104

PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

Google App Engine Python

Douglas A. Starnes**

Abstract—In recent years, one of the fastest growing trends in information
technology has been the move towards cloud computing. The scalable concept
of computing resources on demand allows applications to dynamically react to
increased usage instead of having to keep resources in reserve that are often
not in use but are still paid for. There are several popular entrants into this market
including Google App Engine. Modeled after Google’s own architecture for
building applications, Google App Engine (GAE) provides a scalable solution for
web-based applications and services including data storage, communications,
application deployment and monitoring, and management tools. With GAE,
developers have the option of writing applications using an API exposed to
Python. The same benefits of using Python in other applications are available in
the cloud.

Index Terms—cloud computing, web, google, application development

Overview

To assist developers in writing their applications, GAE provides a
variety of frameworks and services which will be discussed later.
An broad look at the entire application structure is in order first.
GAE can be broken down into three pieces: your application,
the SDK and tools, and the server itself. The application is
configured by a set of files using the YAML ("Yet Another Markup
Language" or the recursive "YAML Ain’t Markup Language")
specification. The main configuration file must be named app.yaml
and contains metadata about the application such as the name of
the application and the version number. The application name must
be unique across all of GAE. Google provides a service to look up
available application names at registration. The application name
will also be a subdomain of appspot.com where the application’s
default version will be. Also in the app.yaml file is a set of
mappings. Both scripts and static content can be mapped to URL
endpoints. There are built-in modules and other options such as
security settings which can be configured in app.yaml as well.
Several important tools are provided by the SDK for GAE.
Primary among these are appcfg and dev_appserver. The appcfg
tool is used to deploy applications to the server based on the
configuration in the app.yaml file. Other functions the appcfg
tool includes are to download the code and server logs for an
application and to manage cron jobs and datastore indexes. The
other important tool is dev_appserver. The dev_appserver tool is a
local development server that emulates the services of GAE. Not
all services are equally emulated. For example, the cron service

x Corresponding author: douglas @poweredbyalt.net
£ University of Memphis - Institute For Intelligent Systems

Copyright © 2011 Douglas A. Starnes. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

does not run locally. Also, the email service simply dumps a trace
of the message contents to the logs. Two other tools of note are
the bulkloader and remote_api_shell. The bulkloader is useful for
migrating large amounts of existing data to GAE all at one time.
The remote_api_shell provides an interactive Python session with
the live datastore.

The GAE server exposes the API and services that your
application is built upon and is emulated by the local development
server. Among the most important services is the datastore. GAE
also exposes an HTTP stack in webapp. Other services such as the
task queue, federated identity with Google and GMail accounts,
email and XMPP messaging exist.

webapp

The webapp framework is a Python library to handle network
traffic using the HTTP protocol. With webapp, the application de-
fines request handlers that are mapped to endpoints using both the
app.yaml settings as well as a set of URL routes defined within the
request handler itself. Each handler is a class derived from a base
RequestHandler class provided by webapp. The RequestHandler
class primarily defines methods for handling the different HTTP
methods (e.g. get, post). Also within the RequestHandler class are
objects representing the request and response for the current HTTP
transmission so the application can retrieve the URI requested or
the status code and also return data to the caller or redirect to
another resource. When the blobstore is needed, webapp defines
a group of handlers to be used specifically with uploading data to
the blobstore.

from google.appengine.ext import webapp
from google.appengine.ext.webapp import util

class MyHandler (webapp.RequestHandler) :
def get (self):

get from the da

#render a template ...

self.response.out.write (data)

data tastore,

if _ name__ == '__main
application =
webapp.WSGIApplication (
[("/.x", MyHandler)]
)
util.run_wsgi_app (application)
Data Storage

GAE gives developers several avenues of data storage. For long
term storage, data is persisted into the datastore and blobstore.
Short term storage is available in the memcache.

The datastore is one of the most prominent services of GAE.
The datastore is intended for structured table storage. While the

mailto:douglas@poweredbyalt.net

GOOGLE APP ENGINE PYTHON

datastore uses tables, it is not a relational database. The non-
relational nature of the the datastore puts it in the category of
"NoSQL" in the opinions of some. Unlike the popular NoSQL
databases MongoDB and CouchDB, the datastore is referred to
as "column oriented". MongoDB and CouchDB are document-
oriented and schema-less and do not define a formal data model
for the documents. The GAE datastore requires a data model but
is more flexible. The tables - or "kinds" to use GAE terms - are
defined by a classes derived from a base Model class from the
db module. This Model class has all of the CRUD (create, read,
update and delete) operations built in. The developer then has
only to define the properties of the kind along with data types, and
options such as if the property is required and its length.

from google.appengine.ext import db

class Product (db.Model) :
name = db.StringProperty (required=True)
price = db.FloatProperty (default=0.99)
suppliers = db.StringListProperty ()

Please notice the unusual yet useful StringListProperty. The GAE
datastore can have columns that are lists. There is also a ListProp-
erty type for non-string values.

Adding a kind to the datastore needs no preparation from the
developer, other than to define the kind. Simply call the put method
on an instance of the kind and the first time the datastore will take
care of all the housekeeping to define the kind in the datastore.
product = Product ()

initialize required properties

product.put ()

While the datastore does require a data model, the model can be
defined or extended after the kind class has been defined. The
Expando class in the db module has this capability.

For querying the datastore, there exists a simple language
called GQL (Google Query Language) that as the name suggests,
is similar to SQL. GQL has several limitations, mainly that it
can only retrieve data. All other operations (insert, update, delete)
must be performed programmatically. Selects can be performed
programmatically as well but GQL provides a simpler way. GQL
also has a few enhancements over SQL such as bound parameters
that are referenced by position or name. The following code
demonstrates this:
db.GglQuery (

"select * from Product
"Gadget")

where name = :1",

db.GglQuery (

105

A complement to the datastore is the blobstore. The blobstore
is intended to persist unstructured binary data such as images.
A blob has a maximum size of 2 gigabytes. These blobs are
immutable. Once created, blobs can be read or deleted but not
modified. There is also no way to reference a blob from the
datastore. The datastore does support the BlobProperty column
type but that blob is stored in the datastore. The blobstore is
separate. Managing blobs can only be done through the online
control panel for the app. Here the user can view, download and
delete blobs. The only way to get blobs into the datastore is
through a web form. There is experimental support for writing files
to the blob. This would be useful for creating blobs in response to
a cron job or something else that does not require a user to start it.

For short term storage of small values exists the memcache.
Entries in the memcache are simple key/value pairs. Entries stored
in the memcache will eventually expire. By default, GAE keeps
entries as long as there is enough memory. If an application begins
to consume a lot of memory, older entries will be freed to make
room for newer ones. Also, in the event of a system failure, entries
will not be retained as they are stored in memory, not persisted to
disk. Memcache values can be no more than 1MB in size.

Task Management

Most request to GAE should be short lived. There is a 30 second
limit on HTTP requests. In the logs, requests are flagged as
lengthy when they begin to exceed about 500ms. Anything more
than 30 seconds will throw an exception and the request will be
terminated. If a longer running task is needed, an application can
start a background worker. These have a maximum time limit of
10 minutes. Creating a new worker is easy: call a method on
the taskqueue API and pass it the endpoint of the worker along
with an object of any parameters. There does not appear to be a
mechanism using the default method of processing queues to have
a callback method for notification of when a worker is complete.
Using pull queues, an application can take over the method of
processing queues itself. With pull queues there is a REST API so
that the processing can be external to GAE.

If the task requires even more time, it can be handled by
a backend. A backend is a separate GAE instance which has
no constraints on time to run. Furthermore, backends are more
configurable and have access to more resources such as memory
and CPU. For applications using pull queues, tasks can be passed
to a backend. Backends can consume large amounts of resources
so there is an extra charge for them. They are billed in 15

"select » from Product where price <= :price point"minute increments up until the backend has been idle for 15

price_point=1.99)

The datastore also supports indexing. For simple queries, indexes
are constructed by the datastore. Simple queries include those with
only equality comparisons, and those with only one inequality
comparison or one sort orders. Other queries must be defined
manually. These are in another YAML configuration file called
index.yaml. When the index.yaml file is deployed along with
the app, the datastore will examine the definitions and build the
indexes. Progress can be monitored through the online web control
panel for GAE. Manually defining an index is not a lot of work
because if GAE requires an index for a query that has not been
defined, it will return an error along with a suggested definition.
TextProperty and BlobProperty columns cannot be indexed. As
is the case with relational databases, it is best to define indexes
before GAE notices.

minutes. A backend can be resident meaning it must be shut down
explicitly or dynamic meaning it will start in response to code
and shut down after it have been idle for 15 minutes. Neither
seems to have an impact on the hourly rate though. Backends
do not scale automatically as normal GAE instances do. The
number of backends is allocated explicitly in a configuration file
(backends.yaml).

The last method of background processing GAE has is cron
jobs. Cron jobs on GAE work similar to cron jobs on UNIX-based
systems. In GAE, a configuration file named cron.yaml defines
the tasks to be run. The cron.yaml file has entries for the endpoint
of the task and the frequency of the task. The task frequency is
expressed using a format that is more verbose than the UNIX
crontab format but is also easier to interpret. For example to have
a task run every 24 hours:

106

"every 24 hours"

is the expression to use in the cron.yaml file. More specific
expressions such as the following are also possible:

"1st tue of november 0:00"

There are two differences to consider when using cron jobs on
GAE. First is that cron jobs do not run in the local development
environment. You can view what jobs are defined and access the
endpoints for them but the schedule will not be followed. Second,
cron jobs always run on the default version of the application. If
you define a cron job in a development version of an app, it will
not be run to avoid conflicts with the default version. Cron jobs
always call endpoints using HTTP GET.

To remove a cron job from an application, remove its entry
from cron.yaml and deploy the application. To remove all jobs
from an application, deploy a cron.yaml without any job entries.

Application Environment

On the server, GAE hosts and serves applications at a subdomain
of appspot.com that is the same as the registered application name
in the app.yaml file. The official version of Python on GAE is
2.5.2. However, experience has shown that using 2.5.4 has no
problems. There have been accounts of applications targeting
2.6 and 2.7 working with the development server. While these
applications might run locally, any code that is specific to the
later versions will not run on GAE. The development environment
makes no attempt to ensure that the supported version of Python
is being used. The Python Standard Library is available with a few
exceptions. First several libraries such as PyYAML and simplejson
have been added. Also, for security reasons, there are libraries
which are not allowed such as marshal and socket. Importing these
libraries will not cause an exception but import nothing so is the
equivalent of a null operation. Any pure Python code that does not
have dependencies on C extensions within the constraints above
will run on GAE.

The SDK has versions for Windows, Mac OS X and Linux.
On Windows and OS X there is a GUI launcher to access some
of the command line tools. The launcher is helpful if more than
one version of Python is running on the machine. The launcher
has a setting to specify the location of Python to use with GAE
on the development server. The development server also gives a
console in the web control panel to run Python statements against
the currently running application. The GAE SDK is also open
source although modifying the source code will most likely result
in an application which will fail to run correctly on the remote
server.

Other Notable Features

GAE has a number of unique features that are outside the scope of
this paper. The following are a few that deserve to be mentioned.
First, it is worth knowing that there are two other languages
supported by GAE, Java and Go. Go is a programming language
developed by Google and described as a hybrid between C++
and Python. Go is experimental at the time of this writing. The
features between the Python and Java runtimes are close to being
identical. Python has a small lead as it was the first language for
GAE. GAE also supports federated identity using Google accounts
so anyone with a GMail or Google account can be authenticated
using GAE with only a few lines of code. Also included with
GAE is a profiling package called AppStats. Using this tool, very
detailed timelines about the requests the application processes

PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

can be analyzed. The call stacks are also recorded and can be
navigated through a web-based interface. AppStats works on both
the remote server and local development environments. Finally, a
new experimental library called ProtoRPC was recently added to
the SDK. ProtoRPC simplifies the workflow for creating REST-
based web services using GAE.

Conclusion

Benefits of using Python on GAE let developers prototype and
develop applications in the cloud using familiar web technologies.
A notable benefit is that GAE will support a free quota to test
applications on the server before enabling billing. In addition,
GAE integrates very well with the Python libraries for GData
to access services such as Google Finance, Google Spreadsheets,
Google Sites, and Picasa. Finally, there are several maintained
application frameworks running on top of GAE that extend its
functionality.

Google App Engine is a very thorough platform with many
features. This paper has discussed only a few of them. To get
more information, the reader is encouraged to visit http://code.
google.com/appengine to register for a free developer account, get
the documentation, SDK and sample code as well as information
about the new pricing model for later this year when GAE leaves
beta.

http://code.google.com/appengine
http://code.google.com/appengine

	Overview
	webapp
	Data Storage
	Task Management
	Application Environment
	Other Notable Features
	Conclusion

