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Abstract—Quantitative confocal microscopy is a powerful analytical tool used
to visualize the associations between cellular processes and anatomical struc-
tures. In our biological experiments, we use quantitative confocal microscopy
to study the association of three cellular components: binding proteins, recep-
tors, and organelles. We propose an automated method that will (1) reduce
the time consuming effort of manual background correction and (2) compute
numerical coefficients to associate cellular process with structure. The project
is implemented, end-to-end, in Python. Pure Python is used for managing
file access, input parameters, and initial processing of the repository of 933
images. NumPy is used to apply manual background correction, to compute
the automated background corrections, and to calculate the domain specific
coefficients. We visualize the raw intensity values and computed coefficient
values with Tufte-style panel plots created in matplotlib. A longer term goal of
this work is to explore plausible extensions of our automated methods to triple-
label coefficients.

Index Terms—confocal microscopy, immunofluorescence, thresholding, colo-
calization coefficients

Introduction

Light microscopes capture energy emitted from fluorescently
labeled-proteins within a biological sample. Fluorescent labels
are bound to molecules of interest in the sample. The corre-
sponding pixel intensity in the captured image is proportional
to the amount of molecule in the sample. Multiple molecules
can be labelled simultaneously by using fluorescent labels with
different excitation/emission spectra. We designed and executed
a biological experiment to determine the presence of a binding
protein and a receptor protein at sub-cellular structures over time.
The experiment was analyzed by quantitative confocal microscopy
and resulted in a set of 933 RGB (red, green, and blue) im-
ages. Colocalization of binding protein, receptor, and subcellular
structure is represented by RGB intensities in a pixel. The co-
occurrence of signal in multiple channels signifies interesting bio-
logical phenomena. Therefore, we employed statistical methods of
colocalization to quantify co-occurrence of RGB. The following
sections describe our methods of quantifying the data contained in
these experiments.
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Confocal Microscopy

Conventional light microscopes produce a two-dimensional image
from a three-dimensional sample by flattening its Z-axis into one
visual plane [Cro05]. Thus, the notion of depth is removed by
merging deep and shallow material into a single cross-section
in the XY-plane. Confocal microscopes maintain Z-axis fidelity
by performing repeated scans of very thin (∼5µm) XY-sections
at fixed depths. A stack of confocal images represents the orig-
inal three-dimensional sample. In an RGB confocal image, the
brightness of a two-dimensional pixel represents the intensity of
fluorescence in each of the three RGB color channels.

Background noise is the portion of the intensity signal
that does not represent true biological phenomena. Confocal
microscopy inherently reduces background noise from auto-
fluorescence of cellular material, light refractive scatter, and
detection artifacts [Cro05]. It is further reduced by choosing
appropriate (1) microscope hardware, (2) fluorescent labels, and
(3) computer software settings [Bol06], [Cro05]. Even the best
confocal microscopy technique and practice produces images that
contain background noise. For a detailed description of basic
confocal optics and digital imaging, see [Bol06]. Pre-processing
tools decrease background noise, but images often need addi-
tional manual background correction [Bol06], [Zin07], [Gou05].
Image processing filters, deconvolution, background subtraction
and threshold techniques reduce background noise using differ-
ent algorithms [Rob12]. Each technique has application specific
advantages and weaknesses.

Biological Context and Experimental Model

We used confocal microscopy to investigate the post-endocytosis
transport of two proteins in neurons. Specifically, we assessed the
localization of binding proteins and their receptors to sub-cellular
structures. Post-endocytosis transport of proteins is a highly regu-
lated, complex process [Yap12]. Briefly, the intracellular transport
pathway is initiated when an extracellular protein binds to its
receptor on the cell membrane. Once internalized, the proteins
may be localized to three sub-cellular structures: endosomes,
lysosomes, and recycling vesicles. Proteins are internalized in
endosomes, degraded in lysosomes, and transported back to the
cell membrane in recycling vesicles. In our model, neuroblastoma
cells were treated with a binding protein over different treatment
times (10, 15, 30, 60, or 120 minutes). Following binding protein
treatment, we stained cells for binding protein (red), receptor
(green), and sub-cellular structure (blue). In different treatments,

http://www.youtube.com/watch?v=ar5YtgiXfNI
mailto:mfenner@gmail.com


AUTOMATING QUANTITATIVE CONFOCAL MICROSCOPY ANALYSIS 33

blue represents different sub-cellular structures. We performed
six replicates of each condition, resulting in 6 Series for each
condition. At each experimental Time, a set of 6 image stacks were
captured with 5-12 optical XY-sections comprising one stack.

In these experiments, the binding protein is brain-derived
neurotrophic factor (BDNF), the receptor is the truncated trkB
receptor (trkB.t1), and the sub-cellular structures are endosomes,
lysosomes, and recycling vesicles. For the biological importance
of this system, see [Fen12]. The co-occurrence of red, green, and
blue represents the presence of BDNF and trkB.t1 at one of the
sub-cellular structures.

Manual Thresholding

We applied a manual thresholding procedure to reduce background
noise. For each channel (R, G, and B) within an image, we (1)
visually assessed the single-channel histogram and determined a
threshold intensity, (2) mapped all intensity values at or below
the threshold to zero, and (3) linearly scaled the remaining
values to the intensity range [1,255]. Additionally, we recorded
the range, [low,high], around the manual threshold value that
resulted in equivalent expert visual perception of the thresholded
image. The thresholding procedure was repeated for each channel.
Consequently, all intensity values for red, green, and blue below
their respective thresholds are attributed to background noise and
discarded. The major drawback to manual thresholding is the large
time involvement of an imaging expert. Within- and between-
experimenter reliability, differences in color output between visual
displays, and access to expensive software packages are additional
drawbacks to manual thresholding.

Automating the Thresholding Procedure

Initially, we manually determined threshold values for one ran-
domly selected stack per experimental condition called our train-
ing set. Later, we manually thresholded the entire image set.
Using the training set, we developed a linear regression model of
the manual thresholds. Applying this linear model, we predicted
thresholds for the full image set.

To generate automated background thresholds, we first ex-
tracted the deciles of the intensity histograms after removing
non-responder pixels (see Visualization of Colocalization). Then,
we considered linear regression models from (1) the intensity
deciles and the channel to (2) the midpoint of the expert threshold
range. For model development, we used only the training set of
images. Our initial model included all deciles and the channel.
Only the 8th and 9th deciles (80- and 90-percentiles) and the
channel had statistically significant coefficients. We retained only
these features in our model with a resulting R2 of 0.6907 with
p < 2.2e−16. We evaluated the predictive ability of the model on
the full dataset. The mean absolute error against the midpoint was
6.1313; the mean distance from the [low,high] threshold range
was 2.2662. While these metrics are encouraging, we are more
interested in the overall effect of automated thresholding on the
computed colocalization coefficients, discussed below.

Finally, we compared the images generated by applying man-
ual and automated thresholds. Both methods produced visually
similar images (Figure 1). In both cases, the greatest amount
of background correction occurred in the green channel. This is
expected due to natural autofluorescence of cellular material in
the green channel. However, the green channel also demonstrated
the greatest difference between methods: the automated method
under-corrected.

Visualization of Colocalization

In total, the images contain approximately 1 billion pixels. Only
a small percent of the pixels represent protein, receptor, or sub-
cellular structure. Therefore, the majority of the image pixels have
zero intensity in all channels. These pixels are non-responders
and are removed from further analysis. Channels values of 255
are considered to be over-saturated and are removed because they
likely represent experimental or imaging artifacts. We computed
the bivariate probability distributions of intensity values for each
pair of channels across Time and Organelle. Due to the very large
probability mass for low intensity values, we graphed the log-
probabilities to visualize the behavior of the distribution tails.
We generated a Tufte-style [Tuf01] panel plot of the bivariate
histograms for all conditions. The panel plot for Time=10, Or-
ganelle=Endosome is shown in Figure 2.

From the panel plot, we see that the bivariate distributions
under manual and automated thresholding are qualitatively similar.
For example, the RG histograms show low green intensities
distributed over a wide range of red, with green showing a skew
towards higher red intensities. The RB histograms show more even
distributions over both channels. The GB histograms show lower
green intensities over a wider range of blue. The patterns are the
same for both thresholding methods. Next, we discuss quantitative
assessments of colocalization.

Quantification of Colocalization

In dual- and triple-label confocal microscopy, several measures
of association are used to quantify the degree of colocaliza-
tion among labeled molecules [Bol06], [Zin07]. The two most
commonly used measures are Pearson and Manders coefficients
[Man92], [Man93], [Com06], [Zin07]. Other measures of colo-
calization are described below. We call all of these measures the
colocalization coefficients.

Here, we consider the two-dimensional grid of RGB pixels as
three one-dimensional vectors of intensity values for each color
channel. In analogy with the moments of a random variable
(as opposed to sample statistics), we define the colocalization
coefficients for vectors x and y of the same length n.

Let mean(x) = sum(x)/n, dot(x,y) = ∑
i

xiyi, cov(x,y) =

dot(x−mean(x),y−mean(y))/n, and var(x) = cov(x,x):

Pearson(x,y) = cov(x,y)/
√

var(x)var(y)

The split k-overlap coefficients are:

k1(x,y) = dot(x,y)/dot(x,x)

k2(x,y) = dot(x,y)/dot(y,y)

Let θxy be the angle between x and y and recall
√

dot(x,x) is the
length of x:

Manders(x,y) = cos(θxy)

= dot(x,y)/
√

dot(x,x)dot(y,y)

Manders2(x,y) = k1k2

Pearson(x,y) = Manders(x−mean(x),y−mean(y))

Let ITx(x) = x > Tx, (i.e., 1 if x > Tx, 0 otherwise), then the m-
colocalization coefficients are:

m1(x,y) = dot(x, ITy(y))/sum(x)

m2(x,y) = dot(y, ITx(x))/sum(y)
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Fig. 1: Effects of thresholding on visual image representation. Images are of Time=10, Organelle=Endosome, Series=3. Confocal images have
low signal-noise ratios, but still require background correction prior to quantifying biological phenomena (A,E,I). When a threshold is applied
manually, the background noise is minimal (E-H). Automated thresholding methods reduce background noise to similar levels compared to
manual thresholding (I-L). The green channel has more background noise after automated thresholding (K), compared to manual (G). Panels
A, E, and I are RGB; Panels B, F, and J are the red channel; Panels C, G, and K are the green channel; Panels D, H, and L are the blue
channel. The black and white panels are detailed views of the outlined squares in the left-most column.

Generally, the colocalization coefficients have the following inter-
pretations when applied to vectors. Pearson is the degree of linear
relationship between the two vectors. Pearson2 is the fraction
of the variance in y explained by the linear relationship with x.
Manders, more broadly known as the cosine similarity, is the
cosine of the angle between the two intensity vectors.

m1 is the proportion of x, summed when y is above threshold,
to the sum total of all x values; m2 is likewise for y. k1 (equivalent
to cos(θxy)length(x)/length(y)) is the ratio of the length of x and
y times the cosine similarity between them.

In colocalization analysis, the colocalization coefficients have
the following semantics. Pearson describes the linear relationship
between two channels. Manders describes the directional simi-
larity between the two channels. Thus, Manders is not sensitive
to variation in total intensity, which may happen with different
fluorophores. m1 describes the amount of channel one intensity
when channel two is on to the total amount of channel one
intensity. k1 is similar to Manders, but weights the degree of
directional similarity by the ratio of the lengths of x and y.

The m and k coefficients are not symmetric in their arguments.
Generally, the coefficients range in [0,1] ([-1, 1] in the case
of Pearson and Manders) with larger absolute values indicating
a stronger association between values. Pearson, Manders, and
other ad hoc statistics are commonly used association measures in
confocal colocalization, but their method of application, analysis,
and interpretation of conclusions varies greatly in the literature
[Bro00], [Phe01], [Val05], [Li04], [Rei12].

We computed the set of all colocalization coefficients effi-
ciently by noting the common mathematical components of the
coefficients and computing the common values only once. In the
m-coefficients, the threshold Tx is taken to be zero, since the
coefficients are computed after manual or automated thresholding.

1 import math
2 import numpy as np
3 from numpy.core.umath_tests import inner1d
4 # inner1d computes inner product on last dimension
5 # and broadcasts the rest
6

7 R,G,B = 0,1,2



AUTOMATING QUANTITATIVE CONFOCAL MICROSCOPY ANALYSIS 35

Fig. 2: Log-probabilities of the bivariate intensity distributions. After removing zeros, we plotted the log-probabilities of the bivariate intensity
distributions. Each channel pair is represented for both manual and automated threshold images. The distributions for manual and automated
thresholds are similar. Axis bars show 10-, 25-, 50-, 75-, and 90-percentiles for the univariate intensity distributions. Data are from Time=10,
Organelle=Endosome aggregated over all Series.

8 channelPairs = [(R,G), (R,B), (G,B)]
9

10 # safely perform dot product on uint8 arrays
11 # note the trailing "." to call sum
12 def safedot(a, b):
13 return (np.multiply(a,b,dtype=np.uint16).
14 sum(dtype=np.float64))
15

16 # Compute colocalization coefficients on
17 # the image array
18 def ccc(ia):
19 # means, sumSqMeanErrors are 1x3; others Nx3
20 # indicator is dtype bool; others float64
21 sumSqs = \
22 inner1d(ia.T, ia.T).astype(np.float64)
23

24 sums = \
25 ia.sum(axis=0, dtype=np.float64)
26

27 means = sums / ia.shape[0]
28 meanErrors = ia - means
29

30 sqMeanErrors = meanErrors**2
31 sumSqMeanErrors = sqMeanErrors.sum(axis=0)
32 del sqMeanErrors
33

34 indicator = ia>0
35

36 # dict of channelPairs -> respective dot product
37 crossDot = {(c1,c2) : safedot(ia[:,c1], ia[:,c2])
38 for c1,c2 in channelPairs}
39

40 # dict of channelPairs -> sum of c1, when c2 > 0
41 # factored out of loop for readability
42 sumIf = {(c1,c2) :
43 ia[:,c1][indicator[:,c2]].sum()
44 for c1,c2 in channelPairs}
45

46 results = {}
47 for c1, c2 in channelPairs:
48 k1 = crossDot[(c1,c2)] / sumSqs[c1]
49 k2 = crossDot[(c1,c2)] / sumSqs[c2]
50

51 results[(c1,c2)] = {
52 "Pearson" :
53 (np.dot(meanErrors[:,c1],
54 meanErrors[:,c2]) /
55 np.sqrt(sumSqMeanErrors[c1] *
56 sumSqMeanErrors[c2])),
57

58 "Manders" : math.sqrt(k1*k2),
59

60 "Coloc(m)1" : sumIf[(c1,c2)] / sums[c1],
61 "Coloc(m)2" : sumIf[(c2,c1)] / sums[c2],
62

63 "Overlap(k)1" : k1,
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64 "Overlap(k)2" : k2}
65

66 return results

Colocalization Coefficient Results

We computed the colocalization coefficients, for the manual and
automated threshold images, over each time point for the En-
dosome organelle after grouping image stacks (Figure 3). The
coefficients were used to compare the effects of manual versus
automated thresholding on the scientific interpretation of the
confocal images. For this analysis, correlation coefficients were
calculated for each channel pair (Table 1). In the RG channel pair,
there is a similar pattern seen between automated and manually
thresholded images, for all correlation coefficient calculated (Fig-
ure 3).

For instance, Pearson at Endosomes, 10, Manual is 0.32±0.02
(mean ± standard error over Series) while for Endosome, 10,
Automated is 0.35±0.01. The Pearson coefficient for Endosomes,
30, Manual is 0.55±0.03 and Endosomes, 30, Automated is
0.55±0.03. By Endosomes, 60, the Pearson’s coefficient for Man-
ual is 0.35±0.04 and Automated is 0.39±0.03. The scientific
interpretation of the coefficient data, regardless of Manual ver-
sus Automated, suggests that binding protein (red) and receptor
(green) are associated with each other at all times, but that their
greatest association occurs 30 minutes post-treatment time. The
same conclusions are obtained from interpreting Manders (Table
1). We can use the combined data from all channel pairs to
develop a model of intracellular localization of binding protein
and receptor.

Applications

The automated background correction method we used can be
applied to images generated from any type of microscopy studies
including wide-field, live-cell, and electron microscopy. A second
biological application for background correction is microarray
analysis. Microarrays are tools used to study experimental dif-
ferences in DNA, protein, or RNA, which often produce very
large datasets [Hell02]. Multi-channel microarray experiments
have similar background noise challenges as confocal microscopy.
Most microarray experimental data is captured in the form of two-
color channel images with background noise generated from non-
specific label binding or processing artifacts. A third biological
application for our automated thresholding method is magnetic
resonance imaging (MRI) [Bal10]. In MRI images, background
correction is often needed for phase distortion and general back-
ground noise. While other methods need to be applied to correct
for phase distortion, our methods could be applied to reduce
general background noise. Other biological applications include
2-D protein gel electrophoresis, protein dot blots, and western
blot analysis [Dow03], [Gas09]. For any of these techniques,
the background noise in the resulting images must be corrected
prior to quantification of biological phenomena. Non-biological
applications for our background correction method include, but
are not limited to, photo restoration and enhancement [Dep02].
The correlation coefficient processing can be applied in many of
these applications or any generic RGB image workflow.

Conclusions

Confocal microscopy is a powerful tool to investigate physio-
logical processes in morphological context. Quantitative analysis

of confocal images is possible using optimized image capture
settings, background correction, and colocalization statistics. We
used confocal microscopy to quantify the intracellular colocaliza-
tion of a binding protein and a receptor to a specific organelle, over
time. There were two major hurdles: (1) the time and consistency
required for manually thresholding a large number of images and
(2) batch processing of large image sets for statistical analysis.
In 2005, Goucher et al. developed an open source image analysis
program, in Perl, to batch process colocalization for RGB images
using an ad hoc association metric [Gou05]. The purpose of our
methods was to further this type of automated process to combine
automated thresholding with batch processing of colocalization
coefficients using Python. The benefits of our model are: (1)
reducing the time consuming effort of manual background cor-
rection and (2) batch processing of multiple correlation measures
for multi-color images. While our experiments focus on applying
automated quantification methods to better understand intracellu-
lar protein transport, our computational methods can be used to
study a wide range of biological and non-biological phenomena.
A longer term goal of this work is to explore plausible extensions
of our automated methods to triple-label coefficients.

Source code, under a BSD license, for computing colocaliza-
tion coefficients, panel plots, and various other utilities is available
at https://github.com/mfenner1/py_coloc_utils .
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Pair Coeff Src 10 15 30 60 120
RG P Man 0.32±0.02 0.31±0.03 0.55±0.03 0.35±0.04 0.45±0.04
RG P Auto 0.35±0.01 0.31±0.02 0.55±0.03 0.39±0.03 0.48±0.05
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RB M Auto 0.24±0.02 0.24±0.01 0.20±0.02 0.28±0.03 0.20±0.03
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GB M Man 0.29±0.02 0.31±0.02 0.22±0.03 0.30±0.03 0.25±0.02
GB M Auto 0.30±0.02 0.28±0.02 0.22±0.03 0.31±0.03 0.22±0.03

TABLE 1: Pearson and Manders Coefficients for Endosomes. Src = Auto is Automated threshold; Man is Manual threshold. Coeff = P is
Pearson; Coeff = M is Manders. Values are mean and standard error, calculated over six repeated Series.

Fig. 3: Correlation coefficients for manual and automated threshold images. Pearson, Manders, m-, and k-overlap coefficients were calculated
for manual and automated threshold images. The coefficients were calculated for each channel pair. Similar patterns for correlations coefficients
are seen between manual and automated threshold images. The data in this figure was taken from the experimental condition Endosomes (i.e.,
B represents endosome) over all Times and Series . Values in one vertical line, a strip, come from the six repeated Series in that condition.
Left to right, triples of strips are from increasing Time.

[Rei12] N. Reitan et al. Quantitative 3-D colocalization analysis as a tool to
study the intracellular trafficking and dissociation of pDNA-chitosan
polyplexes, Journal of Biomedical Optics, 17(2): 026015, February
2012.

[Rob12] C. Robertson and S. George. Theory and practical recommendations
for autocorrelation-based image correlation spectroscopy, Journal of
Biomedical Optics, 17(8): 080801-1, August 2012.

[Tuf01] E. Tufte (2001). The Visual Display of Quantitative Reasoning (2nd
ed.). Cheshire, CT: Graphics Press.

[Val05] G. Valdez. Pincher-Mediated Macroendocytosis Underlies Retro-
grade Signaling by Neurotrophin Receptors, Journal of Neuro-
science, 25(21): 5236-5247.

[Yap12] C. Yap and B. Winckler. Harnessing the power of the endosome to
regulate neural development, Neuron, 74(3): 440-451, May 2012.

[Zin07] V. Zinchuk, O. Zinchuk, and T. Okada. Quantitative colocalization
analysis of multicolor confocal immunofluorescence microscopy im-
ages: pushing pixels to explore biological phenomena, Acta Histo-
chemica et Cytochemica, 40(4): 101-111, August 2007.


	Introduction
	Confocal Microscopy
	Biological Context and Experimental Model
	Manual Thresholding
	Automating the Thresholding Procedure
	Visualization of Colocalization
	Quantification of Colocalization
	Colocalization Coefficient Results
	Applications
	Conclusions
	References

