metamorphic testing provides an alternative, where
correctness is not determined by checking an individual
concrete output, but by applying a transformation to
a test input and observing how the program output
“morphs” into a different one as a result. [SFSR16]

Let’s return to softmax as an example. We can state general
properties about a single input-output pair such as "all elements of
the output are between zero and one", or "the sum of output ele-
ments is approximately equal to one"'®. A metamorphic property
we could test is scale-invariance: multiplying the input elements
by a constant factor should leave the output approximately un-
changed.

@given(arr=..., factor=st.floats(-1000, 1000))
def test_softmax_metamorphic_property (arr, factor):

16. github.com/numpy/numpy/issues/10930

17. making test_einsum_property a differential test derived from a
derivative auto-differentiator.

18. github.com/HypothesisWorks/hypothesis/issues/1641
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result = softmax(arr)
scaled = softmax(arr = factor)

np.testing.assert_almost_equal (result, scaled)

Astropy’s tests for time precision include metamorphic as well as
round-trip properties: several assert that given a Time, adding a
tiny timedelta then converting it to another time scale is almost
equal to converting and then adding.

Metamorphic properties based on domain knowledge are par-
ticularly good for testing "untestable" code. In bioinformatics,
[CHLXO09] presents testable properties for gene regulatory net-
works and short sequence mapping>?, and found a bug attributable
to the specification - not just implementation errors. METTLE
[XZC*20] proposes eleven generic metamorphic properties for
unsupervised machine-learning sytems®', and studies their use as
an aid to end-users selecting an appropriate algorithm in domains
from LIDAR to DNA sequencing.

Conclusion

Example-based tests provide anecdotal evidence for validity, in
that the software behaves as expected on a few known and
typically simple inputs. Property-based tests require a precise
description of possible inputs and a more general specification, but
then automate the search for falsifying counter-examples. They are
quick to write, convenient to work with, and routinely find serious
bugs that all other techniques had missed.

I argue that this Popperian approach is superior to the status
quo of using only example-based tests, and hope that the property-
based revolution comes quickly.
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