
PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010) 85

Audio-Visual Speech Recognition using SciPy

Helge Reikeras∗, Ben Herbst‡, Johan du Preez‡, Herman Engelbrecht‡

F

Abstract—In audio-visual automatic speech recognition (AVASR) both acoustic
and visual modalities of speech are used to identify what a person is saying.
In this paper we propose a basic AVASR system implemented using SciPy, an
open source Python library for scientific computing. AVASR research draws from
the fields of signal processing, computer vision and machine learning, all of
which are active fields of development in the SciPy community. As such, AVASR
researchers using SciPy are able to benefit from a wide range of tools available
in SciPy.

The performance of the system is tested using the Clemson University
audio-visual experiments (CUAVE) database. We find that visual speech infor-
mation is in itself not sufficient for automatic speech recognition. However, by
integrating visual and acoustic speech information we are able to obtain better
performance than what is possible with audio-only ASR.

Index Terms—speech recognition, machine learning, computer vision, signal
processing

Introduction

Motivated by the multi-modal manner humans perceive their envi-
ronment, research in Audio-Visual Automatic Speech Recognition
(AVASR) focuses on the integration of acoustic and visual speech
information with the purpose of improving accuracy and robust-
ness of speech recognition systems. AVASR is in general expected
to perform better than audio-only automatic speech recognition
(ASR), especially so in noisy environments as the visual channel
is not affected by acoustic noise.

Functional requirements for an AVASR system include acous-
tic and visual feature extraction, probabilistic model learning and
classification.

In this paper we propose a basic AVASR system implemented
using SciPy. In the proposed system mel-frequency cepstrum coef-
ficients (MFCCs) and active appearance model (AAM) parameters
are used as acoustic and visual features, respectively. Gaussian
mixture models are used to learn the distributions of the feature
vectors given a particular class such as a word or a phoneme.
We present two alternatives for learning the GMMs, expectation
maximization (EM) and variational Bayesian (VB) inference.

The performance of the system is tested using the CUAVE
database. The performance is evaluated by calculating the mis-
classification rate of the system on a separate test data data. We
find that visual speech information is in itself not sufficient for
automatic speech recognition. However, by integrating visual and

* Corresponding author: helge@ml.sun.ac.za
‡ Stellenbosch University

Copyright © 2010 Helge Reikeras et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

acoustic speech we are able to obtain better performance than what
is possible with audio-only ASR.

Feature extraction

Acoustic speech

MFCCs are the standard acoustic features used in most modern
speech recognition systems. In [Dav80] MFCCs are shown ex-
perimentally to give better recognition accuracy than alternative
parametric representations.

MFCCs are calculated as the cosine transform of the logarithm
of the short-term energy spectrum of the signal expressed on
the mel-frequency scale. The result is a set of coefficients that
approximates the way the human auditory system perceives sound.

MFCCs may be used directly as acoustic features in an AVASR
system. In this case the dimensionality of the feature vectors
equals the number of MFCCs computed. Alternatively, velocity
and acceleration information may be included by appending first
and second order temporal differences to the feature vectors.

The total number of feature vectors obtained from an audio
sample depends on the duration and sample rate of the original
sample and the size of the window that is used in calculating the
cepstrum (a windowed Fourier transform).

MFCCs are available in the
scikits.talkbox.features.mfcc. The default number
of MFCCs computed is thirteen.

Example usage:
from scikits.audiolab import wavread
from scikits.talkbox.features import mfcc

data: raw audio data
fs: sample rate
data, fs = wavread('sample.wav')[:2]

ceps: cepstral cofficients
ceps = mfcc(input, fs=fs)[0]

Figure 1 shows the original audio sample and mel-frequency
cepstrum for the word “zero”.

Visual speech

While acoustic speech features can be extracted through a se-
quence of transformations applied to the input audio signal,
extracting visual speech features is in general more complicated.
The visual information relevant to speech is mostly contained in
the motion of visible articulators such as lips, tongue and jaw. In
order to extract this information from a sequence of video frames
it is advantageous to track the complete motion of the face and
facial features.

AAM [Coo98] fitting is an efficient and robust method for
tracking the motion of deformable objects in a video sequence.

mailto:helge@ml.sun.ac.za

86 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

3.5

3.0

2.5

2.0

1.5

1.0
M

el
-fr

eq
ue

nc
y

ce
ps

tr
um

0.0 0.5 1.0 1.5 2.0 2.5
Time (sec)

0.4

0.2

0.0

0.2

0.4

Am
pl

itu
de

Fig. 1: Acoustic feature extraction from an audio sample of the
word “zero”. Mel-frequency cepstrum (top) and original audio sample
(bottom).

AAMs model variations in shape and texture of the object of
interest. To build an AAM it is necessary to provide sample
images with the shape of the object annotated. Hence, in contrast
to MFCCs, AAMs require prior training before being used for
tracking and feature extraction.

The shape of an appearance model is given by a set of (x,y)
coordinates represented in the form of a column vector

s = (x1,y1,x2,y2, . . . ,xn,yn)
T. (1)

The coordinates are relative to the coordinate frame of the image.
Shape variations are restricted to a base shape s0 plus a linear

combination of a set of N shape vectors

s = s0 +
N

∑
i=1

pisi (2)

where pi are called the shape parameters of the AAM.
The base shape and shape vectors are normally generated by

applying principal component analysis (PCA) to a set of manually
annotated training images. The base shape s0 is the mean of the
object annotations in the training set, and the shape vectors are
N singular vectors corresponding to the N largest singular values
of the data matrix (constructed from the training shapes). Figure
2 shows an example of a base mesh and the first three shape
vectors corresponding to the three largest singular values of the
data matrix.

The appearance of an AAM is defined with respect to the base
shape s0. As with shape, appearance variation is restricted to a base
appearance plus a linear combination of M appearance vectors

A(x) = A0 +
M

∑
i=1

λiAi(x) ∀x ∈ s0. (3)

To generate an appearance model, the training images are first
shape-normalized by warping each image onto the base mesh
using a piecewise affine transformation. Recall that two sets of
three corresponding points are sufficient for determining an affine
transformation. The shape mesh vertices are first triangulated. The
collection of corresponding triangles in two shapes meshes then
defines a piecewise affine transformation between the two shapes.

Fig. 2: Triangulated base shape s0 (top left), and first three shape vec-
tors p1 (top right), p2 (bottom left) and p3 (bottom right) represented
by arrows superimposed onto the triangulated base shape.

Fig. 3: Mean appearance A0 (top left) and first three appearance
images A1 (top right), A2 (bottom left) and A3 (bottom right).

The pixel values within each triangle in the training shape s are
warped onto the corresponding triangle in the base shape s0 using
the affine transformation defined by the two triangles.

The appearance model is generated from the shape-normalized
images using PCA. Figure 3 shows the base appearance and the
first three appearance images.

Tracking of an appearance in a sequence of images is per-
formed by minimizing the difference between the base model
appearance, and the input image warped onto the coordinate frame
of the AAM. For a given image I we minimize

argmin
λλλ ,p

∑
x∈s0

[
A0(x)+

M

∑
i=1

λiAi(X)− I(W(x;p))

]2

(4)

where p = {p1, . . . , pN} and λλλ = {λ1, . . . ,λN}. For the rest of the

AUDIO-VISUAL SPEECH RECOGNITION USING SCIPY 87

discussion of AAMs we assume that the variable x takes on the
image coordinates contained within the base mesh s0 as in (4).

In (4) we are looking for the optimal alignment of the input
image, warped backwards onto the frame of the base appearance
A0(x).

For simplicity we will limit the discussion to shape variation
and ignore any variation in texture. The derivation for the case
including texture variation is available in [Mat03]. Consequently
(4) now reduces to

argmin
p

∑
x
[A0(x)− I(W(x;p))]2. (5)

Solving (5) for p is a non-linear optimization problem. This is the
case even if W(x;p) is linear in p since the pixel values I(x) are
in general nonlinear in x.

The quantity that is minimized in (5) is the same as in the
classic Lucas-Kanade image alignment algorithm [Luc81]. In the
Lukas-Kanade algorithm the problem is first reformulated as

argmin
∆p

∑
x
[A0(X)− I(W(x;p+∆p))]2. (6)

This equation differs from (5) in that we are now optimizing with
respect to ∆p while assuming p is known. Given an initial estimate
of p we update with the value of ∆p that minimizes (6) to give

pnew = p+∆p.

This will necessarily decrease the value of (5) for the new value
of p. Replacing p with the updated value for pnew, this procedure
is iterated until convergence at which point p yields the (local)
optimal shape parameters for the input image I.

To solve (6) Taylor expansion is used [Bak01] which gives

argmin
∆p

∑
x

[
A0(W(x;p))− I(W(x;p))−∇I

∂W
∂p

∆p
]2

(7)

where ∇I is the gradient of the input image and ∂W/∂p is the
Jacobian of the warp evaluated at p.

The optimal solution to (7) is found by setting the partial
derivative with respect to ∆p equal to zero which gives

2∑
x

[
∇I

∂W
∂p

]T [
A0(x)− I(W(x))−∇I

∂W
∂p

∆p
]
= 0. (8)

Solving for ∆p we get

∆p = H−1
∑
x

[
∇I

∂W
∂p

]T

[A0(x)− I(W(x;p))] (9)

where H is the Gauss-Newton approximation to the Hessian
matrix given by

H = ∑
x

[
∇I

∂W
∂p

]T [
∇I

∂W
∂p

]
. (10)

For a motivation for the backwards warp and further details on
how to compute the piecewise linear affine warp and the Jacobian
see [Mat03].

A proper initialization of the shape parameters p is essential
for the first frame. For subsequent frames p may be initialized as
the optimal parameters from the previous frame.

The Lucas-Kanade algorithm is a Gauss-Newton gradient
descent algorithm. Gauss-Newton gradient descent is available in
scipy.optimize.fmin_ncg.

Example usage:

Fig. 4: AAM fitted to an image.

from scipy import empty
from scipy.optimize import fmin_ncg
from scikits.image.io import imread

NOTE: The AAM module is currently under development
import aam

Initialize AAM from visual speech training data
vs_aam = aam.AAM('./training_data/')

I = imread('face.jpg')

def error_image(p):
""" Compute error image given p """

Piecewise linear warp the image onto
the base AAM mesh
IW = vs_aam.pw_affine(I,p)

Return error image
return aam.A0-IW

def gradient_descent_images(p):
""" Compute gradient descent images given p """
...
return gradIW_dWdP

def hessian(p):
""" Compute hessian matrix """"
...
return H

Update p
p = fmin_ncg(f=error_image,

x0=p0,
fprime=gradient_descent_images,
fhess=hessian)

Figure 4 shows an AAM fitted to an input image. When tracking
motion in a video sequence an AAM is fitted to each frame using
the previous optimal fit as a starting point.

In [Bak01] the AAM fitting method described above is referred
to as “forwards-additive”.

As can be seen in Figure 2 the first two shape vectors
mainly correspond to the movement in the up-down and left-right
directions, respectively. As these components do not contain any
speech related information we can ignore the corresponding shape
parameters p1 and p2 when extracting visual speech features. The
remaining shape parameters, p3, . . . , pN , are used as visual features
in the AVASR system.

88 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Models for audio-visual speech recognition

Once acoustic and visual speech features have been extracted from
respective modalities, we learn probabilistic models for each of the
classes we need to discriminate between (e.g. words or phonemes).
The models are learned from manually labeled training data. We
require these models to generalize well; i.e. the models must be
able to correctly classify novel samples that was not present in the
training data.

Gaussian Mixture Models

Gaussian Mixture Models (GMMs) provide a powerful method for
modeling data distributions under the assumption that the data is
independent and identically distributed (i.i.d.). GMMs are defined
as a weighted sum of Gaussian probability distributions

p(x) =
K

∑
k=1

πkN (x|µµµk,ΣΣΣk) (11)

where πk is the weight, µµµk the mean, and ΣΣΣk the covariance matrix
of the kth mixture component.

Maximum likelihood

The log likelihood function of the GMM parameters πππ , µµµ and
ΣΣΣ given a set of D-dimensional observations X = {x1, . . . ,xN} is
given by

ln p(X|πππ,µµµ,ΣΣΣ) =
N

∑
n=1

ln

{
K

∑
k=1

πkN (xxxn|µµµk,ΣΣΣk)

}
. (12)

Note that the log likelihood is a function of the GMM parameters
πππ,µµµ and ΣΣΣ. In order to fit a GMM to the observed data we
maximize this likelihood with respect to the model parameters.

Expectation maximization

The Expectation Maximization (EM) algorithm [Bis07] is an effi-
cient iterative technique for optimizing the log likelihood function.
As its name suggests, EM is a two stage algorithm. The first (E or
expectation) step calculates the expectations for each data point
to belong to each of the mixture components. It is also often
expressed as the responsibility that the kth mixture component
takes for “explaining” the nth data point, and is given by

rnk =
πkN (xn|µµµk,ΣΣΣk)

∑
K
k=1 πkN (xn|µµµk,ΣΣΣk)

. (13)

Note that this is a “soft” assignment where each data point is
assigned to a given mixture component with a certain probability.
Once the responsibilities are available the model parameters are
updated (“M” or “maximization‘” step). The quantities

Nk =
N

∑
n=1

rnk (14)

x̄k =
N

∑
n=1

rnkxn (15)

Sk =
N

∑
n=1

rnk(xn− x̄k)(xn− x̄k)
T (16)

are first calculated. Finally the model parameters are updated as

π
new
k =

Nk

N
(17)

µµµ
new
k =

x̄k

Nk
(18)

ΣΣΣ
new
k =

Sk

Nk
. (19)

−20 −15 −10 −5 0 5 10 15 20
p3

−15

−10

−5

0

5

10

15

20

25

p 4

Fig. 5: Visual speech GMM of the word “zero” learned using EM
algorithm on two-dimensional feature vectors.

The EM algorithm in general only converges to a local
optimum of the log likelihood function. Thus, the choice of
initial parameters is crucial. See [Bis07] for the derivation of the
equations.

GMM-EM is available in scikits.learn.em.
Example usage:

from numpy import loadtxt
from scikits.learn.em import GM, GMM, EM

Data dimensionality
D = 8

Number of Gaussian Mixture Components
K = 16

Initialize Gaussian Mixture Model
gmm = GMM(GM(D,K))

X is the feature data matrix

Learn GMM
EM().train(X,gmm)

Figure 5 shows a visual speech GMM learned using EM. For illus-
trative purposes only the first two speech-related shape parameters
p3 and p4 are used. The shape parameters are obtained by fitting
an AAM to each frame of a video of a speaker saying the word
“zero”. The crosses represent the training data, the circles are the
means of the Gaussians and the ellipses are the standard deviation
contours (scaled by the inverse of the weight of the corresponding
mixture component for visualization purposes). The video frame
rate is 30 frames per second (FPS) and the number of mixture
components used is 16.

Note that in practice more than two shape parameters are used,
which usually also requires an increase in the number of mixture
components necessary to sufficiently capture the distribution of
the data.

Variational Bayes

An important question that we have not yet answered is how to
choose the number of mixture components. Too many components
lead to redundancy in the number of computations, while too
few may not be sufficient to represent the structure of the data.

AUDIO-VISUAL SPEECH RECOGNITION USING SCIPY 89

Additionally, too many components easily lead to overfitting.
Overfitting occurs when the complexity of the model is not in
proportion to the amount of available training data. In this case
the data is not sufficient for accurately estimating the GMM
parameters.

The maximum likelihood criteria is unsuitable to estimate the
number of mixture components since it increases monotonically
with the number of mixture components. Variational Bayesian
(VB) inference is an alternative learning method that is less
sensitive than ML-EM to over-fitting and singular solutions while
at the same time leads to automatic model complexity selection
[Bis07].

As it simplifies calculation we work with the precision matrix
ΛΛΛ = ΣΣΣ

−1 instead of the covariance matrix.
VB differs from EM in that the parameters are modeled as

random variables. Suitable conjugate distributions are the Dirichlet
distribution

p(πππ) =C(ααα0)
K

∏
k=1

π
α0−1
k (20)

for the mixture component weights, and the Gaussian-Wishart
distribution

p(µµµ,ΛΛΛ) =
K

∏
k=1

N (µµµk|mmm0,β0Λk)W (Λk|W0,ννν0) (21)

for the means and precisions of the mixture components.
In the VB framework, learning the GMM is performed by

finding the posterior distribution over the model parameters given
the observed data. This posterior distribution can be found using
VB inference as described in [Bis07].

VB is an iterative algorithm with steps analogous to the EM
algorithm. Responsibilities are calculated as

rnk =
ρnk

∑
K
j=1 ρn j

. (22)

The quantities ρnk are given in the log domain by

lnρnk = E[lnπk]+
1
2
E[ln |ΛΛΛ|]− D

2
ln2π

−1
2
Eµµµk ,ΛΛΛk [(xn−µµµk)

T
ΛΛΛk(xn−µµµk)] (23)

where

Eµµµ,ΛΛΛ[(xn−µµµk)
T

ΛΛΛk(xn−µµµk)] = Dβ
−1
k

+νk(xn−mk)
TWk(xn−mk) (24)

and

ln π̃k = E[lnπk] = ψ(αk)−ψ(α̂k) (25)

ln Λ̃k = E[ln |ΛΛΛk|] =
D

∑
i=1

ψ

(
νk +1− i

2

)
+D ln2+ ln |Wk|. (26)

Here α̂ = ∑k αk and ψ is the derivative of the logarithm of the
gamma function, also called the digamma function. The digamma
function is available in SciPy as scipy.special.psi.

The analogous M-step is performed using a set of equations
similar to those found in EM. First the quantities

Nk = ∑
n

rnk (27)

x̄k =
1

Nk
∑
n

rnkxn (28)

Sk =
1

Nk
∑
n

rnk(xn− x̄k)(xn− x̄k)
T (29)

−20 −15 −10 −5 0 5 10 15 20
p3

−15

−10

−5

0

5

10

15

20

25

p 4

Fig. 6: Visual speech GMM of the word “zero” learned using the VB
algorithm on two-dimensional feature vectors.

are calculated. The posterior model parameters are then updated
as

α
new
k = α0 +Nk (30)

β
new
k = β0 +Nk (31)

mnew
k =

1
βk

(β0m0 +Nkx̄k) (32)

Wnew
k = W0 +NkSk +

β0Nk

β0 +Nk
(x̄−m0)(x̄−m0)

T (33)

ν
new
k = ν0 +Nk. (34)

Figure 6 shows a GMM learned using VB on the same data
as in Figure 5. The initial number of components is again 16.
Compared to Figure 5 we observe that VB results in a much
sparser model while still capturing the structure of the data. In
fact, the redundant components have all converged to their prior
distributions and have been assigned the weight of 0 indicating
that these components do not contribute towards “explaining” the
data and can be pruned from the model. We also observe that
outliers in the data (which is likely to be noise) is to a large extent
ignored.

We have recently developed a Python VB class for
scikits.learn. The class conforms to a similar interface as
the EM class and will soon be available in the development version
of scikits.learn.

Experimental results

A basic AVASR system was implemented using SciPy as outlined
in the previous sections.

In order to test the system we use the CUAVE database
[Pat02]. The CUAVE database consists of 36 speakers, 19 male
and 17 female, uttering isolated and continuous digits. Video of the
speakers is recorded in frontal, profile and while moving. We only
use the portion of the database where the speakers are stationary
and facing the camera while uttering isolated digits. We use data
from 24 speakers for training and the remaining 12 for testing.
Hence, data from the speakers in the test data are not used for

90 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Fig. 7: Frames from the CUAVE audio-visual data corpus.

training. This allows us to evaluate how well the models generalize
to speakers other than than those used for training. A sample frame
from each speaker in the dataset is shown in Figure 7.

In the experiment we build an individual AAM for each
speaker by manually annotating every 50th frame. The visual
features are then extracted by fitting the AAM to each frame in
the video of the speaker.

Training the speech recognition system consists of learning
acoustic and visual GMMs for each digit using samples from the
training data. Learning is performed using VB inference. Testing is
performed by classifying the test data. To evaluate the performance
of the system we use the misclassification rate, i.e. the number of
wrongly classified samples divided by the total number of samples.

We train acoustic and visual GMMs separately for each digit.
The probability distributions (see (11)) are denoted by p(xA) and
p(xV) for the acoustic and visual components, respectively. The
probability of a sample (xA,xV) belonging to digit class c is then
given by pA(xA|c) and pV (xV |c).

As we wish to test the effect of noise in the audio channel,
acoustic noise ranging from -5dB to 25dB signal-to-noise ratio
(SNR) in steps of 5 dB is added to the test data. We use additive
white Gaussian noise with zero mean and variance

σ
2
η = 10

−SNR
10 . (35)

The acoustic and visual GMMs are combined into a single clas-
sifier by exponentially weighting each GMM in proportion to an
estimate of the information content in each stream. As the result
no longer represent probabilities we use the term score. For a given
digit we get the combined audio-visual model

Score(xAV |c) = p(xA|c)λA p(xV |c)λV (36)

where

0≤ λA ≤ 1 (37)

0≤ λV ≤ 1 (38)

and

λA +λV = 1. (39)

Note that (36) is equivalent to a linear combination of log
likelihoods.

5 0 5 10 15 20 25
Signal-to-noise ratio

0.0

0.2

0.4

0.6

0.8

1.0

M
is

cl
as

si
fic

at
io

n
ra

te

Audio-only
Video-only
Audio-visual

Fig. 8: Misclassification rate.

The stream exponents cannot be determined through a maxi-
mum likelihood estimation, as this will always result in a solution
with the modality having the largest probability being assigned a
weight of 1 and the other 0. Instead, we discriminatively estimate
the stream exponents. As the number of classes in our experiment
is relatively small we perform this optimization using a brute-force
grid search, directly minimizing the misclassification rate. Due to
the constraint (39) it is only necessary to vary λA from 0 to 1.
The corresponding λV will then be given by 1−λA. We vary λA
from 0 to 1 in steps of 0.1. The set of parameters λA and λV that
results in the lowest misclassification rate are chosen as optimum
parameters.

In the experiment we perform classification for each of the
SNR levels using (36) and calculate the average misclassifica-
tion rate. We compare audio-only, visual-only, and audio-visual
classifiers. For the audio-only classifier the stream weights are
λA = 1 and λV = 0 and for visual-only λA = 0 and λV = 1. For the
audio-visual classifier the discriminatively trained stream weights
are used. Figure 8 shows average misclassification rate for the
different models and noise levels.

From the results we observe that the visual channel does
contain information relevant to speech, but that visual speech is not
in itself sufficient for speech recognition. However, by combining
acoustic and visual speech we are able to increase recognition per-
formance above that of audio-only speech recognition, especially
the presence of acoustic noise.

Conclusion

In this paper we propose a basic AVASR system that uses
MFCCs as acoustic features, AAM parameters as visual features,
and GMMs for modeling the distribution of audio-visual speech
feature data. We present the EM and VB algorithms as two alterna-
tives for learning the audio-visual speech GMMs and demonstrate
how VB is less affected than EM by overfitting while leading to
automatic model complexity selection.

The AVASR system is implemented in Python using SciPy
and tested using the CUAVE database. Based on the results we
conclude that the visual channel does contain relevant speech
information, but is not in itself sufficient for speech recognition.
However, by combining features of visual speech with audio

AUDIO-VISUAL SPEECH RECOGNITION USING SCIPY 91

features, we find that AVASR gives better performance than audio-
only speech recognition, especially in noisy environments.

Acknowledgments

The authors wish to thank MIH Holdings for funding the research
presented in this paper and for granting permission to contribute
the research source code to SciPy.

REFERENCES

[Dav80] S. Davis, I. Matthews. Comparison of parametric representations
for monosyllabic word recognition in continuously spoken sentences,
IEEE Transactions on Acoustics, Speech, and Signal Processing,
28(8),357-366, 1980

[Luc81] B.D. Lucas, T. Kanade. An iterative image registration technique
with an application to stereo vision, Proceedings of Imaging under-
standing workshop, 121-130, 1981

[Coo98] T.F. Cootes, G.J. Edwards, C. J .Taylor, Active appearance models,
Proceedings of the European Conference on Computer Vision, 1998

[Bak01] S. Baker and I. Matthews, Lucas Kanade 20 Years On: A Unifying
Framework, International Journal of Computer Vision, 2000

[Pat02] E.K. Patterson, S. Gurbuz, Z. Tufekci, J.N. Gowdy, CUAVE: A new
audio-visual database for multimodeal human-compuer inferface
research, 2002

[Mat03] I. Matthews, S. Baker, Active Appearance Models Revisited, Interna-
tional Journal of Computer Vision, 2003

[Bis07] C.M. Bishop. Pattern recognition and machine learning, Springer,
2007

	Introduction
	Feature extraction
	Acoustic speech
	Visual speech

	Models for audio-visual speech recognition
	Gaussian Mixture Models
	Maximum likelihood
	Expectation maximization
	Variational Bayes

	Experimental results
	Conclusion
	Acknowledgments
	References

