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some important problems

have in common: need to (non-invasively) image the subsurface
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geophysical experiments & physical properties

physical properties are intrinsic to a material (density, susceptibility, conductivity…)
3



electrical conductivity / resistivity

A measure of how easily current 
passes through a material
● σ: conductivity [S/m]
● ρ: resistivity [Ωm]
● ρ = 1/σ

Depends on many factors
● Mineralogy
● Porosity 
● Permeability 
● Nature of pore fluid 
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electromagnetic experiments 

Sources: 
● grounded or inductive 
● controlled or natural 

Waveform
● harmonic                                      

(FDEM)
● transient                                            

(TDEM) 

Survey location
● airborne
● ground 
● boreholes 5



inductive sources: time-domain 
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air: 10-8 S/m

background: 10-2 S/m

layer



inductive sources: time-domain 
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current density db/dt



inductive sources: time-domain 
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current density db/dt



physics: frequency domain

high frequency ~ early times, 
low frequency ~ later times
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Jy imag

B imag

100 kHz 10 kHz

skin depth



forward and inverse problems 
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statement of the inverse problem

Given 
● observations: 
● uncertainties: 
● ability to forward model:

Find the Earth model that gave rise to the data
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statement of the inverse problem

Given 
● observations: 
● uncertainties: 
● ability to forward model:

Inverse problem: Find an Earth model that 
fits those data and a-priori information
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Simulation and parameter estimation in geophysics

common framework for simulations & inversions

accelerate research: build upon others work 

facilitate reproducibility of results

build & deploy in python

open-source
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https://simpeg.xyz

https://simpeg.xyz/


Multi-scale EM geophysical methods
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Controlled-source EM Natural source EM

Depth from the surface

meters Tens of 
meters

Hundreds 
of meters

Kilometers

Inductive Grounded

Tens of 
kilometers

Hundreds of 
kilometers



Multi-scale EM geophysical methods
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Controlled-source EM Natural source EM

Depth from the surface

meters Tens of 
meters

Hundreds 
of meters

Kilometers

Inductive Grounded

Magnetotellurics (MT)Z-axis Tipper EM (ZTEM)

Tens of 
kilometers

Hundreds of 
kilometers

Airborne EM (AEM)Ground-based EM

ERT Towed-TEM



important problems: scales and surveys
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permafrost: near surface, large areas

Airborne : cover large areas 
Frequency-domain EM system 
(400Hz – 135k Hz)

17(Froese et al., 2024, Moshtaghian et al., 2024)



minerals, geothermal: large scales & seeing deep
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natural source: rely on lightning strikes, solar wind as our source (unknown strength)

lightning aurora

skin depth (m) 



minerals: intermediate scale, multiple data types

Diamond exploration: rock 
units identified using 
multiple physical properties 
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from geophysics

from drilling

airborne gravity magnetics

time domain EMfrequency domain EM

Devriese et al. 2017, 
Fournier et al. 2017, 
Kang et al. 2017

https://gif.eos.ubc.ca/sites/default/files/sdevriese/files/int-2016-0142_1(1).pdf
https://gif.eos.ubc.ca/sites/default/files/sdevriese/files/int-2016-0140_1(1).pdf
https://gif.eos.ubc.ca/sites/default/files/sdevriese/files/int-2016-0141_1(1).pdf


minerals: intermediate scale, multiple data types

Petrophysically and Geologically Guided Inversion

● brings in petrophysical information (GMM)
● builds a quasi-geology model
● important components in the inversion

○ multiple data misfits 
○ including petrophysical information 

T. Astic



CO2 sequestration, hydrocarbons: fine scales & large contrasts
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steel casings: highly conductive, magnetic

grounded sources: helpful for exciting & 
detecting deep targets



unexploded ordnance: small scales 

near surface (or seafloor), need to detect & classify UXO vs clutter

22

? UXO

Mortar

76 mm popcan

Not UXO



case studies
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groundwater

CO2 sequestration

unexploded ordnance



case studies
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groundwater

CO2 sequestration

unexploded ordnance



Improving Water Security in Mon state, 
Myanmar via Geophysical Capacity Building

● Bring geophysical equipment to Mon 
state Myanmar 

● Train local stakeholders 

● Provide open-source software & 
educational resources 
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groundwater in Myanmar



groundwater in Myanmar: important components

7 step framework for case studies
● Setup
● Physical properties
● Survey
● Data
● Processing
● Interpretation 
● Synthesis

Open source software and 
resources 
● Jupyter notebook “apps” for 

concepts and data processing
26https://courses.geosci.xyz/gwb2020

https://courses.geosci.xyz/gwb2020


groundwater in Myanmar

Phayar Ngoteto Village
In 2018: 1D inversion suggested aquifer at 30-50 m

● Well drilled to ~60 m: no significant water

In 2020 (before covid...):

● return and conduct a 2D survey  
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7 step framework
● Setup
● Physical properties
● Survey
● Data
● Processing
● Interpretation 
● Synthesis
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Main diagnostic: 
Water bearing region ~ 40-140 Ωm

groundwater in Myanmar

7 step framework
● Setup
● Physical properties
● Survey
● Data
● Processing
● Interpretation 
● Synthesis

Hydrogeological Unit Resistivity (Ωm)

Alluvium and laterite (dry) 200-800

Alluvium and laterite (saturated) 30

Sand aquifer 50-100

Clay aquitard 10-20

Bedrock (eg. granite) 500-1000

Fractured/Weathered bedrock (with fresh water) 40-400



Survey: 2D DC resistivity 
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groundwater in Myanmar

7 step framework
● Setup
● Physical properties
● Survey
● Data
● Processing
● Interpretation 
● Synthesis

Wenner-Schlumberger Dipole-Dipole

data plotted in pseudosections



Survey: 2D DC resistivity 
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groundwater in Myanmar

7 step framework
● Setup
● Physical properties
● Survey
● Data
● Processing
● Interpretation 
● Synthesis

Wenner-Schlumberger Dipole-Dipole



Inversion: estimate a model of the subsurface
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groundwater in Myanmar

7 step framework
● Setup
● Physical properties
● Survey
● Data
● Processing
● Interpretation 
● Synthesis



groundwater in Myanmar

7 step framework
● Setup
● Physical properties
● Survey
● Data
● Processing
● Interpretation 
● Synthesis

2020 Drill Hole



groundwater in Myanmar

7 step framework
● Setup
● Physical properties
● Survey
● Data
● Processing
● Interpretation 
● Synthesis

2020 Drill Hole

>1000 gph
Field surveys at 23+ villages by engineers, 
geoscientists in Myanmar

Acquired data, interpreted, spotted drill holes 
using open source software
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https://geosci.xyz

undergrads at UBC

electromagnetics course: 
26 locations worldwide

open educational resources

https://geosci.xyz/


case studies
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groundwater

CO2 sequestration

unexploded ordnance



an example: monitoring with steel cased wells

applications: CO2, geothermal, wastewater injection, … 

steel-casing: complicates numerical simulations (highly conductive, magnetic) 
but… helpful for bringing current to depth Cylindrical 

mesh



electromagnetics: basic equations (quasi-static)

37* Solve with sources and boundary conditions

Time Frequency

Faraday’s Law

Ampere’s Law

Constitutive
Relationships
(non-dispersive)

No Magnetic Monopoles



numerical simulations in SimPEG: frequency domain EM

Continuous equations
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Finite volume discretization 

Eliminate b to obtain a second-order system in e

(Heagy et al., 2017)



numerical simulations in SimPEG: frequency domain EM
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numerical simulations in SimPEG: frequency domain EM
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Tensor

OcTree

Cylindrical



EM experiment: no casing



EM experiment with casing 





EM monitoring with casing

applications: CO2, geothermal, wastewater 
injection, settings with infrastructure… 

steel-casing: complicates numerical simulations 
(highly conductive, magnetic) 

but… helpful for bringing current to depth

Heagy & Oldenburg (2022)

https://doi.org/10.1190/tle41020083.1


case studies
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groundwater

CO2 sequestration

unexploded ordnance



Unexploded ordnance (UXO): A global problem

Definition: a munition that was armed, 
fired and remains unexploded

Sources:
● Regions of military conflict
● Munitions and bombing ranges
● Avalanche control

46

Countries significantly impacted by UXO
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Time-domain EM response of a UXO
UXO

not UXO

time

48

L1

L2 ≠ L3

L2 = L3

L1



Time-domain EM response of a UXO
UXO

not UXO

timetraditional approach: use inversion to get these and then
classify by comparing L(t) with ordnance library
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L1

L2 ≠ L3

L2 = L3

L1



Survey and system

UltraTEMA-4 system:

4 transmitters

12 receivers (3-component)

27 time channels

Height above seabed: ~1 m
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Data

Transmitter 1 Transmitter 2 Transmitter 3 Transmitter 4

UXO

Receiver 1

Receiver 12

cr
os

s-
tra

ck
along-track

moving
direction
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time
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time

Transmitter 1 Transmitter 2 Transmitter 3 Transmitter 4
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time

Transmitter 1 Transmitter 2 Transmitter 3 Transmitter 4



Data
UXO

Receiver 1
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direction
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time

Transmitter 1 Transmitter 2 Transmitter 3 Transmitter 4



Can we classify directly from EM data?

Convolutional neural networks (CNNs)
● Convolutional filters look at spatial / temporal 

features in the data 

Training EM data for UXO classification: 
● Available library of ordnance objects with 

polarizations
● Fast geophysical simulations

55
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

input

output

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


Convolutional Neural Networks (CNNs)

Neural network

Supervised classification problem
provided data with labels, construct a function (network) that outputs labels given input data

predicted

true

FeaturesInput
Class 
probabilities

Image 
segmentation

56



Convolutional Neural Networks (CNNs)

How do we translate these things to the UXO classification problem?

predicted

true

Input Features Neural network
Class 
probabilities

nx

nr
x

57

J. Lopez-Alvis



Defining label masks

Magnitude for each transmitter
Sum of 
magnitudes Label mask 

color is different 
for each class

threshold

along track 
position (nx)

re
ce

iv
er

nu
m

be
r (

nr
x) T1 T3T2 T4

along track 
distance (m)

cr
os

s 
tr

ac
k 

di
st

an
ce

 (m
)

send back to footprint
of system
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For time channel #5



Application to a line of data

Input features are created by using a sliding window:

c
ro

ss
 t

ra
c
k 

(m
)

along track (m)

UXO
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Application to a line of data

Input features are created by using a sliding window:

c
ro

ss
 t

ra
c
k 

(m
)

along track (m)

sliding window
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Application to a line of data

Input features are created by using a sliding window:

c
ro

ss
 t

ra
c
k 

(m
)

along track (m)

Neural network output (class)
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Application to a line of data

Input features are created by using a sliding window:

c
ro

ss
 t

ra
c
k 

(m
)

along track (m)
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Application to a line of data

Single acquisition line with three objects (classification results)

c
ro

ss
 t

ra
c
k

along track

Input features are created by using a sliding window:
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(m
)

along track (m)
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Training dataset: dipole forward model

7 classes:
● background
● 155 mm
● 105 mm
● 81 mm
● 60 mm
● 40 mm
● clutter

# of realizations:
● Training (multi-class): 400,000
● Validation: 10,000

Randomly assign:
● Target class
● Location
● Orientation
● Noise level: approximate from background 

areas in the field data

3 m 

2.5 x W 
0.5 m

64W - width of the system

1.5 x W



Clutter design
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Physics-based parameterization of EM 
decay:

9 parameters in total:

1. Estimate values for UXOs in 
ordnance library

2. Define a distance threshold
3. Fill the remaining space with clutter 

objects



Field data - Sequim Bay test site (2022)

● 7 acquisition lines

● Current workflow requires seawater response removed

● Some ISOs present, we used only UXO objects to train (e.g. medium ISO ~ 81mm)
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Get correlated noise using a binary classifier

67get spatially correlated noise from this subset of field data 

object



Classification map (output of CNN)
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Predicted labels vs truth labels - field data

predicted label
ground truth
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Predicted labels vs truth labels - field data

predicted label
ground truth

70

● Discriminated clutter



Predicted labels vs truth labels - field data

predicted label
ground truth
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● Discriminated clutter
● Did not miss any UXO



Predicted labels vs truth labels - field data

predicted label
ground truth
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● Discriminated clutter
● Did not miss any UXO
● Classified to closest object in training dataset 



UXO classification

Key points:
● image-segmentation architecture
● clutter design and correlated noise are important

Some limitations:
● not trained to handle multiple objects in the same window
● objects used to generate synthetic data should be close 

to the objects on the field

Future work: 
● explore multi-target scenario
● combining with traditional approach
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UXO

not UXO

time



important problems
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Electrical conductivity can be a diagnostic physical property in many settings

Electromagnetic methods can be useful across a wide range of scales 

Numerical tools for simulation, inversion, machine learning enable understanding of 
physical responses, invaluable for interpretation of data 



Thank you! 
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lheagy@eoas.ubc.ca

simpeg.xyz 

geosci.xyz

mailto:lheagy@eoas.ubc.ca
https://simpeg.xyz/
https://geosci.xyz/

