
PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012) 69

OpenMG: A New Multigrid Implementation in Python

Tom S. Bertalan‡∗, Akand W. Islam‡, Roger B. Sidje§, Eric Carlson‡

F

Abstract—In many large-scale computations, systems of equations arise in the
form Au = b, where A is a linear operation to be performed on the unknown data
u, producing the known right-hand side, b, which represents some constraint of
known or assumed behavior of the system being modeled. Since such systems
can be very large, solving them directly can be too slow. In contrast, a multigrid
solver solves partially at full resolution, and then solves directly only at low
resolution. This creates a correction vector, which is then interpolated to full
resolution, where it corrects the partial solution. This project aims to create an
open-source multigrid solver called OpenMG, written only in Python. The exist-
ing PyAMG multigrid implementation is a highly versatile, configurable, black-
box solver, but is difficult to read and modify due to its C core. Our proposed
OpenMG is a pure Python experimentation environment for testing multigrid
concepts, not a production solver. By making the code simple and modular,
we make the algorithmic details clear. We thereby create an opportunity for
education and experimentation with the partial solver (Jacobi, Gauss Seidel,
SOR, etc.), the restriction mechanism, the prolongation mechanism, and the
direct solver, or the use of GPGPUs, multiple CPUs, MPI, or grid computing. The
resulting solver is tested on an implicit pressure reservoir simulation problem
with satisfactory results.

Index Terms—python, multigrid, numpy, partial differential equations

Introduction to Multigrid

Multigrid algorithms aim to accelerate the solution of large linear
systems that typically arise from the discretization of partial differ-
ential equations. While small systems (hundreds of unknowns) can
efficiently be solved with direct methods such as Gaussian elim-
ination or iterative methods such as Gauss-Seidel, these methods
do not scale well. In contrast, multigrid methods can theoretically
solve a system in O(N) CPU steps and memory usage [Brandt2].

The entire multigrid algorithm can be summarized in a few
steps. The process below assumes that the user has first discretized
the partial differential equation ("PDE") of interest, or otherwise
expressed the problem as a matrix system of equations.

1) Setup hierarchies of operators and restriction matrices.
2) Find an approximation to the solution (pre-smooth the

high-frequency error).
3) Find the fine residual.
4) Coarsen the residual, and produce the coarse right-hand

side.

* Corresponding author: tom@tombertalan.com
‡ The University of Alabama, Department of Chemical and Biological Engi-
neering
§ The University of Alabama, Department of Mathematics

Copyright © 2012 Tom S. Bertalan et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

5) Solve at the coarse level (via a direct solver or a recursive
call to the multigrid algorithm).

6) Prolong the coarse solution, and produce the fine correc-
tion vector.

7) Return the corrected solution.

Because of the possibility for a recursive call, this is often
called a multigrid "cycle".

The basic premise of multigrid is that a quick but sloppy
solution can be corrected using information calculated at a coarser
resolution. That is, an approximation is first made at the fine
resolution, and the residual from this approximation is used as the
right-hand side for a correction equation to be solved at a much
coarser resolution, where computational costs are also much lower.
This basic two-grid scheme can be extended by using a recursive
call at the coarse level instead of a direct solver.

History

Multigrid techniques were first introduced in 1964 in the USSR by
R. P. Fedorenko [Fedorenko1], [Fedorenko2], who recognized the
significance of the interaction between the mesh resolution and the
components of the error of an iterative solution (see section Pre-
Smoothing), but who initially conceived of the multigrid algorithm
simply as an occasional correction to a basic iterative solver.
Rigorous analysis of the technique was furthered in the seventies
by Achi Brandt, Wolfgang Hackbusch, and R. A. Nicolaides.
Brandt [Brandt2] placed more emphasis on the coarse-grid repre-
sentations, describing multigrid as a method by which to "intermix
discretization and solution processes, thereby making both of them
orders of magnitude more effective." He further recast the process
in terms of local and global mode analysis (Fourier analysis) in
1994 [Brandt1]. In 1979 Nicolaides wrote a useful synthesis of
the work of Fedorenko and Brandt up to that point, and also
contrasted the older two-level coarse-grid correction strategy with
true, l-level multigrid [Nicolaides]. Hackbrush wrote one of the
foundational texts on multigrid [Hackbusch].

More information on the history of multigrid techniques can
be found in several books [Trottenberg], [Hackbusch], [Wesseling]
or lecture notes [Heckbert] on the topic.

Examples of simulation problem domains that have ben-
efited from multigrid techniques include porous media trans-
port [Douglas2], [Kameswaran], molecular dynamics [Dzwinel],
[Zapata], [Boschitsch], fluid dynamics [Denev], [Douglas2],
[Kameswaran], and neural network simulations (and neurotrans-
mitter diffusion) [Bakshi].

Multigrid concepts are not limited to applications in simula-
tion. Mipmapped textures for computer graphics and ultra-high-
resolution image viewing applications such as satellite imaging

mailto:tom@tombertalan.com

70 PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

both rely on the concept of a hierarchy of grid resolutions. Here,
intergrid transfer operators are used for the purpose of creating
images at different resolutions than the original.

Existing Python Implementations

The current open-source Python multigrid implementation
PyAMG (due to Nathan Bell [Bell]) is a very capable and speedy
multigrid solver, with a core written in C. However, because of
the extent of optimizations (and the inclusion of C code), it is not
particularly readable.

Another interesting implementation is Yvan Notay’s AGMG,
which is available for Matlab and Fortran and includes parallel
versions [Notay], [AGMG]. AGMG is available for free for
academic use and by site-license for commercial use.

Our project, OpenMG, is not intended to be a production
solver but instead a tool for education and experimentation. In
this, it is largely inspired by the intentions behind Douglas, Deng,
Haase, Liebmann, and Mckenzie’s AMGlab [Douglas1], which is
written for MATLAB. (AMGlab is freely available, although a
license does not seem to be specified.) OpenMG is constructed
in a modular fashion so each part can be understood by itself.
Optimizations that might decrease readability have been avoided.
Because of the modularity of the system, simplified components of
the algorithm can be overridden with more optimized components
in the future.

Theoretical Algorithm

Discretization

The need for any sort of linear algebraic solver arises when a
system of partial differential equations is discretized on a finite
grid of points. While this is not the work of the OpenMG solver
itself (the arguments to the solver are already in discretized form),
it is a necessary preliminary step.

A good illustration of discretization is that of the Poisson
equation, ∇u = 0. Here, ∇ is the Laplace operator, which signifies
the sum of unmixed second partial derivatives.

∇u =
∂ 2u
∂x2 +

∂ 2u
∂y2

One possible discretization of this equation uses a central differ-
ence of both forward- and backwards-difference discretizations of
the first partial derivatives.

∂ 2u
∂x2 ≈

ui, j+1−ui, j
h − ui, j−ui, j−1

h
h

∂ 2u
∂y2 ≈

ui+1, j−ui, j
h − ui, j−ui−1, j

h
h

∂ 2u
∂x2 +

∂ 2u
∂y2 ≈

(
1
h2

)
(1ui−1, j +1ui, j−1−4ui, j +1ui, j+1 +1ui+1, j)

(1)
When applied to every point in the domain, the coefficient pattern
1,1,−4,1,1 produces a five-banded square coefficent matrix A in
the equation

Au = b (2)

where u is the vector of unknowns, for which we must solve, and
the right-hand side b includes boundary information.

1. Setup R and A Hierarchies

The basic requirement of multigrid is, unsurprisingly, a multiplicy
of grids, each discretizing the problem domain at a different
resolution. In the simplest ("two-grid") scheme, there are two grid
levels, h and H, where grid h has Nh unknowns, grid H has NH
unknowns, Nh >NH , and (for regular Cartesian grids) the values of
h and H represent the fine and coarse grid spacings, respectively.

In geometric multigrid, the operator at the fine level Ah is
replaced by the operator at the coarse level AH by re-discretizing
the underlying PDE. However, this method, while potentially
faster, enforces a tighter coupling between the solver and the
simulation problem at hand.

The alternative to geometric multigrid is algebraic multigrid,
in which the coarse operator is derived not from the PDE but
only from the fine operator. Ruge-Steuben coarsening bases this
transformation on the pattern of coefficients in Ah, but our current
implementation (see Implementation) instead uses a stencil-based
average.

Before the cycling portion of the algorithm, a setup phase is
executed in which we generate a hierarchy of restriction matrices
and coefficient matrices. The restriction array at position h in the
hierarchy, where the number of unknowns is Nh, and where the
number of unknowns for the next coarsest level is NH , is RH

h , or
simply Rh. It functions as an intergrid transfer operator from grid
H to grid h, and has shape (NH ,Nh). That is, it can reduce the size
of a vector from Nh to NH elements:

uH = Rhuh (3)

These restriction matrices are used to produce a similar hierarchy
of coefficient matrices, via the Galerkin coarse-grid approximation
[Zeng].

AH = RhAhRT
h

This is significant because the multigrid algorithm thereby requires
no knowledge of the underlying PDE to generate the coarse-
grid operator. Instead, the coarse-grid operator is created solely
through algebraic manipulation, giving rise to the term “algebraic
multigrid”.

It should be noted that the labels h and H are used because, in
cartesian structured grids, the characteristic that distinguishes be-
tween grid levels is the spacing between points. It is geometrically
intuitive to call the distance between points h in the fine grid and
H in the coarse grid.

2. Pre-Smoothing: uapx,h

An iterative solver is used to produce an initial estimate of the
solution. This solver can be a Jacobi, Gauss-Seidel, or conjugate
gradient implementation, or any other solver that can use a
number-of-iterations parameter to make a tradeoff between overall
accuracy and speed.

These iterative solvers begin with some initial guess of the
solution, which could either be the work of previous solvers or
simply a zero-vector. Because the iterative solvers reduce the high-
frequency components of the error in this guess more quickly than
they reduce the low-frequency ones, they are often referred to
as “smoothers” in the context of multigrid methods. The purpose
of a multigrid scheme is to use these iterative smoothers only
at high resolution to reduce the high-frequency error, relying on
corrections at lower resolution to reduce the low-frequency com-
ponents of the error. [Harimi] See Figure 5 c, and accompanying
explanations in Test Definitions and Results.

OPENMG: A NEW MULTIGRID IMPLEMENTATION IN PYTHON 71

So,

uapx,h = iterative_solve(Ah,bh, iterations) (4)

where iterations is a small integer, often simply 1.

3. Residual: rh

After the iterative solution, an error rh in the approximation uapx,h
can be defined as

Ahuapx,h + rh = bh (5)

where bh is the given right-hand side.

4. Coarse Right-hand-side: bH

let rh = Ahvh
Ahuapx,h +Ahvh = bh (6)

Ah(uapx,h + vh) = bh (7)

So, vh functions as a correction vector for the iterative approxi-
mation. Equation 6 can be rearranged to produce another matrix
equation in the same form as Equation 2:

Ahvh = bh−Ahuapx,h (8)

Here, every element on the right-hand side is known, so it can be
used to form a new right-hand side with which we can solve for
the correction vh. However, because this correction only serves the
purpose of reducing the low-frequency components of the error,
we can safely solve Equation 8 at a coarser resolution without
losing information [Borzi]. So, we make use of our hierarchy of
restriction and coefficient matrices to make Equation 8 an easier
problem to solve (fewer unknowns):

AHvH = Rh(bh−Ahuapx,h) (9)

where AH and Rh are taken from the hierarchy generated earlier.

5. Coarse Solution

The unknown vector and right-hand side of Equation 9 can now be
replaced with new variables, revealing a new problem with only
NH unknowns, down from the Nh unknowns in Equation 8.

AHuH = bH (10)

Because this is simply another matrix equation similar
in form to Equation 2, it can be solved either with
a recursive call to the multigrid solver, or with a di-
rect solver, such Numpy’s np.linalg.solve or SciPy’s
scipy.base.np.linalg.solve.

6. Interpolate Correction

In order to correct the iterative approximation uapx, the solution
from the coarse problem must be interpolated from NH unknowns
up to Nh unknowns. Because the restriction matrices are defined
algebraically in Equation 3, it is possible to define an interpolation
(or “prolongation”) algebraically:

vh = RT
h uH (11)

This is used to prolongate the solution uH from the coarse level
for use as a correction vh at the fine level. Note that, at the coarse
level, the symbol u is used, since this is a solution to the coarse
problem, but, at the fine level, the symbol v is used, since this is
not the solution, but a correction to the iterative approximation.

Fig. 1: Recursive multigrid cycle, with V-cycle iteration until conver-
gence.

7. Return Corrected Solution

With the correction vector in hand, it is now possible to return
a solution whose error has been reduced in both high- and low-
frequency components:

uh = uapx + vh (12)

It is also possible to insert a second “post-smoothing” step be-
tween the interpolation and the return steps, similar to Equation
4.

As described in this section, this algorithm is a 2-grid V-cycle,
because the high-resolution → low-resolution → high-resolution
pattern can be visualized as a V shape. In our small sample
problem, using more grid levels than two actually wasted enough
time on grid setup to make the solver converge less quickly.
However, repeated V-cycles were usually necessary for visually
compelling convergence. That is, the solution from one V-cycle
was used as the initial guess for the fine-grid pre-smoother of the
next V-cycle. More complicated cycling patterns are also possible,
such as W-cycles, or the full-multigrid ("FMG") pattern, which
actually starts at the coarse level. However, these patterns are not
yet addressed by OpenMG.

Implementation

The process shown in Figure 1 is a multigrid solver with nearly
black-box applicability–the only problem-specific piece of infor-
mation required (one of the “parameters” in the figure) is the shape
of the domain, as a 3-tuple, and it is possible that future versions
of restriction() will obviate this requirement. Note that, in
code listings given below, import numpy as np is assumed.

Setup R and A Hierarchies

Any restriction can be described by a restriction matrix. Our
current implementation, which is replacable in modular fashion,
uses 2-point averages in one dimension, 4-point averages in two
dimensions, and 8-point averages in three dimensions, as depicted
in Figure 2. Alternate versions of these two functions have been
developed that use sparse matrices, but the dense versions are
shown here for simplicity.

72 PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

Fig. 2: Eight-point average restriction method. All points are included
in the fine set, but red points included in both the fine set and the
coarse set. Blue points are used in the calculation of eight-point
average for the coarse point nearest to the camera in the bottom
plane.

Other simplifications have also been made–for example,
automatic V-cycling has been removed, although, in the ac-
tual code, this is contained with in the wrapper function
openmg.mg_solve(). Forced line breaks have also reduced
the readability of this sample code. We recommend download-
ing the most up-to-date OpenMG code from https://github.com/
tsbertalan/openmg for working examples.

The following code generates a particular restriction matrix,
given a number of unknowns N, and a problem domain shape
tuple, shape. It fails (or works very inefficiently) for domains
that have odd numbers of points along one or more dimensions.
Operator-based coarsening would remove this restriction.

from sys import exit
def restriction(N, shape):

alpha = len(shape) # number of dimensions
R = np.zeros((N / (2 ** alpha), N))
r = 0 # rows
NX = shape[0]
if alpha >= 2:

NY = shape[1]
each = 1.0 / (2 ** alpha)
if alpha == 1:

coarse_columns = np.array(range(N)).\
reshape(shape)\
[::2].ravel()

elif alpha == 2:
coarse_columns = np.array(range(N)).\

reshape(shape)\
[::2, ::2].ravel()

elif alpha == 3:
coarse_columns = np.array(range(N)).\

reshape(shape)\
[::2, ::2, ::2].ravel()

else:
print "> 3 dimensions is not implemented."
exit()

for c in coarse_columns:
R[r, c] = each
R[r, c + 1] = each
if alpha >= 2:

R[r, c + NX] = each

R[r, c + NX + 1] = each
if alpha == 3:

R[r, c + NX * NY] = each
R[r, c + NX * NY + 1] = each
R[r, c + NX * NY + NX] = each
R[r, c + NX * NY + NX + 1] = each

r += 1
return R

The function restriction() is called several times by the
following code to generate the complete hierarchy of restriction
matrices.
def restrictions(N, problemshape, coarsest_level,\

dense=False, verbose=False):
alpha = np.array(problemshape).size
levels = coarsest_level + 1
We don't need R at the coarsest level:
R = list(range(levels - 1))
for level in range(levels - 1):

newsize = N / (2 ** (alpha * level))
R[level] = restriction(newsize,

tuple(np.array(problemshape)\
/ (2 ** level)))

return R

Using the hierarchy of restriction matrices produced by
restrictions() and the user-supplied top-level coefficient
matrix A_in, the following code generates a similar hierarchy
of left-hand-side operators using the Galerkin coarse-grid approx-
imation, AH = RAhRT .
def coarsen_A(A_in, coarsest_level, R, dense=False):

levels = coarsest_level + 1
A = list(range(levels))
A[0] = A_in
for level in range(1, levels):

A[level] = np.dot(np.dot(
R[level-1],
A[level-1]),

R[level-1].T)
return A

Both restrictions() and coarsen_A() return lists of
arrays.

Smoother

Our iterative smoother is currently a simple implementation of
Gauss-Seidel smoothing, but this portion of the code could be
replaced with a Jacobi implementation to allow parallelization if
larger domains prove to spend more execution time here.
def iterative_solve(A, b, x, iterations):

N = b.size
iteration = 0
for iteration in range(iterations):

for i in range(N): # [0 1 2 3 4 ... n-1]
x[i] = x[i] + (b[i] - np.dot(

A[i, :],
x.reshape((N, 1)))

) / A[i, i]
return x

Multigrid Cycle

The following function uses all the preceeding functions to per-
form a multigrid cycle, which encompasses the Residual, Coarse
Solution, Interpolate Correction, and Return Corrected Solution
steps from the theoretical discussion above. It calls itself recur-
sively until the specified number of gridlevels is reached. It
can be called directly, or through a wrapper function with a more
simplified prototype, mg_solve(A_in, b, parameters)
(not shown here).

https://github.com/tsbertalan/openmg
https://github.com/tsbertalan/openmg

OPENMG: A NEW MULTIGRID IMPLEMENTATION IN PYTHON 73

def amg_cycle(A, b, level, \
R, parameters, initial='None'):

Unpack parameters, such as pre_iterations
exec ', '.join(parameters) +\

', = parameters.values()'
if initial == 'None':

initial = np.zeros((b.size,))
coarsest_level = gridlevels - 1
N = b.size
if level < coarsest_level:

u_apx = iterative_solve(\
A[level],\
b,\
initial,\
pre_iterations,)

b_coarse = np.dot(R[level],\
b.reshape((N, 1)))

NH = len(b_coarse)
b_coarse.reshape((NH,))
residual = b - np.dot(A[level], u_apx)
coarse_residual = np.dot(\

R[level],\
residual.reshape((N, 1))\
).reshape((NH,))

coarse_correction = amg_cycle(
A,
coarse_residual,
level + 1,
R,
parameters,
)

correction = np.dot(\
R[level].transpose(),\
coarse_correction.\
reshape((NH, 1))\

).reshape((N,))
u_out = u_apx + correction
norm = np.linalg.norm(b - np.dot(

A[level],
u_out.\
reshape((N,1))
))

else:
norm = 0
u_out = np.linalg.solve(A[level],\

b.reshape((N, 1)))
return u_out

Results

Sample Application

In our test example we simulate the geologic sequestration of CO2.
The governing pressure-saturation equation is

v =−K(λw +λCO2)∇p+K(λwρw +λCO2 ρCO2)G (13)

and the saturation equation is

φ
∂ sw

∂ t
+∇(fw(sw)[v+d(sw,∇sw)+g(sw)]) =

qw

ρw
(14)

where v is a velocity vector, the gravitational pull-down force G
is −g∇z, subscript w represents water-saturated porous medium,
g represents gravitational acceleration, K represents the perme-
ability tensor, p represents fluid pressure, q models sources and
sinks, (outflow or inflow), S represents saturation, z represents
the vertical direction, ρ represents water density, φ represents
porosity, and λ represents mobility (ratio of permeability to
viscosity).

Equation 14, the saturation equation, is generally parabolic.
However, the terms for the viscous force f (s)v and the gravity
force f (s)g(s) usually dominate the capillary force f (s)d(s,∇s).
Therefore the equation will have a strong hyperbolic nature and

Fig. 3: Pressure isosurfaces of several solutions to a 3D porous
media problem with 123 = 1728 unknowns. The grey outer surface
is a direct solution, while the blue inner surfaces are the result
of different numbers of multigrid V-cycles–with more V-cycles, the
multigrid solution approaches the true solution. Plotted with MayaVi’s
mlab.contour3d.

Fig. 4: Parallel testing apparatus. The IMPES (implicit pressure,
explicit saturation) simulation script calls the OpenMG script when
solving its pressure equation, and then reports a dictionary of depen-
dent variables of interest to be written to a comma-separated-value
file.

can be solved by many schemes [Aarnes]. On the other hand,
Equation 13, the pressure equation, is of elliptic form. After
discretization, this equation will reduce to Au = b and a multigrid
scheme can be used for efficient computation especially if the
problem size is big (for instance, millions of cells [Carlson]).

The unknown quantity, which the solver algorithm must find,
is the fluid pressure p. In Figure 3, we show ~3033 psi isosurfaces
of this solution (pressure across the entire domain varies by only
about 5 psi). The actual solution (via np.linalg.solve) is
rendered in grey, and the three blue surfaces (from narrowest to
widest) are the result of applying one, two, and three two-grid
cycles, respectively.

As shown, this two-grid solver is converging on the true
solution in the vicinity of this isosurface. The multigrid isosurface
and the direct solution isosurface become indistinguishable within
about ten V-cycles.

Discussion

Testing Setup

In a wrapper script depicted in Figure 4, we used the Python 2.6
module multiprocessing.Pool to accelerate the execution
of test sets. A dictionary of parameters is constructed for each

74 PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

distinct possible parameter combination where several parameters
of interest are being varied. A process in the pool is then assigned
to test each parameter combination. Each pool process then returns
a dictionary of dependent variables of interest. Our tests are run
on a dual-socket Intel Xeon E5645 (2.40GHz) machine with 32
GB of memory. However, care still must be taken to ensure that
the number of processes in the pool is not so high that individual
processes run out of memory.

Test Definitions and Results

In Figure 5 a, we show the results of a V-cycle convergence test
with our OpenMG solver. Here, we specify the number of repeated
2-grid cycles as an independent variable, and monitor the residual
norm as the dependent variable. There were 83 = 512 unknowns,
one pre-smoothing iteration, and zero post-smoothing iterations.
OpenMG was able to reduce the error at a steady logarithmic rate.
The norm used everywhere was the 2-norm.

This contrasts with Figure 5 b, where we show the convergence
behavior of the ordinary Gauss-Seidel on its own. Similarly to the
method used for Fig. 5 a, we used the number of iterations as
the independent variable, and examined the residual norm as the
dependent variable. There were 123 = 1723 unknowns, and the test
took 43 hours to complete 200,000 iterations. However (for this
sample problem), the Gauss-Seidel solver quickly exhausts the
high-frequency portions of the solution error, and begins slower
work on the low-frequency components.

This frequency-domain effect can be seen more clearly in
Figure 5 c, where we show the Fourier transform of the er-
ror (u− uapx) after different numbers of Gauss-Seidel itera-
tions. A Hann-window smoother with a window width of 28
was applied after the Fourier transform to better distinguish
the several curves. For this test, we used a 1D Poisson coef-
ficent matrix and an expected solution vector generated using
np.random.random((N,)).reshape((N,1)), where N
was 18,000 unknowns. Because of this method of noise gen-
eration (a continuous uniform distribution, or equal probability
of all permitted magnitudes at all points in the domain), the
pre-generated solution sampled all frequencies unequally, unlike
true white noise. This accounts for the initial bell-shaped error
in the frequency domain. However, the unequal rate of error-
reduction for different frequencies that was observed as iterations
were completed is to be expected of iterative solvers, hence their
description as "smoother" in the context of multigrid methods.
This recalls the argument from a frequency-domain perspective
for a multigrid solver [Brandt2].

In Figure 5 d, we examine the effect of this Gauss-Seidel pre-
smoother by increasing the number of pre-smoothing iterations
from our default value of only one. Dependent variables include
the number of V-cycles required to obtain a residual norm of
0.00021, and the time taken by the whole OpenMG solver to
arrive at that precision. There were 83 = 512 unknowns and two
grid levels, and all restriction and coefficient matrices used were
stored in dense format. As expected, increasing the number of
pre-smoothing iterations does decrease the number of required V-
cycles for convergence, but this does not generally improve the
solution time, except in the transition from 3 V-cycles to 2 V-
cycles. However, this trend is useful to validate that the smoother
is behaving as expected, and might be useful if, in the future,
some coarsening method is employed that makes V-cycling more
expensive.

Fig. 5: Results from explanatory tests. Tests described and interpreted
in Test Definitions and Results.

The Gauss-Seidel (GS) solver’s very slow convergence in low-
frequency error accounts for the difference in time between it and
the OpenMG multigrid (mmg) solver, as shown in Figure 5 e.
Here, we compare the running times of several solvers, including
PyAMG’s smoothed aggregation solver, our own pure-python
Gauss-Seidel iterative solver, and the direct solver np.linalg.solve.
There were 203 = 8000 unknowns, and dense R and A matrices
were used for OpenMG. In order to keep the GS bar similar
in scale to the other bars in the chart, a relatively high residual
norm tolerance of 0.73 was used for both the GS and mmg
solvers. However, this tolerance parameter was not an option for
the direct solver or PyAMG, both of which achieved very good
precision without prompting. The PyAMG solver (pyamg-linagg)
used linear aggregation coarsening, and so is not really comparable
to our multigrid implementation in this example, but it is included
in this plot to demonstrate the speed that can be achieved using
optimized multigrid methods with efficient coarsening algorithms.
Our own coarsener uses the simple geometric scheme shown in
Figure 2, not the more efficient, general, and geometry-agnostic
Ruge-Steuben method usually used in algebraic multigrid solvers.

Conclusion and Future Work

OpenMG is an environment for testing new implementations of
algebraic multigrid components. While optimized implementa-
tions such as PyAMG are more suitable for use as production
solvers, OpenMG serves as an easy-to-read and easy-to-modify
implementation to foster understanding of multigrid methods. For
example, future module improvements could include a parallel

OPENMG: A NEW MULTIGRID IMPLEMENTATION IN PYTHON 75

Jacobi iterative solver, a method of generating restriction matrices
that is tolerant of a wider range of problem sizes, or operator-based
Ruge-Steuben coarsening in addition to the option of stencil-based
coarsening. In order to find computational bottlenecks, it might be
useful also to add a per-step time profiler.

As open-source software, the code for this project has been
posted online under the New BSD license at https://github.com/
tsbertalan/openmg. We invite the reader to download the code
from this address to explore its unit tests and possible modifi-
cations, and to contribute new modules.

REFERENCES

[AGMG] Y Notay, AGMG, 2012. [Online]. Available: http://homepages.
ulb.ac.be/~ynotay/AGMG.

[Aarnes] J E Aarnes, T Gimes, and K Lie. An Introduction to the
Numerics of Flow in Porous Media using Matlab, Geometric
Modeling, Numerical Simulation and Optimization. 2007, part
II, 265-306.

[Bakshi] B R Bakshi and G Stephanopoulos, Wave-net: a multiresolution,
hierarchical neural network with localized learning, AIChE
Journal, vol. 39, no. 1, pp. 57-81, Jan. 1993.

[Bell] N Bell, L Olson, and J Schroder, PyAMG: Algebraic Multigrid
Solvers in Python, 2011.

[Borzi] A Borzi, Introduction to multigrid methods. [Online]. Available:
http://www.uni-graz.at/imawww/borzi/mgintro.pdf. [Accessed:
03-Jul-2012].

[Boschitsch] A H Boschitsch and M O Fenley, A Fast and Robust Poisson-
Boltzmann Solver Based on Adaptive Cartesian Grids., Journal
of chemical theory and computation, vol. 7, no. 5, pp. 1524-
1540, May 2011.

[Brandt1] A Brandt, Rigorous Quantitative Analysis of Multigrid I. Con-
stant Coefficients Two-Level Cycle with L2 Norm, SIAM Journal
on Applied Mathematics, vol. 31, no. 6, pp. 1695-1730, 1994.

[Brandt2] A Brandt, Multi-Level Adaptive Solutions to Boundary-Value
Problems, Mathematics of Computation, vol. 31, no. 138, pp.
333-390, 1977.

[Brandt3] A Brandt, Multilevel computations of integral transforms and
particle interactions with oscillatory kernels, Computer Physics
Communications, vol. 65, no. 1–3, pp. 24-38, Apr. 1991.

[Brandt4] A Brandt, AMG and Multigrid Time-Dependence, Multigrid
Methods: Lecture Notes In Mathematics, pp. 298-309, 1987.

[Carlson] E S Carlson, A W Islam, F Dumkwu, and T S Bertalan. nSpyres,
An OpenSource, Python Based Framework for Simulation of
Flow through Porous Media, 4th International Conference on
Porous Media and Annual Meeting of the International Society
for Porous Media, Purdue University, May 14-16, 2012.

[Denev] J A Denev, F Durst, and B Mohr, Room Ventilation and Its In-
fluence on the Performance of Fume Cupboards: A Parametric
Numerical Study, Industrial & Engineering Chemistry Research,
vol. 36, no. 2, pp. 458-466, Feb. 1997.

[Douglas1] C C Douglas, L I Deng, G Haase, M Liebmann, and R
Mckenzie, Amglab: a community problem solving environ-
ment for algebraic multigrid methods. [Online]. Available:
http://www.mgnet.org/mgnet/Codes/amglab.

[Douglas2] C C Douglas, J Hu, M Iskandarani, M Kowarschik, U Rüde,
and C Weiss, Maximizing Cache Memory Usage for Multigrid
Algorithms for Applications of Fluid Flow in Porous Media, vol.
552. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.

[Dzwinel] W Dzwinel, D. A. Yuen, and K. Boryczko, Bridging diverse
physical scales with the discrete-particle paradigm in modeling
colloidal dynamics with mesoscopic features, Chemical Engi-
neering Science, vol. 61, no. 7, pp. 2169-2185, Apr. 2006.

[Fedorenko1] R P Fedorenko, The Speed of Convergence of One Iterative
Process, Zhurnal Vychislitel’noi Matematiki i Matematicheskoi
Fiziki, 1964.

[Fedorenko2] R P Fedorenko, A relaxation method for solving elliptic differ-
ence equations, Zhurnal Vychislitel’noi Matematiki i Matem-
aticheskoi Fiziki, pp. 922-927, 1961.

[Hackbusch] W Hackbusch, Multi-Grid Methods and Applications. Springer,
1985, p. 377.

[Harimi] I Harimi and M Saghafian, Evaluation of the Capability of the
Multigrid Method in Speeding Up the Convergence of Iterative
Methods, ISRN Computational Mathematics, vol. 2012, pp. 1-5,
2012.

[Heckbert] P Heckbert, Survey of Multigrid Applications, 1998. [On-
line]. Available: http://www.cs.cmu.edu/~ph/859E/www/notes/
multigrid.pdf. [Accessed: 13-Jun-2012].

[Kameswaran] S Kameswaran, L T Biegler, and G H Staus, Dynamic opti-
mization for the core-flooding problem in reservoir engineering,
Computers & Chemical Engineering, vol. 29, no. 8, pp. 1787-
1800, Jul. 2005.

[Nicolaides] R A Nicolaides, On Some Theoretical and Practical Aspects of
Multigrid Methods, Mathematics of Computation, 1979. [On-
line]. Available: http://www.jstor.org/stable/10.2307/2006069.
[Accessed: 07-Jul-2012].

[Notay] Y Notay, An aggregation-based algebraic multigrid method,
Electronic Transactions on Numerical Analysis, vol. 37, pp.
123-146, 2010.

[Trottenberg] U Trottenberg, C W Oosterlee, and A Schüller, Multigrid,
Academic Press, 2001, p. 631.

[Wesseling] P Wesseling, An introduction to multigrid methods. 1992, Wil-
ley, New York, 1991.

[Zapata] G Zapata-Torres et al., Influence of protonation on substrate and
inhibitor interactions at the active site of human monoamine
oxidase-a., Journal of chemical information and modeling, vol.
52, no. 5, pp. 1213-21, May 2012.

[Zeng] S Zeng and P Wesseling, Galerkin Coarse Grid Approximation
for the Incompressible Navier-Stokes Equations in General
Coordinates, Thesis, 2010.

https://github.com/tsbertalan/openmg
https://github.com/tsbertalan/openmg
http://homepages.ulb.ac.be/~ynotay/AGMG
http://homepages.ulb.ac.be/~ynotay/AGMG
http://www.uni-graz.at/imawww/borzi/mgintro.pdf
http://www.mgnet.org/mgnet/Codes/amglab
http://www.cs.cmu.edu/~ph/859E/www/notes/multigrid.pdf
http://www.cs.cmu.edu/~ph/859E/www/notes/multigrid.pdf
http://www.jstor.org/stable/10.2307/2006069

	Introduction to Multigrid
	History
	Existing Python Implementations

	Theoretical Algorithm
	Discretization
	1. Setup R and A Hierarchies
	2. Pre-Smoothing: uapx,h
	3. Residual: rh
	4. Coarse Right-hand-side: bH
	5. Coarse Solution
	6. Interpolate Correction
	7. Return Corrected Solution

	Implementation
	Setup R and A Hierarchies
	Smoother
	Multigrid Cycle

	Results
	Sample Application

	Discussion
	Testing Setup
	Test Definitions and Results
	Conclusion and Future Work

	References

