
PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010) 45

Using Python with Smoke and JWST Mirrors

Warren J. Hack‡∗, Perry Greenfield‡, Babak Saif‡, Bente Eegholm‡

F

Abstract—We will describe how the Space Telescope Science Institute is using
Python in support of the next large space telescope, the James Webb Space
Telescope (JWST). We will briefly describe the 6.5 meter segmented-mirror
infra-red telescope, currently planned for a 2014 launch, and its science goals.
Our experience with Python has already been employed to study the variation
of the mirror and instrument support structures during cyrogenic cool-down from
ambient temperatures to 30 Kelvin with accuracies better than 10 nanometers
using a speckle interferometer. Python was used to monitor, process (initially
in near real-time) and analyze over 15 TB of data collected. We are currently
planning a metrology test that will collect 10 TB of data in 7 minutes. We will
discuss the advantages of using Python for each of these projects.

Index Terms—astronomy, telescope, NASA, measure, real-time, big data

Introduction

The James Webb Space Telescope (JWST) will be NASA’s next
Great Observatory. It will be an infrared-optimized telescope with
a 6.5m primary mirror made up of 18-separate segments which
will be launched no sooner than 2015 by an Ariane 5 into an orbit
at the second Langragian (L2) point. This orbital position, about
1.5 million km from the Earth, keeps the Sun behind the Earth
at all times making it easier to shield the telescope and keep it
cool. The Hubble Space Telescope (HST), by comparison, is a
telescope in a 570km high orbit with a solid 2.4m primary mirror
optimized for UV and optical observations. A lot of effort will go
into building and testing JWST, as it did with HST, to get it to work
as desired and as reliably as possible once launched. However,
unlike HST, there will not be any possibility of performing a repair
mission. The primary structure of JWST will be made of carbon-
fiber composites in order to be lightweight enough for launch
while still providing the necessary strength and rigidity to support
such a large set of mirrors and instrument packages. The primary
mirror itself will be composed of 18 separate hexagonal segments.
These segments will be mounted onto a backplane with actuators
that will allow the segments to be aligned to match one common
optical surface that represents a single mirror with a diameter of
6.5m.

A test article, the Backplane Stability Test Article (BSTA), was
manufactured using the same materials, techniques, and design
principles being developed for constructing the entire telescope.
Extensive thermal-vacuum chamber testing was conducted on the

* Corresponding author: hack@stsci.edu
‡ Space Telescope Science Institute

Copyright © 2010 Warren J. Hack et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Fig. 1: An Ariane 5 launch similar to the launcher that will be used
to place JWST into orbit about the L2 point, the orbital position that
keeps the Sun behind the Earth all the time as viewed from JWST.
Photo: ESA.

BSTA to verify that it will meet the stringent requirements neces-
sary for JWST to work; specifically, that it will remain stable to
within 38nm over the orbital operational temperature range of 30-
60K. These tests required the development of specialized software
to collect and process all the necessary data. Such software was
written in Python and is described in the following sections.

Testing the BSTA

NASA required a test that demonstrated the stability of this engi-
neering article and which verified that the design and construction

mailto:hack@stsci.edu


46 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Fig. 2: Engineers move the Backplane Stability Test Article (BSTA)
into position for the thermal vacuum test. This test piece represents
a section of the backplane that will support only 3 of the 18 mirror
segments of the primary mirror for JWST.

techniques will work to meet the requirements of the telescope:
namely, that it will remain stable to within 68nm from 30-50K
(-405 to -370 ◦F). They also wished to track the structural changes
from ambient (~295K) to cryogenic temperatures (~30K) in order
to better understand the accuracy of their structural models. The
primary test equipment, a special interferometer, did have software
to take measurements, but that software was not suited for the
needs of this test. This required the development of specialized
software to support the test.

Normal interferometry is used with optical elements where
the reflected or transmitted laser signal remains spatially coherent
over large areas. Speckle interferometry is intended to be used
with non- optical surfaces, that is, surfaces that are optically rough
on very small spatial scales. When illuminated by a laser, such
surfaces typically show "speckles" that result from random points
where the reflections from the surface are relatively coherent (as
compared to the darker areas where the reflections mostly cancel
out through interference). While the phase of speckles varies
randomly from one spot on the article to the next, and thus cannot
be used for any spatial comparison from a single image, how the
phase for a specific speckle changes, does indicate how the surface
is moving relative to the laser; in this way speckle interferometers
can be used to determine how surfaces are changing in time. The
BSTA, although intended to hold JWST mirror segments, has
no optical surfaces of its own. In order to understand how the
structure changed with temperature it was necessary to use the
Electronic Speckle Pattern Interferometer (ESPI).

The ESPI laser illuminates the surface of the BSTA, then
recombines the reflected signal with a reference beam split from
the same laser pulse, to create an interferometric map of the
surface speckles. As the structure moves, the speckles change
phase reflecting the change in interference between the incident
and reference laser pulses. However, those phases cycle from −π

to π and back as the surface continues to move. This required
the use of phase unwrapping across the surface, spatial phase
unwrapping, using an algorithm developed by the manufacturers
of the ESPI.

As the surface tilted during the test, it produced fringes where

Fig. 3: Schematic of ESPI showing how the ESPI measures the change
in the object due to thermal or mechanical stress by tracking the
speckles’ phase change on the surface.

Fig. 4: Schematic showing how bulk tilt introduces multiple 2π

variations across the structure and how it gets corrected in processing,
allowing for relative variations to be measured across the surface as
described in "Testing the BSTA".

the phases across the structure would transition from π to −π .
This tilt needed to be removed in order to allow us to measure the
relative changes from one region of the structure to another.

Since the measured phase is ambiguous by multiples of 2π ,
special techniques are required to remove these ambiguities. One
is to presume that continuous surfaces have continuous phase, and
any discontinuities on continuous surfaces are due to phase wrap-
ping. Thus such discontinuities can be "unwrapped" to produce
spatially continuous phase variations. Another presumption is that
even though the general position and tilt of the entire structure
may change greatly from one exposure to another, the relative
phase shape of the structure will not change rapidly in time once
bulk tilt and displacement are removed.

The following figures show the consequent phase wraps when
a surface has any significant tilt. One can perform spatial phase
unwrapping on spatially contiguous sections. Gross tilts are fit
to the largest contiguous sections, and then the average tilt is
removed (as well as the average displacement). However, there are
areas of interest (the mirror pad supports) which are discontiguous
and as a result possibly several factors of 2π offset in reality as
a result of the tilt, and thus improperly corrected when tilts are
removed. Since these areas are assumed to change slowly in time,
temporal phase unwrapping is applied to these areas.

The entire ESPI system, hardware and software, was built by
4D Technologies under the guidance of one of our team members,



USING PYTHON WITH SMOKE AND JWST MIRRORS 47

Fig. 5: A sample ESPI image illustrating the fringes that build up
due to bulk tilts. These fringes get "unwrapped" to produce spatially
contiguous phase variations across the surface of the object.

Babak. The commercial software from 4D Technologies that came
with the ESPI hardware had algorithms for performing the spatial
unwrapping using a GUI interface for interactive operation. This
interface, though, was unable to support the needs of the test;
namely, that it would need to continuously take 5 images/second
for 24 hours/day for up to 6 weeks at a time. Thus, we needed to
write our own specialized software to support the test.

Python to the Rescue

Many of the requirements for any software that needed to be
written were unknowable, not just unknown, for a number of
reasons. No test had ever been conducted like this before, so there
was no experience to draw upon to foresee what problems may
arise during the test. Concerns ranged from whether the laser
output could be maintained at a stable level over such a long
period of time given that the output was dependent on the ambient
temperature of the test facility. This drove the requirement to
monitor in near-real-time the laser intensity as measured from
the observations themselves. These results were compared with
occasional checks of the laser output using burn paper in the laser
path, creating a bit of smoke in the process, to insure that the
monitoring was accurately tracking the health of the laser.

We also had no certainty about what phase-unwrapping al-
gorithms were going to work until the test actually started. Test
conditions such as residual vibrations in the test rig could seriously
impact our ability to measure the surface changes we were after
and potentially require changes to how the phase-unwrapping al-
gorithms needed to be applied. It was only after the test started that
these effects would be known, requiring the ability to update the
data acquisition and processing code on the fly to accommodate
the quality of the test data.

Finally, the code had to be easily adaptable and capable of
handling massive amounts of data in as close to real time as
possible! Python offered the best possible choice for addressing

Fig. 6: This snapshot of the ESPI Monitoring GUI in operation
illustrates the near-real-time monitoring plots and image display used
to track the health of the laser and quality of the data and subsequent
processing.

these challenges in supporting this test. It allowed us to develop
code rapidly to adjust for the test conditions during the test
with minimal impact. The plotting and array-handling libraries,
specifically matplotlib and numpy, proved robust and fast enough
to keep up with the near-real-time operations. The commercial
software that came with ESPI hardware had also been written in
Python and C, so Python allowed us to interface to that code to run
our own custom processing code using the commercial algorithms
for data acquisition and phase-unwrapping.

Our data acquisition system used custom code to automate
the operation of the commercial software used to interface with
the ESPI camera. This module was run under the commercial
software’s own Python environment in order to most easily access
their camera’s API and stored the images in real time on a storage
server. The remainder of the processing required the use of the
Python API to the commercial software’s functions to perform the
phase unwrapping. As a result of this extended processing, the
remainder of the code could only process and monitor the results
of every 5th image taken during the test. This monitoring was
performed using a custom Tkinter GUI which provided plots of
a couple of key processing results, and an image display of the
latest processed image, all using matplotlib.

This data processing pipeline was set up using 4 PCs and
a 15Tb storage server. A separate PC was dedicated to each
of the processing steps; namely, data acquisition, initial phase
unwrapping, measuring of regions, and monitoring of the pro-
cessing. This distributed system was required in order to support
the data acquisition rate for the test: 5 1004x996 pixel images per
second for 24 hours a day for 6 uninterrupted weeks. A total of
approximately 11Tb of raw data was eventually acquired during
the test. These raw observations were later reprocessed several
times using the original set of 4 PCs from the test as well as
additional PCs all running simultaneously to refine the results in
much less than real time using all the lessons learned while the test



48 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Fig. 7: Mosaic of sample processed measurements of the BSTA as
the temperature changed from 40K to 60K, matching the operational
temperature range of JWST. This mosaic illustrates how the structure
was measured to change as the temperature changed.

was in progress. This reprocessing effort represented the simplest
possible case of parallel processing, where separate sets of data
could be processed independently on separate systems. No other
use of parallel processing techniques was implemented for the test
or subsequent reprocessing.

Results

BSTA data analysis measured the slope of the data, expansion
due to temperature, with an RMS of 25.2nm/K, well within the
36.8nm/K requirement for meeting NASA’s goals. These mea-
surements were based on calibrations which had RMS values less
than 5 nm around the measured slope.

Python allowed for rapid development of a near-real-time
processing pipeline spread across multiple systems which we were
able to revise quickly as needed during the test. The fact that
the commercial software was written using Python also allowed
us to interface with it to use their C-based algorithms for data
acquisition and phase-unwrapping. Equally importantly, we were
able to implement changes in the processing algorithms while the
test was underway to address aspects of the data quality that were
not expected when the test began. This software, though, can not
be distributed as it was designed explicitly to support the JWST
tests alone. The success of this test, though, resulted in establishing
the ESPI as a resource for later tests, and this software will be used
as the framework for supporting additional tests of JWST in the
coming years.

Future Tests

The development of the software for the ESPI tests validated its
utility to measure the shape of structures to nanometer accuracies.
Additional testing of the actual structure built for use in supporting
all 18 segments of the primary mirror for JWST will require this
level of accuracy, albeit under very different testing conditions.
A new test to map the actual positions and orientations of each
of the mirror segments will use an upgraded version of the ESPI
to monitor the mirror segments after they have been mounted on
the backplane of the telescope. This test will validate that the
actuators controlling the position of each mirror segment can be

controlled sufficiently to align all the segments to create a single
optical surface.

This test will require adjusting the mirror positions, then taking
up to a thousand images a second for a short period of time to
verify the newly updated positions. Such a test can easily generate
10Tb of imaging data in only 7 minutes. The Python software we
developed for previous ESPI tests will be used as the basis for
the data acquisition and data processing systems for this new test,
including synthesizing data from additional measuring devices.
The only way to keep up with this test will be to use multiple
systems processing data in parallel to process the data quickly
enough to allow the test to proceed as needed, much as we did
with the reprocessing of the original ESPI data. In short, Python’s
rapid development capabilities, fast array handling, and ability to
run the same code on multiple systems in parallel will be critical
to the success of this new test.


	Introduction
	Testing the BSTA
	Python to the Rescue
	Results
	Future Tests

