PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

53

Automation of Inertial Fusion Target Design with
Python

Matthew Terry**, Joseph Koning*

Abstract—The process of tuning an inertial confinement fusion pulse shape
to a specific target design is highly iterative process. When done manually,
each iteration has large latency and is consequently time consuming. We have
developed several techniques that can be used to automate much of the pulse
tuning process and significantly accelerate the tuning process by removing the
human induced latency. The automated data analysis techniques require spe-
cialized diagnostics to run within the simulation. To facilitate these techniques,
we have embedded a loosely coupled Python interpreter within a pre-existing
radiation-hydrodynamics code, Hydra. To automate the tuning process we use
numerical optimization techniques and construct objective functions to identify
tuned parameters.

Index Terms—inertial confinement fusion, python, automation

Inertial Confinement Fusion

Inertial confinement fusion (ICF) is a means to achieve controlled
thermonuclear fusion by way of compressing hydrogen to ex-
tremely large pressures (GBar), temperatures (10’s keV) and den-
sities (100x solid density). ICF capsule are typically small (~1 mm
radius) spheres composed of several layers of cryogenic hydrogen,
plastic, metal or other materials. These extreme conditions are
reached by illuminating the capsule with a very high intensity
(100’s TW) driver. This compresses the shell to more than 100
times solid density and accelerates the radially converging shell to
very high velocity (300 km/s). As the shell stagnates, a fusion burn
wave propagates from a central, low-density, high temperature
region to a surrounding high-density, low temperature fuel region.
The inertia of the fuel keeps it intact long enough for a significant
fraction of the fuel to burn.

There are several approaches to achieving a significant fusion
burn, but for this paper consider the shock ignition [Betti2007]
approach with the capsule directly driven by lasers. The capsule
is a spherical shell of frozen deuterium-tritium ("DT ice"), coated
with plastic or another ablator material. The region within the
DT ice is filled with DT gas at the vapor pressure. Laser beams
directly illuminate the target and deposit energy in the outer
most layer called the ablator. The ablation of the ablator supplies
the pressure to drive the implosion. We assume a spherically
symmetric illumination of the capsule with the total incident

% Corresponding author: terryl0@lInl.gov
Lawrence Livermore National Laboratory

Copyright © 2011 Matthew Terry et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

\f

Radius (cm)
Laser Power (TW)

.) A P
0'000 2 4 6 8 10 12 14 10

Time (ns)

Fig. 1: A Radius-Time plot of the capsule implosion with the inci-
dent laser power overlay. Lines plot the trajectory of fluid particle
boundaries. Lines are color coded by material.

power varying in time. The power vs time profile is referred to
as the "pulse shape.”

We divide the pulse shape into three logical sections, which
correspond to the three phases of the capsule implosion dynamics.
The first section is called the "pre-pulse" and is responsible for
shock compressing the DT shell to high density. The pre-pulse
consists of a short duration, high intensity spike in the laser
power (the "picket") and three pedestals, each with increasing
laser power. The pre-pulse is followed by the main pulse, which
accelerates the shell to moderate implosion velocity (~300 km/s).
When the imploding shell stagnates, it forms a central, low density,
high temperature hot spot and a surrounding high density, low
temperature shell.

The final section of the pulse shape is the igniter pulse. The
igniter pulse consists of another pedestal of very high intensity.
This section launches a strong shock that arrives just as the shell is
stagnating and further heats the hot spot as well as prevents the low
pressure shell from coming into pressure equilibrium with the high
pressure hot spot. The combination of the stagnation of the shell
and the timely arrival of the igniter shock lifts the temperature of
the central hot spot above the 12 keV threshold needed to initiate
a fusion burn wave. This burn wave propagates into the cold shell
where it produces most of the fusion yield.

While restricting our attention to laser shock shock ignition,

mailto:terry10@llnl.gov

54

there is a lot of potential variability in the composition and
structure of capsules and in the pulse shape. Capsule should
have sufficient ablator to drive the implosion, but not in excess.
Capsule materials must anticipate the effect of fluid instabilities
and laser absorption. The capsule should have realistic fabrication
tolerances. Laser powers must be set to produce shocks of an
appropriate strength and pulse features should be appropriately
timed. Additionally, there are several physical processes important
in describing an implosion. Due to all of these sources of com-
plexity, ICF targets are designed using sophisticated multi-physics
codes, such as Hydra [Marinak1996]. Extensive simulation, helps
identify interesting capsule/pulse shapes before resorting to ex-
pensive and difficult experiments. The process of designing a
capsule is highly iterative, time consuming, interactive process.
In this paper we describe the use of and modifications of Hydra
to automate significant sections of the target design process.
Specifically, we consider the situation where a capsule design and
the pulse shape power levels are specified and the timing of the
pulse shape is not specified.

When tuning the pre-pulse, we regard the picket as a fixed
quantity functioning as a time fiducial for synchronizing the re-
maining pre-pulse shocks. The picket exists to increase implosion
stability by heating the plasma corona, which increase lateral
thermal conduction, which in turn smooths out non-uniformities
in the deposition of laser energy. These are not effects that can
be resolved in one dimensional (1D) simulations, but the picket
effects the 1D dynamics and must be included. The pre-pulse
pedestals should have their start times set such that their associated
shocks reach the gas/ice interface within 50 ps as the picket shock
[Munro2001]. Spacing the pre-pulse shocks in this way, prevents
them from coalescing in the ice and unnecessarily shock heating
the fuel. Also, shocks gain strength with radial convergence, so
ensuring that the pre-pulse shocks escape the fuel while it is at
large radius helps minimize the shock heating.

The main pulse should be timed to get the maximum fuel con-
finement for a fixed amount of energy. The appropriate measure of
fuel confinement is its peak areal density (0R = [p(r)dr). Should
the fuel ignite, the burn fraction is approximated by f ~ pzﬁ
[Fraley1974]. Finally, the igniter pulse should be timed so that
the target ignites robustly. We implement this as maximizing the
fusion yield.

Automatic Tuning

We adopt the general strategy that a tuned pulse can be constructed
by serially adding tuned pulse segments. Additionally we require
that each property of a pulse segment can be "tuned" by numeri-
cally optimizing an appropriately chosen objective function. Our
automated pulse tuner ("autotuner") is structured around an itera-
tion over pairs of pulse properties and objective functions. These
properties are the start times of the pulse segments and are initially
turned off. The tuner iterates through each pulse segment, numer-
ically optimizing it based on its associated objective function. In
addition to fixed power levels, the combined energy delivered in
the pre-pulse and compression pulse is constrained. The total ig-
niter pulse energy is also pre-determined. It is important to realize
that the sequence of properties and choice of objective functions
embodies a strategy to achieve the desired target behavior. The
automation of this strategy does not guarantee the tuned pulse
will produce the desired performance characteristics, just that the
design strategy was faithfully executed.

PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

In addition to a sequence of parameters and a definition of an
objective function, an autotuing program requires other software
infrastructure. It needs to transform parameter values to input
files and run directories. The autotuing program needs to gather
the appropriate information from a simulation needed by the
objective functions. Finally, it needs reasonably efficient numeric
optimization routines.

We generate Hydra input files from a Python proxy class
that wraps a nearly complete Hydra input file. The proxy has
simple pre-processor like capabilities for modifying simple input
file statements and for injecting more complicated structures into
the input file. For complicated structures, like the laser source
specification, it delegates responsibly to special purpose objects.
These object follow the convention that str (obj) produces a
string formatted for inclusion in a Hydra input file. This conven-
tion allows objects that define the ___str__ () to lazily evaluate
their Hydra representation, while actual strings can be inserted
with no boilerplate.

Certain objective functions require very high sampling rates
and thus must be run within a running simulation. For this
purpose, Hydra has an embedded Python interpreter. Since our
tuning program and Hydra’s embedded interpreter use the same
programming language, it is relatively easy for the control pro-
gram and Hydra to share data structures. There are two obvious
methods: object serialization with the pickle module and object
reconstruction using repr (). Reconstructed objects are easily
modified and more explicit, so we use that method.

All of the optimizations use a simple eight way parallel direct
search method. In terms of the number of function evaluations,
direct search is less efficient than Newton-like methods, direct
search is very inefficient. Typical optimizations requires 32 func-
tions evaluations. Converging to the same tolerance using the
BFGS method requires only 12 function evaluations. However,
the inefficient direct search method requires only 4 iterations,
compared to the 12 iterations with BFGS. We are satisfied with
the current performance, but recognize that the use of more
sophisticated sampling techniques would likely reduce the number
of iterations or the number of parallel function evaluations.

Hydra’s Parallel Python Interpreters

Hydra is a massively parallel multi-physics code in use since 1993.
The code combines hydrodynamics with radiation diffusion, laser
ray trace, and several more packages necessary for ICF design and
has over 40 users at national laboratories and universities.

Hydra users set up simulations using a built-in interpreter. The
existing interpreter provides access to the program parameters and
provides functions to access and manipulate the data in parallel.
Users can also access and alter the state while the simulation is
running through a message interface that runs at a specific cycle,
time or if a specific condition is met.

To improve functionality, the Python interpreter was added to
Hydra. Python was chosen due to the mature set of embedding
API and extending tools and the large number of third party
libraries. The Python interpreter was added by embedding instead
of extending Python itself. This choice was made due to the large
number of existing input files that could not be easily ported to
a new syntax. The Simplified Wrapper and Interface Generator
(SWIG) [Beazley2003] interface generator is used to wrap the
Hydra C++ classes and C functions.

Users can send commands to the Python interpreter using two
separate methods: a custom interactive interpreter based on the

AUTOMATION OF INERTIAL FUSION TARGET DESIGN WITH PYTHON

CPython interpreter and a file-based Python code block interpreter.
The Hydra code base is based on the message passing interface
(MPI) library. This MPI library allows for efficient communica-
tion of data between processors in a simulation. The embedded
interactive and file based methods must have access to the Python
input source on all of the processors. The MPI library is used to
broadcast a line read from stdin or a file on the root processor to all
of the other processors in the simulation. The simplest method to
provide an interactive parallel Python interpreter would be to over-
ride the PyOS_ReadlineFunctionPointer in the Python
code base. This function cannot be overridden for non-interactive
processes due to a check for an interactive tty. An alternative
interactive Python interpreter was developed to handle the parallel
stdin access and Python code execution. For parallel file access the
code reads the entire file in as a string and broadcasts it to all of
the other processors. The string is then sent through the embedded
Python interpreter function PyRun_SimpleString. This C
function will take a char pointer as the input and run the string
through the same parsing and interpreter calls as a file using the
Python program. One limitation of the PyRun_SimpleString
call is the lack of exception information. To alleviate this issue
a second method was implemented uses Py_CompileString
then PyEval_FEvalCode. The Py_CompileString uses a
file name or input file information to give a better location for the
exception.

The existing Hydra interpreter is the dominant interpreter
and must be given control when Python is not in use. The
interactive Python interpreter must check for Hydra control com-
mands as well as compiling, executing and checking errors on
Python code. The custom interactive interpreter first reads a
line from stdin in parallel. Readline support is enabled which
gives the user line editing and history support similar to running
the Python program interactively. The line is then checked for
any Hydra specific control sequences and compiled through the
Py_CompileStringFlags. If the line compiled with no er-
rors then it is executed using the PyEval_EvalCode command.
Any errors in compiling or exceptions are checked for a block
continuation indicator, syntax error or EOF. Exceptions will be
displayed as in Python and available in the output of all the
processors.

With the above embedded Python support users can run
arbitrary Python code through the Python interpreter. One of the
mandates of the effort to embed the Python interpreter was to
provide an enhanced version of the existing Hydra interpreter.
In order to provide this functionality Python must be able to
access the information in the running Hydra simulation. This is
accomplished by wrapping the Hydra data structures, functions,
and parameters using SWIG and exposing them through the
hydra Python extension module. The code created by SWIG
includes a C++ file compiled into Hydra as a Python extension
library and a Python interface file that is serialized and compiled
into the Hydra code.

The hydra Python module allows users to access and ma-
nipulate the Hydra state. Hydra has several types of integer and
floating point arrays ranging from one to three dimensional. The
multi dimensional arrays have an additional index to indicate the
block in the block-structured mesh. The block defines a portion
of the mesh on which the zonal, nodal, edge, and face based
information is defined, these meshes can consist of several blocks.
The blocks are then decomposed into sub-blocks or domains
depending on how many processors will be used in the simulation.

55

Access to the multi-block parallel data structures is provided by
structures wrapped by C++ interface objects and then wrapped in
SWIG using the numerical Python, numpy, module to provide the
array object in Python.

Users control the simulation by scheduling messages that
conditionally execute based on cycle number, time or specific
states. These messages can be redefined from Python to steer the
simulation while it is running. In addition to the messages, there
is a callback functionality that will run a user defined Python
function after every simulation cycle has completed. An arbitrary
number of callable Python objects can be registered in the code.

Objects in the top level, __main__, state are saved to a restart
file. This restart file is a portable file object written through the
mesh and file I/O library silo [SILO2011]. The Python component
of the restart information is a binary string created through the
pickle interface augmented with a state saving module. The Python
module used for the state saving functionality is the savestate
module by Oren Tirosh [Tirosh2008]. This module has been
augmented with the addition of numpy support and None and
Ellipsis singleton object support.

Multiple versions of the Hydra code are available to users
at any given time. In order to add additional functionality and
maintain version integrity, the hydra Python module is embedded
in the Hydra code as a frozen module. The Python file resulting
from the SWIG generator is marshaled using a script based on
the freeze module in the Python distribution. This guarantees the
modules are always available even if the sys.path is altered.

Embedded Diagnostics and Objective Functions

Embedding a Python interpreter within Hydra adds significant
capability. One of the first applications was to add a fluid charac-
teristic tracker. Characteristics are eigenvectors of the Euler fluid
equations and represent the highest possible signal speed. Charac-
teristics located near a shock, the characteristic will naturally drift
toward the shock front or be swept up in int, consequently they
can be used to identify the location of the shock front without the
difficulty of post processing the moving Lagrangian mesh. The
following initial value problem describes the radial location of the
characteristic as the flow evolves: 7 =v(r) — c¢s(r). u(r) and ¢(r)
are the flow velocity and sound speed at the characteristic’s current
location r. Our characteristic tracker implementation is aware of
the pulse shape and starts tracking a new characteristic for each
significant feature of the pulse shape. Characteristic positions must
be updated every cycle and the tracker is registered as a callback.
Since the tracker is updated every cycle, it is easy to trigger
other events based on the behavior of the characteristic. The first
use is trigger the simulation to end just after shock breakout time.
This is very important as Hydra’s only other relevant mechanism
for ending the simulation is a maximum simulation time. Burn is
explicitly turned off for these scans, so Hydra’s burn rate monitor
is not relevant. Setting a time limit either leads to under-estimating
the shock breakout time and stopping the calculation before
gathering important information or setting the maximum time to
be very large and wasting many compute cycles. Additionally, we
use the location of characteristics to set the frequency Hydra writes
output files. Different stages of the simulation have disparate time
scales and it is useful to add resolution only when it is needed.
The most important application of the characteristic tracker is
producing smooth, non-noisy measurements of the shock breakout
time for the shock syncing objective function. To construct a

56

11.5 T : T T T T

11.0F R
m
=
o 10.5 R
£
=
=
3
o
~
@ 10.0 . 1
o Le==" -

- - - -
: =" -
L : am=" -
93 ke - — Breakout Time
== Objective Function
Optimal Timing
90 2 4 6 8 10 12

Second Shock Launch Time (ns)

Fig. 2: Breakout time for a scan of the start time of the second shock.
Notice that the objective function minimum accurately locates the
inflection point in the breakout vs start time plot.

TTTTTTTTT T,

FELE T
i |

Huhhl‘l‘l\

i
]

{1

Radius (cm)
e
o
@
&«

14
°
@
S
Incident Laser Power (TW)

0.014

0.002 0.004 0.006 0.008

Time (micro-s)

0.010 0.012

Fig. 3: R-T plot showing optimal timing of pre-pulse shocks. Shock
fronts are identified with black lines.

shock syncing objective function, first consider the case of two
radially converging shocks launched at two different times from
comparable radii. The second shock is faster since the wake of the
first is warmer and the sound speed is larger. The second shock
will eventually overtake the first. If we define a "shock breakout
time" as when the first shock enters the gas region, we can plot
the shock breakout time as a function of the launch time of the
second shock (black line in 2). The appropriate objective function
should maximize the breakout time (recognizing that it saturates
for large launch times) while also minimizing the launch time of
the second shock. We construct an aggregate objective function as
a linear combination of the two constraints (f(t) = wr — b(t)). We
find an tuned value of 0.01m, where m is the slope between the end
points of the search region. The parallel direct search optimization
method typically converges within four iterations.

Recall from the first section the pre-pulse launches four

PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

2.0 T T T T T T

1.81

= - o
N > (=)}

Peak areal density

=
=)

0.81

0'fO.O 10.5 11.0 115 12.0 12.5 13.0 13.5
Main start time (ns)

Fig. 4: Tuning peak areal density

shocks, all of which should coalesce at the gas-ice interface at the
same time. Figure 3 shows the convergence of the pre-pulse shocks
well within the required 50 ps tolerance. It should be noted that
this shock syncing method only relies on tracking the first shock.
Characteristics will sometimes fail to locate the shock if they are
located in a region with heat sources that are not sonically coupled
to the plasma. Deeply penetrating x-rays, supra-thermal electrons
and heavy ion beams are examples. However, it is expected that
the ablator and the DT shell should provide sufficient insulation
for the picket shock tracker to locate its shock.

Another important embedded diagnostic monitors the fuel
areal density (pR). When tuning the main pulse, the diagnostic
monitors the DT pR, reports the peak value and stops the calcu-
lation when the current pR has fallen to 50% of the peak value.
The maximum pR sets the start time of the main pulse. The igniter
pulse start time is tuned by maximizing the fusion yield. Figure 4
shows a peak pR of 1.8g/cm? with a time width of 500ps. Peak
PR is typically found within three iterations. The width in the peak
corresponds to mistiming robustness.

Hydra is already well suited for tuning the igniter pulse for
maximum fusion yield and needs no additional diagnostics. Hydra
monitors the burn rate and has triggers to end the calculation upon
completion of burn. Hydra also reports the total fusion yield.

Conclusions

Tuning an ICF pulse to a target is normally a labor intensive,
high latency process. We described the desired properties of a
tuned pulse and constructed objective functions that will identify
the tuned properties. Collecting information for the objective
functions requires high frequency sampling of simulation and
this data must be gathered within the simulation rather than
post-processing a completed simulation. To enable introspective
simulations, we add a parallel Python interpreter to Hydra. From
these pieces, we constructed a program that tunes a pulse without
human intervention. The net result is a significant time savings
over manual tuning. Where a typical manual tuning takes several
days of attention, an automated tuning takes around 4 hours to
execute the same number of simulations.

This work performed under the auspices of the U.S. DOE
by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344.

AUTOMATION OF INERTIAL FUSION TARGET DESIGN WITH PYTHON

REFERENCES

[Tirosh2008]
[SILO2011]
[Betti2007]

[Munro2001]

[Fraley1974]

[Marinak1996]

[Beazley2003]

O. Tirosh, Pickle the interactive interpreter state (Python
recipe), http://code.activestate.com/recipes/572213-pickle-
the-interactive-interpreter-state/, 2008.
https://wci.llnl.gov/codes/silo/.

Betti, R, et al. 2007. Shock Ignition of Thermonuclear Fuel
with High Areal Density. Phys. Rev. Lett. 98, 155001.
Munro, David H, et al. 2001. Shock timing technique for the
National Ignition Facility. The 42nd annual meeting of the
division of plasma physics of the American Physical Society
and the 10th international congress on plasma physics 8,
2245-2250.

Fraley, G S, et al. 1974. Thermonuclear burn characteristics
of compressed deuterium-tritium microspheres. Physics of
Fluids 17, 474-489.

Marinak, M M, et al. 1996. Three-dimensional simulations
of Nova high growth factor capsule implosion experiments.
Physics of Plasmas 3, 2070-2076.

Beazley,. 2003. Automated scientific software scripting with
SWIG. Future Gener. Comput. Syst. 19, 599--609.

57

http://code.activestate.com/recipes/572213-pickle-the-interactive-interpreter-state/
http://code.activestate.com/recipes/572213-pickle-the-interactive-interpreter-state/
https://wci.llnl.gov/codes/silo/

	Inertial Confinement Fusion
	Automatic Tuning
	Hydra's Parallel Python Interpreters
	Embedded Diagnostics and Objective Functions
	Conclusions
	References

