
10 PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

Fitting and Estimating Parameter Confidence Limits
with Sherpa

Brian Refsdal‡∗, Stephen Doe‡, Dan Nguyen‡, Aneta Siemiginowska‡

F

Abstract—Sherpa is a generalized modeling and fitting package. Primarily
developed for the Chandra Interactive Analysis of Observations (CIAO) package
by the Chandra X-ray Center, Sherpa provides an Object-Oriented Programming
(OOP) API for parametric data modeling. It is designed to use the forward fitting
technique to search for the set of best-fit parameter values in parametrized
model functions. Sherpa can also estimate the confidence limits on best-fit
parameters using a new confidence method or using an algorithm based on
Markov chain Monte Carlo (MCMC). Confidence limits on parameter values are
necessary for any data analysis result, but can be non-trivial to compute in a
non-linear and multi-parameter space. This new, robust confidence method can
estimate confidence limits of Sherpa parameters using a finite convergence
rate. The Sherpa extension module, pyBLoCXS, implements a sophisticated
Bayesian MCMC-based algorithm for simple single-component spectral mod-
els defined in Sherpa. pyBLoCXS has primarily been developed in Python
using high-energy X-ray spectral data. We describe the algorithm including
the features for defining priors and incorporating deviations in the calibration
information. We will demonstrate examples of estimating confidence limits using
the confidence method and processing simulations using pyBLoCXS.

Index Terms—modeling, fitting, parameter, confidence, mcmc, bayesian

Introduction

Sherpa is an extensible, general purpose modeling and fitting
application written in Python and Python C/C++/FORTRAN ex-
tensions. Originally developed for users of NASA’s Chandra X-
ray Observatory, Sherpa has also been used to analyze data from
other astronomy missions, and even non-astronomical data. Sherpa
provides Python data classes to encapsulate various types of
astronomical data sets (spectra, images, time series, light curves).
But to provide the greatest flexibility, Sherpa is also designed to
read in any data set that can be represented as a collection of
arrays. From its first version, Sherpa has been designed to help
scientists analyze data from many different sources, and to be
extensible by scientific users, to help solve new problems.

Sherpa’s main task is to help users fit parametrized models to
their data. Sherpa provides a library of physical and mathematical
models, also written in Python. These models can be combined in
arbitrarily complex expressions, that are interpreted by the Python
parser; such expressions can include Sherpa models, arithmetic
operators, models written by users in Python, and even other
Python functions.

* Corresponding author: brefsdal@cfa.harvard.edu
‡ Smithsonian Astrophysical Observatory

Copyright © 2011 Brian Refsdal et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

To compare models and data, Sherpa includes statistics such
as least-squares, chi-squared based on Gaussian statistics, and
maximum likelihood based on Poisson statistics. As model pa-
rameters are varied, Sherpa can then measure whether the new
model parameter values improve or worsen the fit to the data,
using one of these statistics. Sherpa also provides functions to
search parameter space for the set of best-fit parameter values: a
non-linear least squares using the Levenberg-Marquardt algorithm
[lm]; and the Nelder-Mead simplex algorithm [nm].

However, the analysis is not complete when a user has found
a set of best-fit model parameter values consistent with the data.
Because of measurement errors and statistical noise, there is some
probability distribution in parameter space of parameter values
that are consistent with the data. If the user can examine this
probability distribution in some way, the user can determine how
well the best-fit parameter values are constrained. Such constraints
are often summarized as confidence limits, stating that parameters
are known to a certain level of confidence [avn1976]. For example,
after an examination of parameter space, the user might determine
that, for a model having temperature as a parameter, a best-fit
temperature of 1.2 keV has 90% confidence limits of +0.2 keV,
-0.4 keV. Meaning that if the observation and resulting fit were
replicated 1000 times, then in 900 trials the best-fit temperature
would be between 1.4 and 0.8 keV. The narrower the confidence
limits, the better the constraints on the best-fit parameter value.

In this paper, we describe several methods we make available
to Sherpa users and Python programmers to put confidence limits
on fitted parameter values. We discuss a confidence limit function
included in Sherpa, that examines parameter space near the local
minimum representing best-fit parameter values, and that returns
the desired confidence limits. We provide an interface to this
function allowing users to add their own statistic and fitting
functions, making this function available to SciPy users. We also
discuss the use of simulations in Sherpa to derive limits from
distributions of fitted parameter values after many simulations
and fits, and show an example to derive both flux and flux
errors from a model fitted to spectral data. Finally, we present
a new Python module providing a Bayesian approach to deriving
fitted parameter values and confidence limits: pyBLoCXS, a new
importable Python module, that allows use of prior distributions
on model parameters via extensions to Sherpa statistics classes.

Data Preparation

Sherpa provides native Python data classes that encapsulate 1-D
and 2-D data sets, i.e., (x, y) and (x_1, x_2, y) respectively. These

http://cxc.harvard.edu/contrib/sherpa/
mailto:brefsdal@cfa.harvard.edu
http://hea-www.harvard.edu/AstroStat/pyBLoCXS/

FITTING AND ESTIMATING PARAMETER CONFIDENCE LIMITS WITH SHERPA 11

classes can be extended to contain data of higher dimensionality.
In all data classes, the x-array(s) are considered to be the inde-
pendent variable(s), and the y-array is considered the dependent
variable. Any model to be fit to the data must take the form f(x, p),
where x is the collection of x-array(s) taken from the data, and p
is the array of parameter values that may be varied by the Sherpa
fitting function. The model returns an array of model values that
are compared to the data’s y-values.

Sherpa data classes also include error bars on the dependent
variable; these error bars are assumed to be symmetric. (Error bars
on the independent x-array(s) are not yet supported, and so are
not assumed to be significant.) The data classes can contain both
statistical and systematic errors; if both are present, they are added
in quadrature to provide the error bars on the data. Systematic
errors come from measurements; if not provided along with the
data, Sherpa assumes the systematic errors are zero. If statistical
errors are not measured and provided with the data, then Sherpa
can estimate Gaussian errors as needed in χ2 fitting; or, the user
can use one of the maximum likelihood statistics, in which Poisson
statistics are assumed; or, the user can do a simple least-squares
fit to the data.

Fitting Models to Data

Sherpa models are assumed to be parametrized functions f(x, p),
where x is the collection of x-array(s) from the data, and p is
the array of model parameters. When the model is calculated,
the return value is an array of predicted data values that can be
directly compared to the observed data values (that are contained
in the data’s y-array).

Sherpa includes a model description syntax for users to build
composite models that are arbitrarily complex. To support such a
powerful feature, the user is not required to provide a function to
calculate the derivatives. For least squares fitting using Levenberg-
Marquardt, Sherpa estimates the gradient using forward difference
approximation (LMDIF) and backward difference approximation
if the fit is at an upper parameter boundary. An estimate of the
gradient is not needed for fitting using simplex, only the fit statistic
value is required.

In some cases, the fit parameters are not necessarily indepen-
dent and identically distributed (i.i.d.) and correlations between
parameters are present. This can lead to non-linear effects and
complex parameter spaces, see Figure 1. We present a method
designed to calculate confidence intervals in non-linear regression
and a Bayesian method to sample the posterior probability distri-
bution.

Confidence Intervals

The optimizer’s search for the best-fit parameters stops when the
fit statistic or error function has reached an optimal value. For least
squares, the optimal value is when the sum of squared residuals
is a minimum. For the maximum likelihood estimator, the optimal
value is found when the log-likelihood is a maximum. Once the
best-fit parameter values are found, users typically determine how
well constrained the parameter values are at a certain confidence
level by calculating confidence intervals for each parameter. The
confidence level is a value of the fit statistic that describes a
constraint on the parameter value. The confidence interval is
the range that likely contains the parameter value at which the
fit statistic reaches its confidence level while other parameters
reach new best-fit values. See Figure 2. For example, consider

Fig. 1: A local minima

calculating the confidence intervals at a value of σ = 1, or 68%
confidence. If the observed data is re-sampled and the model is
fit again with new data, there would be a 68% chance that the
confidence intervals would constraint the parameter value. The
narrower the confidence interval, the more the model parameter
value becomes accurately constrained.

Fig. 2: A closeup view of a local minima

In the neighborhood of the fit statistic minimum, the multi-
dimensional parameter space can take the shape of an asym-
metric paraboloid. The confidence intervals are calculated for
each selected parameter independently by viewing the parameter
space along the current parameter’s dimension. This view can be
represented as a 1-D asymmetric parabola, see Figure 2. Suppose
that x0 represents a parameter’s best-fit value. Its associated
confidence intervals are represented as x0±δ1

δ2
where δ1 6= δ2 in

non-linear parameter spaces, so each confidence limit must be
calculated independently. In turn, the statistic value should equal
an amount of σ2 (where σ represents the degree of confidence) at
each confidence interval x0 + δ1 and x0− δ2 as other parameters
vary to new best-fit values. The degree to which the confidence
limit is bounded can be characterized by the shape of the well in
a multi-dimensional parameter space. A well that is a deep-and-
narrow corresponds to a tight confidence interval while a well that
is shallow-and-broad represents a wider confidence interval.

12 PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

Fig. 3: The confidence intervals can be reduced to a root solving
problem by translating the y-axis by an amount equal to σ2 and
selecting points along the fit statistic curve.

Method for Determining Confidence

Calculating the confidence interval for a selected fit parameter
can be transformed into a one dimensional root finding problem
with the correct coordinate translation. By simply translating the
parameter dimension by an amount equal to σ2, the confidence
intervals now become x-axis intercepts in the parameter dimen-
sion. This is an important step in the algorithm because a change
in sign will bracket the root. The green and blue points in Figure
3 effectively bracket the requested confidence limit.

Method for Selecting Abscissae

Sherpa’s confidence method uses Müller’s root finding method to
calculate the confidence intervals given three points. Sherpa begins
at the best-fit value and calculates points along the fit statistic
curve using the covariance, if available, and the secant method.
Müller’s method is the a good algorithm for finding the root of a
curve that is approximated by a parabola near the minimum. We
argue that the function curve can be approximated by parabola
given that the function can be represented as a Taylor’s series. The
leading term in series expansion is quadratic since the gradient of
the statistic curve can be ignored near the minimum.

The confidence method assumes that the parameter values are
located in a minimum approximated by a parabola, that the best-
fit is sufficiently far from any parameter boundaries, and that the
bracketed parameter interval is larger than the requested machine
tolerance.

A Bayesian Approach to Confidence

Fitting Poisson data with χ2 can lead to biased results. Using
likelihood statistics like cash or C do not introduce bias, but
lack simple tests for characterizing how well the model fits the
data. Such likelihood statistics often require additional methods to
validate model selection and to determine "goodness-of-fit". Such
methods involve sampling from the posterior probability distribu-
tion. Sherpa includes fit statistics derived from the likelihood and
complimentary optimization methods, but on its own Sherpa does
not include the means to calculate the posterior.

pyBLoCXS is an additional Python module that complements
Sherpa to probe the posterior probability and to verify model

selection using Bayesian methods. pyBLoCXS is designed to use
Markov chain Monte Carlo (MCMC) techniques to explore param-
eter space at a suspected minimum. pyBLoCXS was originally
implemented and tested to handle Bayesian Low-Count X-ray
Spectral (BLoCXS) analysis in Sherpa using simple composite
spectral models, and additional research is underway to test more
complex cases.

The underlying statistical model in pyBLoCXS employs
Bayes’ Rule 2 where the posterior probability distribution is pro-
portional to the product of the conditional and prior distributions.

p(θ |d, I) = p(d|θ , I)p(θ |I)
p(d|I)

(1)

Where p(θ |d, I) represents the posterior distribution; p(d|θ , I), the
likelihood; p(θ |I), the prior; and p(d|I) is considered constant.

p(θ |d, I) ∝ p(d|θ , I)p(θ |I) (2)

Where θ represents the model parameters; d, the observed data;
and I, the initial information.

The pyBLoCXS package includes a method get_draws
to sample the posterior distribution for a specified number of
iterations. The loop draws parameter values from a multi-variate
Student’s t distribution and calculates the likelihood on the pa-
rameter proposal given the observed data. The proposal is then
accepted or rejected according to the current Metropolis-Hastings
acceptance criterion and repeat. See Figure 4 for a graphical
representation of the MCMC loop.

Fig. 4: The Metropolis-Hastings criterion implemented in pyBLoCXS.

pyBLoCXS currently has two sampling methods. The Python
class, MH, implements a Metropolis-Hastings jumping rule char-
acterized by the Student’s t distribution based on the input scales,
best-fit values, and user-specified degrees of freedom. The second
class, MetropolisMH, is a variation on MH in that it implements
a Metropolis-Hastings jumping rule with a Metropolis jumping
rule centered on the current draw.

The pyBLoCXS package can be used separately from Sherpa
using just Python and NumPy. The main inputs to pyBLoCXS are
a callable function to calculate the log-likelihood, an ndarray of
best-fit parameter values of size n, an ndarray of the multi-variate
scales of size n x n, and the degrees of freedom. The ndarray of

http://hea-www.harvard.edu/AstroStat/pyBLoCXS/

FITTING AND ESTIMATING PARAMETER CONFIDENCE LIMITS WITH SHERPA 13

multi-variate scales is typically the covariance matrix calculated
at the best-fit parameter values.

pyBLoCXS is based on the techniques described in the paper
[van2001], however, pyBLoCXS implements a different type of
sampler. A description of the MCMC methods implemented in
pyBLoCXS can be found in Chapter 11 of [gel2004].

Example

The Thurber problem is an example of Non-linear least squares
regression from the Statistical Reference Datasets (StRD) at the
National Institute of Standards and Technology (NIST). The ob-
served data results from a NIST study of semiconductor electron
mobility. The data includes 37 observations with the dependent
variable (y) represented as electron mobility and the independent
variable (x) as the log of the density.

y = f (x;β)+ ε =
β1 +β2x+β3x2 +β4x3

1+β5x+β6x2 +β7x3 + ε (3)

~p = {β1,β2,β3,β4,β5,β6,β7} (4)

We define a compact high-level UI to access the Sherpa con-
fidence method. The illustrative example below minimizes the
Thurber function using least-squares and Sherpa’s implementation
of Levenberg-Marquardt (LMDIF). The results can be found in
Table 1. The fit results agree to 99.99% for all parameters.

Fig. 5: Thurber fit

Loading Data

This example relies on a package asciitable to read columns of text
data into NumPy arrays. The Thurber problem defines an equation
as the model the function which is written as a vectorized Python
function using NumPy ufuncs.

import sherpa.ui as ui
import asciitable

tbl = asciitable.read('Thurber.dat',
Reader=asciitable.NoHeader,
data_start=36,
delimiter="\s")

Columns as NumPy arrays
x = tbl['col2']
y = tbl['col1']

Parameter Certified Values Sherpa Values Percentage
β1 1.2881396800E+03 1.28813971e+03 99.999
β2 1.4910792535E+03 1.49106665e+03 99.999
β3 5.8323836877E+02 5.83229092e+02 99.998
β4 7.5416644291E+01 7.54148565e+01 99.998
β5 9.6629502864E-01 9.66284739e-01 99.999
β6 3.9797285797E-01 3.97967752e-01 99.999
β7 4.9727297349E-02 4.97257372e-02 99.997

TABLE 1: The best-fit parameters for Thurber problem.

p0 = [1000, 1000, 400, 40, 0.7, 0.3, 0.03]

def calc(p, x):
xx = x**2
xxx = x**3
return ((p[0] + p[1]*x + p[2]*xx + p[3]*xxx) /

(1. + p[4]*x + p[5]*xx + p[6]*xxx))

define a tolerance
tol = 1.e-9

Sherpa Fitting

Below, the Thurber data arrays are loaded into a Sherpa data
set using load_arrays. The example indicates the fit statis-
tic, optimization method, and defines the calc function as
the Sherpa model using load_user_model. The function
add_user_pars accepts Python lists that specify the parameter
names, initial values, and optionally the parameter limits. A user
can fit the model to the data using fit and access the best-fit
parameter values as a NumPy array popt.

names = ['b%i' % (ii+1) for ii in range(len(p0))]

ui.load_arrays(1, x, y, ui.Data1D)
ui.set_stat('leastsq')

ui.set_method('levmar')
ui.set_method_opt('gtol', tol)
ui.set_method_opt('xtol', tol)
ui.set_method_opt('ftol', tol)
ui.set_method_opt('epsfcn', tol)

ui.load_user_model(calc, 'mdl')
ui.add_user_pars('mdl', names, p0)
ui.set_model('mdl')

ui.fit()
popt = ui.get_fit_results().parvals

Sherpa Confidence Method

The example below highlights the calculation of the asymmetric
1σ confidence limits on seven parameters using conf using the
C-statistic and simplex. The confidence limits are accessible as
NumPy arrays pmins and pmaxes.

ui.set_stat('cstat')
ui.set_method('neldermead')
ui.fit()
ui.conf()

lower error bars
pmins = ui.get_conf_results().parmins

http://www.itl.nist.gov/div898/strd/nls/data/thurber.shtml
http://www.itl.nist.gov/div898/strd/
http://www.itl.nist.gov/div898/strd/nls/data/LINKS/DATA/Thurber.dat
http://cxc.harvard.edu/contrib/asciitable/

14 PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

Parameter Best Fit Lower
Bound

Upper
Bound

β1 1288.12 -12.1594 12.1594
β2 1452.67 -73.3571 17.8398
β3 557.281 -7.09913 34.3927
β4 70.2984 -10.1567 2.42915
β5 0.943534 -0.0575953 0.0433009
β6 0.387899 -0.02639 0.0199346
β7 0.0403176 -0.0134162 0.00914532

TABLE 2: The one standard deviation confidence limits for Thurber
problem.

Parameter Best Fit Lower
Bound

Upper
Bound

β1 1288.12 -12.1594 12.1594
β2 1452.67 -55.506 55.506
β3 557.281 -39.7166 39.7166
β4 70.2984 -7.58595 7.58595
β5 0.943534 -0.0471354 0.0471354
β6 0.387899 -0.0217024 0.0217024
β7 0.0403176 -0.0107599 0.0107599

TABLE 3: The one standard deviation covariance results for Thurber
problem.

upper error bars
pmaxes = ui.get_conf_results().parmaxes

Confidence limits on the example Thurber problem are listed in
Table 2.

Sherpa Covariance Method

To compute the covariance matrix, Sherpa first estimates the
information matrix by finite differences by reducing a multi-
dimensional problem to a series of 1-D problems. Sherpa then
iteratively applies second central differencing with extrapolation
(Kass 1987). The covariance matrix follows by inverting the
information matrix.

The example below calculates the covariance matrix accessible
as a NumPy array for the seven parameter values. An estimation
of the symmetric confidence limits are found in the NumPy arrays
pmins and pmaxes.

ui.covar()

lower error bars
pmins = ui.get_covar_results().parmins

upper error bars
pmaxes = ui.get_covar_results().parmaxes

where pmins == -pmaxes

Access the covariance matrix
cov = ui.get_covar_results().extra_output

It is important to note that the parameter uncertainties com-
puted by covariance do not consider correlations between param-
eters and can underestimate or overestimate the true uncertainty.
Compare the differences in uncertainties computed by conf and
covar in Tables 2 and 3.

Fig. 6: A trace plot show the draws for β1 per iteration

pyBLoCXS

The example below selects the Metropolis-Hastings using the
pyBLoCXS [sem2011] function set_sampler. The likelihood
and parameter draws are computed using the high level function
get_draws. The inputs to get_draws at the API level are a
function to calculate the likelihood, the best-fit parameter values,
the covariance matrix centered on the best-fit, the degrees of
freedom, and the number of iterations. At the high level, only
the number of iterations is needed as input. The other inputs are
accessed from Sherpa by pyBLoCXS.

import pyblocxs

pyblocxs.set_sampler('MH')
stats, accept, params = pyblocxs.get_draws(niter=1e4)

pyblocxs.plot_trace(params[0], 'b1')

pyBLoCXS includes high level plotting functions to display the
trace, the cumulative distribution function, and the probability
distribution function. The trace plot for β1 includes gaps in the
line that indicate rejected parameter proposals. This example has
an acceptance rate of ~24%, well within the accepted range for an
MCMC chain.

The scatter function in matplotlib can be used to visualize
the log-likelihood according to two selected parameters. Using
Metropolis-Hastings as the sampler, the density plot is shown in
Figure 7 . For parameters β3 and β4, a distinct correlation is shown
as a long and narrow well.

import pylab
pylab.scatter(params[0], params[1],

c=stats, cmap=pylab.cm.jet)

To contrast the previous sampler, selecting Metropolis-Hastings
mixed with Metropolis and re-sampling shows a density plot with
a larger region of parameter space and distinct tail features in
Figure 8.

pyblocxs.set_sampler('MetropolisMH')
stats, accept, params = pyblocxs.get_draws(niter=1e4)

pylab.scatter(params[0], params[1],
c=stats, cmap=cm.jet)

FITTING AND ESTIMATING PARAMETER CONFIDENCE LIMITS WITH SHERPA 15

Fig. 7: Log-likelihood density using Metropolis-Hastings in py-
BLoCXS.

Fig. 8: Log-likelihood density using Metropolis-Hastings with
Metropolis in pyBLoCXS.

Priors

pyBLoCXS includes a flexible definition of priors for each fit
parameter. Priors are important for maximum likelihood analysis
to take advantage of priori knowledge such as the range of
parameter values. pyBLoCXS assumes each parameter to have
a flat or non-informative prior by default.

Using the Sherpa model normgauss1d, a Gaussian prior can
be added to the first parameter in the set with

import sherpa.astro.ui as ui
import pyblocxs

ui.xsapec.therm
ui.normgauss1d.g1
g1.pos=2.5; g1.fwhm=0.5

pyblocxs.set_prior(therm.kT,g1)
pyblocxs.set_sampler_opt('defaultprior',

False)
pyblocxs.set_sampler_opt('priorshape',

[True, False, False])

pyblocxs.set_sampler_opt('originalscale',
[True, True, True])

By accepting callable functions, pyBLoCXS can support arbitrary
functions representing the parameter prior.

import sherpa.astro.ui as ui
import numpy

def lognorm(x, sigma=0.5, norm=1.0, x0=20.):
xl=numpy.log10(x)+22.
return (norm/numpy.sqrt(2*numpy.pi)/sigma)*

numpy.exp(-0.5*(xl-x0)*(xl-x0)/sigma/sigma)

ui.xsphabs.abs1

pyblocxs.set_prior(abs1.NH,lognorm)
pyblocxs.set_sampler_opt('defaultprior',

False)
pyblocxs.set_sampler_opt('priorshape',

[True, False, False])
pyblocxs.set_sampler_opt('originalscale',

[True, True, True])

Accounting for Calibration Uncertainties

Future released versions of pyBLoCXS will include methods
to incorporate the systematic uncertainties in modeling high en-
ergy spectra. These uncertainties which have largely been ignored
due to the lack of a comprehensive method, can introduce bias
in the calculation of model parameters and can underestimate
their variance. Specifically, pyBLoCXS will utilize the calibration
uncertainties in the effective area curve for spectral analysis. The
effective area for high energy detectors records the sensitivity of
the detector as a function of energy.

Calibration samples of the effective area are described in
Drake et al. (2006) using Principle Component Analysis (PCA)
to represent the curve’s variability. Samples of the effective area
can also be found using simulations.

pyBLoCXS perturbs the effective area curve by sampling from
the calibration information at each iteration in the MCMC loop
accurately accounting for the non-linear effects in the systematic
uncertainty. With this method, best-fit model parameters values
and their uncertainty are estimated more accurately and efficiently
using Sherpa and pyBLoCXS.

Conclusion

We describe the Sherpa confidence method and the techniques
included in pyBLoCXS to estimate parameter confidence when
fit parameters present with correlations or the parameters are
not themselves normally distributed. Multi-dimensional parameter
space is typically non-uniform and Sherpa provides the user
with options to explore its topology. The included code example
describes an application of the Sherpa confidence method and the
pyBLoCXS sampling method.

Support of the development of Sherpa is provided by National
Aeronautics and Space Administration through the Chandra X-
ray Center, which is operated by the Smithsonian Astrophysical
Observatory for and on behalf of the National Aeronautics and
Space Administration contract NAS8-03060.

16 PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

REFERENCES

[avn1976] Y. Avni. Energy spectra of X-ray clusters of galaxies, The
Astrophysical Journal, 210:642-646, Dec. 1976.

[fre2001] P. E. Freeman, S. Doe, A. Siemiginowska. Sherpa: a
Mission-Independent Data Analysis Application
SPIE Proceedings, Vol. 4477, p.76, 2001.

[gel2004] A. Gelman et al. Bayesian Data Analysis Chapman & Hall
Texts in Statistical Science Series, 2nd Ed. 2004.

[lee2011] H. Lee et al. Accounting for Calibration Uncertainties in
X-ray Analysis: Effective Area in Spectral Fitting, The
Astrophysical Journal 731:126, 2011.

[nm] Computer Journal, J.A. Nelder and R. Mead, 1965, vol 7, pp. 308-
313.

[pro2002] R. Protassov et al. Statistics, Handle with Care: Detecting
Multiple Model Components with the Likelihood Ra-
tio Test, The Astrophysical Journal, 571:545-559, May
2002.

[ref2009] B. Refsdal et al. Sherpa: 1D/2D modeling in fitting in
Python Proceedings of the 8th Python in Science con-
ference (SciPy 2009), G Varoquaux, S van der Walt, J
Millman (Eds.), pp. 51-57.

[sem2011] Siemiginowska et al. pyblocxs: Bayesian Low-Counts X-ray Spec-
tral Analysis in Sherpa, Astronomical Society of the Pacific Con-
ference Series, 442:439. 2011.

[van2001] D. van Dyk et al. Analysis of Energy Spectra with Low
Photon Counts via Bayesian Posterior Simulation, The
Astrophysical Journal, 548:224, February 2001.

[lm] Lecture Notes in Mathematics 630: Numerical Analysis, G.A.
Watson (Ed.), Springer-Verlag: Berlin, 1978, pp. 105-116

	Introduction
	Data Preparation
	Fitting Models to Data
	Confidence Intervals
	Method for Determining Confidence
	Method for Selecting Abscissae
	A Bayesian Approach to Confidence
	Example
	Loading Data
	Sherpa Fitting
	Sherpa Confidence Method
	Sherpa Covariance Method
	pyBLoCXS
	Priors
	Accounting for Calibration Uncertainties
	Conclusion
	References

