
PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012) 51

Uncertainty Modeling with SymPy Stats

Matthew Rocklin‡∗

F

Abstract—We add a random variable type to a mathematical modeling lan-
guage. We demonstrate through examples how this is a highly separable way
to introduce uncertainty and produce and query stochastic models. We motivate
the use of symbolics and thin compilers in scientific computing.

Index Terms—Symbolics, mathematical modeling, uncertainty, SymPy

Introduction

Scientific computing is becoming more challenging. On the com-
putational machinery side heterogeneity and increased parallelism
are increasing the required effort to produce high performance
codes. On the scientific side, computation is used for problems
of increasing complexity by an increasingly broad and untrained
audience. The scientific community is attempting to fill this
widening need-to-ability gulf with various solutions. This paper
discusses symbolic mathematical modeling.

Symbolic mathematical modeling provides an important in-
terface layer between the description of a problem by domain
scientists and description of methods of solution by computational
scientists. This allows each community to develop asynchronously
and facilitates code reuse.

In this paper we will discuss how a particular problem domain,
uncertainty propagation, can be expressed symbolically. We do
this by adding a random variable type to a popular mathematical
modeling language, SymPy [Sym, Joy11]. This allows us to
describe stochastic systems in a highly separable and minimally
complex way.

Mathematical models are often flawed. The model itself may
be overly simplified or the inputs may not be completely known.
It is important to understand the extent to which the results of
a model can be believed. Uncertainty propagation is the act of
determining the effects of uncertain inputs on outputs. To address
these concerns it is important that we characterize the uncertainty
in our inputs and understand how this causes uncertainty in our
results.

Motivating Example - Mathematical Modeling

We motivate this discussion with a familiar example from kine-
matics.

Consider an artilleryman firing a cannon down into a valley.
He knows the initial position (x0,y0) and orientation, θ , of the

* Corresponding author: mrocklin@cs.uchicago.edu
‡ University of Chicago, Computer Science

Copyright © 2012 Matthew Rocklin. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

cannon as well as the muzzle velocity, v, and the altitude of the
target, y f .
Inputs
>>> x0 = 0
>>> y0 = 0
>>> yf = -30 # target is 30 meters below
>>> g = -10 # gravitational constant
>>> v = 30 # m/s
>>> theta = pi/4

If this artilleryman has a computer nearby he may write some code
to evolve forward the state of the cannonball to see where it hits
lands.
>>> while y > yf: # evolve time forward until y hits the ground
... t += dt
... y = y0 + v*sin(theta)*t
... + g*t**2 / 2
>>> x = x0 + v*cos(theta)*t

Notice that in this solution the mathematical description of the
problem y = y0 + vsin(θ)t + gt2

2 lies within the while loop. The
problem and method are woven together. This makes it difficult
both to reason about the problem and to easily swap out new
methods of solution.

If the artilleryman also has a computer algebra system he may
choose to model this problem and solve it separately.
>>> t = Symbol('t') # SymPy variable for time
>>> x = x0 + v * cos(theta) * t
>>> y = y0 + v * sin(theta) * t + g*t**2
>>> impact_time = solve(y - yf, t)
>>> xf = x0 + v * cos(theta) * impact_time
>>> xf.evalf() # evaluate xf numerically
65.5842

Plot x vs. y for t in (0, impact_time)
>>> plot(x, y, (t, 0, impact_time))

In this case the solve operation is nicely separated. SymPy defaults
to an analytic solver but this can be easily swapped out if analytic
solutions do not exist. For example we can easily drop in a
numerical binary search method if we prefer.

If he wishes to use the full power of SymPy the artilleryman
may choose to solve this problem generally. He can do this simply
by changing the numeric inputs to sympy symbolic variables
>>> x0 = Symbol('x_0')
>>> y0 = Symbol('y_0')
>>> yf = Symbol('y_f')
>>> g = Symbol('g')
>>> v = Symbol('v')
>>> theta = Symbol('theta')

He can then run the same modeling code found in (missing code
block label) to obtain full solutions for impact_time and the final
x position.

mailto:mrocklin@cs.uchicago.edu

52 PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

g
v

Fig. 1: The trajectory of a cannon shot

x

x0 v thetat

y

y0 g

yf

impact_time

xf

Fig. 2: A graph of all the varibles in our system. Variables on top
depend on variables connected below them. The leaves are inputs to
our system.

>>> impact_time

−vsin(θ)+
√
−4gy0 +4gy f + v2 sin2 (θ)

2g

>>> xf

x0 +

v
(
−vsin(θ)+

√
−4gy0 +4gy f + v2 sin2 (θ)

)
cos(θ)

2g

Rather than produce a numeric result, SymPy produces an abstract
syntax tree. This form of result is easy to reason about for both
humans and computers. This allows for the manipulations which
provide the above expresssions and others. For example if the
artilleryman later decides he needs derivatives he can very easily
perform this operation on his graph.

Motivating Example - Uncertainty Modeling

To control the velocity of the cannon ball the artilleryman intro-
duces a certain quantity of gunpowder to the cannon. He is unable
to pour exactly the desired quantity of gunpowder however and so
his estimate of the velocity will be uncertain.

He models this uncertain quantity as a random variable that
can take on a range of values, each with a certain probability. In

27 28 29 30 31 32 33

Distribution of velocity

Fig. 3: The distribution of possible velocity values

this case he believes that the velocity is normally distributed with
mean 30 and standard deviation 1.
>>> from sympy.stats import *
>>> v = Normal('v', 30, 1)
>>> pdf = density(v)
>>> z = Symbol('z')
>>> plot(pdf(z), (z, 27, 33))

√
2e−

1
2 (z−30)2

2
√

π

v is now a random variable. We can query it with the following
operators
P -- # Probability
E -- # Expectation
variance -- # Variance
density -- # Probability density function
sample -- # A random sample

These convert stochasitc expressions into computational ones. For
example we can ask the probability that the muzzle velocity is
greater than 31.
>>> P(v > 31)

−1
2

erf
(

1
2

√
2
)
+

1
2

This converts a random/stochastic expression v > 31 into a
deterministic computation. The expression P(v > 31) actually
produces an intermediate integral expression which is solved with
SymPy’s integration routines.
>>> P(v > 31, evaluate=False)∫

∞

31

√
2e−

1
2 (z−30)2

2
√

π
dz

Every expression in our graph that depends on v is now a random
expression

We can ask similar questions about the these expressions. For
example we can compute the probability density of the position of
the ball as a function of time.
>>> a,b = symbols('a,b')
>>> density(x)(a) * density(y)(b)

e−
a2

t2 e−
(b+5t2)

2

t2 e30
√

2a
t e30

√
2(b+5t2)

t

πt2e900

UNCERTAINTY MODELING WITH SYMPY STATS 53

x0 y0v theta g

yf

t

x y

impact_time

xf

Fig. 4: A graph of all the varibles in our system. Red variables are
stochastic. Every variable that depends on the uncertain input, v, is
red due to its dependence.

4.5 5.0 5.5 6.0 6.5
Time

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Probability that the cannon ball has not yet landed

Or we can plot the probability that the ball is still in the air at time
t

>>> plot(P(y>yf), (t, 4.5, 6.5))

Note that to obtain these expressions the only novel work the
modeler needed to do was to describe the uncertainty of the inputs.
The modeling code was not touched.

We can attempt to compute more complex quantities such as
the expectation and variance of impact_time the total time of
flight.

>>> E(impact_time)

∫
∞

−∞

(
v+
√

v2 +2400
)

e−
1
2 (v−30)2

40
√

π
dv

In this case the necessary integral proved too challenging for the
SymPy integration algorithms and we are left with a correct though
unresolved result.

This is an unfortunate though very common result. Math-
ematical models are usually far too complex to yield simple
analytic solutions. I.e. this unresolved result is the common case.
Fortunately computing integral expressions is a problem of very
broad interest with many mature techniques. SymPy stats has
successfully transformed a specialized and novel problem (uncer-

RV Type Computational Type
Continuous SymPy Integral
Discrete - Finite (dice) Python iterators / generators
Discrete - Infinite (Poisson) SymPy Summation
Multivariate Normal SymPy Matrix Expression

TABLE 1: Different types of random expressions reduce to different
computational expressions (Note: Infinite discrete and multivariate
normal are in development and not yet in the main SymPy distribution)

tainty propagation) into a general and well studied one (computing
integrals) to which we can apply general techniques.

Sampling

One method to approximate difficult integrals is through sampling.
SymPy.stats contains a basic Monte Carlo backend which can

be easily accessed with an additional keyword argument.

>>> E(impact_time, numsamples=10000)
5.36178452172906

Implementation

A RandomSymbol class/type and the functions P, E,
density, sample are the outward-facing core of sympy.stats
and the PSpace class in the internal core representing the
mathematical concept of a probability space.

A RandomSymbol object behaves in every way like a stan-
dard sympy Symbol object. Because of this one can replace
standard sympy variable declarations like

x = Symbol('x')

with code like

x = Normal('x', 0, 1)

and continue to use standard SymPy without modification.
After final expressions are formed the user can query them

using the functions P, E, density, sample. These func-
tions inspect the expression tree, draw out the RandomSymbols
and ask these random symbols to construct a probabaility space or
PSpace object.

The PSpace object contains all of the logic to turn random
expressions into computational ones. There are several types
of probability spaces for discrete, continuous, and multivariate
distributions. Each of these generate different computational ex-
pressions.

Implementation - Bayesian Conditional Probability

SymPy.stats can also handle conditioned variables. In this section
we describe how the continuous implementation of sympy.stats
forms integrals using an example from data assimilation.

We measure the temperature and guess that it is about 30C
with a standard deviation of 3C.

>>> from sympy.stats import *
>>> T = Normal('T', 30, 3) # Prior distribution

We then make an observation of the temperature with a thermome-
ter. This thermometer states that it has an uncertainty of 1.5C

>>> noise = Normal('eta', 0, 1.5)
>>> observation = T + noise

54 PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

20 25 30 35 40
Temperature (C)

0.00

0.05

0.10

0.15

0.20

0.25

P
ro

b
a
b
ili

ty
 D

e
n
si

ty

Data Assimilation

T_prior

Data
T_posterior

Fig. 5: The prior, data, and posterior distributions of the temperature.

Measurement Noise

T
em

pe
ra

tu
re

Fig. 6: The joint prior distribution of the temperature and measure-
ment noise. The constraint T + noise == 26 (diagonal line) and
the resultant posterior distribution of temperature on the left.

With this thermometer we observe a temperature of 26C. We
compute the posterior distribution that cleanly assimilates this new
data into our prior understanding. And plot the three together.
>>> data = 26 + noise
>>> T_posterior = Given(T, Eq(observation, 26))

We now describe how SymPy.stats obtained this result. The
expression T_posterior contains two random variables, T and
noise each of which can independently take on different values.
We plot the joint distribution below in figure 6. We represent the
observation that T + noise == 26 as a diagonal line over the
domain for which this statement is true. We project the probability
density on this line to the left to obtain the posterior density of the
temperature.

These gemoetric operations correspond exactly to Bayesian
probability. All of the operations such as restricting to the condi-
tion, projecting to the temperature axis, etc... are managed using

Math / PDE description

Linear Algebra/
Matrix Expressions

Sparse matrix algorithms

Parallel solution /
scheduler

C/FORTRAN

x86

Uncertainty

Scientific description

BLAS/LAPACK

PETSc/Trilinos

FEniCS

SymPy.stats

CUDA

PowerPC GPU SoC

Numerical Linear Algebra

gcc/nvcc

Fig. 7: The scientific computing software stack. Various projects are
displayed showing the range that they abstract. We pose that scientific
computing needs more horizontal and thin layers in this image.

core SymPy functionality.

Multi-Compilation

Scientific computing is a demanding field. Solutions frequently
encompass concepts in a domain discipline (such as fluid dynam-
ics), mathematics (such as PDEs), linear algebra, sparse matrix
algorithms, parallelization/scheduling, and local low level code
(C/FORTRAN/CUDA). Recently uncertainty layers are being
added to this stack.

Often these solutions are implemented as single monolithic
codes. This approach is challenging to accomplish, difficult to
reason about after-the-fact and rarely allows for code reuse. As
hardware becomes more demanding and scientific computing
expands into new and less well trained fields this challenging
approach fails to scale. This approach is not accessible to the
average scientist.

Various solutions exist for this problem.
Low-level Languages like C provide a standard interface for

a range of conventional CPUs effectively abstracting low-level
architecture details away from the common programmer.

Libraries such as BLAS and LAPACK provide an interface be-
tween linear algebra and optimized low-level code. These libraries
provide an interface layer for a broad range of architecture (i.e.
CPU-BLAS or GPU-cuBLAS both exist).

High quality implementations of vertical slices of the stack
are available through higher level libraries such as PETSc and
Trilinos or through code generation solutions such as FENICS.
These projects provide end to end solutions but do not provide
intermediate interface layers. They also struggle to generalize well
to novel hardware.

Symbolic mathematical modeling attempts to serve as a thin
horizontal interface layer near the top of this stack, a relatiely
empty space at present.

UNCERTAINTY MODELING WITH SYMPY STATS 55

SymPy stats is designed to be as vertically thin as possible. For
example it transforms continuous random expressions into integral
expressions and then stops. It does not attempt to generate an end-
to-end code. Because its backend interface layer (SymPy integrals)
is simple and well defined it can be used in a plug-and-play manner
with a variety of other back-end solutions.

Multivariate Normals produce Matrix Expressions

Other sympy.stats implementations generate similarly structured
outputs. For example multivariate normal random variables found
in sympy.stats.mvnrv generate matrix expressions. In the
following example we describe a standard data assimilation task
and view the resulting matrix expression.

mu = MatrixSymbol('mu', n, 1) # n by 1 mean vector
Sigma = MatrixSymbol('Sigma', n, n) # covariance matrix
X = MVNormal('X', mu, Sigma)

H = MatrixSymbol('H', k, n) # An observation operator
data = MatrixSymbol('data', k, 1)

R = MatrixSymbol('R', k, k) # covariance matrix for noise
noise = MVNormal('eta', ZeroMatrix(k, 1), R)

Conditional density of X given HX+noise==data
density(X , Eq(H*X+noise, data))

µ = [I 0]
([

Σ 0
0 R

][
HT

I
](
[H I]

[
Σ 0
0 R

][
HT

I
])−1 (

[H I]
[

µ

0
]
−data

)
+
[

µ

0
])

Σ= [I 0]
(
I−
[

Σ 0
0 R

][
HT

I
](
[H I]

[
Σ 0
0 R

][
HT

I
])−1

[H I]
)[

Σ 0
0 R

][I
0
]

µ = µ+ΣHT (R+HΣHT)
−1

(Hµ−data)

Σ =
(
I−ΣHT (R+HΣHT)

−1
H
)

Σ

Those familiar with data assimilation will recognize the Kalman
Filter. This expression can now be passed as an input to other
symbolic/numeric projects. Symbolic/numerical linear algebra is
a vibrant and rapidly changing field. Because sympy.stats
offers a clean interface layer it is able to easily engage with these
developments. Matrix expressions form a clean interface layer in
which uncertainty problems can be expressed and transferred to
computational systems.

We generally support the idea of approaching the
scientific computing conceptual stack (Physics/PDEs/Linear-
algebra/MPI/C-FORTRAN-CUDA) with a sequence of simple and
atomic compilers. The idea of using interface layers to break up a
complex problem is not new but is oddly infrequent in scientific
computing and thus warrants mention. It should be noted that for
heroic computations this approach falls short - maximal speedup
often requires optimizing the whole problem at once.

Conclusion

We have foremost demonstrated the use of sympy.stats a
module that enhances sympy with a random variable type. We
have shown how this module allows mathematical modellers to
describe the undertainty of their inputs and compute the uncer-
tainty of their outputs with simple and non-intrusive changes to
their symbolic code.

Secondarily we have motivated the use of symbolics in compu-
tation and argued for a more separable computational stack within
the scientific computing domain.

REFERENCES

[Sym] SymPy Development Team (2012). SymPy: Python library for sym-
bolic mathematics URL http://www.sympy.org.

[Roc12] M. Rocklin, A. Terrel, Symbolic Statistics with SymPy Computing in
Science & Engineering, June 2012

[Joy11] D. Joyner, O. Čertík, A. Meurer, B. Granger, Open source computer
algebra systems: SymPy ACM Communications in Computer Alge-
bra, Vol 45 December 2011

http://www.sympy.org

	Introduction
	Motivating Example - Mathematical Modeling
	Motivating Example - Uncertainty Modeling
	Sampling

	Implementation
	Implementation - Bayesian Conditional Probability
	Multi-Compilation
	Multivariate Normals produce Matrix Expressions

	Conclusion
	References

