
PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014) 65

Validated numerics with Python: the ValidiPy package

David P. Sanders‡∗, Luis Benet§

F

Abstract—We introduce the ValidiPy package for validated numerics in Python.
This suite of tools, which includes interval arithmetic and automatic differenti-
ation, enables rigorous and guaranteed results using floating-point arithmetic.
We apply the ValidiPy package to two classic problems in dynamical systems,
calculating periodic points of the logistic map, and simulating the dynamics of a
chaotic billiard model.

Index Terms—validated numerics, Newton method, floating point, interval arith-
metic

Floating-point arithmetic

Scientific computation usually requires the manipulation of real
numbers. The standard method to represent real numbers inter-
nally in a computer is floating-point arithmetic, in which a real
number a is represented as

a =±2e×m.

The usual double-precision (64-bit) representation is that of the
IEEE 754 standard [IEEE754]: one bit is used for the sign, 11 bits
for the exponent e, which ranges from −1022 to +1023, and the
remaining 52 bits are used for the "mantissa" m, a binary string of
53 bits, starting with a 1 which is not explicitly stored.

However, most real numbers are not explicitly representable in
this form, for example 0.1, which in binary has the infinite periodic
expansion

0.0 0011 0011 0011 0011 . . . ,

in which the pattern 0011 repeats forever. Representing this in a
computer with a finite number of digits, via truncation or rounding,
gives a number that differs slightly from the true 0.1, and leads to
the following kinds of problems. Summing 0.1 many times -- a
common operation in, for example, a time-stepping code, gives
the following unexpected behaviour.
a = 0.1

total = 0.0

print("%20s %25s" % ("total", "error"))
for i in xrange(1000):

if i%100 == 0 and i>0:
error = total - i/10

* Corresponding author: dpsanders@ciencias.unam.mx
‡ Department of Physics, Faculty of Sciences, National Autonomous University
of Mexico (UNAM), Ciudad Universitaria, México D.F. 04510, Mexico
§ Institute of Physical Sciences, National Autonomous University of Mexico
(UNAM), Apartado postal 48-3, Cuernavaca 62551, Morelos, Mexico

Copyright © 2014 David P. Sanders et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

print("%20.16g %25.16g" % (total, error))
total += a

total error
9.99999999999998 -1.953992523340276e-14
20.00000000000001 1.4210854715202e-14
30.00000000000016 1.56319401867222e-13
40.0000000000003 2.984279490192421e-13
50.00000000000044 4.405364961712621e-13
60.00000000000058 5.826450433232822e-13
70.0000000000003 2.984279490192421e-13
79.99999999999973 -2.700062395888381e-13
89.99999999999916 -8.384404281969182e-13

Here, the result oscillates in an apparently "random" fashion
around the expected value.

This is already familiar to new users of any programming lan-
guage when they see the following kinds of outputs of elementary
calculations [Gold91]:

3.2 * 4.6

14.719999999999999

Suppose that we now apply an algorithm starting with an initial
condition x0 = 0.1. The result will be erroneous, since the initial
condition used differs slightly from the desired value. In chaotic
systems, for example, such a tiny initial deviation may be quickly
magnified and destroy all precision in the computation. Although
there are methods to estimate the resulting errors [High96], there
is no guarantee that the true result is captured. Another example is
certain ill-conditioned matrix computations, where small changes
to the matrix lead to unexpectedly large changes in the result.

Interval arithmetic

Interval arithmetic is one solution for these difficulties. In this
method, developed over the last 50 years but still relatively
unknown in the wider scientfic community, all quantities in a
computation are treated as closed intervals of the form [a,b]. If
the initial data are contained within the initial intervals, then the
result of the calculation is guaranteed to contain the true result.
To accomplish this, the intervals are propagated throughout the
calculation, based on the following ideas:

1) All intervals must be correctly rounded: the lower limit
a of each interval is rounded downwards (towards −∞)
and the upper limit b is rounded upwards (towards +∞).
[The availability of these rounding operations is stan-
dard on modern computing hardware.] In this way, the
interval is guaranteed to contain the true result. If we
do not apply rounding, then this might not be the case;
for example, the interval given by I = Interval(0.1,0.2)

http://en.wikipedia.org/wiki/IEEE_floating_point
mailto:dpsanders@ciencias.unam.mx

66 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

does not actually contain the true 0.1 if the stan-
dard floating-point representation for the lower end-
point is used; instead, this lower bound corresponds to
0.10000000000000000555111

2) Arithmetic operations are defined on intervals, such that
the result of an operation on a pair of intervals is the
interval that is the result of performing the operation on
any pair of numbers, one from each interval.

3) Elementary functions are defined on intervals, such that
the result of an elementary function f applied to an
interval I is the image of the function over that interval,
f (I) := { f (x) : x ∈ I}.

For example, addition of two intervals is defined as

[a,b]+ [c,d] := {x+ y : x ∈ [a,b],y ∈ [c,d]},

which turns out to be equivalent to

[a,b]+ [c,d] := [a+ c,b+d].

The exponential function applied to an interval is defined as

exp([a,b]) := [exp(a),exp(b)],

giving the exact image of the monotone function exp evaluated
over the interval.

Once all required operations and elementary functions (such as
sin, exp etc.) are correctly defined, and given a technical condition
called "inclusion monotonicity", for any function f : R→R made
out of a combination of arithmetic operations and elementary
functions, we may obtain the interval extension f̃ . This is a
"version" of the function which applies to intervals, such that
when we apply f̃ to an interval I, we obtain a new interval
f̃ (I) that is guaranteed to contain the true, mathematical image
f (I) := { f (x) : x ∈ I}.

Unfortunately, f̃ (I) may be strictly larger than the true image
f (I), due to the so-called dependency problem. For example, let
I := [−1,1]. Suppose that f (x) := x∗x, i.e. that we wish to square
all elements of the interval. The true image of the interval I is then
f (I) = [0,1].

However, thinking of the squaring operation as repeated mul-
tiplication, we may try to calculate

I ∗ I := {xy : x ∈ I,y ∈ I}.

Doing so, we find the larger interval [−1,1], since we "do not
notice" that the x’s are "the same" in each copy of the interval;
this, in a nutshell, is the dependency problem.

In this particular case, there is a simple solution: we calculate
instead I2 := {x2 : x ∈ I}, so that there is only a single copy of I
and the true image is obtained. However, if we consider a more
complicated function like f (x) = x+ sin(x), there does not seem
to be a generic way to solve the dependency problem and hence
find the exact range.

This problem may, however, be solved to an arbitrarily good
approximation by splitting up the initial interval into a union of
subintervals. When the interval extension is instead evaluated over
those subintervals, the union of the resulting intervals gives an
enclosure of the exact range that is increasingly better as the size
of the subintervals decreases [Tuck11].

Validated numerics: the ValidiPy package

The name "validated numerics" has been applied to the com-
bination of interval arithmetic, automatic differentiation, Taylor
methods and other techniques that allow the rigorous solution of
problems using finite-precision floating point arithmetic [Tuck11].

The ValidiPy package, a Python package for validated
numerics, was initiated during a Masters’ course on validated nu-
merics that the authors taught in the Postgraduate Programmes in
Mathematics and Physics at the National Autonomous University
of Mexico (UNAM) during the second half of 2013. It is based
on the excellent textbook Validated Numerics by Warwick Tucker
[Tuck11], one of the foremost proponents of interval arithmetic
today. He is best known for [Tuck99], in which he gave a rigorous
proof of the existence of the Lorenz attractor, a strange (fractal,
chaotic) attractor of a set of three ordinary differential equations
modelling convection in the atmosphere that were computationally
observed to be chaotic in 1963 [Lorenz].

Naturally, there has been previous work on implementing the
different components of Validated Numerics in Python, such as
pyinterval and mpmath for interval arithmetic, and AlgoPy for
automatic differentiation. Our project is designed to provide an
understandable and modifiable code base, with a focus on ease of
use, rather than speed.

An incomplete sequence of IPython notebooks from the
course, currently in Spanish, provide an introduction to the theory
and practice of interval arithmetic; they are available on GitHub
and for online viewing at NbViewer.

Code in Julia is also available, in our package
ValidatedNumerics.jl [ValidatedNumerics].

Implementation of interval arithmetic

As with many other programming languages, Python allows us
to define new types, as class es, and to define operations on
those types. The following working sketch of an Interval
class may be extended to a full-blown implementation (which, in
particular, must include directed rounding; see below), available
in the [ValidiPy] repository.

class Interval(object):
def __init__(self, a, b=None):

constructor

if b is None:
b = a

self.lo = a
self.hi = b

def __add__(self, other):
if not isinstance(other, Interval):

other = Interval(other)
return Interval(self.lo+other.lo,

self.hi+other.hi)

def __mul__(self, other):
if not isinstance(other, Interval):

other = Interval(other)

S = [self.lo*other.lo, self.lo*other.hi,
self.hi*other.lo, self.hi*other.hi]

return Interval(min(S), max(S))

def __repr__(self):
return "[{}, {}]".format(self.lo, self.hi)

Examples of creation and manipulation of intervals:

https://code.google.com/p/pyinterval/
http://mpmath.org/
https://pythonhosted.org/algopy/
https://github.com/computo-fc/metodos_rigurosos/tree/master/clases
http://nbviewer.ipython.org/github/computo-fc/metodos_rigurosos/tree/master/clases/

VALIDATED NUMERICS WITH PYTHON: THE VALIDIPY PACKAGE 67

i = Interval(3)
i

[3, 3]

i = Interval(-3, 4)
i

[-3, 4]

i * i

[-12, 16]

def f(x):
return x*x + x + 2

f(i)

[-13, 22]

To attain multiple-precision arithmetic and directed rounding, we
use the gmpy2 package [gmpy2]. This provides a wrapper around
the MPFR [MPFR] C package for correctly-rounded multiple-
precision arithmetic [Fous07]. For example, a simplified version
of the Interval constructor may be written as follows, showing
how the precision and rounding modes are manipulated using the
gmpy2 package:

import gmpy2
from gmpy2 import RoundDown, RoundUp

ctx = gmpy2.get_context()

def set_interval_precision(precision):
gmpy2.get_context().precision = precision

def __init__(self, a, b=None):
ctx.round = RoundDown
a = mpfr(str(a))

ctx.round = RoundUp
b = mpfr(str(b))

self.lo, self.hi = a, b

Each arithmetic and elementary operation must apply directed
rounding in this way at each step; for example, the implemen-
tations of multiplication and exponentiation of intervals are as
follows:

def __mult__(self,other):

ctx.round = RoundDown
S_lower = [self.lo*other.lo, self.lo*other.hi,

self.hi*other.lo, self.hi*other.hi]
S1 = min(S_lower)

ctx.round = RoundUp
S_upper = [self.lo*other.lo, self.lo*other.hi,

self.hi*other.lo, self.hi*other.hi]
S2 = max(S_upper)

return Interval(S1, S2)

def exp(self):
ctx.round = RoundDown
lower = exp(self.lo)

ctx.round = RoundUp

upper = exp(self.hi)

return Interval(lower, upper)

The Interval Newton method

As applications of interval arithmetic and of ValidiPy, we will
discuss two classical problems in the area of dynamical systems.
The first is the problem of locating all periodic orbits of the
dynamics, with a certain period, of the well-known logistic map.
To do so, we will apply the Interval Newton method.

The Newton (or Newton--Raphson) method is a standard
algorithm for finding zeros, or roots, of a nonlinear equation, i.e.
x∗ such that f (x∗) = 0, where f : R→ R is a nonlinear function.

The Newton method starts from an initial guess x0 for the root
x∗, and iterates

xn+1 = xn−
f (xn)

f ′(xn)
,

where f ′ : R→ R is the derivative of f . This formula calculates
the intersection of the tangent line to the function f at the point xn
with the x-axis, and thus gives a new estimate of the root.

If the initial guess is sufficiently close to a root, then this
algorithm converges very quickly ("quadratically") to the root: the
number of correct digits doubles at each step.

However, the standard Newton method suffers from problems:
it may not converge, or may converge to a different root than the
intended one. Furthermore, there is no way to guarantee that all
roots in a certain region have been found.

An important, but too little-known, contribution of interval
analysis is a version of the Newton method that is modified to
work with intervals, and is able to locate all roots of the equation
within a specified interval I, by isolating each one in a small sub-
interval, and to either guarantee that there is a unique root in each
of those sub-intervals, or to explicitly report that it is unable to
determine existence and uniqueness.

To understand how this is possible, consider applying the
interval extension f̃ of f to an interval I. Suppose that the image
f̃ (I) does not contain 0. Since f (I) ⊂ f̃ (I), we know that f (I)
is guaranteed not to contain 0, and thus we guarantee that there
cannot be a root x∗ of f inside the interval I. On the other hand, if
we evaluate f at the endpoints a and b of the interval I = [a,b] and
find that f (a) < 0 < f (b) (or vice versa), then we can guarantee
that there is at least one root within the interval.

The Interval Newton method does not just naively extend the
standard Newton method. Rather, a new operator, the Newton
operator, is defined, which takes an interval as input and returns
as output either one or two intervals. The Newton operator for the
function f is defined as

N f (I) := m− f (m)

f̃ ′(I)
,

where m := m(I) is the midpoint of the interval I, which may
be treated as a (multi-precision) floating-point number, and f̃ ′(I)
is an interval extension of the derivative f ′ of f . This interval
extension may easily be calculated using automatic differentiation
(see below). The division is now a division by an interval, which
is defined as for the other arithmetic operations. In the case when
the interval f̃ ′(I) contains 0, this definition leads to the result
being the union of two disjoint intervals: if I = [−a,b] with a >
0 and b > 0, then we define 1/I = (1/[−a,−0])∪ (1/[0,b]) =
[−∞,−1/a]∪ [1/b,∞].

68 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Fig. 1: Convergence of the Interval Newton method to the roots of 2.

The idea of this definition is that the result of applying the
operator N f to an interval I will necessarily contain the result of
applying the standard Newton operator at all points of the interval,
and hence will contain all possible roots of the function in that
interval.

Indeed, the following strong results may be rigorously proved
[Tuck11]: 1. If N f (I)∩ I = /0, then I contains no zeros of f ; 2. If
N f (I)⊂ I, then I contains exactly one zero of f .

If neither of these options holds, then the interval I is split into
two equal subintervals and the method proceeds on each. Thus
the Newton operator is sufficient to determine the presence (and
uniqueness) or absence of roots in each subinterval.

Starting from an initial interval I0, and iterating In+1 := In ∩
N f (In), gives a sequence of lists of intervals that is guaranteed
to contain the roots of the function, as well as a guarantee of
uniqueness in many cases.

The code to implement the Interval Newton method com-
pletely is slightly involved, and may be found in an IPython note-
book in the examples directory at <https://github.com/computo-
fc/ValidiPy/tree/master/examples>.

An example of the Interval Newton method in action is shown
in figure 1, where it was used to find the roots of f (x) = x2− 2
within the initial interval [−5,5]. Time proceeds vertically from
bottom to top.

Periodic points of the logistic map

An interesting application of the Interval Newton method is to
dynamical systems. These may be given, for example, as the
solution of systems of ordinary differential equations, as in the
Lorenz equations [Lor63], or by iterating maps. The logistic map
is a much-studied dynamical system, given by the map

f (x) := fr(x) := rx(1− x).

The dynamics is given by iterating the map:

xn+1 = f (xn),

so that
xn = f (f (f (· · ·(x0) · · ·))) = f n(x0),

where f n denotes f ◦ f ◦· · ·◦ f , i.e. f composed with itself n times.
Periodic points play a key role in dynamical system: these are

points x such that f p(x) = x; the minimal p > 0 for which this

is satisfied is the period of x. Thus, starting from such a point,
the dynamics returns to the point after p steps, and then eternally
repeats the same trajectory. In chaotic systems, periodic points are
dense in phase space [Deva03], and properties of the dynamics
may be calculated in terms of the periodic points and their
stability properties [ChaosBook]. The numerical enumeration of
all periodic points is thus a necessary part of studying almost any
such system. However, standard methods usually do not guarantee
that all periodic points of a given period have been found.

On the contrary, the Interval Newton method, applied to the
function gp(x) := f p(x)− x, guarantees to find all zeros of the
function gp, i.e. all points with period at most p (or to explicitly
report where it has failed). Note that this will include points of
lower period too; thus, the periodic points should be enumerated
in order of increasing period, starting from period 1, i.e. fixed
points x such that f (x) = x.

To verify the application of the Interval Newton method to
calculate periodic orbits, we use the fact that the particular case of
f4 the logistic map with r = 4 is conjugate (related by an invertible
nonlinear change of coordinates) to a simpler map, the tent map,
which is a piecewise linear map from [0,1] onto itself, given by

T (x) :=

{
2x, if x < 1

2 ;
2−2x, if x > 1

2 .

The nth iterate of the tent map has 2n "pieces" (or "laps") with
slopes of modulus 2n, and hence exactly 2n points that satisfy
T n(x) = x.

The ith "piece" of the nth iterate (with i = 0, . . . ,2n− 1) has
equation

T n
i (x) =

{
2nx− i, if i is even and i

2n ≤ x < i+1
2n

i+1−2nx, if i is odd and i
2n ≤ x < i+1

2n

Thus the solution of T n
i (x) = x satisfies

xn
i =

{
i

2n−1 , if i is even;
i+1

1+2n , if i is odd,

giving the 2n points which are candidates for periodic points of
period n. (Some are actually periodic points with period p that is
a proper divisor of n, satisfying also T p(x) = x.) These points are
shown in figure 2.

It turns out [Ott] that the invertible change of variables

x = h(y) = sin2(πy
2)

converts the sequence (yn), given by iterating the tent map,

yn+1 = T (yn),

into the sequence (xn) given by iterating the logistic map f4,

xn+1 = f4(xn) = 4xn(1− xn).

Thus periodic points of the tent map, satisfying T m(y) = y, are
mapped by h into periodic points x of the logistic map, satisfying
T m(x) = x, shown in figure 3.

The following table (figure 4) gives the midpoint of the
intervals containing the fixed points x such that f 4

4 (x) = x of the
logistic map, using the Interval Newton method with standard
double precision, and the corresponding exact values using the
correspondence with the tent map, together with the difference.
We see that the method indeed works very well. However, to find
periodic points of higher period, higher precision must be used.

https://github.com/computo-fc/ValidiPy/tree/master/examples
https://github.com/computo-fc/ValidiPy/tree/master/examples

VALIDATED NUMERICS WITH PYTHON: THE VALIDIPY PACKAGE 69

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2: Periodic points of the tent map with period dividing 4.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3: Periodic points of the logistic map with period dividing 4.

Automatic differentiation

A difficulty in implementing the Newton method (even for the
standard version), is the calculation of the derivative f ′ at a given
point a. This may be accomplished for any function f by auto-
matic (or algorithmic) differentiation, also easily implemented in
Python.

The basic idea is that to calculate f ′(a), we may split a
complicated function f up into its constituent parts and propagate
the values of the functions and their derivatives through the
calculations. For example, f may be the product and/or sum of

 0.0000000000000000 0.0000000000000000 0.0000000000000000
 0.0337638852978221 0.0337638852978221 -0.0000000000000000
 0.0432272711786996 0.0432272711786995 0.0000000000000000
 0.1304955413896703 0.1304955413896704 -0.0000000000000001
 0.1654346968205710 0.1654346968205709 0.0000000000000001
 0.2771308221117308 0.2771308221117308 0.0000000000000001
 0.3454915028125262 0.3454915028125263 -0.0000000000000001
 0.4538658202683487 0.4538658202683490 -0.0000000000000003
 0.5522642316338270 0.5522642316338265 0.0000000000000004
 0.6368314950360415 0.6368314950360414 0.0000000000000001
 0.7500000000000000 0.7499999999999999 0.0000000000000001
 0.8013173181896283 0.8013173181896283 0.0000000000000000
 0.9045084971874738 0.9045084971874736 0.0000000000000002
 0.9251085678648071 0.9251085678648070 0.0000000000000001
 0.9890738003669028 0.9890738003669027 0.0000000000000001
 0.9914865498419509 0.9914865498419507 0.0000000000000002

Fig. 4: Period 4 points: calculated, exact, and the difference.

simpler functions. To combine information on functions u and v,
we use

(u+ v)′(a) = u′(a)+ v′(a),

(uv)′(a) = u′(a)v(a)+u(a)v′(a),

(g(u))′(a) = g′(u(a))u′(a).

Thus, for each function u, it is sufficient to represent it as an
ordered pair (u(a),u′(a)) in order to calculate the value and
derivative of a complicated function made out of combinations
of such functions.

Constants C satisfy C′(a) = 0 for all a, so that they are repre-
sented as the pair (C,0). Finally, the identity function id : x 7→ x
has derivative id′(a) = 1 at all a.

The mechanism of operator overloading in Python allows us
to define an AutoDiff class. Calculating the derivative of a
function f(x) at the point a is then accomplished by calling
f(AutoDiff(a, 1)) and extracting the derivative part.

class AutoDiff(object):
def __init__(self, value, deriv=None):

if deriv is None:
deriv = 0.0

self.value = value
self.deriv = deriv

def __add__(self, other):
if not isinstance(other, AutoDiff):

other = AutoDiff(other)

return AutoDiff(self.value+other.value,
self.deriv+other.deriv)

def __mul__(self, other):
if not isinstance(other, AutoDiff):

other = AutoDiff(other)

return AutoDiff(self.value*other.value,
self.value*other.deriv +
self.deriv*other.value)

def __repr__(self):
return "({}, {})".format(

self.value, self.deriv)

As a simple example, let us differentiate the function f (x) = x2 +
x+2 at x = 3. We define the function in the standard way:

def f(x):
return x*x + x + 2

70 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

We now define a variable a where we wish to calculate the
derivative and an object x representing the object that we will use
in the automatic differentiation. Since it represents the function
x→ x evaluated at a, it has derivative 1:

a = 3
x = AutoDiff(a, 1)

Finally, we simply apply the standard Python function to this new
object, and the automatic differentiation takes care of the rest:

result = f(x)
print("a={}; f(a)={}; f'(a)={}".format(

a, result.value, result.deriv))

giving the result

a=3; f(a)=14; f'(a)=7.0

The derivative f ′(x) = 2x+ 1, so that f (a = 3) = 14 and f ′(a =
3) = 7. Thus both the value of the function and its derivative have
been calculated in a completely automatic way, by applying the
rules encoded by the overloaded operators.

Simulating a chaotic billiard model

A dynamical system is said to be chaotic if it satisfies certain
conditions [Deva03], of which a key one is sensitive dependence
on initial conditions: two nearby initial conditions separate expo-
nentially fast.

This leads to difficulties if we want precise answers on the
long-term behaviour of such systems, for example simulating the
solar system over millions of years [Lask13]. For certain types
of systems, there are shadowing theorems, which say that an
approximate trajectory calculated with floating point arithmetic,
in which a small error is committed at each step, is close to a true
trajectory [Palm09]; however, these results tend to be applicable
only for rather restricted classes of systems which do not include
those of physical interest.

Interval arithmetic provides a partial solution to this problem,
since it automatically reports the number of significant figures in
the result which are guaranteed correct. As an example, we show
how to solve one of the well-known "Hundred-digit challenge
problems" [Born04], which consists of calculating the position
from the origin in a certain billiard problem.

Billiard problems are a class of mathematical models in which
pointlike particles (i.e. particles with radius 0) collide with fixed
obstacles. They can be used to study systems of hard discs or hard
spheres with elastic collisions, and are also paradigmatic examples
of systems which can be proved to be chaotic, since the seminal
work of Sinaï [Chern06].

Intuitively, when two nearby rays of light hit a circular mirror,
the curvature of the surface leads to the rays separating after
they reflect from the mirror. At each such collision, the distance
in phase space between the rays is, on average, multiplied by
a factor at each collision, leading to exponential separation and
hence chaos, or hyperbolicity.

The trajectory of a single particle in such a system will hit a
sequence of discs. However, a nearby initial condition may, after
a few collisions, miss one of the discs hit by the first particle,
and will then follow a completely different future trajectory. With
standard floating-point arithmetic, there is no information about
when this occurs; interval arithmetic can guarantee that this has
not occurred, and thus that the sequence of discs hit is correct.

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Fig. 5: Trajectory of the billiard model up to time 10; the black dot
shows the initial position.

The second of the Hundred-digit challenge problems [Born04]
is as follows:

A point particle bounces off fixed discs of radius 1
3 , placed at

the points of a square lattice with unit distance between neigh-
bouring points. The particle starts at (x,y) = (0.5,0.1), heading
due east with unit speed, i.e. with initial velocity (1,0). Calculate
the distance from the origin of the particle at time t = 10, with 10
correct significant figures.

To solve this, we use a standard implementation of the billiard
by treating it as a single copy of a unit cell, centred at the origin
and with side length 1, and periodic boundary conditions. We keep
track of the cell that is reached in the corresponding "unfolded"
version in the complete lattice.

The code used is a standard billiard code, that may be written
in an identical way to use either standard floating-point method or
interval arithmetic using ValidiPy, changing only the initial
conditions to use intervals instead of floating-point variables.
Since 0.1 and 1/3 are not exactly representable, they are replaced
by the smallest possible intervals containing the true values, using
directed rounding as discussed above.

It turns out indeed to be necessary to use multiple precision
in the calculation, due to the chaotic nature of the system. In
fact, our algorithm requires a precision of at least 96 binary digits
(compared to standard double precision of 53 binary digits) in
order to guarantee that the correct trajectory is calculated up to
time t = 10. With fewer digits than this, a moment is always
reached at which the intervals have grown so large that it is not
guaranteed whether a given disc is hit or not. The trajectory is
shown in figure 5.

With 96 digits, the uncertainty on the final distance, i.e. the
diameter of the corresponding interval, is 0.0788. As the number
of digits is increased, the corresponding uncertainty decreases
exponentially fast, reaching 4.7× 10−18 with 150 digits, i.e. at
least 16 decimal digits are guaranteed correct.

VALIDATED NUMERICS WITH PYTHON: THE VALIDIPY PACKAGE 71

Extensions

Intervals in higher dimensions

The ideas and methods of interval arithmetic may also be applied
in higher dimensions. There are several ways of defining intervals
in 2 or more dimensions [Moo09]. Conceptually, the simplest is
perhaps to take the Cartesian product of one-dimensional intervals:

I = [a,b]× [c,d]

We can immediately define, for example, functions like f (x,y) :=
x2 + y2 and apply them to obtain the corresponding interval ex-
tension f̃ ([a,b], [c,d]) := [a,b]2 +[c,d]2, which will automatically
contain the true image f (I). Similarly, functions f : R2→R2 will
give an interval extension producing a two-dimensional rectangu-
lar interval. However, the result is often much larger than the true
image, so that the subdivision technique must be applied.

Taylor series

An extension of automatic differentiation is to manipulate Taylor
series of functions around a point, so that the function u is
represented in a neighbourhood of the point a by the tuple
(a,u′(a),u′′(a), . . . ,u(n)(a)). Recurrence formulas allow these to
be manipulated relatively efficiently. These may be used, in
particular, to implement arbitrary-precision solution of ordinary
differential equations.

An implementation in Python is available in ValidiPy, while
an implementation in the Julia is available separately, including
Taylor series in multiple variables [TaylorSeries].

Conclusions

Interval arithmetic is a powerful tool which has been, perhaps,
under-appreciated in the wider scientific community. Our contri-
bution is aimed at making these techniques more widely known,
in particular at including them in courses at masters’, or even un-
dergraduate, level, with working, freely available code in Python
and Julia.

Acknowledgements

The authors thank Matthew Rocklin for helpful comments during
the open refereeing process, which improved the exposition. Fi-
nancial support is acknowledged from DGAPA-UNAM PAPIME
grants PE-105911 and PE-107114, and DGAPA-UNAM PAPIIT
grants IG-101113 and IN-117214. LB acknowledges support
through a Cátedra Moshinsky (2013).

REFERENCES

[IEEE754] IEEE Standard for Floating-Point Arithmetic, 2008,
IEEE Std 754-2008.

[Gold91] D. Goldberg (1991), What Every Computer Scientist
Should Know About Floating-Point Arithmetic, ACM
Computing Surveys 23 (1), 5-48.

[High96] N.J. Higham (1996), Accuracy and Stability of Numeri-
cal Algorithms, SIAM.

[Tuck11] W. Tucker (2011), Validated Numerics: A Short Intro-
duction to Rigorous Computations, Princeton University
Press.

[Tuck99] W. Tucker, 1999, The Lorenz attractor exists, C. R. Acad.
Sci. Paris Sér. I Math. 328 (12), 1197-1202.

[ValidiPy] D.P. Sanders and L. Benet, ValidiPy package for
Python, <https://github.com/computo-fc/ValidiPy>

[ValidatedNumerics] D.P. Sanders and L. Benet,
ValidatedNumerics.jl package for Julia,
<https://github.com/dpsanders/ValidatedNumerics.jl>

[gmpy2] GMPY2 package, <https://code.google.com/p/gmpy>
[MPFR] MPFR package, <http://www.mpfr.org>
[Fous07] L. Fousse et al. (2007), MPFR: A multiple-precision

binary floating-point library with correct rounding, ACM
Transactions on Mathematical Software 33 (2), Art. 13.

[Lor63] E.N. Lorenz (1963), Deterministic nonperiodic flow, J.
Atmos. Sci. 20 (2), 130-141.

[ChaosBook] P. Cvitanović et al. (2012), Chaos: Classical and Quan-
tum, Niels Bohr Institute. <http://ChaosBook.org>

[Ott] E. Ott (2002), Chaos in Dynamical Systems, 2nd edition,
Cambridge University Press.

[Deva03] R.L. Devaney (2003), An Introduction to Chaotic Dy-
namical Systems, Westview Press.

[Lask13] J. Laskar (2013), Is the Solar System Stable?, in Chaos:
Poincaré Seminar 2010 (chapter 7), B. Duplantier, S.
Nonnenmacher and V. Rivasseau (eds).

[Palm09] K.J. Palmer (2009), Shadowing lemma for flows,
Scholarpedia 4 (4). http://www.scholarpedia.org/article/
Shadowing_lemma_for_flows

[Born04] F. Bornemann, D. Laurie, S. Wagon and J. Waldvogel
(2004), The SIAM 100-Digit Challenge: A Study in
High-Accuracy Numerical Computing, SIAM.

[Chern06] N. Chernov and R. Markarian (2006), Chaotic Billiards,
AMS.

[TaylorSeries] L. Benet and D.P. Sanders, TaylorSeries package,
<https://github.com/lbenet/TaylorSeries.jl>

[Moo09] R.E. Moore, R.B. Kearfott and M.J. Cloud (2009),
Introduction to Interval Analysis, SIAM.

[Lorenz] E.N. Lorenz (1963), Deterministic nonperiodic flow, J.
Atmos. Sci 20 (2), 130-148.

https://github.com/computo-fc/ValidiPy
https://github.com/dpsanders/ValidatedNumerics.jl
https://code.google.com/p/gmpy
http://www.mpfr.org
http://ChaosBook.org
http://www.scholarpedia.org/article/Shadowing_lemma_for_flows
http://www.scholarpedia.org/article/Shadowing_lemma_for_flows
https://github.com/lbenet/TaylorSeries.jl

	Floating-point arithmetic
	Interval arithmetic
	Validated numerics: the ValidiPy package
	Implementation of interval arithmetic
	The Interval Newton method
	Periodic points of the logistic map
	Automatic differentiation
	Simulating a chaotic billiard model
	Extensions
	Intervals in higher dimensions
	Taylor series

	Conclusions
	Acknowledgements
	References

