PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

81

IpEdit: an editor to facilitate reproducible analysis via
literate programming

Adam J Richards*, Andrzej S. Kosinski®, Camille Bonneaud?, Delphine Legrand”, Kouros Owzar**

http://www.youtube.com/watch?v=1HCeSwMirIA

Abstract—There is evidence to suggest that a surprising proportion of pub-
lished experiments in science are difficult if not impossible to reproduce. The
concepts of data sharing, leaving an audit trail and extensive documentation are
fundamental to reproducible research, whether it is in the laboratory or as part
of an analysis. In this work, we introduce a tool for documentation that aims to
make analyses more reproducible in the general scientific community.

The application, IpEdit, is a cross-platform editor, written with PyQt4, that
enables a broad range of scientists to carry out the analytic component of
their work in a reproducible manner—through the use of literate programming.
Literate programming mixes code and prose to produce a final report that reads
like an article or book. IpEdit targets researchers getting started with statistics
or programming, so the hurdles associated with setting up a proper pipeline
are kept to a minimum and the learning burden is reduced through the use of
templates and documentation. The documentation for IpEdit is centered around
learning by example, and accordingly we use several increasingly involved
examples to demonstrate the software’s capabilities.

We first consider applications of IpEdit to process analyses mixing R and
Python code with the ISTEX documentation system. Finally, we illustrate the use
of IpEdit to conduct a reproducible functional analysis of high-throughput se-
quencing data, using the transcriptome of the butterfly species Pieris brassicae.

Index Terms—reproducible research, text editor, RNA-seq

Introduction

The ability to independently reproduce published works is central
to the scientific paradigm. In recent years, there has been mounting
concern over the number of studies that are difficult if not impossi-
ble to reproduce [loannidisO5], [Prinz11]. The reasons underlying
a lack of reproducibility in science are numerous and it happens
that with regards to funding and publication preference there is an
emphasis on discovery with little reward for studies that reproduce
results [Russell13].

% Corresponding author: adam.richards @stat.duke.edu

i Biostatistics & Bioinformatics, Duke University Medical Center, Durham,
NC, 27710, USA and Station d’Ecologie Experimentale du CNRS, Moulis,
09200, France.

§ Biostatistics & Bioinformatics, Duke University Medical Center, Durham,
NC, 27710, USA.

Station d’Ecologie Experimentale du CNRS, Moulis, 09200, France and
Centre for Ecology and Conservation, University of Exeter Cornwall, Penryn,
UK.

Il Station d’Ecologie Experimentale du CNRS, Moulis, 09200, France.

wx Duke Cancer Institute, Duke University Medical Center, Durham, NC,
27710, USA.

Copyright© 2013 Adam J Richards et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

<+

The difficulties in reproducing a study can be broadly catego-
rized as experimental and analytic. Whether it is in the laboratory
or on a computer, problems with replication can be minimized
through the use of three key concepts: (1) data sharing, (2) leaving
an audit trail and (3) documentation. Data sharing refers to all
raw data and appropriate metadata, provided under a convenient
set of standards, ideally through a free and open repository,
like the Gene Expression Omnibus [Edgar02]. Laying an audit
trail in the laboratory can be done through the careful use of
electronic notebooks, and for code, as is already commonplace
in many fields, through the use of version control systems like Git
http://git-scm.com or Mercurial http://mercurial.selenic.com.

Massive data sharing efforts are underway [Butlerl2] and
the advantages of electronic systems for documenting changes
are self-evident. The third aspect, documentation, can be carried
out in the laboratory with electronic notebooks easily enough.
However, the analyses that go along with experiments are far more
difficult to properly document, and unsurprisingly this aspect of
reproducible research remains a major obstacle particularly in the
life-sciences.

Apart from data sharing, leaving an audit trail and documen-
tation, there are other important aspects of reproducible research
to consider such as the over-reliance on p-values [loannidisO8],
[Gadbury12] and the use of inappropriate statistical tests. Statis-
tical problems would be drastically easier for other scientists to
identify if the original data and well-documented code were made
readily available. In computer science, extensively documented
code is often produced through the use of literate programming
[Knuth84].

In general, literate programming is the mixing of programming
code and prose to produce a final report that reads in a natural
way. In this work, we differ from most of the available resources
for literate programming in that our focus is on producing reports
that are intended for non-programmers, yet still embracing many
of the important tenets of literate programming. For those with an
extensive computing background there are a number of great tools
like Org-mode [Schultel2] that are available. Often, biologists,
chemists and other wet-lab scientists, however, lack the time to
adequately learn a complicated environment and the prospect of
learning is daunting when it comes to many of the available tools.

The environment we have developed here, literate program-
ming edit (IpEdit), is a cross-platform application that enables a
broad range of scientists to carry out the analytic component of
their work in a reproducible manner. This work is not intended
for those already well-versed in the use of text editors and literate

http://www.youtube.com/watch?v=1HCeSwMirIA
mailto:adam.richards@stat.duke.edu
http://git-scm.com
http://mercurial.selenic.com

82

programming environments, although the simplicity and ability to
use either the application programming interface (API) version or
a graphical user interface (GUI) version has appeal to a variety of
researchers.

IpEdit: a literate programming editor

Many of the tools available for literate programming do not
provide a graphical editor, which is a barrier for adoption by non-
specialists. Other tools depend on a particular operating-system
and only a handful of tools can switch freely between several
programming languages. The motivation to build IpEdit arose
because there was no apparent library/tool that fit these three
criteria in a simple and intuitive way.

We have developed here an environment for literate pro-
gramming, based on the model-view-controller (MVC) software
architecture pattern. The only major difference from conventional
realizations of MVC patterns is that instead of the user interacting
directly with the controller in a non-GUI mode, we have developed
a convenience class called NoGuiAnalysis for this purpose.

The GUI editor portion of IpEdit is written with PyQt4 http:
/Iwww.riverbankcomputing.com/software/pyqt, which are Python
bindings to the widget toolkit Qt http://qt.digia.com. For the
basic editing component of the software we use the Qt port
of Scintilla http://www.scintilla. org called QScintilla http://
www.riverbankcomputing.com/software/qscintilla. The additional
prerequisites are the Python packages for numeric computing
(NumPy) [Oliphant07] and the ubiquitous documentation tool
Sphinx http: //sphinx-doc.org.

The software is available under the GNU General Public
License version 3.0 or later from http://bitbucket.org/ajrichards/
reproducible-research. The accompanying documentation can be
found at http://ajrichards.bitbucket.org/IpEdit/index.html.

BIEX and reStructuredText

Perhaps the most widely used literate programming tool is Sweave
[Leisch02] which embeds R code into a I&IEX document. Due to
its popularity and because Sweave is now part of the R project
[RCorel2], the Sweave environment may be used from within
IpEdit. Another notable projects that mixes R and I&IEX is knitr
http://yihui.name/knitr. RStudio [RStudio] is a graphical editor
that supports Sweave and knitr.

R is a standard language for statistics, but for other common
computational tasks, like text processing and web-applications, it
is used less frequently than scripting languages. We opted to add
Python, a scripting language, because it is being increasingly used
in the life-sciences [Bassi07] and because it has a clean syntax
that ultimately aids transparency and reproducibility. Several well-
featured literate programming tools exist for Python including
PyLit http://pylit.berlios.de and like PyLit our software uses re-
StructuredText (reST) http://docutils.sourceforge.net/rst.html, al-
though we additionally allow arbitrary Python code to be included
in ISIEX source documents. Another powerful tool for repro-
ducible research using Python is the [Python notebook [Perez(07].

There are three types of file extensions currently permitted
for use with IpEdit: the Sweave extension (*.rnw); a Noweb
[Ramsey94] inspired syntax (x .nw); and the reST file extension
(* . rst). By selecting an embedded language and a file type there
are a number of different workflows available as shown in Figure
1.

PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

*mw LaTeX
R < A\ —| | PDF
Python [rst || SPhinx]—s| [v

Fig. 1: Summary of the possible workflows using IpEdit. First, a
language, either R or Python is selected then it is embedded into a
specific document (*.rnw, *.nwor x.rst). Next a BIEX or Sphinx
project is built for the document, which then allows for both HTML
and PDF output formats.

IpEdit as a library

IpEdit has a simple API, which facilitates the use of unit testing
and exposes the functions of this library for those who are not
in need of a text editor. In this section, we explain how to
create a project and build reports using the command line, in
order to illustrate the basic mechanics of IpEdit. The following
example script, BasicPython.nw, is bundled with the package
IpEdit. To build a project and compile it into report form only
a few commands are needed.

1 from 1lpEdit import NoGuiAnalysis

2 nga = NoGuiAnalysis ()
3nga.load_file("BasicPython.nw",fileLang="python")

4 nga.build()

5 nga.compile_pdf ()

6 nga.compile_html ()

First the class is imported (line 1) from the module IpEdit
and then it is instantiated (line 2). The file is then loaded
and the language may be specified (line 3). The build()
method creates a directory to contain the project in the same
folder as BasicPython.nw. The build-step also creates a *.tex
document. This directory is what IpEdit refers to as a project
and it is where both reST and IKIEX projects are managed.
The compile_pdf () command either uses sphinx-build
or pdflatex. The compile_html () command defaults to
sphinx-build or latex2pdf depending on the project type.
In most cases the default paths for pdflatex, python, R, and
sphinx-build are found automatically, however, they may
be customized to a user’s preference. To modify these variables
without the GUI, there is a configuration file corresponding to the
current version of IpEdit located in the user’s home directory.

import os
os.path.join (os.path.expanduser ("~"),".lpEdit"

IpEdit as an editor

The primary purpose of IpEdit as a text editor was to benefit
students and those who are learning to program statistical analyses.
In order to make it easier on these user groups, we provide as part
of IpEdit’s documentation a number of examples that illustrate
different statistical tests. We have left out features found in other
editors or literate programming environments to make it easier to
focus on report content.

Documenting by example

Like Sweave, IpEdit uses a Noweb [Ramsey94] inspired syntax.
The advantages are that due to a simplified syntax, the flow of the
document is only minimally interrupted by the presence of code.

http://www.riverbankcomputing.com/software/pyqt
http://www.riverbankcomputing.com/software/pyqt
http://qt.digia.com
http://www.scintilla
http://www.riverbankcomputing.com/software/qscintilla
http://www.riverbankcomputing.com/software/qscintilla
http://bitbucket.org/ajrichards/reproducible-research
http://bitbucket.org/ajrichards/reproducible-research
http://ajrichards.bitbucket.org/lpEdit/index.html
http://yihui.name/knitr
http://pylit.berlios.de
http://docutils.sourceforge.net/rst.html

LPEDIT: AN EDITOR TO FACILITATE REPRODUCIBLE ANALYSIS VIA LITERATE PROGRAMMING 83

Also, to reduce the learning burden on new users, we suggest
they concentrate on learning IATEX, reST and the embedded
programming language of choice instead of lIpEdit-specific tricks
to embed plots, tables or other convenient features. For . rnw,
x.nw and ».rst documents, we embed code in the following
way.

<<label=code-chunk-1>>=

print ("Hello World!")
@

Although this particular example may not be executed in IpEdit
because it is not a valid ISTEX or reST document, it illustrates that
code, in this case just a print statement, is included by placing it
between "« txt »=" and "@", where txt is any arbitrary string,
preferably something informative. Note that under Sweave txt
is a place where options may be passed. Refer to the official
documentation for more comprehensive examples.

Documents written in IATgX, or reST are written as they
normally would be although now there is a way to execute
embedded code within the document. There is no limit to the
number of code chunks and 1pEdit will execute them in sequential
order, preserving the variable space. The building step is where
code chunks are executed and output gathered. There is one thing
to keep in mind when working with projects, and that is the idea
of scope. Suppose, there are two documents documentl.rst
and document2.rst. If we build documentl.rst then
document?2.rst, the results from documentl.rst will be
preserved, which is convenient when there are code chunks that
take significant time to run.

Involved analyses

Analyses can take the form of long complicated pipelines, that
may not reasonably be reproduced at the click of a button. This
may happen if, for example, a database needs to be populated
before an analysis can be carried out or perhaps there is a hardware
constraint, such as the requirement of a high-performance comput-
ing infrastructure. In these cases, IpEdit or another documentation
software may still be used to document details that would not nor-
mally be present in the methods section of a published manuscript.
For analyses that are accompanied by substantial code and/or data,
we provide the keyword INCLUDE which simply tells IpEdit that
a given file is part of the current project. For example, files may
be included in a * . nw or * . rnw document by

%$INCLUDE MyFunctions.py, MyData.csv

where the INCLUDE statement is preceded by a comment indi-
cator. For reST documents ".. " is used. At build time symbolic
links are created. For a reST document, INCLUDE is preceded
by the comment indicator. With increasingly involved analyses,
the readability of documentation should not deteriorate and to this
end prose may be simplified by including code and data as links.
Other than INCLUDE and the syntax to embed code, reST and
IATEX, documents are written as they normally would be, which
has the important benefit of minimizing the learning burden.

Analyzing the Pieris brassicae transcriptome

The analysis of high-throughput sequencing data has the earmarks
of a highly involved analysis pipeline. The appeal of high-
performance sequencing [MarguliesO5], referred to as RNA-seq,
when applied to messenger RNA, is that a large number of genes

accessions

-id
- status genes -
- nucleo_gi -id axa
- protein_gi) - ncbi_id ~id
- genomic_nucleo_gi +1id |- description +id |- ncbi_id
- i - - symbol - name

genomic_start + gene_id Y| - b
- genomic_stop - chromosome + taxa_i - common_name_1
- orientation - map_location - common_name_2
- assembly +id - synonyms - common_name_3

i)
- gene_id - taxa_id
- + gene_id
go_annotations
go_terms
-id =
. +id -id
- evidence_code .
- -go_id
- pubm.ed_refs + go_term_id - aspect
- gene_id -
. - description
- go_term_id

Fig. 2: Database entity diagram. A gene-centric relational database
for data available through NCBI’s FTP website.

are quickly examined in terms of both expression and genetic poly-
morphisms. For RNA-seq the sheer quantity of data and diversity
of analysis pipelines can be overwhelming, which substantiates
all the more a need for transparent analysis documentation. Here
we describe the transcriptome of the cabbage butterfly (Pieris
brassicae) [Feltwell82], a species prevalent throughout much of
Europe, that is an interesting model for studying species mobility
with respect to different selection pressures [Ducatez12].

cDNA library construction

Messenger RNA was extracted from the thorax, head and limbs
of 12 male and female P. brassicae and pooled to construct
a normalized cDNA library (BioS&T, Montreal, Canada). This
library was subsequently sequenced using a Roche 454 pyrose-
quencing platform and because there is no reference genome
for P. brassicae a de novo assembly pipeline was followed. The
sequencing and assembly was carried out at the sequencing cen-
ter Genotoul http://bioinfo.genotoul.fr and made available using
the NG6 [Mariette12] software environment. Prior to assembly,
the reads were filtered to ensure quality-a step that included a
correction for replicate bias [Mariette11]. The assembler Newbler
[MarguliesO5], was then used to align and order the reads into
16,889 isotigs and 11,891 isogroups.

Analysis database and environment

Because P. brassicae is a species without a reference genome, the
assembled isotigs must be compared to species that have func-
tional descriptions. In order to make time-efficient comparisons
we first created a database using PostgreSQL http://postgresql.org
(version 9.1.9). The database contained gene, accession, taxon,
and functional ontology information all of which is available
through the National Center for Biotechnology Infomation (NCBI)
FTP site http://www.ncbi.nlm.nih.gov/Ftp. The database is de-
tailed in Figure 2. The interaction with tables in the database
was simplified through the use of the object relational map-
per available as part of the python package SQLAlchemy http:
/Iwww.sqlalchemy.org. The schema figure was generated using the
Python package sqlalchemy_schemadisplay https://pypi.python.
org/pypi/sqlalchemy_schemadisplay.

http://bioinfo.genotoul.fr
http://postgresql.org
http://www.ncbi.nlm.nih.gov/Ftp
http://www.sqlalchemy.org
http://www.sqlalchemy.org
https://pypi.python.org/pypi/sqlalchemy_schemadisplay
https://pypi.python.org/pypi/sqlalchemy_schemadisplay

84

Functional characterization of the transcriptome

For each isotig, functional annotations were found by using the
Basic Local Alignment Search Tool (BLAST) [Altschul90] via
NCBI's BLAST+ command line interface [Camacho09]. Specif-
ically, each isotig was locally aligned to every sequence in the
Swiss-Prot database [UniProtConsortium12] then using our local
database, accession names were mapped to gene names and cor-
responding functional annotations were gathered. The handling of
sequence data was done using the classes and functions provided
by BioPython [Cock09].

Of the nearly 17,000 isotigs that were examined, 11,846
were considered hits (E-value < 0.04). The isotigs were then
mapped to 6901 unique genes. The appropriate Gene Ontology
[AshburnerO0] annotations were then mapped back to the isotigs.
A navigable version of the analyses and results is available as part
of the online supplement http://ajrichards.bitbucket.org/lpedit-
supplement. The supplement is the documentation produced using
IpEdit. All scripts that were used in this analysis are provided
therein and the supplement details the individual steps in this
process in a way that is impossible to include as part of a
manuscript methods section.

Conclusions and future work

The RNA-seq example demonstrates that involved analyses may
be well- documented in a way that is interesting for those who
understand the technical details of the analysis and those who do
not. In the future, more languages, even compiled ones, may be
integrated into the project, which is feasible because IpEdit uses
the Python package subprocess to make arbitrary system calls.
It is not our intention for IpEdit to evolve to be a replacement for
already established tools, like Org-mode. Rather, it is meant as a
simple tool to help newcomers with programming and statistics.
With the API version of IpEdit there remains the possibility that it
may be adapted as a plug-in or extension to existing text editors.

Given that the target user-base for IpEdit are those with limited
computing background, there are a number of power-user features
left out of the current version for the sake of a nearly ‘push button
approach’. Despite this restricted approach, IpEdit is free to use,
fork and modify as the community would like and over time more
interesting features will make it into the project without sacrificing
the important idea of simplicity. Being a community-driven effort,
we are open to feature requests and will adapt to the needs of the
general user population.

Acknowledgments

We would like to thank Eric Pante and Michel Baguette for helpful
comments and discussion. The research carried out here was
partially supported by the Duke Cancer Institute (DCI). Additional
support for this work was provided by the Agence Nationale de la
Recherche (ANR; France) MOBIGEN [ANR- 09-PEXT-003]. The
opinions, findings and recommendations expressed in this work
are those of the authors and do not necessarily reflect the views of
the DCI, CNRS or other affiliated organizations.

REFERENCES

[Altschul90] S. F. Altschul, W Gish, W Miller, E W Myers, and D.
J. Lipman. Basic local alignment search tool, Journal

of Molecular Biology, 215:403-410, 1990.

PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)
[Ashburner00] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein,
H. Butler, J. M. Cherry, A. P. Davis, K. Dolinski, S.
S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L.
Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J.
E. Richardson, M. Ringwald, G. M. Rubin, and G.
Sherlock. Gene ontology: tool for the unification of
biology, Nature Genetics, 25(1):25-29, May 2000.
S. Bassi. A primer on python for life science re-
searchers, PLoS Computational Biology, 3(11):e199,
2007.
D. Butler. Drug firm to share raw trial data, Nature,
490(7420):322, Oct 2012.
C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Pa-
padopoulos, K. Bealer, and T. L. Madden. BLAST+:
architecture and applications, BMC Bioinformatics,
10:421, 2009.
P. J. A. Cock, T. Antao, J. T. Chang, B. A. Chapman,
C. J. Cox, A. Dalke, 1. Friedberg, T. Hamelryck, F.
Kauff, B. Wilczynski, and M. J. L. de Hoon. Biopy-
thon: freely available Python tools for computational
molecular biology and bioinformatics, Bioinformat-
ics, 25(11):1422-1423, Jun 2009.
S. Ducatez, M. Baguette, V. M. Stevens, D. Legrand,
and H. Freville. Complex interactions between pa-
ternal and maternal effects: parental experience and
age at reproduction affect fecundity and offspring
performance in a butterfly, Evolution, 66(11):3558-
3569, Nov 2012.
R. Edgar, M Domrachev, and A E Lash. Gene expres-
sion omnibus: NCBI gene expression and hybridiza-
tion array data repository, Nucleic Acids Research,
30(1):207-210, Jan 2002.
J. Feltwell. Large white butterfly: The Biology, Bio-
chemistry and Physiology of Pieris brassicae (Lin-
naeus), Springer, 1982.
G. L. Gadbury and D. B. Allison. Inappropriate
fiddling with statistical analyses to obtain a desirable
p-value: tests to detect its presence in published
literature, PloS One, 7(10):e46363, 2012.
J. P. A. Toannidis. Why most published research
findings are false, PLoS Medicine, 2(8):e124, Aug
2005.
J. P. A. loannidis. Effect of formal statistical
significance on the credibility of observational
associations, American Journal of Epidemiology,
168(4):374-383; discussion 384-390, Aug 2008.
D. E. Knuth. Literate programming, The Computer
Journal, 27:97-111, 1984.
F. Leisch. Sweave: Dynamic generation of statistical
reports using literate data analysis, In Comp-stat
2002 - Proceedings in Computational Statistics, pages
575-580. Physica Verlag, Heidelberg, 2002.
M. Margulies, M. Egholm, W. E. Altman, S. Attiya, J.
S. Bader, L. A. Bemben, J. Berka, M. S. Braverman,
Y-J. Chen, Z. Chen, S. B. Dewell, L. Du, J. M. Fierro,
X. V. Gomes, B. C. Godwin, W. He, S. Helgesen, C.
H. Ho, G. P. Irzyk, S. C. Jando, M. L. 1. Alenquer,
T. P. Jarvie, K. B. Jirage, J-B. Kim, J. R. Knight,
J. R. Lanza, J. H. Leamon, S. M. Lefkowitz, M.
Lei, J. Li, K. L. Lohman, H. Lu, V. B. Makhijani,
K. E. McDade, M. P. McKenna, E. W. Myers, E.
Nickerson, J. R. Nobile, R. Plant, B. P. Puc, M. T.
Ronan, G. T. Roth, G. J. Sarkis, J. F. Simons, J. W.
Simpson, M. Srinivasan, K. R. Tartaro, A. Tomasz,
K. A. Vogt, G. A. Volkmer, S. H. Wang, Y. Wang, M.
P. Weiner, P. Yu, R. F. Begley, and J. M. Rothberg.
Genome sequencing in microfabricated high-density
picolitre reactors, Nature, 437(7057):376-380, Sep
2005.
J. Mariette, C. Noirot, and C. Klopp. Assessment of
replicate bias in 454 pyrosequencing and a multi-
purpose read-filtering tool, BMC Research Notes,
4:149, 2011.
J. Mariette, F. Escudie, N. Allias, G. Salin, C. Noirot,
S. Thomas, and C. Klopp. NG6: Integrated next
generation sequencing storage and pro cessing en-
vironment, BMC Genomics, 13:462, 2012.

[Bassi0O7]

[Butler12]

[Camacho09]

[Cock09]

[Ducatez12]

[Edgar02]

[Feltwell82]

[Gadbury12]

[Toannidis05]

[Toannidis08]

[Knuth84]

[Leisch02]

[Margulies05]

[Mariettel1]

[Mariette12]

http://ajrichards.bitbucket.org/lpedit-supplement
http://ajrichards.bitbucket.org/lpedit-supplement

LPEDIT: AN EDITOR TO FACILITATE REPRODUCIBLE ANALYSIS VIA LITERATE PROGRAMMING

[Oliphant07]

[Perez07]

[Prinz11]

[RCorel2]

[RStudio]
[Ramsey94]
[Russell13]

[Schulte12]

[UniProtConsortium12]

T. E. Oliphant. Python for scientific computing, Com-
puting in Science & Engineering, 9(3):10-20, 2007.
F. Perez and B. E. Granger. IPython: a system for in-
teractive scientific computing, Computing in Science
& Engineering, 9(3):21-29, May 2007.

F. Prinz, T. Schlange, and K. Asadullah. Believe it
or not: how much can we rely on published data
on potential drug targets?, Nature Reviews. Drug
Discovery, 10(9):712, Sep 2011.

R Core Team. R: A Language and Environment for
Statistical Computing, R Foundation for Statistical
Computing, Vienna, Austria, 2012.

RStudio: Integrated development environment for R,
Boston, MA.

N. Ramsey. Literate programming simplified, IEEE
Software, 11(5):97-105, 1994.

J. F. Russell. If a job is worth doing, it is worth doing
twice, Nature, 496(7443):7, Apr 2013.

E. Schulte, D. Davison, T. Dye, and C. Dominik.
A multi-language computing environment for literate
programming and reproducible research, Journal of
Statistical Software, 46(3):1-24, 1 2012.

UniProt Consortium. Reorganizing the protein space
at the universal protein resource (UniProt), Nucleic
Acids Research, 40(Database issue):D71-5, Jan 2012.

	Introduction
	lpEdit: a literate programming editor
	LaTeX and reStructuredText
	lpEdit as a library
	lpEdit as an editor

	Documenting by example
	Involved analyses

	Analyzing the Pieris brassicae transcriptome
	cDNA library construction
	Analysis database and environment
	Functional characterization of the transcriptome

	Conclusions and future work
	Acknowledgments
	References

