PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

107

Time Series Analysis in Python with statsmodels

Wes McKinney®*, Josef Perktold*, Skipper Seabold®

Abstract—We introduce the new time series analysis features of scik-
its.statsmodels. This includes descriptive statistics, statistical tests and sev-
eral linear model classes, autoregressive, AR, autoregressive moving-average,
ARMA, and vector autoregressive models VAR.

Index Terms—time series analysis, statistics, econometrics, AR, ARMA, VAR,
GLSAR, filtering, benchmarking

Introduction

Statsmodels is a Python package that provides a complement to
SciPy for statistical computations including descriptive statistics
and estimation of statistical models. Beside the initial models, lin-
ear regression, robust linear models, generalized linear models and
models for discrete data, the latest release of scikits.statsmodels
includes some basic tools and models for time series analysis.
This includes descriptive statistics, statistical tests and several
linear model classes: autoregressive, AR, autoregressive moving-
average, ARMA, and vector autoregressive models VAR. In this
article we would like to introduce and provide an overview of the
new time series analysis features of statsmodels. In the outlook
at the end we point to some extensions and new models that are
under development.

Time series data comprises observations that are ordered along
one dimension, that is time, which imposes specific stochastic
structures on the data. Our current models assume that obser-
vations are continuous, that time is discrete and equally spaced
and that we do not have missing observations. This type of data
is very common in many fields, in economics and finance for
example, national output, labor force, prices, stock market values,
sales volumes, just to name a few.

In the following we briefly discuss some statistical properties
of the estimation with time series data, and then illustrate and
summarize what is currently available in statsmodels.

Ordinary Least Squares (OLS)

The simplest linear model assumes that we observe an endogenous
variable y and a set of regressors or explanatory variables x, where
y and x are linked through a simple linear relationship plus a noise
or error term

Vi =X+ &

x Corresponding author: wesmckinn @ gmail.com
q Duke University

£ University of North Carolina, Chapel Hill

§ American University

Copyright© 2011 Wes McKinney et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

In the simplest case, the errors are independently and identically
distributed. Unbiasedness of OLS requires that the regressors and
errors be uncorrelated. If the errors are additionally normally
distributed and the regressors are non-random, then the resulting
OLS or maximum likelihood estimator (MLE) of § is also nor-
mally distributed in small samples. We obtain the same result, if
we consider consider the distributions as conditional on x; when
they are exogenous random variables. So far this is independent
whether t indexes time or any other index of observations.

When we have time series, there are two possible extensions
that come from the intertemporal linkage of observations. In the
first case, past values of the endogenous variable influence the
expectation or distribution of the current endogenous variable, in
the second case the errors & are correlated over time. If we have
either one case, we can still use OLS or generalized least squares
GLS to get a consistent estimate of the parameters. If we have
both cases at the same time, then OLS is not consistent anymore,
and we need to use a non-linear estimator. This case is essentially
what ARMA does.

Linear Model with autocorrelated error (GLSAR)

This model assumes that the explanatory variables, regressors,
are uncorrelated with the error term. But the error term is an
autoregressive process, i.e.

E(xt,E,) = 0
E=a1&§-1+ta2&_1+ ...t ar&

An example will be presented in the next section.

Linear Model with lagged dependent variables (OLS, AR, VAR)

This group of models assume that past dependent variables, y;_;,
are included among the regressors, but that the error term are not
serially correlated

E(g,&)=0, fort#s
Vi=ayi—1+ayi—1+..ftay—r+xp+e&

Dynamic processes like autoregressive processes depend on ob-
servations in the past. This means that we have to decide what to
do with the initial observations in our sample where we do nnt
observe any past values.

The simplest way is to treat the first observation as fixed, and
analyse our sample starting with the k-th observation. This leads
to conditional least squares or conditional maximum likelihood
estimation. For conditional least squares we can just use OLS to
estimate, adding past endog to the exog. The vector autoregressive
model (VAR) has the same basic statistical structure except that

mailto:wesmckinn@gmail.com

108

we consider now a vector of endogenous variables at each point in
time, and can also be estimated with OLS conditional on the initial
information. (The stochastic structure of VAR is richer, because
we now also need to take into account that there can be contempo-
raneous correlation of the errors, i.e. correlation at the same time
point but across equations, but still uncorrelated across time.) The
second estimation method that is currently available in statsmodels
is maximum likelihood estimation. Following the same approach,
we can use the likelihood function that is conditional on the first
observations. If the errors are normaly distributed, then this is
essentially equivalent to least squares. However, we can easily
extend conditional maximum likelihood to other models, for
example GARCH, linear models with generalized autoregressive
conditional heteroscedasticity, where the variance depends on the
past, or models where the errors follow a non-normal distribution,
for example Student-t distributed which has heavier tails and is
sometimes more appropriate in finance.

The second way to treat the problem of intial conditions is
to model them together with other observations, usually under
the assumption that the process has started far in the past and
that the initial observations are distributed according to the long
run, i.e. stationary, distribution of the observations. This exact
maximum likelihood estimator is implemented in statsmodels
for the autoregressive process in statsmodels.tsa.AR, and for the
ARMA process in statsmodels.tsa. ARMA.

Autoregressive Moving average model (ARMA)

ARMA combines an autoregressive process of the dependent
variable with a error term, moving-average or MA, that includes
the present and a linear combination of past error terms, an
ARMA(p.q) is defined as

E(g,&)=0, forr#s
Vi=Htay 1+t aqy—pt+&+b1& 1 +... +Dy&E 4

As a simplified notation, this is often expressed in terms of lag-
polynomials as

where
O(L)=1—all' —ayl* — ... —q;L”

V(L) = 1+bi L' + byl + ...+ by L1

L is the lag or shift operator, Lix, = x,,hLO = 1. This is the same
process that scipy.lfilter uses. Forecasting with ARMA models has
become popular since the 1970’s as Box-Jenkins methodology,
since it often showed better forecast performance than more
complex, structural models.

Using OLS to estimate this process, i.e. regressing y; on past
vi—i, does not provide a consistent estimator. The process can
be consistently estimated using either conditional least squares,
which in this case is a non-linear estimator, or conditional maxi-
mum likelihood or with exact maximum likelihood. The difference
between conditional methods and exact MLE is the same as de-
scribed before. statsmodels provides estimators for both methods
in tsa. ARMA which will be described in more detail below.

Time series analysis is a vast field in econometrics with a
large range of models that extend on the basic linear models with
the assumption of normally distributed errors in many ways, and
provides a range of statistical tests to identify an appropriate model
specification or test the underlying assumptions.

PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

Besides estimation of the main linear time series models,
statsmodels also provides a range of descriptive statistics for
time series data and associated statistical tests. We include an
overview in the next section before describing AR, ARMA and
VAR in more details. Additional results that facilitate the usage
and interpretation of the estimated models, for example impulse
response functions, are also available.

OLS, GLSAR and serial correlation

Suppose we want to model a simple linear model that links the
stock of money in the economy to real GDP and consumer price
index CPI, example in Greene (2003, ch. 12). We import numpy
and statsmodels, load the variables from the example dataset
included in statsmodels, transform the data and fit the model with
OLS:

import numpy as np
import scikits.statsmodels.api as sm

tsa = sm.tsa # as shorthand
mdata = sm.datasets.macrodata.load() .data
endog = np.log(mdata['ml'])

exog = np.column_stack ([np.log(mdata['realgdp']),
np.log(mdatal'cpi'])])

exog = sm.add_constant (exog, prepend=True)
resl = sm.OLS (endog, exog) .fit ()
print resl.summary () provides the basic overview of the

regression results. We skip it here to safe on space. The Durbin-
Watson statistic that is included in the summary is very low
indicating that there is a strong autocorrelation in the residuals.
Plotting the residuals shows a similar strong autocorrelation.

As a more formal test we can calculate the autocorrelation, the
Ljung-Box Q-statistic for the test of zero autocorrelation and the
associated p-values:

acf, ci, Q, pvalue = tsa.acf(resl.resid, nlags=4,
confint=95, gstat=True,

unbiased=True)

acft

#tarray([1., 0.982, 0.948, 0.904, 0.85])

pvalue

#array ([3.811e-045, 2.892e-084,
6.949e-120, 2.192e-151]

To see how many autoregressive coefficients might be relevant, we
can also look at the partial autocorrelation coefficients

tsa.pacf (resl.resid, nlags=4)
n

#tarray ([1., 0.982, -0.497, -0.062, -0.227])

Similar regression diagnostics, for example for heteroscedastic-
ity, are available in statsmodels.stats.diagnostic. Details on these
functions and their options can be found in the documentation and
docstrings.

The strong autocorrelation indicates that either our model is
misspecified or there is strong autocorrelation in the errors. If we
assume that the second is correct, then we can estimate the model
with GLSAR. As an example, let us assume we consider four lags
in the autoregressive error.

mod2 sm.GLSAR (endog, exog,
res2 = mod2.iterative_£fit ()

rho=4)

iterative_fit alternates between estimating the autoregressive pro-
cess of the error term using tsa.yule_walker, and feasible sm.GLS.
Looking at the estimation results shows two things, the parameter
estimates are very different between OLS and GLS, and the
autocorrelation in the residual is close to a random walk:

TIME SERIES ANALYSIS IN PYTHON WITH STATSMODELS

resl.params
#array ([-1.5(
res2.params
#array ([-0.

U

=)

N
~

=)

W
~

0.886])

o
o
=

, 0.034])

mod2.rho
#array ([

1.009, -0.003

0 0 /);‘5,

, 0.01 -0.028])

This indicates that the short run and long run dynamics might be
very different and that we should consider a richer dynamic model,
and that the variables might not be stationary and that there might
be unit roots.

Stationarity, Unit Roots and Cointegration

Loosely speaking, stationarity means here that the mean, variance
and intertemporal correlation structure remains constant over time.
Non-stationarities can either come from deterministic changes like
trend or seasonal fluctuations, or the stochastic properties of the
process, if for example the autoregressive process has a unit root,
that is one of the roots of the lag polynomial is on the unit circle.
In the first case, we can remove the deterministic component by
detrending or deseasonalization. In the second case we can take
first differences of the process,

Differencing is a common approach in the Box-Jenkins
methodology and gives rise to ARIMA, where the I stands for
integrated processes, which are made stationary by differencing.
This lead to a large literature in econometrics on unit-root testing
that tries to distinguish deterministic trends from unit roots or
stochastic trends. statsmodels provides the augmented Dickey-
Fuller test. Monte Carlo studies have shown that it is often the
most powerful of all unit roots test.

To illustrate the results, we just show two results. Testing the
log of the stock of money with a null hypothesis of unit roots
against an alternative of stationarity around a linear trend, shows
an adf-statistic of -1.5 and a p-value of 0.8, so we are far away
from rejecting the unit root hypothesis:

tsa.adfuller (endog,
(-1.561, 0.807)

regression="ct") [:2]

If we test the differenced series, that is the growth rate of
moneystock, with a Null hypothesis of Random Walk with drift,
then we can strongly reject the hypothesis that the growth rate has
a unit root (p-value 0.0002)

tsa.adfuller (np.diff (endog),
(-4.451, 0.00024)

regression="c") [:2]

ARMA processes and data

The identification for ARIMA(p,d,q) processes, especially choos-
ing the number of lagged terms, p and q, to include, remains
partially an art. One recommendation in the Box-Jenkins method-
ology is to look at the pattern in the autocorrelation (acf) and
partial autocorrelation (pacf) functions

scikits.statsmodels.tsa.arima_process ~ contains a class
that provides several properties of ARMA processes
and a random process generator. As an example,
statsmodels/examples/tsa/arma_plots.py can be used to plot
autocorrelation and partial autocorrelation functions for different
ARMA models.

This allows easy comparison of the theoretical properties of
an ARMA process with their empirical counterparts. For example,
define the lag coefficients for an ARMA(2,2) process, generate a
random process and compare observed and theoretical pact:

109

ARMA: Autocorrelation (left) and Partial Autocorrelation (right)

>
d = =
0.6 .[rar:a;[[ll -?759]] 1 06 (rav\ra;[[ll -0099]] b
0.0 T ? ? % e 0 0 a8
? & v ee
o0 memm [T57
, . , , 0.6 . . .
- _ ~
os||[Tty sirar | os| SR
o HHWTTTTW oo
1.2
>
0.6 et e | 06] it a1
[0.0 I T ? 2?0000 0.0
00H lesssssssssssssssse - l [e e vwete
08 1 o0s8r g
ar=[1.0] ar=[1-0]
ma=[1 0] ma=[1 0]
0.4} 1 oal 1
0.0 0 g 1‘0 1‘5 20 00 0 g 1‘0 1‘5 20

Fig. 1: ACF and PACF for ARMA(p,q) This illustrated that the pacf
is zero after p terms for AR(p) processes and the acf is zero after q
terms for MA(q) processes.

import scikits.statsmodels.tsa.arima_process as tsp

ar = np.r_[1., -0.5, -0.2]; ma = np.r_[1., 0.2, -0.2]
np.random.seed (123)

X = tsp.arma_generate_sample (ar, ma, 20000, burnin=1000)
sm.tsa.pacf (x, 5)

array([l., 0.675, -0.053, 0.138, -0.018, 0.038]

ap = tsp.ArmaProcess (ar, ma)

ap.pacf (5)

array([l., 0.666, -0.035, 0.137, -0.034, 0.034]

We can see that they are very close in a large gener-
ated sample like this. ArmaProcess defines several additional
methods that calculate properties of ARMA processes and to
work with lag-polynomials: acf, acovf, ar, ar_roots, arcoefs,
armaZar, arma2ma, arpoly, from_coeffs, from_estimation, gener-
ate_sample, impulse_response, invertroots, isinvertible, isstation-
ary, ma, ma_roots, macoefs, mapoly, nobs, pact, periodogram. The
sandbox has a FFT version of some of this to look at the frequency
domain properties.

ARMA Modeling

Statsmodels provides several helpful routines and models for
working Autoregressive Moving Average (ARMA) time-series
models, including simulation and estimation code. For example,
after importing arima_process as ap from scikits.statsmodels.tsa
we can simulate a series'

>>> ar_coef = [1, .75, -.25]

>>> ma_coef = [1, —-.5]

>>> nobs = 100

>>> y = ap.arma_generate_sample (ar_coef,

C. ma_coef, nobs)
>>> y += 4 # add in constant

We can then estimate an ARMA model of the series

110
>>> mod = tsa.ARMA(y)
>>> res = arma_mod.fit (order=(2,1), trend='c',

method="'css-mle', disp=-1)

>>> arma_res.params

array ([4.0092, -0.7747, 0.2062, —-0.5563])

The estimation method, ’css-mle’, indicates that the starting pa-
rameters from the optimization are to be obtained from the con-
ditional sum of squares estimator and then the exact likelihood is
optimized. The exact likelihood is implemented using the Kalman
Filter.

Filtering

We have recently implemented several filters that are commonly
used in economics and finance applications. The three most popu-
lar method are the Hodrick-Prescott, the Baxter-King filter, and the
Christiano-Fitzgerald. These can all be viewed as approximations
of the ideal band-pass filter; however, discussion of the ideal band-
pass filter is beyond the scope of this paper. We will [briefly review
the implementation details of each] give an overview of each of
the methods and then present some usage examples.

The Hodrick-Prescott filter was proposed by Hodrick and
Prescott [HPres], though the method itself has been in use across
the sciences since at least 1876 [Stigler]. The idea is to separate a
time-series y; into a trend 7; and cyclical compenent &

v=u+&

The components are determined by minimizing the following
quadratic loss function

T T
minzgzz +2 Z (% —T1) — (51— T2)]
{Tt} t =1

where 7, =y, — § and A is the weight placed on the penalty
for roughness. Hodrick and Prescott suggest using A = 1600 for
quarterly data. Ravn and Uhlig [RUhlig] suggest A = 6.25 and
A = 129600 for annual and monthly data, respectively. While
there are numerous methods for solving the loss function, our
implementation uses scipy.sparse.linalg.spsolve to find the solu-
tion to the generalized ridge-regression suggested in Danthine and
Girardine [DGirard].

Baxter and King [BKing] propose an approximate band-pass
filter that deals explicitly with the periodicity of the business cycle.
By applying their band-pass filter to a time-series y,, they produce
a series y; that does not contain fluctuations at frequencies higher
or lower than those of the business cycle. Specifically, in the
time domain the Baxter-King filter takes the form of a symmetric
moving average

K
*
Yo = Z akYr—k
k=K

where a; = a_; for symmetry and XszfK a;, = 0 such that the
filter has trend elimination properties. That is, series that contain
quadratic deterministic trends or stochastic processes that are
integrated of order 1 or 2 are rendered stationary by application of

the filter. The filter weights a; are given as follows
aj=B;+0 for j=0,+1,%£2,...,£K

_ (m;y— o)
N T

Bo

1
Bj:n—j(sin(a)zj)fsin(a)lj)) for j=0,£1,£2,...,£K

PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

where 6 is a normalizing constant such that the weights sum to
Zero

p— L=k
2K +1
and
o — 21 2z
1= PH b 0‘)2 - PL

with the periodicity of the low and high cut-off frequencies given
by P and Py, respectively. Following Burns and Mitchell’s []
pioneering work which suggests that US business cycles last from
1.5 to 8 years, Baxter and King suggest using P, = 6 and Py =
32 for quarterly data or 1.5 and 8 for annual data. The authors
suggest setting the lead-lag length of the filter K to 12 for quarterly
data. The transformed series will be truncated on either end by K.
Naturally the choice of these parameters depends on the available
sample and the frequency band of interest.

The last filter that we currently provide is that of Christiano
and Fitzgerald [CFitz]. The Christiano-Fitzgerald filter is again
a weighted moving average. However, their filter is asymmetric
about ¢ and operates under the (generally false) assumption that
y; follows a random walk. This assumption allows their filter to
approximate the ideal filter even if the exact time-series model of
y; is not known. The implementation of their filter involves the
calculations of the weights in

yi =Boyi +Biyis1 + -+ Broi_yr—1 + Brogyr+
Biyi—1+-+Bi oy + By
fort =3,4,...,T —2, where

sin(jb) —sin(ja) .
Bj= n—j’] >1

b—a 2r 2r
= aa::‘gfab:: B

T P, Pr

Br_, and B,_ are linear functions of the B ;’s, and the values for
t=1,2,T —1, and T are also calculated in much the same way.
See the authors’ paper or our code for the details. Py and Py, are
as described above with the same interpretation.

Moving on to some examples, the below demonstrates the API
and resultant filtered series for each method. We use series for
unemployment and inflation to demonstrate 2. They are tradi-
tionally thought to have a negative relationship at business cycle
frequencies.

>>> from scipy.signal import lfilter

>>> data = sm.datasets.macrodata.load()

>>> infl = data.data.infl[1:]

>>> # get 4 gtr moving average

>>> infl = 1lfilter(np.ones(4)/4, 1, infl)[4:]
>>> unemp = data.data.unemp[l:]

To apply the Hodrick-Prescott filter to the data 3, we can do

>>> infl_c,
>>> unemp_c,

infl_t = tsa.filters.hpfilter (infl)
unemp_t = tsa.filters.hpfilter (unemp)

The Baxter-King filter 4 is applied as

>>> infl_c = tsa.filters.bkfilter (infl)
>>> unemp_c = tsa.filters.bkfilter (unemp)

The Christiano-Fitzgerald filter is similarly applied 5

>>> infl_c,
>>> unemp_c,

infl_t = tsa.filters.cfilter (infl)
unemp_t = tsa.filters.cfilter (unemp)

TIME SERIES ANALYSIS IN PYTHON WITH STATSMODELS

Inflation and Unemployment: Raw Series

14 T

i
> ® O Pp R P ® D> P
I AR L R L I O

Fig. 2: Unfiltered Inflation and Unemployment Rates 195904-2009Q1

Inflation and Unemployment: HP Filtered

— INFL
- - UNEMP

> & P R P P B
R I G A N L

Fig. 3: Unfiltered Inflation and Unemployment Rates 195904-2009Q1

Inflation and Unemployment: BK Filtered

— INFL
- - UNEMP

P »

Fig. 4: Unfiltered Inflation and Unemployment Rates 195904-2009Q1

111

Inflation and Unemployment: CF Filtered

ol
Q
R HRRCANC AN G A SR A

Fig. 5: Unfiltered Inflation and Unemployment Rates 195904-2009Q1

Statistical Benchmarking

We also provide for another frequent need of those who work with
time-series data of varying observational frequency--that of bench-
marking. Benchmarking is a kind of interpolation that involves
creating a high-frequency dataset from a low-frequency one in a
consistent way. The need for benchmarking arises when one has
a low-frequency series that is perhaps annual and is thought to
be reliable, and the researcher also has a higher frequency series
that is perhaps quarterly or monthly. A benchmarked series is a
high-frequency series consistent with the benchmark of the low-
frequency series.

We have implemented Denton’s modified method. Origi-
nally proposed by Denton [Denton] and improved by Cholette
[Cholette]. To take the example of turning an annual series into
a quarterly one, Denton’s method entails finding a benchmarked

series X; that solves
T 2
X X
minz <—t ol)
Xy T\ L I

T
Y X =4A,y=A{1,....8}
=2

subject to

That is, the sum of the benchmarked series must equal the annual
benchmark in each year. In the above Ay is the annual benchmark
for year y, I, is the high-frequency indicator series, and f is the
last year for which the annual benchmark is available. If T > 48,
then extrapolation is performed at the end of the series. To take
an example, given the US monthly industrial production index
and quarterly GDP data, from 2009 and 2010, we can construct a
benchmarked monthly GDP series
>>> iprod_m = np.array ([87.
84.7761, 83.
85.2174, 85.
86.7197, 87.7492, 87.
88.7051, 89.9025, 89.
90.9898, 91.2427, 91.
92.5646])
>>> gdp_gq = np.array ([14049.7,
14277.3, 14446.4,
14871.41)

4510, 86.
8658, 83.
7983, 86.

9878, 85.5359,
5261, 84.4347,
0163, 86.2137,
9129, 88.3915,
9970, 90.7919,
1385, 91.4039,

14114.7

14034.5, ,
14745.1,

14578.7,

112 PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

>>> gdp_m = tsa.interp.dentonm(iprod_m, gdp_qg,
freg="gm")

1.0 T T T T T 1.0 T T
05—I fos—ll —os;ll 1
Modeling multiple time series: Vector autoregressive (VAR) oo BlR.a ool HANum oo imm

models —0.5} 405} 05 1
—1.0 I L I I T) I I L I P) I L L I L
1.0

0

It is common in finance, economics, and other fields to model rela- |] (1)2 1 T ;‘;]
tionships among multiple time series. For example, an economist Il Na _ 00 0o
may wish to understand the impact of monetary policy on inflation = -os}

. . . —rob——o Lyl o o Tyl o o o
a.nd unerpplgyment. A widely used t.ool for analyzing multiple o 2 4 6 8 10 /0 2 4 & 8 10 . > 4 6 8 1
time series is the vector autoregressive (VAR) model. At each o_sfll {05 1 o.s—I 1

| | =

time point we observe a K-vector ¥; of data points, one for each ~ ©° = =) 00 =
time series. These can be modeled similar to an AR process as :(1)2 L _(1)(5) o _(1)2]
abOVC 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
=AY 1 +...+A)Y ,+&. Fig. 6: VAR sample autocorrelation
In this case, the coefficients A; are square matrices. As with prior
models, the error & is typically assumed to be normally distributed
and uncorrelated over time. This model can be estimated by
MLE or equivalently by OLS, either case as a single regression
or by noticing that the model decouples into K separate linear Impulse responses
realgdp —realgdp realcons —realgdp realinv —realgdp

regressions, one for each time series. 10 L0 0.10

We have recently written a comprehensive implementation of :
VAR models on stationary data following [Liitkepohl]. In addition
to estimation, we are also interested in

o Analysis of impulse responses (the effect of a unit shock
to one variable on all of the others)

o Statistical tests: whiteness and normality of residuals,
Granger-causality

o Lag order selection: how many lags Y;_; to include

o Multi-step forecasting and forecast error variance decom-
position

We will illustrate some of the VAR model features on the
macrodata data set in statsmodels. Here is a code snippet to
load the data and fit the model with two lags of the log-differenced
data:

mdata = sm.datasets.macrodata.load().data Fig. 7: VAR impulse response functions
mdata = mdatal[['realgdp', 'realcons', 'realinv']]
names = mdata.dtype.names

data = mdata.view((float, 3))

data = np.diff (np.log(data), axis=0)

model = VAR(data, names=names)

res = model.fit (2)

— Observed
] 3 0.04 realgdp - - Forecast
As with most other models in statsmodels, res.summary () 003 - Forc2 STDerr
provides a console output summary of the estimated coefficients 001
. . . 0.00
and other standard model diagnostics. The data itself can be 001
visualized by a number of plotting functions: % 50 100 realcons 150 500 350
0.02
>>> res.plot_sample_acorr () 0.01
0.00
-0.01
Impulse responses can be generated and plotted thusly: -0.02
—0.035 50 100 realiny 150 200 250
>>> irf = res.irf (10) # 10 periods o
>>> irf.plot () oo
—0.05
n-step ahead forecasts can similarly be generated and plotted: T
—0.20 50 100 150 200 250
>>> res.plot_forecast (5)
The forecast error variance decomposition can also be computed Fig. 8: VAR 5 step ahead forecast

and plotted like so

>>> res.fevd() .plot ()

TIME SERIES ANALYSIS IN PYTHON WITH STATSMODELS

Forecast errolr'evglr‘i;aéwée decomposition (FEVD) EE realgdp

I realcons
3 realinv

4 6

realcons

4 realinv ©

2 4 6 8 10

Fig. 9: VAR Forecast error variance decomposition

Various tests such as testing Granger causality can be carried out
using the results object:
>>> res.test_causality('realinv', 'realcons')
H_O0: ['realcons'] do not Granger-cause realinv
Conclusion: reject H_O0 at 5.00% significance level
{'conclusion': 'reject',

'crit_value': 3.0112857238108273,

"df': (2, 579),

"pvalue': 3.7842822166888971e-10,

'signif': 0.05,

"statistic': 22.528593566083575}
Obviously we are just providing a flavor of some of the features
available for VAR models. The statsmodels documentation has
a more comprehensive treatment of the feature set. We plan to
continue implementing other related models for multiple time
series, such as the vector error correction models (VECM) for
analyzing cointegrated (non-stationary) time series data. Other
more sophisticated models in the recent time series literature could
also be implemented within the same framework.

Conclusions

statsmodels development over the last few years has been focused
on building correct and tested implementations of the standard
suite of econometric models available in other statistical com-
puting environments, such as R. However, there is still a long
road ahead before Python will be on the same level library-
wise with other computing environments focused on statistics
and econometrics. We believe that, given the wealth of powerful
scientific computing and interactive research tools coupled with
the excellent Python language, statsmodels can make Python
become a premier environment for doing applied statistics and
econometrics work. Future work will need to integrate all of these
tools to create a smooth and intuitive user experience compara-
ble to industry standard commercial and open source statistical
products.

We have built a foundational set of tools for several ubiquitous
classes of time series models which we hope will go a long way
toward meeting the needs of applied statisticians and econometri-
cians programming in Python.

1. Notice that the AR coefficients and MA coefficients, both include a 1 for
the zero lag. Further, the signs on the AR coefficients are reversed versus those
estimated by tsa. ARMA due to the differing conventions of scipy.signal.lfilter.

113

REFERENCES

[BKing] Baxter, M. and King, R.G. 1999. "Measuring Business Cycles:

Approximate Band-pass Filters for Economic Time Series." Re-

view of Economics and Statistics, 81.4, 575-93.

Cholette, P.A. 1984. "Adjusting Sub-annual Series to Yearly

Benchmarks." Survey Methodology, 10.1, 35-49.

Christiano, L.J. and Fitzgerald, T.J. 2003. "The Band Pass Filter."

International Economic Review, 44.2, 435-65.

Danthine, J.P. and Girardin, M. 1989. "Business Cycles in

Switzerland: A Comparative Study." European Economic Review

33.1, 31-50.

Denton, ET. 1971. "Adjustment of Monthly or Quarterly Series to

Annual Totals: An Approach Based on Quadratic Minimization."

Journal of the American Statistical Association, 66.333, 99-102.

Hodrick, R.J. and Prescott, E.C. 1997. "Postwar US Business

Cycles: An Empirical Investigation." Journal of Money, Credit,

and Banking, 29.1, 1-16.

Ravn, M.O and Uhlig, H. 2002. "On Adjusting the Hodrick-

Prescott Filter for the Frequency of Observations." Review of

Economics and Statistics, 84.2, 371-6.

Stigler, S.M. 1978. "Mathematical Statistics in the Early States."

Annals of Statistics 6, 239-65,

[Liitkepohl] Liitkepohl, H. 2005. "A New Introduction to Multiple Time
Series Analysis"

[Cholette]
[CFitz]

[DGirard]

[Denton]

[HPres]

[RUhlig]

[Stigler]

	Introduction
	Ordinary Least Squares (OLS)
	Linear Model with autocorrelated error (GLSAR)
	Linear Model with lagged dependent variables (OLS, AR, VAR)
	Autoregressive Moving average model (ARMA)

	OLS, GLSAR and serial correlation
	Stationarity, Unit Roots and Cointegration
	ARMA processes and data
	ARMA Modeling
	Filtering
	Statistical Benchmarking
	Modeling multiple time series: Vector autoregressive (VAR) models
	Conclusions
	References

