
18 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Theano: A CPU and GPU Math Compiler in Python

James Bergstra‡∗, Olivier Breuleux‡, Frédéric Bastien‡, Pascal Lamblin‡, Razvan Pascanu‡, Guillaume Desjardins‡,
Joseph Turian‡, David Warde-Farley‡, Yoshua Bengio‡

F

Abstract—Theano is a compiler for mathematical expressions in Python that
combines the convenience of NumPy’s syntax with the speed of optimized
native machine language. The user composes mathematical expressions in a
high-level description that mimics NumPy’s syntax and semantics, while being
statically typed and functional (as opposed to imperative). These expressions
allow Theano to provide symbolic differentiation. Before performing computa-
tion, Theano optimizes the choice of expressions, translates them into C++ (or
CUDA for GPU), compiles them into dynamically loaded Python modules, all
automatically. Common machine learning algorithms implemented with Theano
are from 1.6× to 7.5× faster than competitive alternatives (including those
implemented with C/C++, NumPy/SciPy and MATLAB) when compiled for the
CPU and between 6.5× and 44× faster when compiled for the GPU. This
paper illustrates how to use Theano, outlines the scope of the compiler, provides
benchmarks on both CPU and GPU processors, and explains its overall design.

Index Terms—GPU, CUDA, machine learning, optimization, compiler, NumPy

Introduction

Python is a powerful and flexible language for describing large-
scale mathematical calculations, but the Python interpreter is in
many cases a poor engine for executing them. One reason is that
Python uses full-fledged Python objects on the heap to repre-
sent simple numeric scalars. To reduce the overhead in numeric
calculations, it is important to use array types such as NumPy’s
ndarray so that single Python objects on the heap can stand for
multidimensional arrays of numeric scalars, each stored efficiently
in the host processor’s native format.

[NumPy] provides an N-dimensional array data type, and
many functions for indexing, reshaping, and performing ele-
mentary computations (exp, log, sin, etc.) on entire arrays
at once. These functions are implemented in C for use within
Python programs. However, the composition of many such NumPy
functions can be unnecessarily slow when each call is dominated
by the cost of transferring memory rather than the cost of per-
forming calculations [Alted]. [numexpr] goes one step further by
providing a loop fusion optimization that can glue several element-
wise computations together. Unfortunately, numexpr requires an
unusual syntax (the expression must be encoded as a string within
the code), and at the time of this writing, numexpr is limited to op-
timizing element-wise computations. [Cython] and [scipy.weave]
address Python’s performance issue by offering a simple way to

* Corresponding author: james.bergstra@umontreal.ca
‡ Université de Montréal

Copyright © 2010 James Bergstra et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

hand-write crucial segments of code in C (or a dialect of Python
which can be easily compiled to C, in Cython’s case). While this
approach can yield significant speed gains, it is labor-intensive:
if the bottleneck of a program is a large mathematical expression
comprising hundreds of elementary operations, manual program
optimization can be time-consuming and error-prone, making an
automated approach to performance optimization highly desirable.

Theano, on the other hand, works on a symbolic representation
of mathematical expressions, provided by the user in a NumPy-
like syntax. Access to the full computational graph of an expres-
sion opens the door to advanced features such as symbolic dif-
ferentiation of complex expressions, but more importantly allows
Theano to perform local graph transformations that can correct
many unnecessary, slow or numerically unstable expression pat-
terns. Once optimized, the same graph can be used to generate
CPU as well as GPU implementations (the latter using CUDA)
without requiring changes to user code.

Theano is similar to [SymPy], in that both libraries manipulate
symbolic mathematical graphs, but the two projects have a dis-
tinctly different focus. While SymPy implements a richer set of
mathematical operations of the kind expected in a modern com-
puter algebra system, Theano focuses on fast, efficient evaluation
of primarily array-valued expressions.

Theano is free open source software, licensed under the New
(3-clause) BSD license. It depends upon NumPy, and can option-
ally use SciPy. Theano includes many custom C and CUDA code
generators which are able to specialize for particular types, sizes,
and shapes of inputs; leveraging these code generators requires
gcc (CPU) and nvcc (GPU) compilers, respectively. Theano can
be extended with custom graph expressions, which can leverage
scipy.weave, PyCUDA, Cython, and other numerical libraries
and compilation technologies at the user’s discretion. Theano
has been actively and continuously developed and used since
January 2008. It has been used in the preparation of numerous
scientific papers and as a teaching platform for machine learning
in graduate courses at l’Université de Montréal. Documentation
and installation instructions can be found on Theano’s website
[theano]. All Theano users should subscribe to the announce1

mailing list (low traffic). There are medium traffic mailing lists
for developer discussion2 and user support3.

This paper is divided as follows: Case Study: Logistic Regres-
sion shows how Theano can be used to solve a simple problem in
statistical prediction. Benchmarking Results presents some results
of performance benchmarking on problems related to machine
learning and expression evaluation. What kinds of work does
Theano support? gives an overview of the design of Theano and
the sorts of computations to which it is suited. Compilation by

mailto:james.bergstra@umontreal.ca
http://groups.google.com/group/theano-announce
http://groups.google.com/group/theano-dev
http://groups.google.com/group/theano-users

THEANO: A CPU AND GPU MATH COMPILER IN PYTHON 19

theano.function provides a brief introduction to the compilation
pipeline. Limitations and Future Work outlines current limitations
of our implementation and currently planned additions to Theano.

Case Study: Logistic Regression

To get a sense of how Theano feels from a user’s perspective, we
will look at how to solve a binary logistic regression problem.
Binary logistic regression is a classification model parameterized
by a weight matrix W and bias vector b. The model estimates the
probability P(Y = 1|x) (which we will denote with shorthand p)
that the input x belongs to class y = 1 as:

P(Y = 1|x(i)) = p(i) =
eWx(i)+b

1+ eWx(i)+b
(1)

The goal is to optimize the log probability of N training
examples, D = {(x(i),y(i)),0 < i ≤ N}), with respect to W and
b. To maximize the log likelihood we will instead minimize the
(average) negative log likelihood4:

`(W,b) =− 1
N ∑

i
y(i) log p(i)+(1− y(i)) log(1− p(i)) (2)

To make it a bit more interesting, we can also include an `2
penalty on W , giving a cost function E(W,b) defined as:

E(W,b) = `(W,b)+0.01∑
i

∑
j

w2
i j (3)

In this example, tuning parameters W and b will be done
through stochastic gradient descent (SGD) on E(W,b). Stochastic
gradient descent is a method for minimizing a differentiable
loss function which is the expectation of some per-example loss
over a set of training examples. SGD estimates this expectation
with an average over one or several examples and performs a
step in the approximate direction of steepest descent. Though
more sophisticated algorithms for numerical optimization exist, in
particular for smooth convex functions such as E(W,b), stochastic
gradient descent remains the method of choice when the number
of training examples is too large to fit in memory, or in the setting
where training examples arrive in a continuous stream. Even with
relatively manageable dataset sizes, SGD can be particularly ad-
vantageous for non-convex loss functions (such as those explored
in Benchmarking Results), where the stochasticity can allow the
optimizer to escape shallow local minima [Bottou].

According to the SGD algorithm, the update on W is

W ←W −µ
1
N′ ∑i

∂E(W,b,x,y)
∂W

∣∣∣∣
x=x(i),y=y(i)

, (4)

where µ = 0.1 is the step size and N is the number of examples
with which we will approximate the gradient (i.e. the number of
rows of x). The update on b is likewise

b← b−µ
1
N′ ∑i

∂E(W,b,x,y)
∂b

∣∣∣∣
x=x(i),y=y(i)

. (5)

1. http://groups.google.com/group/theano-announce
2. http://groups.google.com/group/theano-dev
3. http://groups.google.com/group/theano-users
4. Taking the mean in this fashion decouples the choice of the regularization

coefficient and the stochastic gradient step size from the number of training
examples.

Implementing this minimization procedure in Theano involves
the following four conceptual steps: (1) declaring symbolic vari-
ables, (2) using these variables to build a symbolic expression
graph, (3) compiling Theano functions, and (4) calling said
functions to perform numerical computations. The code listings
in Figures 1 - 4 illustrate these steps with a working program that
fits a logistic regression model to random data.

1: import numpy
2: import theano.tensor as T
3: from theano import shared, function
4:
5: x = T.matrix()
6: y = T.lvector()
7: w = shared(numpy.random.randn(100))
8: b = shared(numpy.zeros(()))
9: print "Initial model:"
10: print w.get_value(), b.get_value()

Fig. 1: Logistic regression, part 1: declaring variables.

The code in Figure 1 declares four symbolic variables x, y
w, and b to represent the data and parameters of the model. Each
tensor variable is strictly typed to include its data type, its number
of dimensions, and the dimensions along which it may broadcast
(like NumPy’s broadcasting) in element-wise expressions. The
variable x is a matrix of the default data type (float64), and y
is a vector of type long (or int64). Each row of x will store an
example x(i), and each element of y will store the corresponding
label y(i). The number of examples to use at once represents a
tradeoff between computational and statistical efficiency.

The shared() function creates shared variables for W and
b and assigns them initial values. Shared variables behave much
like other Theano variables, with the exception that they also
have a persistent value. A shared variable’s value is maintained
throughout the execution of the program and can be accessed with
.get_value() and .set_value(), as shown in line 10.

11: p_1 = 1 / (1 + T.exp(-T.dot(x, w)-b))
12: xent = -y*T.log(p_1) - (1-y)*T.log(1-p_1)
13: cost = xent.mean() + 0.01*(w**2).sum()
14: gw,gb = T.grad(cost, [w,b])
15: prediction = p_1 > 0.5

Fig. 2: Logistic regression, part 2: the computation graph.

The code in Figure 2 specifies the computational graph re-
quired to perform stochastic gradient descent on the parame-
ters of our cost function. Since Theano’s interface shares much
in common with that of NumPy, lines 11-15 should be self-
explanatory for anyone familiar with that module. On line 11,
we start by defining P(Y = 1|x(i)) as the symbolic variable p_1.
Notice that the matrix multiplication and element-wise exponential
functions are simply called via the T.dot and T.exp functions,
analogous to numpy.dot and numpy.exp. xent defines the
cross-entropy loss function, which is then combined with the `2
penalty on line 13, to form the cost function of Eq (3) and denoted
by cost.

Line 14 is crucial to our implementation of SGD, as it performs
symbolic differentiation of the scalar-valued cost variable with
respect to variables w and b. T.grad operates by iterating
backwards over the expression graph, applying the chain rule of
differentiation and building symbolic expressions for the gradients
on w and b. As such, gw and gb are also symbolic Theano vari-
ables, representing ∂E/∂W and ∂E/∂b respectively. Finally, line

http://groups.google.com/group/theano-announce
http://groups.google.com/group/theano-dev
http://groups.google.com/group/theano-users

20 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

15 defines the actual prediction (prediction) of the logistic
regression by thresholding P(Y = 1|x(i)).

16: predict = function(inputs=[x],
17: outputs=prediction)
18: train = function(
19: inputs=[x,y],
20: outputs=[prediction, xent],
21: updates={w:w-0.1*gw, b:b-0.1*gb})

Fig. 3: Logistic regression, part 3: compilation.

The code of Figure 3 creates the two functions required
to train and test our logistic regression model. Theano func-
tions are callable objects that compute zero or more outputs
from values given for one or more symbolic inputs. For exam-
ple, the predict function computes and returns the value of
prediction for a given value of x. Parameters w and b are
passed implicitly - all shared variables are available as inputs to
all functions as a convenience to the user.

Line 18 (Figure 3) which creates the train function high-
lights two other important features of Theano functions: the
potential for multiple outputs and updates. In our example, train
computes both the prediction (prediction) of the classifier
as well as the cross-entropy error function (xent). Computing
both outputs together is computationally efficient since it allows
for the reuse of intermediate computations, such as dot(x,w).
The optional updates parameter enables functions to have side-
effects on shared variables. The updates argument is a dictionary
which specifies how shared variables should be updated after all
other computation for the function takes place, just before the
function returns. In our example, calling the train function will
update the parameters w and b with new values as per the SGD
algorithm.

22: N = 4
23: feats = 100
24: D = (numpy.random.randn(N, feats),
25: numpy.random.randint(size=N,low=0, high=2))
26: training_steps = 10
27: for i in range(training_steps):
28: pred, err = train(D[0], D[1])
29: print "Final model:",
30: print w.get_value(), b.get_value()
31: print "target values for D", D[1]
32: print "prediction on D", predict(D[0])

Fig. 4: Logistic regression, part 4: computation.

Our example concludes (Figure 4) by using the functions
train and predict to fit the logistic regression model. Our
data D in this example is just four random vectors and labels.
Repeatedly calling the train function (lines 27-28) fits our
parameters to the data. Note that calling a Theano function is
no different than calling a standard Python function: the graph
transformations, optimizations, compilation and calling of efficient
C-functions (whether targeted for the CPU or GPU) have all been
done under the hood. The arguments and return values of these
functions are NumPy ndarray objects that interoperate normally
with other scientific Python libraries and tools.

Benchmarking Results

Theano was developed to simplify the implementation of com-
plex high-performance machine learning algorithms. This section
presents performance in two processor-intensive tasks from that

Fig. 5: Fitting a multi-layer perceptron to simulated data with various
implementations of stochastic gradient descent. These models have
784 inputs, 500 hidden units, a 10-way classification, and are trained
60 examples at a time.

domain: training a multi-layer perceptron (MLP) and training a
convolutional network. We chose these architectures because of
their popularity in the machine learning community and their
different computational demands. Large matrix-matrix multiplica-
tions dominate in the MLP example and two-dimensional image
convolutions with small kernels are the major bottleneck in a
convolutional network. More information about these models and
their associated learning algorithms is available from the Deep
Learning Tutorials [DLT]. The implementations used in these
benchmarks are available online [dlb].

CPU timing was carried out on an an Intel(R) Core(TM)2 Duo
CPU E8500 @ 3.16GHz with 2 GB of RAM. All implementations
were linked against the BLAS implemented in the Intel Math Ker-
nel Library, version 10.2.4.032 and allowed to use only one thread.
GPU timing was done on a GeForce GTX 285. CPU computations
were done at double-precision, whereas GPU computations were
done at single-precision.

Our first benchmark involves training a single layer MLP
by stochastic gradient descent. Each implementation repeatedly
carried out the following steps: (1) multiply 60 784-element input
vectors by a 784×500 weight matrix, (2) apply an element-wise
hyperbolic tangent operator (tanh) to the result, (3) multiply the
result of the tanh operation by a 500×10 matrix, (4) classify the
result using a multi-class generalization of logistic regression, (5)
compute the gradient by performing similar calculations but in
reverse, and finally (6) add the gradients to the parameters. This
program stresses element-wise computations and the use of BLAS
routines.

Figure 5 compares the number of examples processed per sec-
ond across different implementations. We compared Theano (re-
vision #ec057beb6c) against NumPy 1.4.1, MATLAB 7.9.0.529,
and Torch 5 (a machine learning library written in C/C++) [torch5]
on the CPU and GPUMat 0.25 for MATLAB ([gpumat]) on the
GPU.

When running on the CPU, Theano is 1.8x faster than NumPy,
1.6x faster than MATLAB, and 7.5x faster than Torch 5.5 Theano’s
speed increases 5.8x on the GPU from the CPU, a total increase
of 11x over NumPy (CPU) and 44x over Torch 5 (CPU). GPUmat

THEANO: A CPU AND GPU MATH COMPILER IN PYTHON 21

Fig. 6: Fitting a convolutional network using different software. The
benchmark stresses convolutions of medium-sized (256 by 256) images
with small (7 by 7) filters.

brings about a speed increase of only 1.4x when switching to
the GPU for the MATLAB implementation, far less than the 5.8x
increase Theano achieves through CUDA specializations.

Because of the difficulty in implementing efficient convolu-
tional networks, we only benchmark against known libraries that
offer a pre-existing implementation. We compare against EBLearn
[EBL] and Torch, two libraries written in C++. EBLearn was
implemented by Yann LeCun’s lab at NYU, who have done exten-
sive research in convolutional networks. To put these results into
perspective, we implemented approximately half (no gradient cal-
culation) of the algorithm using SciPy’s signal.convolve2d
function. This benchmark uses convolutions of medium sized
images (256× 256) with small filters (7× 7). Figure 6 compares
the performance of Theano (both CPU and GPU) with that of
competing implementations. On the CPU, Theano is 2.2x faster
than EBLearn, its best competitor. This advantage is owed to the
fact that Theano compiles more specialized convolution routines.
Theano’s speed increases 4.9x on the GPU from the CPU, a
total of 10.7x over EBLearn (CPU). On the CPU, Theano is
5.8x faster than SciPy even though SciPy is doing only half the
computations. This is because SciPy’s convolution routine has not
been optimized for this application.

We also compared Theano with numexpr and NumPy for
evaluating element-wise expressions on the CPU (Figure 7). For
small amounts of data, the extra function-call overhead of numexpr
and Theano makes them slower. For larger amounts of data, and
for more complicated expressions, Theano is fastest because it
uses an implementation specialized for each expression.

What kinds of work does Theano support?

Theano’s expression types cover much of the same functionality as
NumPy, and include some of what can be found in SciPy. Table 1
lists some of the most-used expressions in Theano. More extensive
reference documentation is available online [theano].

Theano’s strong suit is its support for strided N-dimensional
arrays of integers and floating point values. Signed and unsigned

5. Torch was designed and implemented with flexibility in mind, not speed
(Ronan Collobert, p.c.).

1e3 1e5 1e7
0

1

2

3

4

5

6

7

S
p
e
e
d
 u

p
 v

s
N

u
m

P
y

a**2 + b**2 + 2*a*b

1e3 1e5 1e7
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
2*a + 3*b

1e3 1e5 1e7
Dimension of vectors a and b

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

S
p
e
e
d
 u

p
 v

s
N

u
m

P
y

a+1

1e3 1e5 1e7
Dimension of vectors a and b

0

5

10

15

20

25

30

35

40
2*a + b**10

Fig. 7: Speed comparison between NumPy, numexpr, and Theano for
different sizes of input on four element-wise formulae. In each subplot,
the solid blue line represents Theano, the dashed red line represent
numexpr, and performance is plotted with respect to NumPy.

integers of all native bit widths are supported, as are both
single-precision and double-precision floats. Single-precision and
double-precision complex numbers are also supported, but less so
- for example, gradients through several mathematical functions
are not implemented. Roughly 90% of expressions for single-
precision N-dimensional arrays have GPU implementations. Our
goal is to provide GPU implementations for all expressions sup-
ported by Theano.

Random numbers are provided in two ways: via NumPy’s
random module, and via an internal generator from the
MRG family [Ecu]. Theano’s RandomStreams replicates the
numpy.random.RandomState interface, and acts as a proxy
to NumPy’s random number generator and the various random
distributions that use it. The MRG_RandomStreams class im-
plements a different random number generation algorithm (called
MRG31k3p) that maps naturally to GPU architectures. It is
implemented for both the CPU and GPU so that programs can
produce the same results on either architecture without sacrificing
speed. The MRG_RandomStreams class offers a more limited
selection of random number distributions than NumPy though:
uniform, normal, and multinomial.

Sparse vectors and matrices are supported via SciPy’s
sparse module. Only compressed-row and compressed-column
formats are supported by most expressions. There are expressions
for packing and unpacking these sparse types, some operator
support (e.g. scaling, negation), matrix transposition, and matrix
multiplication with both sparse and dense matrices. Sparse expres-
sions currently have no GPU equivalents.

There is also support in Theano for arbitrary Python objects.
However, there are very few expressions that make use of that
support because the compilation pipeline works on the basis of
inferring properties of intermediate results. If an intermediate
result can be an arbitrary Python object, very little can be inferred.
Still, it is occasionally useful to have such objects in Theano
graphs.

Theano has been developed to support machine learning re-
search, and that has motivated the inclusion of more specialized
expression types such as the logistic sigmoid, the softmax func-

22 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Operators +, -, /, *, **, //, eq, neq, <, <=, >, >=,
&, |, ^

Allocation alloc, eye, [ones,zeros]_like,
identity{_like}

Indexing* basic slicing (see set_subtensor and
inc_subtensor for slicing lvalues); lim-
ited support for advanced indexing

Mathematical
Functions

exp, log, tan[h], cos[h], sin[h],
real, imag, sqrt, floor, ceil,
round, abs

Tensor
Operations

all, any, mean, sum, min, max,
var, prod, argmin, argmax, reshape,
flatten, dimshuffle

Conditional cond, switch

Looping Scan

Linear Al-
gebra

dot, outer, tensordot, diag,
cholesky, inv, solve

Calculus* grad

Signal
Processing

conv2d, FFT, max_pool_2d

Random RandomStreams,
MRG_RandomStreams

Printing Print

Sparse compressed row/col storage, limited opera-
tor support, dot, transpose, conversion
to/from dense

Machine
Learning

sigmoid, softmax, multi-class hinge loss

TABLE 1: Overview of Theano’s core functionality. This list is not ex-
haustive, and is superseded by the online documentation. More details
are given in text for items marked with an asterisk. dimshuffle is
like numpy.swapaxes.

tion, and multi-class hinge loss.

Compilation by theano.function

What happens under the hood when creating a function? This
section outlines, in broad strokes, the stages of the compilation
pipeline. Prior to these stages, the expression graph is copied so
that the compilation process does not change anything in the graph
built by the user. As illustrated in Figure 8, the expression graph
is subjected to several transformations: (1) canonicalization, (2)
stabilization, (3) specialization, (4) optional GPU transfer, (5) code
generation. There is some overlap between these transformations,
but at a high level they have different objectives. (The interested
reader should note that these transformations correspond roughly,
but not exactly to the optimization objects that are implemented in
the project source code.)

Canonicalization

The canonicalization transformation puts the user’s expression
graph into a standard form. For example, duplicate expres-
sions are merged into a single expression. Two expressions

Canonicalization

Stabilization

Specialization

GPU Transfer

Code Generation

Fig. 8: The compilation pipeline for functions compiled for GPU.
Functions compiled for the CPU omit the GPU transfer step.

are considered duplicates if they carry out the same opera-
tion and have the same inputs. Since Theano expressions are
purely functional (i.e., cannot have side effects), these expres-
sions must return the same value and thus it is safe to per-
form the operation once and reuse the result. The symbolic
gradient mechanism often introduces redundancy, so this step is
quite important. For another example, sub-expressions involv-
ing only multiplication and division are put into a standard
fraction form (e.g. a / (((a * b) / c) / d) -> (a *
c * d) / (a * b) -> (c * d) / (b)). Some useless
calculations are eliminated in this phase, for instance cancelling
out uses of the a term in the previous example, but also reducing
exp(log(x)) to x, and computing outright the values of any
expression whose inputs are fully known at compile time. Canon-
icalization simplifies and optimizes the graph to some extent, but
its primary function is to collapse many different expressions into
a single normal form so that it is easier to recognize expression
patterns in subsequent compilation stages.

Stabilization

The stabilization transformation improves the numerical stability
of the computations implied by the expression graph. For instance,
consider the function log(1 + exp(x)), which tends toward
zero as limx→−∞, and x as limx→−∞. Due to limitations in the
representation of double precision numbers, the computation as
written yields infinity for x > 709. The stabilization phase
replaces patterns like one with an expression that simply returns x
when x is sufficiently large (using doubles, this is accurate beyond
the least significant digit). It should be noted that this phase cannot
guarantee the stability of computations. It helps in some cases, but
the user is still advised to be wary of numerically problematic
computations.

Specialization

The specialization transformation replaces expressions with faster
ones. Expressions like pow(x,2) become sqr(x). Theano also
performs more elaborate specializations: for example, expressions
involving scalar-multiplied matrix additions and multiplications
may become BLAS General matrix multiply (GEMM) nodes and
reshape, transpose, and subtensor expressions (which
create copies by default) are replaced by constant-time versions

THEANO: A CPU AND GPU MATH COMPILER IN PYTHON 23

that work by aliasing memory. Expressions subgraphs involv-
ing element-wise operations are fused together (as in numexpr)
in order to avoid the creation and use of unnecessary tempo-
rary variables. For instance, if we denote the a + b operation
on tensors as map(+, a, b), then an expression such as
map(+, map(*, a, b), c) would become map(lambda
ai,bi,ci: ai*bi+ci, a, b, c). If the user desires to
use the GPU, expressions with corresponding GPU implemen-
tations are substituted in, and transfer expressions are introduced
where needed. Specialization also introduces expressions that treat
inputs as workspace buffers. Such expressions use less memory
and make better use of hierarchical memory, but they must be used
with care because they effectively destroy intermediate results.
Many expressions (e.g. GEMM and all element-wise ones) have
such equivalents. Reusing memory this way allows more compu-
tation to take place on GPUs, where memory is at a premium.

Moving Computation to the GPU

Each expression in Theano is associated with an implementation
that runs on either the host (a host expression) or a GPU device
(a GPU expression). The GPU-transfer transformation replaces
host expressions with GPU expressions. The majority of host
expression types have GPU equivalents and the proportion is
always growing.

The heuristic that guides GPU allocation is simple: if any input
or output of an expression resides on the GPU and the expression
has a GPU equivalent, then the GPU equivalent is substituted
in. Shared variables storing float32 tensors default to GPU
storage, and the expressions derived from them consequently
default to using GPU implementations. It is possible to explicitly
force any float32 variable to reside on the GPU, so one can start
the chain reaction of optimizations and use the GPU even in graphs
with no shared variables. It is possible (though awkward, and
discouraged) to specify exactly which computations to perform
on the GPU by disabling the default GPU optimizations.

Tensors stored on the GPU use a special internal data type with
an interface similar to the ndarray. This datatype fully supports
strided tensors, and arbitrary numbers of dimensions. The support
for strides means that several operations such as the transpose and
simple slice indexing can be performed in constant time.

Code Generation

The code generation phase of the compilation process produces
and loads dynamically-compiled Python modules with specialized
implementations for the expressions in the computation graph.
Not all expressions have C (technically C++) implementations, but
many (roughly 80%) of Theano’s expressions generate and com-
pile C or CUDA code during theano.function. The majority
of expressions that generate C code specialize the code based on
the dtype, broadcasting pattern, and number of dimensions of their
arguments. A few expressions, such as the small-filter convolution
(conv2d), further specialize code based on the size the arguments
will have.

Why is it so important to specialize C code in this way?
Modern x86 architectures are relatively forgiving of code that
does not make good use techniques such as loop unrolling and
prefetching contiguous blocks of memory, and only the conv2d
expression goes to any great length to generate many special case
implementations for the CPU. By comparison, GPU architectures
are much less forgiving of code that is not carefully specialized

for the size and physical layout of function arguments. Conse-
quently, the code generators for GPU expressions like GpuSum,
GpuElementwise, and GpuConv2d generate a wider variety
of implementations than their respective host expressions. With
the current generation of graphics cards, the difference in speed
between a naïve implementation and an optimal implementation of
an expression as simple as matrix row summation can be an order
of magnitude or more. The fact that Theano’s GPU ndarray-like
type supports strided tensors makes it even more important for the
GPU code generators to support a variety of memory layouts.
These compile-time specialized CUDA kernels are integral to
Theano’s GPU performance.

Limitations and Future Work

While most of the development effort has been directed at making
Theano produce fast code, not as much attention has been paid
to the optimization of the compilation process itself. At present,
the compilation time tends to grow super-linearly with the size of
the expression graph. Theano can deal with graphs up to a few
thousand nodes, with compilation times typically on the order of
seconds. Beyond that, it can be impractically slow, unless some
of the more expensive optimizations are disabled, or pieces of the
graph are compiled separately.

A Theano function call also requires more overhead (on the
order of microseconds) than a native Python function call. For
this reason, Theano is suited to applications where functions
correspond to expressions that are not too small (see Figure 7).

The set of types and operations that Theano provides continues
to grow, but it does not cover all the functionality of NumPy and
covers only a few features of SciPy. Wrapping functions from
these and other libraries is often straightforward, but implementing
their gradients or related graph transformations can be more
difficult. Theano does not yet have expressions for sparse or dense
matrix inversion, nor linear algebra decompositions, although
work on these is underway outside of the Theano trunk. Support
for complex numbers is also not as widely implemented or as well-
tested as for integers and floating point numbers. NumPy arrays
with non-numeric dtypes (strings, Unicode, Python objects) are
not supported at present.

We expect to improve support for advanced indexing and linear
algebra in the coming months. Documentation online describes
how to add new operations and new graph transformations. There
is currently an experimental GPU version of the scan operation,
used for looping, and an experimental lazy-evaluation scheme for
branching conditionals.

The library has been tuned towards expressions related to
machine learning with neural networks, and it is not as well tested
outside of this domain. Theano is not a powerful computer algebra
system, and it is an important area of future work to improve its
ability to recognize numerical instability in complicated element-
wise expression graphs.

Debugging Theano functions can require non-standard tech-
niques and Theano specific tools. The reason is two-fold: 1) defi-
nition of Theano expressions is separate from their execution, and
2) optimizations can introduce many changes to the computation
graph. Theano thus provides separate execution modes for Theano
functions, which allows for automated debugging and profiling.
Debugging entails automated sanity checks, which ensure that
all optimizations and graph transformations are safe (Theano
compares the results before and after their application), as well
as comparing the outputs of both C and Python implementations.

24 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

We plan to extend GPU support to the full range of C data
types, but only float32 tensors are supported as of this writing.
There is also no support for sparse vectors or matrices on the
GPU, although algorithms from the CUSPARSE package should
make it easy to add at least basic support for sparse GPU objects.

Conclusion

Theano is a mathematical expression compiler for Python that
translates high level NumPy-like code into machine language
for efficient CPU and GPU computation. Theano achieves good
performance by minimizing the use of temporary variables, mini-
mizing pressure on fast memory caches, making full use of gemm
and gemv BLAS subroutines, and generating fast C code that
is specialized to sizes and constants in the expression graph.
Theano implementations of machine learning algorithms related
to neural networks on one core of an E8500 CPU are up to 1.8
times faster than implementations in NumPy, 1.6 times faster than
MATLAB, and 7.6 times faster than a related C++ library. Using
a Nvidia GeForce GTX285 GPU, Theano is an additional 5.8
times faster. One of Theano’s greatest strengths is its ability to
generate custom-made CUDA kernels, which can not only sig-
nificantly outperform CPU implementations but alternative GPU
implementations as well.

Acknowledgements

Theano has benefited from the contributions of many members of
the machine learning group in the computer science department
(Départment d’Informatique et de Recherche Operationelle) at
l’Université de Montréal, especially Arnaud Bergeron, Thierry
Bertin-Mahieux, Olivier Delalleau, Douglas Eck, Dumitru Erhan,
Philippe Hamel, Simon Lemieux, Pierre-Antoine Manzagol, and
François Savard. The authors acknowledge the support of the
following agencies for research funding and computing support:
NSERC, RQCHP, CIFAR, SHARCNET and CLUMEQ.

REFERENCES

[theano] Theano. http://www.deeplearning.net/software/theano
[NumPy] T. E. Oliphant. "Python for Scientific Computing". Computing

in Science & Engineering 9, 10 (2007).
[Bottou] L. Bottou. "Online Algorithms and Stochastic Approxima-

tions". In D. Saad, ed. Online Learning and Neural Networks
(1998). Cambridge University Press, Cambridge, UK. Online:
http://leon.bottou.org/papers/bottou-98x

[numexpr] D. Cooke et al. "numexpr". http://code.google.com/p/
numexpr/

[Cython] S. Behnel, R. Bradshaw, and D. S. Seljebotn. "Cython: C-
Extensions for Python". http://www.cython.org/

[scipy.weave] SciPy Weave module. http://docs.scipy.org/doc/scipy/reference/
tutorial/weave.html

[Alted] F. Alted. "Why Modern CPUs Are Starving And What Can
Be Done About It". Computing in Science and Engineering
12(2):68-71, 2010.

[SymPy] SymPy Development Team. "SymPy: Python Library for Sym-
bolic Mathematics". http://www.sympy.org/

[BLAS] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammar-
ling. "Algorithm 679: A set of Level 3 Basic Linear Alge-
bra Subprograms". ACM Trans. Math. Soft., 16:18-28, 1990.
http://www.netlib.org/blas

[LAPACK] E. Anderson et al. "LAPACK Users’ Guide, Third Edition".
http://www.netlib.org/lapack/lug/index.html

[DLT] Deep Learning Tutorials. http://deeplearning.net/tutorial/
[dlb] Benchmarking code: http://github.com/pascanur/

DeepLearningBenchmarks
[torch5] R. Collobert. "Torch 5". http://torch5.sourceforge.net
[EBL] "EBLearn: Energy Based Learning, a C++ Machine Learning

Library". http://eblearn.sourceforge.net/

[gpumat] "GPUmat: GPU toolbox for MATLAB". http://gp-you.org
[Ecu] P. L’Ecuyer, F. Blouin, and R. Couture. "A Search for Good

Multiple Recursive Generators". ACM Transactions on Model-
ing and Computer Simulation, 3:87-98, 1993.

http://www.deeplearning.net/software/theano
http://leon.bottou.org/papers/bottou-98x
http://code.google.com/p/numexpr/
http://code.google.com/p/numexpr/
http://www.cython.org/
http://docs.scipy.org/doc/scipy/reference/tutorial/weave.html
http://docs.scipy.org/doc/scipy/reference/tutorial/weave.html
http://www.sympy.org/
http://www.netlib.org/blas
http://www.netlib.org/lapack/lug/index.html
http://deeplearning.net/tutorial/
http://github.com/pascanur/DeepLearningBenchmarks
http://github.com/pascanur/DeepLearningBenchmarks
http://torch5.sourceforge.net
http://eblearn.sourceforge.net/
http://gp-you.org

	Introduction
	Case Study: Logistic Regression
	Benchmarking Results
	What kinds of work does Theano support?
	Compilation by theano.function
	Canonicalization
	Stabilization
	Specialization
	Moving Computation to the GPU
	Code Generation

	Limitations and Future Work
	Conclusion
	Acknowledgements
	References

