30

PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

PythonTeX: Fast Access to Python from within LaTeX

Geoffrey M. Poore**

Abstract—PythonTeX is a new LaTeX package that provides access to the full
power of Python from within LaTeX documents. It allows Python code entered
within a LaTeX document to be executed, and provides access to the output.
PythonTeX also provides syntax highlighting for any language supported by the
Pygments highlighting engine.

PythonTeX is fast and user-friendly. Python code is separated into user-
defined sessions. Each session is only executed when its code is modified.
When code is executed, sessions run in parallel. The contents of stdout and
stderr are synchronized with the LaTeX document, so that printed content is
easily accessible and error messages have meaningful line numbering.

PythonTeX simplifies scientific document creation with LaTeX. Plots can
be created with matplotlib and then customized in place. Calculations can be
performed and automatically typeset with NumPy. SymPy can be used to auto-
matically create mathematical tables and step-by-step mathematical derivations.

Index Terms—LaTeX, document preparation, document automation, matplotlib,
NumPy, SymPy, Pygments

Introduction

Scientific documents and presentations are often created with the
LaTeX document preparation system. Though some LaTeX tools
exist for creating figures and performing calculations, external
scientific software is typically required for these tasks. This can
result in an inefficient workflow. Every time a calculation requires
modification or a figure needs tweaking, the user must switch
between LaTeX and the scientific software. The user must locate
the code that created the calculation or figure, modify it, and
execute it before returning to LaTeX.

One way to streamline this process is to include non-LaTeX
code within LaTeX documents, with a means to execute this
code and access the output. That approach has connections to
Knuth’s concept of literate programming, in which code and its
documentation are combined in a single document [Knuth]. The
noweb literate programming tool extended Knuth’s work to ad-
ditional document formats and arbitrary programming languages
[Ramsey]. Sweave subsequently built on noweb by allowing the
output of individual chunks of R code to be accessed within
the document [Leisch]. This made possible dynamic reports that
are reproducible since they contain the code that generated their
results. As such, Sweave and similar tools represent an additional,
complementary approach to reproducibility compared to makefile-
based approaches [Schwab].

x Corresponding author: gpoore @uu.edu
£ Union University

Copyright © 2012 Geoffrey M. Poore. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Several methods of including executable code in LaTeX docu-
ments ultimately function as preprocessors or templating systems.
A document might contain a mix of LaTeX and code, and the
preprocessor replaces the code with its output. The original docu-
ment would not be valid LaTeX; only the preprocessed document
would be. Sweave, knitr [Xie], the Python-based Pweave [Pastell],
and template libraries such as Mako [MK] function in this manner.
More recently, the IPython notebook has provided an interactive
browser-based interface in which text, code, and code output may
be interspersed [[PY]. Since the notebook can be exported as
LaTeX, it functions similarly to the preprocessor-style approach.

The preprocessor/templating-style approach has a significant
advantage. All of the examples mentioned above are compatible
with multiple document formats, not just LaTeX. This is par-
ticularly true in the case of templating libraries. One significant
drawback is that the line numbers of the preprocessed document,
which LaTeX receives, do not correspond to those of the original
document. This makes it difficult to debug LaTeX errors, partic-
ularly in longer documents. It also breaks standard LaTeX tools
such as forward and inverse search between a document and its
PDF (or other) output; only Sweave and knitr have systems to
work around this. An additional issue is that it is difficult for
LaTeX code to interact with code in other languages, when the
code in other languages has already been executed and removed
before LaTeX runs.

In an alternate approach to including executable code in LaTeX
documents, the original document is valid LaTeX, containing
code wrapped in special commands and environments. The code
is extracted by LaTeX itself during compilation, then executed
and replaced by its output. Such approaches with Python go
back to at least 2007, with Martin R. Ehmsen’s python.sty style
file [Ehmsen]. Since 2008, SageTeX has provided access to the
Sage mathematics system from within LaTeX [Drake]. Because
Sage is largely based on Python, it also provides Python ac-
cess. SympyTeX (2009) is based on SageTeX [Molteno]. Though
SympyTeX is primarily intended for accessing the SymPy library
for symbolic mathematics [SymPy], it provides general access to
Python. Since these packages begin with a valid LaTeX document,
they automatically work with standard LaTeX editing tools and
also allow LaTeX code to interact with Python.

Python.sty, SageTeX, and SympyTeX illustrate the potential
of a close Python-LaTeX integration. At the same time, they leave
much of the possible power of the Python-LaTeX combination un-
tapped. Python.sty requires that all Python code be executed every
time the document is compiled. SageTeX and SympyTeX separate
code execution from document compilation, but because all code
is executed in a single session, everything must be executed
whenever anything changes. None of these packages provides

mailto:gpoore@uu.edu

PYTHONTEX: FAST ACCESS TO PYTHON FROM WITHIN LATEX

comprehensive syntax highlighting. SageTeX and SympyTeX do
not provide access to stdout or stderr. They do synchronize error
messages with the document, but synchronization is performed by
executing a try/except statement on every line of the user’s
code. This reduces performance and fails in the case of syntax
errors.

PythonTeX is a new LaTeX package that provides access to
Python from within LaTeX documents. It emphasizes performance
and usability.

« Python-generated content is always saved, so that the La-
TeX document can be compiled without running Python.

¢ Python code is divided into user-defined sessions. Each
session is only executed when it is modified. When code
is executed, sessions run in parallel.

« Both stdout and stderr are easily accessible.

e All Python error messages are synchronized with the
LaTeX document, so that error line numbers correctly
correspond to the document.

o Code may be typeset with highlighting provided by Pyg-
ments [Pyg]—this includes any language supported by
Pygments, not just Python. Unicode is supported.

« Native Python code is fully supported, including imports
from __ future__ . No changes to Python code are
required to make it compatible with PythonTeX.

While PythonTeX lacks the rapid interactivity of the [Python
notebook, as a LaTeX package it offers much tighter Python-
LaTeX integration. It also provides greater control over what is
displayed (code, stdout, or stderr) and allows executable code to
be included inline within normal text.

This paper presents the main features of PythonTeX and
considers several examples. It also briefly discusses the internal
workings of the package.

PythonTeX environments and commands

PythonTeX provides four LaTeX environments and four LaTeX
commands for accessing Python. These environments and com-
mands save code to an external file and then bring back the output
once the code has been processed by PythonTeX.

The code environment simply executes the code it contains.
By default, any printed content is brought in immediately after
the end of the environment and interpreted as LaTeX code. For
example, the LaTeX code
\begin{pycode}
myvar = 123
print ('Greetings from Python!")

\end{pycode}
creates a variable myvar and prints a string, and the printed
content is automatically included in the document:

Greetings from Python!

The block environment executes its contents and also typesets
it. By default, the typeset code is highlighted using Pygments.
Reusing the Python code from the previous example,

\begin{pyblock}

myvar = 123

print ('Greetings from Python!')
\end{pyblock}

creates

myvar = 123
print ('Greetings from Python!')

31

The printed content is not automatically included. Typically, the
user wouldn’t want the printed content immediately after the
typeset code—explanation of the code, or just some space, might
be desirable before showing the output. Two equivalent commands
are provided for including the printed content generated by a block
environment: \printpythontex and \stdoutpythontex.
These bring in any printed content created by the most recent
PythonTeX environment and interpret it as LaTeX code. Both
commands also take an optional argument to bring in content
as verbatim text. For example, \printpythontex[v] brings
in the content in a verbatim form suitable for inline use, while
\printpythontex [verb] brings in the content as a verbatim
block.

All code entered within code and block environments is
executed within the same Python session (unless the user specifies
otherwise, as discussed below). This means that there is continuity
among environments. For example, since myvar has already been
created, it can now be modified:

\begin{pycode}
myvar += 4
print ('myvar =
\end{pycode}

' + str(myvar))

This produces
myvar = 127

The verb environment typesets its contents, without executing
it. This is convenient for simply typesetting Python code. Since
the verb environment has a parallel construction to the code and
block environments, it can also be useful for temporarily disabling
the execution of some code. Thus

\begin{pyverb}

myvar = 123

print ('Greetings from Python!")
\end{pyverb}

results in the typeset content

myvar = 123
print ('Greetings from Python!")

without any code actually being executed.

The final environment is different. The console environment
emulates a Python interactive session, using Python’s code mod-
ule. Each line within the environment is treated as input to an
interactive interpreter. The LaTeX code

\begin{pyconsole}

myvar = 123

myvar

print ('Greetings from Python!"'")
\end{pyconsole}

creates

>>> myvar = 123

>>> myvar

123

>>> print ('Greetings from Python!"')
Greetings from Python!

PythonTeX provides options for showing and customizing a ban-
ner at the beginning of console environments. The content of all
console environments is executed within a single Python session,
providing continuity, unless the user specifies otherwise.

32

While the PythonTeX environments are useful for executing
and typesetting large blocks of code, the PythonTeX commands
are intended for inline use. Command names are based on abbrevi-
ations of environment names. The code command simply executes
its contents. For example, \pyc{myvar = 123}. Again, any
printed content is automatically included by default. The block
command typesets and executes the code, but does not automati-
cally include printed content (\printpythontex is required).
Thus, \pyb{myvar = 123} would typeset

myvar = 123

in a form suitable for inline use, in addition to executing the
code. The verb command only typesets its contents. The command
\pyv{myvar = 123} would produce

myvar=123

without executing anything. If Pygments highlighting for inline
code snippets is not desired, it may be turned off.

The final inline command, \py, is different. It provides a
simple way to typeset variable values or to evaluate short pieces of
code and typeset the result. For example, \py {myvar} accesses
the previously created variable myvar and brings in a string
representation: 123. Similarly, \py{2+%8 + 1} converts its
argument to a string and returns 257.

It might seem that the effect of \py could be achieved using
\pyc combined with print. But \py has significant advantages.
First, it requires only a single external file per document for
bringing in content, while print requires an external file for each
environment and command in which it is used. This is discussed in
greater detail in the discussion of PythonTeX’s internals. Second,
the way in which \py converts its argument to a valid LaTeX
string can be specified by the user. This can save typing when
several conversions or formatting operations are needed. The
examples below using SymPy illustrate this approach.

All of the examples of inline commands shown above use
opening and closing curly brackets to delimit the code. This
system breaks down if the code itself contains an unmatched
curly bracket. Thus, all inline commands also accept arbitrary
matched characters as delimiters. This is similar to the behavior of
LaTeX’s \verb macro. For example, \pyc!myvar = 123!
and \pyc#myvar = 1234# are valid. No such consideration is
required for environments, since they are delimited by \begin
and \end commands.

Options: Sessions and Fancy Verbatims

PythonTeX commands and environments take optional arguments.
These determine the session in which the code is executed and
provide additional formatting options.

By default, all code and block content is executed within a
single Python session, and all console content is executed within a
separate session. In many cases, such behavior is desired because
of the continuity it provides. At times, however, it may be useful
to isolate some independent code in its own session. A long
calculation could be placed in its own session, so that it only
runs when its code is modified, independently of other code.

PythonTeX provides such functionality through user-
defined sessions. All commands and environments take
a session name as an optional argument. For example,
\pyc[slowsession] {myvar = 123} and

PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

\begin{pycode} [slowsession]
myvar = 123

print ('Greetings from Python!"'")
\end{pycode}

Each session is only executed when its code has changed,
and sessions run in parallel (via Python’s multiprocessing
package), so careful use of sessions can significantly increase
performance.

All PythonTeX environments also accept a second optional
argument. This consists of settings for the LaTeX fancyvrb
(Fancy Verbatims) package [FV], which PythonTeX uses for
typesetting code. These settings allow customization of the code’s
appearance. For example, a block of code may be surrounded by
a colored frame, with a title. Or line numbers may be included.

Plotting with matplotlib

The PythonTeX commands and environments can greatly simplify
the creation of scientific documents and presentations. One exam-
ple is the inclusion of plots created with matplotlib [MPL].

All of the commands and environments discussed above be-
gin with the prefix py. PythonTeX provides a parallel set of
commands and environments that begin with the prefix pylab.
These behave identically to their py counterparts, except that
matplotlib’s pylab module is automatically imported via from
pylab import =. The pylab commands and environments
can make it easier to keep track of code dependencies and separate
content that would otherwise require explicit sessions; the default
pylab session is separate from the default py session.

Combining PythonTeX with matplotlib significantly simplifies
plotting. The commands for creating a plot may be included
directly within the LaTeX source, and the plot may be edited in
place to get the appearance just right. Matplotlib’s LaTeX option
may be used to keep fonts consistent between the plot and the
document. The code below illustrates this approach. Notice that
the plot is created in its own session, to increase performance.

\begin{pylabcode} [plotsession]
rc('text', usetex=True)
rc('font', xx{'family':'serif',
rc('font', size=10.0)
rc('legend', fontsize=10.0)
x = linspace (0, 3*pi)
figure (figsize=(3.25,2))
plot (x, sin(x), label='S\sir
plot (x, sin(x)=*%2, label='S\sin
linestyle="dashed"')
xlabel (r's$xS—-axis')
ylabel (r'sSyS—axis"'")
xticks (arange (0, 4xpi, pi),

'S\pis', 'S$2\pis’',

'serif':['Times']})

('s0%",
; $3\pis"))
axis ([0, 3%pi, -1, 1]

legend(loc="lower right')
savefig('myplot.pdf', bbox_inches='tight')
\end{pylabcode}

The plot may be brought in and positioned using the standard
LaTeX commands:

\begin{figure}

\centering

\includegraphics {myplot}
\caption{\label{fig:matplotlib} A plot
created with PythonTeX. }

\end{figure}

The end result is shown in Figure 1.

PYTHONTEX: FAST ACCESS TO PYTHON FROM WITHIN LATEX

1.0
0.5
500
>
0.5
~1.0
0

X-axis

Fig. 1: A matplotlib plot created with PythonTeX.

Solving equations with NumPy

PythonTeX didn’t require any special modifications to the Python
code in the previous example with matplotlib. The code that
created the plot was the same as it would have been had an
external script been used to generate the plot. In some situations,
however, it can be beneficial to acknowledge the LaTeX context
of the Python code. This may be illustrated by solving an equation
with NumPy [NP].

Perhaps the most obvious way to solve an equation using
PythonTeX is to separate the Python solving from the LaTeX
typesetting. Consider finding the roots of a polynomial using
NumPy.

\begin{pylabcode}
coeff = [4, 2, -4]
r = roots (coeff)
\end{pylabcode}

The roots of $4x"2 + 2x - 4 = 0$ are
S\pylab{r[0]}$ and $\pylab{r[l]}$S.

This yields

The roots of 4x? +2x —4 = 0 are —1.2807764064
and 0.780776406404.

Such an approach works, but the code must be modified sig-
nificantly whenever the polynomial changes. A more sophisticated
approach automatically generates the LaTeX code and perhaps
rounds the roots as well, for an arbitrary polynomial.

\begin{pylabcode}

coeff = [4, 2, -4]

Build a string containing equation
eq = L]

for n, ¢ in enumerate (coeff):

if n == 0 or str(c).startswith('-"'):
eq += str(c)
else:

eq += '+' + str(c)

if len(coeff) - n - 1 == 1:
eq += 'x'

elif len(coeff) - n - 1 > 1:

eq += 'x”' + str(len(coeff)
eq += '=0"
Get roots and format for LaTeX
["{0:+.3f}"'.format (root)
for root in roots (coeff)]
latex_roots = ','.join(r)
\end{pylabcode}

- n - 1)

r =

33

The roots of $S\pylab{eqg}$ are

S[\pylab{latex_roots}]$.

This yields
The roots of 4x> 4 2x —4 = 0 are [—1.281,40.781].

The automated generation of LaTeX code on the Python side
begins to demonstrate the full power of PythonTeX.

Solving equations with SymPy

Several examples with SymPy further illustrate the potential of
Python-generated LaTeX code [SymPy].

To simplify SymPy use, PythonTeX provides a set of com-
mands and environments that begin with the prefix sympy. These
are identical to their py counterparts, except that SymPy is
automatically imported via from sympy import =.

SymPy is ideal for PythonTeX wuse, because its
LatexPrinter class and the associated latex () function
provide LaTeX representations of objects. For example, returning
to solving the same polynomial,

\begin{sympycode}

x = symbols('x")

myeq = Eq(4*xxx*2 + 2xx — 4)

print ('The roots of the equation ')
print (latex (myeq, mode='inline'))
print (' are ')

print (latex (solve (myeq), mode='inline'))
\end{sympycode}

creates
The roots of the equation 4x>+2x—4 =0 are
1 1 1,1
[-3V1T -5 —3+3V17]

Notice that the printed content appears as a single uninter-
rupted line, even though it was produced by multiple prints. This
is because the printed content is interpreted as LaTeX code, and
in LaTeX an empty line is required to end a paragraph.

The \sympy command provides an alternative to printing.
While the \py and \pylab commands attempt to convert their
arguments directly to a string, the \ sympy command converts its
argument using SymPy’s LatexPrinter class. Thus, the output
from the last example could also have been produced using

\begin{sympycode}
symbols ('x")
myeq = Eq(4xx*x2 + 2xx — 4)

X =

\end{sympycode}
The roots of the equation S\sympy{myeqg}s$
are S\sympy{solve (myeq) }$S.
The \sympy command wuses a special interface to

the LatexPrinter class, to allow for context-dependent
LatexPrinter settings. PythonTeX includes a utilities class,
and an instance of this class called pytex is created within each
PythonTeX session. The formatter () method of this class is
responsible for converting objects into strings for \py, \pylab,
and \sympy. In the case of SymPy, pytex.formatter ()
provides an interface to LatexPrinter, with provision for
context-dependent customization. In LaTeX, there are four possi-
ble math styles: displaystyle (regular equations), textstyle (inline),
scriptstyle (superscripts and subscripts), and scriptscriptstyle (su-
perscripts and subscripts, of superscripts and subscripts). Separate

34

LatexPrinter settings may be specified for each of these
styles individually, using a command of the form

pytex.set_sympy_latex (style, *xkwargs)

For example, by default \sympy is set to create normal-sized
matrices in displaystyle and small matrices elsewhere. Thus, the
following code

\begin{sympycode}

m = Matrix([[1,0], [0,1]]
\end{sympycode}
The matrix in inline is small: S$\sympy{m}S$

The matrix in an equation is of normal size:

\[\sympy{m} \]
produces

The matrix in inline is small: (}?)
The matrix in an equation is of normal size:

6)

As another example, consider customizing the appearance of
inverse trigonometric functions based on their context.

\begin{sympycode}

x = symbols('x")

sineq = Eqg(asin(x/2)-pi/3)

pytex.set_sympy_ latex('display',
inv_trig_style='power')

pytex.set_sympy_ latex('text',
inv_trig_style='full")

\end{sympycode}

Inline: S\sympy{sineq}$

Equation: \[\sympy{sineqg} \]

This creates

Inline: arcsin (%x) — 3= 0

Equation:
1 1
sin~! (zx) — 5” =0

Notice that in both examples above, the \sympy com-
mand is simply used—no information about context must be
passed to Python. On the Python side, the context-dependent
LatexPrinter settings are used to determine whether the
LaTeX representation of some object is context-dependent. If not,
Python creates a single LaTeX representation of the object and
returns that. If the LaTeX representation is context-dependent,
then Python returns multiple LaTeX representations, wrapped
in LaTeX’s \mathchoice macro. The \mathchoice macro
takes four arguments, one for each of the four LaTeX math
styles display, text, script, and scriptscript. The correct argument
is typeset by LaTeX based on the current math style.

Step-by-step derivations with SymPy

With SymPy’s LaTeX functionality, it is simple to automate tasks
that could otherwise be tedious. Instead of manually typing step-
by-step mathematical solutions, or copying them from an external
program, the user can generate them automatically from within
LaTeX.

PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

\begin{sympycode}

x, y = symbols('x, y'")

f = x + sin(y)

stepl = Integral(f, x, vy)

step2 = Integral (Integral (f, x).doit (), vy)
step3 = step2.doit ()

\end{sympycode}

\begin{alignx}

\sympy {stepl} &= \sympy{step2} \\

&= \sympy{step3}
\end{align«}

This produces

//x+sin(y) dxdy:/%xz-kxsin(y) dy
1

— 2y
= X'y —xcos (y)

Automated mathematical tables with SymPy

The creation of mathematical tables is another traditionally tedious
task that may be automated with PythonTeX and SymPy. Consider
the following code, which automatically creates a small integral
and derivative table.

\begin{sympycode}
x = symbols('x")

funcs = ['sin(x)', 'cos(x)', 'sinh(x)', 'cosh(x)']
ops = ['Integral', 'Derivative']
print ('\\begin{alignx}")
for func in funcs:
for op in ops:
obj = eval(op + '(' + func + ', x)")
left = latex (obj)
right = latex(obj.doit())
if op != ops[-1]:
print (left + '&=' + right + '&')
else:
print (left + '&=' + right + r'\\")
print ('\\end{alignx}")
\end{sympycode}
. J .
/ sin (x) dx = —cos (x) 5, sin (x) = cos (x)
. d .
/cos (x) dx = sin (x) 35 €08 (x) = —sin(x)
. Jd .
/ sinh (x) dx = cosh (x) 5 sinh (x) = cosh (x)
. d .
/ cosh (x) dx = sinh (x) e cosh (x) = sinh (x)

This code could easily be modified to generate a page or more
of integrals and derivatives by simply adding additional function
names to the funcs list.

Debugging and access to stderr

PythonTeX commands and environments save the Python code
they contain to an external file, where it is processed by Python-
TeX. When the Python code is executed, errors may occur. The
line numbers for these errors do not correspond to the document
line numbers, because only the Python code contained in the
document is executed; the LaTeX code is not present. Furthermore,
the error line numbers do not correspond to the line numbers
that would be obtained by only counting the Python code in

PYTHONTEX: FAST ACCESS TO PYTHON FROM WITHIN LATEX

the document, because PythonTeX must execute some boilerplate
management code in addition to the user’s code. This presents a
challenge for debugging.

PythonTeX addresses this issue by tracking the original LaTeX
document line number for each piece of code. All error messages
are parsed, and Python code line numbers are converted to LaTeX
document line numbers. The raw stderr from the Python code is
interspersed with PythonTeX messages giving the document line
numbers. For example, consider the following code, with a syntax
error in the last line:

\begin{pyblock} [errorsession]

x = 1
y = 2
z = x +y +

\end{pyblock}

The error occurred on line 3 of the Python code, but this might
be line 104 of the actual document and line 47 of the combined
code and boilerplate. In this case, running the PythonTeX script
that processes Python code would produce the following message,
where <temp file name> would be the name of a temporary
file that was executed:

* PythonTeX code error on line 104:

File "<temp file name>", line 47
z = x +y +
SyntaxError: invalid syntax

Thus, finding code error locations is as simple as it would be if
the code were written in separate files and executed individually.
PythonTeX is the first Python-LaTeX solution to provide such
comprehensive error line synchronization.

In general, errors are something to avoid. In the context of
writing about code, however, they may be created intentionally for
instructional purposes. Thus, PythonTeX also provides access to
error messages in a form suitable for typesetting. If the PythonTeX
package option stderr is enabled, any error message created by
the most recent PythonTeX command or environment is available
via \stderrpythontex. By default, stderr content is brought
in as LaTeX verbatim content; this preserves formatting and
prevents issues caused by stderr content not being valid LaTeX.

Python code and the error it produces may be typeset next to
each other. Reusing the previous example,

\begin{pyblock} [errorsession]

x = 1
y = 2
z =x +y +

\end{pyblock}

creates the following typeset code:

x =1
y = 2
z = xX +y +

The stderr may be brought in via \stderrpythontex:

File "<file>", line 3
z = x +y +
SyntaxError: invalid syntax

Two things are noteworthy about the form of the stderr.
First, in the case shown, the file name is given as "<file>".
PythonTeX provides a package option stderrfilename for
controlling this name. The actual name of the temporary file

35

that was executed may be shown, or simply a name based on
the session ("errorsession.py" in this case), or the more
generic "<file>" or "<script>". Second, the line number
shown corresponds to the code that was actually entered in the
document, not to the document line number or to the line number
of the code that was actually executed (which would have included
PythonTeX boilerplate). To accomplish this, PythonTeX parses the
stderr and corrects the line number, so that the typeset code and
the typeset stderr are in sync.

General code highlighting with Pygments

The primary purpose of PythonTeX is to execute Python code
included in LaTeX documents and provide access to the output.
Once support for Pygments highlighting of Python code was added
[Pyg], however, it was simple to add support for general code
highlighting.

PythonTeX provides a \pygment command for typesetting
inline code snippets, a pygments environment for typesetting
blocks of code, and an \ inputpygments command for bring-
ing in and highlighting an external file. All of these have a
mandatory argument that specifies the Pygments lexer to be used.
For example, \pygment {latex} { \pygment } produces

\pygment
in a form suitable for inline use while

\begin{pygments} {python}
def f(x):

return x*x*3
\end{pygments}

creates

def f(x):
return x»*x*3

The pygments environment and the \ inputpygments com-
mand accept an optional argument containing fancyvrb set-
tings.

As far as the author is aware, PythonTeX is the only LaTeX
package that provides Pygments highlighting with Unicode sup-
port under the standard pdfTeX engine. The 1istings package
[LST], probably the most prominent non-Pygments highlighting
package, does support Unicode—but only if the user follows spe-
cial procedures that could become tedious. PythonTeX requires no
special treatment of Unicode characters, so long as the fontenc
and inputenc packages are loaded and used correctly. For
example, PythonTeX can correctly highlight the following snippet
copied and pasted from a Python 3 console session, without any
modification.

>>> varl = 'dxzédg'
>>> var2 = 'R¢hds!
>>> varl + var2

'a2é0oRcnoS "

Implementation

A brief overview of the internal workings of PythonTeX is
provided below. For additional details, please consult the docu-
mentation.

When a LaTeX document is compiled, the PythonTeX com-
mands and environments write their contents to a single shared

36

external file. The command and environment contents are inter-
spersed with delimiters, which contain information about the type
of command or environment, the session in which the code is to
be executed, the document line number where the code originated,
and similar tracking information. A single external file is used to
minimize the number of temporary files created, and because TeX
has a very limited number of output streams.

During compilation, each command and environment also
checks for any Python-generated content that belongs to it, and
brings in this content if it exists. Python-generated content is
brought in via LaTeX macros and via separate external files. At the
beginning of the LaTeX document, the PythonTeX package brings
in two files of LaTeX macros that were created on the Python
side, if these files exist. One file consists of macros containing
the Python content accessed by \py, \pylab, and \sympy. The
other file contains highlighted Pygments content. The files are
separate for performance reasons. In addition to content that is
brought in via macros, content may be brought in via separate
external files. Each command or environment that uses the print
statement/function must bring in an external file containing the
printed content. The printed content cannot be brought in as
LaTeX macros, because in general printed content need not be
valid LaTeX code. In contrast, \py, \pylab, and \sympy
should return valid LaTeX, and of course Pygments-highlighted
content is valid LaTeX as well.

On the Python side, the file containing code and delimiters
must be processed. All code is hashed, to determine what has been
modified since the previous run so that only new and modified
code may be executed. Code that must be executed is divided
by session, and each session (plus some PythonTeX management
code) is saved to its own external file. The highlighting settings
for Pygments content are compared with the settings for the last
run, to determine what needs to be highlighted again with new
settings.

Next, Python’s multiprocessing package is used to per-
form all necessary tasks. Each of the session code files is executed
within a separate process. The process executes the file, parses
the stdout into separate files of printed content based on the
command or environment from which it originated, and parses
the stderr to synchronize it with the document line numbers. If
specified by the user, a modified version of the stderr is created
and saved in an external file for inclusion in the document via
\stderrpythontex. Two additional processes are used, one
for highlighting code with Pygments and one for evaluating and
highlighting all console content (using Python’s code module).

Finally, all LaTeX macros created by all processes are saved
in one of two external files, depending on whether they contain
general content or content highlighted by Pygments (again, this is
for performance reasons). All information that will be needed the
next time the Python side runs is saved. This includes the hashes
for each session. Any session that produced errors is automatically
set to be executed the next time the Python side runs. A list of all
files that were automatically created by PythonTeX is also saved,
so that future runs can clean up outdated and unused files.

PythonTeX consists of a LaTeX package and several Python
scripts. A complete compilation cycle for a PythonTeX document
involves running LaTeX to create the file of code and delimiters,
running the PythonTeX script to create Python content, and finally
running LaTeX again to compile the document with Python-
generated content included. Since all Python-generated content
is saved, the PythonTeX script only needs to be run when the doc-

PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

ument’s PythonTeX commands or environments are modified. By
default, all files created by PythonTeX are kept in a subdirectory
within the document directory, keeping things tidy.

Conclusion

PythonTeX provides access to the full power of Python from
within LaTeX documents. This can greatly simplify the creation
of scientific documents and presentations.

One of the potential drawbacks of using a special LaTeX pack-
age like PythonTeX is that publishers may not support it. Since
PythonTeX saves all Python-generated content, it already provides
document compilation without the execution of any Python code,
so that aspect will not be an issue. Ideally, a PythonTeX document
and its Python output could be merged into a single, new document
that does not require the PythonTeX package. This feature is being
considered for an upcoming release.

PythonTeX provides many features not discussed here, in-
cluding a number of formatting options and methods for adding
custom code to all sessions. PythonTeX is also under active de-
velopment. For additional information and the latest code, please
visit https://github.com/gpoore/pythontex.

REFERENCES

[Leisch] F. Leisch. Sweave: Dynamic generation of statistical reports using
literate data analysis, in Wolfgang Hérdle and Bernd Ronz, editors,
Compstat 2002 - Proceedings in Computational Statistics, pages
575-580. Physica Verlag, Heidelberg, 2002. ISBN 3-7908-1517-9.

http://www.statistik.Imu.de/~leisch/Sweave/.

[Ehmsen] M. R. Ehmsen. "Python in LaTeX." http://www.ctan.org/pkg/
python.

[Drake] D. Drake. "The SageTeX package." https://bitbucket.org/ddrake/
sagetex/.

[Molteno] T. Molteno. "The sympytex package." https://github.com/tmolteno/
SympyTeX/.

[SymPy] SymPy Development Team. "SymPy." http://sympy.org/.

[Pyg] The Pocoo Team. "Pygments: Python Syntax Highlighter." http:
/Ipygments.org/.

[FV] T. Van Zandt, D. Girou, S. Rahtz, and H. VoB. "The ’fancyvrb’
package: Fancy Verbatims in LaTeX." http://www.ctan.org/pkg/
fancyvrb.

[MPL] J. D. Hunter. Matplotlib: A 2D Graphics Environment, in Comput-
ing in Science & Engineering, Vol. 9, No. 3. (2007), pp. 90-95.
http://matplotlib.sourceforge.net/.

[NP] Numpy developers. "NumPy." http://numpy.scipy.org/.

[LST] C. Heinz and B. Moses. "The Listings Package." http://www.ctan.
org/tex-archive/macros/latex/contrib/listings/.

[IPY] The IPython development team. "The IPython Notebook." http:
/lipython.org/notebook.html.

[Pastell] M. Pastell. "Pweave - reports from data with Python." http:
//mpastell.com/pweave/.

[Knuth] D. E. Knuth. Literate Programming. CSLI Lecture Notes, no.
27. Stanford, California: Center for the Study of Language and
Information, 1992.

[Ramsey] N. Ramsey. Literate programming simplified. 1EEE Soft-
ware, 11(5):97-105, September 1994. http://www.cs.tufts.edu/~nr/
noweb/.

[Schwab] M. Schwab, M. Karrenbach, and J. Claerbout. Making scientific
computations reproducible. Computing in Science & Engineering,
2(6):61-67, Nov/Dec 2000.

[Xie] Y. Xie. "knitr: Elegant, flexible and fast dynamic report generation
with R." http://yihui.name/knitr/.

[MK] M. Bayer. "Mako Templates for Python." http:/www.

makotemplates.org/.

https://github.com/gpoore/pythontex
http://www.statistik.lmu.de/~leisch/Sweave/
http://www.ctan.org/pkg/python
http://www.ctan.org/pkg/python
https://bitbucket.org/ddrake/sagetex/
https://bitbucket.org/ddrake/sagetex/
https://github.com/tmolteno/SympyTeX/
https://github.com/tmolteno/SympyTeX/
http://sympy.org/
http://pygments.org/
http://pygments.org/
http://www.ctan.org/pkg/fancyvrb
http://www.ctan.org/pkg/fancyvrb
http://matplotlib.sourceforge.net/
http://numpy.scipy.org/
http://www.ctan.org/tex-archive/macros/latex/contrib/listings/
http://www.ctan.org/tex-archive/macros/latex/contrib/listings/
http://ipython.org/notebook.html
http://ipython.org/notebook.html
http://mpastell.com/pweave/
http://mpastell.com/pweave/
http://www.cs.tufts.edu/~nr/noweb/
http://www.cs.tufts.edu/~nr/noweb/
http://yihui.name/knitr/
http://www.makotemplates.org/
http://www.makotemplates.org/

	Introduction
	PythonTeX environments and commands
	Options: Sessions and Fancy Verbatims
	Plotting with matplotlib
	Solving equations with NumPy
	Solving equations with SymPy
	Step-by-step derivations with SymPy
	Automated mathematical tables with SymPy
	Debugging and access to stderr
	General code highlighting with Pygments
	Implementation
	Conclusion
	References

