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A B S T R A C T

Fluid flow in the vadose zone is governed by the Richards equation; it is parameterized by hydraulic conductivity,
which is a nonlinear function of pressure head. Investigations in the vadose zone typically require characterizing
distributed hydraulic properties. Water content or pressure head data may include direct measurements made
from boreholes. Increasingly, proxy measurements from hydrogeophysics are being used to supply more spatially
and temporally dense data sets. Inferring hydraulic parameters from such datasets requires the ability to effi-
ciently solve and optimize the nonlinear time domain Richards equation. This is particularly important as the
number of parameters to be estimated in a vadose zone inversion continues to grow. In this paper, we describe an
efficient technique to invert for distributed hydraulic properties in 1D, 2D, and 3D. Our technique does not store
the Jacobian matrix, but rather computes its product with a vector. Existing literature for the Richards equation
inversion explicitly calculates the sensitivity matrix using finite difference or automatic differentiation, however,
for large scale problems these methods are constrained by computation and/or memory. Using an implicit
sensitivity algorithm enables large scale inversion problems for any distributed hydraulic parameters in the
Richards equation to become tractable on modest computational resources. We provide an open source imple-
mentation of our technique based on the SimPEG framework, and show it in practice for a 3D inversion of
saturated hydraulic conductivity using water content data through time.
1. Introduction

Studying the processes that occur in the vadose zone, the region be-
tween the earth’s surface and the fully saturated zone, is of critical
importance for understanding our groundwater resources. Fluid flow in
the vadose zone is described by the Richards equation and parameterized
by hydraulic conductivity, which is a nonlinear function of pressure head
(Richards, 1931; Celia et al., 1990). Typically, hydraulic conductivity is
heterogeneous and can have a large dynamic range. In any hydro-
geological site characterization, the spatial estimation of the hydraulic
conductivity function is an important step. Achieving this, however, re-
quires the ability to efficiently solve and optimize the nonlinear,
time-domain Richards equation. Rather than working with a full, im-
plicit, 3D time-domain system of equations, simplifications are consis-
tently used to avert the conceptual, practical, and computational
difficulties inherent in the parameterization and inversion of the
Richards equation. These simplifications typically parameterize the
conductivity and assume that it is a simple function in space, often
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adopting a homogeneous or layered soil profile (cf. Binley et al. (2002);
Deiana et al. (2007); Hinnell et al. (2010); Liang and Uchida (2014)). Due
to the lack of constraining hydrologic data, such assumptions are often
satisfactory for fitting observed measurements, especially in 2D and 3D
as well as in time. However, as more data become available, through
spatially extensive surveys and time-lapse proxy measurements (e.g.
direct current resistivity surveys and distributed temperature sensing),
extracting more information about subsurface hydrogeologic parameters
becomes a possibility. The proxy data can be directly incorporated
through an empirical relation (e.g. Archie (1942)) or time-lapse estima-
tions can be structurally incorporated through some sort of regularization
technique (Haber and Gazit, 2013; Haber and Oldenburg, 1997; Hinnell
et al., 2010). Recent advances have beenmade for the forward simulation
of the Richards equation in a computationally-scalable manner (Orgo-
gozo et al., 2014). However, the inverse problem is non-trivial, especially
in 3D (Towara et al., 2015; Linde and Doetsch, 2016), and must be
considered using modern numerical techniques that allow for spatial
estimation of hydraulic parameters.
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Inverse problems in space and time are often referred to as history
matching problems (see Oliver and Chen (2011); Dean et al. (2008);
Sarma et al. (2007); Oliver and Reynolds (2001); �Simunek and Senja
(2012) and references within). These inverse problems use a flow
simulation model, combined with some a-priori information, in order to
estimate a spatially variable hydraulic conductivity function that
approximately yields the observed data within its error bounds. The
literature shows a variety of approaches for this inverse problem,
including trial-and-error, stochastic methods, and various gradient
based methods (Bitterlich et al., 2004; Binley et al., 2002; Carrick et al.,
2010; Durner, 1994; Finsterle and Zhang, 2011; Mualem, 1976;
�Simunek and van Genuchten, 1996). The way in which the computa-
tional complexity of the inverse method scales becomes important as
problem size increases (Towara et al., 2015). Computational memory
and time often become a bottleneck for solving the inverse problem,
both when the problem is solved in 2D and, particularly, when it is
solved in 3D (Haber et al., 2000). To solve the inverse problem, sto-
chastic methods are often employed, which have an advantage in that
they can examine the full parameter space and give insights into
non-uniqueness (Finsterle and Kowalsky, 2011). However, as the
number of parameters we seek to recover in an inversion increases,
these stochastic methods require that the forward problem be solved
many times, which often makes these methods impractical or ‘compu-
tationally infeasible’ (Linde and Doetsch, 2016). This scalability,
especially in the context of hydrogeophysics has been explicitly noted
in the literature (cf. Binley et al. (2002); Deiana et al. (2007); Towara
et al. (2015); Linde and Doetsch (2016)).

Derivative-based optimization techniques become a practical alter-
native when the forward problem is computationally expensive or when
there are many parameters to estimate (i.e. thousands to millions). In-
verse problems are ill-posed and thus to pose a solvable optimization
problem, an appropriate regularization is combined with a measure of
the data misfit to state a deterministic optimization problem (Tikhonov
and Arsenin, 1977). Alternatively, if prior information can be formulated
using a statistical framework, we can use Bayesian techniques to obtain
an estimator through the Maximum A Posteriori model (MAP) (Kaipio
and Somersalo, 2004). In the context of Bayesian estimation, gradient
based methods are also important, as they can be used to efficiently
sample the posterior (Bui-Thanh and Ghattas, 2015; Liu et al., 2017;
Klein et al., 2017).

A number of authors have sought solutions for the inverse problem,
where the forward problem is the Richards equation (cf. Bitterlich and
Knabner (2002); Iden and Durner (2007); �Simunek and Senja (2012) and
references within). Since the problem is parabolic (therefore stiff), most
work discretizes the forward problem by an implicit method in time and a
finite volume or finite element in space. Most work uses a Newton-like
method for the resulting nonlinear system, which arises from the dis-
cretization of the forward problem. For the deterministic inverse problem
using the Richards equation, previous work uses some version of a
Gauss-Newton method (e.g. Levenberg-Marquardt), with a direct
calculation of the sensitivity matrix (Finsterle and Kowalsky, 2011;
�Simunek and van Genuchten, 1996; Bitterlich and Knabner, 2002).
However, while these approaches allow for inversions of moderate scale
(i.e. 1D and 2D), they have one major drawback: the sensitivity matrix is
large and dense; its computation requires dense linear algebra and a
non-trivial amount of memory (cf. Towara et al. (2015)). Previous work
used either external numerical differentiation (e.g. PEST) or automatic
differentiation in order to directly compute the sensitivity matrix (Fin-
sterle and Zhang, 2011; Bitterlich and Knabner, 2002; Doherty, 2015;
Towara et al., 2015; Liu et al., 2017). External numerical differentiation
is computationally intensive and limits the number of model parameters
that can be estimated.

The goal of this paper is to suggest a modern numerical formulation
that allows the inverse problem to be solved without explicit
computation of the sensitivity matrix by using exact derivatives of the
discrete formulation (Haber et al., 2000). Our technique is based on the
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discretize-then-optimize approach, which discretizes the forward
problem first and then uses a deterministic optimization algorithm to
solve the inverse problem (Gunzburger, 2003). To this end, we require
the discretization of the forward problem. Similar to the work of Celia
et al. (1990), we use an implicit Euler method in time and finite volume
in space. Given the discrete form, we show that we can analytically
compute the derivatives of the forward problem with respect to
distributed hydraulic parameters and, as a result, obtain an implicit
formula for the sensitivity. The formula involves the solution of a linear
time-dependent problem; we avoid computing and storing the sensi-
tivity matrix directly and, rather, suggest a method to efficiently
compute the product of the sensitivity matrix and its adjoint times a
vector. Equipped with this formulation, we can use a standard inexact
Gauss-Newton method to solve the inverse problem for distributed
hydraulic parameters in 3D. This large-scale distributed parameter
estimation becomes computationally tractable with the technique pre-
sented in this paper and can be employed with any iterative
Gauss-Newton-like optimization technique.

This paper is structured as follows: in Section 2, we discuss the dis-
cretization of the forward problem on a staggered mesh in space and
backward Euler in time; in Section 3, we formulate the inverse problem
and construct the implicit functions used for computations of the
Jacobian-vector product. In Section 4, we demonstrate the validity of the
implementation of the forward problem and sensitivity calculation.
Finally, in Section 5, we show an example of a 3D inversion for hydraulic
conductivity and discuss extensions for inverting for multiple distributed
hydraulic parameters from the Richards equation and contrast the scal-
ability of our methodology to standard techniques.

To accelerate both the development and dissemination of this
approach, we have built these tools on top of an open source framework
for organizing simulation and inverse problems in geophysics (SimPEG)
(Cockett et al., 2015). We have released our numerical implementation
under the permissive MIT license. Our implementation of the implicit
sensitivity calculation for the Richards equation and associated inver-
sion implementation is provided and tested to support 1D, 2D, and 3D
forward and inverse simulations with respect to custom empirical re-
lations and sensitivity to any parameters within these functions. The
source code can be found at https://github.com/simpeg/simpeg and
may be a helpful resource for researchers looking to use or extend our
implementation.

2. Forward problem

In this section, we describe the Richards equation and its dis-
cretization (Richards, 1931). The Richards equation is a nonlinear
parabolic partial differential equation (PDE) and we follow the
so-called mixed formulation presented in Celia et al. (1990) with some
modifications. In the derivation of the discretization, we give special
attention to the details used to efficiently calculate the effect of the
sensitivity on a vector, which is needed in any derivative based opti-
mization algorithm.
2.1. Richards equation

The parameters that control groundwater flow depend on the effec-
tive saturation of the media, which leads to a nonlinear problem. The
groundwater flow equation has a diffusion term and an advection term
which is related to gravity and only acts in the z-direction. There are two
different forms of the Richards equation; they differ in how they deal
with the nonlinearity in the time-stepping term. Here, we use the most
fundamental form, referred to as the ‘mixed’-form of the Richards
equation (Celia et al., 1990):

∂θðψÞ
∂t �r⋅kðψÞrψ � ∂kðψÞ

∂z ¼ 0 ψ 2 Ω (1)

https://github.com/simpeg/simpeg


Figure 1. Discretization of unknowns in 1D, 2D and 3D space. Red circles are the locations of the discrete hydraulic conductivity K and the pressure head ψ . The

arrows are the locations of the discretized flux f
!

on each cell face. Modified after Cockett et al. (2016). (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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where ψ is pressure head, θðψÞ is volumetric water content, and kðψÞ is
hydraulic conductivity. This formulation of the Richards equation is
called the ‘mixed’-form because the equation is parameterized in ψ but
the time-stepping is in terms of θ. The hydraulic conductivity, kðψÞ, is a
heterogeneous and potentially anisotropic function that is assumed to be
known when solving the forward problem. In this paper, we assume that
k is isotropic, but the extension to anisotropy is straightforward (Cockett
et al., 2015, 2016). The equation is solved in a domain, Ω, equipped with
boundary conditions on ∂Ω and initial conditions, which are
problem-dependent.

An important aspect of unsaturated flow is noticing that both water
content, θ, and hydraulic conductivity, k, are functions of pressure head,
ψ . There are many empirical relations used to relate these parameters,
including the Brooks-Corey model (Brooks and Corey, 1964) and the van
Genuchten-Mualem model (Mualem, 1976; van Genuchten, 1980). The
van Genuchten model is written as:

θðψÞ ¼

8><>: θr þ θs � θr
ð1þ jαψ jnÞm ψ < 0

θs ψ � 0

(2a)

kðψÞ ¼
(
Ks θeðψÞl

�
1� �

1� θeðψÞ�m�m�2
ψ < 0

Ks ψ � 0
(2b)

where

θeðψÞ ¼ θðψÞ � θr
θs � θr

; m ¼ 1� 1
n
; n > 1 (3)

Here, θr and θs are the residual and saturated water contents, Ks is the
saturated hydraulic conductivity, α and n are fitting parameters, and,
θeðψÞ 2 ½0;1� is the effective saturation. The pore connectivity parameter,
l, is often taken to be 1

2, as determined by Mualem (1976). Pressure head
varies over the domain ψ 2 ð�∞;0Þ. When the value is close to zero, the
soil behaves most like a saturated soil where θ ¼ θs and k ¼ Ks. Small
changes in pressure head can change the hydraulic conductivity by
several orders of magnitude; as such, kðψÞ is a highly nonlinear function,
making the Richards equation a nonlinear PDE.
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2.2. Discretization

The Richards equation is parameterized in terms of pressure head, ψ .
Here, we describe simulating the Richards equation in 1D, 2D, and 3D.
We start by discretizing in space and then we discretize in time. This
process yields a discrete, nonlinear system of equations; for its solution,
we discuss a variation of Newton’s method.

2.2.1. Spatial discretization
In order to conservatively discretize the Richards equation, we

introduce the flux f
!

and rewrite the equation as a first order system of
the form:

∂θðψÞ
∂t �r⋅ f

!� ∂kðψÞ
∂z ¼ 0 (4a)

kðψÞ�1 f
!¼ rψ (4b)

We then discretize the system using a standard staggered finite vol-
ume discretization (cf. Ascher (2008); Haber (2015); Cockett et al.
(2016)). This discretization is a natural extension of mass-conservation in
a volume where the balance of fluxes into and out of a volume are
conserved (Lipnikov and Misitas, 2013). Here, it is natural to assign the
entire cell one hydraulic conductivity value, k, which is located at the cell
center. Such assigning leads to a piecewise constant approximation for
the hydraulic conductivity and allows for discontinuities between adja-
cent cells. From a geologic perspective, discontinuities are prevalent, as it
is possible to have large differences in hydraulic properties between
geologic layers in the ground. The pressure head, ψ , is also located at the
cell centers and the fluxes are located on cell faces, which lead to the
usual staggered mesh or Marker and Cell (MAC) discretization in space
(Fletcher, 1988). We demonstrate the discretization in 1D, 2D and 3D on
the tensor mesh in Figure 1. We discretize the function, ψ , on a
cell-centered grid, which results in a grid function, ψ. We use bold letters
to indicate other grid functions.

The discretization of a diffusion-like equation on an orthogonal mesh
is well-known (see Haber and Ascher (2001); Fletcher (1988); Haber
et al. (2007); Ascher and Greif (2011) and references within). We dis-
cretize the differential operators by using the usual mass balance
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consideration and the elimination of the flux, f .2 This spatial discretiza-
tion leads to the following discrete nonlinear system of ordinary differ-
ential equations (assuming homogeneous Dirichlet boundary
conditions):

dθðψÞ
dt

� D diag
�
kAv

�
ψnþ1

��
Gψ � Gz

�
kAv

�
ψnþ1

�� ¼ 0 (5)

Here, D is the discrete divergence operator and G is the discrete gradient
operator. The discrete derivative in the z-direction is written as Gz. The
values of ψ and kðψÞ are known on the cell-centers and must be averaged
to the cell-faces, which we complete through harmonic averaging (Haber
and Ascher, 2001).

kAvðψÞ ¼ 1
Av

1
kðψÞ

(6)

where Av is a matrix that averages from cell-centers to faces and the di-
vision of the vector is done pointwise; that is, we use the vector notation,
ð1=vÞi ¼ 1=vi. We incorporate boundary conditions using a ghost-point
outside of the mesh (Trottenberg et al., 2001).

2.2.2. Time discretization and stepping
The Richards equation is often used to simulate water infiltrating an

initially dry soil. At early times in an infiltration experiment, the
pressure head, ψ , can be close to discontinuous. These large changes in
ψ are also reflected in the nonlinear terms kðψÞ and θðψÞ; as such, the
initial conditions imposed require that an appropriate time discretiza-
tion be chosen. Hydrogeologists are often interested in the complete
evolutionary process, until steady-state is achieved, which may take
many time-steps. Here, we describe the implementation of a fully-
implicit backward Euler numerical scheme. Higher-order implicit
methods are not considered here because the uncertainty associated
with boundary conditions and the fitting parameters in the Van Gen-
uchten models (eq. (2)) have much more effect than the order of the
numerical method used.

The discretized approximation to the mixed-form of the Richards
equation, using fully-implicit backward Euler, reads:

F
�
ψnþ1;ψn

� ¼ θðψnþ1Þ � θðψnÞ
Δt

� D diag
�
kAv

�
ψnþ1

��
Gψnþ1

� Gz

�
kAv

�
ψnþ1

��
¼ 0 (7)

This is a nonlinear system of equations for ψnþ1 that needs to be
solved numerically by some iterative process. Either a Picard iteration (as
in Celia et al. (1990)) or a Newton root-finding iteration with a step
length control can be used to solve the system. Note that to deal with
dependence of θ with respect to ψ in Newton’s method, we require the
computation of dθ

dψ. We can complete this computation by using the ana-

lytic form of the hydraulic conductivity and water content functions (e.g.
derivatives of eq. (2)). We note that a similar approach can be used for
any smooth curve, even when the connection between θ and ψ are
determined empirically (for example, when θðψÞ is given by a spline
interpolation of field data).
2.3. Solving the nonlinear equations

Regardless of the empirical relation chosen, we must solve eq. (7)
using an iterative root-finding technique. Newton’s method iterates over
m ¼ 1;2;… until a satisfactory estimation of ψnþ1 is obtained. Given
ψnþ1;m, we approximate Fðψnþ1;ψnÞ as:
2 Here we assume an isotropic conductivity that leads to a diagonal mass
matrix and this yields easy elimination of the fluxes.
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F ψnþ1;ψn � Fðψn;m;ψnÞ þ Jψnþ1;mδψ (8)

� �

where the Jacobian for iteration, m, is:

Jψnþ1;m ¼ ∂Fðψ;ψnÞ
∂ψ

����
ψnþ1;m

(9)

The Jacobian is a large dense matrix, and its computation necessitates
the computation of the derivatives of Fðψnþ1;m;ψnÞ. We can use numerical
differentiation in order to evaluate the Jacobian (or its product with a
vector). However, in the context of the inverse problem, an exact
expression is preferred. Given the discrete forward problem, we obtain
that:

Jψnþ1;m ¼ 1
Δt

dθðψnþ1;mÞ
dψnþ1;m

� d
dψnþ1;m

�
D diag

�
kAv

�
ψnþ1;m

��
Gψnþ1;m

�
� Gz

dkAvðψnþ1;mÞ
dψnþ1;m

(10)

Here, recall that kAv is harmonically averaged and its derivative can
be obtained by the chain rule:

dkAvðψÞ
dψ

¼ diag
��

Avk
�1ðψÞ��2

�
Avdiag

�
k�2ðψÞ� dkðψÞ

dψ
(11)

Similarly, for the second term in eq. (10) we obtain:

∂
∂ψ ðD diagðkAvðψÞÞGψÞ ¼ D diagðkAvðψÞÞGþ D diagðGψÞ ∂kAvðψÞ

∂ψ (12)

Here the notation nþ1,m has been dropped for brevity. For the computa-
tions above, we need the derivatives of functions kðψÞ and θðψÞ; note
that, since the relations are assumed local (point wise in space) given the
vector, ψ, these derivatives are diagonal matrices. For Newton’s method,
we solve the linear system:

Jψnþ1;m δψ ¼ �F
�
ψnþ1;m;ψn

�
(13)

For small-scale problems, we can solve the linear system using direct
methods; however, for large-scale problems, iterative methods are more
commonly used. The existence of an advection term in the PDE results in
a non-symmetric linear system. Thus, when using iterative techniques to
solve this system, an appropriate iterative method, such as BICGSTAB or
GMRES (Saad, 1996; Barrett et al., 1994), must be used.

At this point, it is interesting to note the difference between the
Newton iteration and the Picard iteration suggested in Celia et al. (1990).
We can verify that the Picard iteration uses an approximation to the
Jacobian Jψnþ1;m δψ given by dropping the second term from (14). This
term can have negative eigenvalues and dropping it is typically done
when considering the lagged diffusivity method (Vogel, 2001). However,
as discussed in Vogel (2001), ignoring this term can slow convergence.

Finally, a new iterate is computed by adding the Newton update to the
last iterate:

ψnþ1;mþ1 ¼ ψnþ1;m þ αδψ

where α is a parameter that guarantees that����F�ψn;mþ1;ψn
����� < jjFðψn;m;ψnÞjj

To obtain α, we perform an Armijo line search (Nocedal and Wright,
1999). In our numerical experiments, we have found that this method
can fail when the hydraulic conductivity is strongly discontinuous and
changes rapidly. In such cases, Newton’s method yields a poor descent
direction. Therefore, if the Newton iteration fails to converge to a solu-
tion, the update is performed with the mixed-form Picard iteration. Note
that Picard iteration can be used, even when Newtons method fails,
because Picard iteration always yields a descent direction (Vogel, 2001).

At this point, we have discretized the Richards equation in both time
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and space while devoting special attention to the derivatives necessary in
Newton’s method and the Picard iteration as described in Celia et al.
(1990). The exact derivatives of the discrete problem will be used in the
following two sections, which outline the implicit formula for the
sensitivity and its incorporation into a general inversion algorithm.

3. Inverse problem

The location and spatial variability of, for example, an infiltration
front over time is inherently dependent on the hydraulic properties of the
soil column. As such, direct or proxy measurements of the water content
or pressure head at various depths along a soil profile contain informa-
tion about the soil properties. We pose the inverse problem, which is the
estimation of distributed hydraulic parameters, given either water con-
tent or pressure data. We frame this problem under the assumption that
we wish to estimate hundreds of thousands to millions of distributed
model parameters. Due to the large number of model parameters that we
aim to estimate in this inverse problem, stochastic techniques or external
numerical differentiation, such as the popular PEST toolbox (Doherty,
2015), are not computationally feasible. Instead, we will employ a direct
method by calculating the exact derivatives of the discrete Richards
equation and solving the sensitivity implicitly. For brevity, we show the
derivation of the sensitivity for an inversion model of only saturated
hydraulic conductivity, Ks, from pressure head data, dobs. This derivation
can be readily extended to include the use of water content data and
inverted for other distributed parameters in the heterogeneous hydraulic
conductivity function. We will demonstrate the sensitivity calculation for
multiple distributed parameters in the numerical examples (Section 5).

The Richards equation simulation produces a pressure head field at all
points in space as well as through time. Data can be predicted, dpred, from
these fields and compared to observed data, dobs. To be more specific, we
let Ψ ¼ ½ðψ1Þ>;…; ðψnt Þ>�> be the (discrete) pressure field for all space
and nt time steps. When measuring pressure head recorded only in spe-
cific locations and times, we define the predicted data, dpred, as dpred ¼
PΨðmÞ. Here, the vectorm is the vector containing all of the parameters
which we are inverting for (e.g. Ks; α; n; θr , or θs when using the van
Genuchten empirical relation). The matrix, P, interpolates the pressure
head field, Ψ, to the locations and times of the measurements. Since we
are using a simple finite volume approach and backward Euler in time,
we use linear interpolation in both space and time to compute dpred from
Ψ. Thus, the entries of the matrix P contain the interpolation weights. For
linear interpolation in 3D, P is a sparse matrix that contains up to eight
non-zero entries in each row. Note that the time and location of the data
measurement is independent and decoupled from the numerical dis-
cretization used in the forward problem. A water retention curve, such as
the van Genuchten model, can be used for computation of predicted
water content data, which requires another nonlinear transformation,
dθ
pred ¼ PθðΨðmÞ;mÞ. Note here that the transformation to water content

data, in general, depends on the model to be estimated in the inversion,
which will be addressed in the numerical examples. For brevity in the
derivation that follows, we will make two simplifying assumptions: (1)
that the data are pressure head measurements, which requires a linear
interpolation that is not dependent on the model; and, (2) that the model
vector, m, describes only distributed saturated hydraulic conductivity.
Our software implementation does not make these assumptions; our nu-
merical examples will use water content data, a variety of empirical re-
lations, and calculate the sensitivity to multiple heterogeneous empirical
parameters.
3.1. Solution through optimization

We can now formulate the discrete inverse problem to estimate
saturated hydraulic conductivity, m, from the observed pressure head
data, dobs. We frame the inversion as an optimization problem, which
minimizes a data misfit and a regularization term.
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bm ¼ argmin
m

ΦðmÞ ¼ 1
2

����Wd

�
dpredðmÞ � dobs

�����2
2
þ β

2

����Wm

�
m�mref

�����2
2
:

(14)

The first term in the objective function is the data misfit, ϕd; it
contains a weighted difference between the observed and predicted
data. Assuming that the observed data is noisy, with independent
distributed Gaussian noise having standard deviation σ, the weighting
matrix, Wd, is a diagonal matrix that contains the entries σ�1

i on its
diagonal. The matrix, Wm, is a regularization matrix that is chosen
based on a-priori information and assumptions about the geologic
setting (cf. Oldenburg and Li (2005)). In a regularized inversion
framework, if we estimate only the log of the static conductivity, Ks in
(2.1), then we typically choose Wm as a combination of the first order
gradient matrix and an identity matrix. In a Bayesian framework, where
one assumes that m is Gaussian, the matrix W>

mWm is the inverse
covariance matrix. If m contains more than a single distributed
hydrogeologic parameter, then a correlation term is typically added
(Haber and Gazit, 2013). The reference model, mref , is chosen based on
a-priori information about the background. Finally, we add the misfit
and regularization terms using a trade-off parameter, β, to balance the
influence of a-priori information, or smoothness, with the fit to noisy
data. This is the standard approach in geophysical inversions (Tikhonov
and Arsenin, 1977; Oldenburg and Li, 2005; Constable et al., 1987;
Haber, 2015) where hundreds of thousands to millions of distributed
parameters are commonly estimated in a deterministic inversion. The
hydrogeologic literature also shows the use of these techniques; how-
ever, there is also a large community advancing stochastic inversion
techniques and geologic realism (cf. Linde et al. (2015)). Regardless of
the inversion algorithm used, an efficient method to calculate the
sensitivity is crucial; this method is the focus of our work.

To minimize the objective function, we use an inexact Gauss-Newton
method that is well-suited for large-scale problems (Nocedal and Wright,
1999). For the Gauss-Newton method, the gradient of equation (14) is
computed and iteratively driven towards zero by using an approximate
Hessian, H. For the problem at hand, the gradient can be expressed as:

rmΦðmÞ ¼ J>W>
d Wd

�
dpredðmÞ � dobs

�þ βW>
mWm

�
m�mref

�
(15)

where the sensitivity matrix, J ¼ rmdpredðmÞ, is the derivative of the
predicted data with respect to the model parameters. The Hessian of the
objective function, H, is approximated with the first order terms and is
guaranteed to be positive definite.

r2
mΦðmÞ � H ¼ J>W>

d WdJþ βW>
mWm (16)

Finally, the (inexact) Gauss-Newton update, δm, is computed by
(approximately) solving the system

Hδm ¼ �rmΦðmÞ

using some iterative technique. In this work, we use the preconditioned
conjugate gradient (PCG) method, allowing us to work with large-scale
problems. To precondition the conjugate gradient algorithm, we use a
standard limited-memory BFGS algorithm initiated with the inverse of
W>

mWm instead of the identity. For more details on the preconditioner,
see (Haber, 2005).

It is important to note that the sensitivity matrix, J, as well as the
approximate Hessian, H, are large, dense matrices and their explicit
computations result in an algorithm that is constrained by computational
memory. However, as we show in the following section, one can avoid
this computation and efficiently compute the products of J and J> with a
vector. This computation, coupled with an iterative optimization
method, results in an efficient algorithm.

Once the model update, δm, is found, a Gauss-Newton step is taken:

mkþ1 ¼ mk þ αkδm
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where αk is the current line search parameter. We use a backtracking
Armijo line search (Armijo, 1966) to enforce sufficient decrease in our
objective function (Nocedal and Wright, 1999). We repeat the mini-
mization procedure, which updates the linearization until the norm of
the gradient falls below a certain tolerance, the model update is suffi-
ciently small, or until we have exhausted the maximum number of it-
erations. Values for these stopping criteria are often
problem-dependent. Running synthetic models with elements similar
to observed data can often give insight into appropriate stopping
criteria (Aster et al., 2004).

3.2. Implicit sensitivity calculation

The optimization problem requires the derivative of the pressure
head with respect to the model parameters, ∂Ψ∂m. An approximation of the
sensitivity matrix can be obtained through a finite difference method on
the forward problem (�Simunek and van Genuchten, 1996; Finsterle and
Kowalsky, 2011; Finsterle and Zhang, 2011). One forward problem, or
two, when using central differences, must be completed for each col-
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(20)
umn in the Jacobian at every iteration of the optimization algorithm.
This style of differentiation proves advantageous in that it can be
applied to any forward problem; however, it is highly inefficient and
introduces errors into the inversion that may slow the convergence of
the scheme (Doherty, 2015). Automatic differentiation (AD) can also be
used (Nocedal and Wright, 1999). Bitterlich and Knabner (2002) pre-
sent three algorithms (finite difference, adjoint, and direct) to directly
compute the elements of the dense sensitivity matrix for the Richards
equation. As problem size increases, the memory required to store this
dense matrix often becomes a practical computational limitation
(Haber et al., 2004; Towara et al., 2015). As we show next, it is possible
to explicitly write the derivatives of the Jacobian and evaluate their
products with vectors using only sparse matrix operations. The algo-
rithm computes matrix-vector and adjoint matrix-vector products with
the Jacobian matrix. We can use these products for the solution of the
Gauss-Newton system when using the conjugate gradient method,
which bypasses the need for the direct calculation of the sensitivity
matrix. Other geophysical inverse problems have used this idea
extensively, especially in large-scale electromagnetics (cf. Haber et al.
(2000)). The challenge in both the derivation and implementation for
the Richards equation lies in differentiating the nonlinear
time-dependent forward simulation with respect to multiple distributed
hydraulic parameters.

The approach to implicitly constructing the derivative of the Richards
equation in time involves writing the whole time-stepping process as a
block bi-diagonal matrix system. The discrete Richards equation can be
written as a function of the model. For a single time-step, the equation is
written:

F
�
ψnþ1ðmÞ;ψnðmÞ;m� ¼ θnþ1ðψnþ1Þ � θnðψnÞ

Δt
� D diag

�
kAv

�
ψnþ1;m

�
� �

Gψnþ1 � GzkAv

�
ψnþ1;m

�
¼ 0

(17)

In this case, m is a vector that contains all the parameters of interest.
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Note that ψnþ1 and ψn are also functions ofm. In general, θnþ1 and θn are
also dependent on the model; however, for brevity, we will omit these
derivatives. The derivatives of F to the change in the parametersm can be
written as:

rmF
�
ψn;ψnþ1;m

� ¼ ∂F
∂kAv

∂kAv

∂m þ ∂F
∂ψn

∂ψn
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or, in more detail:
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(19)

The above equation is a linear system of equations and, to solve for dΨ
dm,

we rearrange the block-matrix equation:
Here, we use the subscript notation of A0ðψnþ1Þ and A�1ðψnÞ to
represent two block-diagonals of the large sparse matrix AðΨ;mÞ. Note
that all of the terms in these matrices are already evaluated when
computing the Jacobian of the Richards equations in Section 2 and that
they contain only basic sparse linear algebra manipulations without the
inversion of any matrix. If ψ0 does not depend on the model, meaning the
initial conditions are independent, then we can formulate the block
system as:
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(21)

This is a block matrix equation and solving it is equivalent to the
discrete adjoint method (Bitterlich and Knabner, 2002; Oliver and Chen,
2011). The adjoint method is widely applied in other fields, but to the
best of our knowledge has not yet been applied for the Richards equation
in 3D. The storage of this system and the explicit computation of its so-
lution, dΨdm, are both expensive operations and not scalable to 3D problems.

Since only matrix vector products are needed for the inexact Gauss-
Newton optimization method, the matrix J is never needed explicitly
and only the products of the form Jv and J>z are needed for arbitrary
vectors v and z. Projecting the full sensitivity matrix onto the data-space
using P results in the following equations for the Jacobian:

J ¼ PAðΨ;mÞ�1BðΨ;mÞ (22a)



Figure 2. Fictitious source test in 1D showing the analytic function Ψtrue at times 0.0 and 0.5 and the numerical solution Ψðx;0:5Þ using the mixed-form
Newton iteration.

Table 1
Fictitious source test for Richards equation in 1D using the mixed-form Newton
iteration.

Mesh Size (n)
����Ψðx;0:5Þ� Ψtrueðx;0:5Þ

��j∞ Order Decrease, O ðδÞ

64 5.485569eþ00
128 2.952912eþ00 0.894
256 1.556827eþ00 0.924
512 8.035072e-01 0.954
1024 4.086729e-01 0.975
2048 2.060448e-01 0.988
4096 1.034566e-01 0.994
8192 5.184507e-02 0.997
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J> ¼ BðΨ;mÞ>AðΨ;mÞ�>P> (22b)

In these equations, we are careful to not write dΨ
dm, as it is a large dense

matrix which we do not want to explicitly compute or store. Additionally,
the matrices AðΨ;mÞ and BðΨ;mÞ do not even need to be explicitly
formed because the matrix AðΨ;mÞ is a triangular block-system, which
we can solve using forward or backward substitution with only one
block-row being solved at a time (this is equivalent to a single time step).
To compute the matrix vector product, Jv, we use a simple algorithm:

1. Given the vector v calculate y ¼ Bv
2. Solve the linear system Aw ¼ y for the vector w
3. Set Jv ¼ Pw

Here, we note that we complete steps (1) and (2) using a for-loop with
only one block-row being computed and stored at a time. As such, only
the full solution,Ψ, is stored and all other block-entries may be computed
as needed. There is a complication here if data is in terms of water
content or effective saturation, as the data projection is no longer linear
and may have model dependence. The data projection, P also changes if
the temporal discretization changes, for example, when using adaptive
time-stepping between different forward simulations. Both of these
complications can be dealt with using the chain rule during step (3).
Similarly, to compute the adjoint J>z involves the intermediate solve for
y in A>y ¼ P>z and then computation of B>y. Again, we solve the block-
matrix via backward substitution with all block matrix entries being
computed as needed. The backward substitution algorithm can be viewed
as time stepping, which means that it moves from the final time back to
the initial time. This time stepping is equivalent to the adjoint method
that is discussed in Oliver and Chen (2011) and references within. The
main difference between our approach and the continuous adjoint-based
method is that our approach yields the exact gradient of the discrete
system; no such guarantee is given for adjoint-based methods.

The above algorithm and the computations of all of the different
derivatives summarizes the technical details of the computations of the
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sensitivities. Equipped with this “machinery”, we now demonstrate the
validity of our implementation and our ability to solve large-scale
problems using modest computational resources.

4. Validation

4.1. Forward problem

The Richards equation has no analytic solution, which makes testing
the code more involved. Code-to-code comparisons have been completed
for comparison to Celia et al. (1990), which can be found in Cockett
(2017). Here we have chosen to use a fictitious source experiment to
rigorously test the code. In this experiment, we approximate an infiltra-
tion front by an arctangent function in 1D, which is centered over the
highly nonlinear part of the van Genuchten curves, with ψ 2 ½�60;�20�
centimeters. The arctangent curve advects into the soil columnwith time.
The advantage of using an analytic function is that the derivative is
known explicitly and can be calculated at all times. However, it should be
noted that the Richards equation does not satisfy the analytic solution
exactly, but differs by a function, Sðx; tÞ. We refer to this function as the
fictitious source term. The analytic function that we used has similar
boundary conditions and shape to an example in Celia et al. (1990) and is
considered over the domain x 2 ½0; 1�.



Figure 3. Soil structure in three dimensions showing four sections and the
boundary between two soil types of sand (yellow) and loamy sand (purple). The
two cross sections and the shallower depth section are shown in subsequent
figures. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

Figure 4. Vertical cross-sections (x ¼ 0 cm) through the pressure head and saturati
t ¼ 5:2 hours and (b) t ¼ 10:3 hours; and (c) saturation field at t ¼ 5:2 hours and (d)
green highlighted regions that are shown in Figure 5. The true location of the two so
colour in this figure legend, the reader is referred to the Web version of this article.
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Ψtrueðx; tÞ ¼ �20arctanð20ððx� 0:25Þ � tÞÞ � 40 (23)
This analytic function is shown at times 0 and 0.5 in Figure 2 and has
a pressure head range of ψ 2 ½� 60; � 20�. Evaluating the known pres-
sure head field in the Richards equation (eq. (1)) we calculate the ana-
lytic derivatives and equate them to a source term, Sðx; tÞ. Knowing this
source term and the analytic boundary conditions, we can solve the
discretized form of the Richards equation, which should reproduce the
analytic function in equation (23). Table 1 shows the results of the
fictitious source test when the number of mesh-cells is doubled and the
time-discretization is both fixed and equivalent to the mesh size (i.e. k ¼
h). Backward Euler is a first order method used for the time discretiza-
tion, as such expect first order accuracy in the solution. The final column
of Table 1 indeed shows that the order of accuracy is O ðδÞ. The higher
errors in the coarse discretization are due to high discontinuities and
changes in the source term, which the coarse discretization does not
resolve.

4.2. Inverse problem

In order to test the implicit sensitivity calculation, we employ deriv-
ative and adjoint tests as described in Haber (2015). Given that the
Taylor expansion of a function f ðmþ hΔmÞ is

f ðmþ hΔmÞ ¼ f ðmÞ þ hJΔmþ O
�
h2
�
; (24)

for any of the model parameters considered, we see that our approxi-
mation of f ðmþ hΔmÞ by f ðmÞ þ hJΔm should converge as O ðh2Þ as h is
reduced. This allows us to verify our calculation of Jv. To verify the
adjoint, J>v, we check that
on fields from the numerical simulation at two times: (a) pressure head field at
t ¼ 10:3 hours. The saturation field plots also show measurement locations and
ils used are shown with a dashed outline. (For interpretation of the references to
)



Figure 5. Observed and predicted data for five measurements locations at depths from 10 cm to 150 cm from the center of the model domain.

Figure 6. The 3D distributed saturated hydraulic conductivity model recovered from the inversion compared to the (a) synthetic model map view section, using (b)
the same map view section, (c) an X-Z cross section and (d) a Y-Z cross-section. The synthetic model is shown as an outline on all sections, and tie lines are shown on all
sections as solid and dashed lines, all location measurements are in centimeters.
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w>Jv ¼ v>J>w (25)
Table 2
Comparison of the memory necessary for storing the dense explicit sensitivity
matrix compared to the peak memory used for the implicit sensitivity calculation
excluding the matrix solve. The calculations are completed on a variety of mesh
sizes for a single distributed parameter (Ks) as well as for five distributed van
Genuchten model parameters (Ks;α;n;θr , and θs). Values are reported in gigabytes
(GB).

Mesh Size Explicit Sensitivity Implicit Sensitivity

1 parameter 5 parameters 1 parameter 5 parameters

32� 32� 32 1.31 6.55 0.136 0.171
64� 64� 64 10.5 52.4 0.522 0.772
for any two random vectors, w and v. These tests are run for all of the
parameters considered in an inversion of the Richards equation. Within
our implementation, both the derivative and adjoint tests are included as
unit tests which are run on any updates to the implementation (https://
travis-ci.org/simpeg/simpeg).

5. Three dimensional inversion

In this section, we turn our attention to recovering a 3D soil structure
given water content data. The example, motivated by a field experiment
introduced in Pidlisecky et al. (2013), shows a time-lapse electrical re-
sistivity tomography survey completed in the base of a managed aquifer
recharge pond. The goal of this management practice is to infiltrate water
into the subsurface for storage and subsequent recovery. Such projects
require input from geology, hydrology, and geophysics to map the
hydrostratigraphy, to collect and interpret time-lapse geophysical mea-
surements, and to integrate all results to make predictions and decisions
about fluid movement at the site. As such, the hydraulic properties of the
aquifer are important to characterize, and information from hydro-
geophysical investigations has been demonstrated to inform manage-
ment practices (Pidlisecky et al., 2013). We use this context to motivate
both the model domain setup of the following synthetic experiment and
the subsequent inversion. The inversion results and script for reproduc-
ing the results can be found on FigShare (Cockett and Haber, 2015).

For the inverse problem solved here, we assume that time-lapse
water-content information is available at many locations in the subsur-
face. In reality, water content information may only be available through
proxy techniques, such as electrical resistivity methods. These proxy data
can be related to hydrogeologic parameters using inversion techniques
based solely on the geophysical inputs (cf. Mawer et al. (2013)). For the
following numerical experiments, we do not address complications in
empirical transformations, such as Archie’s equation (Archie, 1942). For
calculation of synthetic data, the initial conditions are a dry soil with a
homogeneous pressure head (ψ ¼ �30 cm). The boundary conditions
applied simulate an infiltration front applied at the top of the model, ψ ¼
�10 cm 2 δΩtop. Neumann (no-flux) boundary conditions are used on the
sides of the model domain. The synthetic numerical model has a domain
with dimensions 2.0 m � 2.0m � 2.6m for the x, y, and z dimensions,
respectively. The finest discretization used is 4 cm in each direction, after
120 cm depth we increase the cell size in the z-direction by a factor of 1.1
to distance the measurement locations from the bottom of the model
domain (Figure 4). We use an exponentially expanding time discretiza-
tion with 40 time steps and a total time of 12.3 h. This choice in dis-
cretization leads to a mesh with 1.125� 105 cells in space (50� 50�
45). To create a 3D varying soil structure, we construct a model for this
domain using a 3D, uniformly random field, 2 ½0;2�, that is convolved
with an anisotropic smoothing kernel for a number of iterations. We
create a binary distribution from this random field by splitting the values
above and below unity. Figure 3 shows the resulting model, which re-
veals potential flow paths. We then map van Genuchten parameters to
this synthetic model as either a sand or a loamy-sand. The van Genuchten
parameters for sand are: Ks: 5.83e-05m/s, α: 13.8, θr : 0.02, θs: 0.417, and
n: 1.592; and for loamy-sand are: Ks: 1.69e-05m/s, α: 11.5, θr : 0.035, θs:
0.401, and n: 1.474.

Figure 4a and 4b shows two cross-sections at time 5.2 h and 10.3 h of
the pressure head field from the forward simulation. These figures show
true soil type model as an outline, where the inclusions are the less
hydraulically-conductive loamy sand. The pressure head field is contin-
uous across soil type boundaries and shows the infiltration moving
vertically down in the soil column. We can compute the water content
field from the pressure head field using the nonlinear van Genuchten
model chosen; Figure 4c and 4d shows this computation at the same
times. The loamy sand has a higher relative water content for the same
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pressure head and the water content field is discontinuous across soil
type boundaries, as expected.

The observed data, which will be used for the inversion, is collected
from the water content field at the points indicated in both Figure 4c and
4d. The sampling location and density of this 3D grid within the model
domain is similar to the resolution of a 3D electrical resistivity survey.
Our implementation supports data as either water content or pressure
head; however, proxy water content data is more realistic in this context.
Similar to the field example in Pidlisecky et al. (2013), we collect water
content data every 18min over the entire simulation, leading to a total of
5000 spatially and temporally extensive measurements. The observed
water content data for a single infiltration curve is plotted through depth
in Figure 5. The green circles in Figure 4 show the locations of these
water content measurements. The depth of each observation location is
annotated, with the shallow measurements being first to increase in
water content over the course of the infiltration experiment. To create the
observed dataset, dobs, from the synthetic water content field, 1%
Gaussian noise is added to the true water content field. This noise is
below what can currently be expected from a proxy geophysical mea-
surement of the water content. However, with the addition of more noise,
we must reduce our expectations of our ability to recover the true
parameter distributions from the data. In this experiment, we are inter-
ested in examining what is possible to recover under the best of cir-
cumstances, and therefore have selected a low noise level.

We parameterize these soil types using the van Genuchten empirical
model (eq. (2)) with five spatially distributed properties. Inverting for all
5.625�105 parameters in this simulation with only Ndata ¼ 5000 data
points is a highly underdetermined problem, and thus there are many
possible models that may fit those data. In this 3D example, we will invert
solely for saturated hydraulic conductivity and assume that all other van
Genuchten parameters are equivalent to the sand; that is, they are
parameterized to the incorrect values in the loamy sand. Note that this
assumption, while reasonable in practice, will handicap the results, as the
van Genuchten curves between these two soils differ. Better results can,
of course, be obtained if we assume that the van Genuchten parameters
are known; this assumption is unrealistic in practice, which means that
we will not be able to recreate the data exactly. However, the distribution
of saturated hydraulic conductivity may lead to insights about soil dis-
tributions in the subsurface. The inversion fell below the target misfit of
5000, ϕ�

d � Ndata, at iteration twenty with ϕd ¼ 4:893� 103; the target
misfit was determined based on the interpretation of the data misfit as a
chi-squared variable (cf. Oldenburg and Li (2005)). Figure 6 shows the
results of the inversion for saturated hydraulic conductivity as a map
view slice at 66 cm depth and two vertical sections through the center of
the model domain. The recovered model shows good correlation to the
true distribution of hydraulic properties, which is superimposed as a
dashed outline. Figure 5 shows the predicted data overlaid on the true
data for five water content measurement points through time; these data
are from the center of the model domain. As seen in Figure 5, we do a
good job of fitting the majority of the data. However, there is a tendency
for the predicted infiltration front to arrive before the observed data,
which is especially noticeable at deeper sampling locations. This is likely
128� 128� 128 83.9 419 3.54 4.09

https://travis-ci.org/simpeg/simpeg
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because of the assumption we imposed in the inversion that all other van
Genuchten parameters act as sand rather than loamy sand. In the dis-
tribution of the data residuals this is seen as a long tail, with the majority
of data being fit well and the infiltration front being less resolved. To
better fit the infiltration front a different weighting scheme or data misfit
could be designed; opening up the inversion to other van Genuchten
parameters may also improve the fit of the inversion to the infiltration
front.
5.1. Scalability of the implicit sensitivity

For the forward simulation presented, the Newton root-finding al-
gorithm took 4–12 iterations to converge to a tolerance of 1� 10�4 m on
the pressure head. The inverse problem took 20 iterations of inexact
Gauss-Newtonwith five internal CG iterations used at each iteration. This
led to a total of 222 calls to functions to solve the products Jv and J>z.
For these experiments, we used a single Linux Debian Node on Google
Compute Engine (Intel Sandy Bridge, 16 vCPU, 14.4 GB memory) to run
the simulations and inversion. The forward problem takes approximately
40min to solve. In this simulation, the dense Jacobian matrix would have
562.5 million elements. If we used a finite difference algorithm to
explicitly calculate each of the 1.125e5 columns of the Jacobian with a
simple forward difference, we would require a calculation for each model
parameter – or approximately 8.5 years of computational time.
Furthermore, we would need to recompute the Jacobian at each iteration
of the optimization algorithm. In contrast, if we use the implicit sensi-
tivity algorithm presented in this paper, we can solve the entire inverse
problem in 34.5 h.

Table 2 shows the memory required to store the explicit sensitivity
matrix for a number of mesh sizes and contrasts them to the memory
required to multiply the implicit sensitivity by a vector. These calcula-
tions are modifications on the example presented above and use 5000
data points. The memory requirements are calculated for a single
distributed parameter (Ks) as well as five spatially distributed parameters
(Ks; α; n; θr , or θs). Neither calculation includes the memory required to
solve the matrix system, as such, the reported numbers underestimate the
actual memory requirements for solving the inverse problem. The aim of
this comparison is to demonstrate how the memory requirements scale,
an appropriate solver must also be chosen for either method to solve the
forward problem. When using an explicitly calculated sensitivity matrix
to invert for additional physical properties, the memory footprint in-
creases proportionally to the number of distributed physical properties;
this is not the case for the implicit sensitivity calculation. For example, on
a 128� 128� 128 mesh, the explicit formation of the sensitivity re-
quires 419 GB for five spatially distributed model parameters, which is
five times the requirement for a single distributed model parameter (83.9
GB). For the implicit sensitivity on the same mesh, only 4.09 GB of
memory is required, which is 1.2 times the requirement for a single
distributed model parameter (3.54 GB). For this mesh, inverting for five
spatially distributed parameters requires over 100 times less memory
when using the implicit sensitivity algorithm, allowing these calculations
to be run on modest computational resources.

6. Conclusions

The number of parameters that are estimated in inversions using the
Richards equation has grown and will continue to grow as time-lapse
data and geophysical data integration become standard in hydro-
geological site characterizations. The increase in data quantity and
quality provides the opportunity to estimate spatially distributed hy-
draulic parameters from the Richards equation; doing so requires effi-
cient simulation and inversion strategies. In this paper, we have shown a
computationally efficient derivative-based optimization algorithm that
does not store the Jacobian, but rather computes its effect on a vector (i.e.
Jv or J>z). By not storing the Jacobian, the size of the problem that we
101
can invert becomes much larger. We have presented efficient methods to
compute the Jacobian that can be used for any empirical hydraulic pa-
rameters, even if the functional relationship between parameters is ob-
tained from laboratory experiments.

Our technique allows a deterministic inversion, which includes reg-
ularization, to be formulated and solved for any of the empirical pa-
rameters within the Richards equation. For a full 3D simulation, as many
as ten spatially distributed parameters may be needed, resulting in a
highly non-unique problem. As such, the techniques presented in this
paper will likely have to be used in conjunction with similar advances in
regularization, optimization and joint inversion techniques. Depending
on the setting, amount of a-priori knowledge, quality and quantity of
data, the selection of which parameters to invert for may vary. Our
methodology enables practitioners to experiment in 1D, 2D and 3D with
full simulations and inversions, in order to explore the parameters that
are important to a particular dataset. We have provided a numerical
implementation as an open-source library to encourage experimentation,
application and extension of these ideas.
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