
46 PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

Fcm - A python library for flow cytometry

Jacob Frelinger‡∗, Adam Richards‡, Cliburn Chan‡

F

Abstract—Flow cytometry has the ability to measure multiple parameters of a
heterogeneous mix of cells at single cell resolution. This has lead flow cytometry
to become an integral tool in immunology and biology. Most flow cytometry
analysis is performed in expensive proprietary software packages, and few
opensource tool exist for working with flow cytometry data. In this paper we
present fcm, an BSD licensed python library for traditional gating based analysis
in addition to newer model based analysis methods.

Index Terms—Flow Cytometry, Model-based Analysis, Automation, Biology,
Immunology

Introduction

Flow cytometry (FCM) has become an integral tool in immunol-
ogy and biology due to the ability of FCM to measure cell prop-
erties at the single cell level for thousands to millions of cells in a
high throughput manner. In FCM, cells are typically labeled with
monoclonal antibodies to cell surface or intracellular proteins. The
monoclonal antibodies are conjugated to different fluorochromes
that emit specific wavelengths of light when excited by lasers.
These cells are then streamed single file via a capillary tube where
they may be excited by multiple lasers. Cells scatter the laser light
in different ways depending on their size and granularity, and
excited fluorochromes emit light of characteristic wavelengths.
Scattered light is recorded in forward and side scatter detectors,
and specific fluorescent emission light is recorded into separate
channels. Since each fluorescent dye is attached to specific cell
markers by monoclonal antibodies, the intensity of emitted light
is a measure of the number of bound antibodies of that specificity
[Herzenberg2006] . The data recorded for each cell is known as an
event, although events may sometimes also represent cell debris or
clumps. Modern instruments can resolve about a dozen fluorescent
emissions simultaneously and hence measure the levels of a dozen
different markers per cell - further increase in resolution is limited
by the spectral overlap (spillover) between fluorescent dyes.

Analysis of FCM data has traditionally relied on expert in-
terpretation of scatter plots known as dot plots that show the
scattered light or fluorescence intensity for each cell depicted as a
point. Expert operators examine these two dimensional dot plots
in sequence and manually define boundaries around cell subsets
of interest in each projection. The regions demarcated by these
boundaries are known as gates, and the cell subsets of interest may
require multiple levels of gates to identify. Much work is needed

* Corresponding author: jacob.frelinger@duke.edu
‡ Duke University

Copyright © 2012 Jacob Frelinger et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Fig. 1: Diagram of how events are recorded in a flow cytometer
provided by lanl.gov

train expert operators to standardize gate placement and minimize
variance. Maecker et al [Maecker2005] found a significant source
of variability in a multi-center study was due to variability in
gating. New technologies have the potential to greatly increase the
number of simultaneous markers that can be resolved with FCM.
Inductively coupled plasma mass spectrometry [Ornatsky2006]
replaces the fluorescent dyes with stable heavy metal isotopes
and fluorescent detection with mass spectrometry. This eliminates
the spectral overlap (spillover) from fluorescent dyes allowing a
significantly increased number of markers to be resolved simulta-
neously.

With the increasing number of markers that can be resolved
simultaneously, there has been an increasing interest in automated
methods of cell subset identification. While there is need for such
tools, with the exception of the R BioConductor package, few
open source packages exist for doing both traditional analysis and
automated analysis. The majority of open source packages simply
extract flow events into tabular/csv formats, losing all metadata
and providing no additional tools for analysis. fcm attempts to
resolve this by providing methods for working with flow data in
both gating-based and model-based methods.

The goals in writing fcm [fcm] are to provide a general-
purpose python library for working with flow cytometry data.

mailto:jacob.frelinger@duke.edu


FCM - A PYTHON LIBRARY FOR FLOW CYTOMETRY 47

Targeted uses include interactive data exploration with [ipython],
building pipelines for batch data analysis, and development of
GUI and web based applications. In this paper we will explore the
basics of working with flow cytometry data using fcm and how
to use fcm to perform analysis using both gating and model based
methods.

Loading, compensating and transforming data

Flow cytometry samples that have been prepared and run through
a flow cytometer generate flow cytometry standard (FCS) files,
consisting of metadata about the sample, the reagents and instru-
ment used, together with the scatter and fluorescent values for each
event captured in the sample acquisition. These binary FCS files
are then used to perform quality control and analysis of the data,
typically with specialized proprietary software.

In fcm, the loadFCS() function will read in version 2 or
3 FCS files and return a FCMdata object. FCMdata objects
contain the recorded scatter and fluorescent marker values for each
event in an underlying numpy array, along with the associated
metadata stored in the FCS file. In the FCS specification, metdata
is stored in separate text, header and analysis sections in the
original FCS file, and these can be accessed within a FCM-
data instance from FCMdata.notes.text, FCMdata.notes.header,
and FCMdata.notes.analysis respectively using either attribute or
dictionary lookup conventions. The FCMdata object provides
a few methods to directly manipulate the event data extracted
from the FCS file, but mostly simply delegates to the underlying
numpy array storing the event data matrix. Conveniently, this
allows FCMdata objects to perform numpy array methods, such
as mean() or std(), and also allows FCMdata objects to be passed
to functions expecting numpy arrays. In addition to traditional
numpy array indexing, the text names of channels can be used to
access channels too.
In [1]: import numpy as np

In [2]: import fcm

In [3]: x = fcm.loadFCS('62851.fcs')

In [4]: x.channels[7]
Out[4]: 'AViD'

In [5]: np.all(x[:,7] == x[:,'AViD'])
Out[5]: True

When processing cells and acquiring data, often the emission
spectra of fluorescent dyes overlap with neighboring channels.
This spillover of light needs to be corrected in a process called
compensation that attempts to remove the additional signal from
neighboring channels. Using a compensation matrix that describes
the amount of spillover from each channel into others, fcm will
by default apply compensation at the time of loading data, but this
default behavior can be suppressed and compensation performed
at a later time if necessary. The spillover or compensation matrix
is typically found in the FCMdata.notes.text metadata, and load-
FCS() will default to compensating using that matrix if another is
not specified.

Since FCM fluorescent data typically approximately follows
a lognormal distribution, data is often transformed into log or
log-like scales. fcm supports both log transforms and logicle
[Parks2005] transforms as methods of FCMdata objects. load-
FCS() will default to the logicle transform if the data is on
the correct scale, that is if P#R value in the text segment is

Fig. 2: Compensation changes the data via matrix multiplication
operation to reduce the spillover from other markers into each channel
and can improve the resolution of individual cell populations.

Fig. 3: Illustration of the effects of logicle and log transform on CD3
AmCyan fluorescent from a FCS file from the EQAPOL data set.

262144. Figure 3 illustrates the effects that transforming has on
the distribution of events in each fluorescent channel.

Gating Analysis

In gating based analysis, the objective is to identify specific
cellular subsets by sequentially drawing boundary regions, called
gates, in a succession of one dimensional and two dimensional
plots to select the cellular subsets of interest. Each successive gate
captures increasingly specific cellular subsets. Once the required
populations have been identified, summary statistics, typically
mean or frequency, can easily be computed to compare with other
populations.

fcm provides several gating objects to assist in traditional
gating analysis of FCS files. Gate objects provided by fcm include
PolygonGate, defining a region of interest by a set of vertices
of the boundary of the region, QuadrantGate, dividing a two-
dimensional projection into four quadrants defined by the point of
intersection of all four quadrants, ThresholdGate, a region defined
by all points above or below a point in a single parameter, and
an IntervalGate, the set of points between two points in a single
parameter. In addition to traditional gates, fcm provides additional
gate like filters, DropChannel, to remove unwanted columns from
a view, and Subsample, that use a python slice objects to filter
events. FCMdata objects gate() method can be used to apply gate
objects in successive manner as it returns the updated FCMdata
object allowing chaining of gate() calls, like so:
FCMdata.gate(g1).gate(g2).gate(g3)

which is equivalent to the following three lines of code:
FCMdata.gate(g1)
FCMdata.gate(g2)
FCMdata.gate(g3)

In fcm, gating FCMdata object does not produce new FCMdata
objects, but rather each FCMdata object maintains a tree of



48 PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

Fig. 4: Mixture models are comprised of multiple simpler distribu-
tions. These simpler distributions are added together to describe more
complex distributions. Using these simpler distributions, in this case
multivariate normal distributions, it becomes possible to describe very
complex distributions.

each gated populations. Moving between nodes of the tree, ac-
complished by the FCMdata.visit() method, selects which events
are retured on array lookup, using numpy’s efficient indexing to
generate views. This allows FCMdata objects to contain an entire
analysis in a single object and reduces the need to keep multiple
large high dimensional arrays in memory.

Model Based Analysis

As a result of the increasing dimensionality of FCM data resulting
from technological advances, manual analysis is increasingly
complex and time-consuming. Therefor there is much interest in
finding automated methods of analyzing flow data. Model based
analysis is an approach to automate and increase reproducibility
in the analysis of flow data by the use of statistical models fitted
to the data. With the appropriate multivariate statistical models,
data fitting can be naturally performed on the full dimensionality,
allowing analysis to scale well with the increasing number of
parameters in flow cytometry. Mixture models are one such model
based method. Mixture models are often chosen due to their ability
to use multiple simpler distributions added together to describe a
much more complex distribution as seen in figure 4.

fcm provides several model based methods for identifying
cell subsets, the simplest method being k-means classification,
and more advanced methods based on the use of mixtures of
Gaussians for data fitting. The general procedure for fitting a
data set to a statistical model consists of creating a FCMmodel
object containing hyper-parameters, followed by calling its fit
method on a collection of (or just one) FCMdata objects to
generate ModelResult objects. Each ModelResult object holds
the estimated parameters of the statistical model -- a KMeans
object representing the centroid locations in a k-means model, or a
DPMixture object representing the estimated weights, means and
covariances for Gaussian mixture models. These objects can then
be used to classify arbitrary datasets or to explore the estimated
model parameters.

Gaussian mixture models describe events as coming from a
mixture of multiple multivariate Gaussian distributions, where an
event x comes from each Gaussian component with probability πi,

Fig. 5: Events in a sample data set clustered by DPMixtureModel
using Bayesian EM

the weight. Hence the overall probability is

p(x|π,µ,σ) =
k

∑
i=1

πiN(x|µi,σi)

where N is a Gaussian, and x can be assigned to the Gaussian
component with the highest probability. fcm provides two related
mixture models to fit data from the [dpmix] package, which is
capable of using [gpustats] to utilize GPU cards for efficient
estimation of mixture parameters. The two models are DPMixture-
Model and HDPMixtureModel, describing a truncated Dirichlet
process mixture model, and a hierarchical truncated Dirichlet
process mixture model.

DPMixtureModel has two methods of estimating parameters
of the model for a given dataset, the first using Markov chain
monte carlo (MCMC) and the second using Bayesian expectation
maximization (BEM). Sensible defaults for hyperparameters have
been chosen that in our experience perform satisfactorily on all
FCS data samples we have analyzed.

1 import fcm
2 import fcm.statistics as stats
3 import pylab
4

5 #load FCS file
6 data = fcm.loadFCS('3FITC_4PE_004.fcs')
7

8 #ten component model fit using BEM for
9 # 100 iterations

10 dpmodel = stats.DPMixtureModel(10, niter=100,
11 type='BEM')
12

13 # estimate parameters printing every 10 iterations
14 results = dpmodel.fit(data,verbose=10)
15

16 #assign data to components
17 c = results.classify(data)
18

19 # plot data coloring by label
20 pylab.scatter(data[:,0], data[:,1], c=c,
21 s=1, edgecolor='none')
22

23 pylab.xlabel(data.channels[0])
24 pylab.ylabel(data.channels[1])

The above code labels each event by color to the cluster it belongs
to as seen in figure 5



FCM - A PYTHON LIBRARY FOR FLOW CYTOMETRY 49

Fig. 6: Pseudo-color heatmap produced by fcm.graphics.heatmap
function showing CD4 versus CD8.

HDPMixtureModel fits multiple data sets simultaneously so
as to identify a hierarchical model that fits all datasets such that
component means and covariance are common to all fitted samples
but the weights of components are specific for each sample. Since
HDPMixtureModel estimates multiple datasets simultaneously, a
list of DPMixture objects is returned corresponding to each of the
FCMdata objects passed to HDPMixureMode.fit().

Visualization

By using packages like [matplotlib] it becomes easy to
recreate the typical plots flow cytometry analysts are used
to seeing. Convenience functions for several common plot
types have been included in the fcm.graphics sub-package.
The common pseudocolor dotplot is handled by the function
fcm.graphics.pseudocolor()
1 import fcm
2 import fcm.graphics as graph
3 x = fcm.loadFCS('B6901GFJ-08_CMV pp65.fcs')
4 graph.pseudocolor(x, [('CD4 PerCP Cy55','CD8 APC Cy7')])

The above code produces the plot like that seen in figure 6
Another common plot is overlay histograms, which is provided

by fcm.graphics.hist()
1 import fcm
2 import fcm.graphics as graph
3 from glob import glob
4 xs =[fcm.loadFCS(x) for x in glob('B6901GFJ-08_*.fcs')]
5 graph.hist(xs,3, display=True)

The code above will produce the histogram seen in figure 7
More examples of flow cytometry graphics can be seen in the

gallery at http://packages.python.org/fcm/gallery.

Conclusion and future work

Currently fcm is approaching its 1.0 release, providing a stable
API for development and we feel fcm is ready for wider usage

Fig. 7: Overlay histogram of three samples from the EQAPOL data
set.

in the scientific community. Internally we use fcm for EDA for
data sets from HIV/AIDS, caner, and solid-organ transplantation
studies. In addition we have developed pipelines for batch analysis
of large numbers of FCS files from the Duke Center for AIDS
Research, External Quality Assurance Program Oversight Labora-
tory (EQAPOL), and the Association for Cancer Immunotherapy
(CIMT). We have also developed a graphical tool to assist im-
munologist to perform model based analysis [cytostream]. Our
hope is that fcm can fill a need in the biomedical community
and facilitate the growth of python as a tool suited for scientific
programming.

With the growing complexity of flow cytometry data, we
foresee an increased need for computational tools. Current mass-
spec based flow cytometers are capable of resolving many more
parameters than current fluorescent based cytometers, necessi-
tating improved tools for analysis. Imaging cytometers, which
take digital images of events as they pass through the detection
apparatus, will also produce a wealth of additional information
about each event based on analyzing the images generated. These
technologies will necessitate improved tools to analyze data gen-
erated by these newer cytometers. Our hope is that fcm can
meet these needs and continue to grow to address these needs,
with specific goals of developing tools to facilitate cross sample
comparison and time series of flow data.

The next generation of the FCS file standard, Analytical
Cytometry Standard, has been proposed, using NetCDF as the
format for event storage. The ACS file will be a container allowing
storage of much more than the current FCS limitations of event
and textual metadata. Thanks to the availability of several good
libraries for dealing with NetCDF, and the associated xml and
image files proposed to be included in the ACS container, adding
support for the finalized version of ACS standard should not be
difficult. Gating-ML, an XML format proposed with ACS for
describing gates and thier placement, has been gaining popularity.
We are exploring how best to implement readers and writers for
Gating-ML

Acknowledgements

We are thankful to Kent Weinhold and the Duke SORF flow core,
and the statistics group led by Mike West at Duke University

http://packages.python.org/fcm/gallery


50 PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

for many helpful discussions. Research supported by National
Institutes of Health (RC1AI086032-01, UL1RR024128 Cliburn
Chan).

REFERENCES

[fcm] Frelinger J, Richards A, Chan C, http://code.google.com/
p/py-fcm/

[Herzenberg2006] Herzenberg LA, Tung J et al (2006), Interpreting flow
cytometry data: a guide for the perplexed, Nat Immunol
7(7):681-685

[Maecker2005] Maecker HT, Frey T et al (2007), Standardization of
cytokine flow cytometry assays, BMC Immunol 6:13

[Ornatsky2006] Ornatsky O, Baranov VI et al (2006), Multiple cellular
antigent detection by ICP-MS, J Immunol Methods 308(1-
2):68-76

[ipython] Pérez F, Granger BE, IPython: A System for Interac-
tive Scientific Computing, Computing in Science and
Engineering, vol. 9, no. 3, pp. 21-29, May/June 2007,
doi:10.1109/MCSE.2007.53. URL: http://ipython.org

[Parks2005] Parks, D. R., Roederer, M. and Moore, W. A. (2006), A
new “Logicle” display method avoids deceptive effects of
logarithmic scaling for low signals and compensated data,
Cytometry, 69A: 541–551. doi: 10.1002/cyto.a.20258

[dpmix] Cron A, https://github.com/andrewcron/dpmix
[gpustats] Cron A and McKinney W, https://github.com/dukestats/

gpustats
[matplotlib] Hunter JD, (2007), Matplotlib: A 2D Graphics Environ-

ment, Computing in Science & Engineering 9, 90 (2007)
[cytostream] Richards A, http://code.google.com/p/cytostream/

http://code.google.com/p/py-fcm/
http://code.google.com/p/py-fcm/
https://github.com/andrewcron/dpmix
https://github.com/dukestats/gpustats
https://github.com/dukestats/gpustats
http://code.google.com/p/cytostream/

	Introduction
	Loading, compensating and transforming data
	Gating Analysis
	Model Based Analysis
	Visualization
	Conclusion and future work
	Acknowledgements
	References

