
PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012) 37

Self-driving Lego Mindstorms Robot

Iqbal Mohomed‡∗

F

Abstract—In this paper, I describe the workings of my personal hobby project -
a self-driving lego mindstorms robot. The body of the robot is built with Lego
Mindstorms. An Android smartphone is used to capture the view in front of
the robot. A user first teaches the robot how to drive; this is done by making
the robot go around a track a small number of times. The image data, along
with the user action is used to train a Neural Network. At run-time, images of
what is in front of the robot are fed into the neural network and the appropriate
driving action is selected. This project showcases the power of python’s libraries,
as they enabled me to put together a sophisticated working system in a very
short amount of time. Specifically, I made use of the Python Image Library to
downsample images, as well as the PyBrain neural network library. The robot
was controlled using the nxt-python library.

Index Terms—self-driving, neural networks, robotics

Introduction

Recently, there has been significant interest in building self-driving
cars. Starting in 2004, a series of competitions were held as part of
the DARPA Grand Challenge, wherein driverless vehicles outfitted
with sophisticated sensing equipment navigated real-world terrain.
While none of the entrants in the 2004 iteration of the competition
made it to the finish line, in the 2005 iteration, five driverless
vehicles successfully completed the course. More recently, there
have been many exciting developments in this area, with the
development of Google’s Driverless Car, and the US state of
Nevada beginning the process to legalize and issue licenses for
self-driving cars.

Building a self-driving car requires expensive sensing equip-
ment. For example, the stanford entry in the DARPA grand
challenge had 5 different laser measurement system [Mon08]. It
is interesting to consider, if it is possible to create a self-driving
car only using data from a camera. Around 1993, CMU created a
learning system called "ALVINN" (Autonomous Land Vehicle In a
Neural Network) [Pom93], which could control a testbed vehicle
to drive on a variety of road surfaces. ALVINN worked by first
"watching" a human driver’s response to road conditions . After
just 5 minutes of such training data in new situations, ALVINN
could be trained to drive on a variety of road surfaces, and at
speeds of unto 55 mies per hour. At first blush, it is starting that
simply feeding image data and driver response to train a neural
network would lead to a working autonomous vehicle. Earlier this
year, David Singleton put up a blog post describing his weekend

* Corresponding author: iqbal@us.ibm.com
‡ IBM Research

Copyright © 2012 Iqbal Mohomed. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

project – a self-driving RC car [Sin12]. As the project dealt with
a small RC vehicle in an indoor environment, the technique was
simpler than that used in ALVINN. I was inspired by David’s
post and decided to independently replicate this project using a
Lego Mindstorms robot instead of an RC car. While I started out
with limited experience using Neural Networks, I succeeded in my
endeavor to create a self-driving robot that can navigate a track in
an indoor environment. Figure 1 shows the lego robot in action.

The purpose of this paper is to share details of how I utilized
a set of Python libraries - nxt-python to control the Lego robot,
Python Image Library (PIL) to process camera images, and the
pyBrain library to train and use an artificial neural network - to
build a self-driving Lego Mindstorms robot.

Robot Construction

I used the Lego Mindstorms NXT 2.0 set to construct the robot.
The set consists of various construction elements, motors and
sensors. A key element of the set is a microcomputer called
the NXT Intelligent Brick. The NXT brick contains a 32-bit
ARM7 microprocessor, flash memory, a battery holder, USB 2.0
port, supports Bluetooth communication and also has ports for
connecting sensors and motors. While the Lego Mindstorms set
contains a variety of sensors, I did not utilize any of them for this
project. The motors in the Lego set are Interactive Servo Motors.
Unlike regular hobbyist motors, these motors can be rotated a
specific number of degrees (the Lego motors are precise to 1
degree).

The robot I constructed has two independent tracks (each
controlled by a separate motor). The motors are powered and
controlled by an NXT brick, which is mounted on top of the tracks.
The most challenging part of the robot build was creating a secure
holder for my smart phone. While the phone has two cameras
(front and back), I made the glass of the phone face backwards.
This resuled in an acceptable camera mounting. I took care to have
the images coming from the camera show what is directly in front
of the robot and minimize views that are far away. That said, I did
not have to spend too much effort in optimizing the camera view.
The mount I created also had a mechanism to quickly release the
phone, which was useful in debugging, charging the phone, and
other activities. Figure 2 shows a close up of the phone mount on
the robot, and figure 3 shows a schematic of the mount.

Setup

All my code (written in Python) runs on a Windows 7 PC. The
PC communicates with the Lego NXT brick via Bluetooth. An
Android camera phone (Google Nexus S) is attached to the Lego
robot. The phone is connected to my home wireless network, as is

mailto:iqbal@us.ibm.com

38 PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

my PC. Figure 4 shows a diagram of communication between the
various components.

Driving the Lego Mindstorms robot

I used the nxt-python library to interface my PC to the Lego Mind-
storms robot. While the NXT brick does possess flash memory to
allow programs to reside on the robot itself, nxt-python works by
executing on a PC and sending short commands to the NXT brick
via Bluetooth or USB. As I want the robot to be untethered, I
make use of Bluetooth.

I made use of an experimental class in nxt-python called
"SynchrnonizedMotors" that makes the motors controlling the left
and right track to move in unision. If care were not taken to move
the two motors together, the robot could drift to one side when the
intent is to move straight ahead. Ultimately, the key requirement
for the robot’s motion is consistency. In my implementation, the
robot had three movement options: it could move straight ahead,
turn left or turn right. Each action went on for a short period of
time. The right motor (which ran the right-side track) is connected
to PORT A of the NXT brick. Analagously, the left motor is
connected to PORT B. In nxt-python, we can create a Motor object
that represents the motor and provides a function like turn() to
move the interactive servo motor to a specific position using a
given amount of power.
import nxt

def initBrick():
Define some globals to simplify code
global b, r, l, m, mls, mrs
Search and connect to NXT brick (via BT)
b = nxt.find_one_brick()
Create objects to control motors
r = nxt.Motor(b, nxt.PORT_A)
l = nxt.Motor(b, nxt.PORT_B)
Create objects for synchronized motors
We specify the leader, follower and turn ratio
m = nxt.SynchronizedMotors(r,l, 0)
mls = nxt.SynchronizedMotors(l, r, 20)
mrs = nxt.SynchronizedMotors(r, l, 20)

The first parameter to turn() indicates
100% or full power. To run the motor backwards,
a negative value can be provided. Amt indicates the
number of degrees to turn.
def go(dev,amt):

dev.turn(100,amt);

To facilitate the collection of training data, I implemented a
“keyboard teleop” mode, wherein I type commands into a python
CLI and get my robot to make the appropriate movement (i.e. go
straight, go left or go right).
cmd param is the character typed by the user
def exec_cmd(cmd):

if cmd == 'f':
go(m,250)

elif cmd == 'l':
go(mls,250)

elif cmd == 'r':
go(mrs,250)

elif cmd == 'x':
b.sock.close()

Getting images from the camera phone

I initially thought about writing my own app to capture images
from my phone (an Android Nexus S). However, I found a free
app called IP Webcam that allowed me to take snapshots from

Fig. 1: An image of the lego robot as it is driving along its course.

Fig. 2: A close up look at the holder mechanism for the Android
phone.

Fig. 3: A schematic of the holder mechanism for the Android phone.
Credit goes to Saira Karim for drawing the diagram using the free
Lego Digital Designer software

SELF-DRIVING LEGO MINDSTORMS ROBOT 39

Fig. 4: A diagram showing communication between various compo-
nents.

Fig. 5: A view of the robot driving on the track.

the phone via HTTP. Note that the IP address in the URL used
to retrieve the image corresponds to the address assigned to the
Android phone by the wireless AP. The lowest resolution at which
I could get images was 176×144; I processed these images on the
desktop before sending them to the neural network.
import urllib
res=urllib.urlretrieve('http://192.168.1.12:8080/shot.jpg')

Processing the images on desktop

I used the Python Imaging Library to first convert the images from
the camera phone to greyscale and then lower their resolution to
100×100.
from PIL import Image
im = Image.open(res[0])
nim = im.convert('L')
nim2 = nim.resize((100,100))

I combine the two code fragments above into a function called
take_pic(), which captures an image from the Android phone,
transforms it and returns the result.

Obtaining training data

In order to teach the Lego robot how to drive, one must first obtain
training data. Each sample of the training data consists of a low
resolution greyscale image showing what is in front of the robot,
and a human driver’s action in that situation.
This function accepts a command from the
user via the keyboard, and executes it on the robot
def accept_execute_cmd():

cmd = '';
gotCmd = False;
print "CMD: "
while gotCmd == False:

cmd = getch();
#cmd = raw_input('CMD: ')
if cmd == 'f' or cmd == 'l' or cmd == 'r':

exec_cmd(cmd)
gotCmd = True;

elif cmd == 'x':
b.sock.close()
gotCmd = False;
exit();

print cmd + "\n";
return cmd;

def trainer():
while True:

download pic from camera and downsample
im=take_pic()
get cmd from user and run it
cmd = accept_execute_cmd()
record the image and cmd
record_data(im,cmd)

Enter the Neural Network

This was the key part of the project. To learn about Neural Net-
works, I went through Professor Andrew Ng’s lectures on Neural
Networks, and played around with the assignments on the topic
(recognizing hand-written digits using Neural Networks). Luckily,
I found the pyBrain project, which provides a very easy interface
for using Neural Nets in Python. Similar to David Singleton, I
used a three level network. The first layer had 100×100 nodes.
Each input node corresponds to a greyscale image captured from
the camera phone. The hidden layer had 64 units (I tried other

40 PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

values, but like David, 64 hidden units worked well for me too).
Unlike David, I only had three output units – forward, left and
right.
from pybrain.tools.shortcuts import buildNetwork
from pybrain.datasets import SupervisedDataSet
from pybrain.supervised.trainers import BackpropTrainer
net = buildNetwork(10000,64,3,bias=True)
ds = SupervisedDataSet(10000,3)

Training the brain

I built a "driving course" in my living room (shown in Figure 5).
I drove around the course only 10 times and trained network for
about an hour.
def train(net,ds,p=500):

trainer = BackpropTrainer(net,ds)
trainer.trainUntilConvergence(maxEpochs=p)
return trainer

Auto-drive mode

The code for auto-drive mode was pretty similar to training mode.
I took an image from the camera phone, processed it (greyscale
and lowered the res to 100×100) and activated it against the neural
net I had trained. The output is one of three commands (forward,
left or right), which I send to the same “drive(cmd)” function I
used in training mode. I put a short sleep between each command
to ensure the robot had enough time to complete its motion.
The following function takes the Neural Network
and the processed image as input. It returns
the action selected by activating the neural
net.
def use_nnet(nnet,im):

cmd = ''
lst = list(im.getdata())
res=nnet.activate(lst)
val = res.argmax()

if val == 0:
cmd = 'f'

elif val == 1:
cmd = 'l'

elif val == 2:
cmd = 'r'

return cmd

The auto() function takes a trained
neural network as input, and drives
the robot. Each time through the loop,
it obtains an image from the phone (and
downsamples it). The image data is used
to activate the Neural Network, the
output of which is executed on the robot.
def auto(nnet):

while True:
im=take_pic()
cmd=use_nnet(nnet,im)
exec_cmd(cmd)
print "executing .." + cmd
time.sleep(3)

The Self-Driving Lego Mindstorms Robot comes to life!

It worked! Mostly. About 2/3 of the time, the robot could go
through the entire course without any "accidents". About 1/3 of
the time, the robot’s motion takes it to a point where it can only
see the track (sheets of white paper). When it gets to that state,
it keeps going forward instead of making a turn. I have posted
videos to YouTube as well as a blog post on my attempts [Moh12].
Implementing a “spin-90-degrees” command might help the robot
get out of that situation. But all-in-all, I’m pretty happy with the
results.

Conclusions

In this paper, I detail the workings of my self-driving Lego
Mindstorms robot. The heart of the project is a neural network,
which is trained with camera images of the "road" ahead and user
input. At run time, the same camera images are used to activate the
neural network, and the resulting action is executed on the robot.
While a simple vision-based system cannot be expected to perform
flawlessly, acceptable performance was achieved. My experience
suggests that Python programmers can utilize neural networks and
camera images to quickly build other interesting applications.

Source Code

All the source code I wrote for this project is publicly available on
GitHub (https://github.com/iqbalmohomed/selfdrivingrobot.git).

Acknowledgements

Big thanks go to my wife (Saira Karim) for helping me with
the project. I’d like to reiterate that this project was inspired by
David Singleton’s self-driving RC car and was an independent
implementation of his work. Many thanks go to him. A big thank
you to Prof. Andrew Ng for the Stanford Machine Learning class
that is freely provided online. And a thanks to the following
projects that made mine possible: nxt-python, pybrain, python-
imaging-library, and the free IP Webcam Android App.

Disclaimers

This work was done as part of a personal hobby project. The
views and opinions expressed are my own, and not related to my
employer. LEGO, LEGO Mindstorms, ARM and Bluetooth are
trademarks owned by their respective owners. E&OE

REFERENCES

[Sin12] David Singleton. How I built a neural network controlled self-driving
(RC) car! http://blog.davidsingleton.org/nnrccar

[Moh12] Iqbal Mohomed. Self-driving Lego Mindstorms Robot http://
slowping.com/2012/self-driving-lego-mindstorms-robot/

[Tur98] Matthew A. Turk, David G. Morgenthaler, Keith D. Gremban, and
Martin Marra. VITS-A Vision System for Autonomous Land Vehicle
Navigation, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 10(3):342-361, May 1988.

[Pom93] Dean A. Pomerleau. Knowledge-based Training of Artificial Neural
Networks for Autonomous Robot Driving, Robot Learning, 1993.

[Mon08] Michael Montemerlo, Jan Becker, Suhrid Bhat, Hendrik Dahlkamp,
Dmitri Dolgov, Scott Ettinger, Dirk Haehnel, Tim Hilden, Gabe
Hoffmann, Burkhard Huhnke, Doug Johnston, Stefan Klumpp, Dirk
Langer, Anthony Levandowski, Jesse Levinson, Julien Marcil, David
Orenstein, Johannes Paefgen, Isaac Penny, Anna Petrovskaya, Mike
Pflueger, Ganymed Stanek, David Stavens, Antone Vogt, and Se-
bastian Thrun. Junior: The Stanford entry in the Urban Challenge,
Journal of Field Robotics, 25(9):569-597, September 2008.

https://github.com/iqbalmohomed/selfdrivingrobot.git
http://blog.davidsingleton.org/nnrccar
http://slowping.com/2012/self-driving-lego-mindstorms-robot/
http://slowping.com/2012/self-driving-lego-mindstorms-robot/

	Introduction
	Robot Construction
	Setup
	Driving the Lego Mindstorms robot
	Getting images from the camera phone
	Processing the images on desktop
	Obtaining training data
	Enter the Neural Network
	Training the brain
	Auto-drive mode
	The Self-Driving Lego Mindstorms Robot comes to life!
	Conclusions
	Source Code
	Acknowledgements
	Disclaimers
	References

