40

PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Rebuilding the Hubble Exposure Time Calculator

Perry Greenfield™, Ivo Busko*, Rosa Diaz*, Vicki Laidler*, Todd Miller*, Mark Sienkiewicz*, Megan Sosey

X

Abstract—An Exposure Time Calculator (ETC) is an invaluable web tool for
astronomers wishing to submit proposals to use the Hubble Space Telescope
(HST). It provide a means of estimating how much telescope time will be needed
to observe a specified source to the required accuracy. The current HST ETC
was written in Java and has been used for several proposing cycles, but for
various reasons has become difficult to maintain and keep reliable. Last year we
decided a complete rewrite—in Python, of course—was needed and began an
intensive effort to develop a well-tested replacement before the next proposing
cycle this year.

This paper will explain what the ETC does and outline the challenges
involved in developing a new implementation that clearly demonstrates that it
gets the right answers and meet the needed level of reliability (astronomers
get cranky when the calculator stops working on the day before the proposal
deadline). The new ETC must be flexible enough to enable quick updates for
new features and accommodate changing data about HST instruments. The
architecture of the new system will allow Python-savvy astronomers to use the
calculation engine directly for batch processing or science exploration.

Testing is a very large component of this effort, and we discuss how we use
existing test cases, as well as new systematic test generators to properly explore
parameter space for doing test comparisons, and a locally developed test
management system to monitor and efficiently analyze thousands of complex
test cases.

Index Terms—astronomy, telescope, Java, NASA

Introduction

Observing time on the Hubble Space Telescope (HST) is quite
valuable. One orbit of observing time (typically 45 or fewer min-
utes of on-target time) costs on the order of $100K. Understand-
ably, no one would like to waste that. As a result, understanding
how much time is needed to accomplish the planned science is
important. Asking for too little or too much will result in wasted
telescope resources. Hence, the need for exposure time calculators.

ETCs are used to answer important questions such as: how
long must one observe to achieve a desired signal-to-noise ratio,
or what signal-to-noise ratio can one expect for a planned observa-
tion? Computing these quantities requires specifying many input
parameters. These fall into few basic categories.

o What instrument will be used? What kind of observing
mode (e.g., imaging, spectroscopy, coronography, or tar-
get acquisition). What filters or gratings? What detector
parameters?

« Corresponding author: perry@stsci.edu
1 Space Telescope Science Institute

Copyright© 2010 Perry Greenfield et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

o What kind of source? In particular, what are the spectral
details of the source. Any dust extinction or redshifts
involved?

« How bright is the source? How is the brightness to be
specified?

« How much area around an image or spectral feature do
you plan to use to extract signal? Is it a point source or is
it extended?

o What kinds of sky background levels do you expect?

All of these choices affect the answer. Some of them involve
many possible options.

In the past, peak ETC request rates averaged 10 calculations
per minute. Although much computation is involved for each
request, the request rate is never terribly high.

History

Despite the clear utility of ETCs they were not part of the original
HST software plan, and it was several years before they were
officially supported. A number of precursors arose from essentially
grass-roots efforts. By the late 1990s web-based CGI ETCs,
most written in C, had begun appearing for some of the HST
instruments. Around 2000 an effort to provide an integrated GUI-
based proposing environment was started. Since ETCs share many
of the input parameters with the proposing tools, it was believed
that it made sense to integrate these tools into one GUI application,
and a large effort was begun to do just that. It was based on a
prototype application developed in Java by NASA (The Science
Expert Assistant [Gro00]) and became the Astronomers Proposal
Tool (APT, http://apt.stsci.edu).

Despite the original intent to develop an integrated application,
it was eventually judged that a web-based interface was much
more important, and at that point the ETC functionality began a
voyage out of the APT GUI and eventually became an entirely
separate application again. In the process, it had become much
more complicated because of the intrinsic complexity of the design
driven by the GUI interface. Over time much of the GUI heritage
was removed, but it still had many lingering effects on the code
and its design.

The addition of support for more instruments and modes,
along with pressure to meet proposal deadlines, led to increasing
complexity and inconsistencies, particularly with regard to testing
and installations. Unrealized to many, it was quickly becoming
unmaintainable. For the Cycle 16 proposal period (HST runs a
roughly annual proposal cycle), it worked reasonably well and was
quite reliable. That all changed in Cycle 17, where we experienced
server hangs approximately every 5 minutes when under peak
load. Many months of work to improve the reliability of the server

mailto:perry@stsci.edu
http://apt.stsci.edu

REBUILDING THE HUBBLE EXPOSURE TIME CALCULATOR

actually ended up with worse reliability. Even worse, the cycle of
making a change, and then delivering and testing the change could
take weeks or months leading to an unacceptably long iteration
cycle.

At this point an evaluation was made of the underlying
problems. These consisted of:

o Large code base. The number of Java lines of
code had grown to over 130K and was viewed as
unnecessarily complex.

« Database inflexibility. Information was being
stored in it that made it impossible to run more
than one instance or version of an ETC on a
given machine, leading to testing and installation
complications.

o Lack of automated build and testing. Installations
involved many manual, context-dependent steps

o It was difficult to run tests and to examine results.

o Tests were represented in many different formats
and require much massaging by the software to
run.

e Test results varied from one system to another
because of database issues.

o Lack of tests of javascript functionality.

¢ Resource leaks could hang server.

« Uncaught exceptions would hang server.

o Instrument parameters located in many different
locations in different kinds of files.

Rebuilding

Rather than try to fix these with the existing code base, we decided
to re-implement the ETCs in Python. This was partly because we
(Science Software Branch) write relatively little software in Java
now and have comparatively little expertise in it, Additionally, one
of the key tools used by the ETC (pysynphot [LaiO8]) is written
in Python, so interactions with the ETC would be simplified.
Rewriting the entire code base solely in Python also dramatically
decreased the overall length of the code.

A rewrite was begun in April 2009 with a proof of concept
computational prototype. After approval to go ahead in June, a
major effort began to design and implement a new system. The
new design had a number of requirements it had to meet:

e One-step install

« Ability to support multiple installations on the same com-
puter

o Consistent test scheme

« Nightly regression testing

« Separation of web and compute functionality

« Ability to script ETC calculations from Python without a
web server

o Use of standard Apache/Database server schemes to han-
dle failover and load balancing

« Simple database structure

« Concentrate instrument information in one place

o Use automatic test generation for better parameter space
coverage

« No XML

e No cached results

« It had to be ready for Cycle 19 proposal preparation

« Minimal changes to the user interface

41

« Dispense with interactive form features that weren’t work-
ing well in the old ETCs

Django was used for the web framework and user interface.
Our use of its features is fairly light, but even so, it made the web
side of the system fairly easy. Taking a lesson from the past ETC,
we made the use of Django’s database as simple as possible. One
goal was to minimize the need to change the database schemas
during operations. Since ETCs take many parameters for the
sources and the instruments, there are many potential fields for
a database, and it is likely that many of these would change or be
added. Yet there is rarely any need to query the database for values
of these fields. For those occasions, it would probably be best to
specially create a new database for such queries. All the input and
output information is encapsulated in a string which is then stored
in the database.

Validation Testing

The validation of the new ETCs is simpler in one aspect: we only
need match the results of the previous ETC, even if we believe
the previous results are incorrect. Any identified discrepancies
believed to be errors in the original code were identified as such
and noted for later work. If there is time for the instrument groups
to address the issue, waivers for differences can be obtained.

It might seem counter-intuitive to use this approach, but it
works well in our environment. The software developers cannot
always authoritatively answer scientific questions, so we often
rely on the appropriate instrument group. But they are not always
available to answer our questions quickly due to other priorities.

By using the old ETC as a reference, we can remove the
instrument group from our work flow. This reduces their workload,
because they are not directly involved in the new development. As
software developers, it reduces our cycle time to test a new feature:
Instead of asking a scientist to manually perform a detailed
analysis of a result, we can simply compare it to the same result
from a system that has previously been accepted as correct.

Our target for the maximum difference was generally 1%,
though we were permitted to allow differences as much as 5%
from the HST project if helpful for meeting the schedule.

On the other hand, migrating the existing tests proved more
work than expected because of the many forms such tests took,
and the many issues in determining the proper mapping of test
parameters to the old and new ETCs. The typical test migration
process was to start with custom code to handle any special cases
for parameter migration, run a batch test case migration, run the
tests, and from the errors, fix migration errors and iterate until all
remaining errors were purely computational issues.

The reference results from the old ETC were obtained by
running it through its web interface using the mechanize module.
The most important information on the result was the ID of the
request, which was then used to retrieve the very extensive log
files that were generated on the server side which contained the
values of the final results and many intermediate values. These
also proved invaluable in tracking down where results diverged
between the old and the new.

The old ETC had tests in two basic forms (with many varia-
tions in details). Some appeared as XML files with one test per
file. Others as CSV files, with one test per row. In both cases
most were generated manually. We desired a more systematic
way of testing parameter space, so a special module was written
to generate test cases automatically. In this way we can define

42

Daily (2010-05- count pass fail error
13)

8705 7234 865 606
engine/* 7068 5794 668 606
server/* 1626 1429 197 0
web/* 11 11 0 0
Engine Only count pass fail error

7068 5794 668 606
engine.* 2 2 0 0
migrated/* 6963 5690 668 605
spider/* 103 102 0 1

TABLE 1: The report of test results from one night’s test run. Count
refers to the number of tests in that category; pass refers to the
number that run and match the expected results to within the specified
threshold; fail refers to the number of tests that produce results but
do not match all results to the required threshold; and error indicates
the number of tests that fail to produce all necessary results.

whole sets of tests by providing specific lists of parameter values
for specific parameters and construct combination of parameter
sets by using tools to generate specific test sets by varying one
parameter at a time (akin to traveling along parameter axes), or by
generating all combinations (filling the parameter space with a grid
of points). One can combine subspaces of parameters in analogous
ways. There is a mechanism to make concatenating disjoint sets
of parameters that correspond to radio button subsets easy.

We have nightly regression tests running more than 8000 cases
a night. Initially the reference results are those taken from the old
ETC. Once commissioning is complete, the reference results will
be a snapshot of the new ETC results to ensure that future software
updates do not change the results in unexpected ways. Table 1
shows an example of a single night’s run.

Current Status

To date all of the supported instrument modes have been im-
plemented as far as the calculation engine goes. Most reporting
and plotting functionality is in place. Nearly all migrated tests
run, though there are still discrepancies being resolved for a few
modes. These discrepancies are expected to be understood within
a month. The new ETC has approximately 22K lines of code in
the web and engine components. A further 5K lines of code were
written to support the testing effort. This includes conversion of
test data, running tests of the old ETC, comparing results, etc. The
new ETC uses a similar form interface, and generates output pages
similar (though not identical) to that of the previous ETC.

Figure 1 shows an example of an input form. Figure 2 shows
the results obtained from that form, and Figure 3 shows plots of
related information associated with those results.

Plans

The ETC must be operational by December 2010. Future activities
include web security analysis, load testing, through-the-browser
tests (manual and automatic), and documentation.

This ETC framework will be the basis of the James Webb
Space Telescope ETCs. JWST is expected to be launched in 2015.
Work has begun on understanding what features will be needed
for JWST that don’t already exist for the HST ETCs. Besides
providing the instrument performance information, it is already

PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

ETC Version 06-01 ACS Imaging ETC

» pyets 0w

ACS imaging chreration
- p,;,n;mrnm L
« o e

the appropeiate bighlighted words, You

ETC Help

Please insure that you have read the current release notes before submitting any ETC cakculations.

o User's Guie
- Source Model)
« Release Nowzs.

ACSETCs

1. Select one Camera and the associated Filler(si:
Detrctar

Filter Wheel 1 Filker Wheed 2

@) (oo
B (o

* [miging.

@l

- Rame Filier

« Coronographic lmagisg
(Unavailzble pos: SMA)

= Ceronograghic Ramp Filier
(Unaveslzble post SMA)

Settimg CRSPLIT
COS ETCs G [

= Spcomscomy.

- Specumecopy Turset Accisition 2. Specify the exposure parameters:
* Imiging.

» Emagins Temet Acquisiion

= (0 Team ETC Help and Relese Notes

NICMOS ETCs

fat will e used fr the S/N rafio caleulstion:

RSy
(Unavailsble post SMA)
) oy ®
(Unavailsble post SMA) @
STIS ETCs
o [magime M
* Spectroscony Ml
= Tanzes Accuisition B
WFC3 ETCs

. The range of supparted valuss for this aption is
ed by the PSF and target specirum.

- R Imaging

» UVIS Ioaging

- [Specirsecopy

= UVIS Spectroscopy
Previous results

= Previous caleuligion pesulés

gth o pare 2 ahave

1o the Enput spectrum (optiomall: Yot emission ner are adied after the spectrums has beer renarmalized and

Line Center ~ FWHM TInegrated Plux

i i

ferglemmle)

ivacmum)

Fig. 1: Part of the input form for the Advanced Camera for Surveys.
This shows most of the choices available to users.

REBUILDING THE HUBBLE EXPOSURE TIME CALCULATOR

43

ETC Request ID: ACS.im.000312
DEBUG MODE: DICT

Requested Signal/Noise Ratio = 10.000

gives: Time = 0.0307 seconds

Time to Saturation (for a single exposure) = 21.39 seconds

optimum SNR = 19.0478

Exposure time calculation HAD WARNINGS.

WARNING MESSAGE: Result of the calculation is less than the minimum exposure time
for this detector: value = 0.0307088, limit = 0.500000

Detailed Information Count rate Total counts Associated noise
(e-/s) (e) (e-)
Counts (circle with radius 0.1635 arcsec)
Source 14,801.604 454.539 21.320
Background 2.099 0.064 0.254
Sky 1.882 0.05779 0.2404
Dark Current 0.218 0.00668 0.0817
Read out 40.14
Total in selected region 14,803.704 454.604 45454
Brightest Pixel 3,959.042 60.789
Count rate
Source (arcsech-2) 18,502.005
Sky Background (infinitely large region) 22.006
Extraction region
Fraction of flux 0.800
Sky Extraction Area (pixels) 34971
Fraction of flux in brightest pixel 0.214
Effective Wavelength 539758 A

Target (pysynphot target expression)
Renormalized to rn(unit(1..flam),band(johnson,v),15.000000,vegamag)

Instrument name: ACS
Mode: Imaging

Sky Background:
Earth Shine:
Zodiacal Light:
Air Glow:

Coronography:
Detector:
Bandpass:
Gain:

CR Split:

False
WFC
F555W
2.0

2

Selected background:

Average
Average
Average

Plots

("source spectrum) f'Throughpuﬂ
—

These results were computed using: ETC version 06-01

Fig. 2: The results page shown corresponding to the input parameters
shown in Figure 1.

clear that much more sophisticated sky background models will
be needed to be developed to determine which of several detector
operations modes will yield the best signal-to-noise ratio.
Furthermore, JWST has requirements to schedule observations
at times that do not degrade signal-to-noise too much (due to
varying sky background levels that depend on the time of year
the target is observed). As such, the scheduling system will need
to obtain this information from the ETC. There is also a desire
for the proposal preparation tool to be able to use the ETC to
determine the optimal detector operating mode for each exposure.
We will be importing all the data regarding instrument perfor-

ETC Request ID: ACS.im.000312

Back to results page

Throughput for instrument configuration: ACS,WFC1,F555W
0.40 T T T

035

030k il

0.25 i

Throughput
o
]
o
T

(975 [¢ | SRS S

0.05F-ootm it

0.0 H I i L I H H
3%00 4000 5000 6000 7000 8000 9000 1000011000
Wavelength (4)

‘Wavelength Throughput
Log (=] =]
Axis Min
Axis Max []
Plot size 510 450

O Display entire wavelength range Re-plot

Plots

("Source spectrum) (Throughput)

Fig. 3: One of the plot options for the results shown in Figure 2. In this
case the instrument throughput is shown as a function of wavelength
for the selected observing mode.

mance as it relates to ETC calculations into our Calibration Data
tracking system (not possible with the older ETC because of the
dispersed nature of the data).

The ETC also provides tables of results to the observatory
scheduling system which helps detect when bright sources may
pose a health and safety hazard to the instrument in use.

The ETC computational engine will be made available with an
Open Source License (BSD/MIT) when the production version is
completed.

Conclusions

The rewrite has resulted in a far smaller and consistent code base.
More importantly, we can test on the same system that is used
operationally. The cycle of building, delivering, and testing the
software now can be done in hours instead of weeks giving us far
greater ability to fix problems and add enhancements. Django, and
our pre-existing tools (matplotlib, pysynphot) greatly facilitated
this effort. We will be in a much better position to adapt to JWST
ETC requirements.

There were certainly general lessons to be learned from this
experience and other work we’ve done. In coming up with this
list, we are generalizing about some issues that didn’t necessarily
affect this project. Among them:

o There is a big difference between scientific
programming as most scientists do it, and what
is needed for operational purposes. Table 2 con-
trasts some of the differences in approach that

44

Scientist

Ad-hoc changes to
handle various needs

Operations
One code base to handle
all needed alternatives

Corner cases often ig-
nored

Special cases given more
attention

Much more attention to
user interface

Little attention to user
interface

Minimal error check- Extensive error checking
ing

No version control Version Control

No unit or regression Extensive tests

tests

More extensive documen-
tation

Minimal documenta-
tion

Refactoring rare Hopefully not...

TABLE 2: Comparison of attributes of software developed by re-
searchers to those of software developed for widespread or opera-
tional use.

one usually sees. This isn’t to say that scientists
couldn’t benefit from some of the approaches
and tools for operational software (often they
could), it’s just that that they usually don’t use
them. These differences result in important man-
agement issues discussed later.

o Databases are a double-edged sword. They
clearly have important uses, particularly for web
applications. On the other hand, they introduce
a number of strong constraints on flexibility and
ease of distribution. Think carefully about what
you use them for and when you really need it.

« Resist temptation to continually put new features
over internal coherence. Refactor when needed.

¢ Routine builds and testing are extremely im-
portant. The installation process needs to be as
automatic as possible.

o Test on the same machine (or as identical an en-
vironment as possible) to be used for operations
(at least a subset of the full tests).

¢ No matter how much analysis you do up front
about the design, you probably won’t get it right.
Be ready to redo it when you face the real world.

o It has to work for all cases, not just the common
ones. Even crazy input parameters must at least
give a useful error message that will help the
user identify the problem.

Complicating the interface between the astronomers and devel-
opers is the fact that many astronomers have written programs for
their research purposes, but have never had to write programs for
distribution or operational settings, and have never had to support
software they have written. As a result many astronomers do not
appreciate the effort required to produce reliable and distributable
software that can be used by individuals or complex systems.
That effort is typically up to an order of magnitude more than
needed to get software that works for their particular need. It is not
unusual to see astronomers become frustrated at the effort required
for implementation when they think they could have done it in
one fifth the time. As important as any programming, software
engineering, or management technique, is the management of

PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

the expectations of such customers, and resistance against such
expectations driving software into an unmaintainable state.

REFERENCES

[Gro00] S. R. Grosvenor, C. Burkhardt, A. Koratkar, M. Fishman, K. R. Wolf,
J. E. Jones, L. Ruley. The Scientist’s Expert Assistant Demonstration,
Astronomical Data Analysis Software and Systems, IV, 216, 695-698.
V. Laidler, P. Greenfield, I. Busko, R. Jedrzejewski. Pysynphot: A
Python Re-Implementation of a Legacy App in Astronomy, Proceed-
ings of the 7th Python in Science Conference, 2008, 36-38.

[Lai08]

	Introduction
	History
	Rebuilding
	Validation Testing
	Current Status
	Plans
	Conclusions
	References

