
Proceedings of the 21st

Python in Science Conference

PROCEEDINGS OF THE 21ST PYTHON IN SCIENCE CONFERENCE

Edited by Meghann Agarwal, Chris Calloway, Dillon Niederhut, and David Shupe.

SciPy 2022
Austin, Texas
July 11 - July 17, 2022

Copyright c© 2022. The articles in the Proceedings of the Python in Science Conference are copyrighted and owned by their
original authors

This is an open-access publication and is distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are
credited.

For more information, please see: http://creativecommons.org/licenses/by/3.0/

ISSN:2575-9752
https://doi.org/10.25080/majora-212e5952-046

ORGANIZATION

Conference Chairs
JONATHAN GUYER, NIST
ALEXANDRE CHABOT-LECLERC, Enthought, Inc.

Program Chairs
MATT HABERLAND, Cal Poly
JULIE HOLLEK, Mozilla
MADICKEN MUNK, University of Illinois
GUEN PRAWIROATMODJO, Microsoft Corp

Communications
ARLISS COLLINS, NumFOCUS
MATT DAVIS, Populus
DAVID NICHOLSON, Embedded Intelligence

Birds of a Feather
ANDREW REID, NIST
ANASTASIIA SARMAKEEVA, George Washington University

Proceedings
MEGHANN AGARWAL, Overhaul
CHRIS CALLOWAY, University of North Carolina
DILLON NIEDERHUT, Novi Labs
DAVID SHUPE, Caltech’s IPAC Astronomy Data Center

Financial Aid
SCOTT COLLIS, Argonne National Laboratory
NADIA TAHIRI, Université de Montréal

Tutorials
MIKE HEARNE, USGS
LOGAN THOMAS, Enthought, Inc.

Sprints
TANIA ALLARD, Quansight Labs
BRIGITTA SIPŐCZ, Caltech/IPAC

Diversity
CELIA CINTAS, IBM Research Africa
BONNY P MCCLAIN, O’Reilly Media
FATMA TARLACI, OpenTeams

Activities
PAUL ANZEL, Codecov
INESSA PAWSON, Albus Code

Sponsors
KRISTEN LEISER, Enthought, Inc.

Financial
CHRIS CHAN, Enthought, Inc.
BILL COWAN, Enthought, Inc.
JODI HAVRANEK, Enthought, Inc.

Logistics
KRISTEN LEISER, Enthought, Inc.

Proceedings Reviewers
AILEEN NIELSEN
AJIT DHOBALE
ALEJANDRO COCA-CASTRO
ALEXANDER YANG
BHUPENDRA A RAUT
BRADLEY DICE
BRIAN GUE
CADIOU CORENTIN
CARL SIMON ADORF
CHEN ZHANG
CHIARA MARMO
CHITARANJAN MAHAPATRA
CHRIS CALLOWAY
DANIEL WHEELER
DAVID NICHOLSON
DAVID SHUPE
DILLON NIEDERHUT
DIPTORUP DEB
JELENA MILOSEVIC
MICHAL MACIEJEWSKI
ED ROGERS
HIMAGHNA BHATTACHARJEE
HONGSUP SHIN
INDRANEIL PAUL
IVAN MARROQUIN
JAMES LAMB
JYH-MIIN LIN
JYOTIKA SINGH
KARTHIK MURUGADOSS
KEHINDE AJAYI
KELLY L. ROWLAND
KELVIN LEE
KEVIN MAIK JABLONKA
KEVIN W. BEAM
KUNTAO ZHAO
MARUTHI NH
MATT CRAIG
MATTHEW FEICKERT
MEGHANN AGARWAL
MELISSA WEBER MENDONÇA
ONURALP SOYLEMEZ
ROHIT GOSWAMI
RYAN BUNNEY
SHUBHAM SHARMA
SIDDHARTHA SRIVASTAVA
SUSHANT MORE
TETSUO KOYAMA
THOMAS NICHOLAS
VICTORIA ADESOBA
VIDHI CHUGH
VIVEK SINHA
WENDUO ZHOU
ZUHAL CAKIR

ACCEPTED TALK SLIDES

BUILDING BINARY EXTENSIONS WITH PYBIND11, SCIKIT-BUILD, AND CIBUILDWHEEL, Henry Schreiner, and Joe Rickerby,
and Ralf Grosse-Kunstleve, and Wenzel Jakob, and Matthieu Darbois, and Aaron Gokaslan, and Jean-Christophe Fillion-
Robin, and Matt McCormick
doi.org/10.25080/majora-212e5952-033
PYTHON DEVELOPMENT SCHEMES FOR MONTE CARLO NEUTRONICS ON HIGH PERFORMANCE COMPUTING, Jack-
son P. Morgan, and Kyle E. Niemeyer
doi.org/10.25080/majora-212e5952-034
AWKWARD PACKAGING: BUILDING SCIKIT-HEP, Henry Schreiner, and Jim Pivarski, and Eduardo Rodrigues
doi.org/10.25080/majora-212e5952-035
DEVELOPMENT OF ACCESSIBLE, AESTHETICALLY-PLEASING COLOR SEQUENCES, Matthew A. Petroff
doi.org/10.25080/majora-212e5952-036
CUTTING EDGE CLIMATE SCIENCE IN THE CLOUD WITH PANGEO, Julius Busecke
doi.org/10.25080/majora-212e5952-037
PYLIRA: DECONVOLUTION OF IMAGES IN THE PRESENCE OF POISSON NOISE, Axel Donath, and Aneta Siemiginowska,
and Vinay Kashyap, and Douglas Burke, and Karthik Reddy Solipuram, and David van Dyk
doi.org/10.25080/majora-212e5952-038
ACCELERATING SCIENCE WITH THE GENERATIVE TOOLKIT FOR SCIENTIFIC DISCOVERY (GT4SD), GT4SD team
doi.org/10.25080/majora-212e5952-039
MMODEL: A MODULAR MODELING FRAMEWORK FOR SCIENTIFIC PROTOTYPING, Peter Sun, and John A. Marohn
doi.org/10.25080/majora-212e5952-03a
MONACO: QUANTIFY UNCERTAINTY AND SENSITIVITIES IN YOUR COMPUTATIONAL MODELS WITH A MONTE
CARLO LIBRARY, W. Scott Shambaugh
doi.org/10.25080/majora-212e5952-03b
UFUNCS AND DTYPES: NEW POSSIBILITIES IN NUMPY, Sebastian Berg, and Stéfan van der Walt
doi.org/10.25080/majora-212e5952-03c
PER PYTHON AD ASTRA: INTERACTIVE ASTRODYNAMICS WITH POLIASTRO, Juan Luis Cano Rodrı́guez
doi.org/10.25080/majora-212e5952-03d
PYAMPUTE: A PYTHON LIBRARY FOR DATA AMPUTATION, Rianne M Schouten, and Davina Zamanzadeh, and Prabhant
Singh
doi.org/10.25080/majora-212e5952-03e
SCIENTIFIC PYTHON: FROM GITHUB TO TIKTOK, Juanita Gomez Romero, and Stéfan van der Walt, and K. Jarrod
Millman, and Melissa Weber Mendonça, and Inessa Pawson
doi.org/10.25080/majora-212e5952-03f
SCIENTIFIC PYTHON: BY MAINTAINERS, FOR MAINTAINERS, Pamphile T. Roy, and Stéfan van der Walt, and K. Jarrod
Millman, and Melissa Weber Mendonça
doi.org/10.25080/majora-212e5952-040
IMPROVING RANDOM SAMPLING IN PYTHON: SCIPY.STATS.SAMPLING AND SCIPY.STATS.QMC, Pamphile T. Roy, and
Matt Haberland, and Christoph Baumgarten, and Tirth Patel
doi.org/10.25080/majora-212e5952-041
PETABYTE-SCALE OCEAN DATA ANALYTICS ON STAGGERED GRIDS VIA THE GRID UFUNC PROTOCOL IN XGCM,
Thomas Nicholas, and Julius Busecke, and Ryan Abernathey
doi.org/10.25080/majora-212e5952-042

ACCEPTED POSTERS

OPTIMAL REVIEW ASSIGNMENTS FOR THE SCIPY CONFERENCE USING BINARY INTEGER LINEAR PROGRAMMING
IN SCIPY 1.9, Matt Haberland, and Nicholas McKibben
doi.org/10.25080/majora-212e5952-029
CONTRIBUTING TO OPEN SOURCE SOFTWARE: FROM NOT KNOWING PYTHON TO BECOMING A SPYDER CORE DE-
VELOPER, Daniel Althviz Moré
doi.org/10.25080/majora-212e5952-02a
SEMI-SUPERVISED SEMANTIC ANNOTATOR (S3A): TOWARD EFFICIENT SEMANTIC IMAGE LABELING, Nathan Jessu-
run, and Olivia P. Dizon-Paradis, and Dan E. Capecci, and Damon L. Woodard, and Navid Asadizanjani
doi.org/10.25080/majora-212e5952-02b
BIOFRAME: OPERATING ON GENOMIC INTERVAL DATAFRAMES, Nezar Abdennur, and Geoffrey Fudenberg, and Ilya
M. Flyamer, and Aleksandra Galitsyna, and Anton Goloborodko, and Maxim Imakaev, and Trevor Manz, and Sergey V.
Venev
doi.org/10.25080/majora-212e5952-02c
LIKENESS: A TOOLKIT FOR CONNECTING THE SOCIAL FABRIC OF PLACE TO HUMAN DYNAMICS, Joseph V. Tuccillo,
and James D. Gaboardi
doi.org/10.25080/majora-212e5952-02d
PYAUDIOPROCESSING: AUDIO PROCESSING, FEATURE EXTRACTION, AND MACHINE LEARNING MODELING, Jy-
otika Singh
doi.org/10.25080/majora-212e5952-02e
KIWI: PYTHON TOOL FOR TEX PROCESSING AND CLASSIFICATION, Neelima Pulagam, and Sai Marasani, and Brian
Sass
doi.org/10.25080/majora-212e5952-02f

PHYLOGEOGRAPHY: ANALYSIS OF GENETIC AND CLIMATIC DATA OF SARS-COV-2, Wanlin Li, and Aleksandr Koshkarov,
and My-Linh Luu, and Nadia Tahiri
doi.org/10.25080/majora-212e5952-030
DESIGN OF A SCIENTIFIC DATA ANALYSIS SUPPORT PLATFORM, Nathan Martindale, and Jason Hite, and Scott Stewart,
and Mark Adams
doi.org/10.25080/majora-212e5952-031
OPENING ARM: A PIVOT TO COMMUNITY SOFTWARE TO MEET THE NEEDS OF USERS AND STAKEHOLDERS OF THE
PLANET’S LARGEST CLOUD OBSERVATORY, Zachary Sherman, and Scott Collis, and Max Grover, and Robert Jackson,
and Adam Theisen
doi.org/10.25080/majora-212e5952-032

SCIPY TOOLS PLENARIES

SCIPY TOOLS PLENARY - CEL TEAM, Inessa Pawson
doi.org/10.25080/majora-212e5952-043
SCIPY TOOLS PLENARY ON MATPLOTLIB, Elliott Sales de Andrade
doi.org/10.25080/majora-212e5952-044
SCIPY TOOLS PLENARY - NUMPY, Inessa Pawson
doi.org/10.25080/majora-212e5952-045

LIGHTNING TALKS

DOWNSAMPLING TIME SERIES DATA FOR VISUALIZATIONS, Delaina Moore
doi.org/10.25080/majora-212e5952-027
ANALYSIS AS APPLICATIONS: QUICK INTRODUCTION TO LOCKFILES, Matthew Feickert
doi.org/10.25080/majora-212e5952-028

SCHOLARSHIP RECIPIENTS

AMAN GOEL, University of Delhi
ANURAG SAHA ROY, Saarland University
ISURU FERNANDO, University of Illinois at Urbana Champaign
KELLY MEEHAN, US Forest Service
KADAMBARI DEVARAJAN, University of Rhode Island
KRISHNA KATYAL, Thapar Institute of Engineering and Technology
MATTHEW MURRAY, Dask
NAMAN GERA, Sympy, LPython
ROHIT GOSWAMI, University of Iceland
SIMON CROSS, QuTIP
TANYA AKUMU, IBM Research
ZUHAL CAKIR, Purdue University

CONTENTS

The Advanced Scientific Data Format (ASDF): An Update 1
Perry Greenfield, Edward Slavich, William Jamieson, Nadia Dencheva

Semi-Supervised Semantic Annotator (S3A): Toward Efficient Semantic Labeling 7
Nathan Jessurun, Daniel E. Capecci, Olivia P. Dizon-Paradis, Damon L. Woodard, Navid Asadizanjani

Galyleo: A General-Purpose Extensible Visualization Solution 13
Rick McGeer, Andreas Bergen, Mahdiyar Biazi, Matt Hemmings, Robin Schreiber

USACE Coastal Engineering Toolkit and a Method of Creating a Web-Based Application 22
Amanda Catlett, Theresa R. Coumbe, Scott D. Christensen, Mary A. Byrant

Search for Extraterrestrial Intelligence: GPU Accelerated TurboSETI 26
Luigi Cruz, Wael Farah, Richard Elkins

Experience report of physics-informed neural networks in fluid simulations: pitfalls and frustration 28
Pi-Yueh Chuang, Lorena A. Barba

atoMEC: An open-source average-atom Python code 37
Timothy J. Callow, Daniel Kotik, Eli Kraisler, Attila Cangi

Automatic random variate generation in Python 46
Christoph Baumgarten, Tirth Patel

Utilizing SciPy and other open source packages to provide a powerful API for materials manipulation in the Schrödinger
Materials Suite 52
Alexandr Fonari, Farshad Fallah, Michael Rauch

A Novel Pipeline for Cell Instance Segmentation, Tracking and Motility Classification of Toxoplasma Gondii in 3D Space 60
Seyed Alireza Vaezi, Gianni Orlando, Mojtaba Fazli, Gary Ward, Silvia Moreno, Shannon Quinn

The myth of the normal curve and what to do about it 64
Allan Campopiano

Python for Global Applications: teaching scientific Python in context to law and diplomacy students 69
Anna Haensch, Karin Knudson

Papyri: better documentation for the scientific ecosystem in Jupyter 75
Matthias Bussonnier, Camille Carvalho

Bayesian Estimation and Forecasting of Time Series in statsmodels 83
Chad Fulton

Python vs. the pandemic: a case study in high-stakes software development 90
Cliff C. Kerr, Robyn M. Stuart, Dina Mistry, Romesh G. Abeysuriya, Jamie A. Cohen, Lauren George, Michał
Jastrzebski, Michael Famulare, Edward Wenger, Daniel J. Klein

Pylira: deconvolution of images in the presence of Poisson noise 98
Axel Donath, Aneta Siemiginowska, Vinay Kashyap, Douglas Burke, Karthik Reddy Solipuram, David van Dyk

Codebraid Preview for VS Code: Pandoc Markdown Preview with Jupyter Kernels 105
Geoffrey M. Poore

Incorporating Task-Agnostic Information in Task-Based Active Learning Using a Variational Autoencoder 110
Curtis Godwin, Meekail Zain, Nathan Safir, Bella Humphrey, Shannon P Quinn

Awkward Packaging: building Scikit-HEP 115
Henry Schreiner, Jim Pivarski, Eduardo Rodrigues

Keeping your Jupyter notebook code quality bar high (and production ready) with Ploomber 121
Ido Michael

Likeness: a toolkit for connecting the social fabric of place to human dynamics 125
Joseph V. Tuccillo, James D. Gaboardi

poliastro: a Python library for interactive astrodynamics 136
Juan Luis Cano Rodrı́guez, Jorge Martı́nez Garrido

A New Python API for Webots Robotics Simulations 147
Justin C. Fisher

pyAudioProcessing: Audio Processing, Feature Extraction, and Machine Learning Modeling 152
Jyotika Singh

Phylogeography: Analysis of genetic and climatic data of SARS-CoV-2 159
Aleksandr Koshkarov, Wanlin Li, My-Linh Luu, Nadia Tahiri

Global optimization software library for research and education 167
Nadia Udler

Temporal Word Embeddings Analysis for Disease Prevention 171
Nathan Jacobi, Ivan Mo, Albert You, Krishi Kishore, Zane Page, Shannon P. Quinn, Tim Heckman

Design of a Scientific Data Analysis Support Platform 179
Nathan Martindale, Jason Hite, Scott Stewart, Mark Adams

The Geoscience Community Analysis Toolkit: An Open Development, Community Driven Toolkit in the Scientific Python
Ecosystem 187
Orhan Eroglu, Anissa Zacharias, Michaela Sizemore, Alea Kootz, Heather Craker, John Clyne

popmon: Analysis Package for Dataset Shift Detection 194
Simon Brugman, Tomas Sostak, Pradyot Patil, Max Baak

pyDAMPF: a Python package for modeling mechanical properties of hygroscopic materials under interaction with a nanoprobe
202
Willy Menacho, Gonzalo Marcelo Ramı́rez-Ávila, Horacio V. Guzman

Improving PyDDA’s atmospheric wind retrievals using automatic differentiation and Augmented Lagrangian methods 210
Robert Jackson, Rebecca Gjini, Sri Hari Krishna Narayanan, Matt Menickelly, Paul Hovland, Jan Hückelheim, Scott
Collis

RocketPy: Combining Open-Source and Scientific Libraries to Make the Space Sector More Modern and Accessible 217
João Lemes Gribel Soares, Mateus Stano Junqueira, Oscar Mauricio Prada Ramirez, Patrick Sampaio dos Santos
Brandão, Adriano Augusto Antongiovanni, Guilherme Fernandes Alves, Giovani Hidalgo Ceotto

Wailord: Parsers and Reproducibility for Quantum Chemistry 226
Rohit Goswami

Variational Autoencoders For Semi-Supervised Deep Metric Learning 231
Nathan Safir, Meekail Zain, Curtis Godwin, Eric Miller, Bella Humphrey, Shannon P Quinn

A Python Pipeline for Rapid Application Development (RAD) 240
Scott D. Christensen, Marvin S. Brown, Robert B. Haehnel, Joshua Q. Church, Amanda Catlett, Dallon C. Schofield,
Quyen T. Brannon, Stacy T. Smith

Monaco: A Monte Carlo Library for Performing Uncertainty and Sensitivity Analyses 244
W. Scott Shambaugh

Enabling Active Learning Pedagogy and Insight Mining with a Grammar of Model Analysis 251
Zachary del Rosario

Low Level Feature Extraction for Cilia Segmentation 259
Meekail Zain, Eric Miller, Shannon P Quinn, Cecilia Lo

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022) 1

The Advanced Scientific Data Format (ASDF): An
Update

Perry Greenfield‡∗, Edward Slavich‡†, William Jamieson‡†, Nadia Dencheva‡†

F

Abstract—We report on progress in developing and extending the new (ASDF)
format we have developed for the data from the James Webb and Nancy Grace
Roman Space Telescopes since we reported on it at a previous Scipy. While
the format was developed as a replacement for the long-standard FITS format
used in astronomy, it is quite generic and not restricted to use with astronomical
data. We will briefly review the format, and extensions and changes made to
the standard itself, as well as to the reference Python implementation we have
developed to support it. The standard itself has been clarified in a number
of respects. Recent improvements to the Python implementation include an
improved framework for conversion between complex Python objects and ASDF,
better control of the configuration of extensions supported and versioning of
extensions, tools for display and searching of the structured metadata, bet-
ter developer documentation, tutorials, and a more maintainable and flexible
schema system. This has included a reorganization of the components to make
the standard free from astronomical assumptions. A important motivator for the
format was the ability to support serializing functional transforms in multiple
dimensions as well as expressions built out of such transforms, which has now
been implemented. More generalized compression schemes are now enabled.
We are currently working on adding chunking support and will discuss our plan
for further enhancements.

Index Terms—data formats, standards, world coordinate systems, yaml

Introduction

The Advanced Scientific Data Format (ASDF) was originally
developed in 2015. That original version was described in a paper
[Gre15]. That paper described the shortcomings of the widely used
astronomical standard format FITS [FIT16] as well as those of
existing potential alternatives. It is not the goal of this paper to
rehash those points in detail, though it is useful to summarize the
basic points here. The remainder of this paper will describe where
we are using ASDF, what lessons we have learned from using
ASDF for the James Webb Space Telescope, and summarize the
most important changes we have made to the standard, the Python
library that we use to read and write ASDF files, and best practices
for using the format.

We will give an example of a more advanced use case that
illustrates some of the powerful advantages of ASDF, and that
its application is not limited to astronomy, but suitable for much
of scientific and engineering data, as well as models. We finish

* Corresponding author: perry@stsci.edu
‡ Space Telescope Science Institute
† These authors contributed equally.

Copyright © 2022 Perry Greenfield et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

by outlining our near term plans for further improvements and
extensions.

Summary of Motivations

• Suitable as an archival format:

– Old versions continue to be supported by
libraries.

– Format is sufficiently transparent (e.g., not
requiring extensive documentation to de-
code) for the fundamental set of capabili-
ties.

– Metadata is easily viewed with any text
editor.

• Intrinsically hierarchical
• Avoids duplication of shared items
• Based on existing standard(s) for metadata and structure
• No tight constraints on attribute lengths or their values.
• Clearly versioned
• Supports schemas for validating files for basic structure

and value requirements
• Easily extensible, both for the standard, and for local or

domain-specific conventions.

Basics of ASDF Format

• Format consists of a YAML header optionally followed by
one or more binary blocks for containing binary data.

• The YAML [http://yaml.org] header contains all the meta-
data and defines the structural relationship of all the data
elements.

• YAML tags are used to indicate to libraries the semantics
of subsections of the YAML header that libraries can use to
construct special software objects. For example, a tag for
a data array would indicate to a Python library to convert
it into a numpy array.

• YAML anchors and alias are used to share common ele-
ments to avoid duplication.

• JSON Schema [http://json-schema.org/specification.html],
[http://json-schema.org/understanding-json-schema/] is
used for schemas to define expectations for tag content
and whole headers combined with tools to validate actual
ASDF files against these schemas.

• Binary blocks are referenced in the YAML to link binary
data to YAML attributes.

• Support for arrays embedded in YAML or in a binary
block.

2 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

• Streaming support for a single binary block.
• Permit local definitions of tags and schemas outside of the

standard.
• While developed for astronomy, useful for general scien-

tific or engineering use.
• Aims to be language neutral.

Current and planned uses

James Webb Space Telescope (JWST)

NASA requires JWST data products be made available in the
FITS format. Nevertheless, all the calibration pipelines operate
on the data using an internal objects very close to the the ASDF
representation. The JWST calibration pipeline uses ASDF to
serialize data that cannot be easily represented in FITS, such as
World Coordinate System information. The calibration software
is also capable of reading and producing data products as pure
ASDF files.

Nancy Grace Roman Space Telescope

This telescope, with the same mirror size as the Hubble Space
Telescope (HST), but a much larger field of view than HST, will
be launched in 2026 or thereabouts. It is to be used mostly in
survey mode and is capable of producing very large mosaicked
images. It will use ASDF as its primary data format.

Daniel K Inoue Solar Telescope

This telescope is using ASDF for much of the early data products
to hold the metadata for a combined set of data which can involve
many thousands of files. Furthermore, the World Coordinate
System information is stored using ASDF for all the referenced
data.

Vera Rubin Telescope (for World Coordinate System interchange)

There have been users outside of astronomy using ASDF, as well
as contributors to the source code.

Changes to the standard (completed and proposed)

These are based on lessons learned from usage.
The current version of the standard is 1.5.0 (1.6.0 being

developed).
The following items reflect areas where we felt improvements

were needed.

Changes for 1.5

Moving the URI authority from stsci.edu to
asdf-format.org

This is to remove the standard from close association with STScI
and make it clear that the format is not intended to be controlled
by one institution.

Moving astronomy-specific schemas out of standard

These primarily affect the previous inclusion of World Coordinate
Tags, which are strongly associated with astronomy. Remaining
are those related to time and unit standards, both of obvious gen-
erality, but the implementation must be based on some standards,
and currently the astropy-based ones are as good or better than
any.

Changes for 1.6

Addition of the manifest mechanism

The manifest is a YAML document that explicitly lists the tags and
other features introduced by an extension to the ASDF standard.
It provides a more straightforward way of associating tags with
schemas, allowing multiple tags to share the same schema, and
generally making it simpler to visualize how tags and schemas
are associated (previously these associations were implied by the
Python implementation but were not documented elsewhere).

Handling of null values and their interpretation

The standard didn’t previously specify the behavior regarding null
values. The Python library previously removed attributes from the
YAML tree when the corresponding Python attribute has a None
value upon writing to an ADSF file. On reading files where the
attribute was missing but the schema indicated a default value,
the library would create the Python attribute with the default. As
mentioned in the next item, we no longer use this mechanism, and
now when written, the attribute appears in the YAML tree with
a null value if the Python value is None and the schema permits
null values.

Interpretation of default values in schema

The use of default values in schemas is discouraged since the
interpretation by libraries is prone to confusion if the assemblage
of schemas conflict with regard to the default. We have stopped
using defaults in the Python library and recommend that the ASDF
file always be explicit about the value rather than imply it through
the schema. If there are practical cases that preclude always
writing out all values (e.g., they are only relevant to one mode
and usually are irrelevant), it should be the library that manages
whether such attributes are written conditionally rather using the
schema default mechanism.

Add alternative tag URI scheme

We now recommend that tag URIs begin with asdf://

Be explicit about what kind of complex YAML keys are supported

For example, not all legal YAML keys are supported. Namely
YAML arrays, which are not hashable in Python. Likewise,
general YAML objects are not either. The Standard now limits
keys to string, integer, or boolean types. If more complex keys are
required, they should be encoded in strings.

Still to be done

Upgrade to JSON Schema draft-07

There is interest in some of the new features of this version,
however, this is problematic since there are aspects of this version
that are incompatible with draft-04, thus requiring all previous
schemas to be updated.

Replace extensions section of file history

This section is considered too specific to the concept of Python
extensions, and is probably best replaced with a more flexible
system for listing extensions used.

THE ADVANCED SCIENTIFIC DATA FORMAT (ASDF): AN UPDATE 3

Changes to Python ASDF package

Easier and more flexible mechanism to create new extensions
(2.8.0)

The previous system for defining extensions to ASDF, now
deprecated, has been replaced by a new system that makes the
association between tags, schemas, and conversion code more
straightforward, as well as providing more intuitive names for the
methods and attributes, and makes it easier to handle reference
cycles if they are present in the code (also added to the original
Tag handling classes).

Introduced global configuration mechanism (2.8.0)

This reworks how ASDF resources are located, and makes it easier
to update the current configuration, as well as track down the
location of the needed resources (e.g., schemas and converters),
as well as removing performance issues that previously required
extracting information from all the resource files thus slowing the
first asdf.open call.

Added info/search methods and command line tools (2.6.0)

These allow displaying the hierarchical structure of the header and
the values and types of the attributes. Initially, such introspection
stopped at any tagged item. A subsequent change provides mech-
anisms to see into tagged items (next item). An example of these
tools is shown in a later section.

Added mechanism for info to display tagged item contents (2.9.0)

This allows the library that converts the YAML to Python objects
to expose a summary of the contents of the object by supplying
an optional "dunder" method that the info mechanism can take
advantage of.

Added documentation on how ASDF library internals work

These appear in the readthedocs under the heading "Developer
Overview".

Plugin API for block compressors (2.8.0)

This enables a localized extension to support further compression
options.

Support for asdf:// URI scheme (2.8.0)

Support for ASDF Standard 1.6.0 (2.8.0)

This is still subject to modifications to the 1.6.0 standard.

Modified handling of defaults in schemas and None values (2.8.0)

As described previously.

Using ASDF to store models

This section highlights one aspect of ASDF that few other formats
support in an archival way, e.g., not using a language-specific
mechanism, such as Python’s pickle. The astropy package contains
a modeling subpackage that defines a number of analytical, as well
as a few table-based, models that can be combined in many ways,
such as arithmetically, in composition, or multi-dimensional. Thus
it is possible to define fairly complex multi-dimensional models,
many of which can use the built in fitting machinery.

These models, and their compound constructs can be saved
in ASDF files and later read in to recreate the corresponding
astropy objects that were used to create the entries in the ASDF

Fig. 1: A plot of the compound model defined in the first segment of
code.

file. This is made possible by the fact that expressions of models
are straightforward to represent in YAML structure.

Despite the fact that the models are in some sense executable,
they are perfectly safe so long as the library they are implemented
in is safe (e.g., it doesn’t implement an "execute any OS com-
mand" model). Furthermore, the representation in ASDF does not
explicitly use Python code. In principle it could be written or read
in any computer language.

The following illustrates a relatively simple but not trivial
example.

First we define a 1D model and plot it.
import numpy as np
import astropy.modeling.models as amm
import astropy.units as u
import asdf
from matplotlib import pyplot as plt

Define 3 model components with units
g1 = amm.Gaussian1D(amplitude=100*u.Jy,

mean=120*u.MHz,
stddev=5.*u.MHz)

g2 = amm.Gaussian1D(65*u.Jy, 140*u.MHz, 3*u.MHz)
powerlaw = amm.PowerLaw1D(amplitude=10*u.Jy,

x_0=100*u.MHz,
alpha=3)

Define a compound model
model = g1 + g2 + powerlaw
x = np.arange(50, 200) * u.MHz
plt.plot(x, model(x))

The following code will save the model to an ASDF file, and read
it back in
af = asdf.AsdfFile()
af.tree = {'model': model}
af.write_to('model.asdf')
af2 = asdf.open('model.asdf')
model2 = af2['model']
model2 is model

False
model2(103.5) == model(103.5)

True

Listing the relevant part of the ASDF file illustrates how the model
has been saved in the YAML header (reformatted to fit in this paper
column).
model: !transform/add-1.2.0
forward:

4 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

- !transform/add-1.2.0
forward:
- !transform/gaussian1d-1.0.0
amplitude: !unit/quantity-1.1.0
{unit: !unit/unit-1.0.0 Jy, value: 100.0}

bounding_box:
- !unit/quantity-1.1.0
{unit: !unit/unit-1.0.0 MHz, value: 92.5}

- !unit/quantity-1.1.0
{unit: !unit/unit-1.0.0 MHz, value: 147.5}

bounds:
stddev: [1.1754943508222875e-38, null]

inputs: [x]
mean: !unit/quantity-1.1.0
{unit: !unit/unit-1.0.0 MHz, value: 120.0}

outputs: [y]
stddev: !unit/quantity-1.1.0
{unit: !unit/unit-1.0.0 MHz, value: 5.0}

- !transform/gaussian1d-1.0.0
amplitude: !unit/quantity-1.1.0
{unit: !unit/unit-1.0.0 Jy, value: 65.0}

bounding_box:
- !unit/quantity-1.1.0
{unit: !unit/unit-1.0.0 MHz, value: 123.5}

- !unit/quantity-1.1.0
{unit: !unit/unit-1.0.0 MHz, value: 156.5}

bounds:
stddev: [1.1754943508222875e-38, null]

inputs: [x]
mean: !unit/quantity-1.1.0
{unit: !unit/unit-1.0.0 MHz, value: 140.0}

outputs: [y]
stddev: !unit/quantity-1.1.0
{unit: !unit/unit-1.0.0 MHz, value: 3.0}

inputs: [x]
outputs: [y]

- !transform/power_law1d-1.0.0
alpha: 3.0
amplitude: !unit/quantity-1.1.0
{unit: !unit/unit-1.0.0 Jy, value: 10.0}

inputs: [x]
outputs: [y]
x_0: !unit/quantity-1.1.0
{unit: !unit/unit-1.0.0 MHz, value: 100.0}

inputs: [x]
outputs: [y]

...

Note that there are extra pieces of information that define the
model more precisely. These include:

• many tags indicating special items. These include different
kinds of transforms (i.e., functions), quantities (i.e., num-
bers with units), units, etc.

• definitions of the units used.
• indications of the valid range of the inputs or parameters

(bounds)
• each function shows the mapping of the inputs and the

naming of the outputs of each function.
• the addition operator is itself a transform.

Without the use of units, the YAML would be simpler. But
the point is that the YAML easily accommodates expression trees.
The tags are used by the library to construct the astropy models,
units and quantities as Python objects. However, nothing in the
above requires the library to be written in Python.

This machinery can handle multidimensional models and sup-
ports both the combining of models with arithmetic operators as
well as pipelining the output of one model into another. This
system has been used to define complex coordinate transforms
from telescope detectors to sky coordinates for imaging, and
wavelengths for spectrographs, using over 100 model components,

something that the FITS format had no hope of managing, nor any
other scientific format that we are aware of.

Displaying the contents of ASDF files

Functionality has been added to display the structure and content
of the header (including data item properties), with a number of
options of what depth to display, how many lines to display, etc.
An example of the info use is shown in Figure 2.

There is also functionality to search for items in the file by
attribute name and/or values, also using pattern matching for
either. The search results are shown as attribute paths to the items
that were found.

ASDF Extension/Converter System

There are a number of components that are involved. Converters
encapsulate the code that handles converting Python objects to
and from their ASDF representation. These are classes that inherit
from the basic Converter class and define two Class attributes:
tags, types each of which is a list of associated tag(s) and class(es)
that the specific converter class will handle (each converter can
handle more than one tag type and more than one class). The
ASDF machinery uses this information to map tags to converters
when reading ASDF content, and to map types to converters when
saving these objects to an ASDF file.

Each converter class is expected to supply two methods:
to_yaml_tree and from_yaml_tree that construct the
YAML content and convert the YAML content to Python class
instances respectively.

A manifest file is used to associate tags and schema ID’s
so that if a schema has been defined, that the ASDF content
can be validated against the schema (as well as providing extra
information for the ASDF content in the info command). Normally
the converters and manifest are registered with the ASDF library
using standard functions, and this registration is normally (but is
not required to be) triggered by use of Python entry points defined
in the setup.cfg file so that this extension is automatically
recognized when the extension package is installed.

One can of course write their own custom code to convert the
contents of ASDF files however they want. The advantage of the
tag/converter system is that the objects can be anywhere in the tree
structure and be properly saved and recovered without having any
implied knowledge of what attribute or location the object is at.
Furthermore, it brings with it the ability to validate the contents
by use of schema files.

Jupyter tutorials that show how to use converters can be found
at:

• https://github.com/asdf-format/tutorials/blob/master/
Your_first_ASDF_converter.ipynb

• https://github.com/asdf-format/tutorials/blob/master/
Your_second_ASDF_converter.ipynb

ASDF Roadmap for STScI Work

The planned enhancements to ASDF are understandably focussed
on the needs of STScI missions. Nevertheless, we are particularly
interested in areas that have wider benefit to the general scientific
and engineering community, and such considerations increase the
priority of items necessary to STScI. Furthermore, we are eager
to aid others working on ASDF by providing advice, reviews, and

THE ADVANCED SCIENTIFIC DATA FORMAT (ASDF): AN UPDATE 5

Fig. 2: This shows part of the output of the info command that shows the structure of a Roman Space Telescope test file (provided by the Roman
Telescopes Branch at STScI). Displayed is the relative depth of the item, its type, value, and a title extracted from the associated schema to be
used as explanatory information.

possibly collaborative coding effort. STScI is committed to the
long-term support of ADSF.

The following is a list of planned work, in order of decreasing
priority.

Chunking Support

Since the Roman mission is expected to deal with large data
sets and mosaicked images, support for chunking is considered
essential. We expect to layer the support in our Python library
on zarr [https://zarr.dev/], with two different representations,
one where all data is contained within the ADSF file in separate
blocks, and one where the blocks are saved in individual files.
Both representations have important advantages and use cases.

Improvements to binary block management

These enhancements are needed to enable better chunking support
and other capabilities.

Redefining versioning semantics

Previously the meaning of different levels of versioning
were unclear. The normal inclination is to treat schema
version using the typical semantic versioning system de-
fined for software. But schemas are not software and
we are inclined to use the proposed system for schemas
[url: https://snowplowanalytics.com/blog/2014/05/13/introducing-
schemaver-for-semantic-versioning-of-schemas/] To summarize:
in this case the three levels of versioning correspond to:

Model.Revision.Addition where a schema change:

• [Model] prevents working with historical data
• [Revision] may prevent working with historical data
• [Addition] is compatible with all historical data

Integration into astronomy display tools

It is essential that astronomers be able to visualize the data
contained within ASDF files conveniently using the commonly
available tool, such as SAOImage DS9 [Joy03] and Ginga [Jes13].

6 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Cloud optimized storage

Much of the future data processing operations for STScI are
expected to be performed on the cloud, so having ASDF efficiently
support such uses is important. An important element of this is
making the format work efficiently with object storage services
such as AWS S3 and Google Cloud Storage.

IDL support

While Python is rapidly surpassing the use of IDL in astronomy,
there is still much IDL code being used, and many of those still
using IDL are in more senior and thus influential positions (they
aren’t quite dead yet). So making ASDF data at least readable to
IDL is a useful goal.

Support Rice compression

Rice compression [Pen09], [Pen10] has proven a useful lossy
compression algorithm for astronomical imaging data. Supporting
it will be useful to astronomers, particularly for downloading large
imaging data sets.

Pandas Dataframe support

Pandas [McK10] has proven to be a useful tool to many as-
tronomers, as well as many in the sciences and engineering, so
support will enhance the uptake of ASDF.

Compact, easy-to-read schema summaries

Most scientists and even scientific software developers tend to
find JSON Schema files tedious to interpret. A more compact, and
intuitive rendering of the contents would be very useful.

Independent implementation

Having ASDF accepted as a standard data format requires a library
that is divorced from a Python API. Initially this can be done most
easily by layering it on the Python library, but ultimately there
should be an independent implementation which includes support
for C/C++ wrappers. This is by far the item that will require the
most effort, and would benefit from outside involvement.

Provide interfaces to other popular packages

This is a catch all for identifying where there would be significant
advantages to providing the ability to save and recover information
in the ASDF format as an interchange option.

Sources of Information

• ASDF Standard: https://asdf-standard.readthedocs.io/en/
latest/

• Python ASDF package documentation: https://asdf.
readthedocs.io/en/stable/

• Repository: https://github.com//asdf-format/asdf
• Tutorials: https://github.com/asdf-format/tutorials

REFERENCES

[Gre15] P. Greenfield, M. Droettboom, E. Bray. ASDF: A new data format
for astronomy, Astronomy and Computing, 12:240-251, September
2015. https://doi.org/10.1016/j.ascom.2015.06.004

[FIT16] FITS Working Group. Definition of the Flexible Image Transport
System, International Astronomical Union, http://fits.gsfc.nasa.gov/
fits_standard.html, July 2016.

[Jes13] E. Jeschke. Ginga: an open-source astronomical image viewer and
toolkit, Proc. of the 12th Python in Science Conference., p58-
64,January 2013. https://doi.org/10.25080/Majora-8b375195-00a

[McK10] W. McKinney. Data structures for statistical computing in python,
Proceedigns of the 9th Python in Science Conference, p56-61, 2010.
https://doi.org/10.25080/Majora-92bf1922-00a

[Pen09] W. Pence, R. Seaman, R. L. White, Lossless Astronomical Image
Compression and the Effects of Noise, Publications of the Astro-
nomical Society of the Pacific, 121:414-427, April 2009. https:
//doi.org/10.48550/arXiv.0903.2140

[Pen10] W. Pence, R. L. White, R. Seaman. Optimal Compression of Floating-
Point Astronomical Images Without Significant Loss of Information,
Publications of the Astronomical Society of the Pacific, 122:1065-
1076, September 2010. https://doi.org/10.1086/656249

[Joy03] W. A. Joye, E. Mandel. New Features of SAOImage DS9, Astronomi-
cal Data Analysis Software and Systems XII ASP Conference Series,
295:489, 2003.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022) 7

Semi-Supervised Semantic Annotator (S3A): Toward
Efficient Semantic Labeling

Nathan Jessurun‡∗, Daniel E. Capecci‡, Olivia P. Dizon-Paradis‡, Damon L. Woodard‡, Navid Asadizanjani‡

F

Abstract—Most semantic image annotation platforms suffer severe bottlenecks
when handling large images, complex regions of interest, or numerous distinct
foreground regions in a single image. We have developed the Semi-Supervised
Semantic Annotator (S3A) to address each of these issues and facilitate rapid
collection of ground truth pixel-level labeled data. Such a feat is accomplished
through a robust and easy-to-extend integration of arbitrary python image pro-
cessing functions into the semantic labeling process. Importantly, the framework
devised for this application allows easy visualization and machine learning
prediction of arbitrary formats and amounts of per-component metadata. To our
knowledge, the ease and flexibility offered are unique to S3A among all open-
source alternatives.

Index Terms—Semantic annotation, Image labeling, Semi-supervised, Region
of interest

Introduction

Labeled image data is essential for training, tuning, and evaluating
the performance of many machine learning applications. Such
labels are typically defined with simple polygons, ellipses, and
bounding boxes (i.e., "this rectangle contains a cat"). However,
this approach can misrepresent more complex shapes with holes
or multiple regions as shown later in Figure 9. When high accuracy
is required, labels must be specified at or close to the pixel-level
- a process known as semantic labeling or semantic segmentation.
A detailed description of this process is given in [CZF+18].
Examples can readily be found in several popular datasets such
as COCO, depicted in Figure 1.

Semantic segmentation is important in numerous domains
including printed circuit board assembly (PCBA) inspection (dis-
cussed later in the case study) [PJTA20], [AML+19], quality
control during manufacturing [FRLL18], [AVK+01], [AAV+02],
manuscript restoration / digitization [GNP+04], [KBO16], [JB92],
[TFJ89], [FNK92], and effective patient diagnosis [SKM+10],
[RLO+17], [YPH+06], [IGSM14]. In all these cases, imprecise
annotations severely limit the development of automated solutions
and can decrease the accuracy of standard trained segmentation
models.

Quality semantic segmentation is difficult due to a reliance on
large, high-quality datasets, which are often created by manually
labeling each image. Manual annotation is error-prone, costly,

* Corresponding author: njessurun@ufl.edu
‡ University of Florida

Copyright © 2022 Nathan Jessurun et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Fig. 1. Common use cases for semantic segmentation involve relatively few fore-
ground objects, low-resolution data, and limited complexity per object. Images
retrieved from https://cocodataset.org/#explore.

and greatly hinders scalability. As such, several tools have been
proposed to alleviate the burden of collecting these ground-truth
labels [itL18]. Unfortunately, existing tools are heavily biased
toward lower-resolution images with few regions of interest (ROI),
similar to Figure 1. While this may not be an issue for some
datasets, such assumptions are crippling for high-fidelity images
with hundreds of annotated ROIs [LSA+10], [WYZZ09].

With improving hardware capabilities and increasing need for
high-resolution ground truth segmentation, there are a continu-
ally growing number of applications that require high-resolution
imaging with the previously described characteristics [MKS18],
[DS20]. In these cases, the existing annotation tooling greatly
impacts productivity due to the previously referenced assumptions
and lack of support [Spa20].

In response to these bottlenecks, we present the Semi-
Supervised Semantic Annotation (S3A) annotation and prototyping
platform -- an application which eases the process of pixel-level
labeling in large, complex scenes.1 Its graphical user interface is
shown in Figure 2. The software includes live app-level property
customization, real-time algorithm modification and feedback,
region prediction assistance, constrained component table editing
based on allowed data types, various data export formats, and a
highly adaptable set of plugin interfaces for domain-specific exten-
sions to S3A. Beyond software improvements, these features play
significant roles in bridging the gap between human annotation
efforts and scalable, automated segmentation methods [BWS+10].

8 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 2. S3A’s interface. The main view consists of an image to annotate, a
component table of prior annotations, and a toolbar which changes functionality
depending on context.

Application Overview

Design decisions throughout S3A’s architecture have been driven
by the following objectives:

• Metadata should have significance rather than be treated
as an afterthought,

• High-resolution images should have minimal impact on
the annotation workflow,

• ROI density and complexity should not limit annotation
workflow, and

• Prototyping should not be hindered by application com-
plexity.

These motives were selected upon noticing the general lack
of solutions for related problems in previous literature and tool-
ing. Moreover, applications that do address multiple aspects of
complex region annotation often require an enterprise service and
cannot be accessed under open-source policies.

While the first three points are highlighted in the case study,
the subsections below outline pieces of S3A’s architecture that
prove useful for iterative algorithm prototyping and dataset gen-
eration as depicted in Figure 3. Note that beyond the facets
illustrated here, S3A possesses multiple additional characteris-
tics as outlined in its documentation (https://gitlab.com/s3a/s3a/-
/wikis/docs/User’s-Guide).

Processing Framework

At the root of S3A’s functionality and configurability lies its
adaptive processing framework. Functions exposed within S3A are
thinly wrapped using a Process structure responsible for parsing
signature information to provide documentation, parameter infor-
mation, and more to the UI. Hence, all graphical depictions are
abstracted beyond the concern of the user while remaining trivial

1. A preliminary version was introduced in an earlier publication [JPRA20],
but significant changes to the framework and tool capabilities have been
employed since then.

Semi-
supervised

labeling

Generate
training data

Update
models

Improve
segmentation

techniques

Fig. 3. S3A’s can iteratively annotate, evaluate, and update its internals in real-
time.

to specify (but can be modified or customized if desired). As a re-
sult, incorporating additional/customized application functionality
can require as little as one line of code. Processes interface with
PyQtGraph parameters to gain access to data-customized widget
types and more (https://github.com/pyqtgraph/pyqtgraph).

These processes can also be arbitrarily nested and chained,
which is critical for developing hierarchical image processing
models, an example of which is shown in Figure 4. This frame-
work is used for all image and region processing within S3A.
Note that for image processes, each portion of the hierarchy yields
intermediate outputs to determine which stage of the process flow
is responsible for various changes. This, in turn, reduces the
effort required to determine which parameters must be adjusted
to achieve optimal performance.

Plugins for User Extensions

The previous section briefly described how custom user functions
are easily wrapped within a process, exposing its parameters
within S3A in a GUI format. A rich plugin interface is built on top
of this capability in which custom functions, table field predictors,
default action hooks, and more can be directly integrated into S3A.
In all cases, only a few lines of code are required to achieve most
integrations between user code and plugin interface specifications.
The core plugin infrastructure consists of a function/property reg-
istration mechanism and an interaction window that shows them
in the UI. As such, arbitrary user functions can be "registered" in
one line of code to a plugin, where it will be effectively exposed to
the user within S3A. A trivial example is depicted in Figure 5, but
more complex behavior such as OCR integration is possible with
similar ease (see this snippet for an implementation leveraging
easyocr).

Plugin features are heavily oriented toward easing the pro-
cess of automation both for general annotation needs and niche
datasets. In either case, incorporating existing library functions is
converted into a trivial task directly resulting in lower annotation
time and higher labeling accuracy.

Adaptable I/O

An extendable I/O framework allows annotations to be used in
a myriad of ways. Out-of-the-box, S3A easily supports instance-
level segmentation outputs, facilitating deep learning model train-
ing. As an example, Figure 6 illustrates how each instance in the
image becomes its own pair of image and mask data. When several
instances overlap, each is uniquely distinguishable depending
on the characteristic of their label field. Particularly helpful for

SEMI-SUPERVISED SEMANTIC ANNOTATOR (S3A): TOWARD EFFICIENT SEMANTIC LABELING 9

Fig. 4. Outputs of each processing stage can be quickly viewed in context after an iteration of annotating. Upon inspecting the results, it is clear the failure point is
a low k value during K-means clustering and segmentation. The woman’s shirt is not sufficiently distinguishable from the background palette to denote a separate
entity. The red dot is an indicator of where the operator clicked during annotation.

from qtpy import QtWidgets
from s3a import (

S3A,
__main__,
RandomToolsPlugin,

)

def hello_world(win: S3A):
QtWidgets.QMessageBox.information(

win, "Hello World", "Hello World!"
)

RandomToolsPlugin.deferredRegisterFunc(
hello_world

)

__main__.mainCli()

Fig. 5. Simple standalone functions can be easily exposed to the user through
the random tools plugin. Note that if tunable parameters were included in the
function signature, pressing "Open Tools" (the top menu option) allows them to
be altered.

models with fixed input sizes, these exports can optionally be
forced to have a uniform shape (e.g., 512x512 pixels) while main-
taining their aspect ratio. This is accomplished by incorporating
additional scene pixels around each object until the appropriate
size is obtained. Models trained on these exports can be directly
plugged back into S3A’s processing framework, allowing them
to generate new annotations or refine preliminary user efforts.
The described I/O framework is also heavily modularized such
that custom dataset specifications can easily be incorporated. In
this manner, future versions of S3A will facilitate interoperability
with popular formats such as COCO and Pascal VOC [LMB+14],
[EGW+10].

Deep, Portable Customizability

Beyond the features previously outlined, S3A provides numerous
avenues to configure shortcuts, color schemes, and algorithm
workflows. Several examples of each can be seen in the user
guide. Most customizable components prototyped within S3A can
also be easily ported to external workflows after development.
Hierarchical processes have states saved in YAML files describing
all parameters, which can be reloaded to create user profiles.
Alternatively, these same files can describe ideal parameter com-

Fig. 6. Multiple export formats exist, among which is a utility that crops com-
ponents out of the image, optionally padding with scene pixels and resizing to
ensure all shapes are equal. Each sub-image and mask is saved accordingly,
which is useful for training on multiple forms of machine learning models.

binations for functions outside S3A in the event they are utilized
in a different framework.

Case Study

Both the inspiration and developing efforts for S3A were initially
driven by optical printed circuit board (PCB) assurance needs.
In this domain, high-resolution images can contain thousands
of complex objects in a scene, as seen in Figure 7. Moreover,
numerous components are not representable by cardinal shapes
such as rectangles, circles, etc. Hence, high-count polygonal
regions dominated a significant portion of the annotated regions.
The computational overhead from displaying large images and
substantial numbers of complex regions either crashed most anno-
tation platforms or prevented real-time interaction. In response,
S3A was designed to fill the gap in open-source annotation
platforms that addressed each issue while requiring minimal setup
and allowing easy prototyping of arbitrary image processing tasks.
The subsections below describe how the S3A labeling platform
was utilized to collect a large database of PCB annotations along
with their associated metadata2.

Large Images with Many Annotations

In optical PCB assurance, one method of identifying component
defects is to localize and characterize all objects in the image. Each

10 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 7. Example PCB segmentation. In contrast to typical semgentation tasks,
the scene contains over 4,000 objects with numerous complex shapes.

component can then be cross-referenced against genuine proper-
ties such as length/width, associated text, allowed orientations,
etc. However, PCB surfaces can contain hundreds to thousands
of components at several magnitudes of size, necessitating high-
resolution images for in-line scanning. To handle this problem
more generally, S3A separates the editing and viewing experi-
ences. In other words, annotation time is orders of magnitude
faster since only edits in one region at a time and on a small subset
of the full image are considered during assisted segmentation. All
other annotations are read-only until selected for alteration. For
instance, Figure 8 depicts user inputs on a small ROI out of a
much larger image. The resulting component shape is proposed
within seconds and can either be accepted or modified further by
the user. While PCB annotations initially inspired this approach, it
is worth noting that the architectural approach applies to arbitrary
domains of image segmentation.

Another key performance improvement comes from resizing
the processed region to a user-defined maximum size. For instance,
if an ROI is specified across a large portion of the image but
the maximum processing size is 500x500 pixels, the processed
area will be downsampled to a maximum dimension length of
500 before intensive algorithms are run. The final output will
be upsampled back to the initial region size. In this manner,
optionally sacrificing a small amount of output accuracy can
drastically accelerate runtime performance for larger annotated
objects.

Complex Vertices/Semantic Segmentation

Multiple types of PCB components possess complex shapes which
might contain holes or noncontiguous regions. Hence, it is bene-
ficial for software like S3A to represent these features inherently
with a ComplexXYVertices object: that is, a collection of
polygons which either describe foreground regions or holes. This
is enabled by thinly wrapping opencv’s contour and hierarchy
logic. Example components difficult to accomodate with single-
polygon annotation formats are illustrated in Figure 9.

At the same time, S3A also supports high-count polygons
with no performance losses. Since region edits are performed by
image processing algorithms, there is no need for each vertex
to be manually placed or altered by human input. Thus, such
non-interactive shapes can simply be rendered as a filled path
without a large number of event listeners present. This is the

Fig. 8. Regardless of total image size and number of annotations, Python
processing is be limited to the ROI or viewbox size for just the selected object
based on user preferences. The depiction shows Grab Cut operating on a user-
defined initial region within a much larger (8000x6000) image. The resulting
region was available in 1.94 seconds on low-grade hardware.

Fig. 9. Annotated objects in S3A can incorporate both holes and distinct regions
through a multi-polygon container. Holes are represented as polygons drawn on
top of existing foreground, and can be arbitrarily nested (i.e. island foreground is
also possible).

key performance improvement when thousands of regions (each
with thousands of points) are in the same field of view. When
low polygon counts are required, S3A also supports RDP polygon
simplification down to a user-specified epsilon parameter [Ram].

Complex Metadata

Most annotation software support robust implementation of im-
age region, class, and various text tags ("metadata"). However,
this paradigm makes collecting type-checked or input-sanitized
metadata more difficult. This includes label categories such as
object rotation, multiclass specifications, dropdown selections,
and more. In contrast, S3A treats each metadata field the same
way as object vertices, where they can be algorithm-assisted,
directly input by the user, or part of a machine learning prediction
framework. Note that simple properties such as text strings or
numbers can be directly input in the table cells with minimal need
for annotation assistance3. In conrast, custom fields can provide
plugin specifications which allow more advanced user interaction.
Finally, auto-populated fields like annotation timestamp or author
can easily be constructed by providing a factory function instead
of default value in the parameter specification.

This capability is particularly relevant in the field of optical
PCB assurance. White markings on the PCB surface, known
as silkscreen, indicate important aspects of nearby components.
Thus, understanding the silkscreen’s orientation, alphanumeric
characters, associated component, logos present, and more provide
several methods by which to characterize / identify features
of their respective devices. Both default and customized input
validators were applied to each field using parameter specifica-
tions, custom plugins, or simple factories as described above. A
summary of the metadata collected for one component is shown
in Figure 10.

SEMI-SUPERVISED SEMANTIC ANNOTATOR (S3A): TOWARD EFFICIENT SEMANTIC LABELING 11

Fig. 10. Metadata can be collected, validated, and customized with ease. A mix
of default properties (strings, numbers, booleans), factories (timestamp, author),
and custom plugins (yellow circle representing associated device) are present.

Conclusion and Future Work

The Semi-Supervised Semantic Annotator (S3A) is proposed to
address the difficult task of pixel-level annotations of image data.
For high-resolution images with numerous complex regions of
interest, existing labeling software faces performance bottlenecks
attempting to extract ground-truth information. Moreover, there is
a lack of capabilities to convert such a labeling workflow into an
automated procedure with feedback at every step. Each of these
challenges is overcome by various features within S3A specifically
designed for such tasks. As a result, S3A provides not only tremen-
dous time savings during ground truth annotation, but also allows
an annotation pipeline to be directly converted into a prediction
scheme. Furthermore, the rapid feedback accessible at every stage
of annotation expedites prototyping of novel solutions to imaging
domains in which few examples of prior work exist. Nonetheless,
multiple avenues exist for improving S3A’s capabilities in each of
these areas. Several prominent future goals are highlighted in the
following sections.

Dynamic Algorithm Builder

Presently, processing workflows can be specified in a sequential
YAML file which describes each algorithm and their respective
parameters. However, this is not easy to adapt within S3A,
especially by inexperienced annotators. Future iterations of S3A
will incoroprate graphical flowcharts which make this process
drastically more intuitive and provide faster feedback. Frameworks
like Orange [DCE+] perform this task well, and S3A would
strongly benefit from adding the relevant capabilities.

Image Navigation Assistance

Several aspects of image navigation can be incorporated to sim-
plify the handling of large images. For instance, a "minimap" tool
would allow users to maintain a global image perspective while
making local edits. Furthermore, this sense of scale aids intuition
of how many regions of similar component density, color, etc. exist
within the entire image.

Second, multiple strategies for annotating large images lever-
age a windowing approach, where they will divide the total image
into several smaller pieces in a gridlike fashion. While this has its
disadvantages, it is fast, easy to automate, and produces reasonable

2. For those curious, the dataset and associated paper are accessible at https:
//www.trust-hub.org/#/data/pcb-images.

3. For a list of input validators and supported primitive types, refer to
PyQtGraph’s Parameter documentation.

results depending on the initial image complexity [VGSG+19].
Hence, these methods would be significantly easier to incorporate
into S3A if a generalized windowing framework was incorporated
which allows users to specify all necessary parameters such as
window overlap, size, sampling frequency, etc. A preliminary
version of this is implemented for categorical-based model pre-
diction, but a more robust feature set for interactive segmentation
is strongly preferable.

Aggregation of Human Annotation Habits

Several times, it has been noted that manual segmentation of
image data is not a feasible or scalable approach for remotely
large datasets. However, there are multiple cases in which human
intuition can greatly outperform even complex neural networks,
depending on the specific segmentation challenge [RLFF15]. For
this reason, it would be ideal to capture data points possessing
information about the human decision-making process and apply
them to images at scale. This may include taking into account hu-
man labeling time per class, hesitation between clicks, relationship
between shape boundary complexity and instance quantity, and
more. By aggregating such statistics, a pattern may arise which can
be leveraged as an additional automated annotation technique.

REFERENCES

[AAV+02] C Anagnostopoulos, I Anagnostopoulos, D Vergados, G Kouzas,
E Kayafas, V Loumos, and G Stassinopoulos. High performance
computing algorithms for textile quality control. Mathematics
and Computers in Simulation, 60(3):389–400, September 2002.
doi:10.1016/S0378-4754(02)00031-9.

[AML+19] Mukhil Azhagan, Dhwani Mehta, Hangwei Lu, Sudarshan
Agrawal, Mark Tehranipoor, Damon L Woodard, Navid
Asadizanjani, and Praveen Chawla. A review on automatic
bill of material generation and visual inspection on PCBs. In
ISTFA 2019: Proceedings of the 45th International Symposium
for Testing and Failure Analysis, page 256. ASM International,
2019.

[AVK+01] C. Anagnostopoulos, D. Vergados, E. Kayafas, V. Loumos, and
G. Stassinopoulos. A computer vision approach for textile
quality control. The Journal of Visualization and Computer
Animation, 12(1):31–44, 2001. doi:10.1002/vis.245.

[BWS+10] Steve Branson, Catherine Wah, Florian Schroff, Boris Babenko,
Peter Welinder, Pietro Perona, and Serge Belongie. Visual
recognition with humans in the loop. In Kostas Daniilidis, Petros
Maragos, and Nikos Paragios, editors, Computer Vision – ECCV
2010, pages 438–451, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[CZF+18] Qimin Cheng, Qian Zhang, Peng Fu, Conghuan Tu, and Sen Li.
A survey and analysis on automatic image annotation. Pattern
Recognition, 79:242–259, 2018. doi:10.1016/j.patcog.
2018.02.017.

[DCE+] Janez Demšar, Tomaž Curk, Aleš Erjavec, Črt Gorup, Tomaž
Hočevar, Mitar Milutinovič, Martin Možina, Matija Polajnar,
Marko Toplak, and Anže Starič. Orange: Data mining toolbox
in Python. 14(1):2349–2353.

[DS20] Polina Demochkina and Andrey V. Savchenko. Improving
the accuracy of one-shot detectors for small objects in x-ray
images. In 2020 International Russian Automation Confer-
ence (RusAutoCon), page 610–614. IEEE, September 2020.
URL: https://ieeexplore.ieee.org/document/9208097/, doi:10.
1109/RusAutoCon49822.2020.9208097.

[EGW+10] Mark Everingham, Luc Gool, Christopher K. Williams, John
Winn, and Andrew Zisserman. The pascal visual object classes
(voc) challenge. Int. J. Comput. Vision, 88(2):303–338, jun
2010. URL: https://doi.org/10.1007/s11263-009-0275-4, doi:
10.1007/s11263-009-0275-4.

[FNK92] H. Fujisawa, Y. Nakano, and K. Kurino. Segmentation methods
for character recognition: From segmentation to document struc-
ture analysis. Proceedings of the IEEE, 80(7):1079–1092, July
1992. doi:10.1109/5.156471.

12 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

[FRLL18] Max K. Ferguson, Ak Ronay, Yung-Tsun Tina Lee, and Kin-
cho. H. Law. Detection and segmentation of manufacturing
defects with convolutional neural networks and transfer learn-
ing. Smart and sustainable manufacturing systems, 2, 2018.
doi:10.1520/SSMS20180033.

[GNP+04] Basilios Gatos, Kostas Ntzios, Ioannis Pratikakis, Sergios
Petridis, T. Konidaris, and Stavros J. Perantonis. A segmentation-
free recognition technique to assist old greek handwritten
manuscript OCR. In Simone Marinai and Andreas R. Dengel,
editors, Document Analysis Systems VI, Lecture Notes in Com-
puter Science, pages 63–74, Berlin, Heidelberg, 2004. Springer.
doi:10.1007/978-3-540-28640-0_7.

[IGSM14] D. K. Iakovidis, T. Goudas, C. Smailis, and I. Maglogiannis.
Ratsnake: A versatile image annotation tool with application
to computer-aided diagnosis, 2014. doi:10.1155/2014/
286856.

[itL18] Humans in the Loop. The best image annotation platforms
for computer vision (+ an honest review of each), October
2018. URL: https://hackernoon.com/the-best-image-annotation-
platforms-for-computer-vision-an-honest-review-of-each-
dac7f565fea.

[JB92] Anil K. Jain and Sushil Bhattacharjee. Text segmentation using
gabor filters for automatic document processing. Machine Vision
and Applications, 5(3):169–184, June 1992. doi:10.1007/
BF02626996.

[JPRA20] Nathan Jessurun, Olivia Paradis, Alexandra Roberts, and Navid
Asadizanjani. Component Detection and Evaluation Framework
(CDEF): A Semantic Annotation Tool. Microscopy and Micro-
analysis, 26(S2):1470–1474, August 2020. doi:10.1017/
S1431927620018243.

[KBO16] Made Windu Antara Kesiman, Jean-Christophe Burie, and Jean-
Marc Ogier. A new scheme for text line and character seg-
mentation from gray scale images of palm leaf manuscript.
In 2016 15th International Conference on Frontiers in Hand-
writing Recognition (ICFHR), pages 325–330, October 2016.
doi:10.1109/ICFHR.2016.0068.

[LMB+14] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In Euro-
pean conference on computer vision, pages 740–755. Springer,
2014.

[LSA+10] L’ubor Ladický, Paul Sturgess, Karteek Alahari, Chris Russell,
and Philip H. S. Torr. What, where and how many? combining
object detectors and crfs. In Kostas Daniilidis, Petros Maragos,
and Nikos Paragios, editors, Computer Vision – ECCV 2010,
pages 424–437, Berlin, Heidelberg, 2010. Springer Berlin Hei-
delberg.

[MKS18] S. Mohajerani, T. A. Krammer, and P. Saeedi. A cloud detection
algorithm for remote sensing images using fully convolutional
neural networks. In 2018 IEEE 20th International Workshop on
Multimedia Signal Processing (MMSP), page 1–5, August 2018.
doi:10.1109/MMSP.2018.8547095.

[PJTA20] Olivia P Paradis, Nathan T Jessurun, Mark Tehranipoor,
and Navid Asadizanjani. Color normalization for robust
automatic bill of materials generation and visual inspection
of pcbs. In ISTFA 2020: Papers Accepted for the Planned
46th International Symposium for Testing and Failure Analysis,
International Symposium for Testing and Failure Analysis,
pages 172–179, 2020. URL: https://doi.org/10.31399/asm.cp.
istfa2020p0172https://dl.asminternational.org/istfa/proceedings-
pdf/ISTFA2020/83348/172/425605/istfa2020p0172.pdf,
doi:10.31399/asm.cp.istfa2020p0172.

[Ram] Urs Ramer. An iterative procedure for the polygonal approx-
imation of plane curves. 1(3):244–256. URL: https://www.
sciencedirect.com/science/article/pii/S0146664X72800170,
doi:10.1016/S0146-664X(72)80017-0.

[RLFF15] Olga Russakovsky, Li-Jia Li, and Li Fei-Fei. Best of both
worlds: Human-machine collaboration for object annotation.
In 2015 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), page 2121–2131. IEEE, June 2015.
URL: http://ieeexplore.ieee.org/document/7298824/, doi:10.
1109/CVPR.2015.7298824.

[RLO+17] Martin Rajchl, Matthew C. H. Lee, Ozan Oktay, Konstantinos
Kamnitsas, Jonathan Passerat-Palmbach, Wenjia Bai, Mellisa
Damodaram, Mary A. Rutherford, Joseph V. Hajnal, Bernhard
Kainz, and Daniel Rueckert. DeepCut: Object segmentation from
bounding box annotations using convolutional neural networks.

IEEE Transactions on Medical Imaging, 36(2):674–683, Febru-
ary 2017. doi:10.1109/TMI.2016.2621185.

[SKM+10] Sascha Seifert, Michael Kelm, Manuel Moeller, Saikat Mukher-
jee, Alexander Cavallaro, Martin Huber, and Dorin Comaniciu.
Semantic annotation of medical images. In Brent J. Liu and
William W. Boonn, editors, Medical Imaging 2010: Advanced
PACS-based Imaging Informatics and Therapeutic Applications,
volume 7628, pages 43 – 50. International Society for Optics and
Photonics, SPIE, 2010. URL: https://doi.org/10.1117/12.844207,
doi:10.1117/12.844207.

[Spa20] SpaceNet. Multi-Temporal Urban Development Challenge.
https://spacenet.ai/sn7-challenge/, June 2020.

[TFJ89] T. Taxt, P.J. Flynn, and A.K. Jain. Segmentation of document
images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11(12):1322–1329, December 1989. doi:10.
1109/34.41371.

[VGSG+19] Juan P. Vigueras-Guillén, Busra Sari, Stanley F. Goes, Hans G.
Lemij, Jeroen van Rooij, Koenraad A. Vermeer, and Lucas J.
van Vliet. Fully convolutional architecture vs sliding-window
cnn for corneal endothelium cell segmentation. BMC Biomedical
Engineering, 1(1):4, January 2019. doi:10.1186/s42490-
019-0003-2.

[WYZZ09] C. Wang, Shuicheng Yan, Lei Zhang, and H. Zhang. Multi-
label sparse coding for automatic image annotation. In 2009
IEEE Conference on Computer Vision and Pattern Recognition,
page 1643–1650, June 2009. doi:10.1109/CVPR.2009.
5206866.

[YPH+06] Paul A. Yushkevich, Joseph Piven, Heather Cody Hazlett,
Rachel Gimpel Smith, Sean Ho, James C. Gee, and Guido
Gerig. User-guided 3D active contour segmentation of anatom-
ical structures: Significantly improved efficiency and reliability.
NeuroImage, 31(3):1116–1128, July 2006. doi:10.1016/j.
neuroimage.2006.01.015.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022) 13

Galyleo: A General-Purpose Extensible Visualization
Solution

Rick McGeer‡∗, Andreas Bergen‡, Mahdiyar Biazi‡, Matt Hemmings‡, Robin Schreiber‡

F

Abstract—Galyleo is an open-source, extensible dashboarding solution inte-
grated with JupyterLab [jup]. Galyleo is a standalone web application integrated
as an iframe [LS10] into a JupyterLab tab. Users generate data for the dash-
board inside a Jupyter Notebook [KRKP+16], which transmits the data through
message passing [mdn] to the dashboard; users use drag-and-drop operations
to add widgets to filter, and charts to display the data, shapes, text, and images.
The dashboard is saved as a JSON [Cro06] file in the user’s filesystem in the
same directory as the Notebook.

Index Terms—JupyterLab, JupyterLab extension, Data visualization

Introduction

Current dashboarding solutions [hol22a] [hol22b] [plo] [pan22]
for Jupyter either involve external, heavyweight tools, ingrained
HTML/CSS coding, complex publication, or limited control over
layout, and have restricted widget sets and visualization libraries.
Graphics objects require a great deal of configuration: size, posi-
tion, colors, fonts must be specified for each object. Thus library
solutions involve a significant amount of fairly simple code. Con-
versely, visualization involves analytics, an inherently complex
set of operations. Visualization tools such as Tableau [DGHP13]
or Looker [loo] combine visualization and analytics in a single
application presented through a point-and-click interface. Point-
and-click interfaces are limited in the number and complexity
of operations supported. The complexity of an operation isn’t
reduced by having a simple point-and-click interface; instead, the
user is confronted with the challenge of trying to do something
complicated by pointing. The result is that tools encapsulate
complex operations in a few buttons, and that leads to a limited
number of operations with reduced options and/or tools with steep
learning curves.

In contrast, Jupyter is simply a superior analytics environment
in every respect over a standalone visualization tool: its various
kernels and their libraries provide a much broader range of analyt-
ics capabilities; its programming interface is a much cleaner and
simpler way to perform complex operations; hardware resources
can scale far more easily than they can for a visualization tool;
and connectors to data sources are both plentiful and extensible.

Both standalone visualization tools and Jupyter libraries have
a limited set of visualizations. Jupyter is a server-side platform.

* Corresponding author: rick.mcgeer@engageLively.com
‡ engageLively

Copyright © 2022 Rick McGeer et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Jupyter’s web interface is primarily to offer textboxes for code
entry. Entered code is sent to the server for evaluation and
text/HTML results returned. Visualization in a Jupyter Notebook
is either given by images rendered server-side and returned as
inline image tags, or by JavaScript/HTML5 libraries which have
a corresponding server-side Python library. The Python library
generates HTML5/JavaScript code for rendering.

The limiting factor is that the visualization library must be in-
tegrated with the Python backend by a developer, and only a subset
of the rich array of visualization, charting, and mapping libraries
available on the HTML5/JavaScript platform is integrated. The
HTML5/JavaScript platform is as rich a client-side visualization
platform as Python is a server-side platform.

Galyleo set out to offer the best of both worlds: Python, R, and
Julia as a scalable analytics platform coupled with an extensible
JavaScript/HTML5 visualization and interaction platform. It offers
a no-code client-side environment, for several reasons.

1) The Jupyter analytics community is comfortable with
server-side analytics environments (the 100+ kernels
available in Jupyter, including Python, R and Julia) but
less so with the JavaScript visualization platform.

2) Configuration of graphical objects takes a lot of low-value
configuration code; conversely, it is relatively easy to do
by hand.

These insights lead to a mixed interface, combining a drag-
and-drop interface for the design and configuration of visual
objects, and a coding, server-side interface for analytics programs.

Extension of the widget set was an important consideration. A
widget is a client-side object with a physical component. Galyleo
is designed to be extensible both by adding new visualization
libraries and components and by adding new widgets.

Publication of interactive dashboards has been a further chal-
lenge. A design goal of Galyleo was to offer a simple scheme,
where a dashboard could be published to the web with a single
click.

These then, are the goals of Galyleo:

1) Simple, drag-and-drop design of interactive dashboards in
a visual editor. The visual design of a Galyleo dashboard
should be no more complex than design of a PowerPoint
or Google slide;

2) Radically simplify the dashboard-design interface by cou-
pling it to a powerful, Jupyter back end to do the analytics
work, separating visualization and analytics concerns;

14 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 1: Figure 1. A New Galyleo Dashboard

Fig. 2: Figure 2. The Galyleo Dashboard Studio

3) Maximimize extensibility for visualization and widgets
on the client side and analytics libraries, data sources and
hardware resources on the server side;

4) Easy, simple publication;

Using Galyleo

The general usage model of Galyleo is that a Notebook is being
edited and executed in one tab of JupyterLab, and a corresponding
dashboard file is being edited and executed in another; as the
Notebook executes, it uses the Galyleo Client library to send
data to the dashboard file. To JupyterLab, the Galyleo Dashboard
Studio is just another editor; it reads and writes .gd.json files in
the current directory.

The Dashboard Studio

A new Galyleo Dashboard can be launched from the JupyterLab
launcher or from the File>New menu, as shown in Figure 1.

An existing dashboard is saved as a .gd.json file, and is
denoted with the Galyleo star logo. It can be opened in the usual
way, with a double-click.

Once a file is opened, or a new file created, a new Galyleo tab
opens onto it. It resembles a simplified form of a Tableau, Looker,
or PowerBI editor. The collapsible right-hand sidebar offers the
ability to view Tables, and view, edit, or create Views, Filters,
and Charts. The bottom half of the right sidebar gives controls for
styling of text and shapes.

The top bar handles the introduction of decorative and styling
elements to the dashboard: labels and text, simple shapes such as
ellipses, rectangles, polygons, lines, and images. All images are
referenced by URL.

Fig. 3: Figure 3. Dataflow in Galyleo

As the user creates and manipulates the visual elements, the
editor continuously saves the table as a JSON file, which can also
be edited with Jupyter’s built-in text editor.

Workflow

The goal of Galyleo is simplicity and transparency. Data prepa-
ration is handled in Jupyter, and the basic abstract item, the
GalyleoTable is generally created and manipulated there, using an
open-source Python library. When a table is ready, the Galyleo-
Client library is invoked to send it to the dashboard, where it
appears in the table tab of the sidebar. The dashboard author
then creates visual elements such as sliders, lists, dropdowns etc.,
which select rows of the table, and uses these filtered lists as
inputs to charts. The general idea is that the author should be
able to seamlessly move between manipulating and creating data
tables in the Notebook, and filtering and visualizing them in the
dashboard.

Data Flow and Conceptual Picture

The Galyleo Data Model and Architecture is discussed in detail
below. The central idea is to have a few, orthogonal, easily-grasped
concepts which make data manipulation easy and intuitive. The
basic concepts are as follows:

1) Table: A Table is a list of records, equivalent to a Pandas
DataFrame [pdt20] [WM10] or a SQL Table. In general,
in Galyleo, a Table is expected to be produced by an
external source, generally a Jupyter Notebook

2) Filter: A Filter is a logical function which applies to a
single column of a Table Table, and selects rows from the
Table. Each Filter corresponds to a widget; widgets set
the values Filter use to select Table rows

3) View A View is a subset of a Table selected by one or
more Filters. To create a view, the user chooses a Table,
and then chooses one or more Tilters to apply to the Table
to select the rows for the View. The user can also statically
select a subset of the columns to include in the View.

4) Chart A Chart is a generic term for an object that displays
data graphically. Its input is a View or a Table. Each Chart
has a single data source.

The data flow is straightforward. A Table is updated from
an external source, or the user manipulates a widget. When this
happens, the affected item signals the dashboard controller that it
has been updated. The controller then signals all charts to redraw
themselves. Each Chart will then request updated data from its

GALYLEO: A GENERAL-PURPOSE EXTENSIBLE VISUALIZATION SOLUTION 15

source Table or View. A View then requests its configured filters
for their current logic functions, and passes these to the source
Table with a request to apply the filters and return the rows which
are selected by all the filters (in the future, a more general Boolean
will be applied; the UI elements to construct this function are
under design). The Table then returns the rows which pass the
filters; the View selects the static subset of columns it supports,
and passes this to its Charts, which then redraw themselves.

Each item in this flow conceptually has a single data source,
but multiple data targets. There can be multiple Views over a
Table, but each View has a single Table as a source. There can
be multiple charts fed by a View, but each Chart has a single Table
or View as a source.

It’s important to note that there are no special cases. There is
no distinction, as there is in most visualization systems, between
a "Dimension" or a "Measure"; there are simply columns of data,
which can be either a value or category axis for any Chart. From
this simplicity, significant generality is achieved. For example,
a filter selects values from any column, whether that column is
providing value or category. Applying a range filter to a category
column gives natural telescoping and zooming on the x-axis of a
chart, without change to the architecture.

Drilldowns

An important operation for any interactive dashboard is drill-
downs: expanding detail for a datapoint on a chart. The user
should be able to click on a chart and see a detailed view of
the data underlying the datapoint. This was naturally implemented
in our system by associating a filter with every chart: every chart
in Galyleo is also a Select Filter, and it can be used as a Filter in
a view, just as any other widget can be.

Publishing The Dashboard

Once the dashboard is complete, it can be published to the
web simply by moving the dashboard file to any place it get
an URL (e.g. a github repo). It can then be viewed by visiting
https://galyleobeta.engagelively.com/public/galyleo/index.html?
dashboard=<url of dashboard file>. The attached figure shows
a published Galyleo Dashboard, which displays Florence
Nightingale’s famous Crimean War dataset. Using the double
sliders underneath the column charts telescope the x axes,
effectively permitting zooming on a range; clicking on a column
shows the detailed death statistics for that month in the pie chart
above the column chart.

No-Code, Low-Code, and Appropriate-Code

Galyleo is an appropriate-code environment, meaning that it offers
efficient creation to developers at every step. It offers What-You-
See-Is-What-You-Get (WYSIWYG) design tools where appro-
priate, low-code where appropriate, and full code creation tools
where appropriate.

No-code and low-code environments, where users construct
applications through a visual interface, are popular for several
reasons. The first is the assumption that coding is time-consuming
and hard, which isn’t always or necessarily true; the second is
the assumption that coding is a skill known to only a small
fraction of the population, which is becoming less true by the
day. 40% of Berkeley undergraduates take Data 8, in which
every assignment involves programming in a Jupyter Notebook.
The third, particularly for graphics code, is that manual design

Fig. 4: Figure 4. A Published Galyleo Dashboard

and configuration gives instant feedback and tight control over
appearance. For example, the authors of a LaTeX paper (including
this one) can’t control the placement of figures within the text. The
fourth, which is correct, is that configuration code is more verbose,
error-prone, and time-consuming than manual configuration.

What is less often appreciated is that when operations become
sufficiently complex, coding is a much simpler interface than
manual configuration. For example, building a pivot table in a
spreadsheet using point-and-click operations have "always had a
reputation for being complicated" [Dev]. It’s three lines of code in
Python, even without using the Pandas pivot_table method. Most
analytics procedures are far more easily done in code.

As a result, Galyleo is an appropriate-code environment,
which is an environment which combines a coding interface
for complex, large-scale, or abstract operations and a point-
and-click interface for simple, concrete, small-scale operations.
Galyleo combines broadly powerful Jupyter-based code and low-
code libraries for analytics paired with fast GUI-based design and
configuration for graphical elements and layout.

Galyleo Data Model And Architecture

The Galyleo data Model and architecture closely model the
dashboard architecture discussed in the previous section. They are
based on the idea of a few simple, generalizable structures, which
are largely independent of each other and communicate through
simple interfaces.

The GalyleoTable

A GalyleoTable is the fundamental data structure in Galyleo. It
is a logical, not a physical abstraction; it simply responds to
the GalyleoTable API. A GalyleoTable is a pair (columns, rows),
where columns is a list of pairs (name, type), where type is one
of {string, boolean, number, date}, and rows is a list of lists of
primitive values, where the length of each component list is the
length of the list of columns and the type of the kth entry in each
list is the type specified by the kth column.

Small, public tables may be contained in the dashboard file;
these are called explicit tables. However, explicitly representing
the table in the dashboard file has a number of disadvantages:

1) An explicit table is in the memory of the client viewing
the dashboard; if it is too large, it may cause signifi-

16 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

cant performance problems on the dashboard author or
viewer’s device

2) Since the dashboard file is accessible on the web, any
data within it is public

3) The data may be continuously updated from a source,
and it’s inconvenient to re-run the Notebook to update
the data.

Therefore, the GalyleoTable can be of one of three types:

1) A data server that implements the Table REST API
2) A JavaScript object within the dashboard page itself
3) A JavaScript messenger in the page that implements a

messaging version of the API

An explicit table is simply a special case of (2) -- in this case,
the JavaScript object is simply a linear list of rows.

These are not exclusive. The JavaScript messenger case is
designed to support the ability of a containing application within
the browser to handle viewer authentication, shrinking the security
vulnerability footprint and ensuring that the client application
controls the data going to the dashboard. In general, aside from
performing tasks like authentication, the messenger will call an
external data server for the values themselves.

Whether in a Data Server, a containing application, or a
JavaScript object, Tables support three operations:

1) Get all the values for a specific column
2) Get the max/min/increment for a specific numeric column
3) Get the rows which match a boolean function, passed in

as a parameter to the operation

Of course, (3) is the operation that we have seen above, to
populate a view and a chart. (1) and (2) populate widgets on the
dashboard; (1) is designed for a select filter, which is a widget
that lets a user pick a specific set of values for a column; (2) is
an optimization for numeric filters, so that the entire list of values
for the column need not be sent -- rather, only the start and end
values, and the increment between them.

Each type of table specifies a source, additional information
(in the case of a data server, for example, any header variables
that must be specified in order to fetch the data), and, optionally,
a polling interval. The latter is designed to handle live data; the
dashboard will query the data source at each polling interval to
see if the data has changed.

The choice of these three table instantiations (REST,
JavaScript object, messenger) is that they provide the key founda-
tional building block for future extensions; it’s easy to add a SQL
connection on top of a REST interface, or a Python simulator.

Filters

Tables must be filtered in situ. One of the key motivators behind
remote tables is in keeping large amounts of data from hitting the
browser. This is largely defeated if the entire table is sent to the
dashboard and then filtered there. As a result, there is a Filter API
together with the Table API whereever there are tables.

The data flow of the previous section remains unchanged;
it is simply that the filter functions are transmitted to wherever
the tables happen to be. The dataflow in the case of remote
tables (whether messenger-based or REST-based) is shown here,
with operations that are resident where the table is situated and
operations resident on the dashboard clearly shown.

Fig. 5: Figure 5. Galyleo Dataflow with Remote Tables

Comments

Again, simplicity and orthogonality have shown tremendous bene-
fits here. Though filters conceptually act as selectors on rows, they
may perform a variety of roles in implementations. For example,
a table produced by a simulator may be controlled by a parameter
value given by a Filter function.

Extending Galyleo

Every element of the Galyleo system, whether it is a widget, Chart,
Table Server, or Filter is defined exclusively through a small set
of public APIs. This is done to permit easy extension, by either
the Galyleo team, users, or third parties. A Chart is defined as an
object which has a physical HTML representation, and it supports
four JavaScript methods: redraw (draw the chart), set data (set the
chart’s data), set options (set the chart’s options), and supports
table (a boolean which returns true if and only if the chart can
draw the passed-in data set). In addition, it exports out a defined
JSON structure which indicates what options it supports and the
types of their values; this is used by the Chart Editor to display a
configurator for the chart.

Similarly, the underlying lively.next system supports user
design of new filters. Again, a filter is simply an object with a
physical presence, that the user can design in lively, and supports a
specific API -- broadly, set the choices and hand back the Boolean
function as a JSON object which will be used to filter the data.

lively.next

Any system can be used to extend Galyleo; at the end of the
day, all that need be done is encapsulate a widget or chart in
a snippet of HTML with a JavaScript interface that matches
the Galyleo protocol. This is done most easily and quickly
by using lively.next [SKH21]. lively.next is the latest in a line
of Smalltalk- and Squeak-inspired [IKM+97] JavaScript/HTML
integrated development environments that began with the Lively
Kernel [IPU+08] [KIH+09] and continued through the Lively Web
[LKI+12] [IFH+16] [TM17]. Galyleo is an application built in
Lively, following the work done in [HIK+16].

Lively shares with Jupyter an emphasis on live programming
[KRB18], orwhere a Read-Evaluate-Act Loop (REAL) program-
ming style. It adds to that a combination of visual and text
programming [ABF20], where physical objects are positioned and
configured largely by hand as done with any drawing or design
program (e.g., PowerPoint, Illustrator, DrawPad, Google Draw)
and programmed with a built-in editor and workspace, similar in
concept if not form to a Jupyter Notebook.

GALYLEO: A GENERAL-PURPOSE EXTENSIBLE VISUALIZATION SOLUTION 17

Fig. 6: Figure 6. The lively.next environment

Lively abstracts away HTML and CSS tags in graphical
objects called "Morphs". Morphs [MS95] were invented as the
user interface layer for Self [US87], and have been used as
the foundation of the graphics system in Squeak and Scratch
[MRR+10]. In this UI, every physical object is a Morph; these
can be as simple as a simple polygon or text string to a full
application. Morphs are combined via composition, similar to the
way that objects are grouped in a presentation or drawing program.
The composition is simply another Morph, which in turn can be
composed with other Morphs. In this manner, complex Morphs
can be built up from collections of simpler ones. For example,
a slider is simply the composition of a circle (the knob) with a
thin, long rectangle (the bar). Each Morph can be individually
programmed as a JavaScript object, or can inherit base level
behavior and extend it.

In lively.next, each morph turns into a snippet of HTML, CSS,
and JavaScript code and the entire application turns into a web
page. The programmer doesn’t see the HTML and CSS code
directly; these are auto-generated. Instead, the programmer writes
JavaScript code for both logic and configuration (to the extent that
the configuration isn’t done by hand). The code is bundled with
the object and integrated in the web page.

Morphs can be set as reusable components by a simple
declaration. They can then be reused in any lively design.

Incorporating New Libraries

Libraries are typically incorporated into lively.next by attaching
them to a convenient physical object, importing the library from a
package manager such as npm, and then writing a small amount
of code to expose the object’s API. The simplest form of this is to
assign the module to an instance variable so it has an addressable
name, but typically a few convenience methods are written as well.
In this way, a large number of libraries have been incorporated
as reusable components in lively.next, including Google Maps,
Google Charts [goo], Chartjs [cha], D3 [BOH11], Leaflet.js [lea],
OpenLayers [ope], cytoscape:ono and many more.

Extending Galyleo’s Charting and Visualization capabilities

A Galyleo Chart is anything that changes its display based on
tabular data from a Galyleo Table or Galyleo View. It responds to
a specific API, which includes two principal methods:

1) drawChart : redraw the chart using the current tabular data
from the input or view

2) acceptsDataset(<Table or View>) returns a boolean de-
pending on whether this chart can draw the data in this
view. For example, a Table Chart can draw any tabular
data; a Geo Chart typically requires that the first column
be a place specifier.

In addition, it has a read-only property:

1) optionSpec: A JSON structure describing the options for
the chart. This is a dictionary, which specifies the name of
each option, and its type (color, number, string, boolean,
or enum with values given). Each type corresponds to a
specific UI widget that the chart editor uses.

And two read write properties:

1) options: The current options, as a JSON dictionary. This
matches exactly the JSON dictionary in optionSpec, with
values in place of the types.

2) dataSource: a string, the name of the current Galyleo
Table or Galyleo View

Typically, an extension to Galyleo’s charting capabilities is
done by incorporating the library as described in the previous
section, implementing the API given in this section, and then
publishing the result as a component

Extending Galyleo’s Widget Set

A widget is a graphical item used to filter data. It operates on a
single column on any table in the current data set. It is either a
range filter (which selects a range of numeric values) or a select
filter (which selects a specific value, or a set of specific values).
The API that is implemented consists only of properties.

1) valueChanged : a signal, which is fired whenever the
value of the widget is changed

2) value: read-write. The current value of the widget
3) filter: read-only. The current filter function, as a JSON

structure
4) allValues: read-write, select filters only.
5) column: read-only. The name of the column of this

widget. Set when the widget is created
6) numericSpec: read-write. A dictionary containing the

numeric specification for a numeric or date filter

Widgets are typically designed as a standard Lively graphical
component, much as the slider described above.

Integration into Jupyter Lab: The Galyleo Extension

Galyleo is a standalone web application that is integrated into
JupyterLab using an iframe inside a JupyterLab tab for physical
design. A small JupyterLab extension was built that implements
the JupyterLab editor API. The JupyterLab extension has two
major functions: to handle read/write/undo requests from the
JupyterLab menus and file browser, and receive and transmit
messages from the running Jupyter kernels to update tables on
the Dashboard Studio, and to handle the reverse messages where
the studio requests data from the kernel.

Standard Jupyter and browser mechanisms are used. File sys-
tem requests come to the extension from the standard Jupyter API,
exactly the same requests and mechanisms that are sent to a Mark-
down or Notebook editor. The extension receives them, and then
uses standard browser-based messaging (window.postMessage) to
signal the standalone web app. Similarly, when the extension

18 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 7: Figure 7. Galyleo Extension Architecture

makes a request of JupyterLab, it does so through this mechanism
and a receiver in the extension gets it and makes the appropriate
method calls within JupyterLab to achieve the objective.

When a kernel makes a request through the Galyleo Client,
this is handled exactly the same way. A Jupyter messaging server
within the extension receives the message from the kernel, and
then uses browser messaging to contact the application with the
request, and does the reverse on a Galyleo message to the kernel.

This is a highly efficient method of interaction, since browser-
based messaging is in-memory transactions on the client machine.

It’s important to note that there is nothing Galyleo-specific
about the extension: the Galyleo Extension is a general method
for any standalone web editor (e.g., a slide or drawing editor) to
be integrated into JupyterLab. The JupyterLab connection is a few
tens of lines of code in the Galyleo Dashboard. The extension is
slightly more complex, but it can be configured for a different
application with a simple data structure which specifies the URL
of the application, file type and extension to be manipulated, and
message list.

The Jupyter Computer

The implications of the Galyleo Extension go well beyond vi-
sualization and dashboards and easy publication in JupyterLab.
JupyterLab is billed as the next-generation integrated Develop-
ment Environment for Jupyter, but in fact it is substantially more
than that. It is the user interface and windowing system for Cloud-
based personal computing. Inspired by previous extensions such
as the Vega Extension, the Galyleo Extensions seeks to provide
the final piece of the puzzle.

Consider a Jupyter server in the Cloud, served from a Jupyter-
Hub such as the Berkeley Data Hub. It’s built from a base
Ubuntu image, with the standard Jupyter libraries installed and,
importantly, a UI that includes a Linux terminal interface. Any
Linux executable can be installed in the Jupyter server image, as
can any Jupyter kernel, and any collection of libraries. The Jupyter
server has per-user persistent storage, which is organized in a
standard Linux filesystem. This makes the Jupyter server a curated
execution environment with a Linux command-line interface and
a Notebook interface for Jupyter execution.

A JupyterHub similar to Berkeley Data Hub (essentially,
anything built from Zero 2 Jupyter Hub or Q-Hub) comes with a
number of "environments". The user chooses the environment on
startup. Each environment comes with a built-in set of libraries and
executables designed for a specific task or set of tasks. The number

of environments hosted by a server is arbitrary, and the cost is only
the cost of maintaining the Dockerfile for each environment.

An environment is easy to design for a specific class, project,
or task; it’s simply adding libraries and executables to a base
Dockerfile. It must be tested, of course, but everything must be.
And once it is tested, the burden of software maintenance and
installation is removed from the user; the user is already in a task-
customized, curated environment. Of course, the usual installation
tools (apt, pip, conda, easy_install) can be pre-loaded (they’re just
executables) so if the environment designer missed something it
can be added by the end user.

Though a user can only be in one environment at a time,
persistent storage is shared across all environments, meaning
switching environments is simply a question of swapping one
environment out and starting another.

Viewed in this light, a JupyterHub is a multi-purpose computer
in the Cloud, with an easy-to-use UI that presents through a
browser. JupyterLab isn’t simply an IDE; it’s the window system
and user interface for this computer. The JupyterLab launcher is
the desktop for this computer (and it changes what’s presented,
depending on the environment); the file browser is the computer’s
file browser, and the JupyterLab API is the equivalent of the Win-
dows or MacOS desktop APIs and window system that permits
third parties to build applications for this.

This Jupyter Computer has a large number of advantages over
a standard desktop or laptop computer. It can be accessed from any
device, anywhere on Earth with an Internet connection. Software
installation and maintenance issues are nonexistent. Data loss due
to hardware failure is extremely unlikely; backups are still required
to prevent accidental data loss (e.g., erroneous file deletion), but
they are far easier to do in a Cloud environment. Hardware
resources such as disk, RAM, and CPU can be added rapidly,
on a permanent or temporary basis. Relatively exotic resources
(e.g., GPUs) can also be added, again on an on-demand, temporary
basis.

The advantages go still further than that. Any resource that
can be accessed over a network connection can be added to
the Jupyter Computer simply by adding the appropriate accessor
library to an environment’s Dockerfile. For example, a database
solution such as Snowflake, BigQuery, or Amazon Aurora (or
one of many others) can be "installed" by adding the relevant
library module to the environment. Of course, the user will need
to order the database service from the relevant provider, and obtain
authentication tokens, and so on -- but this is far less troublesome
than even maintaining the library on the desktop.

However, to date the Jupyter Computer only supports a few
window-based applications, and adding a new application is a
time-consuming development task. The applications supported are
familiar and easy to enumerate: a Notebook editor, of course; a
Markdown Viewer; a CSV Viewer; a JSON Viewer (not inline
editor), and a text editor that is generally used for everything from
Python files to Markdown to CSV.

This is a small subset of the rich range of JavaScript/HTML5
applications which have significant value for Jupyter Computer
users. For example, the Ace Code Editor supports over 110
languages and has the functionality of popular desktop editors
such as Vim and Sublime Text. There are over 1100 open-source
drawing applications on the JavaScript/HTML5 platform; multiple
spreadsheet applications, the most notable being jExcel, and many
more.

GALYLEO: A GENERAL-PURPOSE EXTENSIBLE VISUALIZATION SOLUTION 19

Fig. 8: Figure 8. Galyleo Extension Application-Side messaging

Up until now, adding a new application to JupyterLab involved
writing a hand-coded extension in Typescript, and compiling
it into JupyterLab. However, the Galyleo Extension has been
designed so that any HTML5/JavaScript application can be added
easily, simply by configuring the Galyleo Extension with a small
JSON file.

The promise of the Galyleo Extension is that it can be adapted
to any open-source JavaScript/HTML5 application very easily.
The Galyleo Extension merely needs the:

• URL of the application
• File extension that the application reads/writes
• URL of an image for the launcher
• Name of the application for the file menu

The application must implement a small messaging client,
using the standard JavaScript messaging interface, and implement
the calls the Galyleo Extension makes. The conceptual picture is
shown im Figure 8.

And it must support (at a minimum) messages to read and
write the file being edited.

The Third Generation of Network Computing

The World-Wide Web and email comprised the first generation
of Internet computing (the Internet had been around for a decade
before the Web, and earlier networks dated from the sixties, but
the Web and email were the first mass-market applications on
the network), and they were very simple -- both were document-
exchange applications, using slightly different protocols. The
second generation of Network applications were the siloed pro-
ductivity applications, where standard desktop applications moved
to the Cloud. The most famous example is of course GSuite
and Office 365, but there were and are many others -- Canva,
Loom, Picasa, as well as a large number of social/chat/social
media applications. What they all had in common was that they
were siloed applications which, with the exception of the office
suites, didn’t even share a common store. In many ways, this
second generation of network applications recapitulates the era
immediately prior to the introduction of the personal computer.
That era was dominated by single-application computers such as
word processors, which were simply computers with a hardcoded
program loaded into ROM.

The Word Processor era was due to technological limitations
-- the processing power and memory to run multiple programs
simply wasn’t available on low-end hardware, and PC operating
systems didn’t yet exist. In some sense, the current second genera-
tion of Internet Computing suffers from similar technological con-
straints. The "Operating System" for Internet Computing doesn’t
yet exist. The Jupyter Computer can provide it.

To see the difference that this can make, consider LaTeX (per-
haps preceded by Docutils, as is the case for SciPy) preparation of
a document. On a personal computer, it’s fairly straightforward;

Fig. 9: Figure 9. Generations of Internet Computing

the user uses any of a wide variety of text editors to prepare the
document, any of a wide variety of productivity and illustrator
programs to prepare the images, runs this through a local sequence
of commands (e.g., pdflatex paper; bibtex paper; pdflatex paper.
Usually Github or another repository is used for storage and
collaboration.

In a Cloud service, this is another matter. There is at most
one editor, selected by the service, on the site. There is no
image editing or illustrator program that reads and writes files
on the site. Auxiliary tools, such as a bib searcher, aren’t present
or aren’t customizable. The service has its own siloed storage,
its own text editor, and its own document-preparation pipeline.
The tools (aside from the core document-preparation program)
are primitive. The online service has two advantages over the
personal-device service. Collaboration is generally built-in, with
multiple people having access to the project, and the software need
not be maintained. Aside from that, the personal-device experience
is generally superior. In particular, the user is free to pick their own
editor, and doesn’t have to orchestrate multiple downloads and
uploads from various websites. The usual collection of command-
line utilities are available to small touchups.

The third generation of Internet Computing represented by the
Jupyter Computer. This offers a Cloud experience similar to the
personal computer, but with the scalability, reliability, and ease of
collaboration of the Cloud.

Conclusion and Further Work

The vision of the Jupyter Computer, bringing the power of the
Cloud to the personal computing experience has been started
with Galyleo. It will not end there. At the heart of it is a
composition of two broadly popular platforms: HTML5/JavaScript
for presentation and interaction, and the various Jupyter kernels
for server-side analytics. Galyleo is a start at seamless interaction
of these two platforms. Continuing and extending this is further
development of narrow-waist protocols to permit maximal inde-
pendent development and extension.

Acknowledgements

The authors wish to thank Alex Yang, Diptorup Deb, and for
their insightful comments, and Meghann Agarwal for stewardship.
We have received invaluable help from Robert Krahn, Marko
Röder, Jens Lincke and Linus Hagemann. We thank the en-
gageLively team for all of their support and help: Tim Braman,
Patrick Scaglia, Leighton Smith, Sharon Zehavi, Igor Zhukovsky,
Deepak Gupta, Steve King, Rick Rasmussen, Patrick McCue,
Jeff Wade, Tim Gibson. The JupyterLab development commu-
nity has been helpful and supportive; we want to thank Tony
Fast, Jason Grout, Mehmet Bektas, Isabela Presedo-Floyd, Brian

20 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Granger, and Michal Krassowski. The engageLively Technology
Advisory Board has helped shape these ideas: Ani Mardurkar,
Priya Joseph, David Peterson, Sunil Joshi, Michael Czahor, Isha
Oke, Petrus Zwart, Larry Rowe, Glenn Ricart, Sunil Joshi, Antony
Ng. We want to thank the people from the AWS team that have
helped us tremendously: Matt Vail, Omar Valle, Pat Santora.
Galyleo has been dramatically improved with the assistance of our
Japanese colleagues at KCT and Pacific Rim Technologies: Yoshio
Nakamura, Ted Okasaki, Ryder Saint, Yoshikazu Tokushige, and
Naoyuki Shimazaki. Our undestanding of Jupyter in an academic
context came from our colleagues and friends at Berkeley, the
University of Victoria, and UBC: Shawna Dark, Hausi Müller,
Ulrike Stege, James Colliander, Chris Holdgraf, Nitesh Mor. Use
of Jupyter in a research context was emphasized by Andrew
Weidlea, Eli Dart, Jeff D’Ambrogia. We benefitted enormously
from the CITRIS Foundry: Alic Chen, Jing Ge, Peter Minor, Kyle
Clark, Julie Sammons, Kira Gardner. The Alchemist Accelerator
was central to making this product: Ravi Belani, Arianna Haider,
Jasmine Sunga, Mia Scott, Kenn So, Aaron Kalb, Adam Frankl.
Kris Singh was a constant source of inspiration and help. Larry
Singer gave us tremendous help early on. Vibhu Mittal more
than anyone inspired us to pursue this road. Ken Lutz has been
a constant sounding board and inspiration, and worked hand-in-
hand with us to develop this product. Our early customers and
partners have been and continue to be a source of inspiration,
support, and experience that is absolutely invaluable: Jonathan
Tan, Roger Basu, Jason Koeller, Steve Schwab, Michael Collins,
Alefiya Hussain, Geoff Lawler, Jim Chimiak, Fraukë Tillman,
Andy Bavier, Andy Milburn, Augustine Bui. All of our customers
are really partners, none moreso than the fantastic teams at Tanjo
AI and Ultisim: Bjorn Nordwall, Ken Lane, Jay Sanders, Eric
Smith, Miguel Matos, Linda Bernard, Kevin Clark, and Richard
Boyd. We want to especially thank our investors, who bet on this
technology and company.

REFERENCES

[ABF20] Leif Andersen, Michael Ballantyne, and Matthias Felleisen.
Adding interactive visual syntax to textual code. Proc. ACM
Program. Lang., 4(OOPSLA), nov 2020. URL: https://doi.org/
10.1145/3428290, doi:10.1145/3428290.

[BOH11] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3 data-
driven documents. IEEE Transactions on Visualization and Com-
puter Graphics, 17(12):2301–2309, dec 2011. URL: https://doi.
org/10.1109/TVCG.2011.185, doi:10.1109/TVCG.2011.
185.

[cha] Chart.js. URL: https://www.chartjs.org/.
[Cro06] D. Crockford. The application/json media type for javascript

object notation (json). RFC 4627, RFC Editor, July 2006. http://
www.rfc-editor.org/rfc/rfc4627.txt. URL: http://www.rfc-editor.
org/rfc/rfc4627.txt, doi:10.17487/rfc4627.

[Dev] Erik Devaney. How to create a pivot table in excel: A step-by-
step tutorial. URL: https://blog.hubspot.com/marketing/how-to-
create-pivot-table-tutorial-ht.

[DGHP13] Marcello D’Agostino, Dov M Gabbay, Reiner Hähnle, and
Joachim Posegga. Handbook of tableau methods. Springer
Science & Business Media, 2013.

[goo] Charts: google developers. URL: https://developers.google.com/
chart/.

[HIK+16] Matthew Hemmings, Daniel Ingalls, Robert Krahn, Rick
McGeer, Glenn Ricart, Marko Röder, and Ulrike Stege. Livetalk:
A framework for collaborative browser-based replicated-
computation applications. In 2016 28th International Tele-
traffic Congress (ITC 28), volume 01, pages 270–277, 2016.
doi:10.1109/ITC-28.2016.144.

[hol22a] High-level tools to simplify visualization in python, Apr 2022.
URL: https://holoviz.org/.

[hol22b] Installation - holoviews v1.14.9, May 2022. URL: https:
//holoviews.org/.

[IFH+16] Daniel Ingalls, Tim Felgentreff, Robert Hirschfeld, Robert
Krahn, Jens Lincke, Marko Röder, Antero Taivalsaari, and
Tommi Mikkonen. A world of active objects for work and play:
The first ten years of lively. In Proceedings of the 2016 ACM
International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! 2016, page
238–249, New York, NY, USA, 2016. Association for Comput-
ing Machinery. URL: https://doi.org/10.1145/2986012.2986029,
doi:10.1145/2986012.2986029.

[IKM+97] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and
Alan Kay. Back to the future: The story of squeak, a prac-
tical smalltalk written in itself. In Proceedings of the 12th
ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA ’97, page
318–326, New York, NY, USA, 1997. Association for Comput-
ing Machinery. URL: https://doi.org/10.1145/263698.263754,
doi:10.1145/263698.263754.

[IPU+08] Daniel Ingalls, Krzysztof Palacz, Stephen Uhler, Antero Taival-
saari, and Tommi Mikkonen. The lively kernel a self-supporting
system on a web page. In Workshop on Self-sustaining Systems,
pages 31–50. Springer, 2008. doi:10.1007/978-3-540-
89275-5_2.

[jup] Jupyterlab documentation. URL: https://jupyterlab.readthedocs.
io/en/stable/.

[KIH+09] Robert Krahn, Dan Ingalls, Robert Hirschfeld, Jens Lincke, and
Krzysztof Palacz. Lively wiki a development environment for
creating and sharing active web content. In Proceedings of the
5th International Symposium on Wikis and Open Collaboration,
WikiSym ’09, New York, NY, USA, 2009. Association for
Computing Machinery. URL: https://doi.org/10.1145/1641309.
1641324, doi:10.1145/1641309.1641324.

[KRB18] Juraj Kubelka, Romain Robbes, and Alexandre Bergel. The road
to live programming: Insights from the practice. In Proceedings
of the 40th International Conference on Software Engineering,
ICSE ’18, page 1090–1101, New York, NY, USA, 2018. Associ-
ation for Computing Machinery. URL: https://doi.org/10.1145/
3180155.3180200, doi:10.1145/3180155.3180200.

[KRKP+16] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez,
Brian Granger, Matthias Bussonnier, Jonathan Frederic, Kyle
Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul
Ivanov, Damián Avila, Safia Abdalla, Carol Willing, and Jupyter
development team. Jupyter Notebooks - a publishing format for
reproducible computational workflows. IOS Press, 2016. URL:
https://eprints.soton.ac.uk/403913/.

[lea] An open-source javascript library for interactive maps. URL:
https://leafletjs.com/.

[LKI+12] Jens Lincke, Robert Krahn, Dan Ingalls, Marko Roder, and
Robert Hirschfeld. The lively partsbin–a cloud-based repository
for collaborative development of active web content. In 2012
45th Hawaii International Conference on System Sciences, pages
693–701, 2012. doi:10.1109/HICSS.2012.42.

[loo] Looker. URL: https://looker.com/.
[LS10] Bruce Lawson and Remy Sharp. Introducing HTML5. New

Riders Publishing, USA, 1st edition, 2010.
[mdn] Window.postmessage() - web apis: Mdn. URL: https://developer.

mozilla.org/en-US/docs/Web/API/Window/postMessage.
[MRR+10] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman,

and Evelyn Eastmond. The scratch programming language
and environment. ACM Transactions on Computing Educa-
tion (TOCE), 10(4):1–15, 2010. URL: https://doi.org/10.1145/
1868358.1868363, doi:10.1145/1868358.1868363.

[MS95] John H Maloney and Randall B Smith. Directness and liveness in
the morphic user interface construction environment. In Proceed-
ings of the 8th annual ACM symposium on User interface and
software technology, pages 21–28, 1995. URL: https://doi.org/
10.1145/215585.215636, doi:10.1145/215585.215636.

[ope] Openlayers. URL: https://openlayers.org/.
[pan22] Panel, May 2022. URL: https://panel.holoviz.org/.
[pdt20] The pandas development team. pandas-dev/pandas: Pandas,

February 2020. URL: https://doi.org/10.5281/zenodo.3509134,
doi:10.5281/zenodo.3509134.

[plo] Dash overview. URL: https://plotly.com/dash/.
[SKH21] Robin Schrieber, Robert Krahn, and Linus Hagemann.

lively.next, 2021.

GALYLEO: A GENERAL-PURPOSE EXTENSIBLE VISUALIZATION SOLUTION 21

[TM17] Antero Taivalsaari and Tommi Mikkonen. The web as a software
platform: Ten years later. In International Conference on Web
Information Systems and Technologies, volume 2, pages 41–50.
SCITEPRESS, 2017. doi:10.5220/0006234800410050.

[US87] David Ungar and Randall B. Smith. Self: The power of simplic-
ity. volume 22, page 227–242, New York, NY, USA, dec 1987.
Association for Computing Machinery. URL: https://doi.org/10.
1145/38807.38828, doi:10.1145/38807.38828.

[WM10] Wes McKinney. Data Structures for Statistical Computing in
Python. In Stéfan van der Walt and Jarrod Millman, editors,
Proceedings of the 9th Python in Science Conference, pages 56
– 61, 2010. doi:10.25080/Majora-92bf1922-00a.

22 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

USACE Coastal Engineering Toolkit and a Method of
Creating a Web-Based Application

Amanda Catlett‡∗, Theresa R. Coumbe‡, Scott D. Christensen‡, Mary A. Byrant‡

F

Abstract—In the early 1990s the Automated Coastal Engineering Systems,
ACES, was created with the goal of providing state-of-the-art computer-based
tools to increase the accuracy, reliability, and cost-effectiveness of Corps coastal
engineering endeavors. Over the past 30 years, ACES has become less and less
accessible to engineers. An updated version of ACES was necessary for use in
coastal engineering. Our goal was to bring the tools in ACES to a user-friendly
web-based dashboard that would allow a wide range of users to be able to easily
and quickly visualize results. We will discuss how we restructured the code
using class inheritance and the three libraries Param, Panel, and HoloViews to
create an extensible, interactive, graphical user interface. We have created the
USACE Coastal Engineering Toolkit, UCET, which is a web-based application
that contains 20 of the tools in ACES. UCET serves as an outline for the process
of taking a model or set of tools and developing web-based application that can
produce visualizations of the results.

Index Terms—GUI, Param, Panel, HoloViews

Introduction

The Automated Coastal Engineering System (ACES) was devel-
oped in response to the charge by the LTG E. R. Heiberg III,
who was the Chief of Engineers at the time, to provide improved
design capabilities to the Corps coastal specialists. [Leenknecht]
In 1992, ACES was presented as an interactive computer-based
design and analysis system in the field of coastal engineering. The
tools consist of seven functional areas which are: Wave Prediction,
Wave Theory, Structural Design, Wave Runup Transmission and
Overtopping, Littoral Process, and Inlet Processes. These func-
tional areas contain classical theory describing wave motion, to
expressions resulting from tests of structures in wave flumes, and
numerical models describing the exchange of energy from the at-
mosphere to the sea surface. The math behind these uses anything
from simple algebraic expressions, both theoretical and empirical,
to numerically intense algorithms. [Leenknecht][UG][shankar]

Originally, ACES was written in FORTRAN 77 resulting in
a decreased ability to use the tool as technology has evolved. In
2017, the codebase was converted from FORTRAN 77 to MAT-
LAB and Python. This conversion ensured that coastal engineers
using this tool base would not need training in yet another coding
language. In 2020, the Engineered Resilient Systems (ERS) Rapid
Application Development (RAD) team undertook the project with

* Corresponding author: amanda.r.catlett@erdc.dren.mil
‡ ERDC

Copyright © 2022 Amanda Catlett et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

the goal of deploying the ACES tools as a web-based application,
and ultimately renamed it to: USACE Coastal Engineering Toolkit
(UCET).

The RAD team focused on updating the Python codebase
utilizing Python’s object-oriented programming and the newly
developed HoloViz ecosystem. The team refactored the code to
implement inheritance so the code is clean, readable, and scalable.
The tools were expanded to a Graphical User Interface (GUI) so
the implementation to a web-app would provide a user-friendly
experience. This was done by using the HoloViz-maintained
libraries: Param, Panel, and Holoviews.

This paper will discuss some of the steps that were taken
by the RAD team to update the Python codebase to create a
panel application of the coastal engineering tools. In particular,
refactoring the input and output variables with the Param library,
the class hierarchy used, and utilization of Panel and HoloViews
for a user-friendly experience.

Refactoring Using Param

Each coastal tool in UCET has two classes, the model class and the
GUI class. The model class holds input and output variables and
the methods needed to run the model. Whereas the GUI class holds
information for GUI visualization. To make implementation of the
GUI more seamless we refactored model variables to utilize the
Param library. Param is a library that has the goal of simplifying
the codebase by letting the programmer explicitly declare the types
and values of parameters accepted by the code. Param can also be
seamlessly used when implementing the GUI through Panel and
HoloViews.

Each UCET tool’s model class declares the input and output
values used in the model as class parameters. Each input and
output variables are declared and given the following metadata
features:

• default: each input variable is defined as a Param with a
default value defined from the 1992 ACES user manual

• bounds: each input variable is defined with range values
defined in the 1992 ACES user manual

• doc or docstrings: input and output variables have the
expected variable and description of the variable defined
as a doc. This is used as a label over the input and
output widgets. Most docstrings follow the pattern of
<variable>:<description of variable [units, if any]>

• constant: the output variables all set constant equal True,
thereby restricting the user’s ability to manipulate the

USACE COASTAL ENGINEERING TOOLKIT AND A METHOD OF CREATING A WEB-BASED APPLICATION 23

value. Note that when calculations are being done they will
need to be inside a with param.edit_constant(self) function

• precedence: input and output variables will use prece-
dence when there are instances where the variable does
not need to be seen.

The following is an example of an input parameter:
H = param.Number(

doc='H: wave height [{distance_unit}]',
default=6.3,
bounds=(0.1, 200)

)

An example of an output variable is:
L = param.Number(

doc='L: Wavelength [{distance_unit}]',
constant=True

)

The model’s main calculation functions mostly remained un-
changed. However, the use of Param eliminated the need for code
that handled type checking and bounds checks.

Class Hierarchy

UCET has twenty tools from six of the original seven functional
areas of ACES. When we designed our class hierarchy, we focused
on the visualization of the web application rather than functional
areas. Thus, each tool’s class can be categorized into Base-Tool,
Graph-Tool, Water-Tool, or Graph-Water-Tool. The Base-Tool has
the coastal engineering models that do not have any water property
inputs (such as water density) in the calculations and no graphical
output. The Graph-Tool has the coastal engineering models that
do not have any water property inputs in the calculations but have
a graphical output. Water-Tool has the coastal engineering models
that have water property inputs in the calculations and no graphical
output. Graph-Water-Tool has the coastal engineering models that
have water property inputs in the calculations and has a graphical
output. Figure 1 shows a flow of inheritance for each of those
classes.

There are two types of general categories for the classes in
the UCET codebase: utility and tool-specific. Utility classes have
methods and functions that are utilized across more than one tool.
The Utility classes are:

• BaseDriver: holds methods and functions that each tool
needs to collect data, run coastal engineering models, and
print data.

• WaterDriver: has the methods that make water density
and water weight available to the models that need those
inputs for the calculations.

• BaseGui: has the functions and methods for the visualiza-
tion and utilization of all inputs and outputs within each
tool’s GUI.

• WaterTypeGui: has the widget for water selection.
• TabulatorDataGui: holds the functions and methods used

for visualizing plots and the ability to download the data
that is used for plotting.

Each coastal tool in UCET has two classes, the model class and
the GUI class. The model class holds input and output variables
and the methods needed to run the model. The model class either
directly inherits from the BaseDriver or the WaterTypeDriver. The
tool’s GUI class holds information for GUI visualization that is
different from the BaseGui, WaterTypeGUI, and TabulatorDataGui

classes. In figure 1 the model classes are labeled as: Base-Tool
Class, Graph-Tool Class, Water-Tool Class, and Graph-Water-Tool
Class and each has a corresponding GUI class.

Due to the inheritance in UCET, the first two questions that
can be asked when adding a tool are: ‘Does this tool need water
variables for the calculation?’ and ‘Does this tool have a graph?’.
The developer can then add a model class and a GUI class and
inherit based on figure 1. For instance, Linear Wave Theory is
an application that yields first-order approximations for various
parameters of wave motion as predicted by the wave theory. It
provides common items of interest such as water surface elevation,
general wave properties, particle kinematics and pressure as a
function of wave height and period, water depth, and position
in the wave form. This tool uses water density and has multiple
graphs in its output. Therefore, Linear Wave Theory is considered
a Graph-Water-Tool and the model class will inherit from Water-
TypeDriver and the GUI class will inherit the linear wave theory
model class, WaterTypeGui, and TabularDataGui.

GUI Implementation Using Panel and HoloViews

Each UCET tool has a GUI class where the Panel and HoloView
libraries are implemented. Panel is a hierarchical container that
can layout panes, widgets, or other Panels in an arrangement
that forms an app or dashboard. The Pane is used to render any
widget-like object such as Spinner, Tabulator, Buttons, CheckBox,
Indicators, etc. Those widgets are used to gather user input and
run the specific tool’s model.

UCET utilizes the following widgets to gather user input:

• Spinner: single numeric input values
• Tabulator: table input data
• CheckBox: true or false values
• Drop down: items that have a list of pre-selected values,

such as which units to use

UCET utilizes indicators.Number, Tabulator, and graphs to
visualize the outputs of the coastal engineering models. A single
number is shown using indicators.Number and graph data is
displayed using the Tabulator widget to show the data of the graph.
The graphs are created using HoloViews and have tool options
such as pan, zooming, and saving. Buttons are used to calculate,
save the current run, and save the graph data.

All of these widgets are organized into 5 pan-
els: title, options, inputs, outputs, and graph. The
BaseGui/WaterTypeGui/TabularDataGui have methods that
organize the widgets within the 5 panels that most tools follow.
The “options” panel has a row that holds the dropdown selections
for units and water type (if the tool is a Water-Tool). Some tools
have a second row in the “options” panel with other drop-down
options. The input panel has two columns for spinner widgets
with a calculation button at the bottom left. The output panel has
two columns of indicators.Number for the single numeric output
values. At the bottom of the output panel there is a button to “save
the current profile”. The graph panel is tabbed where the first
tab shows the graph and the second tab shows the data provided
within the graph. An visual outline of this can ben seen in the
following figure. Some of the UCET tools have more complicated
input or output visualizations and that tool’s GUI class will add
or modify methods to meet the needs of that tool.

The general outline of a UCET tool for the GUI.

24 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Current State

UCET approaches software development from the perspective of
someone within the field of Research and Development. Each
tool within UCET is not inherently complex from the traditional
software perspective. However, this codebase enables researchers
to execute complex coastal engineering models in a user-friendly
environment by leveraging open-source libraries in the scientific
Python ecosystem such as: Param, Panel, and HoloViews.

Currently, UCET is only deployed using a command line
interface panel serve command. UCET is awaiting the Security
Technical Implementation Guide process before it can be launched
as a website. As part of this security vetting process we plan to
leverage continuous integration/continuous development (CI/CD)
tools to automate the deployment process. While this process is
happening, we have started to get feedback from coastal engineers
to update the tools usability, accuracy, and adding suggested
features. To minimize the amount of computer science knowledge
the coastal engineers need, our team created a batch script. This
script creates a conda environment, activates and runs the panel
serve command to launch the app on a local host. The user only
needs to click on the batch script for this to take place.

Other tests are being created to ensure the accuracy of the
tools using a testing framework to compare output from UCET
with that of the FORTRAN original code. The biggest barrier to
this testing strategy is getting data from the FORTRAN to compare
with Python. Currently, there are tests for most of the tools that
read a CSV file of input and output results from FORTRAN and
compare with what the Python code is calculating.

Our team has also compiled an updated user guide on how to
use the tool, what to expect from the tool, and a deeper description
on any warning messages that might appear as the user adds input
values. An example of a warning message would be, if a user
chooses input values that make it so the application does not make
physical sense, a warning message will appear under the output
header and replace all output values. For a more concrete example:
Linear Wave Theory has a vertical coordinate (z) and the water
depth (d) as input values and when those values sum is less than

zero the point is outside the waveform. Therefore, if a user makes
a combination where the sum is less than zero, UCET will post
a warning to tell the user that the point is outside the waveform.
See the below figure for an example The developers have been
documenting this project using GitHub and JIRA.

An example of a warning message based on chosen inputs.

Results

Linear Wave Theory was described in the class hierarchy example.
This Graph-Water-Tool utilizes most of the BaseGui methods. The
biggest difference is instead of having three graphs in the graph
panel there is a plot selector drop down where the user can select
which graph they want to see.

Windspeed Adjustment and Wave Growth provides a quick
and simple estimate for wave growth over open-water and re-
stricted fetches in deep and shallow water. This is a Base-Tool
as there are no graphs and no water variables for the calculations.
This tool has four additional options in the options panel where
the user can select the wind observation type, fetch type, wave
equation type, and if knots are being used. Based on the selection
of these options, the input and output variables will change so only
what is used or calculated for those selections are seen.

Conclusion and Future Work

Thirty years ago, ACES was developed to provide improved
design capabilities to Corps coastal specialists and while these
tools are still used today, it became more and more difficult for
users to access them. Five years ago, there was a push to update
the code base to one that coastal specialists would be more familiar
with: MATLAB and Python. Within the last two years the RAD
team was able to finalize the update so that the user can access
these tools without having years of programming experience. We
were able to do this by utilizing classes, inheritance, and the
Param, Panel, and HoloViews libraries. The use of inheritance
has allowed for shorter code-bases and also has made it so new
tools can be added to the toolkit. Param, Panel, and HoloViews
work cohesively together to not only run the models but make a
simple interface.

Future work will involve expanding UCET to include current
coastal engineering models, and completing the security vetting

USACE COASTAL ENGINEERING TOOLKIT AND A METHOD OF CREATING A WEB-BASED APPLICATION 25

Fig. 1: Screen shot of Linear Wave Theory

Fig. 2: Screen shot of Windspeed Adjustment and Wave Growth

process to deploy to a publicly accessible website. We plan to
incorporate an automated CI/CD to ensure smooth deployment
of future versions. We also will continue to incorporate feedback
from users and refine the code to ensure the application provides
a quality user experience.

REFERENCES

[Leenknecht] David A. Leenknecht, Andre Szuwalski, and Ann R. Sherlock.
1992. Automated Coastal Engineering System -Technical Refer-
ence. Technical report. https://usace.contentdm.oclc.org/digital/
collection/p266001coll1/id/2321/

[panel] “Panel: A High-Level App and Dashboarding Solution for
Python.” Panel 0.12.6 Documentation, Panel Contributors,
2019, https://panel.holoviz.org/.

[holoviz] “High-Level Tools to Simplify Visualization in Python.”
HoloViz 0.13.0 Documentation, HoloViz Authors, 2017, https:
//holoviz.org.

[UG] David A. Leenknecht, et al. “Automated Tools for Coastal
Engineering.” Journal of Coastal Research, vol. 11, no.
4, Coastal Education & Research Foundation, Inc., 1995,
pp. 1108-24. https://usace.contentdm.oclc.org/digital/collection/
p266001coll1/id/2321/

[shankar] N.J. Shankar, M.P.R. Jayaratne, Wave run-up and overtopping
on smooth and rough slopes of coastal structures, Ocean Engi-
neering, Volume 30, Issue 2, 2003, Pages 221-238, ISSN 0029-
8018, https://doi.org/10.1016/S0029-8018(02)00016-1

26 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Search for Extraterrestrial Intelligence: GPU
Accelerated TurboSETI

Luigi Cruz‡∗, Wael Farah‡, Richard Elkins‡

F

Abstract—A common technique adopted by the Search For Extraterrestrial In-
telligence (SETI) community is monitoring electromagnetic radiation for signs of
extraterrestrial technosignatures using ground-based radio observatories. The
analysis is made using a Python-based software called TurboSETI to detect nar-
rowband drifting signals inside the recordings that can mean a technosignature.
The data stream generated by a telescope can easily reach the rate of terabits
per second. Our goal was to improve the processing speeds by writing a GPU-
accelerated backend in addition to the original CPU-based implementation of the
de-doppler algorithm used to integrate the power of drifting signals. We discuss
how we ported a CPU-only program to leverage the parallel capabilities of a
GPU using CuPy, Numba, and custom CUDA kernels. The accelerated backend
reached a speed-up of an order of magnitude over the CPU implementation.

Index Terms—gpu, numba, cupy, seti, turboseti

1. Introduction

The Search for Extraterrestrial Intelligence (SETI) is a broad term
utilized to describe the effort of locating any scientific proof of
past or present technology that originated beyond the bounds of
Earth. SETI can be performed in a plethora of ways: either actively
by deploying orbiters and rovers around planets/moons within the
solar system, or passively by either searching for biosignatures in
exoplanet atmospheres or “listening” to technologically-capable
extraterrestrial civilizations. One of the most common techniques
adopted by the SETI community is monitoring electromagnetic
radiation for narrowband signs of technosignatures using ground-
based radio observatories. This search can be performed in mul-
tiple ways: equipment primarily built for this task, like the Allen
Telescope Array (California, USA), renting observation time, or
in the background while the primary user is conducting other ob-
servations. Other radio-observatories useful for this search include
the MeerKAT Telescope (Northern Cape, South Africa), Green
Bank Telescope (West Virginia, USA), and the Parkes Telescope
(New South Wales, Australia). The operation of a radio-telescope
is similar to an optical telescope. Instead of using optics to
concentrate light into an optical sensor, a radio-telescope operates
by concentrating electromagnetic waves into an antenna using a
large reflective structure called a “dish” ([Reb82]). The interac-
tion between the metallic antenna and the electromagnetic wave
generates a faint electrical current. This effect is then quantized

* Corresponding author: lfcruz@seti.org
‡ SETI Institute

Copyright © 2022 Luigi Cruz et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

by an analog-to-digital converter as voltages and transmitted to a
processing logic to extract useful information from it. The data
stream generated by a radio telescope can easily reach the rate
of terabits per second because of the ultra-wide bandwidth radio
spectrum. The current workflow utilized by the Breakthrough
Listen, the largest scientific research program aimed at finding
evidence of extraterrestrial intelligence, consists in pre-processing
and storing the incoming data as frequency-time binary files
([LCS+19]) in persistent storage for later analysis. This post-
analysis is made possible using a Python-based software called
TurboSETI ([ESF+17]) to detect narrowband signals that could be
drifting in frequency owing to the relative radial velocity between
the observer on earth, and the transmitter. The offline processing
speed of TurboSETI is directly related to the scientific output of
an observation. Each voltage file ingested by TurboSETI is often
on the order of a few hundreds of gigabytes. To process data
efficiently without Python overhead, the program uses Numpy for
near machine-level performance. To measure a potential signal’s
drift rate, TurboSETI uses a de-doppler algorithm to align the
frequency axis according to a pre-set drift rate. Another algorithm
called “hitsearch” ([ESF+17]) is then utilized to identify any
signal present in the recorded spectrum. These two algorithms
are the most resource-hungry elements of the pipeline consuming
almost 90% of the running time.

2. Approach

Multiple methods were utilized in this effort to write a GPU-
accelerated backend and optimize the CPU implementation of
TurboSETI. In this section, we enumerate all three main methods.

2.1. CuPy

The original implementation of TurboSETI heavily depends on
Numpy ([HMvdW+20]) for data processing. To keep the number
of modifications as low as possible, we implemented the GPU-
accelerated backend using CuPy ([OUN+17]). This open-source
library offers GPU acceleration backed by NVIDIA CUDA and
AMD ROCm while using a Numpy style API. This enabled us
to reuse most of the code between the CPU and GPU-based
implementations.

2.1. Numba

Some computationally heavy methods of the original CPU-based
implementation of TurboSETI were written in Cython. This ap-
proach has disadvantages: the developer has to be familiar with
Cython syntax to alter the code; the code requires additional logic

SEARCH FOR EXTRATERRESTRIAL INTELLIGENCE: GPU ACCELERATED TURBOSETI 27

Double-Precision (float64)

Impl. Device File A File B File C
Cython CPU 0.44 min 25.26 min 23.06 min
Numba CPU 0.36 min 20.67 min 22.44 min
CuPy GPU 0.05 min 2.73 min 3.40 min

TABLE 1
Double precision processing time benchmark with Cython, Numba and CuPy

implementation.

Single-Precision (float32)

Impl. Device File A File B File C
Numba CPU 0.26 min 16.13 min 16.15 min
CuPy GPU 0.03 min 1.52 min 2.14 min

TABLE 2
Single precision processing time benchmark with Numba and CuPy

implementation.

to be compiled at installation time. Consequently, it was decided
to replace Cython with pure Python methods decorated with the
Numba ([LPS15]) accelerator. By leveraging the power of the Just-
In-Time (JIT) compiler from Low Level Virtual Machine (LLVM),
Numba can compile Python code into assembly code as well
as apply Single Instruction/Multiple Data (SIMD) acceleration
instructions to achieve near machine-level speeds.

2.2. Single-Precision Floating-Point

The original implementation of the software handled the input
data as double-precision floating-point numbers. This behavior
would cause all the mathematical operations to take significantly
longer to process because of the extended precision. The ultimate
precision of the output product is inherently limited by the preci-
sion of the original input data which in most cases is represented
by an 8-bit signed integer. Therefore, the addition of a single-
precision floating-point number decreased the processing time
without compromising the useful precision of the output data.

3. Results

To test the speed improvements between implementations we used
files from previous observations coming from different observato-
ries. Table 1 indicates the processing times it took to process three
different files in double-precision mode. We can notice that the
CPU implementation based on Numba is measurably faster than
the original CPU implementation based on Cython. At the same
time, the GPU-accelerated backend processed the data from 6.8 to
9.3 times faster than the original CPU-based implementation.

Table 2 indicates the same results as Table 1 but with single-
precision floating points. The original Cython implementation was
left out because it doesn’t support single-precision mode. Here,
the same data was processed from 7.5 to 10.6 times faster than the
Numba CPU-based implementation.

To illustrate the processing time improvement, a single obser-
vation containing 105 GB of data was processed in 12 hours by the
original CPU-based TurboSETI implementation on an i7-7700K
Intel CPU, and just 1 hour and 45 minutes by the GPU-accelerated
backend on a GTX 1070 Ti NVIDIA GPU.

4. Conclusion

The original implementation of TurboSETI worked exclusively
on the CPU to process data. We implemented a GPU-accelerated
backend to leverage the massive parallelization capabilities of a
graphical device. The benchmark performed shows that the new
CPU and GPU implementation takes significantly less time to
process observation data resulting in more science being produced.
Based on the results, the recommended configuration to run the
program is with single-precision calculations on a GPU device.

REFERENCES

[ESF+17] J. Emilio Enriquez, Andrew Siemion, Griffin Foster, Vishal
Gajjar, Greg Hellbourg, Jack Hickish, Howard Isaacson,
Danny C. Price, Steve Croft, David DeBoer, Matt Lebof-
sky, David H. E. MacMahon, and Dan Werthimer. The
breakthrough listen search for intelligent life: 1.1–1.9
ghz observations of 692 nearby stars. The Astrophys-
ical Journal, 849(2):104, Nov 2017. URL: https://ui.
adsabs.harvard.edu/abs/2017ApJ...849..104E/abstract, doi:
10.3847/1538-4357/aa8d1b.

[HMvdW+20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der
Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del
Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant,
Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer
Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array pro-
gramming with NumPy. Nature, 585(7825):357–362, Septem-
ber 2020. URL: https://doi.org/10.1038/s41586-020-2649-2,
doi:10.1038/s41586-020-2649-2.

[LCS+19] Matthew Lebofsky, Steve Croft, Andrew P. V. Siemion,
Danny C. Price, J. Emilio Enriquez, Howard Isaacson, David
H. E. MacMahon, David Anderson, Bryan Brzycki, Jeff Cobb,
Daniel Czech, David DeBoer, Julia DeMarines, Jamie Drew,
Griffin Foster, Vishal Gajjar, Nectaria Gizani, Greg Hellbourg,
Eric J. Korpela, and Brian Lacki. The breakthrough listen
search for intelligent life: Public data, formats, reduction, and
archiving. Publications of the Astronomical Society of the
Pacific, 131(1006):124505, Nov 2019. URL: https://arxiv.org/
abs/1906.07391, doi:10.1088/1538-3873/ab3e82.

[LPS15] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba:
A llvm-based python jit compiler. In Proceedings of the
Second Workshop on the LLVM Compiler Infrastructure in
HPC, LLVM ’15, New York, NY, USA, 2015. Association
for Computing Machinery. URL: https://doi.org/10.1145/
2833157.2833162, doi:10.1145/2833157.2833162.

[OUN+17] Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido,
and Crissman Loomis. Cupy: A numpy-compatible library
for nvidia gpu calculations. In Proceedings of Workshop
on Machine Learning Systems (LearningSys) in The Thirty-
first Annual Conference on Neural Information Processing
Systems (NIPS), 2017. URL: http://learningsys.org/nips17/
assets/papers/paper_16.pdf.

[Reb82] Grote Reber. Cosmic Static, pages 61–69. Springer Nether-
lands, Dordrecht, 1982. URL: https://doi.org/10.1007/978-
94-009-7752-5_6, doi:10.1007/978-94-009-7752-
5_6.

28 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Experience report of physics-informed neural
networks in fluid simulations: pitfalls and frustration

Pi-Yueh Chuang‡∗, Lorena A. Barba‡

F

Abstract—Though PINNs (physics-informed neural networks) are now deemed
as a complement to traditional CFD (computational fluid dynamics) solvers
rather than a replacement, their ability to solve the Navier-Stokes equations
without given data is still of great interest. This report presents our not-so-
successful experiments of solving the Navier-Stokes equations with PINN as
a replacement to traditional solvers. We aim to, with our experiments, prepare
readers for the challenges they may face if they are interested in data-free PINN.
In this work, we used two standard flow problems: 2D Taylor-Green vortex at
Re = 100 and 2D cylinder flow at Re = 200. The PINN method solved the 2D
Taylor-Green vortex problem with acceptable results, and we used this flow as an
accuracy and performance benchmark. About 32 hours of training were required
for the PINN method’s accuracy to match the accuracy of a 16× 16 finite-
difference simulation, which took less than 20 seconds. The 2D cylinder flow, on
the other hand, did not produce a physical solution. The PINN method behaved
like a steady-flow solver and did not capture the vortex shedding phenomenon.
By sharing our experience, we would like to emphasize that the PINN method is
still a work-in-progress, especially in terms of solving flow problems without any
given data. More work is needed to make PINN feasible for real-world problems
in such applications. (Reproducibility package: [Chu22].)

Index Terms—computational fluid dynamics, deep learning, physics-informed
neural network

1. Introduction

Recent advances in computing and programming techniques have
motivated practitioners to revisit deep learning applications in
computational fluid dynamics (CFD). We use the verb "revisit"
because deep learning applications in CFD already existed going
back to at least the 1990s, for example, using neural networks as
surrogate models ([LS], [FS]). Another example is the work of
Lagaris and his/her colleagues ([LLF]) on solving partial differen-
tial equations with fully-connected neural networks back in 1998.
Similar work with radial basis function networks can be found
in reference [LLQH]. Nevertheless, deep learning applications
in CFD did not get much attention until this decade, thanks to
modern computing technology, including GPUs, cloud computing,
high-level libraries like PyTorch and TensorFlow, and their Python
APIs.

Solving partial differential equations with deep learning is
particularly interesting to CFD researchers and practitioners. The

* Corresponding author: pychuang@gwu.edu
‡ Department of Mechanical and Aerospace Engineering, The George Wash-
ington University, Washington, DC 20052, USA

Copyright © 2022 Pi-Yueh Chuang et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

PINN (physics-informed neural network) method denotes an ap-
proach to incorporate deep learning in CFD applications, where
solving partial differential equations plays the key role. These par-
tial differential equations include the well-known Navier-Stokes
equations—one of the Millennium Prize Problems. The universal
approximation theorem ([Hor]) implies that neural networks can
model the solution to the Navier-Stokes equations with high
fidelity and capture complicated flow details as long as networks
are big enough. The idea of PINN methods can be traced back
to [DPT], while the name PINN was coined in [RPK]. Human-
provided data are not necessary in applying PINN [LMMK], mak-
ing it a potential alternative to traditional CFD solvers. Sometimes
it is branded as unsupervised learning—it does not rely on human-
provided data, making it sound very "AI." It is now common to
see headlines like "AI has cracked the Navier-Stokes equations" in
recent popular science articles ([Hao]).

Though data-free PINN as an alternative to traditional CFD
solvers may sound attractive, PINN can also be used under data-
driven configurations, for which it is better suited. Cai et al.
[CMW+] state that PINN is not meant to be a replacement of
existing CFD solvers due to its inferior accuracy and efficiency.
The most useful applications of PINN should be those with
some given data, and thus the models are trained against the
data. For example, when we have experimental measurements or
partial simulation results (coarse-grid data, limited numbers of
snapshots, etc.) from traditional CFD solvers, PINN may be useful
to reconstruct the flow or to be a surrogate model.

Nevertheless, data-free PINN may offer some advantages over
traditional solvers, and using data-free PINN to replace traditional
solvers is still of great interest to researchers (e.g., [KDYI]). First,
it is a mesh-free scheme, which benefits engineering problems
where fluid flows interact with objects of complicated geometries.
Simulating these fluid flows with traditional numerical methods
usually requires high-quality unstructured meshes with time-
consuming human intervention in the pre-processing stage before
actual simulations. The second benefit of PINN is that the trained
models approximate the governing equations’ general solutions,
meaning there is no need to solve the equations repeatedly for
different flow parameters. For example, a flow model taking
boundary velocity profiles as its input arguments can predict
flows under different boundary velocity profiles after training.
Conventional numerical methods, on the contrary, require repeated
simulations, each one covering one boundary velocity profile.
This feature could help in situations like engineering design op-
timization: the process of running sets of experiments to conduct
parameter sweeps and find the optimal values or geometries for

EXPERIENCE REPORT OF PHYSICS-INFORMED NEURAL NETWORKS IN FLUID SIMULATIONS: PITFALLS AND FRUSTRATION 29

products. Given these benefits, researchers continue studying and
improving the usability of data-free PINN (e.g., [WYP], [DZ],
[WTP], [SS]).

Data-free PINN, however, is not ready nor meant to replace
traditional CFD solvers. This claim may be obvious to researchers
experienced in PINN, but it may not be clear to others, especially
to CFD end-users without ample expertise in numerical methods.
Even in literature that aims to improve PINN, it’s common to see
only the success stories with simple CFD problems. Important in-
formation concerning the feasibility of PINN in practical and real-
world applications is often missing from these success stories. For
example, few reports discuss the required computing resources,
the computational cost of training, the convergence properties, or
the error analysis of PINN. PINN suffers from performance and
solvability issues due to the need for high-order automatic differ-
entiation and multi-objective nonlinear optimization. Evaluating
high-order derivatives using automatic differentiation increases
the computational graphs of neural networks. And multi-objective
optimization, which reduces all the residuals of the differential
equations, initial conditions, and boundary conditions, makes
the training difficult to converge to small-enough loss values.
Fluid flows are sensitive nonlinear dynamical systems in which
a small change or error in inputs may produce a very different
flow field. So to get correct solutions, the optimization in PINN
needs to minimize the loss to values very close to zero, further
compromising the method’s solvability and performance.

This paper reports on our not-so-successful PINN story as a
lesson learned to readers, so they can be aware of the challenges
they may face if they consider using data-free PINN in real-world
applications. Our story includes two computational experiments
as case studies to benchmark the PINN method’s accuracy and
computational performance. The first case study is a Taylor-
Green vortex, solved successfully though not to our complete
satisfaction. We will discuss the performance of PINN using this
case study. The second case study, flow over a cylinder, did not
even result in a physical solution. We will discuss the frustration
we encountered with PINN in this case study.

We built our PINN solver with the help of NVIDIA’s Modulus
library ([noa]). Modulus is a high-level Python package built on
top of PyTorch that helps users develop PINN-based differential
equation solvers. Also, in each case study, we also carried out sim-
ulations with our CFD solver, PetIBM ([CMKAB18]). PetIBM is
a traditional solver using staggered-grid finite difference methods
with MPI parallelization and GPU computing. PetIBM simulations
in each case study served as baseline data. For all cases, config-
urations, post-processing scripts, and required Singularity image
definitions can be found at reference [Chu22].

This paper is structured as follows: the second section briefly
describes the PINN method and an analogy to traditional CFD
methods. The third and fourth sections provide our computational
experiments of the Taylor-Green vortex in 2D and a 2D laminar
cylinder flow with vortex shedding. Most discussions happen
in the corresponding case studies. The last section presents the
conclusion and discussions that did not fit into either one of the
cases.

2. Solving Navier-Stokes equations with PINN

The incompressible Navier-Stokes equations in vector form are
composed of the continuity equation:

∇ ·~U = 0 (1)

and momentum equations:

∂~U
∂ t

+(~U ·∇)~U =− 1
ρ

∇p+ν∇2~U +~g (2)

where ρ = ρ(~x, t), ν = ν(~x, t), and p = p(~x, t) are scalar fields
denoting density, kinematic viscosity, and pressure, respectively.
~x denotes the spatial coordinate, and ~x = [x, y]T in two di-
mensions. The density and viscosity fields are usually known
and given, while the pressure field is unknown. ~U = ~U(~x, t) =
[u(x,y, t), v(x,y, t)]T is a vector field for flow velocity. All of them
are functions of the spatial coordinate in the computational domain
Ω and time before a given limit T . The gravitational field ~g may
also be a function of space and time, though it is usually a constant.
A solution to the Navier-Stokes equations is subjected to an initial
condition and boundary conditions:

~U(~x, t) = ~U0(~x), ∀~x ∈Ω, t = 0
~U(~x, t) = ~UΓ(~x, t), ∀~x ∈ Γ, t ∈ [0,T]
p(~x, t) = pΓ(x, t), ∀~x ∈ Γ, t ∈ [0,T]

(3)

where Γ represents the boundary of the computational domain.

2.1. The PINN method

The basic form of the PINN method ([RPK], [CMW+]) starts from
approximating ~U and p with a neural network:

[
~U
p

]
(~x, t)≈ G(~x, t;Θ) (4)

Here we use a single network that predicts both pressure and
velocity fields. It is also possible to use different networks for them
separately. Later in this work, we will use GU and Gp to denote
the predicted velocity and pressure from the neural network. Θ at
this point represents the free parameters of the network.

To determine the free parameters, Θ, ideally, we hope the
approximate solution gives zero residuals for equations (1), (2),
and (3). That is

r1(~x, t;Θ)≡ ∇ ·GU = 0

r2(~x, t;Θ)≡ ∂GU

∂ t
+(GU ·∇)GU +

1
ρ

∇Gp−ν∇2GU −~g = 0

r3(~x;Θ)≡ GU
t=0−~U0 = 0

r4(~x, t;Θ)≡ GU −~UΓ = 0, ∀~x ∈ Γ
r5(~x, t;Θ)≡ Gp− pΓ = 0, ∀~x ∈ Γ

(5)

And the set of desired parameter, Θ = θ , is the common zero root
of all the residuals.

The derivatives of G with respect to ~x and t are usually ob-
tained using automatic differentiation. Nevertheless, it is possible
to use analytical derivatives when the chosen network architecture
is simple enough, as reported by early-day literature ([LLF],
[LLQH]).

If residuals in (5) are not complicated, and if the number of
the parameters, NΘ, is small enough, we may numerically find the
zero root by solving a system of NΘ nonlinear equations generated
from a suitable set of NΘ spatial-temporal points. However, the
scenario rarely happens as G is usually highly complicated and
NΘ is large. Moreover, we do not even know if such a zero root
exists for the equations in (5).

Instead, in PINN, the condition is relaxed. We do not seek the
zero root of (5) but just hope to find a set of parameters that make

30 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

the residuals sufficiently close to zero. Consider the sum of the l2
norms of residuals:

r(~x, t;Θ = θ)≡
5

∑
i=1
‖ri(~x, t;Θ = θ)‖2, ∀

{
x ∈Ω
t ∈ [0,T]

(6)

The θ that makes residuals closest to zero (or even equal to zero
if such θ exists) also makes (6) minimal because r(~x, t;Θ)≥ 0. In
other words,

θ = argmin
Θ

r(~x, t;Θ) ∀
{

x ∈Ω
t ∈ [0,T]

(7)

This poses a fundamental difference between the PINN method
and traditional CFD schemes, making it potentially more difficult
for the PINN method to achieve the same accuracy as the tradi-
tional schemes. We will discuss this more in section 3. Note that
in practice, each loss term on the right-hand-side of equation (6) is
weighted. We ignore the weights here for demonstrating purpose.

To solve (7), theoretically, we can use any number of spatial-
temporal points, which eases the need of computational resources,
compared to finding the zero root directly. Gradient-descent-
based optimizers further reduce the computational cost, especially
in terms of memory usage and the difficulty of parallelization.
Alternatively, Quasi-Newton methods may work but only when
NΘ is small enough.

However, even though equation (7) may be solvable, it is still
a significantly expensive task. While typical data-driven learning
requires one back-propagation pass on the derivatives of the loss
function, here automatic differentiation is needed to evaluate the
derivatives of G with respect to~x and t. The first-order derivatives
require one back-propagation on the network, while the second-
order derivatives present in the diffusion term ∇2GU require an
additional back-propagation on the first-order derivatives’ com-
putational graph. Finally, to update parameters in an optimizer,
the gradients of G with respect to parameters Θ requires another
back-propagation on the graph of the second-order derivatives.
This all leads to a very large computational graph. We will see the
performance of the PINN method in the case studies.

In summary, when viewing the PINN method as supervised
machine learning, the inputs of a network are spatial-temporal
coordinates, and the outputs are the physical quantities of our
interest. The loss or objective functions in PINN are governing
equations that regulate how the target physical quantities should
behave. The use of governing equations eliminates the need for
true answers. A trivial example is using Bernoulli’s equation as
the loss function, i.e., loss = u2

2g + p
ρg −H0 + z(x), and a neural

network predicts the flow speed u and pressure p at a given
location x along a streamline. (The gravitational acceleration
g, density ρ , energy head H0, and elevation z(x) are usually
known and given.) Such a loss function regulates the relationship
between predicted u and p and does not need true answers for
the two quantities. Unlike Bernoulli’s equation, most governing
equations in physics are usually differential equations (e.g., heat
equations). The main difference is that now the PINN method
needs automatic differentiation to evaluate the loss. Regardless
of the forms of governing equations, spatial-temporal coordinates
are the only data required during training. Hence, throughout this
paper, training data means spatial-temporal points and does not
involve any true answers to predicted quantities. (Note in some
literature, the PINN method is applied to applications that do need
true answers, see [CMW+]. These applications are out of scope
here.)

2.2. An analogy to conventional numerical methods

For readers with a background in numerical methods for partial
differential equations, we would like to make an analogy between
traditional numerical methods and PINN.

In obtaining strong solutions to differential equations, we can
describe the solution workflows of most numerical methods with
five stages:

1) Designing the approximate solution with undetermined
parameters

2) Choosing proper approximation for derivatives
3) Obtaining the so-called modified equation by substituting

approximate derivatives into the differential equations
and initial/boundary conditions

4) Generating a system of linear/nonlinear algebraic equa-
tions

5) Solving the system of equations

For example, to solve ∇U2(x) = s(x), the most naive spectral
method ([Tre]) approximates the solution with U(x) ≈ G(x) =
N
∑

i=1
ciφi(x), where ci represents undetermined parameters, and φi(x)

denotes a set of either polynomials, trigonometric functions, or
complex exponentials. Next, obtaining the first derivative of U is

straightforward—we can just assume U ′(x)≈ G′(x) =
N
∑

i=1
ciφ ′i (x).

The second-order derivative may be more tricky. One can assume

U ′′(x)≈G′′ =
N
∑

i=1
ciφ ′′i (x). Or, another choice for nodal bases (i.e.,

when φi(x) is chosen to make ci ≡ G(xi)) is U ′′(x) ≈
N
∑

i=1
ciG′(xi).

Because φi(x) is known, the derivatives are analytical. After sub-
stituting the approximate solution and derivatives in to the target
differential equation, we need to solve for parameters c1, · · · ,cN .
We do so by selecting N points from the computational domain
and creating a system of N linear equations:

φ ′′1 (x1) · · · φ ′′N(x1)
...

. . .
...

φ ′′1 (xN) · · · φ ′′N(xN)

c1
...

cN

−

s(x1)
...

s(xN)

= 0 (8)

Finally, we determine the parameters by solving this linear system.
Though this example uses a spectral method, the workflow also
applies to many other numerical methods, such as finite difference
methods, which can be reformatted as a form of spectral method.

With this workflow in mind, it should be easy to see the anal-
ogy between PINN and conventional numerical methods. Aside
from using much more complicated approximate solutions, the
major difference lies in how to determine the unknown parameters
in the approximate solutions. While traditional methods solve the
zero-residual conditions, PINN relies on searching the minimal
residuals. A secondary difference is how to approximate deriva-
tives. Conventional numerical methods use analytical or numerical
differentiation of the approximate solutions, and the PINN meth-
ods usually depends on automatic differentiation. This difference
may be minor as we are still able to use analytical differentiation
for simple network architectures with PINN. However, automatic
differentiation is a major factor affecting PINN’s performance.

3. Case 1: Taylor-Green vortex: accuracy and performance

3.1. 2D Taylor-Green vortex

The Taylor-Green vortex represents a family of flows with a
specific form of analytical initial flow conditions in both 2D

EXPERIENCE REPORT OF PHYSICS-INFORMED NEURAL NETWORKS IN FLUID SIMULATIONS: PITFALLS AND FRUSTRATION 31

Fig. 1: Contours of u and v at t = 32 to demonstrate the solution of
2D Taylor-Green vortex.

and 3D. The 2D Taylor-Green vortex has closed-form analytical
solutions with periodic boundary conditions, and hence they are
standard benchmark cases for verifying CFD solvers. In this work,
we used the following 2D Taylor-Green vortex:

u(x,y, t) =V0 cos(
x
L
)sin(

y
L
)exp(−2

ν
L2 t)

v(x,y, t) =−V0 sin(
x
L
)cos(

y
L
)exp(−2

ν
L2 t)

p(x,y, t) =−ρ
4

V 2
0

(
cos(

2x
L
)+ cos(

2y
L
)

)
exp(−4

ν
L2 t)

(9)

where V0 represents the peak (and also the lowest) velocity at
t = 0. Other symbols carry the same meaning as those in section
2.

The periodic boundary conditions were applied to x = −Lπ ,
x = Lπ , y =−Lπ , and y = Lπ . We used the following parameters
in this work: V0 = L = ρ = 1.0 and ν = 0.01. These parameters
correspond to Reynolds number Re = 100. Figure 1 shows a
snapshot of velocity at t = 32.

3.2. Solver and runtime configurations

The neural network used in the PINN solver is a fully-connected
neural network with 6 hidden layers and 256 neurons per layer.
The activation functions are SiLU ([HG]). We used Adam for
optimization, and its initial parameters are the defaults from Py-
Torch. The learning rate exponentially decayed through PyTorch’s
ExponentialLR with gamma equal to 0.951/10000. Note we did
not conduct hyperparameter optimization, given the computational
cost. The hyperparameters are mostly the defaults used by the 3D
Taylor-Green example in Modulus ([noa]).

The training data were simply spatial-temporal coordinates.
Before the training, the PINN solver pre-generated 18,432,000
spatial-temporal points to evaluate the residuals of the Navier-
Stokes equations (the r1 and r2 in equation (5)). These training
points were randomly chosen from the spatial domain [−π,π]×
[−π,π] and temporal domain (0,100]. The solver used only 18,432
points in each training iteration, making it a batch training. For
the residual of the initial condition (the r3), the solver also pre-
generated 18,432,000 random spatial points and used only 18,432
per iteration. Note that for r3, the points were distributed in space
only because t = 0 is a fixed condition. Because of the periodic
boundary conditions, the solver did not require any training points
for r4 and r5.

The hardware used for the PINN solver was a single node of
NVIDIA’s DGX-A100. It was equipped with 8 A100 GPUs (80GB

Fig. 2: Total residuals (loss) with respect to training iterations.

variants). We carried out the training using different numbers of
GPUs to investigate the performance of the PINN solver. All cases
were trained up to 1 million iterations. Note that the parallelization
was done with weak scaling, meaning increasing the number of
GPUs would not reduce the workload of each GPU. Instead,
increasing the number of GPUs would increase the total and
per-iteration numbers of training points. Therefore, our expected
outcome was that all cases required about the same wall time to
finish, while the residual from using 8 GPUs would converge the
fastest.

After training, the PINN solver’s prediction errors (i.e., accu-
racy) were evaluated on cell centers of a 512×512 Cartesian mesh
against the analytical solution. With these spatially distributed
errors, we calculated the L2 error norm for a given t:

L2 =

√∫

Ω

error(x,y)2dΩ≈
√

∑
i

∑
j

error2
i, j∆Ωi, j (10)

where i and j here are the indices of a cell center in the Cartesian
mesh. ∆Ωi, j is the corresponding cell area, 4π2/5122 in this case.

We compared accuracy and performance against results using
PetIBM. All PetIBM simulations in this section were done with
1 K40 GPU and 6 CPU cores (Intel i7-5930K) on our old lab
workstation. We carried out 7 PetIBM simulations with different
spatial resolutions: 2k×2k for k = 4,5, . . . ,10. The time step size
for each spatial resolution was ∆t = 0.1/2k−4.

A special note should be made here: the PINN solver used
single-precision floats, while PetIBM used double-precision floats.
It might sound unfair. However, this discrepancy does not change
the qualitative findings and conclusions, as we will see later.

3.3. Results

Figure 2 shows the convergence history of the total residuals
(equation (6)). Using more GPUs in weak scaling (i.e., more
training points) did not accelerate the convergence, contrary to
what we expected. All cases converged at a similar rate. Though
without a quantitative criterion or justification, we considered that
further training would not improve the accuracy. Figure 3 gives a
visual taste of what the predictions from the neural network look
like.

The result visually agrees with that in figure 1. However, as
shown in figure 4, the error magnitudes from the PINN solver
are much higher than those from PetIBM. Figure 4 shows the
prediction errors with respect to t. We only present the error on
the u velocity as those for v and p are similar. The accuracy of
the PINN solver is similar to that of the 16× 16 simulation with

32 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 3: Contours of u and v at t = 32 from the PINN solver.

Fig. 4: L2 error norm versus simulation time.

PetIBM. Using more GPUs, which implies more training points,
does not improve the accuracy.

Regardless of the magnitudes, the trends of the errors with
respect to t are similar for both PINN and PetIBM. For PetIBM,
the trend shown in figure 4 indicates that the temporal error is
bounded, and the scheme is stable. However, this concept does
not apply to PINN as it does not use any time-marching schemes.
What this means for PINN is still unclear to us. Nevertheless,
it shows that PINN is able to propagate the influence of initial
conditions to later times, which is a crucial factor for solving
hyperbolic partial differential equations.

Figure 5 shows the computational cost of PINN and PetIBM
in terms of the desired accuracy versus the required wall time. We
only show the PINN results of 8 A100 GPUs on this figure. We
believe this type of plot may help evaluate the computational cost
in engineering applications. According to the figure, for example,
achieving an accuracy of 10−3 at t = 2 requires less than 1 second
for PetIBM with 1 K40 and 6 CPU cores, but it requires more than
8 hours for PINN with at least 1 A100 GPU.

Table 1 lists the wall time per 1 thousand iterations and the
scaling efficiency. As indicated previously, weak scaling was used
in PINN, which follows most machine learning applications.

1 GPUs 2 GPUs 4 GPUs 8 GPUs

Time (sec/1k iters) 85.0 87.7 89.1 90.1
Efficiency (%) 100 97 95 94

TABLE 1: Weak scaling performance of the PINN solver using
NVIDIA A100-80GB GPUs

Fig. 5: L2 error norm versus wall time.

3.4. Discussion

A notice should be made regarding the results: we do not claim
that these results represent the most optimized configuration of
the PINN method. Neither do we claim the qualitative conclusions
apply to all other hyperparameter configurations. These results
merely reflect the outcomes of our computational experiments
with respect to the specific configuration abovementioned. They
should be deemed experimental data rather than a thorough anal-
ysis of the method’s characteristics.

The Taylor-Green vortex serves as a good benchmark case
because it reduces the number of required residual constraints:
residuals r4 and r5 are excluded from r in equation 6. This means
the optimizer can concentrate only on the residuals of initial
conditions and the Navier-Stokes equations.

Using more GPUs (thus using more training points, i.e., spatio-
temporal points) did not speed up the convergence, which may
indicate that the per-iteration number of points on a single GPU
is already big enough. The number of training points mainly
affects the mean gradients of the residual with respect to model
parameters, which then will be used to update parameters by
gradient-descent-based optimizers. If the number of points is
already big enough on a single GPU, then using more points or
more GPUs is unlikely to change the mean gradients significantly,
causing the convergence solely to rely on learning rates.

The accuracy of the PINN solver was acceptable but not
satisfying, especially when considering how much time it took
to achieve such accuracy. The low accuracy to some degree was
not surprising. Recall the theory in section 2. The PINN method
only seeks the minimal residual on the total residual’s hyperplane.
It does not try to find the zero root of the hyperplane and does not
even care whether such a zero root exists. Furthermore, by using a
gradient-descent-based optimizer, the resulting minimum is likely
just a local minimum. It makes sense that it is hard for the residual
to be close to zero, meaning it is hard to make errors small.

Regarding the performance result in figure 5, we would like
to avoid interpreting the result as one solver being better than the
other one. The proper conclusion drawn from the figure should be
as follows: when using the PINN solver as a CFD simulator for
a specific flow condition, PetIBM outperforms the PINN solver.
As stated in section 1, the PINN method can solve flows under
different flow parameters in one run—a capability that PetIBM
does not have. The performance result in figure 5 only considers a
limited application of the PINN solver.

One issue for this case study was how to fairly compare
the PINN solver and PetIBM, especially when investigating the
accuracy versus the workload/problem size or time-to-solution

EXPERIENCE REPORT OF PHYSICS-INFORMED NEURAL NETWORKS IN FLUID SIMULATIONS: PITFALLS AND FRUSTRATION 33

versus problem size. Defining the problem size in PINN is not
as straightforward as we thought. Let us start with degrees of
freedom—in PINN, it is called the number of model parame-
ters, and in traditional CFD solvers, it is called the number of
unknowns. The PINN solver and traditional CFD solvers are
all trying to determine the free parameters in models (that is,
approximate solutions). Hence, the number of degrees of freedom
determines the problem sizes and workloads. However, in PINN,
problem sizes and workloads do not depend on degrees of freedom
solely. The number of training points also plays a critical role
in workloads. We were not sure if it made sense to define a
problem size as the sum of the per-iteration number of training
points and the number of model parameters. For example, 100
model parameters plus 100 training points is not equivalent to 150
model parameters plus 50 training points in terms of workloads.
So without a proper definition of problem size and workload, it
was not clear how to fairly compare PINN and traditional CFD
methods.

Nevertheless, the gap between the performances of PINN and
PetIBM is too large, and no one can argue that using other metrics
would change the conclusion. Not to mention that the PINN solver
ran on A100 GPUs, while PetIBM ran on a single K40 GPU
in our lab, a product from 2013. This is also not a surprising
conclusion because, as indicated in section 2, the use of automatic
differentiation for temporal and spatial derivatives results in a huge
computational graph. In addition, the PINN solver uses gradient-
descent based method, which is a first-order method and limits the
performance.

Weak scaling is a natural choice of the PINN solver when it
comes to distributed computing. As we don’t know a proper way
to define workload, simply copying all model parameters to all
processes and using the same number of training points on all
processes works well.

4. Case 2: 2D cylinder flows: harder than we thought

This case study shows what really made us frustrated: a 2D
cylinder flow at Reynolds number Re = 200. We failed to even
produce a solution that qualitatively captures the key physical
phenomenon of this flow: vortex shedding.

4.1. Problem description

The computational domain is [−8,25]× [−8,8], and a cylinder
with a radius of 0.5 sits at coordinate (0,0). The velocity boundary
conditions are (u,v) = (1,0) along x =−8, y =−8, and y = 8. On
the cylinder surface is the no-slip condition, i.e., (u,v) = (0,0).
At the outlet (x = 25), we enforced a pressure boundary condition
p = 0. The initial condition is (u,v) = (0,0). Note that this initial
condition is different from most traditional CFD simulations.
Conventionally, CFD simulations use (u,v) = (1,0) for cylinder
flows. A uniform initial condition of u = 1 does not satisfy
the Navier-Stokes equations due to the no-slip boundary on the
cylinder surface. Conventional CFD solvers are usually able to
correct the solution during time-marching by propagating bound-
ary effects into the domain through numerical schemes’ stencils.
In our experience, using u = 1 or u = 0 did not matter for PINN
because both did not give reasonable results. Nevertheless, the
PINN solver’s results shown in this section were obtained using a
uniform u = 0 for the initial condition.

The density, ρ , is one, and the kinematic viscosity is ν =
0.005. These parameters correspond to Reynolds number Re =

Fig. 6: Demonstration of velocity and vorticity fields at t = 200 from
a PetIBM simulation.

200. Figure 6 shows the velocity and vorticity snapshots at t = 200.
As shown in the figure, this type of flow displays a phenomenon
called vortex shedding. Though vortex shedding makes the flow
always unsteady, after a certain time, the flow reaches a periodic
stage and the flow pattern repeats after a certain period.

The Navier-Stokes equations can be deemed as a dynamical
system. Instability appears in the flow under some flow conditions
and responds to small perturbations, causing the vortex shedding.
In nature, the vortex shedding comes from the uncertainty and
perturbation existing everywhere. In CFD simulations, the vortex
shedding is caused by small numerical and rounding errors in
calculations. Interested readers should consult reference [Wil].

4.2. Solver and runtime configurations

For the PINN solver, we tested with two networks. Both were
fully-connected neural networks: one with 256 neurons per layer,
while the other one with 512 neurons per layer. All other net-
work configurations were the same as those in section 3, except
we allowed human intervention to manually adjust the learning
rates during training. Our intention for this case study was to
successfully obtain physical solutions from the PINN solver,
rather than conducting a performance and accuracy benchmark.
Therefore, we would adjust the learning rate to accelerate the
convergence or to escape from local minimums. This decision was
in line with common machine learning practice. We did not carry
out hyperparameter optimization. These parameters were chosen
because they work in Modulus’ examples and in the Taylor-Green
vortex experiment.

The PINN solver pre-generated 40,960,000 spatial-temporal
points from a spatial domain in [−8,25]× [−8,8] and temporal
domain (0,200] to evaluate residuals of the Navier-Stokes equa-
tions, and used 40,960 points per iteration. The number of pre-
generated points for the initial condition was 2,048,000, and the
per-iteration number is 2,048. On each boundary, the numbers of
pre-generated and per-iteration points are 8,192,000 and 8,192.
Both cases used 8 A100 GPUs, which scaled these numbers up
with a factor of 8. For example, during each iteration, a total of
327,680 points were actually used to evaluate the Navier-Stokes
equations’ residuals. Both cases ran up to 64 hours in wall time.

34 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 7: Training history of the 2D cylinder flow at Re = 200.

One PetIBM simulation was carried out as a baseline. This
simulation had a spatial resolution of 1485× 720, and the time
step size is 0.005. Figure 6 was rendered using this simulation.
The hardware used was 1 K40 GPU plus 6 cores of i7-5930K
CPU. It took about 1.7 hours to finish.

The quantity of interest is the drag coefficient. We consider
both the friction drag and pressure drag in the coefficient calcula-
tion as follows:

CD =
2

ρU2
0 D

∫

S

ρν

∂
(
~U ·~t

)

∂~n
ny− pnx

dS (11)

Here, U0 = 1 is the inlet velocity. ~n = [nx,ny]
T and~t = [ny,−nx]

T

are the normal and tangent vectors, respectively. S represents the
cylinder surface. The theoretical lift coefficient (CL) for this flow
is zero due to the symmetrical geometry.

4.3. Results

Note, as stated in section 3.4, we deem the results as experimental
data under a specific experiment configuration. Hence, we do not
claim that the results and qualitative conclusions will apply to
other hyperparameter configuration.

Figure 7 shows the convergence history. The bumps in the
history correspond to our manual adjustment of the learning rates.
After 64 hours of training, the total loss had not converged to an
obvious steady value. However, we decided not to continue the
training because, as later results will show, it is our judgment call
that the results would not be correct even if the training converged.

Figure 8 provides a visualization of the predicted velocity
and vorticity at t = 200. And in figure 9 are the drag and lift
coefficients versus simulation time. From both figures, we couldn’t
see any sign of vortex shedding with the PINN solver.

We provide a comparison against the values reported by others
in table 2. References [GS74] and [For80] calculate the drag
coefficients using steady flow simulations, which were popular
decades ago because of their inexpensive computational costs.
The actual flow is not a steady flow, and these steady-flow
coefficient values are lower than unsteady-flow predictions. The
drag coefficient from the PINN solver is closer to the steady-flow
predictions.

4.4. Discussion

While researchers may be interested in why the PINN solver
behaves like a steady flow solver, in this section, we would like
to focus more on the user experience and the usability of PINN in

Fig. 8: Velocity and vorticity at t = 200 from PINN.

Fig. 9: Drag and lift coefficients with respect to t

practice. Our viewpoints may be subjective, and hence we leave
them here in the discussion.

Allow us to start this discussion with a hypothetical situation.
If one asks why we chose such a spatial and temporal resolution
for a conventional CFD simulation, we have mathematical or
physical reasons to back our decision. However, if the person asks
why we chose 6 hidden layers and 256 neurons per layer, we will
not be able to justify it. "It worked in another case!" is probably the
best answer we can offer. The situation also indicates that we have
systematic approaches to improve a conventional simulation but
can only improve PINN’s results through computer experiments.

Most traditional numerical methods have rigorous analytical
derivations and analyses. Each parameter used in a scheme has
a meaning or a purpose in physical or numerical aspects. The
simplest example is the spatial resolution in the finite difference
method, which controls the truncation errors in derivatives. Or,

Unsteady simulations Steady simulations
PetIBM PINN [DSY07] [RKM09] [GS74] [For80]

1.38 0.95 1.25 1.34 0.97 0.83

TABLE 2: Comparison of drag coefficients, CD

EXPERIENCE REPORT OF PHYSICS-INFORMED NEURAL NETWORKS IN FLUID SIMULATIONS: PITFALLS AND FRUSTRATION 35

the choice of the limiters in finite volume methods, used to inhibit
the oscillation in solutions. So when a conventional CFD solver
produces unsatisfying or even non-physical results, practitioners
usually have systematic approaches to identify the cause or
improve the outcomes. Moreover, when necessary, practitioners
know how to balance the computational cost and the accuracy,
which is a critical point for using computer-aided engineering.
Engineering always concerns the costs and outcomes.

On the other hand, the PINN method lacks well-defined
procedures to control the outcome. For example, we know the
numbers of neurons and layers control the degrees of freedom in a
model. With more degrees of freedom, a neural network model can
approximate a more complicated phenomenon. However, when we
feel that a neural network is not complicated enough to capture a
physical phenomenon, what strategy should we use to adjust the
neurons and layers? Should we increase neurons or layers first?
By how much?

Moreover, when it comes to something non-numeric, it is even
more challenging to know what to use and why to use it. For
instance, what activation function should we use and why? Should
we use the same activation everywhere? Not to mention that we
are not yet even considering a different network architecture here.

Ultimately, are we even sure that increasing the network’s
complexity is the right path? Our assumption that the network
is not complicated enough may just be wrong.

The following situation happened in this case study. Before
we realized the PINN solver behaved like a steady-flow solver, we
attributed the cause to model complexity. We faced the problem
of how to increase the model complexity systematically. Theoret-
ically, we could follow the practice of the design of experiments
(e.g., through grid search or Taguchi methods). However, given the
computational cost and the number of hyperparameters/options of
PINN, a proper design of experiments is not affordable for us.
Furthermore, the design of experiments requires the outcome to
change with changes in inputs. In our case, the vortex shedding
remains absent regardless of how we changed hyperparameters.

Let us move back to the flow problem to conclude this
case study. The model complexity may not be the culprit here.
Vortex shedding is the product of the dynamical systems of the
Navier-Stokes equations and the perturbations from numerical
calculations (which implicitly mimic the perturbations in nature).
Suppose the PINN solver’s prediction was the steady-state solution
to the flow. We may need to introduce uncertainties and perturba-
tions in the neural network or the training data, such as a perturbed
initial condition described in [LD15]. As for why PINN predicts
the steady-state solution, we cannot answer it currently.

5. Further discussion and conclusion

Because of the widely available deep learning libraries, such as
PyTorch, and the ease of Python, implementing a PINN solver is
relatively more straightforward nowadays. This may be one reason
why the PINN method suddenly became so popular in recent
years. This paper does not intend to discourage people from trying
the PINN method. Instead, we share our failures and frustration
using PINN so that interested readers may know what immediate
challenges should be resolved for PINN.

Our paper is limited to using the PINN solver as a replacement
for traditional CFD solvers. However, as the first section indicates,
PINN can do more than solving one specific flow under specific
flow parameters. Moreover, PINN can also work with traditional

CFD solvers. The literature shows researchers have shifted their
attention to hybrid-mode applications. For example, in [JEA+20],
the authors combined the concept of PINN and a traditional CFD
solver to train a model that takes in low-resolution CFD simulation
results and outputs high-resolution flow fields.

For people with a strong background in numerical methods or
CFD, we would suggest trying to think out of the box. During
our work, we realized our mindset and ideas were limited by what
we were used to in CFD. An example is the initial conditions.
We were used to only having one set of initial conditions when
the temporal derivative in differential equations is only first-order.
However, in PINN, nothing limits us from using more than one
initial condition. We can generate results at t = 0,1, . . . , tn using
a traditional CFD solver and add the residuals corresponding to
these time snapshots to the total residual, so the PINN method
may perform better in predicting t > tn. In other words, the PINN
solver becomes the traditional CFD solvers’ replacement only for
t > tn ([noa]).

As discussed in [THM+], solving partial differential equations
with deep learning is still a work-in-progress. It may not work in
many situations. Nevertheless, it does not mean we should stay
away from PINN and discard this idea. Stepping away from a new
thing gives zero chance for it to evolve, and we will never know
if PINN can be improved to a mature state that works well. Of
course, overly promoting its bright side with only success stories
does not help, either. Rather, we should honestly face all troubles,
difficulties, and challenges. Knowing the problem is the first step
to solving it.

Acknowledgements

We appreciate the support by NVIDIA, through sponsoring the
access to its high-performance computing cluster.

REFERENCES

[Chu22] Pi-Yueh Chuang. barbagroup/scipy-2022-repro-pack:
20220530, May 2022. URL: https://doi.org/10.5281/zenodo.
6592457, doi:10.5281/zenodo.6592457.

[CMKAB18] Pi-Yueh Chuang, Olivier Mesnard, Anush Krishnan, and Lorena
A. Barba. PetIBM: toolbox and applications of the immersed-
boundary method on distributed-memory architectures. Journal
of Open Source Software, 3(25):558, May 2018. URL: http://
joss.theoj.org/papers/10.21105/joss.00558, doi:10.21105/
joss.00558.

[CMW+] Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin,
and George Em Karniadakis. Physics-informed neural net-
works (PINNs) for fluid mechanics: a review. 37(12):1727–
1738. URL: https://link.springer.com/10.1007/s10409-021-
01148-1, doi:10.1007/s10409-021-01148-1.

[DPT] M. W. M. G. Dissanayake and N. Phan-Thien. Neural-network-
based approximations for solving partial differential equations.
10(3):195–201. URL: https://onlinelibrary.wiley.com/doi/10.
1002/cnm.1640100303, doi:10.1002/cnm.1640100303.

[DSY07] Jian Deng, Xue-Ming Shao, and Zhao-Sheng Yu. Hydro-
dynamic studies on two traveling wavy foils in tandem
arrangement. Physics of Fluids, 19(11):113104, Novem-
ber 2007. URL: http://aip.scitation.org/doi/10.1063/1.2814259,
doi:10.1063/1.2814259.

[DZ] Yifan Du and Tamer A. Zaki. Evolutional deep
neural network. 104(4):045303. URL: https://link.
aps.org/doi/10.1103/PhysRevE.104.045303, doi:10.1103/
PhysRevE.104.045303.

[For80] Bengt Fornberg. A numerical study of steady
viscous flow past a circular cylinder. Journal of
Fluid Mechanics, 98(04):819, June 1980. URL: http:
//www.journals.cambridge.org/abstract_S0022112080000419,
doi:10.1017/S0022112080000419.

36 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

[FS] William E. Faller and Scott J. Schreck. Unsteady fluid mechan-
ics applications of neural networks. 34(1):48–55. URL: http:
//arc.aiaa.org/doi/10.2514/2.2134, doi:10.2514/2.2134.

[GS74] V.A. Gushchin and V.V. Shchennikov. A numerical method
of solving the navier-stokes equations. USSR Computa-
tional Mathematics and Mathematical Physics, 14(2):242–250,
January 1974. URL: https://linkinghub.elsevier.com/retrieve/
pii/0041555374900615, doi:10.1016/0041-5553(74)
90061-5.

[Hao] Karen Hao. AI has cracked a key mathematical puzzle for
understanding our world. URL: https://www.technologyreview.
com/2020/10/30/1011435/ai-fourier-neural-network-cracks-
navier-stokes-and-partial-differential-equations/.

[HG] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units
(GELUs). Publisher: arXiv Version Number: 4. URL: https://
arxiv.org/abs/1606.08415, doi:10.48550/ARXIV.1606.
08415.

[Hor] Kurt Hornik. Approximation capabilities of multilayer feedfor-
ward networks. 4(2):251–257. URL: https://linkinghub.elsevier.
com/retrieve/pii/089360809190009T, doi:10.1016/0893-
6080(91)90009-T.

[JEA+20] Chiyu “Max” Jiang, Soheil Esmaeilzadeh, Kamyar Aziz-
zadenesheli, Karthik Kashinath, Mustafa Mustafa, Hamdi A.
Tchelepi, Philip Marcus, Mr Prabhat, and Anima Anandkumar.
Meshfreeflownet: A physics-constrained deep continuous space-
time super-resolution framework. In SC20: International Con-
ference for High Performance Computing, Networking, Storage
and Analysis, pages 1–15, 2020. doi:10.1109/SC41405.
2020.00013.

[KDYI] Hasan Karali, Umut M. Demirezen, Mahmut A. Yukselen, and
Gokhan Inalhan. A novel physics informed deep learning
method for simulation-based modelling. In AIAA Scitech 2021
Forum. American Institute of Aeronautics and Astronautics.
URL: https://arc.aiaa.org/doi/10.2514/6.2021-0177, doi:10.
2514/6.2021-0177.

[LD15] Mouna Laroussi and Mohamed Djebbi. Vortex Shedding for
Flow Past Circular Cylinder: Effects of Initial Conditions.
Universal Journal of Fluid Mechanics, 3:19–32, 2015.

[LLF] I. E. Lagaris, A. Likas, and D. I. Fotiadis. Artificial neu-
ral networks for solving ordinary and partial differential
equations. 9(5):987–1000. URL: http://ieeexplore.ieee.org/
document/712178/, arXiv:physics/9705023, doi:10.
1109/72.712178.

[LLQH] Jianyu Li, Siwei Luo, Yingjian Qi, and Yaping Huang. Numer-
ical solution of elliptic partial differential equation using radial
basis function neural networks. 16(5):729–734. URL: https:
//linkinghub.elsevier.com/retrieve/pii/S0893608003000832,
doi:10.1016/S0893-6080(03)00083-2.

[LMMK] Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis.
DeepXDE: A deep learning library for solving differential
equations. 63(1):208–228. URL: https://epubs.siam.org/doi/10.
1137/19M1274067, doi:10.1137/19M1274067.

[LS] Dennis J. Linse and Robert F. Stengel. Identification of
aerodynamic coefficients using computational neural networks.
16(6):1018–1025. Publisher: Springer US, Place: Boston,
MA. URL: http://link.springer.com/10.1007/0-306-48610-5_9,
doi:10.2514/3.21122.

[noa] Modulus. URL: https://docs.nvidia.com/deeplearning/modulus/
index.html.

[RKM09] B.N. Rajani, A. Kandasamy, and Sekhar Majumdar. Nu-
merical simulation of laminar flow past a circular cylin-
der. Applied Mathematical Modelling, 33(3):1228–1247, March
2009. arXiv: DOI: 10.1002/fld.1 Publisher: Elsevier Inc. ISBN:
02712091 10970363. URL: http://dx.doi.org/10.1016/j.apm.
2008.01.017, doi:10.1016/j.apm.2008.01.017.

[RPK] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. 378:686–707. URL: https:
//linkinghub.elsevier.com/retrieve/pii/S0021999118307125,
doi:10.1016/j.jcp.2018.10.045.

[SS] Justin Sirignano and Konstantinos Spiliopoulos.
DGM: A deep learning algorithm for solving partial
differential equations. 375:1339–1364. URL: https:
//linkinghub.elsevier.com/retrieve/pii/S0021999118305527,
doi:10.1016/j.jcp.2018.08.029.

[THM+] Nils Thuerey, Philipp Holl, Maximilian Mueller, Patrick
Schnell, Felix Trost, and Kiwon Um. Physics-based deep
learning. Number: arXiv:2109.05237. URL: http://arxiv.org/
abs/2109.05237, arXiv:2109.05237[physics].

[Tre] Lloyd N. Trefethen. Spectral Methods in MATLAB. Soft-
ware, environments, tools. Society for Industrial and Applied
Mathematics. URL: http://epubs.siam.org/doi/book/10.1137/1.
9780898719598, doi:10.1137/1.9780898719598.

[Wil] C. H. K. Williamson. Vortex dynamics in the
cylinder wake. 28(1):477–539. URL: http://www.
annualreviews.org/doi/10.1146/annurev.fl.28.010196.002401,
doi:10.1146/annurev.fl.28.010196.002401.

[WTP] Sifan Wang, Yujun Teng, and Paris Perdikaris. Under-
standing and mitigating gradient flow pathologies in physics-
informed neural networks. 43(5):A3055–A3081. URL: https:
//epubs.siam.org/doi/10.1137/20M1318043, doi:10.1137/
20M1318043.

[WYP] Sifan Wang, Xinling Yu, and Paris Perdikaris. When
and why PINNs fail to train: A neural tangent
kernel perspective. 449:110768. URL: https:
//linkinghub.elsevier.com/retrieve/pii/S002199912100663X,
doi:10.1016/j.jcp.2021.110768.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022) 37

atoMEC: An open-source average-atom Python code

Timothy J. Callow‡§∗, Daniel Kotik‡§, Eli Kraisler¶, Attila Cangi‡§

F

Abstract—Average-atom models are an important tool in studying matter under
extreme conditions, such as those conditions experienced in planetary cores,
brown and white dwarfs, and during inertial confinement fusion. In the right
context, average-atom models can yield results with similar accuracy to simu-
lations which require orders of magnitude more computing time, and thus can
greatly reduce financial and environmental costs. Unfortunately, due to the wide
range of possible models and approximations, and the lack of open-source
codes, average-atom models can at times appear inaccessible. In this paper, we
present our open-source average-atom code, atoMEC. We explain the aims and
structure of atoMEC to illuminate the different stages and options in an average-
atom calculation, and to facilitate community contributions. We also discuss the
use of various open-source Python packages in atoMEC, which have expedited
its development.

Index Terms—computational physics, plasma physics, atomic physics, materi-
als science

Introduction

The study of matter under extreme conditions — materials
exposed to high temperatures, high pressures, or strong elec-
tromagnetic fields — is critical to our understanding of many
important scientific and technological processes, such as nuclear
fusion and various astrophysical and planetary physics phenomena
[GFG+16]. Of particular interest within this broad field is the
warm dense matter (WDM) regime, which is typically character-
ized by temperatures in the range of 103− 106 degrees (Kelvin),
and densities ranging from dense gases to highly compressed
solids (∼ 0.01− 1000 g cm−3) [BDM+20]. In this regime, it is
important to account for the quantum mechanical nature of the
electrons (and in some cases, also the nuclei). Therefore conven-
tional methods from plasma physics, which either neglect quantum
effects or treat them coarsely, are usually not sufficiently accurate.
On the other hand, methods from condensed-matter physics and
quantum chemistry, which account fully for quantum interactions,
typically target the ground-state only, and become computationally
intractable for systems at high temperatures.

Nevertheless, there are methods which can, in principle, be
applied to study materials at any given temperature and den-
sity whilst formally accounting for quantum interactions. These

* Corresponding author: t.callow@hzdr.de
‡ Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz,
Germany
§ Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
¶ Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The
Hebrew University of Jerusalem, 9091401 Jerusalem, Israel

Copyright © 2022 Timothy J. Callow et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

methods are often denoted as "first-principles" because, formally
speaking, they yield the exact properties of the system, under cer-
tain well-founded theoretical approximations. Density-functional
theory (DFT), initially developed as a ground-state theory [HK64],
[KS65] but later extended to non-zero temperatures [Mer65],
[PPF+11], is one such theory and has been used extensively to
study materials under WDM conditions [GDRT14]. Even though
DFT reformulates the Schrödinger equation in a computationally
efficient manner [Koh99], the cost of running calculations be-
comes prohibitively expensive at higher temperatures. Formally,
it scales as O(N3τ3), with N the particle number (which usually
also increases with temperature) and τ the temperature [CRNB18].
This poses a serious computational challenge in the WDM regime.
Furthermore, although DFT is a formally exact theory, in prac-
tice it relies on approximations for the so-called "exchange-
correlation" energy, which is, roughly speaking, responsible for
simulating all the quantum interactions between electrons. Exist-
ing exchange-correlation approximations have not been rigorously
tested under WDM conditions. An alternative method used in
the WDM community is path-integral Monte–Carlo [DGB18],
which yields essentially exact properties; however, it is even more
limited by computational cost than DFT, and becomes unfeasibly
expensive at lower temperatures due to the fermion sign problem.

It is therefore of great interest to reduce the computational
complexity of the aforementioned methods. The use of graphics
processing units in DFT calculations is becomingly increasingly
common, and has been shown to offer significant speed-ups
relative to conventional calculations using central processing units
[MED11], [JFC+13]. Some other examples of promising develop-
ments to reduce the cost of DFT calculations include machine-
learning-based solutions [SRH+12], [BVL+17], [EFP+21] and
stochastic DFT [CRNB18], [BNR13]. However, in this paper,
we focus on an alternative class of models known as "average-
atom" models. Average-atom models have a long history in plasma
physics [CHKC22]: they account for quantum effects, typically
using DFT, but reduce the complex system of interacting electrons
and nuclei to a single atom immersed in a plasma (the "average"
atom). An illustration of this principle (reduced to two dimensions
for visual purposes) is shown in Fig. 1. This significantly reduces
the cost relative to a full DFT simulation, because the particle
number is restricted to the number of electrons per nucleus, and
spherical symmetry is exploited to reduce the three-dimensional
problem to one dimension.

Naturally, to reduce the complexity of the problem as de-
scribed, various approximations must be introduced. It is im-
portant to understand these approximations and their limitations
for average-atom models to have genuine predictive capabilities.
Unfortunately, this is not always the case: although average-atom

38 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 1: Illustration of the average-atom concept. The many-body
and fully-interacting system of electron density (shaded blue) and
nuclei (red points) on the left is mapped into the much simpler
system of independent atoms on the right. Any of these identical
atoms represents the "average-atom". The effects of interaction from
neighboring atoms are implicitly accounted for in an approximate
manner through the choice of boundary conditions.

models share common concepts, there is no unique formal theory
underpinning them. Therefore a variety of models and codes exist,
and it is not typically clear which models can be expected to
perform most accurately under which conditions. In a previous
paper [CHKC22], we addressed this issue by deriving an average-
atom model from first principles, and comparing the impact of
different approximations within this model on some common
properties.

In this paper, we focus on computational aspects of average-
atom models for WDM. We introduce atoMEC [CKTS+21]:
an open-source average-atom code for studying Matter under
Extreme Conditions. One of the main aims of atoMEC is to im-
prove the accessibility and understanding of average-atom models.
To the best of our knowledge, open-source average-atom codes
are in scarce supply: with atoMEC, we aim to provide a tool that
people can use to run average-atom simulations and also to add
their own models, which should facilitate comparisons of different
approximations. The relative simplicity of average-atom codes
means that they are not only efficient to run, but also efficient
to develop: this means, for example, that they can be used as a
test-bed for new ideas that could be later implemented in full DFT
codes, and are also accessible to those without extensive prior
expertise, such as students. atoMEC aims to facilitate development
by following good practice in software engineering (for example
extensive documentation), a careful design structure, and of course
through the choice of Python and its widely used scientific stack,
in particular the NumPy [HMvdW+20] and SciPy [VGO+20]
libraries.

This paper is structured as follows: in the next section, we
briefly review the key theoretical points which are important
to understand the functionality of atoMEC, assuming no prior
physical knowledge of the reader. Following that, we present
the key functionality of atoMEC, discuss the code structure
and algorithms, and explain how these relate to the theoretical
aspects introduced. Finally, we present an example case study:
we consider helium under the conditions often experienced in
the outer layers of a white dwarf star, and probe the behavior
of a few important properties, namely the band-gap, pressure, and
ionization degree.

Theoretical background

Properties of interest in the warm dense matter regime include the
equation-of-state data, which is the relation between the density,
energy, temperature and pressure of a material [HRD08]; the mean
ionization state and the electron ionization energies, which tell
us about how tightly bound the electrons are to the nuclei; and
the electrical and thermal conductivities. These properties yield
information pertinent to our understanding of stellar and planetary
physics, the Earth’s core, inertial confinement fusion, and more
besides. To exactly obtain these properties, one needs (in theory) to
determine the thermodynamic ensemble of the quantum states (the
so-called wave-functions) representing the electrons and nuclei.
Fortunately, they can be obtained with reasonable accuracy using
models such as average-atom models; in this section, we elaborate
on how this is done.

We shall briefly review the key theory underpinning the type of
average-atom model implemented in atoMEC. This is intended for
readers without a background in quantum mechanics, to give some
context to the purposes and mechanisms of the code. For a compre-
hensive derivation of this average-atom model, we direct readers
to Ref. [CHKC22]. The average-atom model we shall describe
falls into a class of models known as ion-sphere models, which
are the simplest (and still most widely used) class of average-atom
model. There are alternative (more advanced) classes of model
such as ion-correlation [Roz91] and neutral pseudo-atom models
[SS14] which we have not yet implemented in atoMEC, and thus
we do not elaborate on them here.

As demonstrated in Fig. 1, the idea of the ion-sphere model
is to map a fully-interacting system of many electrons and
nuclei into a set of independent atoms which do not interact
explicitly with any of the other spheres. Naturally, this depends
on several assumptions and approximations, but there is formal
justification for such a mapping [CHKC22]. Furthermore, there
are many examples in which average-atom models have shown
good agreement with more accurate simulations and experimental
data [FB19], which further justifies this mapping.

Although the average-atom picture is significantly simplified
relative to the full many-body problem, even determining the
wave-functions and their ensemble weights for an atom at finite
temperature is a complex problem. Fortunately, DFT reduces this
complexity further, by establishing that the electron density — a
far less complex entity than the wave-functions — is sufficient to
determine all physical observables. The most popular formulation
of DFT, known as Kohn–Sham DFT (KS-DFT) [KS65], allows us
to construct the fully-interacting density from a non-interacting
system of electrons, simplifying the problem further still. Due to
the spherical symmetry of the atom, the non-interacting electrons
— known as KS electrons (or KS orbitals) — can be represented
as a wave-function that is a product of radial and angular compo-
nents,

φnlm(r) = Xnl(r)Y m
l (θ ,φ) , (1)

where n, l, and m are the quantum numbers of the orbitals, which
come from the fact that the wave-function is an eigenfunction of
the Hamiltonian operator, and Y m

l (θ ,φ) are the spherical harmonic
functions.1 The radial coordinate r represents the absolute distance
from the nucleus.

1. Please note that the notation in Eq. (1) does not imply Einstein sum-
mation notation. All summations in this paper are written explicitly; Einstein
summation notation is not used.

ATOMEC: AN OPEN-SOURCE AVERAGE-ATOM PYTHON CODE 39

We therefore only need to determine the radial KS orbitals
Xnl(r). These are determined by solving the radial KS equation,
which is similar to the Schrödinger equation for a non-interacting
system, with an additional term in the potential to mimic the
effects of electron-electron interaction (within the single atom).
The radial KS equation is given by:
[
−
(

d2

dr2 +
2
r

d
dr
− l(l +1)

r2

)
+ vs[n](r)

]
Xnl(r) = εnlXnl(r). (2)

We have written the above equation in a way that emphasizes that
it is an eigenvalue equation, with the eigenvalues εnl being the
energies of the KS orbitals.

On the left-hand side, the terms in the round brackets come
from the kinetic energy operator acting on the orbitals. The vs[n](r)
term is the KS potential, which itself is composed of three different
terms,

vs[n](r) =−
Z
r
+4π

∫ RWS

0
dx

n(x)x2

max(r,x)
+

δFxc[n]
δn(r)

, (3)

where RWS is the radius of the atomic sphere, n(r) is the electron
density, Z the nuclear charge, and Fxc[n] the exchange-correlation
free energy functional. Thus the three terms in the potential are
respectively the electron-nuclear attraction, the classical Hartree
repulsion, and the exchange-correlation (xc) potential.

We note that the KS potential and its constituents are function-
als of the electron density n(r). Were it not for this dependence
on the density, solving Eq. 2 just amounts to solving an ordinary
linear differential equation (ODE). However, the electron density
is in fact constructed from the orbitals in the following way,

n(r) = 2∑
nl
(2l +1) fnl(εnl ,µ,τ)|Xnl(r)|2 , (4)

where fnl(εnl ,µ,τ) is the Fermi–Dirac distribution, given by

fnl(εnl ,µ,τ) =
1

1+ e(εnl−µ)/τ , (5)

where τ is the temperature, and µ is the chemical potential, which
is determined by fixing the number of electrons to be equal to
a pre-determined value Ne (typically equal to the nuclear charge
Z). The Fermi–Dirac distribution therefore assigns weights to the
KS orbitals in the construction of the density, with the weight
depending on their energy.

Therefore, the KS potential that determines the KS orbitals via
the ODE (2), is itself dependent on the KS orbitals. Consequently,
the KS orbitals and their dependent quantities (the density and
KS potential) must be determined via a so-called self-consistent
field (SCF) procedure. An initial guess for the orbitals, X0

nl(r),
is used to construct the initial density n0(r) and potential v0

s (r).
The ODE (2) is then solved to update the orbitals. This process is
iterated until some appropriately chosen quantities — in atoMEC
the total free energy, density and KS potential — are converged,
i.e. ni+1(r) = ni(r), vi+1

s (r) = vi
s(r), F i+1 = F i, within some

reasonable numerical tolerance. In Fig. 2, we illustrate the life-
cycle of the average-atom model described so far, including the
SCF procedure. On the left-hand side of this figure, we show the
physical choices and mathematical operations, and on the right-
hand side, the representative classes and functions in atoMEC. In
the following section, we shall discuss some aspects of this figure
in more detail.

Some quantities obtained from the completion of the SCF pro-
cedure are directly of interest. For example, the energy eigenvalues
εnl are related to the electron ionization energies, i.e. the amount of

energy required to excite an electron bound to the nucleus to being
a free (conducting) electron. These predicted ionization energies
can be used, for example, to help understand ionization potential
depression, an important but somewhat controversial effect in
WDM [STJ+14]. Another property that can be straightforwardly
obtained from the energy levels and their occupation numbers is
the mean ionization state Z̄2,

Z̄ = ∑
n,l
(2l +1) fnl(εnl ,µ,τ) (6)

which is an important input parameter for various models, such
as adiabats which are used to model inertial confinement fusion
[KDF+11].

Various other interesting properties can also be calculated
following some post-processing of the output of an SCF cal-
culation, for example the pressure exerted by the electrons and
ions. Furthermore, response properties, i.e. those resulting from
an external perturbation like a laser pulse, can also be obtained
from the output of an SCF cycle. These properties include, for
example, electrical conductivities [Sta16] and dynamical structure
factors [SPS+14].

Code structure and details

In the following sections, we describe the structure of the code
in relation to the physical problem being modeled. Average-atom
models typically rely on various parameters and approximations.
In atoMEC, we have tried to structure the code in a way that makes
clear which parameters come from the physical problem studied
compared to choices of the model and numerical or algorithmic
choices.

atoMEC.Atom: Physical parameters

The first step of any simulation in WDM (which also applies to
simulations in science more generally) is to define the physical
parameters of the problem. These parameters are unique in the
sense that, if we had an exact method to simulate the real system,
then for each combination of these parameters there would be a
unique solution. In other words, regardless of the model — be
it average atom or a different technique — these parameters are
always required and are independent of the model.

In average-atom models, there are typically three parameters
defining the physical problem, which are:

• the atomic species;
• the temperature of the material, τ;
• the mass density of the material, ρm.

The mass density also directly corresponds to the mean dis-
tance between two nuclei (atomic centers), which in the average-
atom model is equal to twice the radius of the atomic sphere, RWS.
An additional physical parameter not mentioned above is the net
charge of the material being considered, i.e. the difference be-
tween the nuclear charge Z and the electron number Ne. However,
we usually assume zero net charge in average-atom simulations
(i.e. the number of electrons is equal to the atomic charge).

In atoMEC, these physical parameters are controlled by the
Atom object. As an example, we consider aluminum under ambi-
ent conditions, i.e. at room temperature, τ = 300 K, and normal
metallic density, ρm = 2.7 g cm−3. We set this up as:

2. The summation in Eq. (6) is often shown as an integral because the
energies above a certain threshold form a continuous distribution (in most
models).

40 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 2: Schematic of the average-atom model set-up and the self-consistent field (SCF) cycle. On the left-hand side, the physical choices and
mathematical operations that define the model and SCF cycle are shown. On the right-hand side, the (higher-order) functions and classes in
atoMEC corresponding to the items on the left-hand side are shown. Some liberties are taken with the code snippets in the right-hand column
of the figure to improve readability; more precisely, some non-crucial intermediate steps are not shown, and some parameters are also not
shown or simplified. The dotted lines represent operations that are taken care of within the models.CalcEnergy function, but are shown
nevertheless to improve understanding.

ATOMEC: AN OPEN-SOURCE AVERAGE-ATOM PYTHON CODE 41

Fig. 3: Auto-generated print statement from calling the
atoMEC.Atom object.

from atoMEC import Atom
Al = Atom("Al", 300, density=2.7, units_temp="K")

By default, the above code automatically prints the output seen
in Fig. 3. We see that the first two arguments of the Atom object
are the chemical symbol of the element being studied, and the
temperature. In addition, at least one of "density" or "radius" must
be specified. In atoMEC, the default (and only permitted) units for
the mass density are g cm−3; all other input and output units in
atoMEC are by default Hartree atomic units, and hence we specify
"K" for Kelvin.

The information in Fig. 3 displays the chosen parameters in
units commonly used in the plasma and condensed-matter physics
communities, as well as some other information directly obtained
from these parameters. The chemical symbol ("Al" in this case)
is passed to the mendeleev library [men14] to generate this data,
which is used later in the calculation.

This initial stage of the average-atom calculation, i.e. the
specification of physical parameters and initialization of the Atom
object, is shown in the top row at the top of Fig. 2.

atoMEC.models: Model parameters

After the physical parameters are set, the next stage of the average-
atom calculation is to choose the model and approximations within
that class of model. As discussed, so far the only class of model
implemented in atoMEC is the ion-sphere model. Within this
model, there are still various choices to be made by the user.
In some cases, these choices make little difference to the results,
but in other cases they have significant impact. The user might
have some physical intuition as to which is most important, or
alternatively may want to run the same physical parameters with
several different model parameters to examine the effects. Some
choices available in atoMEC, listed approximately in decreasing
order of impact (but this can depend strongly on the system under
consideration), are:

• the boundary conditions used to solve the KS equations;
• the treatment of the unbound electrons, which means

those electrons not tightly bound to the nucleus, but rather
delocalized over the whole atomic sphere;

• the choice of exchange and correlation functionals, the
central approximations of DFT [CMSY12];

• the spin polarization and magnetization.

We do not discuss the theory and impact of these different
choices in this paper. Rather, we direct readers to Refs. [CHKC22]
and [CKC22] in which all of these choices are discussed.

In atoMEC, the ion-sphere model is controlled by the
models.ISModel object. Continuing with our aluminum ex-
ample, we choose the so-called "neumann" boundary condition,

Fig. 4: Auto-generated print statement from calling the
models.ISModel object.

with a "quantum" treatment of the unbound electrons, and choose
the LDA exchange functional (which is also the default). This
model is set up as:
from atoMEC import models
model = models.ISModel(Al, bc="neumann",

xfunc_id="lda_x", unbound="quantum")

By default, the above code prints the output shown in Fig.
4. The first (and only mandatory) input parameter to the
models.ISModel object is the Atom object that we generated
earlier. Together with the optional spinpol and spinmag
parameters in the models.ISModel object, this sets either the
total number of electrons (spinpol=False) or the number of
electrons in each spin channel (spinpol=True).

The remaining information displayed in Fig. 4 shows directly
the chosen model parameters, or the default values where these
parameters are not specified. The exchange and correlation func-
tionals - set by the parameters xfunc_id and cfunc_id - are
passed to the LIBXC library [LSOM18] for processing. So far,
only the "local density" family of approximations is available
in atoMEC, and thus the default values are usually a sensible
choice. For more information on exchange and correlation func-
tionals, there are many reviews in the literature, for example Ref.
[CMSY12].

This stage of the average-atom calculation, i.e. the specifica-
tion of the model and the choices of approximation within that, is
shown in the second row of Fig. 2.

ISModel.CalcEnergy: SCF calculation and numerical parameters

Once the physical parameters and model have been defined, the
next stage in the average-atom calculation (or indeed any DFT
calculation) is the SCF procedure. In atoMEC, this is invoked
by the ISModel.CalcEnergy function. This function is called
CalcEnergy because it finds the KS orbitals (and associated KS
density) which minimize the total free energy.

Clearly, there are various mathematical and algorithmic
choices in this calculation. These include, for example: the basis in
which the KS orbitals and potential are represented, the algorithm
used to solve the KS equations (2), and how to ensure smooth
convergence of the SCF cycle. In atoMEC, the SCF procedure
currently follows a single pre-determined algorithm, which we
briefly review below.

In atoMEC, we represent the radial KS quantities (orbitals,
density and potential) on a logarithmic grid, i.e. x = log(r).
Furthermore, we make a transformation of the orbitals Pnl(x) =
Xnl(x)ex/2. Then the equations to be solved become:

d2Pnl(x)
dx2 −2e2x(W (x)− εnl)Pnl(x) = 0 (7)

W (x) = vs[n](x)+
1
2

(
l +

1
2

)2

e−2x . (8)

42 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

In atoMEC, we solve the KS equations using a matrix imple-
mentation of Numerov’s algorithm [PGW12]. This means we
diagonalize the following equation:

Ĥ~P =~εB̂~P , where (9)

Ĥ = T̂ + B̂+Ws(~x) , (10)

T̂ =−1
2

e−2~xÂ , (11)

Â =
Î−1−2Î0 + Î1

dx2 ,and (12)

B̂ =
Î−1 +10Î0 + Î1

12
, (13)

In the above, Î−1/0/1 are lower shift, identify, and upper shift
matrices.

The Hamiltonian matrix Ĥ is sparse and we only seek a subset
of eigenstates with lower energies: therefore there is no need to
perform a full diagonalization, which scales as O(N3), with N
being the size of the radial grid. Instead, we use SciPy’s sparse ma-
trix diagonalization function scipy.sparse.linalg.eigs,
which scales more efficiently and allows us to go to larger grid
sizes.

After each step in the SCF cycle, the relative changes in the
free energy F , density n(r) and potential vs(r) are computed.
Specifically, the quantities computed are

∆F =

∣∣∣∣
F i−F i−1

F i

∣∣∣∣ (14)

∆n =

∫
dr|ni(r)−ni−1(r)|∫

drni(r)
(15)

∆v =

∫
dr|vi

s(r)− vi−1
s (r)|∫

drvi
s(r)

. (16)

Once all three of these metrics fall below a certain threshold, the
SCF cycle is considered converged and the calculation finishes.

The SCF cycle is an example of a non-linear system and thus
is prone to chaotic (non-convergent) behavior. Consequently a
range of techniques have been developed to ensure convergence
[SM91]. Fortunately, the tendency for calculations not to converge
becomes less likely for temperatures above zero (and especially
as temperatures increase). Therefore we have implemented only
a simple linear mixing scheme in atoMEC. The potential used in
each diagonalization step of the SCF cycle is not simply the one
generated from the most recent density, but a mix of that potential
and the previous one,

v(i)s (r) = αvi
s(r)+(1−α)vi−1

s (r) . (17)

In general, a lower value of the mixing fraction α makes the
SCF cycle more stable, but requires more iterations to converge.
Typically a choice of α ≈ 0.5 gives a reasonable balance between
speed and stability.

We can thus summarize the key parameters in an SCF calcu-
lation as follows:

• the maximum number of eigenstates to compute, in terms
of both the principal and angular quantum numbers;

• the numerical grid parameters, in particular the grid size;
• the convergence tolerances, Eqs. (14) to (16);
• the SCF parameters, i.e. the mixing fraction and the

maximum number of iterations.

The first three items in this list essentially control the accuracy
of the calculation. In principle, for each SCF calculation — i.e.

a unique set of physical and model inputs — these parameters
should be independently varied until some property (such as the
total free energy) is considered suitably converged with respect to
that parameter. Changing the SCF parameters should not affect the
final results (within the convergence tolerances), only the number
of iterations in the SCF cycle.

Let us now consider an example SCF calculation, using the
Atom and model objects we have already defined:

from atoMEC import config
config.numcores = -1 # parallelize

nmax = 3 # max value of principal quantum number
lmax = 3 # max value of angular quantum number

run SCF calculation
scf_out = model.CalcEnergy(
nmax,
lmax,
grid_params={"ngrid": 1500},
scf_params={"mixfrac": 0.7},
)

We see that the first two parameters passed to the CalcEnergy
function are the nmax and lmax quantum numbers, which specify
the number of eigenstates to compute. Precisely speaking, there
is a unique Hamiltonian for each value of the angular quantum
number l (and in a spin-polarized calculation, also for each
spin quantum number). The sparse diagonalization routine then
computes the first nmax eigenvalues for each Hamiltonian. In
atoMEC, these diagonalizations can be run in parallel since they
are independent for each value of l. This is done by setting the
config.numcores variable to the number of cores desired
(config.numcores=-1 uses all the available cores) and han-
dled via the joblib library [Job20].

The remaining parameters passed to the CalcEnergy func-
tion are optional; in the above, we have specified a grid size
of 1500 points and a mixing fraction α = 0.7. The above code
automatically prints the output seen in Fig. 5. This output shows
the SCF cycle and, upon completion, the breakdown of the total
free energy into its various components, as well as other useful
information such as the KS energy levels and their occupations.

Additionally, the output of the SCF function is a dictionary
containing the staticKS.Orbitals, staticKS.Density,
staticKS.Potential and staticKS.Density objects.
For example, one could extract the eigenfunctions as follows:

orbs = scf_out["orbitals"] # orbs object
ks_eigfuncs = orbs.eigfuncs # eigenfunctions

The initialization of the SCF procedure is shown in the third and
fourth rows of Fig. 2, with the SCF procedure itself shown in the
remaining rows.

This completes the section on the code structure and
algorithmic details. As discussed, with the output of an
SCF calculation, there are various kinds of post-processing
one can perform to obtain other properties of interest. So
far in atoMEC, these are limited to the computation of
the pressure (ISModel.CalcPressure), the electron
localization function (atoMEC.postprocess.ELFTools)
and the Kubo–Greenwood conductivity
(atoMEC.postprocess.conductivity). We refer
readers to our pre-print [CKC22] for details on how the electron
localization function and the Kubo–Greenwood conductivity can
be used to improve predictions of the mean ionization state.

ATOMEC: AN OPEN-SOURCE AVERAGE-ATOM PYTHON CODE 43

Fig. 5: Auto-generated print statement from calling the
ISModel.CalcEnergy function

Case-study: Helium

In this section, we consider an application of atoMEC in the
WDM regime. Helium is the second most abundant element in the
universe (after hydrogen) and therefore understanding its behavior
under a wide range of conditions is important for our under-
standing of many astrophysical processes. Of particular interest
are the conditions under which helium is expected to undergo a
transition from insulating to metallic behavior in the outer layers
of white dwarfs, which are characterized by densities of around
1− 20 g cm−3 and temperatures of 10− 50 kK [PR20]. These
conditions are a typical example of the WDM regime. Besides
predicting the point at which the insulator-to-metallic transition
occurs in the density-temperature spectrum, other properties of
interest include equation-of-state data (relating pressure, density,

Fig. 6: Helium density-of-states (DOS) as a function of energy, for
different mass densities ρm, and at temperature τ = 50 kK. Black
dots indicate the occupations of the electrons in the permitted energy
ranges. Dashed black lines indicate the band-gap (the energy gap
between the insulating and conducting bands). Between 5 and 6
g cm−3, the band-gap disappears.

and temperature) and electrical conductivity.
To calculate the insulator-to-metallic transition point, the

key quantity is the electronic band-gap. The concept of band-
structures is a complicated topic, which we try to briefly describe
in layman’s terms. In solids, electrons can occupy certain energy
ranges — we call these the energy bands. In insulating materials,
there is a gap between these energy ranges that electrons are
forbidden from occupying — this is the so-called band-gap. In
conducting materials, there is no such gap, and therefore electrons
can conduct electricity because they can be excited into any part
of the energy spectrum. Therefore, a simple method to determine
the insulator-to-metallic transition is to determine the density at
which the band-gap becomes zero.

In Fig. 6, we plot the density-of-states (DOS) as a function of
energy, for different densities and at fixed temperature τ = 50 kK.
The DOS shows the energy ranges that the electrons are allowed to
occupy; we also show the actual energies occupied by the electrons
(according to Fermi–Dirac statistics) with the black dots. We can
clearly see in this figure that the band-gap (the region where the
DOS is zero) becomes smaller as a function of density. From
this figure, it seems the transition from insulating to metallic state
happens somewhere between 5 and 6 g cm−3.

In Fig. 7, we plot the band-gap as a function of density, for a
fixed temperature τ = 50 kK. Visually, it appears that the relation-
ship between band-gap and density is linear at this temperature.
This is confirmed using a linear fit, which has a coefficient of
determination value of almost exactly one, R2 = 0.9997. Using this
fit, the band-gap is predicted to close at 5.5 g cm−3. Also in this
figure, we show the fraction of ionized electrons, which is given by
Z̄/Ne, using Eq. (6) to calculate Z̄, and Ne being the total electron
number. The ionization fraction also relates to the conductivity of
the material, because ionized electrons are not bound to any nuclei
and therefore free to conduct electricity. We see that the ionization
fraction mostly increases with density (excepting some strange
behavior around ρm = 1 g cm−3), which is further evidence of the
transition from insulating to conducting behaviour with increasing
density.

As a final analysis, we plot the pressure as a function of mass

44 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 7: Band-gap (red circles) and ionization fraction (blue squares)
for helium as a function of mass density, at temperature τ = 50 kK.
The relationship between the band-gap and the density appears to be
linear.

Fig. 8: Helium pressure (logarithmic scale) as a function of mass
density and temperature. The pressure increases with density and
temperature (as expected), with a stronger dependence on density.

density and temperature in Fig. 8. The pressure is given by the
sum of two terms: (i) the electronic pressure, calculated using
the method described in Ref. [FB19], and (ii) the ionic pressure,
calculated using the ideal gas law. We observe that the pressure
increases with both density and temperature, which is the expected
behavior. Under these conditions, the density dependence is much
stronger, especially for higher densities.

The code required to generate the above results and plots can
be found in this repository.

Conclusions and future work

In this paper, we have presented atoMEC: an average-atom Python
code for studying materials under extreme conditions. The open-
source nature of atoMEC, and the choice to use (pure) Python as
the programming language, is designed to improve the accessibil-
ity of average-atom models.

We gave significant attention to the code structure in this
paper, and tried as much as possible to connect the functions
and objects in the code with the underlying theory. We hope that
this not only improves atoMEC from a user perspective, but also
facilitates new contributions from the wider average-atom, WDM
and scientific Python communities. Another aim of the paper was
to communicate how atoMEC benefits from a strong ecosystem of

open-source scientific libraries — especially the Python libraries
NumPy, SciPy, joblib and mendeleev, as well as LIBXC.

We finish this paper by emphasizing that atoMEC is still in the
early stages of development, and there are many opportunities to
improve and extend the code. These include, for example:

• adding new average-atom models, and different approxi-
mations to the existing models.ISModel model;

• optimizing the code, in particular the routines in the
numerov module;

• adding new postprocessing functionality, for example to
compute structure factors;

• improving the structure and design choices of the code.

Of course, these are just a snapshot of the avenues for future
development in atoMEC. We are open to contributions in these
areas and many more besides.

Acknowledgements

This work was partly funded by the Center for Advanced Systems
Understanding (CASUS) which is financed by Germany’s Federal
Ministry of Education and Research (BMBF) and by the Saxon
Ministry for Science, Culture and Tourism (SMWK) with tax
funds on the basis of the budget approved by the Saxon State
Parliament.

REFERENCES

[BDM+20] M. Bonitz, T. Dornheim, Zh. A. Moldabekov, S. Zhang,
P. Hamann, H. Kählert, A. Filinov, K. Ramakrishna, and J. Vor-
berger. Ab initio simulation of warm dense matter. Phys. Plas-
mas, 27(4):042710, 2020. doi:10.1063/1.5143225.

[BNR13] Roi Baer, Daniel Neuhauser, and Eran Rabani. Self-
averaging stochastic Kohn-Sham density-functional theory.
Phys. Rev. Lett., 111:106402, Sep 2013. doi:10.1103/
PhysRevLett.111.106402.

[BVL+17] Felix Brockherde, Leslie Vogt, Li Li, Mark E. Tuckerman,
Kieron Burke, and Klaus-Robert Müller. Bypassing the Kohn-
Sham equations with machine learning. Nature Communica-
tions, 8(1):872, Oct 2017. doi:10.1038/s41467-017-
00839-3.

[CHKC22] T. J. Callow, S. B. Hansen, E. Kraisler, and A. Cangi.
First-principles derivation and properties of density-functional
average-atom models. Phys. Rev. Research, 4:023055, Apr
2022. doi:10.1103/PhysRevResearch.4.023055.

[CKC22] Timothy J. Callow, Eli Kraisler, and Attila Cangi. Accurate
and efficient computation of mean ionization states with an
average-atom Kubo-Greenwood approach, 2022. doi:10.
48550/ARXIV.2203.05863.

[CKTS+21] Timothy Callow, Daniel Kotik, Ekaterina Tsve-
toslavova Stankulova, Eli Kraisler, and Attila Cangi.
atomec, August 2021. If you use this software, please cite it
using these metadata. doi:10.5281/zenodo.5205719.

[CMSY12] Aron J. Cohen, Paula Mori-Sánchez, and Weitao Yang. Chal-
lenges for density functional theory. Chemical Reviews,
112(1):289–320, 2012. doi:10.1021/cr200107z.

[CRNB18] Yael Cytter, Eran Rabani, Daniel Neuhauser, and Roi Baer.
Stochastic density functional theory at finite temperatures.
Phys. Rev. B, 97:115207, Mar 2018. doi:10.1103/
PhysRevB.97.115207.

[DGB18] Tobias Dornheim, Simon Groth, and Michael Bonitz. The
uniform electron gas at warm dense matter conditions. Phys.
Rep., 744:1 – 86, 2018. doi:10.1016/j.physrep.
2018.04.001.

[EFP+21] J. A. Ellis, L. Fiedler, G. A. Popoola, N. A. Modine, J. A.
Stephens, A. P. Thompson, A. Cangi, and S. Rajamanickam.
Accelerating finite-temperature kohn-sham density functional
theory with deep neural networks. Phys. Rev. B, 104:035120,
Jul 2021. doi:10.1103/PhysRevB.104.035120.

ATOMEC: AN OPEN-SOURCE AVERAGE-ATOM PYTHON CODE 45

[FB19] Gérald Faussurier and Christophe Blancard. Pressure in warm
and hot dense matter using the average-atom model. Phys. Rev.
E, 99:053201, May 2019. doi:10.1103/PhysRevE.99.
053201.

[GDRT14] Frank Graziani, Michael P Desjarlais, Ronald Redmer, and
Samuel B Trickey. Frontiers and challenges in warm dense
matter, volume 96. Springer Science & Business, 2014. doi:
10.1007/978-3-319-04912-0.

[GFG+16] S H Glenzer, L B Fletcher, E Galtier, B Nagler, R Alonso-
Mori, B Barbrel, S B Brown, D A Chapman, Z Chen, C B
Curry, F Fiuza, E Gamboa, M Gauthier, D O Gericke, A Glea-
son, S Goede, E Granados, P Heimann, J Kim, D Kraus,
M J MacDonald, A J Mackinnon, R Mishra, A Ravasio,
C Roedel, P Sperling, W Schumaker, Y Y Tsui, J Vorberger,
U Zastrau, A Fry, W E White, J B Hasting, and H J Lee.
Matter under extreme conditions experiments at the Linac
Coherent Light Source. J. Phys. B, 49(9):092001, apr 2016.
doi:10.1088/0953-4075/49/9/092001.

[HK64] P. Hohenberg and W. Kohn. Inhomogeneous electron gas.
Phys. Rev., 136(3B):B864–B871, Nov 1964. doi:10.1103/
PhysRev.136.B864.

[HMvdW+20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der
Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerk-
wijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río,
Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin
Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,
Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357–362, September 2020.
doi:10.1038/s41586-020-2649-2.

[HRD08] Bastian Holst, Ronald Redmer, and Michael P. Desjarlais.
Thermophysical properties of warm dense hydrogen using
quantum molecular dynamics simulations. Phys. Rev. B,
77:184201, May 2008. doi:10.1103/PhysRevB.77.
184201.

[JFC+13] Weile Jia, Jiyun Fu, Zongyan Cao, Long Wang, Xuebin Chi,
Weiguo Gao, and Lin-Wang Wang. Fast plane wave density
functional theory molecular dynamics calculations on multi-
GPU machines. Journal of Computational Physics, 251:102–
115, 2013. doi:10.1016/j.jcp.2013.05.005.

[Job20] Joblib Development Team. Joblib: running Python functions
as pipeline jobs. https://joblib.readthedocs.io/, 2020.

[KDF+11] A. L. Kritcher, T. Döppner, C. Fortmann, T. Ma, O. L.
Landen, R. Wallace, and S. H. Glenzer. In-Flight Measure-
ments of Capsule Shell Adiabats in Laser-Driven Implosions.
Phys. Rev. Lett., 107:015002, Jul 2011. doi:10.1103/
PhysRevLett.107.015002.

[Koh99] W. Kohn. Nobel lecture: Electronic structure of matter—wave
functions and density functionals. Rev. Mod. Phys., 71:1253–
1266, 10 1999. doi:10.1103/RevModPhys.71.1253.

[KS65] W. Kohn and L. J. Sham. Self-consistent equations including
exchange and correlation effects. Phys. Rev., 140(4A):A1133–
A1138, Nov 1965. doi:10.1103/PhysRev.140.
A1133.

[LSOM18] Susi Lehtola, Conrad Steigemann, Micael J.T. Oliveira, and
Miguel A.L. Marques. Recent developments in LIBXC —
A comprehensive library of functionals for density functional
theory. SoftwareX, 7:1–5, 2018. doi:10.1016/j.softx.
2017.11.002.

[MED11] Stefan Maintz, Bernhard Eck, and Richard Dronskowski.
Speeding up plane-wave electronic-structure calculations us-
ing graphics-processing units. Computer Physics Communi-
cations, 182(7):1421–1427, 2011. doi:10.1016/j.cpc.
2011.03.010.

[men14] mendeleev – A Python resource for properties of chemical
elements, ions and isotopes, ver. 0.9.0. https://github.com/
lmmentel/mendeleev, 2014.

[Mer65] N. David Mermin. Thermal properties of the inhomogeneous
electron gas. Phys. Rev., 137:A1441–A1443, Mar 1965. doi:
10.1103/PhysRev.137.A1441.

[PGW12] Mohandas Pillai, Joshua Goglio, and Thad G. Walker. Matrix
numerov method for solving schrödinger’s equation. Amer-
ican Journal of Physics, 80(11):1017–1019, 2012. doi:
10.1119/1.4748813.

[PPF+11] S. Pittalis, C. R. Proetto, A. Floris, A. Sanna, C. Bersier,
K. Burke, and E. K. U. Gross. Exact conditions in finite-

temperature density-functional theory. Phys. Rev. Lett.,
107:163001, Oct 2011. doi:10.1103/PhysRevLett.
107.163001.

[PR20] Martin Preising and Ronald Redmer. Metallization of dense
fluid helium from ab initio simulations. Phys. Rev. B,
102:224107, Dec 2020. doi:10.1103/PhysRevB.102.
224107.

[Roz91] Balazs F. Rozsnyai. Photoabsorption in hot plasmas based
on the ion-sphere and ion-correlation models. Phys. Rev. A,
43:3035–3042, Mar 1991. doi:10.1103/PhysRevA.43.
3035.

[SM91] H. B. Schlegel and J. J. W. McDouall. Do You Have SCF Sta-
bility and Convergence Problems?, pages 167–185. Springer
Netherlands, Dordrecht, 1991. doi:10.1007/978-94-
011-3262-6_2.

[SPS+14] A. N. Souza, D. J. Perkins, C. E. Starrett, D. Saumon, and
S. B. Hansen. Predictions of x-ray scattering spectra for warm
dense matter. Phys. Rev. E, 89:023108, Feb 2014. doi:
10.1103/PhysRevE.89.023108.

[SRH+12] John C. Snyder, Matthias Rupp, Katja Hansen, Klaus-Robert
Müller, and Kieron Burke. Finding density functionals with
machine learning. Phys. Rev. Lett., 108:253002, Jun 2012.
doi:10.1103/PhysRevLett.108.253002.

[SS14] C.E. Starrett and D. Saumon. A simple method for determining
the ionic structure of warm dense matter. High Energy Density
Physics, 10:35–42, 2014. doi:10.1016/j.hedp.2013.
12.001.

[Sta16] C.E. Starrett. Kubo–Greenwood approach to conductivity
in dense plasmas with average atom models. High Energy
Density Physics, 19:58–64, 2016. doi:10.1016/j.hedp.
2016.04.001.

[STJ+14] Sang-Kil Son, Robert Thiele, Zoltan Jurek, Beata Ziaja, and
Robin Santra. Quantum-mechanical calculation of ionization-
potential lowering in dense plasmas. Phys. Rev. X, 4:031004,
Jul 2014. doi:10.1103/PhysRevX.4.031004.

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski,
Pearu Peterson, Warren Weckesser, Jonathan Bright, Sté-
fan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quin-
tero, Charles R. Harris, Anne M. Archibald, Antônio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy
1.0 Contributors. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17:261–272,
2020. doi:10.1038/s41592-019-0686-2.

46 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Automatic random variate generation in Python

Christoph Baumgarten‡∗, Tirth Patel

F

Abstract—The generation of random variates is an important tool that is re-
quired in many applications. Various software programs or packages contain
generators for standard distributions like the normal, exponential or Gamma,
e.g., the programming language R and the packages SciPy and NumPy in
Python. However, it is not uncommon that sampling from new/non-standard dis-
tributions is required. Instead of deriving specific generators in such situations,
so-called automatic or black-box methods have been developed. These allow
the user to generate random variates from fairly large classes of distributions
by only specifying some properties of the distributions (e.g. the density and/or
cumulative distribution function). In this note, we describe the implementation of
such methods from the C library UNU.RAN in the Python package SciPy and
provide a brief overview of the functionality.

Index Terms—numerical inversion, generation of random variates

Introduction

The generation of random variates is an important tool that is
required in many applications. Various software programs or
packages contain generators for standard distributions, e.g., R
([R C21]) and SciPy ([VGO+20]) and NumPy ([HMvdW+20])
in Python. Standard references for these algorithms are the books
[Dev86], [Dag88], [Gen03], and [Knu14]. An interested reader
will find many references to the vast existing literature in these
works. While relying on general methods such as the rejection
principle, the algorithms for well-known distributions are often
specifically designed for a particular distribution. This is also the
case in the module stats in SciPy that contains more than 100
distributions and the module random in NumPy with more than
30 distributions. However, there are also so-called automatic or
black-box methods for sampling from large classes of distributions
with a single piece of code. For such algorithms, information
about the distribution such as the density, potentially together with
its derivative, the cumulative distribution function (CDF), and/or
the mode must be provided. See [HLD04] for a comprehensive
overview of these methods. Although the development of such
methods was originally motivated to generate variates from non-
standard distributions, these universal methods have advantages
that make their usage attractive even for sampling from standard
distributions. We mention some of the important properties (see
[LH00], [HLD04], [DHL10]):

• The algorithms can be used to sample from truncated
distributions.

* Corresponding author: christoph.baumgarten@gmail.com
‡ Unaffiliated

Copyright © 2022 Christoph Baumgarten et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

• For inversion methods, the structural properties of the
underlying uniform random number generator are pre-
served and the numerical accuracy of the methods can be
controlled by a parameter. Therefore, inversion is usually
the only method applied for simulations using quasi-Monte
Carlo (QMC) methods.

• Depending on the use case, one can choose between a fast
setup with slow marginal generation time and vice versa.

The latter point is important depending on the use case: if a
large number of samples is required for a given distribution with
fixed shape parameters, a slower setup that only has to be run once
can be accepted if the marginal generation times are low. If small
to moderate samples sizes are required for many different shape
parameters, then it is important to have a fast setup. The former
situation is referred to as the fixed-parameter case and the latter as
the varying parameter case.

Implementations of various methods are available in the
C library UNU.RAN ([HL07]) and in the associated R pack-
age Runuran (https://cran.r-project.org/web/packages/Runuran/
index.html, [TL03]). The aim of this note is to introduce the
Python implementation in the SciPy package that makes some
of the key methods in UNU.RAN available to Python users in
SciPy 1.8.0. These general tools can be seen as a complement
to the existing specific sampling methods: they might lead to
better performance in specific situations compared to the existing
generators, e.g., if a very large number of samples are required for
a fixed parameter of a distribution or if the implemented sampling
method relies on a slow default that is based on numerical
inversion of the CDF. For advanced users, they also offer various
options that allow to fine-tune the generators (e.g., to control the
time needed for the setup step).

Automatic algorithms in SciPy

Many of the automatic algorithms described in [HLD04] and
[DHL10] are implemented in the ANSI C library, UNU.RAN
(Universal Non-Uniform RANdom variate generators). Our goal
was to provide a Python interface to the most important methods
from UNU.RAN to generate univariate discrete and continuous
non-uniform random variates. The following generators have been
implemented in SciPy 1.8.0:

• TransformedDensityRejection: Transformed
Density Rejection (TDR) ([H9̈5], [GW92])

• NumericalInverseHermite: Hermite interpolation
based INVersion of CDF (HINV) ([HL03])

• NumericalInversePolynomial: Polynomial inter-
polation based INVersion of CDF (PINV) ([DHL10])

AUTOMATIC RANDOM VARIATE GENERATION IN PYTHON 47

• SimpleRatioUniforms: Simple Ratio-Of-Uniforms
(SROU) ([Ley01], [Ley03])

• DiscreteGuideTable: (Discrete) Guide Table
method (DGT) ([CA74])

• DiscreteAliasUrn: (Discrete) Alias-Urn method
(DAU) ([Wal77])

Before describing the implementation in SciPy in Section
scipy_impl, we give a short introduction to random variate gener-
ation in Section intro_rv_gen.

A very brief introduction to random variate generation

It is well-known that random variates can be generated by inver-
sion of the CDF F of a distribution: if U is a uniform random
number on (0,1), X := F−1(U) is distributed according to F .
Unfortunately, the inverse CDF can only be expressed in closed
form for very few distributions, e.g., the exponential or Cauchy
distribution. If this is not the case, one needs to rely on imple-
mentations of special functions to compute the inverse CDF for
standard distributions like the normal, Gamma or beta distributions
or numerical methods for inverting the CDF are required. Such
procedures, however, have the disadvantage that they may be slow
or inaccurate, and developing fast and robust inversion algorithms
such as HINV and PINV is a non-trivial task. HINV relies on
Hermite interpolation of the inverse CDF and requires the CDF
and PDF as an input. PINV only requires the PDF. The algorithm
then computes the CDF via adaptive Gauss-Lobatto integration
and an approximation of the inverse CDF using Newton’s polyno-
mial interpolation. Note that an approximation of the inverse CDF
can be achieved by interpolating the points (F(xi),xi) for points
xi in the domain of F , i.e., no evaluation of the inverse CDF is
required.

For discrete distributions, F is a step-function. To compute
the inverse CDF F−1(U), the simplest idea would be to apply
sequential search: if X takes values 0,1,2, . . . with probabil-
ities p0, p1, p2, . . . , start with j = 0 and keep incrementing j
until F(j) = p0 + · · ·+ p j ≥ U . When the search terminates,
X = j = F−1(U). Clearly, this approach is generally very slow
and more efficient methods have been developed: if X takes L
distinct values, DGT realizes very fast inversion using so-called
guide tables / hash tables to find the index j. In contrast DAU is
not an inversion method but uses the alias method, i.e., tables are
precomputed to write X as an equi-probable mixture of L two-
point distributions (the alias values).

The rejection method has been suggested in [VN51]. In its
simplest form, assume that f is a bounded density on [a,b],
i.e., f (x) ≤M for all x ∈ [a,b]. Sample two independent uniform
random variates on U on [0,1] and V on [a,b] until M ·U ≤ f (V).
Note that the accepted points (U,V) are uniformly distributed in
the region between the x-axis and the graph of the PDF. Hence,
X := V has the desired distribution f . This is a special case of
the general version: if f ,g are two densities on an interval J such
that f (x) ≤ c · g(x) for all x ∈ J and a constant c ≥ 1, sample
U uniformly distributed on [0,1] and X distributed according to
g until c ·U · g(X) ≤ f (X). Then X has the desired distribution
f . It can be shown that the expected number of iterations before
the acceptance condition is met is equal to c. Hence, the main
challenge is to find hat functions g for which c is small and from
which random variates can be generated efficiently. TDR solves
this problem by applying a transformation T to the density such
that x 7→ T (f (x)) is concave. A hat function can then be found

by computing tangents at suitable design points. Note that by its
nature any rejection method requires not always the same number
of uniform variates to generate one non-uniform variate; this
makes the use of QMC and of some variance reduction methods
more difficult or impossible. On the other hand, rejection is often
the fastest choice for the varying parameter case.

The Ratio-Of-Uniforms method (ROU, [KM77]) is another
general method that relies on rejection. The underlying principle is
that if (U,V) is uniformly distributed on the set A f := {(u,v) : 0 <
v≤

√
f (u/v),a < u/v < b} where f is a PDF with support (a,b),

then X :=U/V follows a distribution according to f . In general, it
is not possible to sample uniform values on A f directly. However,
if A f ⊂ R := [u−,u+]× [0,v+] for finite constants u−,u+,v+, one
can apply the rejection method: generate uniform values (U,V) on
the bounding rectangle R until (U,V) ∈ A f and return X = U/V .
Automatic methods relying on the ROU method such as SROU
and automatic ROU ([Ley00]) need a setup step to find a suitable
region S ∈ R2 such that A f ⊂ S and such that one can generate
(U,V) uniformly on S efficiently.

Description of the SciPy interface

SciPy provides an object-oriented API to UNU.RAN’s methods.
To initialize a generator, two steps are required:

1) creating a distribution class and object,
2) initializing the generator itself.

In step 1, a distributions object must be created that im-
plements required methods (e.g., pdf, cdf). This can either
be a custom object or a distribution object from the classes
rv_continuous or rv_discrete in SciPy. Once the gen-
erator is initialized from the distribution object, it provides a
rvs method to sample random variates from the given dis-
tribution. It also provides a ppf method that approximates
the inverse CDF if the initialized generator uses an inversion
method. The following example illustrates how to initialize the
NumericalInversePolynomial (PINV) generator for the
standard normal distribution:
import numpy as np
from scipy.stats import sampling
from math import exp

create a distribution class with implementation
of the PDF. Note that the normalization constant
is not required
class StandardNormal:

def pdf(self, x):
return exp(-0.5 * x**2)

create a distribution object and initialize the
generator
dist = StandardNormal()
rng = sampling.NumericalInversePolynomial(dist)

sample 100,000 random variates from the given
distribution
rvs = rng.rvs(100000)

As NumericalInversePolynomial generator uses an in-
version method, it also provides a ppf method that approximates
the inverse CDF:
evaluate the approximate PPF at a few points
ppf = rng.ppf([0.1, 0.5, 0.9])

It is also easy to sample from a truncated distribution by passing
a domain argument to the constructor of the generator. For
example, to sample from truncated normal distribution:

48 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

truncate the distribution by passing a
`domain` argument
rng = sampling.NumericalInversePolynomial(

dist, domain=(-1, 1)
)

While the default options of the generators should work well in
many situations, we point out that there are various parameters that
the user can modify, e.g., to provide further information about the
distribution (such as mode or center) or to control the numerical
accuracy of the approximated PPF. (u_resolution). Details
can be found in the SciPy documentation https://docs.scipy.org/
doc/scipy/reference/. The above code can easily be generalized to
sample from parametrized distributions using instance attributes
in the distribution class. For example, to sample from the gamma
distribution with shape parameter alpha, we can create the
distribution class with parameters as instance attributes:
class Gamma:

def __init__(self, alpha):
self.alpha = alpha

def pdf(self, x):
return x**(self.alpha-1) * exp(-x)

def support(self):
return 0, np.inf

initialize a distribution object with varying
parameters
dist1 = Gamma(2)
dist2 = Gamma(3)

initialize a generator for each distribution
rng1 = sampling.NumericalInversePolynomial(dist1)
rng2 = sampling.NumericalInversePolynomial(dist2)

In the above example, the support method is used to set the
domain of the distribution. This can alternatively be done by
passing a domain parameter to the constructor.

In addition to continuous distribution, two UNU.RAN methods
have been added in SciPy to sample from discrete distributions. In
this case, the distribution can be either be represented using a
probability vector (which is passed to the constructor as a Python
list or NumPy array) or a Python object with the implementation
of the probability mass function. In the latter case, a finite domain
must be passed to the constructor or the object should implement
the support method1.
Probability vector to represent a discrete
distribution. Note that the probability vector
need not be vectorized
pv = [0.1, 9.0, 2.9, 3.4, 0.3]

PCG64 uniform RNG with seed 123
urng = np.random.default_rng(123)
rng = sampling.DiscreteAliasUrn(

pv, random_state=urng
)

sample from the given discrete distribution
rvs = rng.rvs(100000)

Underlying uniform pseudo-random number generators

NumPy provides several generators for uniform pseudo-random
numbers2. It is highly recommended to use NumPy’s default
random number generator np.random.PCG64 for better speed
and performance, see [O’N14] and https://numpy.org/doc/stable/

1. Support for discrete distributions with infinite domain hasn’t been added
yet.

reference/random/bit_generators/index.html. To change the uni-
form random number generator, a random_state parameter
can be passed as shown in the example below:
64-bit PCG random number generator in NumPy
urng = np.random.Generator(np.random.PCG64())
The above line can also be replaced by:
``urng = np.random.default_rng()``
as PCG64 is the default generator starting
from NumPy 1.19.0

change the uniform random number generator by
passing the `random_state` argument
rng = sampling.NumericalInversePolynomial(

dist, random_state=urng
)

We also point out that the PPF of inversion methods can be applied
to sequences of quasi-random numbers. SciPy provides different
sequences in its QMC module (scipy.stats.qmc).

NumericalInverseHermite provides a qrvs method
which generates random variates using QMC methods present
in SciPy (scipy.stats.qmc) as uniform random number
generators3. The next example illustrates how to use qrvs with a
generator created directly from a SciPy distribution object.
from scipy import stats
from scipy.stats import qmc

1D Halton sequence generator.
qrng = qmc.Halton(d=1)

rng = sampling.NumericalInverseHermite(stats.norm())

generate quasi random numbers using the Halton
sequence as uniform variates
qrvs = rng.qrvs(size=100, qmc_engine=qrng)

Benchmarking

To analyze the performance of the implementation, we tested the
methods applied to several standard distributions against the gen-
erators in NumPy and the original UNU.RAN C library. In addi-
tion, we selected one non-standard distribution to demonstrate that
substantial reductions in the runtime can be achieved compared to
other implementations. All the benchmarks were carried out using
NumPy 1.22.4 and SciPy 1.8.1 running in a single core on Ubuntu
20.04.3 LTS with Intel(R) Core(TM) i7-8750H CPU (2.20GHz
clock speed, 16GB RAM). We run the benchmarks with NumPy’s
MT19937 (Mersenne Twister) and PCG64 random number gen-
erators (np.random.MT19937 and np.random.PCG64) in
Python and use NumPy’s C implementation of MT19937 in the
UNU.RAN C benchmarks. As explained above, the use of PCG64
is recommended, and MT19937 is only included to compare the
speed of the Python implementation and the C library by relying
on the same uniform number generator (i.e., differences in the
performance of the uniform number generation are not taken
into account). The code for all the benchmarks can be found on
https://github.com/tirthasheshpatel/unuran_benchmarks.

The methods used in NumPy to generate normal, gamma, and
beta random variates are:

• the ziggurat algorithm ([MT00b]) to sample from the
standard normal distribution,

2. By default, NumPy’s legacy random number generator, MT19937
(np.random.RandomState()) is used as the uniform random number
generator for consistency with the stats module in SciPy.

3. In SciPy 1.9.0, qrvs will be added to
NumericalInversePolynomial.

AUTOMATIC RANDOM VARIATE GENERATION IN PYTHON 49

• the rejection algorithms in Chapter XII.2.6 in [Dev86] if
α < 1 and in [MT00a] if α > 1 for the Gamma distribution,

• Johnk’s algorithm ([Jöh64], Section IX.3.5 in [Dev86]) if
max{α,β} ≤ 1, otherwise a ratio of two Gamma variates
with shape parameter α and β (see Section IX.4.1 in
[Dev86]) for the beta distribution.

Benchmarking against the normal, gamma, and beta distributions

Table 1 compares the performance for the standard normal,
Gamma and beta distributions. We recall that the density of the
Gamma distribution with shape parameter a > 0 is given by
x ∈ (0,∞) 7→ xa−1e−x and the density of the beta distribution with
shape parameters α,β > 0 is given by x ∈ (0,1) 7→ xα−1(1−x)β−1

B(α,β)
where Γ(·) and B(·, ·) are the Gamma and beta functions. The
results are reported in Table 1.

We summarize our main observations:

1) The setup step in Python is substantially slower than
in C due to expensive Python callbacks, especially for
PINV and HINV. However, the time taken for the setup is
low compared to the sampling time if large samples are
drawn. Note that as expected, SROU has a very fast setup
such that this method is suitable for the varying parameter
case.

2) The sampling time in Python is slightly higher than in
C for the MT19937 random number generator. If the
recommended PCG64 generator is used, the sampling
time in Python is slightly lower. The only exception
is SROU: due to Python callbacks, the performance is
substantially slower than in C. However, as the main
advantage of SROU is the fast setup time, the main use
case is the varying parameter case (i.e., the method is not
supposed to be used to generate large samples).

3) PINV, HINV, and TDR are at most about 2x slower than
the specialized NumPy implementation for the normal
distribution. For the Gamma and beta distribution, they
even perform better for some of the chosen shape pa-
rameters. These results underline the strong performance
of these black-box approaches even for standard distribu-
tions.

4) While the application of PINV requires bounded densi-
ties, no issues are encountered for α = 0.05 since the
unbounded part is cut off by the algorithm. However, the
setup can fail for very small values of α .

Benchmarking against a non-standard distribution

We benchmark the performance of PINV to sample from the
generalized normal distribution ([Sub23]) whose density is given
by x ∈ (−∞,∞) 7→ pe−|x|

p

2Γ(1/p) against the method proposed in [NP09]
and against the implementation in SciPy’s gennorm distribu-
tion. The approach in [NP09] relies on transforming Gamma
variates to the generalized normal distribution whereas SciPy
relies on computing the inverse of CDF of the Gamma distri-
bution (https://docs.scipy.org/doc/scipy/reference/generated/scipy.
special.gammainccinv.html). The results for different values of p
are shown in Table 2.

PINV is usually about twice as fast than the special-
ized method and about 15-150 times faster than SciPy’s
implementation4. We also found an R package pgnorm (https:
//cran.r-project.org/web/packages/pgnorm/) that implements vari-
ous approaches from [KR13]. In that case, PINV is usually about

70-200 times faster. This clearly shows the benefit of using a
black-box algorithm.

Conclusion

The interface to UNU.RAN in SciPy provides easy access to
different algorithms for non-uniform variate generation for large
classes of univariate continuous and discrete distributions. We
have shown that the methods are easy to use and that the al-
gorithms perform very well both for standard and non-standard
distributions. A comprehensive documentation suite, a tutorial
and many examples are available at https://docs.scipy.org/doc/
scipy/reference/stats.sampling.html and https://docs.scipy.org/doc/
scipy/tutorial/stats/sampling.html. Various methods have been im-
plemented in SciPy, and if specific use cases require additional
functionality from UNU.RAN, the methods can easily be added
to SciPy given the flexible framework that has been developed.
Another area of further development is to better integrate SciPy’s
QMC generators for the inversion methods.

Finally, we point out that other sampling methods like Markov
Chain Monte Carlo and copula methods are not part of SciPy. Rel-
evant Python packages in that context are PyMC ([PHF10]), PyS-
tan relying on Stan ([Tea21]), Copulas (https://sdv.dev/Copulas/)
and PyCopula (https://blent-ai.github.io/pycopula/).

Acknowledgments

The authors wish to thank Wolfgang Hörmann and Josef Leydold
for agreeing to publish the library under a BSD license and for
helpful feedback on the implementation and this note. In addition,
we thank Ralf Gommers, Matt Haberland, Nicholas McKibben,
Pamphile Roy, and Kai Striega for their code contributions, re-
views, and helpful suggestions. The second author was supported
by the Google Summer of Code 2021 program5.

REFERENCES

[CA74] Hui-Chuan Chen and Yoshinori Asau. On gener-
ating random variates from an empirical distribution.
AIIE Transactions, 6(2):163–166, 1974. doi:10.1080/
05695557408974949.

[Dag88] John Dagpunar. Principles of random variate generation.
Oxford University Press, USA, 1988.

[Dev86] Luc Devroye. Non-Uniform Random Variate Generation.
Springer-Verlag, New York, 1986. doi:10.1007/978-1-
4613-8643-8.

[DHL10] Gerhard Derflinger, Wolfgang Hörmann, and Josef Leydold.
Random variate generation by numerical inversion when only
the density is known. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 20(4):1–25, 2010. doi:
10.1145/1842722.1842723.

[Gen03] James E Gentle. Random number generation and Monte Carlo
methods, volume 381. Springer, 2003. doi:10.1007/
b97336.

[GW92] Walter R Gilks and Pascal Wild. Adaptive rejection sampling
for Gibbs sampling. Journal of the Royal Statistical Society:
Series C (Applied Statistics), 41(2):337–348, 1992. doi:10.
2307/2347565.

[H9̈5] Wolfgang Hörmann. A rejection technique for sampling from
T-concave distributions. ACM Trans. Math. Softw., 21(2):182–
193, 1995. doi:10.1145/203082.203089.

[HL03] Wolfgang Hörmann and Josef Leydold. Continuous random
variate generation by fast numerical inversion. ACM Trans-
actions on Modeling and Computer Simulation (TOMACS),
13(4):347–362, 2003. doi:10.1145/945511.945517.

4. In SciPy 1.9.0, the speed will be improved by implementing the method
from [NP09]

5. https://summerofcode.withgoogle.com/projects/#5912428874825728

50 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Distribution Method
Python C

Setup Sampling (PCG64) Sampling (MT19937) Setup Sampling (MT19937)

Standard normal

PINV 4.6 29.6 36.5 0.27 32.4
HINV 2.5 33.7 40.9 0.38 36.8
TDR 0.2 37.3 47.8 0.02 41.4

SROU 8.7 µs 2510 2160 0.5 µs 232
NumPy - 17.6 22.4 - -

Gamma(0.05)
PINV 196.0 29.8 37.2 37.9 32.5
HINV 24.5 36.1 43.8 1.9 40.7

NumPy - 55.0 68.1 - -

Gamma(0.5)
PINV 16.5 31.2 38.6 2.0 34.5
HINV 4.9 34.2 41.7 0.6 37.9

NumPy - 86.4 99.2 - -

Gamma(3.0)

PINV 5.3 30.8 38.7 0.5 34.6
HINV 5.3 33 40.6 0.4 36.8
TDR 0.2 38.8 49.6 0.03 44

NumPy - 36.5 47.1 - -

Beta(0.5,0.5)
PINV 21.4 33.1 39.9 2.4 37.3
HINV 2.1 38.4 45.3 0.2 42

NumPy - 101 112 - -

Beta(0.5,1.0)
HINV 0.2 37 44.3 0.01 41.1

NumPy - 125 138 - -

Beta(1.3,1.2)

PINV 15.7 30.5 37.2 1.7 34.3
HINV 4.1 33.4 40.8 0.4 37.1
TDR 0.2 46.8 57.8 0.03 45

NumPy - 74.3 97 - -

Beta(3.0,2.0)

PINV 9.7 30.2 38.2 0.9 33.8
HINV 5.8 33.7 41.2 0.4 37.4
TDR 0.2 42.8 52.8 0.02 44

NumPy - 72.6 92.8 - -

TABLE 1
Average time taken (reported in milliseconds, unless mentioned otherwise) to sample 1 million random variates from the standard normal distribution. The mean is
computed over 7 iterations. Standard deviations are not reported as they were very small (less than 1% of the mean in the large majority of cases). Note that not

all methods can always be applied, e.g., TDR cannot be applied to the Gamma distribution if a < 1 since the PDF is not log-concave in that case. As NumPy uses
rejection algorithms with precomputed constants, no setup time is reported.

p 0.25 0.45 0.75 1 1.5 2 5 8
Nardon and Pianca (2009) 100 101 101 45 148 120 128 122

SciPy’s gennorm distribution 832 1000 1110 559 5240 6720 6230 5950
Python (PINV Method, PCG64 urng) 50 47 45 41 40 37 38 38

TABLE 2
Comparing SciPy’s implementation and a specialized method against PINV to sample 1 million variates from the generalized normal distribution for different values

of the parameter p. Time reported in milliseconds. The mean is computer over 7 iterations.

[HL07] Wolfgang Hörmann and Josef Leydold. UNU.RAN - Univer-
sal Non-Uniform RANdom number generators, 2007. https:
//statmath.wu.ac.at/unuran/doc.html.

[HLD04] Wolfgang Hörmann, Josef Leydold, and Gerhard Derflinger.
Automatic nonuniform random variate generation. Springer,
2004. doi:10.1007/978-3-662-05946-3.

[HMvdW+20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der
Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del
Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant,
Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer
Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array pro-
gramming with NumPy. Nature, 585(7825):357–362, 2020.
doi:10.1038/s41586-020-2649-2.

[Jöh64] MD Jöhnk. Erzeugung von betaverteilten und gammaverteilten
Zufallszahlen. Metrika, 8(1):5–15, 1964. doi:10.1007/
bf02613706.

[KM77] Albert J Kinderman and John F Monahan. Computer gen-
eration of random variables using the ratio of uniform devi-

ates. ACM Transactions on Mathematical Software (TOMS),
3(3):257–260, 1977. doi:10.1145/355744.355750.

[Knu14] Donald E Knuth. The Art of Computer Programming, Volume
2: Seminumerical algorithms. Addison-Wesley Professional,
2014. doi:10.2307/2317055.

[KR13] Steve Kalke and W-D Richter. Simulation of the p-generalized
Gaussian distribution. Journal of Statistical Computation
and Simulation, 83(4):641–667, 2013. doi:10.1080/
00949655.2011.631187.

[Ley00] Josef Leydold. Automatic sampling with the ratio-of-uniforms
method. ACM Transactions on Mathematical Software
(TOMS), 26(1):78–98, 2000. doi:10.1145/347837.
347863.

[Ley01] Josef Leydold. A simple universal generator for continuous
and discrete univariate T-concave distributions. ACM Transac-
tions on Mathematical Software (TOMS), 27(1):66–82, 2001.
doi:10.1145/382043.382322.

[Ley03] Josef Leydold. Short universal generators via generalized
ratio-of-uniforms method. Mathematics of Computation,
72(243):1453–1471, 2003. doi:10.1090/s0025-5718-
03-01511-4.

AUTOMATIC RANDOM VARIATE GENERATION IN PYTHON 51

[LH00] Josef Leydold and Wolfgang Hörmann. Universal algorithms
as an alternative for generating non-uniform continuous ran-
dom variates. In Proceedings of the International Conference
on Monte Carlo Simulation 2000., pages 177–183, 2000.

[MT00a] George Marsaglia and Wai Wan Tsang. A simple method for
generating gamma variables. ACM Transactions on Math-
ematical Software (TOMS), 26(3):363–372, 2000. doi:
10.1145/358407.358414.

[MT00b] George Marsaglia and Wai Wan Tsang. The ziggurat method
for generating random variables. Journal of statistical soft-
ware, 5(1):1–7, 2000. doi:10.18637/jss.v005.i08.

[NP09] Martina Nardon and Paolo Pianca. Simulation techniques
for generalized Gaussian densities. Journal of Statistical
Computation and Simulation, 79(11):1317–1329, 2009. doi:
10.1080/00949650802290912.

[O’N14] Melissa E. O’Neill. PCG: A family of simple fast space-
efficient statistically good algorithms for random number gen-
eration. Technical Report HMC-CS-2014-0905, Harvey Mudd
College, Claremont, CA, September 2014.

[PHF10] Anand Patil, David Huard, and Christopher J Fonnesbeck.
PyMC: Bayesian stochastic modelling in Python. Journal of
Statistical Software, 35(4):1, 2010. doi:10.18637/jss.
v035.i04.

[R C21] R Core Team. R: A language and environment for statistical
computing, 2021. https://www.R-project.org/.

[Sub23] M.T. Subbotin. On the law of frequency of error. Mat. Sbornik,
31(2):296–301, 1923.

[Tea21] Stan Development Team. Stan modeling language users guide
and reference manual, version 2.28., 2021. https://mc-stan.org.

[TL03] Günter Tirler and Josef Leydold. Automatic non-uniform
random variate generation in r. In Proceedings of DSC, page 2,
2003.

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski,
Pearu Peterson, Warren Weckesser, Jonathan Bright, et al.
Scipy 1.0: fundamental algorithms for scientific computing in
python. Nature methods, pages 1–12, 2020. doi:10.1038/
s41592-019-0686-2.

[VN51] John Von Neumann. Various techniques used in connection
with random digits. Appl. Math Ser, 12(36-38):3, 1951.

[Wal77] Alastair J Walker. An efficient method for generating discrete
random variables with general distributions. ACM Transac-
tions on Mathematical Software (TOMS), 3(3):253–256, 1977.
doi:10.1145/355744.355749.

52 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Utilizing SciPy and other open source packages to
provide a powerful API for materials manipulation in

the Schrödinger Materials Suite

Alexandr Fonari‡∗, Farshad Fallah‡, Michael Rauch‡

F

Abstract—The use of several open source scientific packages in the
Schrödinger Materials Science Suite will be discussed. A typical workflow for
materials discovery will be described, discussing how open source packages
have been incorporated at every stage. Some recent implementations of ma-
chine learning for materials discovery will be discussed, as well as how open
source packages were leveraged to achieve results faster and more efficiently.

Index Terms—materials, active learning, OLED, deposition, evaporation

Introduction

A common materials discovery practice or workflow is to start
with reading an experimental structure of a material or generating
a structure in silico, computing its properties of interest (e.g.
elastic constants, electrical conductivity), tuning the material by
modifying its structure (e.g. doping) or adding and removing
atoms (deposition, evaporation), and then recomputing the proper-
ties of the modified material (Figure 1). Computational materials
discovery leverages such workflows to empower researchers to
explore vast design spaces and uncover root causes without (or in
conjunction with) laboratory experimentation.

Software tools for computational materials discovery can be
facilitated by utilizing existing libraries that cover the fundamental
mathematics used in the calculations in an optimized fashion. This
use of existing libraries allows developers to devote more time
to developing new features instead of re-inventing established
methods. As a result, such a complementary approach improves
the performance of computational materials software and reduces
overall maintenance.

The Schrödinger Materials Science Suite [LLC22] is a propri-
etary computational chemistry/physics platform that streamlines
materials discovery workflows into a single graphical user inter-
face (Materials Science Maestro). The interface is a single portal
for structure building and enumeration, physics-based modeling
and machine learning, visualization and analysis. Tying together
the various modules are a wide variety of scientific packages, some
of which are proprietary to Schrödinger, Inc., some of which are

* Corresponding author: sasha.fonari@schrodinger.com
‡ Schrödinger Inc., 1540 Broadway, 24th Floor. New York, NY 10036

Copyright © 2022 Alexandr Fonari et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

open-source and many of which blend the two to optimize capa-
bilities and efficiency. For example, the main simulation engine
for molecular quantum mechanics is the Jaguar [BHH+13] pro-
prietary code. The proprietary classical molecular dynamics code
Desmond (distributed by Schrödinger, Inc.) [SGB+14] is used to
obtain physical properties of soft materials, surfaces and polymers.
For periodic quantum mechanics, the main simulation engine is
the open source code Quantum ESPRESSO (QE) [GAB+17]. One
of the co-authors of this proceedings (A. Fonari) contributes to
the QE code in order to make integration with the Materials Suite
more seamless and less error-prone. As part of this integration,
support for using the portable XML format for input and output
in QE has been implemented in the open source Python package
qeschema [BDBF].

Figure 2 gives an overview of some of the various products that
compose the Schrödinger Materials Science Suite. The various
workflows are implemented mainly in Python (some of them
described below), calling on proprietary or open-source code
where appropriate, to improve the performance of the software
and reduce overall maintenance.

The materials discovery cycle can be run in a high-throughput
manner, enumerating different structure modifications in a system-
atic fashion, such as doping ratio in a semiconductor or depositing
different adsorbates. As we will detail herein, there are several
open source packages that allow the user to generate a large
number of structures, run calculations in high throughput manner
and analyze the results. For example, the open source package
pymatgen [ORJ+13] facilitates generation and analysis of periodic
structures. It can generate inputs for and read outputs of QE, the
commercial codes VASP and Gaussian, and several other formats.
To run and manage workflow jobs in a high-throughput manner,
open source packages such as Custodian [ORJ+13] and AiiDA
[HZU+20] can be used.

Materials import and generation

For reading and writing of material structures, several open source
packages (e.g. OpenBabel [OBJ+11], RDKit [LTK+22]) have
implemented functionality for working with several commonly
used formats (e.g. CIF, PDB, mol, xyz). Periodic structures
of materials, mainly coming from single crystal X-ray/neutron
diffraction experiments, are distributed in CIF (Crystallographic
Information File), PDB (Protein Data Bank) and lately mmCIF

UTILIZING SCIPY AND OTHER OPEN SOURCE PACKAGES TO PROVIDE A POWERFUL API FOR MATERIALS MANIPULATION IN THE SCHRÖDINGER MATERIALS SUITE 53

Fig. 1: Example of a workflow for computational materials discovery.

Fig. 2: Some example products that compose the Schrödinger Materials Science Suite.

formats [WF05]. Correctly reading experimental structures is of
significant importance, since the rest of the materials discovery
workflow depends on it. In addition to atom coordinates and
periodic cell information, structural data also contains symme-
try operations (listed explicitly or by the means of providing
a space group) that can be used to decrease the number of
computations required for a particular system by accounting for
symmetry. This can be important, especially when scaling high-
throughput calculations. From file, structure is read in a structure
object through which atomic coordinates (as a NumPy array) and
chemical information of the material can be accessed and updated.
Structure object is similar to the one implemented in open source
packages such as pymatgen [ORJ+13] and ASE [LMB+17]. All
the structure manipulations during the workflows are done by
using structure object interface (see structure deformation example
below). Example of Structure object definition in pymatgen:

class Structure:

def __init__(self, lattice, species, coords, ...):
"""Create a periodic structure."""

One consideration of note is that PDB, CIF and mmCIF structure
formats allow description of the positional disorder (for example,
a solvent molecule without a stable position within the cell
which can be described by multiple sets of coordinates). Another
complication is that experimental data spans an interval of almost
a century: one of the oldest crystal structures deposited in the
Cambridge Structural Database (CSD) [GBLW16] dates to 1924
[HM24]. These nuances and others present nontrivial technical
challenges for developers. Thus, it has been a continuous effort
by Schrödinger, Inc. (at least 39 commits and several weeks of

work went into this project) and others to correctly read and
convert periodic structures in OpenBabel. By version 3.1.1 (the
most recent at writing time), the authors are not aware of any
structures read incorrectly by OpenBabel. In general, non-periodic
molecular formats are simpler to handle because they only contain
atom coordinates but no cell or symmetry information. OpenBabel
has Python bindings but due to the GPL license limitation, it is
called as a subprocess from the Schrödinger Materials Suite.

Another important consideration in structure generation is
modeling of substitutional disorder in solid alloys and materials
with point defects (intermetallics, semiconductors, oxides and
their crystalline surfaces). In such cases, the unit cell and atomic
sites of the crystal or surface slab are well defined while the chem-
ical species occupying the site may vary. In order to simulate sub-
stitutional disorder, one must generate the ensemble of structures
that includes all statistically significant atomic distributions in a
given unit cell. This can be achieved by a brute force enumeration
of all symmetrically unique atomic structures with a given number
of vacancies, impurities or solute atoms. The open source library
enumlib [HF08] implements algorithms for such a systematic
enumeration of periodic structures. The enumlib package consists
of several Fortran binaries and Python scripts that can be run as a
subprocess (no Python bindings). This allows the user to generate
a large set of symmetrically nonequivalent materials with different
compositions (e.g. doping or defect concentration).

Recently, we applied this approach in simultaneous study of
the activity and stability of Pt based core-shell type catalysts for
the oxygen reduction reaction [MGF+19]. We generated a set of
stable doped Pt/transition metal/nitrogen surfaces using periodic
enumeration. Using QE to perform periodic density functional

54 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 3: Example of the job submission process.

theory (DFT) calculations, we assessed surface phase diagrams
for Pt alloys and identified the avenues for stabilizing the cost
effective core-shell systems by a judicious choice of the catalyst
core material. Such catalysts may prove critical in electrocatalysis
for fuel cell applications.

Workflow capabilities

In the last section, we briefly described a complete workflow from
structure generation and enumeration to periodic DFT calculations
to analysis. In order to be able to run a massively parallel
screening of materials, a highly scalable and stable queuing system
(job scheduler) is required. We have implemented a job queuing
system on top of the most used queuing systems (LSF, PBS,
SGE, SLURM, TORQUE, UGE) and exposed a Python API to
submit and monitor jobs. In line with technological advancements,
cloud is also supported by means of a virtual cluster configured
with SLURM. This allows the user to submit a large number
of jobs, limited only by SLURM scheduling capabilities and
cloud resources. In order to accommodate job dependencies in
workflows, for each job, a parent job (or multiple parent jobs) can
be defined forming a directed graph of jobs (Figure 3).

There could be several reasons for a job to fail. Depending
on the reason of failure, there are several restart and recovery
mechanisms in place. The lowest level is the restart mechanism
(in SLURM it is called requeue) which is performed by the
queuing system itself. This is triggered when a node goes down.
On the cloud, preemptible instances (nodes) can go offline at any
moment. In addition, workflows implemented in the proprietary
Schrödinger Materials Science Suite have built-in methods for
handling various types of failure. For example, if the simulation
is not converging to a requested energy accuracy, it is wasteful
to blindly restart the calculation without changing some input
parameters. However, in the case of a failure due to full disk
space, it is reasonable to try restart with hopes to get a node with
more empty disk space. If a job fails (and cannot be restarted),
all its children (if any) will not start, thus saving queuing and
computational time.

Having developed robust systems for running calculations, job
queuing and troubleshooting (autonomously, when applicable),
the developed workflows have allowed us and our customers to
perform massive screenings of materials and their properties. For
example, we reported a massive screening of 250,000 charge-
conducting organic materials, totaling approximately 3,619,000
DFT SCF (self-consistent field) single-molecule calculations using

Jaguar that took 457,265 CPU hours (~52 years) [MAS+20]. An-
other similar case study is the high-throughput molecular dynam-
ics simulations (MD) of thermophysical properties of polymers for
various applications [ABG+21]. There, using Desmond we com-
puted the glass transition temperature (Tg) of 315 polymers and
compared the results with experimental measurements [Bic02].
This study took advantage of GPU (graphics processing unit)
support as implemented in Desmond, as well as the job scheduler
API described above.

Other workflows implemented in the Schrödinger Materials
Science Suite utilize open source packages as well. For soft mate-
rials (polymers, organic small molecules and substrates composed
of soft molecules), convex hull and related mathematical methods
are important for finding possible accessible solvent voids (during
submerging or sorption) and adsorbate sites (during molecular
deposition). These methods are conveniently implemented in the
open source SciPy [VGO+20] and NumPy [HMvdW+20] pack-
ages. Thus, we implemented molecular deposition and evaporation
workflows by using the Desmond MD engine as the backend
in tandem with the convex hull functionality. This workflow
enables simulation of the deposition and evaporation of the
small molecules on a substrate. We utilized the aforementioned
deposition workflow in the study of organic light-emitting diodes
(OLEDs), which are fabricated using a stepwise process, where
new layers are deposited on top of previous layers. Both vacuum
and solution deposition processes have been used to prepare these
films, primarily as amorphous thin film active layers lacking
long-range order. Each of these deposition techniques introduces
changes to the film structure and consequently, different charge-
transfer and luminescent properties [WKB+22].

As can be seen from above, a workflow is usually some
sort of structure modification through the structure object with
a subsequent call to a backend code and analysis of its output if
it succeeds. Input for the next iteration depends on the output
of the previous iteration in some workflows. Due to the large
chemical and manipulation space of the materials, sometimes it
very tricky to keep code for all workflows follow the same code
logic. For every workflow and/or functionality in the Materials
Science Suite, some sort of peer reviewed material (publication,
conference presentation) is created where implemented algorithms
are described to facilitate reproducibility.

Data fitting algorithms and use cases

Materials simulation engines for QM, periodic DFT, and classical
MD (referred to herein as backends) are frequently written in
compiled languages with enabled parallelization for CPU or GPU
hardware. These backends are called from Python workflows
using the job queuing systems described above. Meanwhile, pack-
ages such as SciPy and NumPy provide sophisticated numerical
function optimization and fitting capabilities. Here, we describe
examples of how the Schrödinger suite can be used to combine
materials simulations with popular optimization routines in the
SciPy ecosystem.

Recently we implemented convex analysis of
the stress strain curve (as described here [PKD18]).
scipy.optimize.minimize is used for a constrained
minimization with boundary conditions of a function related to
the stress strain curve. The stress strain curve is obtained from a
series of MD simulations on deformed cells (cell deformations
are defined by strain type and deformation step). The pressure

UTILIZING SCIPY AND OTHER OPEN SOURCE PACKAGES TO PROVIDE A POWERFUL API FOR MATERIALS MANIPULATION IN THE SCHRÖDINGER MATERIALS SUITE 55

tensor of a deformed cell is related to stress. This analysis allowed
prediction of elongation at yield for high density polyethylene
polymer. Figure 4 shows obtained calculated yield of 10% vs.
experimental value within 9-18% range [BAS+20].

The scipy.optimize package is used for a least-squares
fit of the bulk energies at different cell volumes (compressed
and expanded) in order to obtain the bulk modulus and equation
of state (EOS) of a material. In the Schrödinger suite this was
implemented as a part of an EOS workflow, in which fitting is
performed on the results obtained from a series of QE calculations
performed on the original as well as compressed and expanded
(deformed) cells. An example of deformation applied to a structure
in pymatgen:
from pymatgen.analysis.elasticity import strain
from pymatgen.core import lattice
from pymatgen.core import structure

deform = strain.Deformation([
[1.0, 0.02, 0.02],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0]])

latt = lattice.Lattice([
[3.84, 0.00, 0.00],
[1.92, 3.326, 0.00],
[0.00, -2.22, 3.14],

])

st = structure.Structure(
latt,
["Si", "Si"],
[[0, 0, 0], [0.75, 0.5, 0.75]])

strained_st = deform.apply_to_structure(st)

This is also an example of loosely coupled (embarrassingly
parallel) jobs. In particular, calculations of the deformed cells
only depend on the bulk calculation and do not depend on each
other. Thus, all the deformation jobs can be submitted in parallel,
facilitating high-throughput runs.

Structure refinement from powder diffraction experiment is an-
other example where more complex optimization is used. Powder
diffraction is a widely used method in drug discovery to assess
purity of the material and discover known or unknown crystal
polymorphs [KBD+21]. In particular, there is interest in fitting of
the experimental powder diffraction intensity peaks to the indexed
peaks (Pawley refinement) [JPS92]. Here we employed the open
source lmfit package [NSA+16] to perform a minimization of
the multivariable Voigt-like function that represents the entire
diffraction spectrum. This allows the user to refine (optimize) unit
cell parameters coming from the indexing data and as the result,
goodness of fit (R-factor) between experimental and simulated
spectrum is minimized.

Machine learning techniques

Of late, there is great interest in machine learning assisted mate-
rials discovery. There are several components required to perform
machine learning assisted materials discovery. In order to train a
model, benchmark data from simulation and/or experimental data
is required. Besides benchmark data, computation of the relevant
descriptors is required (see below). Finally, a model based on
benchmark data and descriptors is generated that allows prediction
of properties for novel materials. There are several techniques to
generate the model, such as linear or non-linear fitting to neural
networks. Tools include the open source DeepChem [REW+19]

and AutoQSAR [DDS+16] from the Schrödinger suite. Depending
on the type of materials, benchmark data can be obtained using
different codes available in the Schrödinger suite:

• small molecules and finite systems - Jaguar
• periodic systems - Quantum ESPRESSO
• larger polymeric and similar systems - Desmond

Different materials systems require different descriptors for
featurization. For example, for crystalline periodic systems, we
have implemented several sets of tailored descriptors. Genera-
tion of these descriptors again uses a mix of open source and
Schrödinger proprietary tools. Specifically:

• elemental features such as atomic weight, number of
valence electrons in s, p and d-shells, and electronegativity

• structural features such as density, volume per atom, and
packing fraction descriptors implemented in the open
source matminer package [WDF+18]

• intercalation descriptors such as cation and anion counts,
crystal packing fraction, and average neighbor ionicity
[SYC+17] implemented in the Schrödinger suite

• three-dimensional smooth overlap of atomic positions
(SOAP) descriptors implemented in the open source
DScribe package [HJM+20].

We are currently training models that use these descriptors
to predict properties, such as bulk modulus, of a set of Li-
containing battery related compounds [Cha]. Several models will
be compared, such as kernel regression methods (as implemented
in the open source scikit-learn code [PVG+11]) and AutoQSAR.

For isolated small molecules and extended non-periodic sys-
tems, RDKit can be used to generate a large number of atomic and
molecular descriptors. A lot of effort has been devoted to ensure
that RDKit can be used on a wide variety of materials that are
supported by the Schrödinger suite. At the time of writing, the 4th
most active contributor to RDKit is Ricardo Rodriguez-Schmidt
from Schrödinger [RDK].

Recently, active learning (AL) combined with DFT has re-
ceived much attention to address the challenge of leveraging
exhaustive libraries in materials informatics [VPB21], [SPA+19].
On our side, we have implemented a workflow that employs active
learning (AL) for intelligent and iterative identification of promis-
ing materials candidates within a large dataset. In the framework of
AL, the predicted value with associated uncertainty is considered
to decide what materials to be added in each iteration, aiming to
improve the model performance in the next iteration (Figure 5).

Since it could be important to consider multiple properties
simultaneously in material discovery, multiple property optimiza-
tion (MPO) has also been implemented as a part of the AL work-
flow [KAG+22]. MPO allows scaling and combining multiple
properties into a single score. We employed the AL workflow
to determine the top candidates for hole (positively charged
carrier) transport layer (HTL) by evaluating 550 molecules in 10
iterations using DFT calculations for a dataset of ~9,000 molecules
[AKA+22]. Resulting model was validated by randomly picking
a molecule from the dataset, computing properties with DFT and
comparing those to the predicted values. According to the semi-
classical Marcus equation [Mar93], high rates of hole transfer are
inversely proportional to hole reorganization energies. Thus, MPO
scores were computed based on minimizing hole reorganization
energy and targeting oxidation potential to an appropriate level to
ensure a low energy barrier for hole injection from the anode

56 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 4: Left: The uniaxial stress/strain curve of a polymer calculated using Desmond through the stress strain workflow. The dark grey band
indicates an inflection that marks the yield point. Right: Constant strain simulation with convex analysis indicates elongation at yield. The red
curve shows simulated stress versus strain. The blue curve shows convex analysis.

Fig. 5: Active learning workflow for the design and discovery of novel optoelectronics molecules.

into the emissive layer. In this workflow, we used RDKit to
compute descriptors for the chemical structures. These descriptors
generated on the initial subset of structures are given as vectors to
an algorithm based on Random Forest Regressor as implemented
in scikit-learn. Bayesian optimization is employed to tune the
hyperparameters of the model. In each iteration, a trained model
is applied for making predictions on the remaining materials in
the dataset. Figure 6 (A) displays MPO scores for the HTL dataset
estimated by AL as a function of hole reorganization energies that
are separately calculated for all the materials. This figure indicates
that there are many materials in the dataset with desired low hole
reorganization energies but are not suitable for HTL due to their
improper oxidation potentials, suggesting that MPO is important
to evaluate the optoelectronic performance of the materials. Figure
6 (B) presents MPO scores of the materials used in the training
dataset of AL, demonstrating that the feedback loop in the AL
workflow efficiently guides the data collection as the size of the
training set increases.

To appreciate the computational efficiency of such an ap-
proach, it is worth noting that performing DFT calculations for
all of the 9,000 molecules in the dataset would increase the
computational cost by a factor of 15 versus the AL workflow. It
seems that AL approach can be useful in the cases where problem
space is broad (like chemical space), but there are many clusters

of similar items (similar molecules). In this case, benchmark data
is only needed for few representatives of each cluster. We are
currently working on applying this approach to train models for
predicting physical properties of soft materials (polymers).

Conclusions

We present several examples of how Schrödinger Materials Suite
integrates open source software packages. There is a wide range
of applications in materials science that can benefit from already
existing open source code. Where possible, we report issues to
the package authors and submit improvements and bug fixes in
the form of the pull requests. We are thankful to all who have
contributed to open source libraries, and have made it possible for
us to develop a platform for accelerating innovation in materials
and drug discovery. We will continue contributing to these projects
and we hope to further give back to the scientific community by
facilitating research in both academia and industry. We hope that
this report will inspire other scientific companies to give back to
the open source community in order to improve the computational
materials field and make science more reproducible.

Acknowledgments

The authors acknowledge Bradley Dice and Wenduo Zhou for
their valuable comments during the review of the manuscript.

UTILIZING SCIPY AND OTHER OPEN SOURCE PACKAGES TO PROVIDE A POWERFUL API FOR MATERIALS MANIPULATION IN THE SCHRÖDINGER MATERIALS SUITE 57

Fig. 6: A: MPO score of all materials in the HTL dataset. B: Those used in the training set as a function of the hole reorganization energy (
λh).

REFERENCES

[ABG+21] Mohammad Atif Faiz Afzal, Andrea R. Browning, Alexan-
der Goldberg, Mathew D. Halls, Jacob L. Gavartin, Tsuguo
Morisato, Thomas F. Hughes, David J. Giesen, and Joseph E.
Goose. High-throughput molecular dynamics simulations and
validation of thermophysical properties of polymers for var-
ious applications. ACS Applied Polymer Materials, 3, 2021.
doi:10.1021/acsapm.0c00524.

[AKA+22] Hadi Abroshan, H. Shaun Kwak, Yuling An, Christopher
Brown, Anand Chandrasekaran, Paul Winget, and Mathew D.
Halls. Active learning accelerates design and optimization
of hole-transporting materials for organic electronics. Fron-
tiers in Chemistry, 9, 2022. doi:10.3389/fchem.2021.
800371.

[BAS+20] A. R. Browning, M. A. F. Afzal, J. Sanders, A. Goldberg,
A. Chandrasekaran, and H. S. Kwak. Polyolefin molecular
simulation for critical physical characteristics. International
Polyolefins Conference, 2020.

[BDBF] Davide Brunato, Pietro Delugas, Giovanni Borghi, and
Alexandr Fonari. qeschema. URL: https://github.com/QEF/
qeschema.

[BHH+13] Art D. Bochevarov, Edward Harder, Thomas F. Hughes,
Jeremy R. Greenwood, Dale A. Braden, Dean M. Philipp,
David Rinaldo, Mathew D. Halls, Jing Zhang, and Richard A.
Friesner. Jaguar: A high-performance quantum chemistry
software program with strengths in life and materials sci-
ences. International Journal of Quantum Chemistry, 113,
2013. doi:10.1002/qua.24481.

[Bic02] Jozef Bicerano. Prediction of polymer properties. cRc Press,
2002.

[Cha] A. Chandrasekaran. Active learning accelerated design of ionic
materials. in progress.

[DDS+16] Steven L. Dixon, Jianxin Duan, Ethan Smith, Christopher
D. Von Bargen, Woody Sherman, and Matthew P. Repasky.
Autoqsar: An automated machine learning tool for best-
practice quantitative structure-activity relationship modeling.
Future Medicinal Chemistry, 8, 2016. doi:10.4155/fmc-
2016-0093.

[GAB+17] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buon-
giorno Nardelli, M. Calandra, R. Car, C. Cavazzoni,
D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal
Corso, S. De Gironcoli, P. Delugas, R. A. Distasio, A. Ferretti,
A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann,
F. Giustino, T. Gorni, J. Jia, M. Kawamura, H. Y. Ko,
A. Kokalj, E. Kücükbenli, M. Lazzeri, M. Marsili, N. Marzari,
F. Mauri, N. L. Nguyen, H. V. Nguyen, A. Otero-De-La-
Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra,
M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thon-
hauser, P. Umari, N. Vast, X. Wu, and S. Baroni. Advanced
capabilities for materials modelling with quantum espresso.
Journal of Physics Condensed Matter, 29, 2017. URL:
https://www.quantum-espresso.org/, doi:10.1088/1361-
648X/aa8f79.

[GBLW16] Colin R. Groom, Ian J. Bruno, Matthew P. Lightfoot, and
Suzanna C. Ward. The cambridge structural database.
Acta Crystallographica Section B: Structural Science, Crys-

tal Engineering and Materials, 72, 2016. doi:10.1107/
S2052520616003954.

[HF08] Gus L.W. Hart and Rodney W. Forcade. Algo-
rithm for generating derivative structures. Physical Re-
view B - Condensed Matter and Materials Physics, 77,
2008. URL: https://github.com/msg-byu/enumlib/, doi:10.
1103/PhysRevB.77.224115.

[HJM+20] Lauri Himanen, Marc O.J. Jager, Eiaki V. Morooka, Fil-
ippo Federici Canova, Yashasvi S. Ranawat, David Z. Gao,
Patrick Rinke, and Adam S. Foster. Dscribe: Library of
descriptors for machine learning in materials science. Com-
puter Physics Communications, 247, 2020. URL: https:
//singroup.github.io/dscribe/latest/, doi:10.1016/j.cpc.
2019.106949.

[HM24] O Hassel and H Mark. The crystal structure of graphite.
Physik. Z, 25:317–337, 1924.

[HMvdW+20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der
Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del
Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant,
Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer
Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array
programming with numpy, 2020. URL: https://numpy.org/,
doi:10.1038/s41586-020-2649-2.

[HZU+20] Sebastiaan P. Huber, Spyros Zoupanos, Martin Uhrin, Leopold
Talirz, Leonid Kahle, Rico Hauselmann, Dominik Gresch,
Tiziano Müller, Aliaksandr V. Yakutovich, Casper W. Ander-
sen, Francisco F. Ramirez, Carl S. Adorf, Fernando Gargiulo,
Snehal Kumbhar, Elsa Passaro, Conrad Johnston, Andrius
Merkys, Andrea Cepellotti, Nicolas Mounet, Nicola Marzari,
Boris Kozinsky, and Giovanni Pizzi. Aiida 1.0, a scalable com-
putational infrastructure for automated reproducible workflows
and data provenance. Scientific Data, 7, 2020. URL: https://
www.aiida.net/, doi:10.1038/s41597-020-00638-4.

[JPS92] J. Jansen, R. Peschar, and H. Schenk. Determination of
accurate intensities from powder diffraction data. i. whole-
pattern fitting with a least-squares procedure. Journal
of Applied Crystallography, 25, 1992. doi:10.1107/
S0021889891012104.

[KAG+22] H. Shaun Kwak, Yuling An, David J. Giesen, Thomas F.
Hughes, Christopher T. Brown, Karl Leswing, Hadi Abroshan,
and Mathew D. Halls. Design of organic electronic materials
with a goal-directed generative model powered by deep neural
networks and high-throughput molecular simulations. Fron-
tiers in Chemistry, 9, 2022. doi:10.3389/fchem.2021.
800370.

[KBD+21] James A Kaduk, Simon J L Billinge, Robert E Dinnebier,
Nathan Henderson, Ian Madsen, Radovan Černý, Matteo
Leoni, Luca Lutterotti, Seema Thakral, and Daniel Chateigner.
Powder diffraction. Nature Reviews Methods Primers, 1:77,
2021. URL: https://doi.org/10.1038/s43586-021-00074-7,
doi:10.1038/s43586-021-00074-7.

[LLC22] Schrödinger LLC. Schrödinger release 2022-2: Materials
science suite, 2022. URL: https://www.schrodinger.com/
platform/materials-science.

58 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

[LMB+17] Ask Hjorth Larsen, Jens JØrgen Mortensen, Jakob Blomqvist,
Ivano E. Castelli, Rune Christensen, Marcin Dułak, Jesper
Friis, Michael N. Groves, BjØrk Hammer, Cory Hargus,
Eric D. Hermes, Paul C. Jennings, Peter Bjerre Jensen,
James Kermode, John R. Kitchin, Esben Leonhard Kols-
bjerg, Joseph Kubal, Kristen Kaasbjerg, Steen Lysgaard,
Jón Bergmann Maronsson, Tristan Maxson, Thomas Olsen,
Lars Pastewka, Andrew Peterson, Carsten Rostgaard, Jakob
SchiØtz, Ole Schütt, Mikkel Strange, Kristian S. Thygesen,
Tejs Vegge, Lasse Vilhelmsen, Michael Walter, Zhenhua Zeng,
and Karsten W. Jacobsen. The atomic simulation envi-
ronment - a python library for working with atoms, 2017.
URL: https://wiki.fysik.dtu.dk/ase/, doi:10.1088/1361-
648X/aa680e.

[LTK+22] Greg Landrum, Paolo Tosco, Brian Kelley, Ric, sriniker,
gedeck, Riccardo Vianello, NadineSchneider, Eisuke
Kawashima, Andrew Dalke, Dan N, David Cosgrove,
Gareth Jones, Brian Cole, Matt Swain, Samo Turk,
AlexanderSavelyev, Alain Vaucher, Maciej Wójcikowski,
Ichiru Take, Daniel Probst, Kazuya Ujihara, Vincent F.
Scalfani, guillaume godin, Axel Pahl, Francois Berenger,
JLVarjo, strets123, JP, and DoliathGavid. rdkit. 6 2022. URL:
https://rdkit.org/, doi:10.5281/ZENODO.6605135.

[Mar93] Rudolph A. Marcus. Electron transfer reactions in chemistry.
theory and experiment. Reviews of Modern Physics, 65, 1993.
doi:10.1103/RevModPhys.65.599.

[MAS+20] Nobuyuki N. Matsuzawa, Hideyuki Arai, Masaru Sasago, Eiji
Fujii, Alexander Goldberg, Thomas J. Mustard, H. Shaun
Kwak, David J. Giesen, Fabio Ranalli, and Mathew D. Halls.
Massive theoretical screen of hole conducting organic mate-
rials in the heteroacene family by using a cloud-computing
environment. Journal of Physical Chemistry A, 124, 2020.
doi:10.1021/acs.jpca.9b10998.

[MGF+19] Thomas Mustard, Jacob Gavartin, Alexandr Fonari, Caroline
Krauter, Alexander Goldberg, H Kwak, Tsuguo Morisato,
Sudharsan Pandiyan, and Mathew Halls. Surface reactivity
and stability of core-shell solid catalysts from ab initio combi-
natorial calculations. volume 258, 2019.

[NSA+16] Matthew Newville, Till Stensitzki, Daniel B Allen, Michal
Rawlik, Antonino Ingargiola, and Andrew Nelson. Lmfit: Non-
linear least-square minimization and curve-fitting for python.
Astrophysics Source Code Library, page ascl–1606, 2016.
URL: https://lmfit.github.io/lmfit-py/.

[OBJ+11] Noel M. O’Boyle, Michael Banck, Craig A. James, Chris
Morley, Tim Vandermeersch, and Geoffrey R. Hutchison.
Open babel: An open chemical toolbox. Journal of Chem-
informatics, 3, 2011. URL: https://openbabel.org/, doi:
10.1186/1758-2946-3-33.

[ORJ+13] Shyue Ping Ong, William Davidson Richards, Anubhav Jain,
Geoffroy Hautier, Michael Kocher, Shreyas Cholia, Dan
Gunter, Vincent L. Chevrier, Kristin A. Persson, and Gerbrand
Ceder. Python materials genomics (pymatgen): A robust, open-
source python library for materials analysis. Computational
Materials Science, 68, 2013. URL: https://pymatgen.org/,
doi:10.1016/j.commatsci.2012.10.028.

[PKD18] Paul N. Patrone, Anthony J. Kearsley, and Andrew M. Di-
enstfrey. The role of data analysis in uncertainty quantifica-
tion: Case studies for materials modeling. volume 0, 2018.
doi:10.2514/6.2018-0927.

[PVG+11] Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vin-
cent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blon-
del, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake
Vanderplas, Alexandre Passos, David Cournapeau, Matthieu
Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-
learn: Machine learning in python. Journal of Machine
Learning Research, 12, 2011. URL: https://scikit-learn.org/.

[RDK] Rdkit contributors. URL: https://github.com/rdkit/rdkit/
graphs/contributors.

[REW+19] Bharath Ramsundar, Peter Eastman, Patrick Walters,
Vijay Pande, Karl Leswing, and Zhenqin Wu. Deep
Learning for the Life Sciences. O’Reilly Media, 2019.
https://www.amazon.com/Deep-Learning-Life-Sciences-
Microscopy/dp/1492039837.

[SGB+14] David E. Shaw, J. P. Grossman, Joseph A. Bank, Brannon Bat-
son, J. Adam Butts, Jack C. Chao, Martin M. Deneroff, Ron O.
Dror, Amos Even, Christopher H. Fenton, Anthony Forte,
Joseph Gagliardo, Gennette Gill, Brian Greskamp, C. Richard

Ho, Douglas J. Ierardi, Lev Iserovich, Jeffrey S. Kuskin,
Richard H. Larson, Timothy Layman, Li Siang Lee, Adam K.
Lerer, Chester Li, Daniel Killebrew, Kenneth M. Macken-
zie, Shark Yeuk Hai Mok, Mark A. Moraes, Rolf Mueller,
Lawrence J. Nociolo, Jon L. Peticolas, Terry Quan, Daniel
Ramot, John K. Salmon, Daniele P. Scarpazza, U. Ben Schafer,
Naseer Siddique, Christopher W. Snyder, Jochen Spengler,
Ping Tak Peter Tang, Michael Theobald, Horia Toma, Brian
Towles, Benjamin Vitale, Stanley C. Wang, and Cliff Young.
Anton 2: Raising the bar for performance and programmabil-
ity in a special-purpose molecular dynamics supercomputer.
volume 2015-January, 2014. doi:10.1109/SC.2014.9.

[SPA+19] Gabriel R. Schleder, Antonio C.M. Padilha, Carlos Mera
Acosta, Marcio Costa, and Adalberto Fazzio. From dft to
machine learning: Recent approaches to materials science -
a review. JPhys Materials, 2, 2019. doi:10.1088/2515-
7639/ab084b.

[SYC+17] Austin D Sendek, Qian Yang, Ekin D Cubuk, Karel-
Alexander N Duerloo, Yi Cui, and Evan J Reed. Holistic
computational structure screening of more than 12000 can-
didates for solid lithium-ion conductor materials. Energy and
Environmental Science, 10:306–320, 2017. doi:10.1039/
c6ee02697d.

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski,
Pearu Peterson, Warren Weckesser, Jonathan Bright, Sté-
fan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R.J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C. J. Carey, İlhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quin-
tero, Charles R. Harris, Anne M. Archibald, Antônio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, Aditya Vi-
jaykumar, Alessandro Pietro Bardelli, Alex Rothberg, An-
dreas Hilboll, Andreas Kloeckner, Anthony Scopatz, Antony
Lee, Ariel Rokem, C. Nathan Woods, Chad Fulton, Charles
Masson, Christian Haggström, Clark Fitzgerald, David A.
Nicholson, David R. Hagen, Dmitrii V. Pasechnik, Emanuele
Olivetti, Eric Martin, Eric Wieser, Fabrice Silva, Felix Lenders,
Florian Wilhelm, G. Young, Gavin A. Price, Gert Ludwig
Ingold, Gregory E. Allen, Gregory R. Lee, Hervé Audren, Irvin
Probst, Jörg P. Dietrich, Jacob Silterra, James T. Webber, Janko
Slavič, Joel Nothman, Johannes Buchner, Johannes Kulick,
Johannes L. Schönberger, José Vinícius de Miranda Cardoso,
Joscha Reimer, Joseph Harrington, Juan Luis Cano Rodríguez,
Juan Nunez-Iglesias, Justin Kuczynski, Kevin Tritz, Martin
Thoma, Matthew Newville, Matthias Kümmerer, Maximilian
Bolingbroke, Michael Tartre, Mikhail Pak, Nathaniel J. Smith,
Nikolai Nowaczyk, Nikolay Shebanov, Oleksandr Pavlyk,
Per A. Brodtkorb, Perry Lee, Robert T. McGibbon, Roman
Feldbauer, Sam Lewis, Sam Tygier, Scott Sievert, Sebastiano
Vigna, Stefan Peterson, Surhud More, Tadeusz Pudlik, Takuya
Oshima, Thomas J. Pingel, Thomas P. Robitaille, Thomas
Spura, Thouis R. Jones, Tim Cera, Tim Leslie, Tiziano Zito,
Tom Krauss, Utkarsh Upadhyay, Yaroslav O. Halchenko, and
Yoshiki Vázquez-Baeza. Scipy 1.0: fundamental algorithms
for scientific computing in python. Nature Methods, 17, 2020.
doi:10.1038/s41592-019-0686-2.

[VPB21] Rama Vasudevan, Ghanshyam Pilania, and Prasanna V. Bal-
achandran. Machine learning for materials design and dis-
covery. Journal of Applied Physics, 129, 2021. doi:
10.1063/5.0043300.

[WDF+18] Logan Ward, Alexander Dunn, Alireza Faghaninia, Nils E.R.
Zimmermann, Saurabh Bajaj, Qi Wang, Joseph Montoya,
Jiming Chen, Kyle Bystrom, Maxwell Dylla, Kyle Chard,
Mark Asta, Kristin A. Persson, G. Jeffrey Snyder, Ian Foster,
and Anubhav Jain. Matminer: An open source toolkit for
materials data mining. Computational Materials Science,
152, 2018. URL: https://hackingmaterials.lbl.gov/matminer/,
doi:10.1016/j.commatsci.2018.05.018.

[WF05] John D. Westbrook and Paula M.D. Fitzgerald. The pdb
format, mmcif formats, and other data formats, 2005. doi:
10.1002/0471721204.ch8.

[WKB+22] Paul Winget, H. Shaun Kwak, Christopher T. Brown, Alexandr
Fonari, Kevin Tran, Alexander Goldberg, Andrea R. Brown-
ing, and Mathew D. Halls. Organic thin films for oled appli-
cations: Influence of molecular structure, deposition method,

UTILIZING SCIPY AND OTHER OPEN SOURCE PACKAGES TO PROVIDE A POWERFUL API FOR MATERIALS MANIPULATION IN THE SCHRÖDINGER MATERIALS SUITE 59

and deposition conditions. International Conference on the
Science and Technology of Synthetic Metals, 2022.

60 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

A Novel Pipeline for Cell Instance Segmentation,
Tracking and Motility Classification of Toxoplasma

Gondii in 3D Space

Seyed Alireza Vaezi‡∗, Gianni Orlando‡, Mojtaba Fazli§, Gary Ward¶, Silvia Moreno‡, Shannon Quinn‡

F

Abstract—Toxoplasma gondii is the parasitic protozoan that causes dissem-
inated toxoplasmosis, a disease that is estimated to infect around one-third
of the world’s population. While the disease is commonly asymptomatic, the
success of the parasite is in large part due to its ability to easily spread through
nucleated cells. The virulence of T. gondii is predicated on the parasite’s motility.
Thus the inspection of motility patterns during its lytic cycle has become a topic
of keen interest. Current cell tracking projects usually focus on cell images
captured in 2D which are not a true representation of the actual motion of a
cell. Current 3D tracking projects lack a comprehensive pipeline covering all
phases of preprocessing, cell detection, cell instance segmentation, tracking,
and motion classification, and merely implement a subset of the phases. More-
over, current 3D segmentation and tracking pipelines are not targeted for users
with less experience in deep learning packages. Our pipeline, TSeg, on the
other hand, is developed for segmenting, tracking, and classifying the motility
phenotypes of T. gondii in 3D microscopic images. Although TSeg is built initially
focusing on T. gondii, it provides generic functions to allow users with similar
but distinct applications to use it off-the-shelf. Interacting with all of TSeg’s
modules is possible through our Napari plugin which is developed mainly off the
familiar SciPy scientific stack. Additionally, our plugin is designed with a user-
friendly GUI in Napari which adds several benefits to each step of the pipeline
such as visualization and representation in 3D. TSeg proves to fulfill a better
generalization, making it capable of delivering accurate results with images of
other cell types.

Introduction

Quantitative cell research often requires the measurement of
different cell properties including size, shape, and motility. This
step is facilitated using segmentation of imaged cells. With flu-
orescent markers, computational tools can be used to complete
segmentation and identify cell features and positions over time.
2D measurements of cells can be useful, but the more difficult task
of deriving 3D information from cell images is vital for metrics
such as motility and volumetric qualities.

Toxoplasmosis is an infection caused by the intracellular
parasite Toxoplasma gondii. T. gondii is one of the most suc-
cessful parasites, infecting at least one-third of the world’s pop-
ulation. Although Toxoplasmosis is generally benign in healthy

* Corresponding author: sv22900@uga.edu
‡ University of Georgia
§ harvard University
¶ University of Vermont

Copyright © 2022 Seyed Alireza Vaezi et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

individuals, the infection has fatal implications in fetuses and
immunocompromised individuals [SG12] . T. gondii’s virulence
is directly linked to its lytic cycle which is comprised of invasion,
replication, egress, and motility. Studying the motility of T. gondii
is crucial in understanding its lytic cycle in order to develop
potential treatments.

For this reason, we present a novel pipeline to detect, segment,
track, and classify the motility pattern of T. gondii in 3D space.
One of the main goals is to make our pipeline intuitively easy
to use so that the users who are not experienced in the fields of
machine learning (ML), deep learning (DL), or computer vision
(CV) can still benefit from it. The other objective is to equip it with
the most robust and accurate set of segmentation and detection
tools so that the end product has a broad generalization, allowing
it to perform well and accurately for various cell types right off
the shelf.

PlantSeg uses a variant of 3D U-Net, called Residual 3D U-
Net, for preprocessing and segmentation of multiple cell types
[WCV+20]. PlantSeg performs best among Deep Learning algo-
rithms for 3D Instance Segmentation and is very robust against
image noise [KPR+21]. The segmentation module also includes
the optional use of CellPose [SWMP21]. CellPose is a generalized
segmentation algorithm trained on a wide range of cell types
and is the first step toward increased optionality in TSeg. The
Cell Tracking module consolidates the cell particles across the z-
axis to materialize cells in 3D space and estimates centroids for
each cell. The tracking module is also responsible for extracting
the trajectories of cells based on the movements of centroids
throughout consecutive video frames, which is eventually the input
of the motion classifier module.

Most of the state-of-the-art pipelines are restricted to 2D space
which is not a true representative of the actual motion of the
organism. Many of them require knowledge and expertise in pro-
gramming, or in machine learning and deep learning models and
frameworks, thus limiting the demographic of users that can use
them. All of them solely include a subset of the aforementioned
modules (i.e. detection, segmentation, tracking, and classification)
[SWMP21]. Many pipelines rely on the user to train their own
model, hand-tailored for their specific application. This demands
high levels of experience and skill in ML/DL and consequently
undermines the possibility and feasibility of quickly utilizing an
off-the-shelf pipeline and still getting good results.

To address these we present TSeg. It segments T. gondii cells

A NOVEL PIPELINE FOR CELL INSTANCE SEGMENTATION, TRACKING AND MOTILITY CLASSIFICATION OF TOXOPLASMA GONDII IN 3D SPACE 61

Fig. 1: The overview of TSeg’s architecture.

in 3D microscopic images, tracks their trajectories, and classifies
the motion patterns observed throughout the 3D frames. TSeg is
comprised of four modules: pre-processing, segmentation, track-
ing, and classification. We developed TSeg as a plugin for Napari
[SLE+22] - an open-source fast and interactive image viewer for
Python designed for browsing, annotating, and analyzing large
multi-dimensional images. Having TSeg implemented as a part of
Napari not only provides a user-friendly design but also gives more
advanced users the possibility to attach and execute their custom
code and even interact with the steps of the pipeline if needed.
The preprocessing module is equipped with basic and extra filters
and functionalities to aid in the preparation of the input data.
TSeg gives its users the advantage of utilizing the functionalities
that PlantSeg and CellPose provide. These functionalities can be
chosen in the pre-processing, detection, and segmentation steps.
This brings forth a huge variety of algorithms and pre-built models
to select from, making TSeg not only a great fit for T. gindii, but
also a variety of different cell types.

The rest of this paper is structured as follows: After briefly re-
viewing the literature in Related Work, we move on to thoroughly
describe the details of our work in the Method section. Following
that, the Results section depicts the results of comprehensive tests
of our plugin on T. gondii cells.

Related Work

The recent solutions in generalized and automated segmentation
tools are focused on 2D cell images. Segmentation of cellular
structures in 2D is important but not representative of realistic
environments. Microbiological organisms are free to move on the
z-axis and tracking without taking this factor into account cannot
guarantee a full representation of the actual motility patterns.

As an example, Fazli et al. [FVMQ18] identified three distinct
motility types for T. gondii with two-dimensional data, however,
they also acknowledge and state that based established heuristics
from previous works there are more than three motility phenotypes
for T. gondii. The focus on 2D research is understandable due to
several factors. 3D data is difficult to capture as tools for capturing
3D slices and the computational requirements for analyzing this
data are not available in most research labs. Most segmentation
tools are unable to track objects in 3D space as the assignment of
related centroids is more difficult. The additional noise from cap-
ture and focus increases the probability of incorrect assignment.
3D data also has issues with overlapping features and increased
computation required per frame of time.

Fazli et al. [FVMQ18] studies the motility patterns of T. gondii
and provides a computational pipeline for identifying motility
phenotypes of T. gondii in an unsupervised, data-driven way. In
that work Ca2+ is added to T. gondii cells inside a Fetal Bovine
Serum. T. gondii cells react to Ca2+ and become motile and
fluorescent. The images of motile T. gondii cells were captured
using an LSM 710 confocal microscope. They use Python 3 and
associated scientific computing libraries (NumPy, SciPy, scikit-
learn, matplotlib) in their pipeline to track and cluster the trajecto-
ries of T. gondii. Based on this work Fazli et al. [FVM+18] work
on another pipeline consisting of preprocessing, sparsification, cell
detection, and cell tracking modules to track T. gondii in 3D
video microscopy where each frame of the video consists of image
slices taken 1 micro-meters of focal depth apart along the z-axis
direction. In their latest work Fazli et al. [FSA+19] developed a
lightweight and scalable pipeline using task distribution and paral-
lelism. Their pipeline consists of multiple modules: reprocessing,
sparsification, cell detection, cell tracking, trajectories extraction,
parametrization of the trajectories, and clustering. They could
classify three distinct motion patterns in T. gondii using the same
data from their previous work.

While combining open source tools is not a novel architecture,
little has been done to integrate 3D cell tracking tools. Fazeli et
al. [FRF+20] motivated by the same interest in providing better
tools to non-software professionals created a 2D cell tracking
pipeline. This pipeline combines Stardist [WSH+20] and Track-
Mate [TPS+17] for automated cell tracking. This pipeline begins
with the user loading cell images and centroid approximations to
the ZeroCostDL4Mic [vCLJ+21] platform. ZeroCostDL4Mic is
a deep learning training tool for those with no coding expertise.
Once the platform is trained and masks for the training set are
made for hand-drawn annotations, the training set can be input
to Stardist. Stardist performs automated object detection using
Euclidean distance to probabilistically determine cell pixels versus
background pixels. Lastly, Trackmate uses segmentation images to
track labels between timeframes and display analytics.

This Stardist pipeline is similar in concept to TSeg. Both
create an automated segmentation and tracking pipeline but TSeg
is oriented to 3D data. Cells move in 3-dimensional space that
is not represented in a flat plane. TSeg also does not require
the manual training necessary for the other pipeline. Individuals
with low technical expertise should not be expected to create
masks for training or even understand the training of deep neural
networks. Lastly, this pipeline does not account for imperfect
datasets without the need for preprocessing. All implemented
algorithms in TSeg account for microscopy images with some
amount of noise.

Wen et al. [WMV+21] combines multiple existing new tech-

62 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

nologies including deep learning and presents 3DeeCellTracker.
3DeeCellTracker segments and tracks cells on 3D time-lapse
images. Using a small subset of their dataset they train the deep
learning architecture 3D U-Net for segmentation. For tracking,
a combination of two strategies was used to increase accuracy:
local cell region strategies, and spatial pattern strategy. Kapoor
et al. [KC21] presents VollSeg that uses deep learning methods
to segment, track, and analyze cells in 3D with irregular shape
and intensity distribution. It is a Jupyter Notebook-based Python
package and also has a UI in Napari. For tracking, a custom
tracking code is developed based on Trackmate.

Many segmentation tools require some amount of knowledge
in Machine or Deep Learning concepts. Training the neural
network in creating masks is a common step for open-source
segmentation tools. Automating this process makes the pipeline
more accessible to microbiology researchers.

Method

Data

Our dataset consists of 11 videos of T. gondii cells under a
microscope, obtained from different experiments with different
numbers of cells. The videos are on average around 63 frames in
length. Each frame has a stack of 41 image slices of size 500×502
pixels along the z-axis (z-slices). The z-slices are captured 1µm
apart in optical focal length making them 402µm×401µm×40µm
in volume. The slices were recorded in raw format as RGB TIF
images but are converted to grayscale for our purpose. This data
is captured using a PlanApo 20x objective (NA = 0:75) on a
preheated Nikon Eclipse TE300 epifluorescence microscope. The
image stacks were captured using an iXon 885 EMCCD camera
(Andor Technology, Belfast, Ireland) cooled to -70oC and driven
by NIS Elements software (Nikon Instruments, Melville, NY) as
part of related research by Ward et al. [LRK+14]. The camera was
set to frame transfer sensor mode, with a vertical pixel shift speed
of 1:0 µs, vertical clock voltage amplitude of +1, readout speed
of 35MHz, conversion gain of 3:8×, EM gain setting of 3 and 22
binning, and the z-slices were imaged with an exposure time of
16ms.

Software

Napari Plugin: TSeg is developed as a plugin for Napari -
a fast and interactive multi-dimensional image viewer for python
that allows volumetric viewing of 3D images [SLE+22]. Plugins
enable developers to customize and extend the functionality of
Napari. For every module of TSeg, we developed its corresponding
widget in the GUI, plus a widget for file management. The widgets
have self-explanatory interface elements with tooltips to guide
the inexperienced user to traverse through the pipeline with ease.
Layers in Napari are the basic viewable objects that can be shown
in the Napari viewer. Seven different layer types are supported
in Napari: Image, Labels, Points, Shapes, Surface, Tracks, and
Vectors, each of which corresponds to a different data type,
visualization, and interactivity [SLE+22]. After its execution, the
viewable output of each widget gets added to the layers. This
allows the user to evaluate and modify the parameters of the
widget to get the best results before continuing to the next widget.
Napari supports bidirectional communication between the viewer
and the Python kernel and has a built-in console that allows users
to control all the features of the viewer programmatically. This
adds more flexibility and customizability to TSeg for the advanced

user. The full code of TSeg is available on GitHub under the MIT
open source license at https://github.com/salirezav/tseg. TSeg can
be installed through Napari’s plugins menu.

Computational Pipeline

Pre-Processing: Due to the fast imaging speed in data
acquisition, the image slices will inherently have a vignetting
artifact, meaning that the corners of the images will be slightly
darker than the center of the image. To eliminate this artifact we
added adaptive thresholding and logarithmic correction to the pre-
processing module. Furthermore, another prevalent artifact on our
dataset images was a Film-Grain noise (AKA salt and pepper
noise). To remove or reduce such noise a simple gaussian blur
filter and a sharpening filter are included.

Cell Detection and Segmentation: TSeg’s Detection and
Segmentation modules are in fact backed by PlantSeg and Cell-
Pose. The Detection Module is built only based on PlantSeg’s
CNN Detection Module [WCV+20] , and for the Segmentation
Module, only one of the three tools can be selected to be executed
as the segmentation tool in the pipeline. Naturally, each of the tools
demands specific interface elements different from the others since
each accepts different input values and various parameters. TSeg
orchestrates this and makes sure the arguments and parameters are
passed to the corresponding selected segmentation tool properly
and the execution will be handled accordingly. The parameters
include but are not limited to input data location, output directory,
and desired segmentation algorithm. This allows the end-user
complete control over the process and feedback from each step
of the process. The preprocessed images and relevant parameters
are sent to a modular segmentation controller script. As an effort
to allow future development on TSeg, the segmentation controller
script shows how the pipeline integrates two completely different
segmentation packages. While both PlantSeg and CellPose use
conda environments, PlantSeg requires modification of a YAML
file for initialization while CellPose initializes directly from com-
mand line parameters. In order to implement PlantSeg, TSeg gen-
erates a YAML file based on GUI input elements. After parameters
are aligned, the conda environment for the chosen segmentation
algorithm is opened in a subprocess. The $CONDA_PREFIX
environment variable allows the bash command to start conda and
context switch to the correct segmentation environment.

Tracking: Features in each segmented image are found
using the scipy label function. In order to reduce any leftover
noise, any features under a minimum size are filtered out and
considered leftover noise. After feature extraction, centroids are
calculated using the center of mass function in scipy. The centroid
of the 3D cell can be used as a representation of the entire
body during tracking. The tracking algorithm goes through each
captured time instance and connects centroids to the likely next
movement of the cell. Tracking involves a series of measures in or-
der to avoid incorrect assignments. An incorrect assignment could
lead to inaccurate result sets and unrealistic motility patterns. If the
same number of features in each frame of time could be guaranteed
from segmentation, minimum distance could assign features rather
accurately. Since this is not a guarantee, the Hungarian algorithm
must be used to associate a COST with the assignment of feature
tracking. The Hungarian method is a combinatorial optimization
algorithm that solves the assignment problem in polynomial time.
COST for the tracking algorithm determines which feature is the
next iteration of the cell’s tracking through the complete time
series. The combination of distance between centroids for all

A NOVEL PIPELINE FOR CELL INSTANCE SEGMENTATION, TRACKING AND MOTILITY CLASSIFICATION OF TOXOPLASMA GONDII IN 3D SPACE 63

previous points and the distance to the potential new centroid.
If an optimal next centroid can’t be found within an acceptable
distance of the current point, the tracking for the cell is considered
as complete. Likewise, if a feature is not assigned to a current
centroid, this feature is considered a new object and is tracked as
the algorithm progresses. The complete path for each feature is
then stored for motility analysis.

Motion Classification: To classify the motility pattern of
T. gondii in 3D space in an unsupervised fashion we implement
and use the method that Fazli et. al. introduced [FSA+19]. In that
work, they used an autoregressive model (AR); a linear dynamical
system that encodes a Markov-based transition prediction method.
The reason is that although K-means is a favorable clustering
algorithm, there are a few drawbacks to it and to the conventional
methods that draw them impractical. Firstly, K-means assumes Eu-
clidian distance, but AR motion parameters are geodesics that do
not reside in a Euclidean space, and secondly, K-means assumes
isotropic clusters, however, although AR motion parameters may
exhibit isotropy in their space, without a proper distance metric,
this issue cannot be clearly examined [FSA+19].

Conclusion and Discussion

TSeg is an easy to use pipeline designed to study the motility
patterns of T. gondii in 3D space. It is developed as a plugin
for Napari and is equipped with a variety of deep learning based
segmentation tools borrowed from PlantSeg and CellPose, making
it a suitable off-the-shelf tool for applications incorporating im-
ages of cell types not limited to T. gondii. Future work on TSeg
includes the expantion of implemented algorithms and tools in its
preprocessing, segmentation, tracking, and clustering modules.

REFERENCES

[FRF+20] Elnaz Fazeli, Nathan H Roy, Gautier Follain, Romain F Laine,
Lucas von Chamier, Pekka E Hänninen, John E Eriksson, Jean-
Yves Tinevez, and Guillaume Jacquemet. Automated cell track-
ing using stardist and trackmate. F1000Research, 9, 2020.
doi:10.12688/f1000research.27019.1.

[FSA+19] Mojtaba Sedigh Fazli, Rachel V Stadler, BahaaEddin Alaila,
Stephen A Vella, Silvia NJ Moreno, Gary E Ward, and Shannon
Quinn. Lightweight and scalable particle tracking and motion
clustering of 3d cell trajectories. In 2019 IEEE International
Conference on Data Science and Advanced Analytics (DSAA),
pages 412–421. IEEE, 2019. doi:10.1109/dsaa.2019.
00056.

[FVM+18] Mojtaba S Fazli, Stephen A Vella, Silvia NJ Moreno, Gary E
Ward, and Shannon P Quinn. Toward simple & scalable 3d cell
tracking. In 2018 IEEE International Conference on Big Data
(Big Data), pages 3217–3225. IEEE, 2018. doi:10.1109/
BigData.2018.8622403.

[FVMQ18] Mojtaba S Fazli, Stephen A Velia, Silvia NJ Moreno, and
Shannon Quinn. Unsupervised discovery of toxoplasma gondii
motility phenotypes. In 2018 IEEE 15th International Sympo-
sium on Biomedical Imaging (ISBI 2018), pages 981–984. IEEE,
2018. doi:10.1109/isbi.2018.8363735.

[KC21] Varun Kapoor and Claudia Carabaña. Cell tracking in 3d
using deep learning segmentations. In Python in Science Con-
ference, pages 154–161, 2021. doi:10.25080/majora-
1b6fd038-014.

[KPR+21] Anuradha Kar, Manuel Petit, Yassin Refahi, Guillaume
Cerutti, Christophe Godin, and Jan Traas. Assessment
of deep learning algorithms for 3d instance segmentation
of confocal image datasets. bioRxiv, 2021. URL: https:
//www.biorxiv.org/content/early/2021/06/10/2021.06.09.447748,
arXiv:https://www.biorxiv.org/content/
early/2021/06/10/2021.06.09.447748.full.
pdf, doi:10.1101/2021.06.09.447748.

[LRK+14] Jacqueline Leung, Mark Rould, Christoph Konradt, Christopher
Hunter, and Gary Ward. Disruption of tgphil1 alters specific
parameters of toxoplasma gondii motility measured in a quanti-
tative, three-dimensional live motility assay. PloS one, 9:e85763,
01 2014. doi:10.1371/journal.pone.0085763.

[SG12] Geita Saadatnia and Majid Golkar. A review on human toxoplas-
mosis. Scandinavian journal of infectious diseases, 44(11):805–
814, 2012. doi:10.3109/00365548.2012.693197.

[SLE+22] Nicholas Sofroniew, Talley Lambert, Kira Evans, Juan Nunez-
Iglesias, Grzegorz Bokota, Philip Winston, Gonzalo Peña-
Castellanos, Kevin Yamauchi, Matthias Bussonnier, Draga Don-
cila Pop, Ahmet Can Solak, Ziyang Liu, Pam Wadhwa, Al-
ister Burt, Genevieve Buckley, Andrew Sweet, Lukasz Mi-
gas, Volker Hilsenstein, Lorenzo Gaifas, Jordão Bragantini,
Jaime Rodríguez-Guerra, Hector Muñoz, Jeremy Freeman, Peter
Boone, Alan Lowe, Christoph Gohlke, Loic Royer, Andrea
PIERRÉ, Hagai Har-Gil, and Abigail McGovern. napari: a multi-
dimensional image viewer for Python, May 2022. If you use
this software, please cite it using these metadata. URL: https:
//doi.org/10.5281/zenodo.6598542, doi:10.5281/zenodo.
6598542.

[SWMP21] Carsen Stringer, Tim Wang, Michalis Michaelos, and Marius
Pachitariu. Cellpose: a generalist algorithm for cellular segmen-
tation. Nature methods, 18(1):100–106, 2021. doi:10.1101/
2020.02.02.931238.

[TPS+17] Jean-Yves Tinevez, Nick Perry, Johannes Schindelin,
Genevieve M. Hoopes, Gregory D. Reynolds, Emmanuel
Laplantine, Sebastian Y. Bednarek, Spencer L. Shorte, and
Kevin W. Eliceiri. Trackmate: An open and extensible platform
for single-particle tracking. Methods, 115:80–90, 2017. Image
Processing for Biologists. URL: https://www.sciencedirect.
com/science/article/pii/S1046202316303346, doi:https:
//doi.org/10.1016/j.ymeth.2016.09.016.

[vCLJ+21] Lucas von Chamier, Romain F Laine, Johanna Jukkala,
Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina
Lerche, Sara Hernández-Pérez, Pieta K Mattila, Eleni Kari-
nou, et al. Democratising deep learning for microscopy with
zerocostdl4mic. Nature communications, 12(1):1–18, 2021.
doi:10.1038/s41467-021-22518-0.

[WCV+20] Adrian Wolny, Lorenzo Cerrone, Athul Vijayan, Rachele To-
fanelli, Amaya Vilches Barro, Marion Louveaux, Christian
Wenzl, Sören Strauss, David Wilson-Sánchez, Rena Lymbouri-
dou, Susanne S Steigleder, Constantin Pape, Alberto Bailoni,
Salva Duran-Nebreda, George W Bassel, Jan U Lohmann, Mil-
tos Tsiantis, Fred A Hamprecht, Kay Schneitz, Alexis Maizel,
and Anna Kreshuk. Accurate and versatile 3d segmenta-
tion of plant tissues at cellular resolution. eLife, 9:e57613,
jul 2020. URL: https://doi.org/10.7554/eLife.57613, doi:10.
7554/eLife.57613.

[WMV+21] Chentao Wen, Takuya Miura, Venkatakaushik Voleti, Kazushi
Yamaguchi, Motosuke Tsutsumi, Kei Yamamoto, Kohei Otomo,
Yukako Fujie, Takayuki Teramoto, Takeshi Ishihara, Kazuhiro
Aoki, Tomomi Nemoto, Elizabeth Mc Hillman, and Koutarou D
Kimura. 3DeeCellTracker, a deep learning-based pipeline for
segmenting and tracking cells in 3D time lapse images. Elife, 10,
March 2021. URL: https://doi.org/10.7554/eLife.59187, doi:
10.7554/eLife.59187.

[WSH+20] Martin Weigert, Uwe Schmidt, Robert Haase, Ko Sugawara,
and Gene Myers. Star-convex polyhedra for 3d object detec-
tion and segmentation in microscopy. In 2020 IEEE Winter
Conference on Applications of Computer Vision (WACV). IEEE,
mar 2020. URL: https://doi.org/10.1109%2Fwacv45572.2020.
9093435, doi:10.1109/wacv45572.2020.9093435.

64 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

The myth of the normal curve and what to do about it
Allan Campopiano∗

F

Index Terms—Python, R, robust statistics, bootstrapping, trimmed mean, data
science, hypothesis testing

Reliance on the normal curve as a tool for measurement is
almost a given. It shapes our grading systems, our measures of
intelligence, and importantly, it forms the mathematical backbone
of many of our inferential statistical tests and algorithms. Some
even call it “God’s curve” for its supposed presence in nature
[Mic89].

Scientific fields that deal in explanatory and predictive statis-
tics make particular use of the normal curve, often using it to
conveniently define thresholds beyond which a result is considered
statistically significant (e.g., t-test, F-test). Even familiar machine
learning models have, buried in their guts, an assumption of the
normal curve (e.g., LDA, gaussian naive Bayes, logistic & linear
regression).

The normal curve has had a grip on us for some time; the
aphorism by Cramer [Cra46] still rings true for many today:

“Everyone believes in the [normal] law of errors, the
experimenters because they think it is a mathematical
theorem, the mathematicians because they think it is an
experimental fact.”

Many students of statistics learn that N=40 is enough to ignore
the violation of the assumption of normality. This belief stems
from early research showing that the sampling distribution of the
mean quickly approaches normal, even when drawing from non-
normal distributions—as long as samples are sufficiently large. It
is common to demonstrate this result by sampling from uniform
and exponential distributions. Since these look nothing like the
normal curve, it was assumed that N=40 must be enough to avoid
practical issues when sampling from other types of non-normal
distributions [Wil13]. (Others reached similar conclusions with
different methodology [Gle93].)

Two practical issues have since been identified based on this
early research: (1) The distributions under study were light tailed
(they did not produce outliers), and (2) statistics other than the
sample mean were not tested and may behave differently. In
the half century following these early findings, many important
discoveries have been made—calling into question the usefulness
of the normal curve [Wil13].

The following sections uncover various pitfalls one might
encounter when assuming normality—especially as they relate to
hypothesis testing. To help researchers overcome these problems, a

* Corresponding author: allan@deepnote.com

Copyright © 2022 Allan Campopiano. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

Fig. 1: Standard normal (orange) and contaminated normal (blue).
The variance of the contaminated curve is more than 10 times that
of the standard normal curve. This can cause serious issues with
statistical power when using traditional hypothesis testing methods.

new Python library for robust hypothesis testing will be introduced
along with an interactive tool for robust statistics education.

The contaminated normal

One of the most striking counterexamples of “N=40 is enough”
is shown when sampling from the so-called contaminated normal
[Tuk60][Tan82]. This distribution is also bell shaped and sym-
metrical but it has slightly heavier tails when compared to the
standard normal curve. That is, it contains outliers and is difficult
to distinguish from a normal distribution with the naked eye.
Consider the distributions in Figure 1. The variance of the normal
distribution is 1 but the variance of the contaminated normal is
10.9!

The consequence of this inflated variance is apparent when
examining statistical power. To demonstrate, Figure 2 shows two
pairs of distributions: On the left, there are two normal distribu-
tions (variance 1) and on the right there are two contaminated
distributions (variance 10.9). Both pairs of distributions have a
mean difference of 0.8. Wilcox [Wil13] showed that by taking
random samples of N=40 from each normal curve, and comparing
them with Student’s t-test, statistical power was approximately
0.94. However, when following this same procedure for the
contaminated groups, statistical power was only 0.25.

The point here is that even small apparent departures from
normality, especially in the tails, can have a large impact on
commonly used statistics. The problems continue to get worse
when examining effect sizes but these findings are not discussed

THE MYTH OF THE NORMAL CURVE AND WHAT TO DO ABOUT IT 65

Fig. 2: Two normal curves (left) and two contaminated normal curves
(right). Despite the obvious effect sizes (∆ = 0.8 for both pairs) as
well as the visual similarities of the distributions, power is only ~0.25
under contamination; however, power is ~0.94 under normality (using
Student’s t-test).

in this article. Interested readers should see Wilcox’s 1992 paper
[Wil92].

Perhaps one could argue that the contaminated normal dis-
tribution actually represents an extreme departure from normal-
ity and therefore should not be taken seriously; however, dis-
tributions that generate outliers are likely common in practice
[HD82][Mic89][Wil09]. A reasonable goal would then be to
choose methods that perform well under such situations and
continue to perform well under normality. In addition, serious
issues still exist even when examining light-tailed and skewed
distributions (e.g., lognormal), and statistics other than the sample
mean (e.g., T). These findings will be discussed in the following
section.

Student’s t-distribution

Another common statistic is the T value obtained from Student’s
t-test. As will be demonstrated, T is more sensitive to violations of
normality than the sample mean (which has already been shown
to not be robust). This is despite the fact that the t-distribution is
also bell shaped, light tailed, and symmetrical—a close relative of
the normal curve.

The assumption is that T follows a t-distribution (and with
large samples it approaches normality). We can test this assump-
tion by generating random samples from a lognormal distribution.
Specifically, 5000 datasets of sample size 20 were randomly drawn
from a lognormal distribution using SciPy’s lognorm.rvs
function. For each dataset, T was calculated and the resulting t-
distribution was plotted. Figure 3 shows that the assumption that
T follows a t-distribution does not hold.

With N=20, the assumption is that with a probability of 0.95,
T will be between -2.09 and 2.09. However, when sampling from
a lognormal distribution in the manner just described, there is
actually a 0.95 probability that T will be between approximately
-4.2 and 1.4 (i.e., the middle 95% of the actual t-distribution is
much wider than the assumed t-distribution). Based on this result
we can conclude that sampling from skewed distributions (e.g.,
lognormal) leads to increased Type I Error when using Student’s
t-test [Wil98].

“Surely the hallowed bell-shaped curve has cracked
from top to bottom. Perhaps, like the Liberty Bell, it
should be enshrined somewhere as a memorial to more
heroic days — Earnest Ernest, Philadelphia Inquirer. 10
November 1974. [FG81]”

Fig. 3: Actual t-distribution (orange) and assumed t-distribution
(blue). When simulating a t-distribution based on a lognormal curve,
T does not follow the assumed shape. This can cause poor probability
coverage and increased Type I Error when using traditional hypothe-
sis testing approaches.

Modern robust methods

When it comes to hypothesis testing, one intuitive way of dealing
with the issues described above would be to (1) replace the
sample mean (and standard deviation) with a robust alternative
and (2) use a non-parametric resampling technique to estimate the
sampling distribution (rather than assuming a theoretical shape)1.
Two such candidates are the 20% trimmed mean and the percentile
bootstrap test, both of which have been shown to have practical
value when dealing with issues of outliers and non-normality
[CvNS18][Wil13].

The trimmed mean

The trimmed mean is nothing more than sorting values, removing
a proportion from each tail, and computing the mean on the
remaining values. Formally,

• Let X1...Xn be a random sample and X(1) ≤ X(2)... ≤ X(n)
be the observations in ascending order

• The proportion to trim is γ(0≤ γ ≤ .5)
• Let g = bγnc. That is, the proportion to trim multiplied by

n, rounded down to the nearest integer

Then, in symbols, the trimmed mean can be expressed as
follows:

X̄t =
X(g+1)+ ...+X(n−g)

n−2g

If the proportion to trim is 0.2, more than twenty percent of
the values would have to be altered to make the trimmed mean
arbitrarily large or small. The sample mean, on the other hand,
can be made to go to ±∞ (arbitrarily large or small) by changing
a single value. The trimmed mean is more robust than the sample
mean in all measures of robustness that have been studied [Wil13].
In particular the 20% trimmed mean has been shown to have
practical value as it avoids issues associated with the median (not
discussed here) and still protects against outliers.

1. Another option is to use a parametric test that assumes a different
underlying model.

66 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

The percentile bootstrap test

In most traditional parametric tests, there is an assumption that
the sampling distribution has a particular shape (normal, f-
distribution, t-distribution, etc). We can use these distributions
to test the null hypothesis; however, as discussed, the theoretical
distributions are not always approximated well when violations of
assumptions occur. Non-parametric resampling techniques such
as bootstrapping and permutation tests build empirical sampling
distributions, and from these, one can robustly derive p-values and
CIs. One example is the percentile bootstrap test [Efr92][TE93].

The percentile bootstrap test can be thought of as an al-
gorithm that uses the data at hand to estimate the underlying
sampling distribution of a statistic (pulling yourself up by your
own bootstraps, as the saying goes). This approach is in contrast
to traditional methods that assume the sampling distribution takes
a particular shape). The percentile boostrap test works well with
small sample sizes, under normality, under non-normality, and it
easily extends to multi-group tests (ANOVA) and measures of
association (correlation, regression). For a two-sample case, the
steps to compute the percentile bootstrap test can be described as
follows:

1) Randomly resample with replacement n values from
group one

2) Randomly resample with replacement n values from
group two

3) Compute X̄1− X̄2 based on you new sample (the mean
difference)

4) Store the difference & repeat steps 1-3 many times (say,
1000)

5) Consider the middle 95% of all differences (the confi-
dence interval)

6) If the confidence interval contains zero, there is no
statistical difference, otherwise, you can reject the null
hypothesis (there is a statistical difference)

Implementing and teaching modern robust methods

Despite over a half a century of convincing findings, and thousands
of papers, robust statistical methods are still not widely adopted
in applied research [EHM08][Wil98]. This may be due to various
false beliefs. For example,

• Classical methods are robust to violations of assumptions
• Correcting non-normal distributions by transforming the

data will solve all issues
• Traditional non-parametric tests are suitable replacements

for parametric tests that violate assumptions

Perhaps the most obvious reason for the lack of adoption of
modern methods is a lack of easy-to-use software and training re-
sources. In the following sections, two resources will be presented:
one for implementing robust methods and one for teaching them.

Robust statistics for Python

Hypothesize is a robust null hypothesis significance testing
(NHST) library for Python [CW20]. It is based on Wilcox’s WRS
package for R which contains hundreds of functions for computing
robust measures of central tendency and hypothesis testing. At
the time of this writing, the WRS library in R contains many
more functions than Hypothesize and its value to researchers
who use inferential statistics cannot be understated. WRS is

best experienced in tandem with Wilcox’s book “Introduction to
Robust Estimation and Hypothesis Testing”.

Hypothesize brings many of these functions into the open-
source Python library ecosystem with the goal of lowering the
barrier to modern robust methods—even for those who have
not had extensive training in statistics or coding. With modern
browser-based notebook environments (e.g., Deepnote), learning
to use Hypothesize can be relatively straightforward. In fact, every
statistical test listed in the docs is associated with a hosted note-
book, pre-filled with sample data and code. But certainly, simply
pip install Hypothesize to use Hypothesize in any en-
vironment that supports Python. See van Noordt and Willoughby
[vNW21] and van Noordt et al. [vNDTE22] for examples of
Hypothesize being used in applied research.

The API for Hypothesize is organized by single- and two-
factor tests, as well as measures of association. Input data for
the groups, conditions, and measures are given in the form of a
Pandas DataFrame [pdt20][WM10]. By way of example, one can
compare two independent groups (e.g., placebo versus treatment)
using the 20% trimmed mean and the percentile bootstrap test, as
follows (note that Hypothesize uses the naming conventions found
in WRS):

from hypothesize.utilities import trim_mean
from hypothesize.compare_groups_with_single_factor \

import pb2gen

results = pb2gen(df.placebo, df.treatment, trim_mean)

As shown below, the results are returned as a Python dictionary
containing the p-value, confidence intervals, and other important
details.

{
'ci': [-0.22625614592148624, 0.06961754796950131],
'est_1': 0.43968438076483285,
'est_2': 0.5290985245430996,
'est_dif': -0.08941414377826673,
'n1': 50,
'n2': 50,
'p_value': 0.27,
'variance': 0.005787027326924963
}

For measuring associations, several options exist in Hypothesize.
One example is the Winsorized correlation which is a robust
alternative to Pearson’s R. For example,

from hypothesize.measuring_associations import wincor

results = wincor(df.height, df.weight, tr=.2)

returns the Winsorized correlation coefficient and other relevant
statistics:

{
'cor': 0.08515087411576182,
'nval': 50,
'sig': 0.558539575073185,
'wcov': 0.004207827245660796
}

A case study using real-world data

It is helpful to demonstrate that robust methods in Hypothesize
(and in other libraries) can make a practical difference when
dealing with real-world data. In a study by Miller on sexual
attitudes, 1327 men and 2282 women were asked how many sexual

THE MYTH OF THE NORMAL CURVE AND WHAT TO DO ABOUT IT 67

partners they desired over the next 30 years (the data are available
from Rand R. Wilcox’s site). When comparing these groups using
Student’s t-test, we get the following results:

{
'ci': [-1491.09, 4823.24],
't_value': 1.035308,
'p_value': 0.300727
}

That is, we fail to reject the null hypothesis at the α = 0.05 level
using Student’s test for independent groups. However, if we switch
to a robust analogue of the t-test, one that utilizes bootstrapping
and trimmed means, we can indeed reject the null hypothesis.
Here are the corresponding results from Hypothesize’s yuenbt
test (based on [Yue74]):

from hypothesize.compare_groups_with_single_factor \
import yuenbt

results = yuenbt(df.males, df.females,
tr=.2, alpha=.05)

{
'ci': [1.41, 2.11],
'test_stat': 9.85,
'p_value': 0.0
}

The point here is that robust statistics can make a practi-
cal difference with real-world data (even when N is consid-
ered large). Many other examples of robust statistics making a
practical difference with real-world data have been documented
[HD82][Wil09][Wil01].

It is important to note that robust methods may also fail to
reject when a traditional test rejects (remember that traditional
tests can suffer from increased Type I Error). It is also possible
that both approaches yield the same or similar conclusions. The
exact pattern of results depends largely on the characteristics of the
underlying population distribution. To be able to reason about how
robust statistics behave when compared to traditional methods the
robust statistics simulator has been created and is described in the
next section.

Robust statistics simulator

Having a library of robust statistical functions is not enough to
make modern methods commonplace in applied research. Ed-
ucators and practitioners still need intuitive training tools that
demonstrate the core issues surrounding classical methods and
how robust analogues compare.

As mentioned, computational notebooks that run in the cloud
offer a unique solution to learning beyond that of static textbooks
and documentation. Learning can be interactive and exploratory
since narration, visualization, widgets (e.g., buttons, slider bars),
and code can all be experienced in a ready-to-go compute envi-
ronment—with no overhead related to local environment setup.

As a compendium to Hypothesize, and a resource for un-
derstanding and teaching robust statistics in general, the robust
statistics simulator repository has been developed. It is a notebook-
based collection of interactive demonstrations aimed at clearly and
visually explaining the conditions under which classic methods
fail relative to robust methods. A hosted notebook with the
rendered visualizations of the simulations can be accessed here.
and seen in Figure 4. Since the simulations run in the browser and
require very little understanding of code, students and teachers can
easily onboard to the study of robust statistics.

Fig. 4: An example of the robust stats simulator in Deepnote’s hosted
notebook environment. A minimalist UI can lower the barrier-to-entry
to robust statistics concepts.

The robust statistics simulator allows users to interact with the
following parameters:

• Distribution shape
• Level of contamination
• Sample size
• Skew and heaviness of tails

Each of these characteristics can be adjusted independently in
order to compare classic approaches to their robust alternatives.
The two measures that are used to evaluate the performance of
classic and robust methods are the standard error and Type I Error.

Standard error is a measure of how much an estimator varies
across random samples from our population. We want to choose
estimators that have a low standard error. Type I Error is also
known as False Positive Rate. We want to choose methods that
keep Type I Error close to the nominal rate (usually 0.05). The
robust statistics simulator can guide these decisions by providing
empirical evidence as to why particular estimators and statistical
tests have been chosen.

Conclusion

This paper gives an overview of the issues associated with the
normal curve. The concern with traditional methods, in terms of
robustness to violations of normality, have been known for over
a half century and modern alternatives have been recommended;
however, for various reasons that have been discussed, modern
robust methods have not yet become commonplace in applied
research settings.

One reason is the lack of easy-to-use software and teaching
resources for robust statistics. To help fill this gap, Hypothesize, a
peer-reviewed and open-source Python library was developed. In
addition, to help clearly demonstrate and visualize the advantages
of robust methods, the robust statistics simulator was created.
Using these tools, practitioners can begin to integrate robust
statistical methods into their inferential testing repertoire.

Acknowledgements

The author would like to thank Karlynn Chan and Rand R. Wilcox
as well as Elizabeth Dlha and the entire Deepnote team for their
support of this project. In addition, the author would like to thank
Kelvin Lee for his insightful review of this manuscript.

68 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

REFERENCES

[Cra46] Harold Cramer. Mathematical methods of statistics, princeton
univ. Press, Princeton, NJ, 1946. URL: https://books.google.ca/
books?id=CRTKKaJO0DYC.

[CvNS18] Allan Campopiano, Stefon JR van Noordt, and Sidney J Sega-
lowitz. Statslab: An open-source eeg toolbox for comput-
ing single-subject effects using robust statistics. Behavioural
Brain Research, 347:425–435, 2018. doi:10.1016/j.bbr.
2018.03.025.

[CW20] Allan Campopiano and Rand R. Wilcox. Hypothesize: Ro-
bust statistics for python. Journal of Open Source Software,
5(50):2241, 2020. doi:10.21105/joss.02241.

[Efr92] Bradley Efron. Bootstrap methods: another look at the jackknife.
In Breakthroughs in statistics, pages 569–593. Springer, 1992.
doi:10.1007/978-1-4612-4380-9_41.

[EHM08] David M Erceg-Hurn and Vikki M Mirosevich. Modern robust
statistical methods: an easy way to maximize the accuracy and
power of your research. American Psychologist, 63(7):591, 2008.
doi:10.1037/0003-066X.63.7.591.

[FG81] Joseph Fashing and Ted Goertzel. The myth of the normal curve
a theoretical critique and examination of its role in teaching and
research. Humanity & Society, 5(1):14–31, 1981. doi:10.
1177/016059768100500103.

[Gle93] John R Gleason. Understanding elongation: The scale contami-
nated normal family. Journal of the American Statistical Asso-
ciation, 88(421):327–337, 1993. doi:10.1080/01621459.
1993.10594325.

[HD82] MaryAnn Hill and WJ Dixon. Robustness in real life: A study
of clinical laboratory data. Biometrics, pages 377–396, 1982.
doi:10.2307/2530452.

[Mic89] Theodore Micceri. The unicorn, the normal curve, and other
improbable creatures. Psychological bulletin, 105(1):156, 1989.
doi:10.1037/0033-2909.105.1.156.

[pdt20] The pandas development team. pandas-dev/pandas: Pandas,
February 2020. URL: https://doi.org/10.5281/zenodo.3509134,
doi:10.5281/zenodo.3509134.

[Tan82] WY Tan. Sampling distributions and robustness of t, f and
variance-ratio in two samples and anova models with respect to
departure from normality. Comm. Statist.-Theor. Meth., 11:2485–
2511, 1982. URL: https://pascal-francis.inist.fr/vibad/index.php?
action=getRecordDetail&idt=PASCAL83X0380619.

[TE93] Robert J Tibshirani and Bradley Efron. An introduction to
the bootstrap. Monographs on statistics and applied probabil-
ity, 57:1–436, 1993. URL: https://books.google.ca/books?id=
gLlpIUxRntoC.

[Tuk60] J. W. Tukey. A survey of sampling from contaminated distribu-
tions. Contributions to Probability and Statistics, pages 448–485,
1960. URL: https://ci.nii.ac.jp/naid/20000755025/en/.

[vNDTE22] Stefon van Noordt, James A Desjardins, BASIS Team, and
Mayada Elsabbagh. Inter-trial theta phase consistency during
face processing in infants is associated with later emerging
autism. Autism Research, 15(5):834–846, 2022. doi:10.
1002/aur.2701.

[vNW21] Stefon van Noordt and Teena Willoughby. Cortical matura-
tion from childhood to adolescence is reflected in resting state
eeg signal complexity. Developmental cognitive neuroscience,
48:100945, 2021. doi:10.1016/j.dcn.2021.100945.

[Wil92] Rand R Wilcox. Why can methods for comparing means have
relatively low power, and what can you do to correct the prob-
lem? Current Directions in Psychological Science, 1(3):101–105,
1992. doi:10.1111/1467-8721.ep10768801.

[Wil98] Rand R Wilcox. How many discoveries have been lost by
ignoring modern statistical methods? American Psychologist,
53(3):300, 1998. doi:10.1037/0003-066X.53.3.300.

[Wil01] Rand R Wilcox. Fundamentals of modern statistical meth-
ods: Substantially improving power and accuracy, volume 249.
Springer, 2001. URL: https://link.springer.com/book/10.1007/
978-1-4757-3522-2.

[Wil09] Rand R Wilcox. Robust ancova using a smoother with boot-
strap bagging. British Journal of Mathematical and Sta-
tistical Psychology, 62(2):427–437, 2009. doi:10.1348/
000711008X325300.

[Wil13] Rand R Wilcox. Introduction to robust estimation and hypothesis
testing. Academic press, 2013. doi:10.1016/c2010-0-
67044-1.

[WM10] Wes McKinney. Data Structures for Statistical Computing in
Python. In Stéfan van der Walt and Jarrod Millman, editors,
Proceedings of the 9th Python in Science Conference, pages 56 –
61, 2010. doi:10.25080/Majora-92bf1922-00a.

[Yue74] Karen K Yuen. The two-sample trimmed t for unequal population
variances. Biometrika, 61(1):165–170, 1974. doi:10.2307/
2334299.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022) 69

Python for Global Applications: teaching scientific
Python in context to law and diplomacy students

Anna Haensch‡§∗, Karin Knudson‡§

F

Abstract—For students across domains and disciplines, the message has been
communicated loud and clear: data skills are an essential qualification for today’s
job market. This includes not only the traditional introductory stats coursework
but also machine learning, artificial intelligence, and programming in Python or
R. Consequently, there has been significant student-initiated demand for data
analytic and computational skills sometimes with very clear objectives in mind,
and other times guided by a vague sense of “the work I want to do will require
this.” Now we have options. If we train students using “black box” algorithms
without attending to the technical choices involved, then we run the risk of
unleashing practitioners who might do more harm than good. On the other hand,
courses that completely unpack the “black box” can be so steeped in theory that
the barrier to entry becomes too high for students from social science and policy
backgrounds, thereby excluding critical voices. In sum, both of these options
lead to a pitfall that has gained significant media attention over recent years: the
harms caused by algorithms that are implemented without sufficient attention to
human context. In this paper, we - two mathematicians turned data scientists
- present a framework for teaching introductory data science skills in a highly
contextualized and domain flexible environment. We will present example course
outlines at the semester, weekly, and daily level, and share materials that we
think hold promise.

Index Terms—computational social science, public policy, data science, teach-
ing with Python

Introduction

As data science continues to gain prominence in the public eye,
and as we become more aware of the many facets of our lives
that intersect with data-driven technologies and policies every day,
universities are broadening their academic offerings to keep up
with what students and their future employers demand. Not only
are students hoping to obtain more hard skills in data science
(e.g. Python programming experience), but they are interested
in applying tools of data science across domains that haven’t
historically been part of the quantitative curriculum. The Master
of Arts in Law and Diplomacy (MALD) is the flagship program of
the Fletcher School of Law and International Diplomacy at Tufts
University. Historically, the program has contained core elements
of quantitative reasoning with a focus on business, finance, and
international development, as is typical in graduate programs in
international relations. Like academic institutions more broadly,

* Corresponding author: anna.haensch@tufts.edu
‡ Tufts University
§ Data Intensive Studies Center

Copyright © 2022 Anna Haensch et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

the students and faculty at the Fletcher School are eager to
seize upon our current data moment to expand their quantitative
offerings. With this in mind, The Fletcher School reached out to
the co-authors to develop a course in data science, situated in the
context of international diplomacy.

In response, we developed the (Python-based) course, Data
Science for Global Applications, which had its inaugural offering
in the Spring semester of 2022. The course had 30 enrolled
Fletcher School students, primarily from the MALD program.
When the course was announced we had a flood of interest from
Fletcher students who were extremely interested in broadening
their studies with this course. With a goal of keeping a close
interactive atmosphere we capped enrollment at 30. To inform the
direction of our course, we surveyed students on their background
in programming (see Fig. 1) and on their motivations for learning
data science (see Fig 2). Students reported only very limited
experience with programming - if any at all - with that experience
primarily in Excel and Tableau. Student motivations varied, but
the goal to get a job where they were able to make a meaningful
social impact was the primary motivation.

Fig. 1: The majority of the 30 students enrolled in the course had little
to no programming experience, and none reported having "a lot" of
experience. Those who did have some experience were most likely to
have worked in Excel or Tableau.

The MALD program, which is interdisciplinary by design, pro-
vides ample footholds for domain specific data science. Keeping
this in mind, as a throughline for the course, each student worked
to develop their own quantitative policy project. Coursework and
discussions were designed to move this project forward from
initial policy question, to data sourcing and visualizing, and
eventually to modeling and analysis.

In what follows we will describe how we structured our
course with the goal of empowering beginner programmers to use
Python for data science in the context of international relations

70 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 2: The 30 enrolled students were asked to indicate which were
relevant motivations for taking the course. Curiosity and a desire to
make a meaningful social impact were among the top motivations our
students expressed.

and diplomacy. We will also share details about course content
and structure, methods of assessment, and Python programming
resources that we deployed through Google Colab. All of the
materials described here can be found on the public course page
https://karink520.github.io/data-science-for-global-applications/.

Course Philosophy and Goals

Our high level goals for the course were i) to empower students
with the skills to gain insight from data using Python and ii) to
deepen students’ understanding of how the use of data science
affects society. As we sought to achieve these high level goals
within the limited time scope of a single semester, the following
core principles were essential in shaping our course design. Below,
we briefly describe each of these principles and share some
examples of how they were reflected in the course structure. In a
subsequent section we will more precisely describe the content of
the course, whereupon we will further elaborate on these principles
and share instructional materials. But first, our core principles:

Connecting the Technical and Social

To understand the impact of data science on the world (and the
potential policy implications of such impact), it helps to have
hands-on practice with data science. Conversely, to effectively
and ethically practice data science, it is important to understand
how data science lives in the world. Thus, the "hard" skills of
coding, wrangling data, visualizing, and modeling are best taught
intertwined with a robust study of ways in which data science is
used and misused.

There is an increasing need to educate future policy-makers
with knowledge of how data science algorithms can be used
and misused. One way to approach meeting this need, especially
for students within a less technically-focused program, would
be to teach students about how algorithms can be used without
actually teaching them to use algorithms. However, we argue that
students will gain a deeper understanding of the societal and
ethical implications of data science if they also have practical
data science skills. For example, a student could gain a broad
understanding of how biased training data might lead to biased
algorithmic predictions, but such understanding is likely to be
deeper and more memorable when a student has actually practiced
training a model using different training data. Similarly, someone

might understand in the abstract that the way the handling of
missing data can substantially affect the outcome of an analysis,
but will likely have a stronger understanding if they have had to
consider how to deal with missing data in their own project.

We used several course structures to support connecting data
science and Python "skills" with their context. Students had
readings and journaling assignments throughout the semester on
topics that connected data science with society. In their journal
responses, students were asked to connect the ideas in the reading
to their other academic/professional interests, or ideas from other
classes with the following prompt:

Your reflection should be a 250-300 word narrative.
Be sure to tie the reading back into your own studies,
experiences, and areas of interest. For each reading,
come up with 1-2 discussion questions based on the con-
cepts discussed in the readings. This can be a curiosity
question, where you’re interested in finding out more,
a critical question, where you challenge the author’s
assumptions or decisions, or an application question,
where you think about how concepts from the reading
would apply to a particular context you are interested in
exploring.1

These readings (highlighted in gray in Fig 3), assignments, and
the related in-class discussions were interleaved among Python
exercises meant to give students practice with skills including
manipulating DataFrames in pandas [The22], [Mck10], plotting in
Matplotlib [Hun07] and seaborn [Was21], mapping with GeoPan-
das [Jor21], and modeling with scikit-learn [Ped11]. Student
projects included a thorough data audit component requiring
students to explore data sources and their human context in detail.
Precise details and language around the data audit can be found
on the course website.

Managing Fears & Concerns Through Supported Programming

We surmised that students who are new to programming and
possibly intimidated by learning the unfamiliar skill would do
well in an environment that included plenty of what we call
supported programming - that is, practicing programming in class
with immediate access to instructor and peer support.

In the pre-course survey we created, many students identified
concerns about their quantitative preparation, whether they would
be able to keep up with the course, and how hard programming
might be. We sought to acknowledge these concerns head-on,
assure students of our full confidence in their ability to master
the material, and provide them with all the resources they needed
to succeed.

A key resource to which we thought all students needed
access was instructor attention. In addition to keeping the class
size capped at 30 people, with both co-instructors attending all
course meetings, we structured class time to maximize the time
students spent actually doing data science in class. We sought
to keep demonstrations short, and intersperse them with coding
exercises so that students could practice with new ideas right
away. Our Colab notebooks included in the course materials show
one way that we wove student practice time throughout. Drawing
insight from social practice theory of learning (e.g. [Eng01],
[Pen16]), we sought to keep in mind how individual practice and
learning pathways develop in relation to their particular social and

1. This journaling prompt was developed by our colleague Desen Ozkan at
Tufts University.

PYTHON FOR GLOBAL APPLICATIONS: TEACHING SCIENTIFIC PYTHON IN CONTEXT TO LAW AND DIPLOMACY STUDENTS 71

institutional context. Crucially, we devoted a great deal of in-class
time to students doing data science, and a great deal of energy
into making this practice time a positive and empowering social
experience. During student practice time, we were circulating
throughout the room, answering student questions and helping
students to problem solve and debug, and encouraging students
to work together and help each other. A small organizational
change we made in the first weeks of the semester that proved
to have outsized impact was moving our office hours to hold them
directly after class in an almost-adjacent room, to make it as easy
as possible for students to attend office hours. Students were vocal
in their appreciation of office hours.

We contend that the value of supported programming time
is two-fold. First, it helps beginning programmers learn more
quickly. While learning to code necessarily involves challenges,
students new to a language can sometimes struggle for an un-
productively long time on things like simple syntax issues. When
students have help available, they can move forward from minor
issues faster and move more efficiently into building a meaningful
understanding. Secondly, supported programming time helps stu-
dents to understand that they are not alone in the challenges they
are facing in learning to program. They can see other students
learning and facing similar challenges, can have the empowering
experience of helping each other out, and when asking for help
can notice that even their instructors sometimes rely on resources
like StackOverflow. An unforeseen benefit we believe co-teaching
had was to give us as instructors the opportunity to consult
with each other during class time and share different approaches.
These instructor interactions modeled for students how even as
experienced practitioners of data science, we too were constantly
learning.

Lastly, a small but (we thought) important aspect of our setup
was teaching students to set up a computing environment on
their own laptops, with Python, conda [Ana16], and JupyterLab
[Pro22]. Using the command line and moving from an environ-
ment like Google Colab to one’s own computer can both present
significant barriers, but doing so successfully can be an important
part of helping students feel like ‘real’ programmers. We devoted
an entire class period to helping students with installation and
setup on their own computers.

We considered it an important measure of success how many
students told us at the end of the course that the class had helped
them overcome sometimes longstanding feelings that technical
skills like coding and modeling were not for them.

Leveraging Existing Strengths To Enhance Student Ownership

Even as beginning programmers, students are capable of creating a
meaningful policy-related data science project within the semester,
starting from formulating a question and finding relevant datasets.
Working on the project throughout the semester (not just at the
end) gave essential context to data science skills as students could
translate into what an idea might mean for "their" data. Giving
students wide leeway in their project topic allowed the project to
be a point of connection between new data science skills and their
existing domain knowledge. Students chose projects within their
particular areas of interest or expertise, and a number chose to
additionally connect their project for this course to their degree
capstone project.

Project benchmarks were placed throughout the semester
(highlighted in green in Fig 3) allowing students a concrete
way to develop their new skills in identifying datasets, loading

and preparing data for exploratory data analysis, visualizing and
annotating data, and finally modeling and analyzing data. All
of this was done with the goal of answering a policy question
developed by the student, allowing the student to flex some
domain expertise to supplement the (sometimes overwhelming!)
programmatic components.

Our project explicitly required that students find two datasets
of interest and merge them for the final analysis. This presented
both logistical and technical challenges. As one student pointed
out after finally finding open data: hearing people talk about the
need for open data is one thing, but you really realize what that
means when you’ve spent weeks trying to get access to data that
you know exists. Understanding the provenance of the data they
were working with helped students assess the biases and limita-
tions, and also gave students a strong sense of ownership over
their final projects. An unplanned consequence of the broad scope
of the policy project was that we, the instructors, learned nearly
as much about international diplomacy as the students learned
about programming and data science, a bidirectional exchange of
knowledge that we surmised to have contributed to student feeling
of empowerment and a positive class environment.

Course Structure

We broke the course into three modules, each with focused
reading/journaling topics, Python exercises, and policy project
benchmarks: (i) getting and cleaning data, (ii) visualizing data,
and (iii) modeling data. In what follows we will describe the key
goals of each module and highlight the readings and exercises that
we compiled to work towards these goals.

Getting and Cleaning Data

Getting, cleaning, and wrangling data typically make up a signif-
icant proportion of the time involved in a data science project.
Therefore, we devoted significant time in our course to learning
these skills, focusing on loading and manipulating data using
pandas. Key skills included loading data into a pandas DataFrame,
working with missing data, and slicing, grouping, and merging
DataFrames in various ways. After initial exposure and practice
with example datasets, students applied their skills to wrangling
the diverse and sometimes messy and large datasets that they found
for their individual projects. Since one requirement of the project
was to integrate more than one dataset, merging was of particular
importance.

During this portion of the course, students read and discussed
Boyd and Crawford’s Critical Questions for Big Data [Boy12]
which situates big data in the context of knowledge itself and
raises important questions about access to data and privacy. Ad-
ditional readings included selected chapters from D’Ignazio and
Klein’s Data Feminism [Dig20] which highlights the importance
of what we choose to count and what it means when data is
missing.

Visualizing Data

A fundamental component to communicating findings from data
is well-executed data visualization. We chose to place this module
in the middle of the course, since it was important that students
have a common language for interpreting and communicating their
analysis before moving to the more complicated aspects of data
modeling. In developing this common language, we used Wilke’s
Fundamentals of Data Visualization [Wil19] and Cairo’s How

72 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 3: Course outline for a 13-week semester with two 70 minute instructional blocks each week. Course readings are highlighted in gray and
policy project benchmarks are highlighted in green.

Chart’s Lie [Cai19] as a backbone for this section of the course.
In addition to reading the text materials, students were tasked with
finding visualizations “in the wild,” both good and bad. Course
discussions centered on the found visualizations, with Wilke and
Cairo’s writings as a common foundation. From the readings and
discussions, students became comfortable with the language and
taxonomy around visualizations and began to develop a better ap-
preciation of what makes a visualization compelling and readable.
Students were able to formulate a plan about how they could best
visualize their data. The next task was to translate these plans into
Python.

To help students gain a level of comfort with data visualization
in Python, we provided instruction and examples of working
with a variety of charts using Matplotlib and seaborn, as well
as maps and choropleths using GeoPandas, and assigned students
programming assignments that involved writing code to create
a visualization matching one in an image. With that practical
grounding, students were ready to visualize their own project data

using Python. Having the concrete target of how a student wanted
their visualization to look seemed to be a motivating starting
point from which to practice coding and debugging. We spent
several class periods on supported programming time for students
to develop their visualizations.

Working on building the narratives of their project and devel-
oping their own visualizations in the context of the course readings
gave students a heightened sense of attention to detail. During
one day of class when students shared visualizations and gave
feedback to one another, students commented and inquired about
incredibly small details of each others’ presentations, for example,
how to adjust y-tick alignment on a horizontal bar chart. This sort
of tiny detail is hard to convey in a lecture, but gains outsized
importance when a student has personally wrestled with it.

Modeling Data

In this section we sought to expose students to introductory
approaches in each of regression, classification, and clustering

PYTHON FOR GLOBAL APPLICATIONS: TEACHING SCIENTIFIC PYTHON IN CONTEXT TO LAW AND DIPLOMACY STUDENTS 73

in Python. Specifically, we practiced using scikit-learn to work
with linear regression, logistic regression, decision trees, random
forests, and gaussian mixture models. Our focus was not on the
theoretical underpinnings of any particular model, but rather on
the kinds of problems that regression, classification, or clustering
models respectively, are able to solve, as well as some basic ideas
about model assessment. The uniform and approachable scikit-
learn API [Bui13] was crucial in supporting this focus, since it
allowed us to focus less on syntax around any one model, and more
on the larger contours of modeling, with all its associated promise
and perils. We spent a good deal of time building an understanding
of train-test splits and their role in model assessment.

Student projects were required to include a modeling com-
ponent. Just the process of deciding which of regression, clas-
sification, or clustering were appropriate for a given dataset and
policy question is highly non-trivial for beginners. The diversity of
student projects and datasets meant students had to grapple with
this decision process in its full complexity. We were delighted by
the variety of modeling approaches students used in their projects,
as well as by students’ thoughtful discussions of the limitations of
their analysis.

To accompany this section of the course, students were as-
signed readings focusing on some of the societal impacts of data
modeling and algorithms more broadly. These readings included
a chapter from O’Neil’s Weapons of Math Destruction [One16] as
well as Buolamwini and Gebru’s Gender Shades [Buo18]. Both of
these readings emphasize the capacity of algorithms to exacerbate
inequalities and highlight the importance of transparency and
ethical data practices. These readings resonated especially strongly
with our students, many of whom had recently taken courses in
cyber policy and ethics in artificial intelligence.

Assessments

Formal assessment was based on four components, already alluded
to throughout this note. The largest was the ongoing policy
project which had benchmarks with rolling due dates throughout
the semester. Moreover, time spent practicing coding skills in
class was often done in service of the project. For example, in
week 4, when students learned to set up their local computing
environments, they also had time to practice loading, reading, and
saving data files associated with their chosen project datasets. This
brought challenges, since often students sitting side-by-side were
dealing with different operating systems and data formats. But
from this challenge emerged many organic conversations about
file types and the importance of naming conventions. The rubric
for the final project is shown in Fig 4.

The policy project culminated with in-class “micro presenta-
tions” and a policy paper. We dedicated two days of class in week
13 for in-class presentations, for which each student presented
one slide consisting of a descriptive title, one visualization, and
several “key takeaways” from the project. This extremely restric-
tive format helped students to think critically about the narrative
information conveyed in a visualization, and was designed to
create time for robust conversation around each presentation.

In addition to the policy project, each of the three course
modules also had an associated set of Python exercises (available
on the course website). Students were given ample time both in
and out of class to ask questions about the exercises. Overall, these
exercises proved to be the most technically challenging component
of the course, but we invited students to resubmit after an initial
round of grading.

And finally, to supplement the technical components of the
course we also had readings with associated journal entries sub-
mitted at a cadence of roughly two per module. Journal prompts
are described above and available on the course website.

Conclusion

Various listings of key competencies in data science have been
proposed [NAS18]. For example, [Dev17] suggests the following
pillars for an undergraduate data science curriculum: computa-
tional and statistical thinking, mathematical foundations, model
building and assessment, algorithms and software foundation,
data curation, and knowledge transference—communication and
responsibility. As we sought to contribute to the training of
data-science informed practitioners of international relations, we
focused on helping students build an initial competency especially
in the last four of these.

We can point to several key aspects of the course that made
it successful. Primary among them was the fact that the majority
of class time was spent in supported programming. This means
that students were able to ask their instructors or peers as soon
as questions arose. Novice programmers who aren’t part of a
formal computer science program often don’t have immediate
access to the resources necessary to get "unstuck." for the novice
programmer, even learning how to google technical terms can be a
challenge. This sort of immediate debugging and feedback helped
students remain confident and optimistic about their projects. This
was made all the more effective since we were co-teaching the
course and had double the resources to troubleshoot. Co-teaching
also had the unforeseen benefit of making our classroom a place
where the growth mindset was actively modeled and nurtured:
where one instructor wasn’t able to answer a question, the other
instructor often could. Finally, it was precisely the motivation of
learning data science in context that allowed students to maintain a
sense of ownership over their work and build connections between
their other courses.

Learning programming from the ground up is difficult. Stu-
dents arrive excited to learn, but also nervous and occasionally
heavy with the baggage they carry from prior experience in
quantitative courses. However, with a sufficient supported learning
environment it’s possible to impart relevant skills. It was a measure
of the success of the course how many students told us that the
course had helped them overcome negative prior beliefs about
their ability to code. Teaching data science skills in context and
with relevant projects that leverage students’ existing expertise and
outside reading situates the new knowledge in a place that feels
familiar and accessible to students. This contextualization allows
students to gain some mastery while simultaneously playing to
their strengths and interests.

REFERENCES

[Ana16] Anaconda Software Distribution. Computer software. Vers. 2-2.4.0.
Anaconda, Nov. 2016. Web. https://anaconda.com.

[Boy12] Boyd, Danah, and Kate Crawford. Critical questions for big data:
Provocations for a cultural, technological, and scholarly phe-
nomenon. Information, communication & society 15.5 (2012):662-
679. https://doi.org/10.1080/1369118X.2012.678878

[Bui13] Buitinck, Lars, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa,
Andreas Mueller, Olivier Grisel, Vlad Niculae et al. API design for
machine learning software: experiences from the scikit-learn project.
arXiv preprint arXiv:1309.0238 (2013).

74 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 4: Rubric for the policy project that formed a core component of the formal assessment of students throughout the course.

[Buo18] Buolamwini, Joy, and Timnit Gebru. Gender shades: Intersectional
accuracy disparities in commercial gender classification. Conference
on fairness, accountability and transparency. PMLR, 2018. http://
proceedings.mlr.press/v81/buolamwini18a.html

[Cai19] Cairo, Alberto. How charts lie: Getting smarter about visual infor-
mation. WW Norton & Company, 2019.

[Dev17] De Veaux, Richard D., Mahesh Agarwal, Maia Averett, Benjamin
S. Baumer, Andrew Bray, Thomas C. Bressoud, Lance Bryant et al.
Curriculum guidelines for undergraduate programs in data science.
Annual Review of Statistics and Its Application 4 (2017): 15-30.
https://doi.org/10.1146/annurev-statistics-060116-053930

[Dig20] D’Ignazio, Catherine, and Lauren F. Klein. Data Feminism. MIT
press, 2020.

[Eng01] Engeström, Yrjö. Expansive learning at work: Toward an activity
theoretical reconceptualization. Journal of education and work 14,
no. 1 (2001): 133-156. https://doi.org/10.1080/13639080020028747

[Hun07] Hunter, J.D., Matplotlib: A 2D Graphics Environment. Computing in
Science & Engineering, vol. 9, no. 3 (2007): 90-95. https://doi.org/
10.1109/MCSE.2007.55

[Jor21] Jordahl, Kelsey et al. 2021. Geopandas/geopandas: V0.10.2. Zenodo.
https://doi.org/10.5281/zenodo.5573592.

[Mck10] McKinney, Wes. Data structures for statistical computing in python.
In Proceedings of the 9th Python in Science Conference, vol. 445, no.
1, pp. 51-56. 2010. https://doi.org/10.25080/Majora-92bf1922-00a

[NAS18] National Academies of Sciences, Engineering, and Medicine. Data
science for undergraduates: Opportunities and options. National
Academies Press, 2018.

[One16] O’Neil, Cathy. Weapons of math destruction: How big data increases
inequality and threatens democracy. Broadway Books, 2016.

[Ped11] Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel et al.
Scikit-learn: Machine learning in Python. the Journal of machine
Learning research 12 (2011): 2825-2830. https://dl.acm.org/doi/10.
5555/1953048.2078195

[Pen16] Penuel, William R., Daniela K. DiGiacomo, Katie Van Horne, and
Ben Kirshner. A Social Practice Theory of Learning and Becoming
across Contexts and Time. Frontline Learning Research 4, no. 4
(2016): 30-38. http://dx.doi.org/10.14786/flr.v4i4.205

[Pro22] Project Jupyter, 2022. jupyterlab/jupyterlab: JupyterLab 3.4.3 https:
//github.com/jupyterlab/jupyterlab

[The22] The Pandas Development Team, 2022. pandas-dev/pandas: Pandas
1.4.2. Zenodo. https://doi.org/10.5281/zenodo.6408044

[Was21] Waskom, Michael L. Seaborn: statistical data visualization. Journal
of Open Source Software 6, no. 60 (2021): 3021. https://doi.org/10.
21105/joss.03021

[Wil19] Wilke, Claus O. Fundamentals of data visualization: a primer on
making informative and compelling figures. O’Reilly Media, 2019.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022) 75

Papyri: better documentation for the scientific
ecosystem in Jupyter

Matthias Bussonnier‡§∗, Camille Carvalho¶‖

F

Abstract—We present here the idea behind Papyri, a framework we are devel-
oping to provide a better documentation experience for the scientific ecosystem.
In particular, we wish to provide a documentation browser (from within Jupyter
or other IDEs and Python editors) that gives a unified experience, cross library
navigation search and indexing. By decoupling documentation generation from
rendering we hope this can help address some of the documentation accessi-
bility concerns, and allow customisation based on users’ preferences.

Index Terms—Documentation, Jupyter, ecosystem, accessibility

Introduction

Over the past decades, the Python ecosystem has grown rapidly,
and one of the last bastion where some of the proprietary competi-
tion tools shine is integrated documentation. Indeed, open-source
libraries are usually developed in distributed settings that can make
it hard to develop coherent and integrated systems.

While a number of tools and documentations exists (and
improvements are made everyday), most efforts attempt to build
documentation in an isolated way, inherently creating a heteroge-
neous framework. The consequences are twofolds: (i) it becomes
difficult for newcomers to grasp the tools properly, (ii) there is a
lack of cohesion and of unified framework due to library authors
making their proper choices as well as having to maintain build
scripts or services.

Many users, colleagues, and members of the community have
been frustrated with the documentation experience in the Python
ecosystem. Given a library, who hasn’t struggled to find the
"official" website for the documentation ? Often, users stumble
across an old documentation version that is better ranked in their
favorite search engine, and this impacts significantly the learning
process of less experienced users.

On users’ local machine, this process is affected by lim-
ited documentation rendering. Indeed, while in many Integrated
Development Environments (IDEs) the inspector provides some
documentation, users do not get access to the narrative, or the full
documentation gallery. For Command Line Interface (CLI) users,

* Corresponding author: bussonniermatthias@gmail.com
‡ QuanSight, Inc
§ Digital Ours Lab, SARL.
¶ University of California Merced, Merced, CA, USA
|| Univ Lyon, INSA Lyon, UJM, UCBL, ECL, CNRS UMR 5208, ICJ, F-69621,
France

Copyright © 2022 Matthias Bussonnier et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

documentation is often displayed as raw source where no naviga-
tion is possible. On the maintainers’ side, the final documentation
rendering is less of a priority. Rather, maintainers should aim at
making users gain from improvement in the rendering without
having to rebuild all the docs.

Conda-Forge [CFRG] has shown that concerted efforts can
give a much better experience to end-users, and in today’s world
where it is ubiquitous to share libraries source on code platforms,
perform continuous integration and many other tools, we believe
a better documentation framework for many of the libraries of the
scientific Python should be available.

Thus, against all advice we received and based on our own
experience, we have decided to rebuild an opinionated documen-
tation framework, from scratch, and with minimal dependencies:
Papyri. Papyri focuses on building an intermediate documentation
representation format, that lets us decouple building, and rendering
the docs. This highly simplifies many operations and gives us
access to many desired features that were not available up to now.

In what follows, we provide the framework in which Papyri
has been created and present its objectives (context and goals),
we describe the Papyri features (format, installation, and usage),
then present its current implementation. We end this paper with
comments on current challenges and future work.

Context and objectives

Through out the paper, we will draw several comparisons between
documentation building and compiled languages. Also, we will
borrow and adapt commonly used terminology. In particular, sim-
ilarities with "ahead-of-time" (AOT) [AOT], "just-in-time"" (JIT)
[JIT], intermediate representation (IR) [IR], link-time optimization
(LTO) [LTO], static vs dynamic linking will be highlighted. This
allows us to clarify the presentation of the underlying architecture.
However, there is no requirement to be familiar with the above
to understand the concepts underneath Papyri. In that context, we
wish to discuss documentation building as a process from a source-
code meant for a machine to a final output targeting the flesh and
blood machine between the keyboard and the chair.

Current tools and limitations

In the scientific Python ecosystem, it is well known that Docutils
[docutils] and Sphinx [sphinx] are major cornerstones for pub-
lishing HTML documentation for Python. In fact, they are used
by all the libraries in this ecosystem. While a few alternatives
exist, most tools and services have some internal knowledge of
Sphinx. For instance, Read the Docs [RTD] provides a specific

76 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Sphinx theme [RTD-theme] users can opt-in to, Jupyter-book
[JPYBOOK] is built on top of Sphinx, and MyST parser [MYST]
(which is made to allow markdown in documentation) targets
Sphinx as a backend, to name a few. All of the above provide an
"ahead-of-time" documentation compilation and rendering, which
is slow and computationally intensive. When a project needs its
specific plugins, extensions and configurations to properly build
(which is almost always the case), it is relatively difficult to
build documentation for a single object (like a single function,
module or class). This makes AOT tools difficult to use for
interactive exploration. One can then consider a JIT approach,
as done for Docrepr [DOCREPR] (integrated both in Jupyter and
Spyder [Spyder]). However in that case, interactive documentation
lacks inline plots, crosslinks, indexing, search and many custom
directives.

Some of the above limitations are inherent to the design
of documentation build tools that were intended for a separate
documentation construction. While Sphinx does provide features
like intersphinx, link resolutions are done at the documentation
building phase. Thus, this is inherently unidirectional, and can
break easily. To illustrate this, we consider NumPy [NP] and SciPy
[SP], two extremely close libraries. In order to obtain proper cross-
linked documentation, one is required to perform at least five steps:

• build NumPy documentation
• publish NumPy object.inv file.
• (re)build SciPy documentation using NumPy obj.inv

file.
• publish SciPy object.inv file
• (re)build NumPy docs to make use of SciPy’s obj.inv

Only then can both SciPy’s and NumPy’s documentation refer
to each other. As one can expect, cross links break every time
a new version of a library is published1. Pre-produced HTML
in IDEs and other tools are then prone to error and difficult to
maintain. This also raises security issues: some institutions be-
come reluctant to use tools like Docrepr or viewing pre-produced
HTML.

Docstrings format

The Numpydoc format is ubiquitous among the scientific ecosys-
tem [NPDOC]. It is loosely based on reStructuredText (RST)
syntax, and despite supporting full RST syntax, docstrings rarely
contain full-featured directive. Maintainers are confronted to the
following dilemma:

• keep the docstrings simple. This means mostly text-based
docstrings with few directive for efficient readability. The
end-user may be exposed to raw docstring, there is no on-
the-fly directive interpretation. This is the case for tools
such as IPython and Jupyter.

• write an extensive docstring. This includes references, and
directive that potentially creates graphics, tables and more,
allowing an enriched end-user experience. However this
may be computationally intensive, and executing code to
view docs could be a security risk.

Other factors impact this choice: (i) users, (ii) format, (iii)
runtime. IDE users or non-Terminal users motivate to push for
extensive docstrings. Tools like Docrepr can mitigate this problem
by allowing partial rendering. However, users are often exposed to

1. ipython/ipython#12210, numpy/numpy#21016, & #29073

Fig. 1: The following screenshot shows the help for
scipy.signal.dpss, as currently accessible (left), as shown by
Papyri for Jupyterlab extension (right). An extended version of the
right pannel is displayed in Figure 4.

raw docstrings (see for example the SymPy discussion2 on how
equations should be displayed in docstrings, and left panel of
Figure 1). In terms of format, markdown is appealing, however
inconsistencies in the rendering will be created between libraries.
Finally, some libraries can dynamically modify their docstring at
runtime. While this sometime avoids using directives, it ends up
being more expensive (runtime costs, complex maintenance, and
contribution costs).

Objectives of the project

We now layout the objectives of the Papyri documentation frame-
work. Let us emphasize that the project is in no way intended to
replace or cover many features included in well-established docu-
mentation tools such as Sphinx or Jupyter-book. Those projects are
extremely flexible and meet the needs of their users for publishing
a standalone documentation website of PDFs. The Papyri project
addresses specific documentation challenges (mentioned above),
we present below what is (and what is not) the scope of work.

Goal (a): design a non-generic (non fully customisable)
website builder. When authors want or need complete control
of the output and wide personalisation options, or branding, then
Papyri is not likely the project to look at. That is to say single-
project websites where appearance, layout, domain need to be
controlled by the author is not part of the objectives.

Goal (b): create a uniform documentation structure and
syntax. The Papyri project prescribes stricter requirements in
terms of format, structure, and syntax compared to other tools
such as Docutils and Sphinx. When possible, the documentation
follows the Diátaxis Framework [DT]. This provides a uniform
documentation setup and syntax, simplifying contributions to the
project and easing error catching at compile time. Such strict envi-
ronment is qualitatively supported by a number of documentation
fixes done upstream during the development stage of the project3.
Since Papyri is not fully customisable, users who are already using
documentation tools such as Sphinx, mkdocs [mkdocs] and others
should expect their project to require minor modifications to work
with Papyri.

Goal (c): provide accessibility and user proficiency. Ac-
cessibility is a top priority of the project. To that aim, items
are associated to semantic meaning as much as possible, and

2. sympy/sympy#14963
3. Tests have been performed on NumPy, SciPy.

PAPYRI: BETTER DOCUMENTATION FOR THE SCIENTIFIC ECOSYSTEM IN JUPYTER 77

documentation rendering is separated from documentation build-
ing phase. That way, accessibility features such as high contract
themes (for better text-to-speech (TTS) raw data), early example
highlights (for newcomers) and type annotation (for advanced
users) can be quickly available. With the uniform documentation
structure, this provides a coherent experience where users become
more comfortable finding information in a single location (see
Figure 1).

Goal (d): make documentation building simple, fast, and
independent. One objective of the project is to make documenta-
tion installation and rendering relatively straightforward and fast.
To that aim, the project includes relative independence of doc-
umentation building across libraries, allowing bidirectional cross
links (i.e. both forward and backward links between pages) to
be maintained more easily. In other words, a single library can be
built without the need to access documentation from another. Also,
the project should include straightforward lookup documentation
for an object from the interactive read–eval–print loop (REPL).
Finally, efforts are put to limit the installation speed (to avoid
polynomial growth when installing packages on large distributed
systems).

The Papyri solution

In this section we describe in more detail how Papyri has been
implemented to address the objectives mentioned above.

Making documentation a multi-step process

When using current documentation tools, customisation made by
maintainers usually falls into the following two categories:

• simpler input convenience,
• modification of final rendering.

This first category often requires arbitrary code execution and
must import the library currently being built. This is the case
for example for the use of .. code-block:::, or custom
:rc: directive. The second one offers a more user friendly en-
vironment. For example, sphinx-copybutton [sphinx-copybutton]
adds a button to easily copy code snippets in a single click,
and pydata-sphinx-theme [pydata-sphinx-theme] or sphinx-rtd-
dark-mode provide a different appearance. As a consequence,
developers must make choices on behalf of their end-users: this
may concern syntax highlights, type annotations display, light/dark
theme.

Being able to modify extensions and re-render the documenta-
tion without the rebuilding and executing stage is quite appealing.
Thus, the building phase in Papyri (collecting documentation
information) is separated from the rendering phase (Objective (c)):
at this step, Papyri has no knowledge and no configuration options
that permit to modify the appearance of the final documentation.
Additionally, the optional rendering process has no knowledge of
the building step, and can be run without accessing the libraries
involved.

This kind of technique is commonly used in the field of
compilers with the usage of Single Compilation Unit [SCU] and
Intermediate Representation [IR], but to our knowledge, it has not
been implemented for documentation in the Python ecosystem.
As mentioned before, this separation is key to achieving many
features proposed in Objectives (c), (d) (see Figure 2).

Intermediate Representation for Documentation (IRD)

IRD format: Papyri relies on standard interchangeable
"Intermediate Representation for Documentation" (IRD) format.
This allows to reduce operation complexity of the documentation
build. For example, given M documentation producers and N
renderers, a full documentation build would be O(MN) (each
renderer needs to understand each producer). If each producer only
cares about producing IRD, and if each renderer only consumes it,
then one can reduce to O(M+N). Additionally, one can take IRD
from multiple producers at once, and render them all to a single
target, breaking the silos between libraries.

At the moment, IRD files are currently separated into four
main categories roughly following the Diátaxis framework [DT]
and some technical needs:

• API files describe the documentation for a single ob-
ject, expressed as a JSON object. When possible, the
information is encoded semantically (Objective (c)). Files
are organized based on the fully-qualified name of the
Python object they reference, and contain either absolute
reference to another object (library, version and identi-
fier), or delayed references to objects that may exist in
another library. Some extra per-object meta information
like file/line number of definitions can be stored as well.

• Narrative files are similar to API files, except that they do
not represent a given object, but possess a previous/next
page. They are organised in an ordered tree related to the
table of content.

• Example files are a non-ordered collection of files.
• Assets files are untouched binary resource archive files that

can be referenced by any of the above three ones. They are
the only ones that contain backward references, and no
forward references.

In addition to the four categories above, metadata about the
current package is stored: this includes library name, current
version, PyPi name, GitHub repository slug4, maintainers’ names,
logo, issue tracker and others. In particular, metadata allows
us to auto-generate links to issue trackers, and to source files
when rendering. In order to properly resolve some references and
normalize links convention, we also store a mapping from fully
qualified names to canonical ones.

Let us make some remarks about the current stage of IRD for-
mat. The exact structure of package metadata has not been defined
yet. At the moment it is reduced to the minimum functionality.
While formats such as codemeta [CODEMETA] could be adopted,
in order to avoid information duplication we rely on metadata
either present in the published packages already or extracted from
Github repository sources. Also, IRD files must be standardized
in order to achieve a uniform syntax structure (Objective (b)).
In this paper, we do not discuss IRD files distribution. Last, the
final specification of IRD files is still in progress and regularly
undergoes major changes (even now). Thus, we invite contributors
to consult the current state of implementation on the GitHub
repository [Papyri]. Once the IRD format is more stable, this will
be published as a JSON schema, with full specification and more
in-depth description.

4. "slug" is the common term that refers to the various combinations
of organization name/user name/repository name, that uniquely identifies a
repository on a platform like GitHub.

78 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 2: Sketch representing how to build documentation with Papyri. Step 1: Each project builds an IRD bundle that contains semantic
information about the project documentation. Step 2: the IRD bundles are publihsed online. Step 3: users install IRD bundles locally on their
machine, pages get corsslinked, indexed, etc. Step 4: IDEs render documentation on-the-fly, taking into consideration users’ preferences.

IRD bundles: Once a library has collected IRD repre-
sentation for all documentation items (functions, class, narrative
sections, tutorials, examples), Papyri consolidates them into what
we will refer to as IRD bundles. A Bundle gathers all IRD files
and metadata for a single version of a library5. Bundles are a
convenient unit to speak about publication, installation, or update
of a given library documentation files.

Unlike package installation, IRD bundles do not have the
notion of dependencies. Thus, a fully fledged package manager is
not necessary, and one can simply download corresponding files
and unpack them at the installation phase.

Additionally, IRD bundles for multiple versions of the same
library (or conflicting libraries) are not inherently problematic as
they can be shared across multiple environments.

From a security standpoint, installing IRD bundles does not
require the execution of arbitrary code. This is a critical element
for adoption in deployments. There exists as well an opportunity to
provide localized variants at the IRD installation time (IRD bundle
translations haven’t been explored exhaustively at the moment).

IRD and high level usage

Papyri-based documentation involves three broad categories of
stakeholders (library maintainers, end-users, IDE developers), and
processes. This leads to certain requirements for IRD files and
bundles.

On the maintainers’ side, the goal is to ensure that Papyri can
build IRD files, and publish IRD bundles. Creation of IRD files
and bundles is the most computationally intensive step. It may
require complex dependencies, or specific plugins. Thus, this can
be a multi-step process, or one can use external tooling (not related
to Papyri nor using Python) to create them. Visual appearance
and rendering of documentation is not taken into account in this
process. Overall, building IRD files and bundles takes about the
same amount of time as running a full Sphinx build. The limiting
factor is often associated to executing library examples and code
snippets. For example, building SciPy & NumPy documentation
IRD files on a 2021 Macbook Pro M1 (base model), including
executing examples in most docstrings and type inferring most
examples (with most variables semantically inferred) can take
several minutes.

End-users are responsible for installing desired IRD bundles.
In most cases, it will consist of IRD bundles from already
installed libraries. While Papyri is not currently integrated with

5. One could have IRD bundles not attached to a particular library. For
example, this can be done if an author wishes to provide only a set of examples
or tutorials. We will not discuss this case further here.

package managers or IDEs, one could imagine this process being
automatic, or on demand. This step should be fairly efficient as it
mostly requires downloading and unpacking IRD files.

Finally, IDEs developers want to make sure IRD files can be
properly rendered and browsed by their users when requested.
This may potentially take into account users’ preferences, and may
provide added values such as indexing, searching, bookmarks and
others, as seen in rustsdocs, devdocs.io.

Current implementation

We present here some of the technological choices made in the
current Papyri implementation. At the moment, it is only targeting
a subset of projects and users that could make use of IRD files and
bundles. As a consequence, it is constrained in order to minimize
the current scope and efforts development. Understanding the
implementation is not necessary to use Papyri neither as a project
maintainer nor as a user, but it can help understanding some of the
current limitations.

Additionally, nothing prevents alternatives and complementary
implementations with different choices: as long as other imple-
mentations can produce (or consume) IRD bundles, they should
be perfectly compatible and work together.

The following sections are thus mostly informative to under-
stand the state of the current code base. In particular we restricted
ourselves to:

• Producing IRD bundles for the core scientific Python
projects (Numpy, SciPy, Matplotlib...)

• Rendering IRD documentation for a single user on their
local machine.

Finally, some of the technological choices have no other
justification than the main developer having interests in them, or
making iterations on IRD format and main code base faster.

IRD files generation

The current implementation of Papyri only targets some compat-
ibility with Sphinx (a website and PDF documentation builder),
reStructuredText (RST) as narrative documentation syntax and
Numpydoc (both a project and standard for docstring formatting).

These are widely used by a majority of the core scientific
Python ecosystem, and thus having Papyri and IRD bundles
compatible with existing projects is critical. We estimate that
about 85%-90% of current documentation pages being built with
Sphinx, RST and Numpydoc can be built with Papyri. Future work
includes extensions to be compatible with MyST (a project to
bring markdown syntax to Sphinx), but this is not a priority.

PAPYRI: BETTER DOCUMENTATION FOR THE SCIENTIFIC ECOSYSTEM IN JUPYTER 79

To understand RST Syntax in narrative documentation, RST
documents need to be parsed. To do so, Papyri uses tree-sitter
[TS] and tree-sitter-rst [TSRST] projects, allowing us to extract an
"Abstract Syntax Tree" (AST) from the text files. When using tree-
sitter, AST nodes contain bytes-offsets into the original text buffer.
Then one can easily "unparse" an AST node when necessary. This
is relatively convenient for handling custom directives and edge
cases (for instance, when projects rely on a loose definition of
the RST syntax). Let us provide an example: RST directives are
usually of the form:

.. directive:: arguments

body

While technically there is no space before the ::, Docutils and
Sphinx will not create errors when building the documentation.
Due to our choice of a rigid (but unified) structure, we use tree-
sitter that indicates an error node if there is an extra space. This
allows us to check for error nodes, unparse, add heuristics to
restore a proper syntax, then parse again to obtain the new node.

Alternatively, a number of directives like warnings, notes
admonitions still contain valid RST. Instead of storing the
directive with the raw text, we parse the full document (potentially
finding invalid syntax), and unparse to the raw text only if the
directive requires it.

Serialisation of data structure into IRD files is currently us-
ing a custom serialiser. Future work includes maybe swapping
to msgspec [msgspec]. The AST objects are completely typed,
however they contain a number of unions and sequences of unions.
It turns out, many frameworks like pydantic [pydantic] do not
support sequences of unions where each item in the union may
be of a different type. To our knowledge, there are just few other
documentation related projects that treat AST as an intermediate
object with a stable format that can be manipulated by external
tools. In particular, the most popular one is Pandoc [pandoc], a
project meant to convert from many document types to plenty of
other ones.

The current Papyri strategy is to type-infer all code examples
with Jedi [JEDI], and pre-syntax highlight using pygments when
possible.

IRD File Installation

Download and installation of IRD files is done concurrently using
httpx [httpx], with Trio [Trio] as an async framework, allowing us
to download files concurrently.

The current implementation of Papyri targets Python doc-
umentation and is written in Python. We can then query the
existing version of Python libraries installed, and infer the ap-
propriate version of the requested documentation. At the moment,
the implementation is set to tentatively guess relevant libraries
versions when the exact version number is missing from the install
command.

For convenience and performance, IRD bundles are being post-
processed and stored in a different format. For local rendering, we
mostly need to perform the following operations:

1) Query graph information about cross-links across docu-
ments.

2) Render a single page.
3) Access raw data (e.g. images).

We also assume that IRD files may be infrequently updated,
that disk space is limited, and that installing or running services

Fig. 3: Sketch representing how Papyri stores information in 3
different format depending on access patterns: a SQLite database for
relationship information, on-disk CBOR files for more compact storate
of IRD, and RAW files (e.g. Images). A GraphStore API abstracts all
access and takes care of maintinaing consistency.

(like a database server) are not necessary available. This provides
an adapted framework to test Papyri on an end-user machine.

With those requirements we decided to use a combination of
SQLite (an in-process database engine), Concise Binary Object
Representation (CBOR) and raw storage to better reflect the access
pattern (see Figure 3).

SQLite allows us to easily query for object existence, and
graph information (relationship between objects) at runtime. It is
optimized for infrequent reading access. Currently many queries
are done at runtime, when rendering documentation. The goal is to
move most of SQLite information resolving step at the installation
time (such as looking for inter-libraries links) once the codebase
and IRD format have stabilized. SQLite is less strongly typed than
other relational or graph database and needs custom logic, but
is ubiquitous on all systems and does not need a separate server
process, making it an easy choice of database.

CBOR is a more space efficient alternative to JSON. In par-
ticular, keys in IRD are often highly redundant, and can be highly
optimized when using CBOR. Storing IRD in CBOR thus reduces
disk usage and can also allow faster deserialization without
requiring potentially CPU intensive compression/decompression.
This is a good compromise for potentially low performance users’
machines.

Raw storage is used for binary blobs which need to be accessed
without further processing. This typically refers to images, and
raw storage can be accessed with standard tools like image
viewers.

Finally, access to all of these resources is provided via an
internal GraphStore API which is agnostic of the backend, but
ensures consistency of operations like adding/removing/replacing
documents. Figure 3 summarizes this process.

Of course the above choices depend on the context where
documentation is rendered and viewed. For example, an online
archive intended to browse documentation for multiple projects
and versions may decide to use an actual graph database for object
relationship, and store other files on a Content Delivery Network
or blob storage for random access.

Documentation Rendering

The current Papyri implementation includes a certain number
of rendering engines (presented below). Each of them mostly
consists of fetching a single page with its metadata, and walking

80 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

through the IRD AST tree, and rendering each node with users’
preferences.

• An ASCII terminal renders using Jinja2 [Jinja2]. This
can be useful for piping documentation to other tools
like grep, less, cat. Then one can work in a highly
restricted environment, making sure that reading the docu-
mentation is coherent. This can serve as a proxy for screen
reading.

• A Textual User Interface browser renders using urwid.
Navigation within the terminal is possible, one can reflow
long lines on resized windows, and even open image files
in external editors. Nonetheless, several bugs have been
encountered in urwid. The project aims at replacing the
CLI IPython question mark operator (obj?) interface
(which currently only shows raw docstrings) in urwid with
a new one written with Rich/Textual. For this interface,
having images stored raw on disk is useful as it allows us
to directly call into a system image viewer to display them.

• A JIT rendering engine uses Jinja2, Quart [quart], Trio.
Quart is an async version of flask [flask]. This option
contains the most features, and therefore is the main one
used for development. This environment lets us iterate over
the rendering engine rapidly. When exploring the User In-
terface design and navigation, we found that a list of back
references has limited uses. Indeed, it is can be challenging
to judge the relevance of back references, as well as their
relationship to each other. By playing with a network
graph visualisation (see Figure 5)), we can identify clusters
of similar information within back references. Of course,
this identification has limits especially when pages have a
large number of back references (where the graph becomes
too busy). This illustrate as well a strength of the Papyri
architecture: creating this network visualization did not
require any regeneration of the documentation, one simply
updates the template and re-renders the current page as
needed.

• A static AOT rendering of all the existing pages that can
be rendered ahead of time uses the same class as the JIT
rendering. Basically, this loops through all entries in the
SQLite database and renders each item independently. This
renderer is mostly used for exhaustive testing and perfor-
mance measures for Papyri. This can render most of the
API documentation of IPython, Astropy [astropy], Dask
and distributed [Dask], Matplotlib [MPL], [MPL-DOI],
Networkx [NX], NumPy [NP], Pandas, Papyri, SciPy,
Scikit-image and others. It can represent ~28000 pages
in ~60 seconds (that is ~450 pages/s on a recent Macbook
pro M1).

For all of the above renderers, profiling shows that docu-
mentation rendering is mostly limited by object de-serialisation
from disk and Jinja2 templating engine. In the early project
development phase, we attempted to write a static HTML renderer
in a compiled language (like Rust, using compiled and typed
checked templates). This provided a speedup of roughly a factor
10. However, its implementation is now out of sync with the main
Papyri code base.

Finally, a JupyterLab extension is currently in progress. The
documentation then presents itself as a side-panel and is capable
of basic browsing and rendering (see Figure 1 and Figure 4). The
model uses typescript, react and native JupyterLab component.

Future goals include improving/replacing the JupyterLab’s ques-
tion mark operator (obj?) and the JupyterLab Inspector (when
possible). A screenshot of the current development version of the
JupyterLab extension can be seen in Figure 4.

Challenges

We mentioned above some limitations we encountered (in ren-
dering usage for instance) and what will be done in the future
to address them. We provide below some limitations related to
syntax choices, and broader opportunities that arise from the
Papyri project.

Limitations

The decoupling of the building and rendering phases is key in
Papyri. However, it requires us to come up with a method that
uniquely identifies each object. In particular, this is essential in
order to link any object documentation without accessing the IRD
bundles build from all the libraries. To that aim, we use the fully
qualified names of an object. Namely, each object is identified
by the concatenation of the module in which it is defined, with
its local name. Nonetheless, several particular cases need specific
treatment.

• To mirror the Python syntax, is it easy to use . to
concatenate both parts. Unfortunately, that leads to some
ambiguity when modules re-export functions have the
same name. For example, if one types
module mylib/__init__.py

from .mything import mything

then mylib.mything is ambiguous both with respect
to the mything submodule, and the reexported object.
In future versions, the chosen convention will use : as a
module/name separator.

• Decorated functions or other dynamic approaches to ex-
pose functions to users end up having <local>> in their
fully qualified names, which is invalid.

• Many built-in functions (np.sin, np.cos, etc.) do not
have a fully qualified name that can be extracted by object
introspection. We believe it should be possible to identify
those via other means like docstring hash (to be explored).

• Fully qualified names are often not canonical names (i.e.
the name typically used for import). While we made efforts
to create a mapping from one to another, finding the canon-
ical name automatically is not always straightforward.

• There are also challenges with case sensitivity. For ex-
ample for MacOS file systems, a couple of objects may
unfortunately refer to the same IRD file on disk. To address
this, a case-sensitive hash is appended at the end of the
filename.

• Many libraries have a syntax that looks right once ren-
dered to HTML while not following proper syntax, or a
syntax that relies on specificities of Docutils and Sphinx
rendering/parsing.

• Many custom directive plugins cannot be reused from
Sphinx. These will need to be reimplemented.

Future possibilities

Beyond what has been presented in this paper, there are several
opportunities to improve and extend what Papyri can allow for the
scientific Python ecosystem.

PAPYRI: BETTER DOCUMENTATION FOR THE SCIENTIFIC ECOSYSTEM IN JUPYTER 81

Fig. 4: Example of extended view of the Papyri documentation for
Jupyterlab extension (here for SciPy). Code examples can now include
plots. Most token in each examples are linked to the corresponding
page. Early navigation bar is visible at the top.

Fig. 5: Local graph (made with D3.js [D3js]) representing the
connections among the most important nodes around current page
across many libraries, when viewing numpy.ndarray. Nodes are
sized with respect to the number of incomming links, and colored
with respect to their library. This graph is generated at rendering
time, and is updated depending on the libraries currently installed.
This graph helps identify related functions and documentation. It can
become challenging to read for highly connected items as seen here
for numpy.ndarray.

The first area is the ability to build IRD bundles on Continuous
Integration platforms. Services like GitHub action, Azure pipeline
and many others are already setup to test packages. We hope
to leverage this infrastructure to build IRD files and make them
available to users.

A second area is hosting of intermediate IRD files. While the
current prototype is hosted by http index using GitHub pages,
it is likely not a sustainable hosting platform as disk space is
limited. To our knowledge, IRD files are smaller in size than
HTML documentation, we hope that other platforms like Read the
Docs can be leveraged. This could provide a single domain that
renders the documentation for multiple libraries, thus avoiding the
display of many library subdomains. This contributes to giving a
more unified experience for users.

It should be possible for projects to avoid using many dy-
namic docstrings interpolation that are used to document *args
and **kwargs. This would make sources easier to read, and
potentially have some speedup at the library import time.

Once a (given and appropriately used by its users) library uses
an IDE that supports Papyri for documentation, docstring syntax
could be exchanged for markdown.

As IRD files are structured, it should be feasible to provide
cross-version information in the documentation. For example, if
one installs multiple versions of IRD bundles for a library, then
assuming the user does not use the latest version, the renderer
could inspect IRD files from previous/future versions to indi-
cate the range of versions for which the documentation has not
changed. Upon additional efforts, it should be possible to infer
when a parameter was removed, or will be removed, or to simply
display the difference between two versions.

82 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Conclusion

To address some of the current limitations in documentation
accessibility, building and maintaining, we have provided a new
documentation framework called Papyri. We presented its features
and underlying implementation choices (such as crosslink main-
tenance, decoupling building and rendering phases, enriching the
rendering features, using the IRD format to create a unified syntax
structure, etc.). While the project is still at its early stage, clear
impacts can already be seen on the availability of high-quality
documentation for end-users, and on the workload reduction for
maintainers. Building IRD format opened a wide range of tech-
nical possibilities, and contributes to improving users’ experience
(and therefore the success of the scientific Python ecosystem). This
may become necessary for users to navigate in an exponentially
growing ecosystem.

Acknowledgments

The authors want to thank S. Gallegos (author of tree-sitter-rst), J.
L. Cano Rodríguez and E. Holscher (Read The Docs), C. Holdgraf
(2i2c), B. Granger and F. Pérez (Jupyter Project), T. Allard and I.
Presedo-Floyd (QuanSight) for their useful feedback and help on
this project.

Funding

M. B. received a 2-year grant from the Chan Zuckerberg Initia-
tive (CZI) Essential Open Source Software for Science (EOS)
– EOSS4-0000000017 via the NumFOCUS 501(3)c non profit to
develop the Papyri project.

REFERENCES

[AOT] https://en.wikipedia.org/wiki/Ahead-of-time_
compilation

[CFRG] conda-forge community. (2015). The conda-forge
Project: Community-based Software Distribution Built
on the conda Package Format and Ecosystem. Zenodo.
http://doi.org/10.5281/zenodo.4774216

[CODEMETA] https://codemeta.github.io/
[D3js] https://d3js.org/
[DOCREPR] https://github.com/spyder-ide/docrepr
[DT] https://diataxis.fr/
[Dask] Dask Development Team (2016). Dask: Library for

dynamic task scheduling, https://dask.org
[IR] https://en.wikipedia.org/wiki/Intermediate_

representation
[JEDI] https://github.com/davidhalter/jedi
[JIT] https://en.wikipedia.org/wiki/Just-in-time_

compilation
[JPYBOOK] https://jupyterbook.org/
[Jinja2] https://jinja.palletsprojects.com/
[LTO] https://en.wikipedia.org/wiki/Interprocedural_

optimization
[MPL-DOI] https://doi.org/10.5281/zenodo.6513224
[MPL] J.D. Hunter, "Matplotlib: A 2D Graphics Environ-

ment", Computing in Science & Engineering, vol. 9,
no. 3, pp. 90-95, 2007,

[MYST] https://myst-parser.readthedocs.io/en/latest/
[NPDOC] https://numpydoc.readthedocs.io/en/latest/format.html
[NP] Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Ar-

ray programming with NumPy. Nature 585, 357–362
(2020). DOI: 10.1038/s41586-020-2649-2

[NX] Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart,
“Exploring network structure, dynamics, and function
using NetworkX”, in Proceedings of the 7th Python
in Science Conference (SciPy2008), Gäel Varoquaux,
Travis Vaught, and Jarrod Millman (Eds), (Pasadena,
CA USA), pp. 11–15, Aug 2008

[Papyri] https://github.com/jupyter/papyri

[RTD-theme] https://sphinx-rtd-theme.readthedocs.io/en/stable/
[RTD] https://readthedocs.org/
[SCU] https://en.wikipedia.org/wiki/Single_Compilation_

Unit
[SP] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant,

Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay
Mayorov, Andrew R. J. Nelson, Eric Jones, Robert
Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng,
Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef
Perktold, Robert Cimrman, Ian Henriksen, E.A. Quin-
tero, Charles R Harris, Anne M. Archibald, Antônio
H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and
SciPy 1.0 Contributors. (2020) SciPy 1.0: Fundamen-
tal Algorithms for Scientific Computing in Python.
Nature Methods, 17(3), 261-272. 10.1038/s41592-
019-0686-2

[Spyder] https://www.spyder-ide.org/
[TSRST] https://github.com/stsewd/tree-sitter-rst
[TS] https://tree-sitter.github.io/tree-sitter/
[astropy] The Astropy Project: Building an inclusive, open-

science project and status of the v2.0 core package,
https://doi.org/10.48550/arXiv.1801.02634

[docutils] https://docutils.sourceforge.io/
[flask] https://flask.palletsprojects.com/en/2.1.x/
[httpx] https://www.python-httpx.org/
[mkdocs] https://www.mkdocs.org/
[msgspec] https://pypi.org/project/msgspec
[pandoc] https://pandoc.org/
[pydantic] https://pydantic-docs.helpmanual.io/
[pydata-sphinx-theme] https://pydata-sphinx-theme.readthedocs.io/en/stable/
[quart] https://pgjones.gitlab.io/quart/
[sphinx-copybutton] https://sphinx-copybutton.readthedocs.io/en/latest/
[sphinx] https://www.sphinx-doc.org/en/master/
[Trio] https://trio.readthedocs.io/

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022) 83

Bayesian Estimation and Forecasting of Time Series
in statsmodels

Chad Fulton‡∗

F

Abstract—Statsmodels, a Python library for statistical and econometric
analysis, has traditionally focused on frequentist inference, including in its mod-
els for time series data. This paper introduces the powerful features for Bayesian
inference of time series models that exist in statsmodels, with applications
to model fitting, forecasting, time series decomposition, data simulation, and
impulse response functions.

Index Terms—time series, forecasting, bayesian inference, Markov chain Monte
Carlo, statsmodels

Introduction

Statsmodels [SP10] is a well-established Python library for
statistical and econometric analysis, with support for a wide range
of important model classes, including linear regression, ANOVA,
generalized linear models (GLM), generalized additive models
(GAM), mixed effects models, and time series models, among
many others. In most cases, model fitting proceeds by using
frequentist inference, such as maximum likelihood estimation
(MLE). In this paper, we focus on the class of time series
models [MPS11], support for which has grown substantially in
statsmodels over the last decade. After introducing several
of the most important new model classes – which are by default
fitted using MLE – and their features – which include forecasting,
time series decomposition and seasonal adjustment, data simula-
tion, and impulse response analysis – we describe the powerful
functions that enable users to apply Bayesian methods to a wide
range of time series models.

Support for Bayesian inference in Python outside of
statsmodels has also grown tremendously, particularly in
the realm of probabilistic programming, and includes powerful
libraries such as PyMC3 [SWF16], PyStan [CGH+17], and
TensorFlow Probability [DLT+17]. Meanwhile, ArviZ
[KCHM19] provides many excellent tools for associated diagnos-
tics and vizualisations. The aim of these libraries is to provide
support for Bayesian analysis of a large class of models, and
they make available both advanced techniques, including auto-
tuning algorithms, and flexible model specification. By contrast,
here we focus on simpler techniques. However, while the libraries
above do include some support for time series models, this has
not been their primary focus. As a result, introducing Bayesian

* Corresponding author: chad.t.fulton@frb.gov
‡ Federal Reserve Board of Governors

Copyright © 2022 Chad Fulton. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

inference for the well-developed stable of time series models
in statsmodels, and providing access to the rich associated
feature set already mentioned, presents a complementary option
to these more general-purpose libraries.1

Time series analysis in statsmodels

A time series is a sequence of observations ordered in time, and
time series data appear commonly in statistics, economics, finance,
climate science, control systems, and signal processing, among
many other fields. One distinguishing characteristic of many time
series is that observations that are close in time tend to be more
correlated, a feature known as autocorrelation. While successful
analyses of time series data must account for this, statistical
models can harness it to decompose a time series into trend,
seasonal, and cyclical components, produce forecasts of future
data, and study the propagation of shocks over time.

We now briefly review the models for time series data that are
available in statsmodels and describe their features.2

Exponential smoothing models

Exponential smoothing models are constructed by combining
one or more simple equations that each describe some aspect
of the evolution of univariate time series data. While originally
somewhat ad hoc, these models can be defined in terms of a
proper statistical model (for example, see [HKOS08]). They have
enjoyed considerable popularity in forecasting (for example, see
the implementation in R described by [HA18]). A prototypical
example that allows for trending data and a seasonal component
– often known as the additive "Holt-Winters’ method" – can be
written as

lt = α(yt − st−m)+(1−α)(lt−1 +bt−1)

bt = β (lt − lt−1)+(1−β)bt−1

st = γ(yt − lt−1−bt−1)+(1− γ)st−m

where lt is the level of the series, bt is the trend, st is the
seasonal component of period m, and α,β ,γ are parameters of
the model. When augmented with an error term with some given
probability distribution (usually Gaussian), likelihood-based infer-
ence can be used to estimate the parameters. In statsmodels,

1. In addition, it is possible to combine the sampling algorithms of PyMC3
with the time series models of statsmodels, although we will not discuss
this approach in detail here. See, for example, https://www.statsmodels.org/v0.
13.0/examples/notebooks/generated/statespace_sarimax_pymc3.html.

2. In addition to statistical models, statsmodels also provides a number
of tools for exploratory data analysis, diagnostics, and hypothesis testing
related to time series data; see https://www.statsmodels.org/stable/tsa.html.

84 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

additive exponential smoothing models can be constructed using
the statespace.ExponentialSmoothing class.3 The fol-
lowing code shows how to apply the additive Holt-Winters model
above to model quarterly data on consumer prices:
import statsmodels.api as sm
Load data
mdata = sm.datasets.macrodata.load().data
Compute annualized consumer price inflation
y = np.log(mdata['cpi']).diff().iloc[1:] * 400

Construct the Holt-Winters model
model_hw = sm.tsa.statespace.ExponentialSmoothing(

y, trend=True, seasonal=12)

Structural time series models

Structural time series models, introduced by [Har90] and also
sometimes known as unobserved components models, similarly
decompose a univariate time series into trend, seasonal, cyclical,
and irregular components:

yt = µt + γt + ct + εt

where µt is the trend, γt is the seasonal component, ct is the cycli-
cal component, and εt ∼ N(0,σ2) is the error term. However, this
equation can be augmented in many ways, for example to include
explanatory variables or an autoregressive component. In addition,
there are many possible specifications for the trend, seasonal,
and cyclical components, so that a wide variety of time series
characteristics can be accommodated. In statsmodels, these
models can be constructed from the UnobservedComponents
class; a few examples are given in the following code:
"Local level" model
model_ll = sm.tsa.UnobservedComponents(y, 'llevel')
"Local linear trend", with seasonal component
model_arma11 = sm.tsa.UnobservedComponents(

y, 'lltrend', seasonal=4)

These models have become popular for time series analysis and
forecasting, as they are flexible and the estimated components are
intuitive. Indeed, Google’s Causal Impact library [BGK+15] uses
a Bayesian structural time series approach directly, and Facebook’s
Prophet library [TL17] uses a conceptually similar framework and
is estimated using PyStan.

Autoregressive moving-average models

Autoregressive moving-average (ARMA) models, ubiquitous in
time series applications, are well-supported in statsmodels,
including their generalizations, abbreviated as "SARIMAX", that
allow for integrated time series data, explanatory variables, and
seasonal effects.4 A general version of this model, excluding
integration, can be written as

yt = xtβ +ξt

ξt = φ1ξt−1 + · · ·+φpξt−p + εt +θ1εt−1 + · · ·+θqεt−q

where εt ∼ N(0,σ2). These are constructed in statsmodels
with the ARIMA class; the following code shows how to construct
a variety of autoregressive moving-average models for consumer
price data:
AR(2) model
model_ar2 = sm.tsa.ARIMA(y, order=(2, 0, 0))

3. A second class, ETSModel, can also be used for both additive and
multiplicative models, and can exhibit superior performance with maximum
likelihood estimation. However, it lacks some of the features relevant for
Bayesian inference discussed in this paper.

ARMA(1, 1) model with explanatory variable
X = mdata['realint']
model_arma11 = sm.tsa.ARIMA(

y, order=(1, 0, 1), exog=X)
SARIMAX(p, d, q)x(P, D, Q, s) model
model_sarimax = sm.tsa.ARIMA(

y, order=(p, d, q), seasonal_order=(P, D, Q, s))

While this class of models often produces highly competitive
forecasts, it does not produce a decomposition of a time series
into, for example, trend and seasonal components.

Vector autoregressive models

While the SARIMAX models above handle univariate series,
statsmodels also has support for the multivariate generaliza-
tion to vector autoregressive (VAR) models.5 These models are
written

yt = ν +Φ1yt−1 + · · ·+Φpyt−p + εt

where yt is now considered as an m× 1 vector. As a result, the
intercept ν is also an m× 1 vector, the coefficients Φi are each
m×m matrices, and the error term is εt ∼ N(0m,Ω), with Ω an
m×m matrix. These models can be constructed in statsmodels
using the VARMAX class, as follows6

Multivariate dataset
z = (np.log(mdata['realgdp', 'realcons', 'cpi'])

.diff().iloc[1:])

VAR(1) model
model_var = sm.tsa.VARMAX(z, order=(1, 0))

Dynamic factor models

statsmodels also supports a second model for multivariate
time series: the dynamic factor model (DFM). These models, often
used for dimension reduction, posit a few unobserved factors, with
autoregressive dynamics, that are used to explain the variation
in the observed dataset. In statsmodels, there are two model
classes, DynamicFactor` and DynamicFactorMQ, that can
fit versions of the DFM. Here we focus on the DynamicFactor
class, for which the model can be written

yt = Λ ft + εt

ft = Φ1 ft−1 + · · ·+Φp ft−p +ηt

Here again, the observation is assumed to be m×1, but the factors
are k×1, where it is possible that k << m. As before, we assume
conformable coefficient matrices and Gaussian errors.

The following code shows how to construct a DFM in
statsmodels

DFM with 2 factors that evolve as a VAR(3)
model_dfm = sm.tsa.DynamicFactor(

z, k_factors=2, factor_order=3)

Linear Gaussian state space models

In statsmodels, each of the model classes introduced
above (statespace.ExponentialSmoothing,
UnobservedComponents, ARIMA, VARMAX,

4. Note that in statsmodels, models with explanatory variables are in
the form of "regression with SARIMA errors".

5. statsmodels also supports vector moving-average (VMA) models
using the same model class as described here for the VAR case, but, for brevity,
we do not explicitly discuss them here.

6. A second class, VAR, can also be used to fit VAR models, using least
squares. However, it lacks some of the features relevant for Bayesian inference
discussed in this paper.

BAYESIAN ESTIMATION AND FORECASTING OF TIME SERIES IN STATSMODELS 85

Fig. 1: Selected functionality of state space models in statsmodels.

DynamicFactor, and DynamicFactorMQ) are implemented
as part of a broader class of models, referred to as linear Gaussian
state space models (hereafter for brevity, simply "state space
models" or SSM). This class of models can be written as

yt = dt +Ztαt + εt εt ∼ N(0,Ht)

αt+1 = ct +Ttαt +Rtηt ηt ∼ N(0,Qt)

where αt represents an unobserved vector containing the "state"
of the dynamic system. In general, the model is multivariate, with
yt and εt m×1 vector, αt k×1, and ηt r times 1.

Powerful tools exist for state space models to estimate the
values of the unobserved state vector, compute the value of
the likelihood function for frequentist inference, and perform
posterior sampling for Bayesian inference. These tools include the
celebrated Kalman filter and smoother and a simulation smoother,
all of which are important for conducting Bayesian inference for
these models.7 The implementation in statsmodels largely
follows the treatment in [DK12], and is described in more detail
in [Ful15].

In addition to these key tools, state space models also admit
general implementations of useful features such as forecasting,
data simulation, time series decomposition, and impulse response
analysis. As a consequence, each of these features extends to each
of the time series models described above. Figure 1 presents a
diagram showing how to produce these features, and the code
below briefly introduces a subset of them.

Construct the Model
model_ll = sm.tsa.UnobservedComponents(y, 'llevel')

Construct a simulation smoother
sim_ll = model_ll.simulation_smoother()

Parameter values (variance of error and
variance of level innovation, respectively)
params = [4, 0.75]

Compute the log-likelihood of these parameters
llf = model_ll.loglike(params)

`smooth` applies the Kalman filter and smoother
with a given set of parameters and returns a
Results object
results_ll = model_ll.smooth(params)

Produce forecasts for the next 4 periods

7. Statsmodels currently contains two implementations of simulation
smoothers for the linear Gaussian state space model. The default is the "mean
correction" simulation smoother of [DK02]. The precision-based simulation
smoother of [CJ09] can alternatively be used by specifying method='cfa'
when creating the simulation smoother object.

fcast = results_ll.forecast(4)

Produce a draw from the posterior distribution
of the state vector
sim_ll.simulate()
draw = sim_ll.simulated_state

Nearly identical code could be used for any of the model classes
introduced above, since they are all implemented as part of the
same state space model framework. In the next section, we show
how these features can be used to perform Bayesian inference with
these models.

Bayesian inference via Markov chain Monte Carlo

We begin by giving a cursory overview of the key elements
of Bayesian inference required for our purposes here.8 In brief,
the Bayesian approach stems from Bayes’ theorem, in which
the posterior distribution for an object of interest is derived as
proportional to the combination of a prior distribution and the
likelihood function

p(A|B)︸ ︷︷ ︸
posterior

∝ p(B|A)︸ ︷︷ ︸
likelihood

× p(A)︸︷︷︸
prior

Here, we will be interested in the posterior distribution of the pa-
rameters of our model and of the unobserved states, conditional on
the chosen model specification and the observed time series data.
While in most cases the form of the posterior cannot be derived an-
alytically, simulation-based methods such as Markov chain Monte
Carlo (MCMC) can be used to draw samples that approximate
the posterior distribution nonetheless. While PyMC3, PyStan,
and TensorFlow Probability emphasize Hamiltonian Monte Carlo
(HMC) and no-U-turn sampling (NUTS) MCMC methods, we
focus on the simpler random walk Metropolis-Hastings (MH) and
Gibbs sampling (GS) methods. These are standard MCMC meth-
ods that have enjoyed great success in time series applications and
which are simple to implement, given the state space framework
already available in statsmodels. In addition, the ArviZ library
is designed to work with MCMC output from any source, and we
can easily adapt it to our use.

With either Metropolis-Hastings or Gibbs sampling, our pro-
cedure will produce a sequence of sample values (of parameters
and / or the unobserved state vector) that approximate draws from
the posterior distribution arbitrarily well, as the number of length

86 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

of the chain of samples becomes very large.

Random walk Metropolis-Hastings

In random walk Metropolis-Hastings (MH), we begin with an arbi-
trary point as the initial sample, and then iteratively construct new
samples in the chain as follows. At each iteration, (a) construct a
proposal by perturbing the previous sample by a Gaussian random
variable, and then (b) accept the proposal with some probability.
If a proposal is accepted, it becomes the next sample in the chain,
while if it is rejected then the previous sample value is carried over.
Here, we show how to implement Metropolis-Hastings estimation
of the variance parameter in a simple model, which only requires
the use of the log-likelihood computation introduced above.

import arviz as az
from scipy import stats

Construct the model
model_rw = sm.tsa.UnobservedComponents(y, 'rwalk')

Specify the prior distribution. With MH, this
can be freely chosen by the user
prior = stats.uniform(0.0001, 100)

Specify the Gaussian perturbation distribution
perturb = stats.norm(scale=0.1)

Storage
niter = 100000
samples_rw = np.zeros(niter + 1)

Initialization
samples_rw[0] = y.diff().var()
llf = model_rw.loglike(samples_rw[0])
prior_llf = prior.logpdf(samples_rw[0])

Iterations
for i in range(1, niter + 1):

Compute the proposal value
proposal = samples_rw[i - 1] + perturb.rvs()

Compute the acceptance probability
proposal_llf = model_rw.loglike(proposal)
proposal_prior_llf = prior.logpdf(proposal)
accept_prob = np.exp(

proposal_llf - llf
+ prior_llf - proposal_prior_llf)

Accept or reject the value
if accept_prob > stats.uniform.rvs():

samples_rw[i] = proposal
llf = proposal_llf
prior_llf = proposal_prior_llf

else:
samples_rw[i] = samples_rw[i - 1]

Convert for use with ArviZ and plot posterior
samples_rw = az.convert_to_inference_data(

samples_rw)
Eliminate the first 10000 samples as burn-in;
thin by factor of 10 to reduce autocorrelation
az.plot_posterior(samples_rw.posterior.sel(

{'draw': np.s_[10000::10]}), kind='bin',
point_estimate='median')

The approximate posterior distribution, constructed from the sam-
ple chain, is shown in Figure 2.

8. While a detailed description of these issues is out of the scope of this
paper, there are many superb references on this topic. We refer the interested
reader to [WH99], which provides a book-length treatment of Bayesian
inference for state space models, and [KN99], which provides many examples
and applications.

Fig. 2: Approximate posterior distribution of variance parameter,
random walk model, Metropolis-Hastings; U.S. Industrial Production.

Fig. 3: Approximate posterior joint distribution of variance parame-
ters, local level model, Gibbs sampling; CPI inflation.

Gibbs sampling

Gibbs sampling (GS) is a special case of Metropolis-Hastings
(MH) that is applicable when it is possible to produce draws
directly from the conditional distributions of every variable, even
though it is still not possible to derive the general form of the joint
posterior. While this approach can be superior to random walk
MH when it is applicable, the ability to derive the conditional
distributions typically requires the use of a "conjugate" prior – i.e.,
a prior from some specific family of distributions. For example,
above we specified a uniform distribution as the prior when
sampling via MH, but that is not possible with Gibbs sampling.
Here, we show how to implement Gibbs sampling estimation of
the variance parameter, now making use of an inverse Gamma
prior, and the simulation smoother introduced above.
Construct the model and simulation smoother
model_ll = sm.tsa.UnobservedComponents(y, 'llevel')
sim_ll = model_ll.simulation_smoother()

Specify the prior distributions. With GS, we must
choose an inverse Gamma prior for each variance
priors = [stats.invgamma(0.01, scale=0.01)] * 2

Storage
niter = 100000
samples_ll = np.zeros((niter + 1, 2))

Initialization
samples_ll[0] = [y.diff().var(), 1e-5]

Iterations

BAYESIAN ESTIMATION AND FORECASTING OF TIME SERIES IN STATSMODELS 87

for i in range(1, niter + 1):
(a) Update the model parameters
model_ll.update(samples_ll[i - 1])

(b) Draw from the conditional posterior of
the state vector
sim_ll.simulate()
sample_state = sim_ll.simulated_state.T

(c) Compute / draw from conditional posterior
of the parameters:
...observation error variance
resid = y - sample_state[:, 0]
post_shape = len(resid) / 2 + 0.01
post_scale = np.sum(resid**2) / 2 + 0.01
samples_ll[i, 0] = stats.invgamma(

post_shape, scale=post_scale).rvs()

...level error variance
resid = sample_state[1:] - sample_state[:-1]
post_shape = len(resid) / 2 + 0.01
post_scale = np.sum(resid**2) / 2 + 0.01
samples_ll[i, 1] = stats.invgamma(

post_shape, scale=post_scale).rvs()

Convert for use with ArviZ and plot posterior
samples_ll = az.convert_to_inference_data(

{'parameters': samples_ll[None, ...]},
coords={'parameter': model_ll.param_names},
dims={'parameters': ['parameter']})

az.plot_pair(samples_ll.posterior.sel(
{'draw': np.s_[10000::10]}), kind='hexbin');

The approximate posterior distribution, constructed from the sam-
ple chain, is shown in Figure 3.

Illustrative examples

For clarity and brevity, the examples in the previous section gave
results for simple cases. However, these basic methods carry
through to each of the models introduced earlier, including in cases
with multivariate data and hundreds of parameters. Moreover, the
Metropolis-Hastings approach can be combined with the Gibbs
sampling approach, so that if the end user wishes to use Gibbs
sampling for some parameters, they are not restricted to choose
only conjugate priors for all parameters.

In addition to sampling the posterior distributions of the
parameters, this method allows sampling other objects of inter-
est, including forecasts of observed variables, impulse response
functions, and the unobserved state vector. This last possibility
is especially useful in cases such as the structural time series
model, in which the unobserved states correspond to interpretable
elements such as the trend and seasonal components. We provide
several illustrative examples of the various types of analysis that
are possible.

Forecasting and Time Series Decomposition

In our first example, we apply the Gibbs sampling approach to
a structural time series model in order to forecast U.S. Industrial
Production and to produce a decomposition of the series into level,
trend, and seasonal components. The model is

yt = µt + γt + εt observation equation

µt = βt +µt−1 +ζt level

βt = βt−1 +ξt trend

γt = γt−s +ηt seasonal

Here, we set the seasonal periodicity to s=12, since Industrial
Production is a monthly variable. We can construct this model
in Statsmodels as9

Fig. 4: Data and forecast with 80% credible interval; U.S. Industrial
Production.

Fig. 5: Estimated level, trend, and seasonal components, with 80%
credible interval; U.S. Industrial Production.

model = sm.tsa.UnobservedComponents(
y, 'lltrend', seasonal=12)

To produce the time-series decomposition into level, trend, and
seasonal components, we will use samples from the posterior of
the state vector (µt ,βt ,γt) for each time period t. These are im-
mediately available when using the Gibbs sampling approach; in
the earlier example, the draw at each iteration was assigned to the
variable sample_state. To produce forecasts, we need to draw from
the posterior predictive distribution for horizons h = 1,2, . . .H.
This can be easily accomplished by using the simulate method
introduced earlier. To be concrete, we can accomplish these tasks
by modifying section (b) of our Gibbs sampler iterations as
follows:

9. This model is often referred to as a "local linear trend" model (with
additionally a seasonal component); lltrend is an abbreviation of this name.

88 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 6: "Causal impact" of COVID-19 on U.S. Sales in Manufacturing and Trade Industries.

(b') Draw from the conditional posterior of
the state vector
model.update(params[i - 1])
sim.simulate()
save the draw for use later in time series
decomposition
states[i] = sim.simulated_state.T

Draw from the posterior predictive distribution
using the `simulate` method
n_fcast = 48
fcast[i] = model.simulate(

params[i - 1], n_fcast,
initial_state=states[i, -1]).to_frame()

These forecasts and the decomposition into level, trend, and sea-
sonal components are summarized in Figures 4 and 5, which show
the median values along with 80% credible intervals. Notably, the
intervals shown incorporate for both the uncertainty arising from
the stochastic terms in the model as well as the need to estimate
the models’ parameters.10

Casual impacts

A closely related procedure described in [BGK+15] uses a
Bayesian structural time series model to estimate the "causal
impact" of some event on some observed variable. This approach
stops estimation of the model just before the date of an event
and produces a forecast by drawing from the posterior predictive
density, using the procedure described just above. It then uses the
difference between the actual path of the data and the forecast to
estimate impact of the event.

An example of this approach is shown in Figure 6, in which we
use this method to illustrate the effect of the COVID-19 pandemic

10. The popular Prophet library, [TL17], similarly uses an additive model
combined with Bayesian sampling methods to produce forecasts and decom-
positions, although its underlying model is a GAM rather than a state space
model.

on U.S. Sales in Manufacturing and Trade Industries.11

Extensions

There are many extensions to the time series models presented
here that are made possible when using Bayesian inference.
First, it is easy to create custom state space models within the
statsmodels framework. As one example, the statsmodels
documentation describes how to create a model that extends the
typical VAR described above with time-varying parameters.12

These custom state space models automatically inherit all the
functionality described above, so that Bayesian inference can be
conducted in exactly the same way.

Second, because the general state space model available in
statsmodels and introduced above allows for time-varying
system matrices, it is possible using Gibbs sampling methods
to introduce support for automatic outlier handling, stochastic
volatility, and regime switching models, even though these are
largely infeasible in statsmodels when using frequentist meth-
ods such as maximum likelihood estimation.13

Conclusion

This paper introduces the suite of time series models available in
statsmodels and shows how Bayesian inference using Markov
chain Monte Carlo methods can be applied to estimate their
parameters and produce analyses of interest, including time series
decompositions and forecasts.

11. In this example, we used a local linear trend model with no seasonal
component.

12. For details, see https://www.statsmodels.org/devel/examples/notebooks/
generated/statespace_tvpvar_mcmc_cfa.html.

13. See, for example, [SW16] for an application of these techniques that
handles outliers, [KSC98] for stochastic volatility, and [KN98] for an applica-
tion to dynamic factor models with regime switching.

BAYESIAN ESTIMATION AND FORECASTING OF TIME SERIES IN STATSMODELS 89

REFERENCES

[BGK+15] Kay H. Brodersen, Fabian Gallusser, Jim Koehler, Nicolas Remy,
and Steven L. Scott. Inferring causal impact using Bayesian
structural time-series models. Annals of Applied Statistics, 9:247–
274, 2015. doi:10.1214/14-aoas788.

[CGH+17] Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel
Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker,
Jiqiang Guo, Peter Li, and Allen Riddell. Stan : A
Probabilistic Programming Language. Journal of Statisti-
cal Software, 76(1), January 2017. Institution: Columbia
Univ., New York, NY (United States); Harvard Univ., Cam-
bridge, MA (United States). URL: https://www.osti.gov/pages/
biblio/1430202-stan-probabilistic-programming-language, doi:
10.18637/jss.v076.i01.

[CJ09] Joshua C.C. Chan and Ivan Jeliazkov. Efficient simulation and in-
tegrated likelihood estimation in state space models. International
Journal of Mathematical Modelling and Numerical Optimisation,
1(1-2):101–120, January 2009. Publisher: Inderscience Publish-
ers. URL: https://www.inderscienceonline.com/doi/abs/10.1504/
IJMMNO.2009.03009.

[DK02] J. Durbin and S. J. Koopman. A simple and efficient simula-
tion smoother for state space time series analysis. Biometrika,
89(3):603–616, August 2002. URL: http://biomet.oxfordjournals.
org/content/89/3/603, doi:10.1093/biomet/89.3.603.

[DK12] James Durbin and Siem Jan Koopman. Time Series Analysis by
State Space Methods: Second Edition. Oxford University Press,
May 2012.

[DLT+17] Joshua V. Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo,
Srinivas Vasudevan, Dave Moore, Brian Patton, Alex Alemi,
Matt Hoffman, and Rif A. Saurous. TensorFlow Distributions.
Technical Report arXiv:1711.10604, arXiv, November 2017.
arXiv:1711.10604 [cs, stat] type: article. URL: http://arxiv.org/
abs/1711.10604, doi:10.48550/arXiv.1711.10604.

[Ful15] Chad Fulton. Estimating time series models by state space
methods in python: Statsmodels. 2015.

[HA18] Rob J Hyndman and George Athanasopoulos. Forecasting:
principles and practice. OTexts, 2018.

[Har90] Andrew C. Harvey. Forecasting, Structural Time Series Models
and the Kalman Filter. Cambridge University Press, 1990.

[HKOS08] Rob Hyndman, Anne B. Koehler, J. Keith Ord, and Ralph D.
Snyder. Forecasting with Exponential Smoothing: The State
Space Approach. Springer Science & Business Media, June 2008.
Google-Books-ID: GSyzox8Lu9YC.

[KCHM19] Ravin Kumar, Colin Carroll, Ari Hartikainen, and Osvaldo Mar-
tin. ArviZ a unified library for exploratory analysis of Bayesian
models in Python. Journal of Open Source Software, 4(33):1143,
2019. Publisher: The Open Journal. URL: https://doi.org/10.
21105/joss.01143, doi:10.21105/joss.01143.

[KN98] Chang-Jin Kim and Charles R. Nelson. Business Cycle Turning
Points, A New Coincident Index, and Tests of Duration Depen-
dence Based on a Dynamic Factor Model With Regime Switch-
ing. The Review of Economics and Statistics, 80(2):188–201,
May 1998. Publisher: MIT Press. URL: https://doi.org/10.1162/
003465398557447, doi:10.1162/003465398557447.

[KN99] Chang-Jin Kim and Charles R. Nelson. State-Space Models with
Regime Switching: Classical and Gibbs-Sampling Approaches
with Applications. MIT Press Books, The MIT Press, 1999. URL:
http://ideas.repec.org/b/mtp/titles/0262112388.html.

[KSC98] Sangjoon Kim, Neil Shephard, and Siddhartha Chib. Stochastic
Volatility: Likelihood Inference and Comparison with ARCH
Models. The Review of Economic Studies, 65(3):361–393, July
1998. 01855. URL: http://restud.oxfordjournals.org/content/65/
3/361, doi:10.1111/1467-937X.00050.

[MPS11] Wes McKinney, Josef Perktold, and Skipper Seabold. Time Series
Analysis in Python with statsmodels. In Stéfan van der Walt
and Jarrod Millman, editors, Proceedings of the 10th Python in
Science Conference, pages 107 – 113, 2011. doi:10.25080/
Majora-ebaa42b7-012.

[SP10] Skipper Seabold and Josef Perktold. Statsmodels: Econometric
and Statistical Modeling with Python. In Stéfan van der Walt and
Jarrod Millman, editors, Proceedings of the 9th Python in Science
Conference, pages 92 – 96, 2010. doi:10.25080/Majora-
92bf1922-011.

[SW16] James H. Stock and Mark W. Watson. Core Inflation and Trend
Inflation. Review of Economics and Statistics, 98(4):770–784,
March 2016. 00000. URL: http://dx.doi.org/10.1162/REST_a_
00608, doi:10.1162/REST_a_00608.

[SWF16] John Salvatier, Thomas V. Wiecki, and Christopher Fonnesbeck.
Probabilistic programming in Python using PyMC3. PeerJ
Computer Science, 2:e55, April 2016. Publisher: PeerJ Inc.
URL: https://peerj.com/articles/cs-55, doi:10.7717/peerj-
cs.55.

[TL17] Sean J. Taylor and Benjamin Letham. Forecasting at scale.
Technical Report e3190v2, PeerJ Inc., September 2017. ISSN:
2167-9843. URL: https://peerj.com/preprints/3190, doi:10.
7287/peerj.preprints.3190v2.

[WH99] Mike West and Jeff Harrison. Bayesian Forecasting and Dynamic
Models. Springer, New York, 2nd edition edition, March 1999.
00000.

90 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Python vs. the pandemic: a case study in high-stakes
software development

Cliff C. Kerr‡§∗, Robyn M. Stuart¶‖, Dina Mistry∗∗, Romesh G. Abeysuriya‖, Jamie A. Cohen‡, Lauren George††,
Michał Jastrzebski‡‡, Michael Famulare‡, Edward Wenger‡, Daniel J. Klein‡

F

Abstract—When it became clear in early 2020 that COVID-19 was going to
be a major public health threat, politicians and public health officials turned to
academic disease modelers like us for urgent guidance. Academic software
development is typically a slow and haphazard process, and we realized that
business-as-usual would not suffice for dealing with this crisis. Here we describe
the case study of how we built Covasim (covasim.org), an agent-based model
of COVID-19 epidemiology and public health interventions, by using standard
Python libraries like NumPy and Numba, along with less common ones like
Sciris (sciris.org). Covasim was created in a few weeks, an order of magnitude
faster than the typical model development process, and achieves performance
comparable to C++ despite being written in pure Python. It has become one
of the most widely adopted COVID models, and is used by researchers and
policymakers in dozens of countries. Covasim’s rapid development was enabled
not only by leveraging the Python scientific computing ecosystem, but also by
adopting coding practices and workflows that lowered the barriers to entry for
scientific contributors without sacrificing either performance or rigor.

Index Terms—COVID-19, SARS-CoV-2, Epidemiology, Mathematical modeling,
NumPy, Numba, Sciris

Background

For decades, scientists have been concerned about the possibility
of another global pandemic on the scale of the 1918 flu [Gar05].
Despite a number of "close calls" – including SARS in 2002
[AFG+04]; Ebola in 2014-2016 [Tea14]; and flu outbreaks in-
cluding 1957, 1968, and H1N1 in 2009 [SHK16], some of which
led to 1 million or more deaths – the last time we experienced
the emergence of a planetary-scale new pathogen was when HIV
spread globally in the 1980s [CHL+08].

In 2015, Bill Gates gave a TED talk stating that the world was
not ready to deal with another pandemic [Hof20]. While the Bill
& Melinda Gates Foundation (BMGF) has not historically focused
on pandemic preparedness, its expertise in disease surveillance,

* Corresponding author: cliff@covasim.org
‡ Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle,
USA
§ School of Physics, University of Sydney, Sydney, Australia
¶ Department of Mathematical Sciences, University of Copenhagen, Copen-
hagen, Denmark
|| Burnet Institute, Melbourne, Australia
** Twitter, Seattle, USA
†† Microsoft, Seattle, USA
‡‡ GitHub, San Francisco, USA

Copyright © 2022 Cliff C. Kerr et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

modeling, and drug discovery made it well placed to contribute to
a global pandemic response plan. Founded in 2008, the Institute
for Disease Modeling (IDM) has provided analytical support for
BMGF (which it has been a part of since 2020) and other global
health partners, with a focus on eradicating malaria and polio.
Since its creation, IDM has built up a portfolio of computational
tools to understand, analyze, and predict the dynamics of different
diseases.

When "coronavirus disease 2019" (COVID-19) and the virus
that causes it (SARS-CoV-2) were first identified in late 2019,
our team began summarizing what was known about the virus
[Fam19]. By early February 2020, even though it was more than
a month before the World Health Organization (WHO) declared
a pandemic [Med20], it had become clear that COVID-19 would
become a major public health threat. The outbreak on the Diamond
Princess cruise ship [RSWS20] was the impetus for us to start
modeling COVID in detail. Specifically, we needed a tool to (a)
incorporate new data as soon as it became available, (b) explore
policy scenarios, and (c) predict likely future epidemic trajectories.

The first step was to identify which software tool would form
the best starting point for our new COVID model. Infectious
disease models come in two major types: agent-based models track
the behavior of individual "people" (agents) in the simulation,
with each agent’s behavior represented by a random (probabilis-
tic) process. Compartmental models track populations of people
over time, typically using deterministic difference equations. The
richest modeling framework used by IDM at the time was EMOD,
which is a multi-disease agent-based model written in C++ and
based on JSON configuration files [BGB+18]. We also considered
Atomica, a multi-disease compartmental model written in Python
and based on Excel input files [KAK+19]. However, both of
these options posed significant challenges: as a compartmental
model, Atomica would have been unable to capture the individual-
level detail necessary for modeling the Diamond Princess out-
break (such as passenger-crew interactions); EMOD had sufficient
flexibility, but developing new disease modules had historically
required months rather than days.

As a result, we instead started developing Covasim ("COVID-
19 Agent-based Simulator") [KSM+21] from a nascent agent-
based model written in Python, LEMOD-FP ("Light-EMOD for
Family Planning"). LEMOD-FP was used to model reproductive
health choices of women in Senegal; this model had in turn
been based on an even simpler agent-based model of measles
vaccination programs in Nigeria ("Value-of-Information Simula-
tor" or VoISim). We subsequently applied the lessons we learned

PYTHON VS. THE PANDEMIC: A CASE STUDY IN HIGH-STAKES SOFTWARE DEVELOPMENT 91

Fig. 1: Daily reported global COVID-19-related deaths (top;
smoothed with a one-week rolling window), relative to the timing of
known variants of concern (VOCs) and variants of interest (VOIs), as
well as Covasim releases (bottom).

from developing Covasim to turn LEMOD-FP into a new family
planning model, "FPsim", which will be launched later this year
[OVCC+22].

Parallel to the development of Covasim, other research teams
at IDM developed their own COVID models, including one based
on the EMOD framework [SWC+22], and one based on an earlier
influenza model [COSF20]. However, while both of these models
saw use in academic contexts [KCP+20], neither were able to
incorporate new features quickly enough, or were easy enough to
use, for widespread external adoption in a policy context.

Covasim, by contrast, had immediate real-world impact. The
first version was released on 10 March 2020, and on 12 March
2020, its output was presented by Washington State Governor Jay
Inslee during a press conference as justification for school closures
and social distancing measures [KMS+21].

Since the early days of the pandemic, Covasim releases have
coincided with major events in the pandemic, especially the iden-
tification of new variants of concern (Fig. 1). Covasim was quickly
adopted globally, including applications in the UK regarding
school closures [PGKS+20], Australia regarding outbreak control
[SAK+21], and Vietnam regarding lockdown measures [PSN+21].

To date, Covasim has been downloaded from PyPI over
100,000 times [PeP22], has been used in dozens of academic
studies [KMS+21], and informed decision-making on every con-
tinent (Fig. 2), making it one of the most widely used COVID
models [KSM+21]. We believe key elements of its success include
(a) the simplicity of its architecture; (b) its high performance,
enabled by the use of NumPy arrays and Numba decorators;
and (c) our emphasis on prioritizing usability, including flexible
type handling and careful choices of default settings. In the
remainder of this paper, we outline these principles in more detail,
in the hope that these will provide a useful roadmap for other
groups wanting to quickly develop high-performance, easy-to-use

scientific computing libraries.

Software architecture and implementation

Covasim conceptual design and usage

Covasim is a standard susceptible-exposed-infectious-recovered
(SEIR) model (Fig. 3). As noted above, it is an agent-based model,
meaning that individual people and their interactions with one
another are simulated explicitly (rather than implicitly, as in a
compartmental model).

The fundamental calculation that Covasim performs is to
determine the probability that a given person, on a given time step,
will change from one state to another, such as from susceptible
to exposed (i.e., that person was infected), from undiagnosed to
diagnosed, or from critically ill to dead. Covasim is fully open-
source and available on GitHub (http://covasim.org) and PyPI
(pip install covasim), and comes with comprehensive
documentation, including tutorials (http://docs.covasim.org).

The first principle of Covasim’s design philosophy is that
"Common tasks should be simple" – for example, defining pa-
rameters, running a simulation, and plotting results. The following
example illustrates this principle; it creates a simulation with a
custom parameter value, runs it, and plots the results:
import covasim as cv
cv.Sim(pop_size=100e3).run().plot()

The second principle of Covasim’s design philosophy is "Un-
common tasks can’t always be simple, but they still should be
possible." Examples include writing a custom goodness-of-fit
function or defining a new population structure. To some extent,
the second principle is at odds with the first, since the more
flexibility an interface has, typically the more complex it is as
well.

To illustrate the tension between these two principles, the
following code shows how to run two simulations to determine the
impact of a custom intervention aimed at protecting the elderly in
Japan, with results shown in Fig. 4:
import covasim as cv

Define a custom intervention
def elderly(sim, old=70):

if sim.t == sim.day('2020-04-01'):
elderly = sim.people.age > old
sim.people.rel_sus[elderly] = 0.0

Set custom parameters
pars = dict(

pop_type = 'hybrid', # More realistic population
location = 'japan', # Japan's population pyramid
pop_size = 50e3, # Have 50,000 people total
pop_infected = 100, # 100 infected people
n_days = 90, # Run for 90 days

)

Run multiple sims in parallel and plot key results
label = 'Protect the elderly'
s1 = cv.Sim(pars, label='Default')
s2 = cv.Sim(pars, interventions=elderly, label=label)
msim = cv.parallel(s1, s2)
msim.plot(['cum_deaths', 'cum_infections'])

Similar design philosophies have been articulated by previously,
such as for Grails [AJ09] among others1.

1. Other similar philosophical statements include "The manifesto of Mat-
plotlib is: simple and common tasks should be simple to perform; provide
options for more complex tasks" (Data Processing Using Python) and "Simple,
common tasks should be simple to perform; Options should be provided to
enable more complex tasks" (Instrumental).

92 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 2: Locations where Covasim has been used to help produce a paper, report, or policy recommendation.

Fig. 3: Basic Covasim disease model. The blue arrow shows the
process of reinfection.

Simplifications using Sciris

A key component of Covasim’s architecture is heavy reliance
on Sciris (http://sciris.org) [KAH+ng], a library of functions for
scientific computing that provide additional flexibility and ease-
of-use on top of NumPy, SciPy, and Matplotlib, including paral-
lel computing, array operations, and high-performance container
datatypes.

As shown in Fig. 5, Sciris significantly reduces the number
of lines of code required to perform common scientific tasks,
allowing the user to focus on the code’s scientific logic rather than
the low-level implementation. Key Covasim features that rely on
Sciris include: ensuring consistent dictionary, list, and array types
(e.g., allowing the user to provide inputs as either lists or arrays);
referencing ordered dictionary elements by index; handling and
interconverting dates (e.g., allowing the user to provide either a
date string or a datetime object); saving and loading files; and

Fig. 4: Illustrative result of a simulation in Covasim focused on
exploring an intervention for protecting the elderly.

running simulations in parallel.

Array-based architecture

In a typical agent-based simulation, the outermost loop is over
time, while the inner loops iterate over different agents and agent
states. For a simulation like Covasim, with roughly 700 (daily)
timesteps to represent the first two years of the pandemic, tens
or hundreds of thousands of agents, and several dozen states, this
requires on the order of one billion update steps.

However, we can take advantage of the fact that each state
(such as agent age or their infection status) has the same data
type, and thus we can avoid an explicit loop over agents by instead
representing agents as entries in NumPy vectors, and performing
operations on these vectors. These two architectures are shown in

PYTHON VS. THE PANDEMIC: A CASE STUDY IN HIGH-STAKES SOFTWARE DEVELOPMENT 93

Fig. 5: Comparison of functionally identical code implemented without Sciris (left) and with (right). In this example, tasks that together take
30 lines of code without Sciris can be accomplished in 7 lines with it.

94 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 6: The standard object-oriented approach for implementing
agent-based models (top), compared to the array-based approach
used in Covasim (bottom).

Fig. 7: Performance comparison for FPsim from an explicit loop-
based approach compared to an array-based approach, showing a
factor of ~70 speed improvement for large population sizes.

Fig. 6. Compared to the explicitly object-oriented implementation
of an agent-based model, the array-based version is 1-2 orders of
magnitude faster for population sizes larger than 10,000 agents.
The relative performance of these two approaches is shown in
Fig. 7 for FPsim (which, like Covasim, was initially implemented
using an object-oriented approach before being converted to an
array-based approach). To illustrate the difference between object-
based and array-based implementations, the following example
shows how aging and death would be implemented in each:
Object-based agent simulation

class Person:

def age_person(self):
self.age += 1
return

def check_died(self):
rand = np.random.random()
if rand < self.death_prob:

self.alive = False
return

class Sim:

def run(self):

for t in self.time_vec:
for person in self.people:

if person.alive:
person.age_person()
person.check_died()

Array-based agent simulation

class People:

def age_people(self, inds):
self.age[inds] += 1
return

def check_died(self, inds):
rands = np.random.rand(len(inds))
died = rands < self.death_probs[inds]:
self.alive[inds[died]] = False
return

class Sim:

def run(self):
for t in self.time_vec:

alive = sc.findinds(self.people.alive)
self.people.age_people(inds=alive)
self.people.check_died(inds=alive)

Numba optimization

Numba is a compiler that translates subsets of Python and NumPy
into machine code [LPS15]. Each low-level numerical function
was tested with and without Numba decoration; in some cases
speed improvements were negligible, while in other cases they
were considerable. For example, the following function is roughly
10 times faster with the Numba decorator than without:
import numpy as np
import numba as nb

@nb.njit((nb.int32, nb.int32), cache=True)
def choose_r(max_n, n):

return np.random.choice(max_n, n, replace=True)

Since Covasim is stochastic, calculations rarely need to be exact;
as a result, most numerical operations are performed as 32-bit
operations.

Together, these speed optimizations allow Covasim to run at
roughly 5-10 million simulated person-days per second of CPU
time – a speed comparable to agent-based models implemented
purely in C or C++ [HPN+21]. Practically, this means that most
users can run Covasim analyses on their laptops without needing
to use cloud-based or HPC computing resources.

Lessons for scientific software development

Accessible coding and design

Since Covasim was designed to be used by scientists and health
officials, not developers, we made a number of design decisions
that preferenced accessibility to our audience over other principles
of good software design.

First, Covasim is designed to have as flexible of user inputs
as possible. For example, a date can be specified as an integer
number of days from the start of the simulation, as a string (e.g.
'2020-04-04'), or as a datetime object. Similarly, numeric
inputs that can have either one or multiple values (such as the
change in transmission rate following one or multiple lockdowns)
can be provided as a scalar, list, or NumPy array. As long as the
input is unambiguous, we prioritized ease-of-use and simplicity
of the interface over rigorous type checking. Since Covasim is a

PYTHON VS. THE PANDEMIC: A CASE STUDY IN HIGH-STAKES SOFTWARE DEVELOPMENT 95

top-level library (i.e., it does not perform low-level functions as
part of other libraries), this prioritization has been welcomed by
its users.

Second, "advanced" Python programming paradigms – such
as method and function decorators, lambda functions, multiple
inheritance, and "dunder" methods – have been avoided where
possible, even when they would otherwise be good coding prac-
tice. This is because a relatively large fraction of Covasim users,
including those with relatively limited Python backgrounds, need
to inspect and modify the source code. A Covasim user coming
from an R programming background, for example, may not have
encountered the NumPy function intersect1d() before, but
they can quickly look it up and understand it as being equivalent
to R’s intersect() function. In contrast, an R user who has
not encountered method decorators before is unlikely to be able to
look them up and understand their meaning (indeed, they may not
even know what terms to search for). While Covasim indeed does
use each of the "advanced" methods listed above (e.g., the Numba
decorators described above), they have been kept to a minimum
and sequestered in particular files the user is less likely to interact
with.

Third, testing for Covasim presented a major challenge. Given
that Covasim was being used to make decisions that affected tens
of millions of people, even the smallest errors could have poten-
tially catastrophic consequences. Furthermore, errors could arise
not only in the software logic, but also in an incorrectly entered
parameter value or a misinterpreted scientific study. Compounding
these challenges, features often had to be developed and used
on a timescale of hours or days to be of use to policymakers,
a speed which was incompatible with traditional software testing
approaches. In addition, the rapidly evolving codebase made it
difficult to write even simple regression tests. Our solution was to
use a hierarchical testing approach: low-level functions were tested
through a standard software unit test approach, while new features
and higher-level outputs were tested extensively by infectious
disease modelers who varied inputs corresponding to realistic
scenarios, and checked the outputs (predominantly in the form
of graphs) against their intuition. We found that these high-level
"sanity checks" were far more effective in catching bugs than
formal software tests, and as a result shifted the emphasis of
our test suite to prioritize the former. Public releases of Covasim
have held up well to extensive scrutiny, both by our external
collaborators and by "COVID skeptics" who were highly critical
of other COVID models [Den20].

Finally, since much of our intended audience has little to
no Python experience, we provided as many alternative ways of
accessing Covasim as possible. For R users, we provide exam-
ples of how to run Covasim using the reticulate package
[AUTE17], which allows Python to be called from within R.
For specific applications, such as our test-trace-quarantine work
(http://ttq-app.covasim.org), we developed bespoke webapps via
Jupyter notebooks [GP21] and Voilà [Qua19]. To help non-experts
gain intuition about COVID epidemic dynamics, we also devel-
oped a generic JavaScript-based webapp interface for Covasim
(http://app.covasim.org), but it does not have sufficient flexibility
to answer real-world policy questions.

Workflow and team management

Covasim was developed by a team of roughly 75 people with
widely disparate backgrounds: from those with 20+ years of
enterprise-level software development experience and no public

health background, through to public health experts with virtually
no prior experience in Python. Roughly 45% of Covasim con-
tributors had significant Python expertise, while 60% had public
health experience; only about half a dozen contributors (<10%)
had significant experience in both areas.

These half-dozen contributors formed a core group (including
the authors of this paper) that oversaw overall Covasim develop-
ment. Using GitHub for both software and project management,
we created issues and assigned them to other contributors based
on urgency and skillset match. All pull requests were reviewed by
at least one person from this group, and often two, prior to merge.
While the danger of accepting changes from contributors with
limited Python experience is self-evident, considerable risks were
also posed by contributors who lacked epidemiological insight.
For example, some of the proposed tests were written based on
assumptions that were true for a given time and place, but which
were not valid for other geographical contexts.

One surprising outcome was that even though Covasim is
largely a software project, after the initial phase of development
(i.e., the first 4-8 weeks), we found that relatively few tasks could
be assigned to the developers as opposed to the epidemiologists
and infectious disease modelers on the project. We believe there
are several reasons for this. First, epidemiologists tended to be
much more aware of knowledge they were missing (e.g., what
a particular NumPy function did), and were more readily able
to fill that gap (e.g., look it up in the documentation or on
Stack Overflow). By contrast, developers without expertise in
epidemiology were less able to identify gaps in their knowledge
and address them (e.g., by finding a study on Google Scholar).
As a consequence, many of the epidemiologists’ software skills
improved markedly over the first few months, while the develop-
ers’ epidemiology knowledge increased more slowly. Second, and
more importantly, we found that once transparent and performant
coding practices had been implemented, epidemiologists were able
to successfully adapt them to new contexts even without complete
understanding of the code. Thus, for developing a scientific
software tool, we propose that a successful staffing plan would
consist of a roughly equal ratio of developers and domain experts
during the early development phase, followed by a rapid (on a
timescale of weeks) ramp-down of developers and ramp-up of
domain experts.

Acknowledging that Covasim’s potential user base includes
many people who have limited coding skills, we developed a three-
tiered support model to maximize Covasim’s real-world policy
impact (Fig. 8). For "mode 1" engagements, we perform the anal-
yses using Covasim ourselves. While this mode typically ensures
high quality and efficiency, it is highly resource-constrained and
thus used only for our highest-profile engagements, such as with
the Vietnam Ministry of Health [PSN+21] and Washington State
Department of Health [KMS+21]. For "mode 2" engagements, we
offer our partners training on how to use Covasim, and let them
lead analyses with our feedback. This is our preferred mode of
engagement, since it balances efficiency and sustainability, and has
been used for contexts including the United Kingdom [PGKS+20]
and Australia [SLSS+22]. Finally, "mode 3" partnerships, in
which Covasim is downloaded and used without our direct input,
are of course the default approach in the open-source software
ecosystem, including for Python. While this mode is by far the
most scalable, in practice, relatively few health departments or
ministries of health have the time and internal technical capacity to
use this mode; instead, most of the mode 3 uptake of Covasim has

96 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

been by academic groups [LG+21]. Thus, we provide mode 1 and
mode 2 partnerships to make Covasim’s impact more immediate
and direct than would be possible via mode 3 alone.

Future directions

While the need for COVID modeling is hopefully starting to
decrease, we and our collaborators are continuing development
of Covasim by updating parameters with the latest scientific
evidence, implementing new immune dynamics [CSN+21], and
providing other usability and bug-fix updates. We also continue
to provide support and training workshops (including in-person
workshops, which were not possible earlier in the pandemic).

We are using what we learned during the development of
Covasim to build a broader suite of Python-based disease mod-
eling tools (tentatively named "*-sim" or "Starsim"). The suite
of Starsim tools under development includes models for family
planning [OVCC+22], polio, respiratory syncytial virus (RSV),
and human papillomavirus (HPV). To date, each tool in this
suite uses an independent codebase, and is related to Covasim
only through the shared design principles described above, and
by having used the Covasim codebase as the starting point for
development.

A major open question is whether the disease dynamics im-
plemented in Covasim and these related models have sufficient
overlap to be refactored into a single disease-agnostic modeling
library, which the disease-specific modeling libraries would then
import. This "core and specialization" approach was adopted by
EMOD and Atomica, and while both frameworks continue to be
used, no multi-disease modeling library has yet seen widespread
adoption within the disease modeling community. The alternative
approach, currently used by the Starsim suite, is for each disease
model to be a self-contained library. A shared library would
reduce code duplication, and allow new features and bug fixes
to be immediately rolled out to multiple models simultaneously.
However, it would also increase interdependencies that would have
the effect of increasing code complexity, increasing the risk of
introducing subtle bugs. Which of these two options is preferable
likely depends on the speed with which new disease models need
to be implemented. We hope that for the foreseeable future, none
will need to be implemented as quickly as Covasim.

Acknowledgements

We thank additional contributors to Covasim, including Katherine
Rosenfeld, Gregory R. Hart, Rafael C. Núñez, Prashanth Selvaraj,
Brittany Hagedorn, Amanda S. Izzo, Greer Fowler, Anna Palmer,
Dominic Delport, Nick Scott, Sherrie L. Kelly, Caroline S. Ben-
nette, Bradley G. Wagner, Stewart T. Chang, Assaf P. Oron, Paula
Sanz-Leon, and Jasmina Panovska-Griffiths. We also wish to thank
Maleknaz Nayebi and Natalie Dean for helpful discussions on
code architecture and workflow practices, respectively.

REFERENCES

[AFG+04] Roy M Anderson, Christophe Fraser, Azra C Ghani, Christl A
Donnelly, Steven Riley, Neil M Ferguson, Gabriel M Leung,
Tai H Lam, and Anthony J Hedley. Epidemiology, transmis-
sion dynamics and control of sars: the 2002–2003 epidemic.
Philosophical Transactions of the Royal Society of London.
Series B: Biological Sciences, 359(1447):1091–1105, 2004.
doi:10.1098/rstb.2004.1490.

[AJ09] Bashar Abdul-Jawad. Groovy and Grails Recipes. Springer,
2009.

[AUTE17] JJ Allaire, Kevin Ushey, Yuan Tang, and Dirk Eddelbuettel.
reticulate: R Interface to Python, 2017. URL: https://github.
com/rstudio/reticulate.

[BGB+18] Anna Bershteyn, Jaline Gerardin, Daniel Bridenbecker, Christo-
pher W Lorton, Jonathan Bloedow, Robert S Baker, Guil-
laume Chabot-Couture, Ye Chen, Thomas Fischle, Kurt Frey,
et al. Implementation and applications of EMOD, an individual-
based multi-disease modeling platform. Pathogens and disease,
76(5):fty059, 2018. doi:10.1093/femspd/fty059.

[CHL+08] Myron S Cohen, Nick Hellmann, Jay A Levy, Kevin DeCock,
Joep Lange, et al. The spread, treatment, and prevention of
HIV-1: evolution of a global pandemic. The Journal of Clin-
ical Investigation, 118(4):1244–1254, 2008. doi:10.1172/
JCI34706.

[COSF20] Dennis L Chao, Assaf P Oron, Devabhaktuni Srikrishna, and
Michael Famulare. Modeling layered non-pharmaceutical inter-
ventions against SARS-CoV-2 in the United States with Corvid.
MedRxiv, 2020. doi:10.1101/2020.04.08.20058487.

[CSN+21] Jamie A Cohen, Robyn Margaret Stuart, Rafael C Nùñez,
Katherine Rosenfeld, Bradley Wagner, Stewart Chang, Cliff
Kerr, Michael Famulare, and Daniel J Klein. Mechanistic mod-
eling of SARS-CoV-2 immune memory, variants, and vaccines.
medRxiv, 2021. doi:10.1101/2021.05.31.21258018.

[Den20] Denim, Sue. Another Computer Simulation, Another Alarmist
Prediction, 2020. URL: https://dailysceptic.org/schools-paper.

[Fam19] Mike Famulare. nCoV: preliminary estimates of the confirmed-
case-fatality-ratio and infection-fatality-ratio, and initial pan-
demic risk assessment. Institute for Disease Modeling, 2019.

[Gar05] Laurie Garrett. The next pandemic. Foreign Aff., 84:3, 2005.
doi:10.2307/20034417.

[GP21] Brian E. Granger and Fernando Pérez. Jupyter: Thinking and
storytelling with code and data. Computing in Science & En-
gineering, 23(2):7–14, 2021. doi:10.1109/MCSE.2021.
3059263.

[Hof20] Bert Hofman. The global pandemic. Horizons: Journal of
International Relations and Sustainable Development, (16):60–
69, 2020.

[HPN+21] Robert Hinch, William JM Probert, Anel Nurtay, Michelle
Kendall, Chris Wymant, Matthew Hall, Katrina Lythgoe, Ana
Bulas Cruz, Lele Zhao, Andrea Stewart, et al. OpenABM-
Covid19—An agent-based model for non-pharmaceutical inter-
ventions against COVID-19 including contact tracing. PLoS
computational biology, 17(7):e1009146, 2021. doi:10.
1371/journal.pcbi.1009146.

[KAH+ng] Cliff C Kerr, Romesh G Abeysuriya, Vlad-S, tefan Harbuz,
George L Chadderdon, Parham Saidi, Paula Sanz-Leon, James
Jansson, Maria del Mar Quiroga, Sherrie Hughes, Rowan
Martin-and Kelly, Jamie Cohen, Robyn M Stuart, and Anna
Nachesa. Sciris: a Python library to simplify scientific com-
puting. Available at http://paper.sciris.org, 2022 (forthcoming).

[KAK+19] David J Kedziora, Romesh Abeysuriya, Cliff C Kerr, George L
Chadderdon, Vlad-S, tefan Harbuz, Sarah Metzger, David P Wil-
son, and Robyn M Stuart. The Cascade Analysis Tool: software
to analyze and optimize care cascades. Gates Open Research, 3,
2019. doi:10.12688/gatesopenres.13031.2.

[KCP+20] Joel R Koo, Alex R Cook, Minah Park, Yinxiaohe Sun, Haoyang
Sun, Jue Tao Lim, Clarence Tam, and Borame L Dickens.
Interventions to mitigate early spread of sars-cov-2 in singapore:
a modelling study. The Lancet Infectious Diseases, 20(6):678–
688, 2020. doi:10.1016/S1473-3099(20)30162-6.

[KMS+21] Cliff C Kerr, Dina Mistry, Robyn M Stuart, Katherine Rosenfeld,
Gregory R Hart, Rafael C Núñez, Jamie A Cohen, Prashanth
Selvaraj, Romesh G Abeysuriya, Michał Jastrzębski, et al. Con-
trolling COVID-19 via test-trace-quarantine. Nature Commu-
nications, 12(1):1–12, 2021. doi:10.1038/s41467-021-
23276-9.

[KSM+21] Cliff C Kerr, Robyn M Stuart, Dina Mistry, Romesh G Abey-
suriya, Katherine Rosenfeld, Gregory R Hart, Rafael C Núñez,
Jamie A Cohen, Prashanth Selvaraj, Brittany Hagedorn, et al.
Covasim: an agent-based model of COVID-19 dynamics and
interventions. PLOS Computational Biology, 17(7):e1009149,
2021. doi:10.1371/journal.pcbi.1009149.

[LG+21] Junjiang Li, Philippe Giabbanelli, et al. Returning to a normal
life via COVID-19 vaccines in the United States: a large-
scale Agent-Based simulation study. JMIR medical informatics,
9(4):e27419, 2021. doi:10.2196/27419.

PYTHON VS. THE PANDEMIC: A CASE STUDY IN HIGH-STAKES SOFTWARE DEVELOPMENT 97

Fig. 8: The three pathways to impact with Covasim, from high bandwidth/small scale to low bandwidth/large scale. IDM: Institute for Disease
Modeling; OSS: open-source software; GPG: global public good; PyPI: Python Package Index.

[LPS15] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A
llvm-based python jit compiler. In Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC, pages
1–6, 2015. doi:10.1145/2833157.2833162.

[Med20] The Lancet Respiratory Medicine. COVID-19: delay, mitigate,
and communicate. The Lancet Respiratory Medicine, 8(4):321,
2020. doi:10.1016/S2213-2600(20)30128-4.

[OVCC+22] Michelle L O’Brien, Annie Valente, Guillaume Chabot-Couture,
Joshua Proctor, Daniel Klein, Cliff Kerr, and Marita Zimmer-
mann. FPSim: An agent-based model of family planning for
informed policy decision-making. In PAA 2022 Annual Meeting.
PAA, 2022.

[PeP22] PePy. PePy download statistics, 2022. URL: https://pepy.tech/
project/covasim.

[PGKS+20] Jasmina Panovska-Griffiths, Cliff C Kerr, Robyn M Stuart, Dina
Mistry, Daniel J Klein, Russell M Viner, and Chris Bonell.
Determining the optimal strategy for reopening schools, the
impact of test and trace interventions, and the risk of occurrence
of a second COVID-19 epidemic wave in the UK: a modelling
study. The Lancet Child & Adolescent Health, 4(11):817–827,
2020. doi:10.1016/S2352-4642(20)30250-9.

[PSN+21] Quang D Pham, Robyn M Stuart, Thuong V Nguyen, Quang C
Luong, Quang D Tran, Thai Q Pham, Lan T Phan, Tan Q Dang,
Duong N Tran, Hung T Do, et al. Estimating and mitigating the
risk of COVID-19 epidemic rebound associated with reopening
of international borders in Vietnam: a modelling study. The
Lancet Global Health, 9(7):e916–e924, 2021. doi:10.1016/
S2214-109X(21)00103-0.

[Qua19] QuantStack. And voilá! Jupyter Blog, 2019. URL: https://blog.
jupyter.org/and-voil%C3%A0-f6a2c08a4a93.

[RSWS20] Joacim Rocklöv, Henrik Sjödin, and Annelies Wilder-Smith.
COVID-19 outbreak on the Diamond Princess cruise ship: esti-
mating the epidemic potential and effectiveness of public health
countermeasures. Journal of Travel Medicine, 27(3):taaa030,
2020. doi:10.1093/jtm/taaa030.

[SAK+21] Robyn M Stuart, Romesh G Abeysuriya, Cliff C Kerr, Dina
Mistry, Dan J Klein, Richard T Gray, Margaret Hellard, and
Nick Scott. Role of masks, testing and contact tracing in
preventing COVID-19 resurgences: a case study from New
South Wales, Australia. BMJ open, 11(4):e045941, 2021.
doi:10.1136/bmjopen-2020-045941.

[SHK16] Patrick R Saunders-Hastings and Daniel Krewski. Review-
ing the history of pandemic influenza: understanding patterns
of emergence and transmission. Pathogens, 5(4):66, 2016.
doi:10.3390/pathogens5040066.

[SLSS+22] Paula Sanz-Leon, Nathan J Stevenson, Robyn M Stuart,
Romesh G Abeysuriya, James C Pang, Stephen B Lambert,
Cliff C Kerr, and James A Roberts. Risk of sustained SARS-
CoV-2 transmission in Queensland, Australia. Scientific reports,
12(1):1–9, 2022. doi:10.1101/2021.06.08.21258599.

[SWC+22] Prashanth Selvaraj, Bradley G Wagner, Dennis L Chao,
Maïna L’Azou Jackson, J Gabrielle Breugelmans, Nicholas Jack-
son, and Stewart T Chang. Rural prioritization may increase

the impact of COVID-19 vaccines in a representative COVAX
AMC country setting due to ongoing internal migration: A
modeling study. PLOS Global Public Health, 2(1):e0000053,
2022. doi:10.1371/journal.pgph.0000053.

[Tea14] WHO Ebola Response Team. Ebola virus disease in west
africa—the first 9 months of the epidemic and forward projec-
tions. New England Journal of Medicine, 371(16):1481–1495,
2014. doi:10.1056/NEJMoa1411100.

98 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Pylira: deconvolution of images in the presence of
Poisson noise

Axel Donath‡∗, Aneta Siemiginowska‡, Vinay Kashyap‡, Douglas Burke‡, Karthik Reddy Solipuram§, David van Dyk¶

F

Abstract—All physical and astronomical imaging observations are degraded by
the finite angular resolution of the camera and telescope systems. The recovery
of the true image is limited by both how well the instrument characteristics
are known and by the magnitude of measurement noise. In the case of a
high signal to noise ratio data, the image can be sharpened or “deconvolved”
robustly by using established standard methods such as the Richardson-Lucy
method. However, the situation changes for sparse data and the low signal to
noise regime, such as those frequently encountered in X-ray and gamma-ray
astronomy, where deconvolution leads inevitably to an amplification of noise
and poorly reconstructed images. However, the results in this regime can
be improved by making use of physically meaningful prior assumptions and
statistically principled modeling techniques. One proposed method is the LIRA
algorithm, which requires smoothness of the reconstructed image at multiple
scales. In this contribution, we introduce a new python package called Pylira,
which exposes the original C implementation of the LIRA algorithm to Python
users. We briefly describe the package structure, development setup and show
a Chandra as well as Fermi-LAT analysis example.

Index Terms—deconvolution, point spread function, poisson, low counts, X-ray,
gamma-ray

Introduction

Any physical and astronomical imaging process is affected by
the limited angular resolution of the instrument or telescope. In
addition, the quality of the resulting image is also degraded by
background or instrumental measurement noise and non-uniform
exposure. For short wavelengths and associated low intensities of
the signal, the imaging process consists of recording individual
photons (often called "events") originating from a source of
interest. This imaging process is typical for X-ray and gamma-
ray telescopes, but images taken by magnetic resonance imaging
or fluorescence microscopy show Poisson noise too. For each
individual photon, the incident direction, energy and arrival time
is measured. Based on this information, the event can be binned
into two dimensional data structures to form an actual image.

As a consequence of the low intensities associated to the
recording of individual events, the measured signal follows Pois-
son statistics. This imposes a non-linear relationship between the
measured signal and true underlying intensity as well as a coupling

* Corresponding author: axel.donath@cfa.harvard.edu
‡ Center for Astrophysics | Harvard & Smithsonian
§ University of Maryland Baltimore County
¶ Imperial College London

Copyright © 2022 Axel Donath et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

of the signal intensity to the signal variance. Any statistically
correct post-processing or reconstruction method thus requires a
careful treatment of the Poisson nature of the measured image.

To maximise the scientific use of the data, it is often desired to
correct the degradation introduced by the imaging process. Besides
correction for non-uniform exposure and background noise this
also includes the correction for the "blurring" introduced by the
point spread function (PSF) of the instrument. Where the latter
process is often called "deconvolution". Depending on whether
the PSF of the instrument is known or not, one distinguishes
between the "blind deconvolution" and "non blind deconvolution"
process. For astronomical observations, the PSF can often either
be simulated, given a model of the telescope and detector, or
inferred directly from the data by observing far distant objects,
which appear as a point source to the instrument.

While in other branches of astronomy deconvolution methods
are already part of the standard analysis, such as the CLEAN
algorithm for radio data, developed by [Hog74], this is not the
case for X-ray and gamma-ray astronomy. As any deconvolution
method aims to enhance small-scale structures in an image, it
becomes increasingly hard to solve for the regime of low signal-
to-noise ratio, where small-scale structures are more affected by
noise.

The Deconvolution Problem

Basic Statistical Model

Assuming the data in each pixel di in the recorded counts image
follows a Poisson distribution, the total likelihood of obtaining the
measured image from a model image of the expected counts λi
with N pixels is given by:

L (d|λ) =
N

∏
i

exp−diλ di
i

di!
(1)

By taking the logarithm, dropping the constant terms and inverting
the sign one can transform the product into a sum over pixels,
which is also often called the Cash [Cas79] fit statistics:

C (λ |d) =
N

∑
i
(λi−di logλi) (2)

Where the expected counts λi are given by the convolution of the
true underlying flux distribution xi with the PSF pk:

λi = ∑
k

xi pi−k (3)

This operation is often called "forward modelling" or "forward
folding" with the instrument response.

PYLIRA: DECONVOLUTION OF IMAGES IN THE PRESENCE OF POISSON NOISE 99

Richardson Lucy (RL)

To obtain the most likely value of xn given the data, one searches
a maximum of the total likelihood function, or equivalently a of
minimum C . This high dimensional optimization problem can
e.g., be solved by a classic gradient descent approach. Assuming
the pixels values xi of the true image as independent parameters,
one can take the derivative of Eq. 2 with respect to the individual
xi. This way one obtains a rule for how to update the current set
of pixels xn in each iteration of the optimization:

xn+1 = xn−α · ∂C (d|x)
∂xi

(4)

Where α is a factor to define the step size. This method is in
general equivalent to the gradient descent and backpropagation
methods used in modern machine learning techniques. This ba-
sic principle of solving the deconvolution problem for images
with Poisson noise was proposed by [Ric72] and [Luc74]. Their
method, named after the original authors, is often known as the
Richardson & Lucy (RL) method. It was shown by [Ric72] that
this converges to a maximum likelihood solution of Eq. 2. A
Python implementation of the standard RL method is available
e.g. in the Scikit-Image package [vdWSN+14].

Instead of the iterative, gradient descent based optimization it
is also possible to sample from the posterior distribution using a
simple Metropolis-Hastings [Has70] approach and uniform prior.
This is demonstrated in one of the Pylira online tutorials (Intro-
duction to Deconvolution using MCMC Methods).

RL Reconstruction Quality

While technically the RL method converges to a maximum like-
lihood solution, it mostly still results in poorly restored images,
especially if extended emission regions are present in the image.
The problem is illustrated in Fig. 1 using a simulated example
image. While for a low number of iterations, the RL method still
results in a smooth intensity distribution, the structure of the image
decomposes more and more into a set of point-like sources with
growing number of iterations.

Because of the PSF convolution, an extended emission region
can decompose into multiple nearby point sources and still lead
to good model prediction, when compared with the data. Those
almost equally good solutions correspond to many narrow local
minima or "spikes" in the global likelihood surface. Depending on
the start estimate for the reconstructed image x the RL method
will follow the steepest gradient and converge towards the nearest
narrow local minimum. This problem has been described by
multiple authors, such as [PR94] and [FBPW95].

Multi-Scale Prior & LIRA

One solution to this problem was described in [ECKvD04] and
[CSv+11]. First, the simple forward folded model described in
Eq. 3 can be extended by taking into account the non-uniform
exposure ei and an additional known background component bi:

λi = ∑
k
(ei · (xi +bi)) pi−k (5)

The background bi can be more generally understood as a "base-
line" image and thus include known structures, which are not of
interest for the deconvolution process. E.g., a bright point source
to model the core of an AGN while studying its jets.

Second, the authors proposed to extend the Poisson log-
likelihood function (Equation 2) by a log-prior term that controls

Fig. 1: The images show the result of the RL algorithm applied
to a simulated example dataset with varying numbers of iterations.
The image in the upper left shows the simulated counts. Those have
been derived from the ground truth (upper mid) by convolving with a
Gaussian PSF of width σ = 3 pix and applying Poisson noise to it.
The illustration uses the implementation of the RL algorithm from the
Scikit-Image package [vdWSN+14].

the smoothness of the reconstructed image on multiple spatial
scales. Starting from the full resolution, the image pixels xi are
collected into 2 by 2 groups Qk. The four pixel values associated
with each group are divided by their sum to obtain a grid of “split
proportions” with respect to the image down-sized by a factor of
two along both axes. This process is repeated using the down sized
image with pixel values equal to the sums over the 2 by 2 groups
from the full-resolution image, and the process continues until the
resolution of the image is only a single pixel, containing the total
sum of the full-resolution image. This multi-scale representation
is illustrated in Fig. 2.

For each of the 2x2 groups of the re-normalized images a
Dirichlet distribution is introduced as a prior:

φk ∝ Dirichlet(αk,αk,αk,αk) (6)

and multiplied across all 2x2 groups and resolution levels k. For
each resolution level a smoothing parameter αk is introduced.
These hyper-parameters can be interpreted as having an infor-
mation content equivalent of adding αk "hallucinated" counts in
each grouping. This effectively results in a smoothing of the
image at the given resolution level. The distribution of α values
at each resolution level is the further described by a hyper-prior
distribution:

p(αk) = exp(−δα3/3) (7)

Resulting in a fully hierarchical Bayesian model. A more com-
plete and detailed description of the prior definition is given in
[ECKvD04].

The problem is then solved by using a Gibbs MCMC sampling
approach. After a "burn-in" phase the sampling process typically
reaches convergence and starts sampling from the posterior distri-
bution. The reconstructed image is then computed as the mean of
the posterior samples. As for each pixel a full distribution of its
values is available, the information can also be used to compute
the associated error of the reconstructed value. This is another
main advantage over RL or Maxium A-Postori (MAP) algorithms.

100 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 2: The image illustrates the multi-scale decomposition used in
the LIRA prior for a 4x4 pixels example image. Each quadrant of 2x2
sub-images is labelled with QN . The sub-pixels in each quadrant are
labelled Λi j. .

The Pylira Package

Dependencies & Development

The Pylira package is a thin Python wrapper around the original
LIRA implementation provided by the authors of [CSv+11]. The
original algorithm was implemented in C and made available as a
package for the R Language [R C20]. Thus the implementation de-
pends on the RMath library, which is still a required dependency of
Pylira. The Python wrapper was built using the Pybind11 [JRM17]
package, which allows to reduce the code overhead introduced by
the wrapper to a minimum. For the data handling, Pylira relies on
Numpy [HMvdW+20] arrays for the serialisation to the FITS data
format on Astropy [Col18]. The (interactive) plotting functionality
is achieved via Matplotlib [Hun07] and Ipywidgets [wc15], which
are both optional dependencies. Pylira is openly developed on
Github at https://github.com/astrostat/pylira. It relies on GitHub
Actions as a continuous integration service and uses the Read
the Docs service to build and deploy the documentation. The on-
line documentation can be found on https://pylira.readthedocs.io.
Pylira implements a set of unit tests to assure compatibility
and reproducibility of the results with different versions of the
dependencies and across different platforms. As Pylira relies on
random sampling for the MCMC process an exact reproducibility
of results is hard to achieve on different platforms; however the
agreement of results is at least guaranteed in the statistical limit of
drawing many samples.

Installation

Pylira is available via the Python package index (pypi.org),
currently at version 0.1. As Pylira still depends on the RMath
library, it is required to install this first. So the recommended way
to install Pylira is on MacOS is:
1 $ brew install r
2 $ pip install pylira

On Linux the RMath dependency can be installed using standard
package managers. For example on Ubuntu, one would do

1 $ sudo apt-get install r-base-dev r-base r-mathlib
2 $ pip install pylira

For more detailed instructions see Pylira installation instructions.

API & Subpackages

Pylira is structured in multiple sub-packages. The pylira.src
module contains the original C implementation and the Pybind11
wrapper code. The pylira.core sub-package contains the
main Python API, pylira.utils includes utility functions
for plotting and serialisation. And pylira.data implements
multiple pre-defined datasets for testing and tutorials.

Analysis Examples

Simple Point Source

Pylira was designed to offer a simple Python class based user
interface, which allows for a short learning curve of using the
package for users who are familiar with Python in general and
more specifically with Numpy. A typical complete usage example
of the Pylira package is shown in the following:
1 import numpy as np
2 from pylira import LIRADeconvolver
3 from pylira.data import point_source_gauss_psf
4

5 # create example dataset
6 data = point_source_gauss_psf()
7

8 # define initial flux image
9 data["flux_init"] = data["flux"]

10

11 deconvolve = LIRADeconvolver(
12 n_iter_max=3_000,
13 n_burn_in=500,
14 alpha_init=np.ones(5)
15)
16

17 result = deconvolve.run(data=data)
18

19 # plot pixel traces, result shown in Figure 3
20 result.plot_pixel_traces_region(
21 center_pix=(16, 16), radius_pix=3
22)
23

24 # plot pixel traces, result shown in Figure 4
25 result.plot_parameter_traces()
26

27 # finally serialise the result
28 result.write("result.fits")

The main interface is exposed via the LIRADeconvolver
class, which takes the configuration of the algorithm on initial-
isation. Typical configuration parameters include the total num-
ber of iterations n_iter_max and the number of "burn-in"
iterations, to be excluded from the posterior mean computation.
The data, represented by a simple Python dict data structure,
contains a "counts", "psf" and optionally "exposure"
and "background" array. The dataset is then passed to the
LIRADeconvolver.run() method to execute the deconvolu-
tion. The result is a LIRADeconvolverResult object, which
features the possibility to write the result as a FITS file, as well
as to inspect the result with diagnostic plots. The result of the
computation is shown in the left panel of Fig. 3.

Diagnostic Plots

To validate the quality of the results Pylira provides many built-
in diagnostic plots. One of these diagnostic plot is shown in the
right panel of Fig. 3. The plot shows the image sampling trace

PYLIRA: DECONVOLUTION OF IMAGES IN THE PRESENCE OF POISSON NOISE 101

0 5 10 15 20 25 30
0

5

10

15

20

25

30

100

200

300

400

500

600

700

800

Po
st

er
io

r M
ea

n

0 500 1000 1500 2000 2500 3000
Number of Iterations

0

200

400

600

800

1000

Pixel trace for (16, 16)

Burn in
Valid
Mean
1 Std. Deviation

Fig. 3: The curves show the traces of value the pixel of interest for a simulated point source and its neighboring pixels (see code example).
The image on the left shows the posterior mean. The white circle in the image shows the circular region defining the neighboring pixels. The
blue line on the right plot shows the trace of the pixel of interest. The solid horizontal orange line shows the mean value (excluding burn-in)
of the pixel across all iterations and the shaded orange area the 1 σ error region. The burn in phase is shown in transparent blue and ignored
while computing the mean. The shaded gray lines show the traces of the neighboring pixels.

for a single pixel of interest and its surrounding circular region of
interest. This visualisation allows the user to assess the stability
of a small region in the image e.g. an astronomical point source
during the MCMC sampling process. Due to the correlation with
neighbouring pixels, the actual value of a pixel might vary in the
sampling process, which appears as "dips" in the trace of the pixel
of interest and anti-correlated "peaks" in the one or mutiple of
the surrounding pixels. In the example a stable state of the pixels
of interest is reached after approximately 1000 iterations. This
suggests that the number of burn-in iterations, which was defined
beforehand, should be increased.

Pylira relies on an MCMC sampling approach to sample
a series of reconstructed images from the posterior likelihood
defined by Eq. 2. Along with the sampling, it marginalises over
the smoothing hyper-parameters and optimizes them in the same
process. To diagnose the validity of the results it is important to
visualise the sampling traces of both the sampled images as well
as hyper-parameters.

Figure 4 shows another typical diagnostic plot created by the
code example above. In a multi-panel figure, the user can inspect
the traces of the total log-posterior as well as the traces of the
smoothing parameters. Each panel corresponds to the smoothing
hyper parameter introduced for each level of the multi-scale
representation of the reconstructed image. The figure also shows
the mean value along with the 1 σ error region. In this case,
the algorithm shows stable convergence after a burn-in phase of
approximately 200 iterations for the log-posterior as well as all of
the multi-scale smoothing parameters.

Astronomical Analysis Examples

Both in the X-ray as well as in the gamma-ray regime, the Galactic
Center is a complex emission region. It shows point sources,
extended sources, as well as underlying diffuse emission and thus
represents a challenge for any astronomical data analysis.

Chandra is a space-based X-ray observatory, which has been
in operation since 1999. It consists of nested cylindrical paraboloid
and hyperboloid surfaces, which form an imaging optical system
for X-rays. In the focal plane, it has multiple instruments for dif-
ferent scientific purposes. This includes a high-resolution camera
(HRC) and an Advanced CCD Imaging Spectrometer (ACIS). The
typical angular resolution is 0.5 arcsecond and the covered energy
ranges from 0.1 - 10 keV.

Figure 5 shows the result of the Pylira algorithm applied to
Chandra data of the Galactic Center region between 0.5 and 7 keV.
The PSF was obtained from simulations using the simulate_psf
tool from the official Chandra science tools ciao 4.14 [FMA+06].
The algorithm achieves both an improved spatial resolution as well
as a reduced noise level and higher contrast of the image in the
right panel compared to the unprocessed counts data shown in the
left panel.

As a second example, we use data from the Fermi Large Area
Telescope (LAT). The Fermi-LAT is a satellite-based imaging
gamma-ray detector, which covers an energy range of 20 MeV
to >300 GeV. The angular resolution varies strongly with energy
and ranges from 0.1 to >10 degree1.

Figure 6 shows the result of the Pylira algorithm applied to
Fermi-LAT data above 1 GeV to the region around the Galactic
Center. The PSF was obtained from simulations using the gtpsf
tool from the official Fermitools v2.0.19 [Fer19]. First, one can
see that the algorithm achieves again a considerable improvement
in the spatial resolution compared to the raw counts. It clearly
resolves multiple point sources left to the bright Galactic Center
source.

Summary & Outlook

The Pylira package provides Python wrappers for the LIRA al-
gorithm. It allows the deconvolution of low-counts data following

1. https://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.
htm

102 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

0 200 400 600 800 1000
Number of Iterations

500

0

500

1000

1500

Logpost
Burn in
Valid
Mean
1 Std. Deviation

0 200 400 600 800 1000
Number of Iterations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Smoothingparam0

0 200 400 600 800 1000
Number of Iterations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Smoothingparam1

0 200 400 600 800 1000
Number of Iterations

0.00

0.05

0.10

0.15

0.20

Smoothingparam2

0 200 400 600 800 1000
Number of Iterations

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Smoothingparam3

0 200 400 600 800 1000
Number of Iterations

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Smoothingparam4

Fig. 4: The curves show the traces of the log posterior value as well as traces of the values of the prior parameter values. The SmoothingparamN
parameters correspond to the smoothing parameters αN per multi-scale level. The solid horizontal orange lines show the mean value, the shaded
orange area the 1 σ error region. The burn in phase is shown transparent and ignored while estimating the mean.

17h45m40.6s40.4s 40.2s 40.0s 39.8s 39.6s

-29°00'25"

30"

35"

Right Ascension

De
cli

na
tio

n

Counts

17h45m40.6s40.4s 40.2s 40.0s 39.8s 39.6s

Right Ascension

Deconvolved

2

5

9

18

35

68

132

257

500

Co
un

ts

PSF

Fig. 5: Pylira applied to Chandra ACIS data of the Galactic Center region, using the observation IDs 4684 and 4684. The image on the left
shows the raw observed counts between 0.5 and 7 keV. The image on the right shows the deconvolved version. The LIRA hyperprior values
were chosen as ms_al_kap1=1, ms_al_kap2=0.02, ms_al_kap3=1. No baseline background model was included.

PYLIRA: DECONVOLUTION OF IMAGES IN THE PRESENCE OF POISSON NOISE 103

0°40' 20' 00' 359°40' 20'

0°40'

20'

00'

-0°20'

40'

Galactic Longitude

Ga
la

ct
ic

La
tit

ud
e

Counts

0°40' 20' 00' 359°40' 20'
Galactic Longitude

Deconvolved

2

5

9

16

26

43

72

120

200

Co
un

ts

PSF

Fig. 6: Pylira applied to Fermi-LAT data from the Galactic Center region. The image on the left shows the raw measured counts between
5 and 1000 GeV. The image on the right shows the deconvolved version. The LIRA hyperprior values were chosen as ms_al_kap1=1,
ms_al_kap2=0.02, ms_al_kap3=1. No baseline background model was included.

Poisson statistics using a Bayesian sampling approach and a multi-
scale smoothing prior assumption. The results can be easily written
to FITS files and inspected by plotting the trace of the sampling
process. This allows users to check for general convergence as
well as pixel to pixel correlations for selected regions of interest.
The package is openly developed on GitHub and includes tests
and documentation, such that it can be maintained and improved
in the future, while ensuring consistency of the results. It comes
with multiple built-in test datasets and explanatory tutorials in
the form of Jupyter notebooks. Future plans include the support
for parallelisation or distributed computing, more flexible prior
definitions and the possibility to account for systematic errors on
the PSF during the sampling process.

Acknowledgements

This work was conducted under the auspices of the CHASC
International Astrostatistics Center. CHASC is supported by NSF
grants DMS-21-13615, DMS-21-13397, and DMS-21-13605; by
the UK Engineering and Physical Sciences Research Council
[EP/W015080/1]; and by NASA 18-APRA18-0019. We thank
CHASC members for many helpful discussions, especially Xiao-
Li Meng and Katy McKeough. DvD was also supported in part
by a Marie-Skodowska-Curie RISE Grant (H2020-MSCA-RISE-
2019-873089) provided by the European Commission. Aneta
Siemiginowska, Vinay Kashyap, and Doug Burke further acknowl-
edge support from NASA contract to the Chandra X-ray Center
NAS8-03060.

REFERENCES

[Cas79] W. Cash. Parameter estimation in astronomy through ap-
plication of the likelihood ratio. The Astrophysical Journal,
228:939–947, March 1979. doi:10.1086/156922.

[Col18] Astropy Collaboration. The Astropy Project: Building an
Open-science Project and Status of the v2.0 Core Package. The
Astrophysical Journal, 156(3):123, September 2018. arXiv:
1801.02634, doi:10.3847/1538-3881/aabc4f.

[CSv+11] A. Connors, N. M. Stein, D. van Dyk, V. Kashyap, and
A. Siemiginowska. LIRA — The Low-Counts Image Restora-
tion and Analysis Package: A Teaching Version via R. In I. N.
Evans, A. Accomazzi, D. J. Mink, and A. H. Rots, editors,
Astronomical Data Analysis Software and Systems XX, volume
442 of Astronomical Society of the Pacific Conference Series,
page 463, July 2011.

[ECKvD04] David N. Esch, Alanna Connors, Margarita Karovska, and
David A. van Dyk. An image restoration technique with
error estimates. The Astrophysical Journal, 610(2):1213–
1227, aug 2004. URL: https://doi.org/10.1086/421761, doi:
10.1086/421761.

[FBPW95] D. A. Fish, A. M. Brinicombe, E. R. Pike, and J. G.
Walker. Blind deconvolution by means of the richardson–
lucy algorithm. J. Opt. Soc. Am. A, 12(1):58–65, Jan 1995.
URL: http://opg.optica.org/josaa/abstract.cfm?URI=josaa-12-
1-58, doi:10.1364/JOSAA.12.000058.

[Fer19] Fermi Science Support Development Team. Fermitools: Fermi
Science Tools. Astrophysics Source Code Library, record
ascl:1905.011, May 2019. arXiv:1905.011.

[FMA+06] Antonella Fruscione, Jonathan C. McDowell, Glenn E. Allen,
Nancy S. Brickhouse, Douglas J. Burke, John E. Davis, Nick
Durham, Martin Elvis, Elizabeth C. Galle, Daniel E. Har-
ris, David P. Huenemoerder, John C. Houck, Bish Ishibashi,
Margarita Karovska, Fabrizio Nicastro, Michael S. Noble,
Michael A. Nowak, Frank A. Primini, Aneta Siemiginowska,
Randall K. Smith, and Michael Wise. CIAO: Chandra’s data
analysis system. In David R. Silva and Rodger E. Doxsey,
editors, Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, volume 6270 of Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference Series,
page 62701V, June 2006. doi:10.1117/12.671760.

[Has70] W. K. Hastings. Monte Carlo Sampling Methods using Markov
Chains and their Applications. Biometrika, 57(1):97–109,
April 1970. doi:10.1093/biomet/57.1.97.

[HMvdW+20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der
Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del
Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant,
Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer
Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array pro-
gramming with NumPy. Nature, 585(7825):357–362, Septem-
ber 2020. URL: https://doi.org/10.1038/s41586-020-2649-2,
doi:10.1038/s41586-020-2649-2.

104 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

[Hog74] J. A. Hogbom. Aperture Synthesis with a Non-Regular
Distribution of Interferometer Baselines. Astronomy and As-
trophysics Supplement, 15:417, June 1974.

[Hun07] J. D. Hunter. Matplotlib: A 2d graphics environment. Com-
puting in Science & Engineering, 9(3):90–95, 2007. doi:
10.1109/MCSE.2007.55.

[JRM17] Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. py-
bind11 – seamless operability between c++11 and python,
2017. https://github.com/pybind/pybind11.

[Luc74] L. B. Lucy. An iterative technique for the rectification of
observed distributions. Astronomical Journal, 79:745, June
1974. doi:10.1086/111605.

[PR94] K. M. Perry and S. J. Reeves. Generalized Cross-Validation
as a Stopping Rule for the Richardson-Lucy Algorithm. In
Robert J. Hanisch and Richard L. White, editors, The Restora-
tion of HST Images and Spectra - II, page 97, January 1994.
doi:10.1002/ima.1850060412.

[R C20] R Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna,
Austria, 2020. URL: https://www.R-project.org/.

[Ric72] William Hadley Richardson. Bayesian-Based Iterative Method
of Image Restoration. Journal of the Optical Society of
America (1917-1983), 62(1):55, January 1972. doi:10.
1364/josa.62.000055.

[vdWSN+14] Stéfan van der Walt, Johannes L. Schönberger, Juan Nunez-
Iglesias, François Boulogne, Joshua D. Warner, Neil Yager,
Emmanuelle Gouillart, Tony Yu, and the scikit-image con-
tributors. scikit-image: image processing in Python. PeerJ,
2:e453, 6 2014. URL: https://doi.org/10.7717/peerj.453, doi:
10.7717/peerj.453.

[wc15] Jupyter widgets community. ipywidgets, a github repository.
Retrieved from https://github.com/jupyter-widgets/ipywidgets,
2015.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022) 105

Codebraid Preview for VS Code: Pandoc Markdown
Preview with Jupyter Kernels

Geoffrey M. Poore‡∗

F

Abstract—Codebraid Preview is a VS Code extension that provides a live
preview of Pandoc Markdown documents with optional support for executing
embedded code. Unlike typical Markdown previews, all Pandoc features are fully
supported because Pandoc itself generates the preview. The Markdown source
and the preview are fully integrated with features like bidirectional scroll sync.
The preview supports LaTeX math via KaTeX. Code blocks and inline code can
be executed with Codebraid, using either its built-in execution system or Jupyter
kernels. For executed code, any combination of the code and its output can be
displayed in the preview as well as the final document. Code execution is non-
blocking, so the preview always remains live and up-to-date even while code is
still running.

Index Terms—reproducibility, dynamic report generation, literate programming,
Python, Pandoc, Markdown, Project Jupyter

Introduction

Pandoc [JM22] is increasingly a foundational tool for creating sci-
entific and technical documents. It provides Pandoc’s Markdown
and other Markdown variants that add critical features absent in
basic Markdown, such as citations, footnotes, mathematics, and
tables. At the same time, Pandoc simplifies document creation
by providing conversion from Markdown (and other formats) to
formats like LaTeX, HTML, Microsoft Word, and PowerPoint.
Pandoc is especially useful for documents with embedded code
that is executed during the build process. RStudio’s RMarkdown
[RSt20] and more recently Quarto [RSt22] leverage Pandoc to
convert Markdown documents to other formats, with code exe-
cution provided by knitr [YX15]. JupyterLab [GP21] centers the
writing experience around an interactive, browser-based notebook
instead of a Markdown document, but still relies on Pandoc for
export to formats other than HTML [Jup22]. There are also ways
to interact with a Jupyter Notebook as a Markdown document,
such as Jupytext [MWtJT20] and Pandoc’s own native Jupyter
support.

Writing with Pandoc’s Markdown or a similar Markdown
variant has advantages when multiple output formats are required,
since Pandoc provides the conversion capabilities. Pandoc Mark-
down variants can also serve as a simpler syntax when creating
HTML, LaTeX, or similar documents. They allow HTML and
LaTeX to be intermixed with Markdown syntax. They also support

* Corresponding author: gpoore@uu.edu
‡ Union University

Copyright © 2022 Geoffrey M. Poore. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

including raw chunks of text in other formats such as reStructured-
Text. When executable code is involved, the RMarkdown-style
approach of Markdown with embedded code can sometimes be
more convenient than a browser-based Jupyter notebook since the
writing process involves more direct interaction with the complete
document source.

While using a Pandoc Markdown variant as a source format
brings many advantages, the actual writing process itself can
be less than ideal, especially when executable code is involved.
Pandoc Markdown variants are so powerful precisely because they
provide so many extensions to Markdown, but this also means
that they can only be fully rendered by Pandoc itself. When text
editors such as VS Code provide a built-in Markdown preview,
typically only a small subset of Pandoc features is supported,
so the representation of the document output will be inaccurate.
Some editors provide a visual Markdown editing mode, in which
a partially rendered version of the document is displayed in the
editor and menus or keyboard shortcuts may replace the direct
entry of Markdown syntax. These generally suffer from the same
issue. This is only exacerbated when the document embeds code
that is executed during the build process, since that goes even
further beyond basic Markdown.

An alternative is to use Pandoc itself to generate HTML or
PDF output, and then display this as a preview. Depending on the
text editor used, the HTML or PDF might be displayed within the
text editor in a panel beside the document source, or in a separate
browser window or PDF viewer. For example, Quarto offers both
possibilities, depending on whether RStudio, VS Code, or another
editor is used.1 While this approach resolves the inaccuracy issues
of a basic Markdown preview, it also gives up features such as
scroll sync that tightly integrate the Markdown source with the
preview. In the case of executable code, there is the additional
issue of a time delay in rendering the preview. Pandoc itself can
typically convert even a relatively long document in under one
second. However, when code is executed as part of the document
build process, preview update is blocked until code execution
completes.

This paper introduces Codebraid Preview, a VS Code exten-
sion that provides a live preview of Pandoc Markdown documents
with optional support for executing embedded code. Codebraid
Preview provides a Pandoc-based preview while avoiding most
of the traditional drawbacks of this approach. The next section

1. The RStudio editor is unique in also offering a Pandoc-based visual
editing mode, starting with version 1.4 from January 2021 (https://www.
rstudio.com/blog/announcing-rstudio-1-4/).

106 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

provides an overview of features. This is followed by sections
focusing on scroll sync, LaTeX support, and code execution as
examples of solutions and remaining challenges in creating a
better Pandoc writing experience.

Overview of Codebraid Preview

Codebraid Preview can be installed through the VS Code ex-
tension manager. Development is at https://github.com/gpoore/
codebraid-preview-vscode. Pandoc must be installed separately
(https://pandoc.org/). For code execution capabilities, Codebraid
must also be installed (https://github.com/gpoore/codebraid).

The preview panel can be opened using the VS Code command
palette, or by clicking the Codebraid Preview button that is visible
when a Markdown document is open. The preview panel takes the
document in its current state, converts it into HTML using Pandoc,
and displays the result using a webview. An example is shown in
Figure 1. Since the preview is generated by Pandoc, all Pandoc
features are fully supported.

By default, the preview updates automatically whenever the
Markdown source is changed. There is a short user-configurable
minimum update interval. For shorter documents, sub-second
updates are typical.

The preview uses the same styling CSS as VS Code’s built-
in Markdown preview, so it automatically adjusts to the VS Code
color theme. For example, changing between light and dark themes
changes the background and text colors in the preview.

Codebraid Preview leverages recent Pandoc advances to pro-
vide bidirectional scroll sync between the Markdown source
and the preview for all CommonMark-based Markdown variants
that Pandoc supports (commonmark, gfm, commonmark_x).
By default, Codebraid Preview treats Markdown documents as
commonmark_x, which is CommonMark with Pandoc exten-
sions for features like math, footnotes, and special list types. The
preview still works for other Markdown variants, but scroll sync is
disabled. By default, scroll sync is fully bidirectional, so scrolling
either the source or the preview will cause the other to scroll to
the corresponding location. Scroll sync can instead be configured
to be only from source to preview or only from preview to source.
As far as I am aware, this is the first time that scroll sync has been
implemented in a Pandoc-based preview.

The same underlying features that make scroll sync possible
are also used to provide other preview capabilities. Double-
clicking in the preview moves the cursor in the editor to the
corresponding line of the Markdown source.

Since many Markdown variants support LaTeX math, the
preview includes math support via KaTeX [EA22].

Codebraid Preview can simply be used for writing plain Pan-
doc documents. Optional execution of embedded code is possible
with Codebraid [GMP19], using its built-in code execution system
or Jupyter kernels. When Jupyter kernels are used, it is possible
to obtain the same output that would be present in a Jupyter
notebook, including rich output such as plots and mathematics. It
is also possible to specify a custom display so that only a selected
combination of code, stdout, stderr, and rich output is shown while
the rest are hidden. Code execution is decoupled from the preview
process, so the Markdown source can be edited and the preview
can update even while code is running in the background. As far as
I am aware, no previous software for executing code in Markdown
has supported building a document with partial code output before
execution has completed.

There is also support for document export with Pandoc, using
the VS Code command palette or the export-with-Pandoc button.

Scroll sync

Tight source-preview integration requires a source map, or a
mapping from characters in the source to characters in the output.
Due to Pandoc’s parsing algorithms, tracking source location
during parsing is not possible in the general case.2

Pandoc 2.11.3 was released in December 2020. It added
a sourcepos extension for CommonMark and formats
based on it, including GitHub-Flavored Markdown (GFM) and
commonmark_x (CommonMark plus extensions similar to Pan-
doc’s Markdown). The CommonMark parser uses a different
parsing algorithm from the Pandoc’s Markdown parser, and this
algorithm permits tracking source location. For the first time, it
was possible to construct a source map for a Pandoc input format.

Codebraid Preview defaults to commonmark_x as an input
format, since it provides the most features of all CommonMark-
based formats. Features continue to be added to commonmark_x
and it is gradually nearing feature parity with Pandoc’s Mark-
down. Citations are perhaps the most important feature currently
missing.3

Codebraid Preview provides full bidirectional scroll sync be-
tween source and preview for all CommonMark-based formats,
using data provided by sourcepos. In the output HTML, the
first image or inline text element created by each Markdown
source line is given an id attribute corresponding to the source
line number. When the source is scrolled to a given line range,
the preview scrolls to the corresponding HTML elements using
these id attributes. When the preview is scrolled, the visible
HTML elements are detected via the Intersection Observer API.4

Then their id attributes are used to determine the corresponding
Markdown line range, and the source scrolls to those lines.

Scroll sync is slightly more complicated when working with
output that is generated by executed code. For example, if a code
block is executed and creates several plots in the preview, there
isn’t necessarily a way to trace each individual plot back to a
particular line of code in the Markdown source. In such cases, the
line range of the executed code is mapped proportionally to the
vertical space occupied by its output.

Pandoc supports multi-file documents. It can be given a list
of files to combine into a single output document. Codebraid
Preview provides scroll sync for multi-file documents. For ex-
ample, suppose a document is divided into two files in the same
directory, chapter_1.md and chapter_2.md. Treating these
as a single document involves creating a YAML configuration file
_codebraid_preview.yaml that lists the files:

input-files:
- chapter_1.md
- chapter_2.md

Now launching a preview from either chapter_1.md or
chapter_2.md will display a preview that combines both
files. When the preview is scrolled, the editor scrolls to the
corresponding source location, automatically switching between

2. See for example https://github.com/jgm/pandoc/issues/4565.
3. The Pandoc Roadmap at https://github.com/jgm/pandoc/wiki/Roadmap

summarizes current commonmark_x capabilities.
4. For technical details, https://www.w3.org/TR/intersection-observer/. For

an overview, https://developer.mozilla.org/en-US/docs/Web/API/Intersection_
Observer_API.

CODEBRAID PREVIEW FOR VS CODE: PANDOC MARKDOWN PREVIEW WITH JUPYTER KERNELS 107

Fig. 1: Screenshot of a Markdown document with Codebraid Preview in VS Code. This document uses Codebraid to execute code with Jupyter
kernels, so all plots and math visible in the preview are generated during document build.

chapter_1.md and chapter_2.md depending on the part of
the preview that is visible.

The preview still works when the input format is set to a non-
CommonMark format, but in that case scroll sync is disabled. If
Pandoc adds sourcepos support for additional input formats in
the future, scroll sync will work automatically once Codebraid
Preview adds those formats to the supported list. It is possible
to attempt to reconstruct a source map by performing a parallel
string search on Pandoc output and the original source. This can
be error-prone due to text manipulation during format conversion,
but in the future it may be possible to construct a good enough
source map to extend basic scroll sync support to additional input
formats.

LaTeX support

Support for mathematics is one of the key features provided by
many Markdown variants in Pandoc, including commonmark_x.
Math support in the preview panel is supplied by KaTeX [EA22],
which is a JavaScript library for rendering LaTeX math in the
browser.

One of the disadvantages of using Pandoc to create the preview
is that every update of the preview is a complete update. This
makes the preview more sensitive to HTML rendering time. In
contrast, in a Jupyter notebook, it is common to write Markdown
in multiple cells which are rendered separately and independently.

MathJax [Mat22] provides a broader range of LaTeX support
than KaTeX, and is used in software such as JupyterLab and
Quarto. While MathJax performance has improved significantly
since the release of version 3.0 in 2019, KaTeX can still have a
speed advantage, so it is currently the default due to the importance

of HTML rendering. In the future, optional MathJax support may
be needed to provide broader math support. For some applications,
it may also be worth considering caching pre-rendered or image
versions of equations to improve performance.

Code execution

Optional support for executing code embedded in Markdown
documents is provided by Codebraid [GMP19]. Codebraid uses
Pandoc to convert a document into an abstract syntax tree (AST),
then extracts any inline or block code marked with Codebraid
attributes from the AST, executes the code, and finally formats the
code output so that Pandoc can use it to create the final output
document. Code execution is performed with Codebraid’s own
built-in system or with Jupyter kernels. For example, the code
block

```{.python .cb-run}
print("Hello *world!*")
```

would result in
Hello world!

after processing by Codebraid and finally Pandoc. The .cb-run
is a Codebraid attribute that marks the code block for execution
and specifies the default display of code output. Further examples
of Codebraid usage are visible in Figure 1.

Mixing a live preview with executable code provides potential
usability and security challenges. By default, code only runs when
the user selects execution in the VS Code command palette or
clicks the Codebraid execute button. When the preview automati-
cally updates as a result of Markdown source changes, it only uses

108 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

cached code output. Stale cached output is detected by hashing
executed code, and then marked in the preview to alert the user.

The standard approach to executing code within Markdown
documents blocks the document build process until all code has
finished running. Code is extracted from the Markdown source and
executed. Then the output is combined with the original source and
passed on to Pandoc or another Markdown application for final
conversion. This is the approach taken by RMarkdown, Quarto,
and similar software, as well as by Codebraid until recently. This
design works well for building a document a single time, but
blocking until all code has executed is not ideal in the context
of a document preview.

Codebraid now offers a new mode of code execution that al-
lows a document to be rebuilt continuously during code execution,
with each build including all code output available at that time.
This process involves the following steps:

1) The user selects code execution. Codebraid Preview
passes the document to Codebraid. Codebraid begins
code execution.

2) As soon as any code output is available, Codebraid
immediately streams this back to Codebraid Preview. The
output is in a format compatible with the YAML metadata
block at the start of Pandoc Markdown documents. The
output includes a hash of the code that was executed, so
that code changes can be detected later.

3) If the document is modified while code is running or if
code output is received, Codebraid Preview rebuilds the
preview. It creates a copy of the document with all current
Codebraid output inserted into the YAML metadata block
at the start of the document. This modified document is
then passed to Pandoc. Pandoc runs with a Lua filter5 that
modifies the document AST before final conversion. The
filter removes all code marked with Codebraid attributes
from the AST, and replaces it with the corresponding
code output stored in the AST metadata. If code has
been modified since execution began, this is detected
with the hash of the code, and an HTML class is added
to the output that will mark it visually as stale output.
Code that does not yet have output is replaced by a
visible placeholder to indicate that code is still running.
When the Lua filter finishes AST modifications, Pandoc
completes the document build, and the preview updates.

4) As long as code is executing, the previous process repeats
whenever the preview needs to be rebuilt.

5) Once code execution completes, the most recent output is
reused for all subsequent preview updates until the next
time the user chooses to execute code. Any code changes
continue to be detected by hashing the code during the
build process, so that the output can be marked visually
as stale in the preview.

The overall result of this process is twofold. First, building
a document involving executed code is nearly as fast as building
a plain Pandoc document. The additional output metadata plus
the filter are the only extra elements involved in the document
build, and Pandoc Lua filters have excellent performance. Second,
the output for each code chunk appears in the preview almost
immediately after the chunk finishes execution.

5. For an overview of Lua filters, see https://pandoc.org/lua-filters.html.

While this build process is significantly more interactive than
what has been possible previously, it also suggests additional
avenues for future exploration. Codebraid’s built-in code execution
system is designed to execute a predefined sequence of code
chunks and then exit. Jupyter kernels are currently used in the
same manner to avoid any potential issues with out-of-order
execution. However, Jupyter kernels can receive and execute code
indefinitely, which is how they commonly function in Jupyter note-
books. Instead of starting a new Jupyter kernel at the beginning of
each code execution cycle, it would be possible to keep the kernel
from the previous execution cycle and only pass modified code
chunks to it. This would allow the same out-of-order execution
issues that are possible in a Jupyter notebook. Yet that would
make possible much more rapid code output, particularly in cases
where large datasets must be loaded or significant preprocessing
is required.

Conclusion

Codebraid Preview represents a significant advance in tools for
writing with Pandoc. For the first time, it is possible to preview
a Pandoc Markdown document using Pandoc itself while having
features like scroll sync between the Markdown source and the
preview. When embedded code needs to be executed, it is possible
to see code output in the preview and to continue editing the
document during code execution, instead of having to wait until
code finishes running.

Codebraid Preview or future previewers that follow this ap-
proach may be perfectly adequate for shorter and even some longer
documents, but at some point a combination of document length,
document complexity, and mathematical content will strain what is
possible and ultimately decrease preview update frequency. Every
update of the preview involves converting the entire document
with Pandoc and then rendering the resulting HTML.

On the parsing side, Pandoc’s move toward CommonMark-
based Markdown variants may eventually lead to enough stan-
dardization that other implementations with the same syntax and
features are possible. This in turn might enable entirely new
approaches. An ideal scenario would be a Pandoc-compatible
JavaScript-based parser that can parse multiple Markdown strings
while treating them as having a shared document state for things
like labels, references, and numbering. For example, this could
allow Pandoc Markdown within a Jupyter notebook, with all
Markdown content sharing a single document state, maybe with
each Markdown cell being automatically updated based on Mark-
down changes elsewhere.

Perhaps more practically, on the preview display side, there
may be ways to optimize how the HTML generated by Pandoc is
loaded in the preview. A related consideration might be alternative
preview formats. There is a significant tradition of tight source-
preview integration in LaTeX (for example, [Lau08]). In principle,
Pandoc’s sourcepos extension should make possible Mark-
down to PDF synchronization, using LaTeX as an intermediary.

REFERENCES

[EA22] Emily Eisenberg and Sophie Alpert. KaTeX: The fastest math
typesetting library for the web, 2022. URL: https://katex.org/.

[GMP19] Geoffrey M. Poore. Codebraid: Live Code in Pandoc Mark-
down. In Chris Calloway, David Lippa, Dillon Niederhut, and
David Shupe, editors, Proceedings of the 18th Python in Science
Conference, pages 54 – 61, 2019. doi:10.25080/Majora-
7ddc1dd1-008.

CODEBRAID PREVIEW FOR VS CODE: PANDOC MARKDOWN PREVIEW WITH JUPYTER KERNELS 109

[GP21] Brian E. Granger and Fernando Pérez. Jupyter: Thinking and
storytelling with code and data. Computing in Science &
Engineering, 23(2):7–14, 2021. doi:10.1109/MCSE.2021.
3059263.

[JM22] John MacFarlane. Pandoc: a universal document converter, 2006–
2022. URL: https://pandoc.org/.

[Jup22] Jupyter Development Team. nbconvert: Convert Notebooks to
other formats, 2015–2022. URL: https://nbconvert.readthedocs.
io.

[Lau08] Jerôme Laurens. Direct and reverse synchronization with Sync-
TEX. TUGBoat, 29(3):365–371, 2008.

[Mat22] MathJax. MathJax: Beautiful and accessible math in all browsers,
2009–2022. URL: https://www.mathjax.org/.

[MWtJT20] Marc Wouts and the Jupytext Team. Jupyter notebooks as
Markdown documents, Julia, Python or R scripts, 2018–2020.
URL: https://jupytext.readthedocs.io/.

[RSt20] RStudio Inc. R Markdown, 2016–2020. URL: https://rmarkdown.
rstudio.com/.

[RSt22] RStudio Inc. Welcome to Quarto, 2022. URL: https://quarto.org/.
[YX15] Yihui Xie. Dynamic Documents with R and knitr. Chapman &

Hall/CRC Press, 2015.

110 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Incorporating Task-Agnostic Information in
Task-Based Active Learning Using a Variational

Autoencoder
Curtis Godwin‡†∗, Meekail Zain§†∗, Nathan Safir‡, Bella Humphrey§, Shannon P Quinn§¶

F

Abstract—It is often much easier and less expensive to collect data than to
label it. Active learning (AL) ([Set09]) responds to this issue by selecting which
unlabeled data are best to label next. Standard approaches utilize task-aware
AL, which identifies informative samples based on a trained supervised model.
Task-agnostic AL ignores the task model and instead makes selections based
on learned properties of the dataset. We seek to combine these approaches
and measure the contribution of incorporating task-agnostic information into
standard AL, with the suspicion that the extra information in the task-agnostic
features may improve the selection process. We test this on various AL methods
using a ResNet classifier with and without added unsupervised information from
a variational autoencoder (VAE). Although the results do not show a significant
improvement, we investigate the effects on the acquisition function and suggest
potential approaches for extending the work.

Index Terms—active learning, variational autoencoder, deep learning, pytorch,
semi-supervised learning, unsupervised learning

Introduction

In deep learning, the capacity for data gathering often signifi-
cantly outpaces the labeling. This is easily observed in the field
of bioimaging, where ground-truth labeling usually requires the
expertise of a clinician. For example, producing a large quantity
of CT scans is relatively simple, but having them labeled for
COVID-19 by cardiologists takes much more time and money.
These constraints ultimately limit the contribution of deep learning
to many crucial research problems.

This labeling issue has compelled advancements in the field of
active learning (AL) ([Set09]). In a typical AL setting, there is a
set of labeled data and a (usually larger) set of unlabeled data. A
model is trained on the labeled data, then the model is analyzed to
evaluate which unlabeled points should be labeled to best improve
the loss objective after further training. AL acknowledges labeling

† These authors contributed equally.
* Corresponding author: cmgodwin263@gmail.com, meekail.zain@uga.edu
‡ Institute for Artificial Intelligence, University of Georgia, Athens, GA 30602
USA
* Corresponding author: cmgodwin263@gmail.com, meekail.zain@uga.edu
§ Department of Computer Science, University of Georgia, Athens, GA 30602
USA
¶ Department of Cellular Biology, University of Georgia, Athens, GA 30602
USA

Copyright © 2022 Curtis Godwin et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

constraints by specifying a budget of points that can be labeled at
a time and evaluating against this budget.

In AL, the model for which we select new labels is referred to
as the task model. If this model is a classifier neural network, the
space in which it maps inputs before classifying them is known
as the latent space or representation space. A recent branch of
AL ([SS18], [SCN+18], [YK19]), prominent for its applications
to deep models, focuses on mapping unlabeled points into the task
model’s latent space before comparing them.

These methods are limited in their analysis by the labeled
data they must train on, failing to make use of potentially useful
information embedded in the unlabeled data. We therefore suggest
that this family of methods may be improved by extending their
representation spaces to include unsupervised features learned
over the entire dataset. For this purpose, we opt to use a variational
autoencoder (VAE) ([KW13]) , which is a prominent method for
unsupervised representation learning. Our main contributions are
(a) a new methodology for extending AL methods using VAE
features and (b) an experiment comparing AL performance across
two recent feature-based AL methods using the new method.

Related Literature

Active learning

Much of the early active learning (AL) literature is based on
shallower, less computationally demanding networks since deeper
architectures were not well-developed at the time. Settles ([Set09])
provides a review of these early methods. The modern approach
uses an acquisition function, which involves ranking all available
unlabeled points by some chosen heuristic H and choosing to
label the points of highest ranking.

The popularity of the acquisition approach has led to a widely-
used evaluation procedure, which we describe in Algorithm 1.

INCORPORATING TASK-AGNOSTIC INFORMATION IN TASK-BASED ACTIVE LEARNING USING A VARIATIONAL AUTOENCODER 111

This procedure trains a task model T on the initial labeled data,
records its test accuracy, then uses H to label a set of unlabeled
points. We then once again train T on the labeled data and record
its accuracy. This is repeated until a desired number of labels is
reached, and then the accuracies can be graphed against the num-
ber of available labels to demonstrate performance over the course
of labeling. We can use this evaluation algorithm to separately
evaluate multiple acquisition functions on their resulting accuracy
graphs. This is utilized in many AL papers to show the efficacy
of their suggested heuristics in comparison to others ([WZL+16],
[SS18], [SCN+18], [YK19]).

The prevailing approach to point selection has been to choose
unlabeled points for which the model is most uncertain, the as-
sumption being that uncertain points will be the most informative
([BRK21]). A popular early method was to label the unlabeled
points of highest Shannon entropy ([Sha48]) under the task model,
which is a measure of uncertainty between the classes of the
data. This method is now more commonly used in combination
with a representativeness measure ([WZL+16]) to avoid selecting
condensed clusters of very similar points.

Recent heuristics using deep features

For convolutional neural networks (CNNs) in image classification
settings, the task model T can be decomposed into a feature-
generating module

T f : Rn→ R f ,

which maps the input data vectors to the output of the final fully
connected layer before classification, and a classification module

Tc : R f →{0,1, ...,c},

where c is the number of classes.
Recent deep learning-based AL methods have approached the

notion of model uncertainty in terms of the rich features generated
by the learned model. Core-set ([SS18]) and MedAL ([SCN+18])
select unlabeled points that are the furthest from the labeled set
in terms of L2 distance between the learned features. For core-set,
each point constructing the set S in step 6 of Algorithm 1 is chosen
by

u∗ = argmax
u∈U

min
`̀̀∈L
||(T f (u)−T f (`̀̀))||2, (1)

where U is the unlabeled set and L is the labeled set. The
analogous operation for MedAL is

u∗ = argmax
u∈U

1
|L|

|L|
∑
i=1
||T f (u)−T f (Li)||2. (2)

Note that after a point u∗ is chosen, the selection of the next point
assumes the previous u∗ to be in the labeled set. This way we
discourage choosing sets that are closely packed together, leading
to sets that are more diverse in terms of their features. This effect
is more pronounced in the core-set method since it takes the
minimum distance whereas MedAL uses the average distance.

Another recent method ([YK19]) trains a regression network
to predict the loss of the task model, then takes the heuristic H
in Algorithm 1 to select the unlabeled points of highest predicted
loss. To implement this, the loss prediction network P is attached
to a ResNet task model T and is trained jointly with T . The
inputs to P are the features output by the ResNet’s four residual
blocks. These features are mapped into the same dimensionality
via a fully connected layer and then concatenated to form a

representation c. An additional fully connected layer then maps
c into a single value constituting the loss prediction.

When attempting to train a network to directly predict T ’s
loss during training, the ground truth losses naturally decrease as
T is optimized, resulting in a moving objective. The authors of
([YK19]) find that a more stable ground truth is the inequality
between the losses of given pairs of points. In this case, P is
trained on pairs of labeled points, so that P is penalized for
producing predicted loss pairs that exhibit a different inequality
than the corresponding true loss pair.

More specifically, for each batch of labeled data Lbatch ⊂ L
that is propagated through T during training, the batch of true
losses is computed and split randomly into a batch of pairs Pbatch.
The loss prediction network produces a corresponding batch of
predicted loss pairs, denoted P̃batch. The following pair loss is then
computed given each p ∈ Pbatch and its corresponding p̃ ∈ P̃batch:

Lpair(p, p̃) = max(0,−I (p) · (p̃(1)− p̃(2))+ξ), (3)

where I is the following indicator function for pair inequality:

I (p) =

{
1, p(1) > p(2)

−1, p(1) ≤ p(2)
. (4)

Variational Autoencoders

Variational autoencoders (VAEs) ([KW13]) are an unsupervised
method for modeling data using Bayesian posterior inference.
We begin with the Bayesian assumption that the data is well-
modeled by some distribution, often a multivariate Gaussian. We
also assume that this data distribution can be inferred reasonably
well by a lower dimensional random variable, also often modeled
by a multivariate Gaussian.

The inference process then consists of an encoding into the
lower dimensional latent variable, followed by a decoding back
into the data dimension. We parametrize both the encoder and the
decoder as neural networks, jointly optimizing their parameters
with the following loss function ([KW19]):

Lθ ,φ (x) = log pθ (x|z)+ [log pθ (z)− logqφ (z|x)], (5)

where θ and φ are the parameters of the encoder and the decoder,
respectively. The first term is the reconstruction error, penalizing
the parameters for producing poor reconstructions of the input
data. The second term is the regularization error, encouraging the
encoding to resemble a pre-selected prior distribution, commonly
a unit Gaussian prior.

The encoder of a well-optimized VAE can be used to gen-
erate latent encodings with rich features which are sufficient to
approximately reconstruct the data. The features also have some
geometric consistency, in the sense that the encoder is encouraged
to generate encodings in the pattern of a Gaussian distribution.

Methods

We observe that the notions of uncertainty developed in the core-
set and MedAL methods rely on distances between feature vectors
modeled by the task model T . Additionally, loss prediction relies
on a fully connected layer mapping from a feature space to a single
value, producing different predictions depending on the values of
the relevant feature vector. Thus all of these methods utilize spatial
reasoning in a vector space.

Furthermore, in each of these methods, the heuristic H only
has access to information learned by the task model, which is

112 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

trained only on the labeled points at a given timestep in the la-
beling procedure. Since variational autoencoder (VAE) encodings
are not limited by the contents of the labeled set, we suggest that
the aforementioned methods may benefit by expanding the vector
spaces they investigate to include VAE features learned across
the entire dataset, including the unlabeled data. These additional
features will constitute representative and previously inaccessible
information regarding the data, which may improve the active
learning process.

We implement this by first training a VAE model V on the
given dataset. V can then be used as a function returning the
VAE features for any given datapoint. We append these additional
features to the relevant vector spaces using vector concatenation,
an operation we denote with the symbol _. The modified point
selection operation in core-set then becomes

u∗ = argmax
u∈U

min
`̀̀∈L
||([T f (u)_ αV (u)]− [T f (`̀̀)_ αV (`̀̀)]||2,

(6)
where α is a hyperparameter that scales the influence of the VAE
features in computing the vector distance. To similarly modify the
loss prediction method, we concatenate the VAE features to the
final ResNet feature concatenation c before the loss prediction,
so that the extra information is factored into the training of the
prediction network P .

Experiments

In order to measure the efficacy of the newly proposed methods,
we generate accuracy graphs using Algorithm 1, freezing all
settings except the selection heuristic H . We then compare the
performance of the core-set and loss prediction heuristics with
their VAE-augmented counterparts.

We use ResNet-18 pretrained on ImageNet as the task model,
using the SGD optimizer with learning rate 0.001 and momen-
tum 0.9. We train on the MNIST ([Den12]) and ChestMNIST
([YSN21]) datasets. ChestMNIST consists of 112,120 chest X-ray
images resized to 28x28 and is one of several benchmark medical
image datasets introduced in ([YSN21]).

For both datasets we experiment on randomly selected subsets,
using 25000 points for MNIST and 30000 points for ChestMNIST.
In both cases we begin with 3000 initial labels and label 3000
points per active learning step. We opt to retrain the task model
after each labeling step instead of fine-tuning.

We use a similar training strategy as in ([SCN+18]), training
the task model until >99% train accuracy before selecting new
points to label. This ensures that the ResNet is similarly well fit to
the labeled data at each labeling iteration. This is implemented by
training for 10 epochs on the initial training set and increasing the
training epochs by 5 after each labeling iteration.

The VAEs used for the experiments are trained for 20 epochs
using an Adam optimizer with learning rate 0.001 and weight
decay 0.005. The VAE encoder architecture consists of four con-
volutional downsampling filters and two linear layers to learn the
low dimensional mean and log variance. The decoder consists of
an upsampling convolution and four size-preserving convolutions
to learn the reconstruction.

Experiments were run five times, each with a separate set of
randomly chosen initial labels, with the displayed results showing
the average validation accuracies across all runs. Figures 1 and
3 show the core-set results, while Figures 2 and 4 show the loss
prediction results. In all cases, shared random seeds were used to

ensure that the task models being compared were supplied with
the same initial set of labels.

With four NVIDIA 2080 GPUs, the total runtime for the
MNIST experiments was 5113s for core-set and 4955s for loss
prediction; for ChestMNIST, the total runtime was 7085s for core-
set and 7209s for loss prediction.

Fig. 1: The average MNIST results using the core-set heuristic versus
the VAE-augmented core-set heuristic for Algorithm 1 over 5 runs.

Fig. 2: The average MNIST results using the loss prediction heuristic
versus the VAE-augmented loss prediction heuristic for Algorithm 1
over 5 runs.

Fig. 3: The average ChestMNIST results using the core-set heuristic
versus the VAE-augmented core-set heuristic for Algorithm 1 over 5
runs.

To investigate the qualitative difference between the VAE and
non-VAE approaches, we performed an additional experiment

INCORPORATING TASK-AGNOSTIC INFORMATION IN TASK-BASED ACTIVE LEARNING USING A VARIATIONAL AUTOENCODER 113

Fig. 4: The average ChestMNIST results using the loss prediction
heuristic versus the VAE-augmented loss prediction heuristic for
Algorithm 1 over 5 runs.

to visualize an example of core-set selection. We first train the
ResNet-18 with the same hyperparameter settings on 1000 initial
labels from the ChestMNIST dataset, then randomly choose 1556
(5%) of the unlabeled points from which to select 100 points to
label. These smaller sizes were chosen to promote visual clarity in
the output graphs.

We use t-SNE ([VdMH08]) dimensionality reduction to show
the ResNet features of the labeled set, the unlabeled set, and the
points chosen to be labeled by core-set.

Fig. 5: A t-SNE visualization of the ChestMNIST points chosen by
core-set.

Discussion

Overall, the VAE-augmented active learning heuristics did not
exhibit a significant performance difference when compared with
their counterparts. The only case of a significant p-value (<0.05)
occurred during loss prediction on the MNIST dataset at 21000
labels.

The t-SNE visualizations in Figures 5 and 6 show some of
the influence that the VAE features have on the core-set selection

Fig. 6: A t-SNE visualization of the ChestMNIST points chosen by
core-set when the ResNet features are augmented with VAE features.

process. In 5, the selected points tend to be more spread out,
while in 6 they cluster at one edge. This appears to mirror the
transformation of the rest of the data, which is more spread out
without the VAE features, but becomes condensed in the center
when they are introduced, approaching the shape of a Gaussian
distribution.

It seems that with the added VAE features, the selected points
are further out of distribution in the latent space. This makes sense
because points tend to be more sparse at the tails of a Guassian
distribution and core-set prioritizes points that are well-isolated
from other points.

One reason for the lack of performance improvement may be
the homogeneous nature of the VAE, where the optimization goal
is reconstruction rather than classification. This could be improved
by using a multimodal prior in the VAE, which may do a better
job of modeling relevant differences between points.

Conclusion

Our original intuition was that additional unsupervised informa-
tion may improve established active learning methods, especially
when using a modern unsupervised representation method such as
a VAE. The experimental results did not indicate this hypothesis,
but additional investigation of the VAE features showed a notable
change in the task model latent space. Though this did not result in
superior point selections in our case, it is of interest whether dif-
ferent approaches to latent space augmentation in active learning
may fare better.

Future work may explore the use of class-conditional VAEs
in a similar application, since a VAE that can utilize the available
class labels may produce more effective representations, and it
could be retrained along with the task model after each labeling
iteration.

REFERENCES

[BRK21] Samuel Budd, Emma C Robinson, and Bernhard Kainz. A
survey on active learning and human-in-the-loop deep learning

114 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

for medical image analysis. Medical Image Analysis, 71:102062,
2021. doi:10.1016/j.media.2021.102062.

[Den12] Li Deng. The mnist database of handwritten digit images for
machine learning research. IEEE Signal Processing Magazine,
29(6):141–142, 2012. doi:10.1109/MSP.2012.2211477.

[KW13] Diederik P Kingma and Max Welling. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

[KW19] Diederik P. Kingma and Max Welling. An Intro-
duction to Variational Autoencoders. Now Publishers,
2019. URL: https://doi.org/10.1561%2F9781680836233, doi:
10.1561/9781680836233.

[SCN+18] Asim Smailagic, Pedro Costa, Hae Young Noh, Devesh
Walawalkar, Kartik Khandelwal, Adrian Galdran, Mostafa Mir-
shekari, Jonathon Fagert, Susu Xu, Pei Zhang, et al. Medal:
Accurate and robust deep active learning for medical image
analysis. In 2018 17th IEEE international conference on machine
learning and applications (ICMLA), pages 481–488. IEEE, 2018.
doi:10.1109/icmla.2018.00078.

[Set09] Burr Settles. Active learning literature survey. 2009.
[Sha48] Claude Elwood Shannon. A mathematical theory of communica-

tion. The Bell system technical journal, 27(3):379–423, 1948.
[SS18] Ozan Sener and Silvio Savarese. Active learning for convolutional

neural networks: A core-set approach. In International Conference
on Learning Representations, 2018. URL: https://openreview.net/
forum?id=H1aIuk-RW.

[VdMH08] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data
using t-sne. Journal of machine learning research, 9(11), 2008.

[WZL+16] Keze Wang, Dongyu Zhang, Ya Li, Ruimao Zhang, and Liang
Lin. Cost-effective active learning for deep image classification.
IEEE Transactions on Circuits and Systems for Video Technol-
ogy, 27(12):2591–2600, 2016. doi:10.1109/tcsvt.2016.
2589879.

[YK19] Donggeun Yoo and In So Kweon. Learning loss for active
learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 93–102, 2019.
doi:10.1109/CVPR.2019.00018.

[YSN21] Jiancheng Yang, Rui Shi, and Bingbing Ni. Medmnist classi-
fication decathlon: A lightweight automl benchmark for med-
ical image analysis. In 2021 IEEE 18th International Sym-
posium on Biomedical Imaging (ISBI), pages 191–195, 2021.
doi:10.1109/ISBI48211.2021.9434062.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022) 115

Awkward Packaging: building Scikit-HEP

Henry Schreiner‡∗, Jim Pivarski‡, Eduardo Rodrigues§

F

Abstract—Scikit-HEP has grown rapidly over the last few years, not just to serve
the needs of the High Energy Physics (HEP) community, but in many ways,
the Python ecosystem at large. AwkwardArray, boost-histogram/hist, and iminuit
are examples of libraries that are used beyond the original HEP focus. In this
paper we will look at key packages in the ecosystem, and how the collection of
30+ packages was developed and maintained. Also we will look at some of the
software ecosystem contributions made to packages like cibuildwheel, pybind11,
nox, scikit-build, build, and pipx that support this effort. We will also discuss the
Scikit-HEP developer pages and initial WebAssembly support.

Index Terms—packaging, ecosystem, high energy physics, community project

Introduction

High Energy Physics (HEP) has always had intense computing
needs due to the size and scale of the data collected. The
World Wide Web was invented at the CERN Physics laboratory
in Switzerland in 1989 when scientists in the EU were trying
to communicate results and datasets with scientist in the US,
and vice-versa [LCC+09]. Today, HEP has the largest scientific
machine in the world, at CERN: the Large Hadron Collider (LHC),
27 km in circumference [EB08], with multiple experiments with
thousands of collaborators processing over a petabyte of raw data
every day, with 100 petabytes being stored per year at CERN. This
is one of the largest scientific datasets in the world of exabyte scale
[PJ11], which is roughly comparable in order of magnitude to all
of astronomy or YouTube [SLF+15].

In the mid nineties, HEP users were beginning to look for
a new language to replace Fortran. A few HEP scientists started
investigating the use of Python around the release of 1.0.0 in 1994
[Tem22]. A year later, the ROOT project for an analysis toolkit
(and framework) was released, quickly making C++ the main
language for HEP. The ROOT project also needed an interpreted
language to driving analysis code. Python was rejected for this role
due to being "exotic" at the time, and because it was considered too
much to ask physicists to code in two languages. Instead, ROOT
provided a C++ interpreter, called CINT, which later was replaced
with Cling, which is the basis for the clang-repl project in LLVM
today [IVL22].

Python would start showing up in the late 90’s in experiment
frameworks as a configuration language. These frameworks were
primarily written in C++, but were made of many configurable

* Corresponding author: henryfs@princeton.edu
‡ Princeton University
§ University of Liverpool

Copyright © 2022 Henry Schreiner et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

parts [Lam98]. The glueing together of the system was done in
Python, a model still popular today, though some experiments are
now using Python + Numba as an alternative model, such as for
example the Xenon1T experiment [RTA+17], [RS21].

In the early 2000s, the use of Python HEP exploded, heavily
driven by experiments like LHCb developing frameworks and user
tools for scripting. ROOT started providing Python bindings in
2004 [LGMM05] that were not considered Pythonic [GTW20],
and still required a complex multi-hour build of ROOT to use1.
Analyses still consisted largely of ROOT, with Python sometimes
showing up.

By the mid 2010’s, a marked change had occurred, driven by
the success of Python in Data Science, especially in education.
Many new students were coming into HEP with little or no
C++ experience, but with existing knowledge of Python and the
growing Python data science ecosystem, like NumPy and Pandas.
Several HEP experiment analyses were performed in, or driven
by, Python, with ROOT only being used for things that were
not available in the Python ecosystem. Some of these were HEP
specific: ROOT is also a data format, so users needed to be able
to read data from ROOT files. Others were less specific: HEP
users have intense histogram requirements due to the data sizes,
large portions of HEP data are "jagged" rather than rectangular;
vector manipulation was important (especially Lorenz Vectors, a
four dimensional relativistic vector with a non-Euclidean metric);
and data fitting was important, especially with complex models
and accurate error estimation.

Beginnings of a scikit

In 2016, the ecosystem for Python in HEP was rather fragmented.
Physicists were developing tools in isolation, without knowing
out the overlaps with other tools, and without making them
interoperable. There were a handful of popular packages that
were useful in HEP spread around among different authors. The
ROOTPy project had several packages that made the ROOT-
Python bridge a little easier than the built-in PyROOT, such as the
root-numpy and related root-pandas packages. The C++ MINUIT
fitting library was integrated into ROOT, but the iminuit package
[Dea20] provided an easy to install standalone Python package
with an extracted copy of MINUIT. Several other specialized
standalone C++ packages had bindings as well. Many of the initial
authors were transitioning to a less-code centric role or leaving
for industry, leaving projects like ROOTPy and iminuit without
maintainers.

1. Almost 20 years later ROOT’s Python bindings have been rewritten for
easier Pythonizations, and installing ROOT in Conda is now much easier,
thanks in large part to efforts from Scikit-HEP developers.

116 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

numpythia

hepunits

histoprint

uhi

pyhepmc

pylhe

nndrone

Fig. 1: The Scikit-HEP ecosystem and affiliated packages.

Eduardo Rodrigues, a scientist working on the LHCb ex-
periment for the University of Cincinnati, started working on a
package called scikit-hep that would provide a set to tools useful
for physicists working on HEP analysis. The initial version of the
scikit-hep package had a simple vector library, HEP related units
and conversions, several useful statistical tools, and provenance
recording functionality,

He also placed the scikit-hep GitHub repository in a Scikit-
HEP GitHub organization, and asked several of the other HEP
related packages to join. The ROOTPy project was ending, with
the primary author moving on, and so several of the then-popular
packages2 that were included in the ROOTPy organization were
happily transferred to Scikit-HEP. Several other existing HEP
libraries, primarily interfacing to existing C++ simulation and
tracking frameworks, also joined, like PyJet and NumPythia. Some
of these libraries have been retired or replaced today, but were an
important part of Scikit-HEP’s initial growth.

First initial success

In 2016, the largest barrier to using Python in HEP in a Pythonic
way was ROOT. It was challenging to compile, had many non-
Python dependencies, was huge compared to most Python li-
braries, and didn’t play well with Python packaging. It was not
Pythonic, meaning it had very little support for Python protocols
like iteration, buffers, keyword arguments, tab completion and
inspect in, dunder methods, didn’t follow conventions for useful
reprs, and Python naming conventions; it was simply a direct on-
demand C++ binding, including pointers. Many Python analyses
started with a "convert data" step using PyROOT to read ROOT
files and convert them to a Python friendly format like HDF5.
Then the bulk of the analysis would use reproducible Python
virtual environments or Conda environments.

This changed when Jim Pivarski introduced the Uproot pack-
age, a pure-Python implementation of a ROOT file reader (and

2. The primary package of the ROOTPy project, also called ROOTPy, was
not transferred, but instead had a final release and then died. It was an
inspiration for the new PyROOT bindings, and influenced later Scikit-HEP
packages like mplhep. The transferred libraries have since been replaced by
integrated ROOT functionality. All these packages required ROOT, which is
not on PyPI, so were not suited for a Python-centric ecosystem.

later writer) that could remove the initial conversion environment
by simply pip installing a package. It also had a simple, Pythonic
interface and produced outputs Python users could immediately
use, like NumPy arrays, instead of PyROOT’s wrapped C++
pointers.

Uproot needed to do more than just be file format
reader/writer; it needed to provide a way to represent the special
structure and common objects that ROOT files could contain.
This lead to the development of two related packages that would
support uproot. One, uproot-methods, included Pythonic access to
functionality provided by ROOT for its core classes, like spatial
and Lorentz vectors. The other was AwkwardArray, which would
grow to become one of the most important and most general
packages in Scikit-HEP. This package allows NumPy-like idioms
for array-at-a-time manipulation on jagged data structures. A
jagged array is a (possibly structured) array with a variable length
dimension. These are very common and relevant in HEP; events
have a variable number of tracks, tracks have a variable number
of hits in the detector, etc. Many other fields also have jagged
data structures. While there are formats to store such structures,
computations on jagged structures have usually been closer to SQL
queries on multiple tables than direct object manipulation. Pandas
handles this through multiple indexing and a lot of duplication.

Uproot was a huge hit with incoming HEP students (see Fig 2);
suddenly they could access HEP data using a library installed with
pip or conda and no external compiler or library requirements, and
could easily use tools they already knew that were compatible with
the Python buffer protocol, like NumPy, Pandas and the rapidly
growing machine learning frameworks. There were still some gaps
and pain points in the ecosystem, but an analysis without writing
C++ (interpreted or compiled) and compiling ROOT manually was
finally possible. Scikit-HEP did not and does not intend to replace
ROOT, but it provides alternative solutions that work natively in
the Python "Big Data" ecosystem.

Several other useful HEP libraries were also written. Particle
was written for accessing the Particle Data Group (PDG) particle
data in a simple and Pythonic way. DecayLanguage originally
provided tooling for decay definitions, but was quickly expanded
to include tools to read and validate "DEC" decay files, an existing
text format used to configure simulations in HEP.

Building compiled packages

In 2018, HEP physicist and programmer Hans Dembinski pro-
posed a histogram library to the Boost libraries, the most influen-
tial C++ library collection; many additions to the standard library
are based on Boost. Boost.Histogram provided a histogram-as-
an-object concept from HEP, but was designed around C++14
templating, using composable axes and storage types. It originally
had an initial Python binding, written in Boost::Python. Henry
Schreiner proposed the creation of a standalone binding to be
written with pybind11 in Scikit-HEP. The original bindings were
removed, Boost::Histogram was accepted into the Boost libraries,
and work began on boost-histogram. IRIS-HEP, a multi-institution
project for sustainable HEP software, had just started, which was
providing funding for several developers to work on Scikit-HEP
project packages such as this one. This project would pioneer
standalone C++ library development and deployment for Scikit-
HEP.

There were already a variety of attempts at histogram libraries,
but none of them filled the requirements of HEP physicists:

AWKWARD PACKAGING: BUILDING SCIKIT-HEP 117

Use
 o

f S
cie

ntifi
c P

yth
on in

 H
EP

ROOT (C++ and PyROOT)

fiScienti c
Python

PyROOT

Use of Scikit-H
EP packages

(as a baseline for scale)

CMSSW config
(Python but not data analysis)

Scikit-HEP

Fig. 2: Adoption of scientific Python libraries and Scikit-HEP among members of the CMS experiment (one of the four major LHC experiments).
CMS requires users to fork github:cms-sw/cmssw, which can be used to identify 3484 physicist users, who created 16656 non-fork repos.
This plot quantifies adoption by counting "#include X", "import X", and "from X import" strings in the users’ code to measure
adoption of various libraries (most popular by category are shown).

YODA

YODA
histograms
in Coffea

B
o
o
st

::
H

is
to

g
ra

m
,

h
is

t,
 m

p
lh

e
p
 c

o
m

b
o

ROOT

mainstream Python adoption
in HEP: when many histogram

libraries lived and died

histograms
in rootpy

histogram part of ROOT
(395 C++ files)

Fig. 3: Developer activity on histogram libraries in HEP: number of unique committers to each library per month, smoothed (derived from git
logs). Illustrates the convergence of a fractured community (around 2017) into a unified one (now).

fills on pre-existing histograms, simple manipulation of multi-
dimensional histograms, competitive performance, and easy to
install in clusters or for students. Any new attempt here would
have to be clearly better than the existing collection of diverse
attempts (see Fig 3). The development of a library with compiled
components intended to be usable everywhere required good
support for building libraries that was lacking both in Scikit-
HEP and to an extent the broader Python ecosystem. Previous
advancements in the packaging ecosystem, such as the wheel
format for distributing binary platform dependent Python packages
and the manylinux specification and docker image that allowed a
single compiled wheel to target many distributions of Linux, but
there still were many challenges to making a library redistributable
on all platforms.

The boost-histogram library only depended on header-only
components of the Boost libraries, and the header-only pybind11
package, so it was able to avoid a separate compile step or
linking to external dependencies, which simplified the initial build
process. All needed files were collected from git submodules and
packed into a source distribution (SDist), and everything was built
using only setuptools, making build-from-source simple on any
system supporting C++14. This did not include RHEL 7, a popular
platform in HEP at the time, and on any platform building could
take several minutes and required several gigabytes of memory
to resolve the heavy C++ templating in the Boost libraries and

pybind11.
The first stand-alone development was azure-wheel-helpers, a

set of files that helped produce wheels on the new Azure Pipelines
platform. Building redistributable wheels requires a variety of
techniques, even without shared libraries, that vary dramatically
between platforms and were/are poorly documented. On Linux,
everything needs to be built inside a controlled manylinux image,
and post-processed by the auditwheel tool. On macOS, this in-
cludes downloading an official CPython binary for Python to allow
older versions of macOS to be targeted (10.9+), several special
environment variables, especially when cross compiling to Apple
Silicon, and post processing with the develwheel tool. Windows is
the simplest, as most versions of CPython work identically there.
azure-wheel-helpers worked well, and was quickly adapted for
the other packages in Scikit-HEP that included non-ROOT binary
components. Work here would eventually be merged into the
existing and general cibuildwheel package, which would become
the build tool for all non-ROOT binary packages in Scikit-HEP, as
well as over 600 other packages like matplotlib and numpy, and
was accepted into the PyPA (Python Packaging Authority).

The second major development was the upstreaming of CI
and build system developments to pybind11. Pybind11 is a C++
API for Python designed for writing a binding to C++, and
provided significant benefits to our packages over (mis)-using
Cython for bindings; Cython was designed to transpile a Python-

118 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

like language to C (or C++), and just happened to support bindings
since you can call C and C++ from it, but it was not what it
was designed for. Benefits of pybind11 included reduced code
complexity and duplication, no pre-process step (cythonize), no
need to pin NumPy when building, and a cross-package API. The
iMinuit package was later moved from Cython to pybind11 as
well, and pybind11 became the Scikit-HEP recommended binding
tool. We contributed a variety of fixes and features to pybind11,
including positional-only and keyword-only arguments, the option
to prepend to the overload chain, and an API for type access
and manipulation. We also completely redesigned CMake inte-
gration, added a new pure-Setuptools helpers file, and completely
redesigned the CI using GitHub Actions, running over 70 jobs on
a variety of systems and compilers. We also helped modernize and
improve all the example projects with simpler builds, new CI, and
cibuildwheel support.

This example of a project with binary components being
usable everywhere then encouraged the development of Awkward
1.0, a rewrite of AwkwardArray replacing the Python-only code
with compiled code using pybind11, fixing some long-standing
limitations, like an inability to slice past two dimensions or select
"n choose k" for k > 5; these simply could not be expressed
using Awkward 0’s NumPy expressions, but can be solved with
custom compiled kernels. This also enabled further developments
in backends [PEL20].

Broader ecosystem

Scikit-HEP had become a "toolset" for HEP analysis in Python, a
collection of packages that worked together, instead of a "toolkit"
like ROOT, which is one monopackage that tries to provide every-
thing [R+20]. A toolset is more natural in the Python ecosystem,
where we have good packaging tools and many existing libraries.
Scikit-HEP only needed to fill existing gaps, instead of covering
every possible aspect of an analysis like ROOT did. The original
scikit-hep package had its functionality pulled out into existing or
new separate packages such as HEPUnits and Vector, and the core
scikit-hep package instead became a metapackage with no unique
functionality on its own. Instead, it installs a useful subset of our
libraries for a physicist wanting to quickly get started on a new
analysis.

Scikit-HEP was quickly becoming the center of HEP specific
Python software (see Fig. 1). Several other projects or packages
joined Scikit-HEP iMinuit, a popular HEP and astrophysics fitting
library, was probably the most widely used single package to
have joined. PyHF and cabinetry also joined; these were larger
frameworks that could drive a significant part of an analysis
internally using other Scikit-HEP tools.

Other packages, like GooFit, Coffea, and zFit, were not added,
but were built on Scikit-HEP packages and had developers work-
ing closely with Scikit-HEP maintainers. Scikit-HEP introduced
an "affiliated" classification for these packages, which allowed
an external package to be listed on the Scikit-HEP website
and encouraged collaboration. Coffea had a strong influence
on histogram design, and zFit has contributed code to Scikit-
HEP. Currently all affiliated packages have at least one Scikit-
HEP developer as a maintainer, though that is currently not a
requirement. An affiliated package fills a particular need for the
community. Scikit-HEP doesn’t have to, or need to, attempt to
develop a package that others are providing, but rather tries to
ensure that the externally provided package works well with the

Boost::Histogram

boost-histogram

hist

mplhep

histoprint

thin wrapper

fully featured

plotting in
Matplotlib

plotting in
terminal

Fig. 4: The collection of histogram packages and related packages in
Scikit-HEP.

broader HEP ecosystem. The affiliated classification is also used
on broader ecosystem packages like pybind11 and cibuildwheel
that we recommend and share maintainers with.

Histogramming was designed to be a collection of specialized
packages (see Fig. 4) with carefully defined interoperability;
boost-histogram for manipulation and filling, Hist for a user-
friendly interface and simple plotting tools, histoprint for display-
ing histograms, and the existing mplhep and uproot packages also
needed to be able to work with histograms. This ecosystem was
built and is held together with UHI, which is a formal specification
agreed upon by several developers of different libraries, backed by
a statically typed Protocol, for a PlottableHistogram object. Pro-
ducers of histograms, like boost-histogram/hist and uproot provide
objects that follow this specification, and users of histograms,
such as mplhep and histoprint take any object that follows this
specification. The UHI library is not required at runtime, though it
does also provide a few simple utilities to help a library also accept
ROOT histograms, which do not (currently) follow the Protocol, so
several libraries have decided to include it at runtime too. By using
a static type checker like MyPy to statically enforce a Protocol,
libraries that can communicate without depending on each other
or on a shared runtime dependency and class inheritance. This has
been a great success story for Scikit-HEP, and We expect Protocols
to continue to be used in more places in the ecosystem.

The design for Scikit-HEP as a toolset is of many parts that
all work well together. One example of a package pulling together
many components is uproot-browser, a tool that combines uproot,
Hist, and Python libraries like textual and plotext to provide a
terminal browser for ROOT files.

Scikit-HEP’s external contributions continued to grow. One of
the most notable ones was our work on cibuildwheel. This was
a Python package that supported building redistributable wheels
on multiple CI systems. Unlike our own azure-wheel-helpers or
the competing multibuild package, it was written in Python, so
good practices in Python package design could apply, like unit
and integration tests, static checks, and it was easy to remain
independent of the underlying CI system. Building wheels on
Linux requires a docker image, macOS requires the python.org
Python, and Windows can use any copy of Python - cibuildwheel
uses this to supply Python in all cases, which keeps it from

AWKWARD PACKAGING: BUILDING SCIKIT-HEP 119

depending on the CI’s support for a particular Python version. We
merged our improvements to cibuildwheel, like better Windows
support, VCS versioning support, and better PEP 518 support.
We dropped azure-wheel-helpers, and eventually a scikit-build
maintainer joined the cibuildwheel project. cibuildwheel would
go on to join the PyPA, and is now in use in over 600 packages,
including numpy, matplotlib, mypy, and scikit-learn.

Our continued contributions to cibuildwheel included a
TOML-based configuration system for cibuildwheel 2.0, an over-
ride system to make supporting multiple manylinux and musllinux
targets easier, a way to build directly from SDists, an option to use
build instead of pip, the automatic detection of Python version
requirements, and better globbing support for build specifiers. We
also helped improve the code quality in various ways, including
fully statically typing the codebase, applying various checks and
style controls, automating CI processes, and improving support for
special platforms like CPython 3.8 on macOS Apple Silicon.

We also have helped with build, nox, pyodide, and many other
packages, improving the tooling we depend on to develop scikit-
build and giving back to the community.

The Scikit-HEP Developer Pages

A variety of packaging best practices were coming out of the
boost-histogram work, supporting both ease of installation for
users as well as various static checks and styling to keep the
package easy to maintain and reduce bugs. These techniques
would also be useful apply to Scikit-HEP’s nearly thirty other
packages, but applying them one-by-one was not scalable. The
development and adoption of azure-wheel-helpers included a se-
ries of blog posts that covered the Azure Pipelines platform and
wheel building details. This ended up serving as the inspiration
for a new set of pages on the Scikit-HEP website for developers
interested in making Python packages. Unlike blog posts, these
would be continuously maintained and extended over the years,
serving as a template and guide for updating and adding packages
to Scikit-HEP, and educating new developers.

These pages grew to describe the best practices for developing
and maintaining a package, covering recommended configuration,
style checking, testing, continuous integration setup, task runners,
and more. Shortly after the introduction of the developer pages,
Scikit-HEP developers started asking for a template to quickly
produce new packages following the guidelines. This was eventu-
ally produced; the "cookiecutter" based template is kept in sync
with the developer pages; any new addition to one is also added
to the other. The developer pages are also kept up to date using a
CI job that bumps any GitHub Actions or pre-commit versions to
the most recent versions weekly. Some portions of the developer
pages have been contributed to packaging.python.org, as well.

The cookie cutter was developed to be able to support multiple
build backends; the original design was to target both pure Python
and Pybind11 based binary builds. This has expanded to include
11 different backends by mid 2022, including Rust extensions,
many PEP 621 based backends, and a Scikit-Build based backend
for pybind11 in addition to the classic Setuptools one. This has
helped work out bugs and influence the design of several PEP
621 packages, including helping with the addition of PEP 621 to
Setuptools.

The most recent addition to the pages was based on a new
repo-review package which evaluates and existing repository to
see what parts of the guidelines are being followed. This was

helpful for monitoring adoption of the developer pages, especially
newer additions, across the Scikit-HEP packages. This package
was then implemented directly into the Scikit-HEP pages, using
Pyodide to run Python in WebAssembly directly inside a user’s
browser. Now anyone visiting the page can enter their repository
and branch, and see the adoption report in a couple of seconds.

Working toward the future

Scikit-HEP is looking toward the future in several different areas.
We have been working with the Pyodide developers to support
WebAssembly; boost-histogram is compiled into Pyodide 0.20,
and Pyodide’s support for pybind11 packages is significantly bet-
ter due to that work, including adding support for C++ exception
handling. PyHF’s documentation includes a live Pyodide kernel,
and a try-pyhf site (based on the repo-review tool) lets users run
a model without installing anything - it can even be saved as a
webapp on mobile devices.

We have also been working with Scikit-Build to try to provide
a modern build experience in Python using CMake. This project
is just starting, but we expect over the next year or two that
the usage of CMake as a first class build tool for binaries in
Python will be possible using modern developments and avoiding
distutils/setuptools hacks.

Summary

The Scikit-HEP project started in Autumn 2016 and has grown
to be a core component in many HEP analyses. It has also
provided packages that are growing in usage outside of HEP, like
AwkwardArray, boost-histogram/Hist, and iMinuit. The tooling
developed and improved by Scikit-HEP has helped Scikit-HEP
developers as well as the broader Python community.

REFERENCES

[Dea20] Hans Dembinski and Piti Ongmongkolkul et al. scikit-
hep/iminuit. Dec 2020. URL: https://doi.org/10.5281/zenodo.
3949207, doi:10.5281/zenodo.3949207.

[EB08] Lyndon Evans and Philip Bryant. Lhc machine. Journal of
instrumentation, 3(08):S08001, 2008.

[GTW20] Galli, Massimiliano, Tejedor, Enric, and Wunsch, Stefan. "a new
pyroot: Modern, interoperable and more pythonic". EPJ Web
Conf., 245:06004, 2020. URL: https://doi.org/10.1051/epjconf/
202024506004, doi:10.1051/epjconf/202024506004.

[IVL22] Ioana Ifrim, Vassil Vassilev, and David J Lange. GPU Ac-
celerated Automatic Differentiation With Clad. arXiv preprint
arXiv:2203.06139, 2022.

[Lam98] Stephan Lammel. Computing models of cdf and dØ
in run ii. Computer Physics Communications, 110(1):32–
37, 1998. URL: https://www.sciencedirect.com/science/article/
pii/S0010465597001501, doi:10.1016/s0010-4655(97)
00150-1.

[LCC+09] Barry M Leiner, Vinton G Cerf, David D Clark, Robert E
Kahn, Leonard Kleinrock, Daniel C Lynch, Jon Postel, Larry G
Roberts, and Stephen Wolff. A brief history of the internet.
ACM SIGCOMM Computer Communication Review, 39(5):22–
31, 2009.

[LGMM05] W Lavrijsen, J Generowicz, M Marino, and P Mato. Reflection-
Based Python-C++ Bindings. 2005. URL: https://cds.cern.ch/
record/865620, doi:10.5170/CERN-2005-002.441.

[PEL20] Jim Pivarski, Peter Elmer, and David Lange. Awkward arrays
in python, c++, and numba. In EPJ Web of Conferences,
volume 245, page 05023. EDP Sciences, 2020. doi:10.1051/
epjconf/202024505023.

[PJ11] Andreas J Peters and Lukasz Janyst. Exabyte scale storage at
CERN. In Journal of Physics: Conference Series, volume 331,
page 052015. IOP Publishing, 2011. doi:10.1088/1742-
6596/331/5/052015.

120 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

[R+20] Eduardo Rodrigues et al. The Scikit HEP Project – overview and
prospects. EPJ Web of Conferences, 245:06028, 2020. arXiv:
2007.03577, doi:10.1051/epjconf/202024506028.

[RS21] Olivier Rousselle and Tom Sykora. Fast simulation of Time-
of-Flight detectors at the LHC. In EPJ Web of Conferences,
volume 251, page 03027. EDP Sciences, 2021. doi:10.1051/
epjconf/202125103027.

[RTA+17] D Remenska, C Tunnell, J Aalbers, S Verhoeven, J Maassen, and
J Templon. Giving pandas ROOT to chew on: experiences with
the XENON1T Dark Matter experiment. In Journal of Physics:
Conference Series, volume 898, page 042003. IOP Publishing,
2017.

[SLF+15] Zachary D Stephens, Skylar Y Lee, Faraz Faghri, Roy H
Campbell, Chengxiang Zhai, Miles J Efron, Ravishankar Iyer,
Michael C Schatz, Saurabh Sinha, and Gene E Robinson. Big
data: astronomical or genomical? PLoS biology, 13(7):e1002195,
2015.

[Tem22] Jeffrey Templon. Reflections on the uptake of the Python pro-
gramming language in Nuclear and High-Energy Physics, March
2022. None. URL: https://doi.org/10.5281/zenodo.6353621,
doi:10.5281/zenodo.6353621.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022) 121

Keeping your Jupyter notebook code quality bar high
(and production ready) with Ploomber

Ido Michael‡∗

F

This paper walks through this interactive tutorial. It is highly
recommended running this interactively so it’s easier to follow and
see the results in real-time. There’s a binder link in there as well,
so you can launch it instantly.

1. Introduction

Notebooks are an excellent environment for data exploration:
they allow us to write code interactively and get visual feedback,
providing an unbeatable experience for understanding our data.

However, this convenience comes at a cost; if we are not
careful about adding and removing code cells, we may have an
irreproducible notebook. Arbitrary execution order is a prevalent
problem: a recent analysis found that about 36% of notebooks on
GitHub did not execute in linear order. To ensure our notebooks
run, we must continuously test them to catch these problems.

A second notable problem is the size of notebooks: the more
cells we have, the more difficult it is to debug since there are more
variables and code involved.

Software engineers typically break down projects into multiple
steps and test continuously to prevent broken and unmaintainable
code. However, applying these ideas for data analysis requires
extra work; multiple notebooks imply we have to ensure the output
from one stage becomes the input for the next one. Furthermore,
we can no longer press “Run all cells” in Jupyter to test our
analysis from start to finish.

Ploomber provides all the necessary tools to build multi-
stage, reproducible pipelines in Jupyter that feel like a single
notebook. Users can easily break down their analysis into multiple
notebooks and execute them all with a single command.

2. Refactoring a legacy notebook

If you already have a python project in a single notebook, you
can use our tool Soorgeon to automatically refactor it into a
Ploomber pipeline. Soorgeon statically analyzes your code, cleans
up unnecessary imports, and makes sure your monolithic notebook
is broken down into smaller components. It does that by scanning
the markdown in the notebook and analyzing the headers; each
H2 header in our example is marking a new self-contained task.

* Corresponding author: ido@ploomber.io
‡ Ploomber

Copyright © 2022 Ido Michael. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Fig. 1: In this pipeline none of the tasks were executed - it’s all red.

In addition, it can transform a notebook to a single-task pipeline
and then the user can split it into smaller tasks as they see fit.

To refactor the notebook, we use the soorgeon refactor
command:

soorgeon refactor nb.ipynb

After running the refactor command, we can take a look at the
local directory and see that we now have multiple python tasks
which that are ready for production:

ls playground

We can see that we have a few new files. pipeline.yaml
contains the pipeline declaration, and tasks/ contains the stages
that Soorgeon identified based on our H2 Markdown headings:

ls playground/tasks

One of the best ways to onboard new people and explain what
each workflow is doing is by plotting the pipeline (note that we’re
now using ploomber, which is the framework for developing
pipelines):

ploomber plot

This command will generate the plot below for us, which will
allow us to stay up to date with changes that are happening in our
pipeline and get the current status of tasks that were executed or
failed to execute.

Soorgeon correctly identified the stages in our
original nb.ipynb notebook. It even detected that
the last two tasks (linear-regression, and
random-forest-regressor) are independent of each
other!

We can also get a summary of the pipeline with ploomber
status:

cd playground
ploomber status

3. The pipeline.yaml file

To develop a pipeline, users create a pipeline.yaml file and
declare the tasks and their outputs as follows:

122 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 2: In here we can see the status of each of our pipeline’s tasks,
runtime and location.

tasks:
- source: script.py
product:
nb: output/executed.ipynb
data: output/data.csv

more tasks here...

The previous pipeline has a single task (script.py)
and generates two outputs: output/executed.ipynb and
output/data.csv. You may be wondering why we have a
notebook as an output: Ploomber converts scripts to notebooks
before execution; hence, our script is considered the source and the
notebook a byproduct of the execution. Using scripts as sources
(instead of notebooks) makes it simpler to use git. However, this
does not mean you have to give up interactive development since
Ploomber integrates with Jupyter, allowing you to edit scripts as
notebooks.

In this case, since we used soorgeon to refactor an existing
notebook, we did not have to write the pipeline.yaml file.

4. Building the pipeline

Let’s build the pipeline (this will take ~30 seconds):
cd playground
ploomber build

We can see which are the tasks that ran during this command, how
long they took to execute, and the contributions of each task to the
overall pipeline execution runtime.

Navigate to playground/output/ and you’ll see all the
outputs: the executed notebooks, data files and trained model.
ls playground/output

In this figure, we can see all of the data that was collected during
the pipeline, any artifacts that might be useful to the user, and some
of the execution history that is saved on the notebook’s context.

5. Testing and quality checks

** Open tasks/train-test-split.py as a notebook by right-clicking
on it and then Open With -> Notebook and add the following
code after the cell with # noqa:

Fig. 3: Here we can see the build outputs

Fig. 4: These are the post build artifacts

Sample data quality checks after loading the raw data
Check nulls
assert not df['HouseAge'].isnull().values.any()

Check a specific range - no outliers
assert df['HouseAge'].between(0,100).any()

Exact expected row count
assert len(df) == 11085

** We’ll do the same for tasks/linear-regression.py, open the file
and add the tests:
Sample tests after the notebook ran
Check task test input exists
assert Path(upstream['train-test-split']['X_test']).exists()

Check task train input exists
assert Path(upstream['train-test-split']['y_train']).exists()

Validating output type
assert 'pkl' in upstream['train-test-split']['X_test']

Adding these snippets will allow us to validate that the data we’re
looking for exists and has the quality we expect. For instance, in
the first test we’re checking there are no missing rows, and that
the data sample we have are for houses up to 100 years old.

KEEPING YOUR JUPYTER NOTEBOOK CODE QUALITY BAR HIGH (AND PRODUCTION READY) WITH PLOOMBER 123

Fig. 5: Now we see an independent new task

In the second snippet, we’re checking that there are train and
test inputs which are crucial for training the model.

6. Maintaining the pipeline

Let’s look again at our pipeline plot:
Image('playground/pipeline.png')

The arrows in the diagram represent input/output dependencies
and depict the execution order. For example, the first task (load)
loads some data, then clean uses such data as input and
processes it, then train-test-split splits our dataset into
training and test sets. Finally, we use those datasets to train a
linear regression and a random forest regressor.

Soorgeon extracted and declared this dependencies for us, but
if we want to modify the existing pipeline, we need to declare
such dependencies. Let’s see how.

We can also see that the pipeline is green, meaning all of the
tasks in it have been executed recently.

7. Adding a new task

Let’s say we want to train another model and decide to try Gradient
Boosting Regressor. First, we modify the pipeline.yaml file
and add a new task:

Open playground/pipeline.yaml and add the follow-
ing lines at the end
- source: tasks/gradient-boosting-regressor.py
product:
nb: output/gradient-boosting-regressor.ipynb

Now, let’s create a base file by executing ploomber
scaffold:
cd playground
ploomber scaffold

This is the output of the command: `
Found spec at 'pipeline.yaml' Adding
/Users/ido/ploomber-workshop/playground/
tasks/ gradient-boosting-regressor.py...
Created 1 new task sources. `

We can see it created the task sources for our new task, we just
have to fill those in right now.

Let’s see how the plot looks now:
cd playground
ploomber plot

You can see that Ploomber recognizes the new file, but it does not
have any dependency, so let’s tell Ploomber that it should execute
after train-test-split:

Open
playground/tasks/gradient-boosting-regressor.py

as a notebook by right-clicking on it and then Open With ->
Notebook:

Fig. 6: lab-open-with-notebook

Fig. 7: The new task is attached to the pipeline

At the top of the notebook, you’ll see the following:
upstream = None

This special variable indicates which tasks should execute before
the notebook we’re currently working on. In this case, we want to
get training data so we can train our new model so we change the
upstream variable:
upstream = ['train-test-split']

Let’s generate the plot again:
cd playground
ploomber plot

Ploomber now recognizes our dependency declaration!
Open

playground/tasks/gradient-boosting-regressor.py

as a notebook by right-clicking on it and then Open With ->
Notebook and add the following code:
from pathlib import Path
import pickle

import seaborn as sns
from sklearn.ensemble import GradientBoostingRegressor

y_train = pickle.loads(Path(
upstream['train-test-split']['y_train']).read_bytes())

y_test = pickle.loads(Path(
upstream['train-test-split']['y_test']).read_bytes())

X_test = pickle.loads(Path(
upstream['train-test-split']['X_test']).read_bytes())

X_train = pickle.loads(Path(
upstream['train-test-split']['X_train']).read_bytes())

gbr = GradientBoostingRegressor()
gbr.fit(X_train, y_train)

y_pred = gbr.predict(X_test)
sns.scatterplot(x=y_test, y=y_pred)

8. Incremental builds

Data workflows require a lot of iteration. For example, you may
want to generate a new feature or model. However, it’s wasteful
to re-execute every task with every minor change. Therefore,
one of Ploomber’s core features is incremental builds, which
automatically skip tasks whose source code hasn’t changed.

Run the pipeline again:

124 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 8: We can see this pipeline has multiple new tasks.

cd playground
ploomber build

You can see that only the gradient-boosting-regressor
task ran!

Incremental builds allow us to iterate faster without keeping
track of task changes.

Check out playground/output/
gradient-boosting-regressor.ipynb,

which contains the output notebooks with the model evaluation
plot.

9. Parallel execution and Ploomber cloud execution

This section can run locally or on the cloud. To setup the cloud
we’ll need to register for an api key

Ploomber cloud allows you to scale your experiments into the
cloud without provisioning machines and without dealing with
infrastrucutres.

Open playground/pipeline.yaml and add the following code
instead of the source task:
- source: tasks/random-forest-regressor.py

This is how your task should look like in the end
- source: tasks/random-forest-regressor.py
name: random-forest-
product:
nb: output/random-forest-regressor.ipynb

grid:
creates 4 tasks (2 * 2)
n_estimators: [5, 10]
criterion: [gini, entropy]

In addition, we’ll need to add a flag to tell the pipeline to execute
in parallel. Open playground/pipeline.yaml and add the following
code above the -tasks section (line 1):

yaml
Execute independent tasks in parallel executor: parallel

ploomber plot

ploomber build

10. Execution in the cloud

When working with datasets that fit in memory, running your
pipeline is simple enough, but sometimes you may need more
computing power for your analysis. Ploomber makes it simple
to execute your code in a distributed environment without code
changes.

Check out Soopervisor, the package that implements exporting
Ploomber projects in the cloud with support for:

• Kubernetes (Argo Workflows)
• AWS Batch
• Airflow

11. Resources

Thanks for taking the time to go through this tutorial! We hope
you consider using Ploomber for your next project. If you have
any questions or need help, please reach out to us! (contact info
below).

Here are a few resources to dig deeper:

• GitHub
• Documentation
• Code examples
• JupyterCon 2020 talk
• Argo Community Meeting talk
• Pangeo Showcase talk (AWS Batch demo)
• Jupyter project

10. Contact

• Twitter
• Join us on Slack
• E-mail us

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022) 125

Likeness: a toolkit for connecting the social fabric of
place to human dynamics

Joseph V. Tuccillo‡∗, James D. Gaboardi‡

F

Abstract—The ability to produce richly-attributed synthetic populations is
key for understanding human dynamics, responding to emergencies, and
preparing for future events, all while protecting individual privacy. The Like-
ness toolkit accomplishes these goals with a suite of Python packages:
pymedm/pymedm_legacy, livelike, and actlike. This production
process is initialized in pymedm (or pymedm_legacy) that utilizes census
microdata records as the foundation on which disaggregated spatial allocation
matrices are built. The next step, performed by livelike, is the generation of
a fully autonomous agent population attributed with hundreds of demographic
census variables. The agent population synthesized in livelike is then
attributed with residential coordinates in actlike based on block assignment
and, finally, allocated to an optimal daytime activity location via the street
network. We present a case study in Knox County, Tennessee, synthesizing 30
populations of public K–12 school students & teachers and allocating them to
schools. Validation of our results shows they are highly promising by replicating
reported school enrollment and teacher capacity with a high degree of fidelity.

Index Terms—activity spaces, agent-based modeling, human dynamics, popu-
lation synthesis

Introduction

Human security fundamentally involves the functional capacity
that individuals possess to withstand adverse circumstances, me-
diated by the social and physical environments in which they live
[Hew97]. Attention to human dynamics is a key piece of the
human security puzzle, as it reveals spatial policy interventions
most appropriate to the ways in which people within a community
behave and interact in daily life. For example, "one size fits all"
solutions do not exist for mitigating disease spread, promoting
physical activity, or enabling access to healthy food sources.
Rather, understanding these outcomes requires examination of
processes like residential sorting, mobility, and social transmis-
sion.

* Corresponding author: tuccillojv@ornl.gov
‡ Oak Ridge National Laboratory

Copyright © 2022 Oak Ridge National Laboratory. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.
Notice: This manuscript has been authored by UT-Battelle, LLC under
Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
The United States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to do so, for
United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance
with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-
access-plan).

Modeling these processes at scale and with respect to indi-
vidual privacy is most commonly achieved through agent-based
simulations on synthetic populations [SEM14]. Synthetic popula-
tions consist of individual agents that, when viewed in aggregate,
closely recreate the makeup of an area’s observed population
[HHSB12], [TMKD17]. Modeling human dynamics with syn-
thetic populations is common across research areas including spa-
tial epidemiology [DKA+08], [BBE+08], [HNB+11], [NCA13],
[RSF+21], [SNGJ+09], public health [BCD+06], [BFH+17],
[SPH11], [TCR08], [MCB+08], and transportation [BBM96],
[ZFJ14]. However, a persistent limitation across these applications
is that synthetic populations often do not capture a wide enough
range of individual characteristics to assess how human dynamics
are linked to human security problems (e.g., how a person’s age,
limited transportation access, and linguistic isolation may interact
with their housing situation in a flood evacuation emergency).

In this paper, we introduce Likeness [TG22], a Python toolkit
for connecting the social fabric of place to human dynamics via
models that support increased spatial, temporal, and demographic
fidelity. Likeness is an extension of the UrbanPop framework de-
veloped at Oak Ridge National Laboratory (ORNL) that embraces
a new paradigm of "vivid" synthetic populations [TM21], [Tuc21],
in which individual agents may be attributed in potentially hun-
dreds of ways, across subjects spanning demographics, socioe-
conomic status, housing, and health. Vivid synthetic populations
benefit human dynamics research both by enabling more precise
geolocation of population segments, as well as providing a deeper
understanding of how individual and neighborhood characteris-
tics are coupled. UrbanPop’s early development was motivated
by linking models of residential sorting and worker commute
behaviors [MNP+17], [MPN+17], [ANM+18]. Likeness expands
upon the UrbanPop approach by providing a novel integrated
model that pairs vivid residential synthetic populations with an
activity simulation model on real-world transportation networks,
with travel destinations based on points of interest (POIs) curated
from location services and federal critical facilities data.

We first provide an overview of Likeness’ capabilities, then
provide a more detailed walkthrough of its central workflow with
respect to livelike, a package for population synthesis and
residential characterization, and actlike a package for activity
allocation. We provide preliminary usage examples for Likeness
based on 1) social contact networks in POIs 2) 24-hour POI
occupancy characteristics. Finally, we discuss existing limitations
and the outlook for future development.

126 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Overview of Core Capabilities and Workflow

UrbanPop initially combined the vivid synthetic populations pro-
duced from the American Community Survey (ACS) using the
Penalized-Maximum Entropy Dasymetric Modeling (P-MEDM)
method, which is detailed later, with a commute model based on
origin-destination flows, to generate a detailed dataset of daytime
and nighttime synthetic populations across the United States
[MPN+17]. Our development of Likeness is motivated by extend-
ing the existing capabilities of UrbanPop to routing libraries avail-
able in Python like osmnx1 and pandana2 [Boe17], [FW12].
In doing so, we are able to simulate travel to regular daytime
activities (work and school) based on real-world transportation
networks. Likeness continues to use the P-MEDM approach, but
is fully integrated with the U.S. Census Bureau’s ACS Summary
File (SF) and Census Microdata APIs, enabling the production of
activity models on-the-fly.

Likeness features three core capabilities supporting activ-
ity simulation with vivid synthetic populations (Figure 1).
The first, spatial allocation, is provided by the pymedm and
pmedm_legacy packages and uses Iterative Proportional Fitting
(IPF) to downscale census microdata records to small neighbor-
hood areas, providing a basis for population synthesis. Baseline
residential synthetic populations are then created and stratified into
agent segments (e.g., grade 10 students, hospitality workers) using
the livelike package. Finally, the actlike package models
travel across agent segments of interest to POIs outside places of
residence at varying times of day.

Spatial Allocation: the pymedm & pmedm_legacy packages

Synthetic populations are typically generated from census micro-
data, which consists of a sample of publicly available longform
responses to official statistical surveys. To preserve respondent
confidentiality, census microdata is often published at spatial
scales the size of a city or larger. Spatial allocation with IPF
provides a maximum-likelihood estimator for microdata responses
in small (e.g., neighborhood) areas based on aggregate data
published about those areas (known as "constraints"), resulting
in a baseline for population synthesis [WCC+09], [BBM96],
[TMKD17]. UrbanPop is built upon a regularized implementation
of IPF, the P-MEDM method, that permits many more input census
variables than traditional approaches [LNB13], [NBLS14]. The P-
MEDM objective function (Eq. 1) is written as:

max−∑
it

n
N

wit

dit
log

wit

dit
−∑

k

e2
k

2σ2
k

(1)

where wit is the estimate of variable i in zone t, dit is the synthetic
estimate of variable i in location t, n is the number of microdata
responses, and N is the total population size. Uncertainty in
variable estimates is handled by adding an error term to the
allocation ∑k

e2
k

2σ2
k

, where ek is the error between the synthetic
and published estimate of ACS variable k and σk is the ACS
standard error for the estimate of variable k. This is accomplished
by leveraging the uncertainty in the input variables: the "tighter"
the margins of error on the estimate of variable k in place t, the
more leverage it holds upon the solution [NBLS14].

The P-MEDM procedure outputs an allocation matrix that
estimates the probability of individuals matching responses from

1. https://github.com/gboeing/osmnx
2. https://github.com/UDST/pandana

the ACS Public-Use Microdata Sample (PUMS) at the scale
of census block groups (typically 300–6000 people) or tracts
(1200–8000 people), depending upon the use-case.

Downscaling the PUMS from the Public-Use Microdata Area
(PUMA) level at which it is offered (100,000 or more people) to
these neighborhood scales then enables us to produce synthetic
populations (the livelike package) and simulate their travel
to POIs (the actlike package) in an integrated model. This ap-
proach provides a new means of modeling population mobility and
activity spaces with respect to real-world transportation networks
and POIs, in turn enabling investigation of social processes from
the atomic (e.g., person) level in human systems.

Likeness offers two implementations of P-MEDM. The first,
the pymedm package, is written natively in Python based on
scipy.optimize.minimize, and while fully operational re-
mains in development and is currently suitable for one-off simu-
lations. The second, the pmedm_legacy package, uses rpy2 as
a bridge to [NBLS14]’s original implementation of P-MEDM3 in
R/C++ and is currently more stable and scalable. We offer conda
environments specific to each package, based on user preferences.

Each package’s functionality centers around a PMEDM class,
which contains information required to solve the P-MEDM prob-
lem:

• The individual (household) level constraints based on ACS
PUMS. To preserve households from the PUMS in the syn-
thetic population, the person-level constraints describing
household members are aggregated to the household level
and merged with household-level constraints.

• PUMS household sample weights.
• The target (e.g., block group) and aggregate (e.g., tract)

zone constraints based on population-level estimates avail-
able in the ACS SF.

• The target/aggregate zone 90% margins of error and asso-
ciated standard errors (SE = 1.645×MOE).

The PMEDM classes feature a solve() method that returns
an optimized P-MEDM solution and allocation matrix. Through
a diagnostics module, users may then evaluate a P-MEDM
solution based on the proportion of published 90% MOEs from
the summary-level ACS data preserved at the target (allocation)
scale.

Population Synthesis: the livelike package

The livelike package generates baseline residential synthetic
populations and performs agent segmentation for activity simula-
tion.

Specifying and Solving Spatial Allocation Problems

The livelike workflow is oriented around a user-specified
constraints file containing all of the information necessary to
specify a P-MEDM problem for a PUMA of interest. "Constraints"
are variables from the ACS common among people/households
(PUMS) and populations (SF) that are used as both model inputs
and descriptors. The constraints file includes information for
bridging PUMS variable definitions with those from the SF using
helper functions provided by the livelike.pums module,
including table IDs, sampling universe (person/household), and
tags for the range of ACS vintages (years) for which the variables
are relevant.

3. https://bitbucket.org/nnnagle/pmedmrcpp

LIKENESS: A TOOLKIT FOR CONNECTING THE SOCIAL FABRIC OF PLACE TO HUMAN DYNAMICS 127

Fig. 1: Core capabilities and workflow of Likeness.

The primary livelike class is the acs.puma, which stores
information about a single PUMA necessary for spatial allocation
of the PUMS data to block groups/tracts with P-MEDM. The
process of creating an acs.puma is integrated with the U.S.
Census Bureau’s ACS SF and Census Microdata 5-Year Estimates
(5YE) APIs4. This enables generation of an acs.puma class
with a high-level call involving just a few parameters: 1) the
PUMA’s Federal Information Processing Standard (FIPS) code 2)
the constraints file, loaded as a pandas.DataFrame and 3) the
target ACS vintage (year). An example call to build an acs.puma
for the Knoxville City, TN PUMA (FIPS 4701603) using the ACS
2015–2019 5-Year Estimates is:
acs.puma(

fips="4701603",
constraints=constraints,
year=2019

)

The censusdata package5 is used internally to
fetch population-level (SF) constraints, standard errors,
and MOEs from the ACS 5YE API, while the
acs.extract_pums_constraints function is used to
fetch individual-level constraints and weights from the Census
Microdata 5YE API.

Spatial allocation is then carried out by passing
the acs.puma attributes to a pymedm.PMEDM or
pmedm_legacy.PMEDM (depending on user preference).

Population Synthesis

The homesim module provides support for population synthe-
sis on the spatial allocation matrix within a solved P-MEDM
object. The population synthesis procedure involves converting
the fractional estimates from the allocation matrix (n household
IDs by m zones) to integer representation such that whole peo-
ple/households are preserved. This homesim module features an

4. https://www.census.gov/data/developers/data-sets.html
5. https://pypi.org/project/CensusData

implementation of [LB13]’s "Truncate, Replicate, Sample" (TRS)
method. TRS works by separating each cell of the allocation
matrix into whole-number (integer) and fractional components,
then incrementing the whole-number estimates by a random
sample of unit weights performed with sampling probabilities
based on the fractional component. Because TRS is stochastic,
the homesim.hsim() function generates multiple (default 30)
realizations of the residential population. The results are provided
as a pandas.DataFrame in long format, attributed by:

• PUMS Household ID (h_id)
• Simulation number (sim)
• Target zone FIPS code (geoid)
• Household count (count)

Since household and person-level attributes are combined
when creating the acs.puma class, person-level records from
the PUMS are assumed to be joined to the synthesized household
IDs many-to-one. For example, if two people, A01 and A03, in
household A have some attribute of interest, and there are 3
households of type A in zone G, then we estimate that a total
of 6 people with that attribute from household A reside in zone G.

Agent Generation

The synthetic populations can then be segmented into different
groups of agents (e.g., workers by industry, students by grade) for
activity modeling with the actlike package. Agent segments
may be identified in several ways:

• Using acs.extract_pums_segment_ids() to
fetch the person IDs (household serial number + person
line number) from the Census Microdata API matching
some criteria of interest (e.g., public school students in
10th grade).

• Using acs.extract_pums_descriptors() to
fetch criteria that may be queried from the Census
Microdata API. This is useful when dealing with criteria

128 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

more specific than can be directly controlled for in the
P-MEDM problem (e.g., detailed NAICS code of worker,
exact number of hours worked).

The function est.tabulate_by_serial() is then used
to tabulate agents by target zone and simulation by appending
them to the synthetic population based on household ID, then
aggregating the person-level counts. This routine is flexible in that
a user can use any set of criteria available from the PUMS to
define customized agents for mobility modeling purposes.

Other Capabilities

Population Statistics: In addition to agent creation, the
livelike.est module also supports the creation of popula-
tion statistics. This can be used to estimate the compositional
characteristics of small neighborhood areas and POIs, for ex-
ample to simulate social contact networks (see Students). To
accomplish this, the results of est.tabulate_by_serial
(see Agent Generation) are converted to proportional esti-
mates to facilitate POIs (est.to_prop()), then averaged
across simulations to produce Monte Carlo estimates and errors
est.monte_carlo_estimate()).

Multiple ACS Vintages and PUMAs: The multi
module extends the capabilities of livelike to
multiple ACS 5YE vintages (dating back to 2016), as
well as multiple PUMAs (e.g., a metropolitan area) via
the multi module. Using multi.make_pumas()
or multi.make_multiyear_pumas(), multiple
PUMAs/multiple years may be stored in a dict
that enables iterative runs for spatial allocation
(multi.make_pmedm_problems()), population
synthesis (multi.homesim()), and agent cre-
ation (multi.extract_pums_segment_ids(),
multi.extract_pums_segment_ids_multiyear(),
multi.extract_pums_descriptors(), and
multi.extract_pums_descriptors_multiyear()).
This functionality is currently available for pmedm_legacy
only.

Activity Allocation: the actlike package

The actlike package [GT22] allocates agents from synthetic
populations generated by livelike POI, like schools and work-
places, based on optimal allocation about transportation networks
derived from osmnx and pandana [Boe17], [FW12]. Solutions
are the product of a modified integer program (Transportation
Problem [Hit41], [Koo49], [MS01], [MS15]) modeled in pulp
or mip [MOD11], [ST20], whereby supply (students/workers)
are "shipped" to demand locations (schools/workplaces), with
potentially relaxed minimum and maximum capacity constraints at
demand locations. Impedance from nighttime to daytime locations
(Origin-Destination [OD] pairs) can be modeled by either network
distance or network travel time.

Location Synthesis

Following the generation of synthetic households for the study
universe, locations for all households across the 30 default
simulations must be created. In order to intelligently site pseudo-
neighborhood clusters of random points, we adopt a dasymetric
[QC13] approach, which we term intelligent block-based (IBB)
allocation, whereby household locations are only placed within
blocks known to have been populated at a particular period

in time and are placed with a greater frequency proportional
to reported household density [LB13]. We employ population
and housing counts within 2010 Decennial Census blocks to
formulate a modified Variable Size Bin Packing Problem [FL86],
[CGSdG08] for each populated block group, which allows for
an optimal placement of household points and is accomplished
by the actlike.block_denisty_allocation()
function that creates and solves an
actlike.block_allocation.BinPack instance.

Activity Allocation

Once household location attribution is complete, individual agents
must be allocated from households (nighttime locations) to prob-
able activity spaces (daytime locations). This is achieved through
spatial network modeling over the streets within a study area via
OpenStreetMap6 utilizing osmnx for network extraction & pre-
processing and pandana for shortest path and route calculations.
The underlying impedance metric for shortest path calculation,
handled in actlike.calc_cost_mtx() and associated in-
ternal functions, can either take the form of distance or travel time.
Moreover, household and activity locations must be connected to
nearby network edges for realistic representations within network
space [GFH20].

With a cost matrix from all residences to daytime loca-
tions calculated, the simulated population can then be "sent"
to the likely activity spaces by utilizing an instance of
actlike.ActivityAllocation to generate an adapted
Transportation Problem. This mixed integer program, solved using
the solve() method, optimally associates all population within
an activity space with the objective of minimizing the total cost of
impedance (Eq. 2), being subject to potentially relaxed minimum
and maximum capacity constraints (Eq. 4 & 5). Each decision
variable (xi j) represents a potential allocation from origin i to
destination j that must be an integer greater than or equal to zero
(Eq. 6 & 7). The problem is formulated as follows:

min∑
i∈I

∑
j∈J

ci jxi j (2)

s.t. ∑
j∈J

xi j = Oi ∀i ∈ I; (3)

s.t. ∑
i∈I

xi j ≥ minD j ∀ j ∈ J; (4)

s.t. ∑
i∈I

xi j ≤ maxD j ∀ j ∈ J; (5)

s.t. xi j ≥ 0 ∀i ∈ I ∀ j ∈ J; (6)

s.t. xi j ∈ Z ∀i ∈ I ∀ j ∈ J. (7)

where
i ∈ I = each household in the set of origins
j ∈ J = each school in the set of destinations
xi j = allocation decision from i ∈ I to j ∈ J
ci j = cost between all i, j pairs
Oi = population in origin i for i ∈ I
minD j = minimum capacity j for j ∈ J
maxD j = maximum capacity j for j ∈ J

6. https://www.openstreetmap.org/about

LIKENESS: A TOOLKIT FOR CONNECTING THE SOCIAL FABRIC OF PLACE TO HUMAN DYNAMICS 129

The key to this adapted formulation of the classic Trans-
portation Problem is the utilization of minimum and maxi-
mum capacity thresholds that are generated endogenously within
actlike.ActivityAllocation and are tuned to reflect
the uncertainty of both the population estimates generated by
livelike and the reported (or predicted) capacities at activity
locations. Moreover, network impedance from origins to destina-
tions (ci j) can be randomly reduced through an internal process
by passing in an integer value to the reduce_seed keyword ar-
gument. By triggering this functionality, the count and magnitude
of reduction is determined algorithmically. A random reduction
of this nature is beneficial in generating dispersed solutions that
do not resemble compact clusters, with an example being the
replication of a private school’s student body that does not adhere
to public school attendance zones.

After the optimal solution is found for an
actlike.ActivityAllocation instance, selected
decisions are isolated from non-zero decision variables
with the realized_allocations() method. These
allocations are then used to generate solution routes with the
network_routes() function that represent the shortest path
along the network traversed from residential locations to assigned
activity spaces. Solutions can be further validated with Canonical
Correlation Analysis, in instances where the agent segments are
stratified, and simple linear regression for those where a single
segment of agents is used. Validation is discussed further in
Validation & Diagnostics.

Case Study: K–12 Public Schools in Knox County, TN

To illustrate Likeness’ capability to simulate POI travel among
specific population segments, we provide a case study of travel to
POIs, in this case K–12 schools, in Knox County, TN. Our choice
of K–12 schools was motivated by several factors. First, they serve
as common destinations for the two major groups—workers and
students—expected to consistently travel on a typical business
day [RWM+17]. Second, a complete inventory of public school
locations, as well as faculty and enrollment sizes, is available
publicly through federal open data sources. In this case, we
obtained school locations and faculty sizes from the Homeland
Infrastructure Foundation-Level Database (HIFLD)7 and student
enrollment sizes by grade from the National Center for Education
Statistics (NCES) Common Core of Data8.

We chose the Knox County School District, which coincides
with Knox County’s boundaries, as our study area. We used the
livelike package to create 30 synthetic populations for the
Knoxville Core-Based Statistical Area (CBSA), then for each
simulation we:

• Isolated agent segments from the synthetic population.
K–12 educators consist of full-time workers employed as
primary and secondary education teachers (2018 Standard
Occupation Classification System codes 2300–2320) in
elementary and secondary schools (NAICS 6111). We
separated out student agents by public schools and by
grade level (Kindergarten through Grade 12).

• Performed IBB allocation to simulate the household loca-
tions of workers and students. Our selection of household
locations for workers and students varied geographically.

7. https://hifld-geoplatform.opendata.arcgis.com
8. https://nces.ed.gov/ccd/files.asp

Because school attendance in Knox County is restricted by
district boundaries, we only placed student households in
the PUMAs intersecting with the district (FIPS 4701601,
4701602, 4701603, 4701604). However, because educators
may live outside school district boundaries, we simulated
their household locations throughout the Knoxville CBSA.

• Used actlike to perform optimal allocation of
workers and students about road networks in Knox
County/Knoxville CBSA. Across the 30 simulations and
14 segments identified, we produced a total of 420 travel
simulations. Network impedance was measured in geo-
graphic distance for all student simulations and travel time
for all educator simulations.

Figure 2 demonstrates the optimal allocations, routing, and
network space for a single simulation of 10th grade public school
students in Knox County, TN. Students, shown in households
as small black dots, are associated with schools, represented by
transparent colored circles sized according to reported enrollment.
The network space connecting student residential locations to
assigned schools is displayed in a matching color. Further, the
inset in Figure 2 provides the pseudo-school attendance zone for
10th graders at one school in central Knoxville and demonstrates
the adherence to network space.

Students

Our study of K–12 students examines social contact networks
with respect to potentially underserved student populations via
the compositional characteristics of POIs (schools).

We characterized each school’s student body by identifying
student profiles based on several criteria: minority race/ethnicity,
poverty status, single caregiver households, and unemployed care-
giver households (householder and/or spouse/parnter). We defined
6 student profiles using an implementation of the density-based
K-Modes clustering algorithm [CLB09] with a distance heuris-
tic designed to optimize cluster separation [NLHH07] available
through the kmodes package9 [dV21]. Student profile labels were
appended to the student travel simulation results, then used to
produce Monte Carlo proportional estimates of profiles by school.

The results in Figure 3 reveal strong dissimilarities in student
makeup between schools on the periphery of Knox County and
those nearer to Knoxville’s downtown core in the center of the
county. We estimate that the former are largely composed of
students in married families, above poverty, and with employed
caregivers, whereas the latter are characterized more strongly by
single caregiver living arrangements and, particularly in areas
north of the downtown core, economic distress (pop-out map).

Workers (Educators)

We evaluated the results of our K–12 educator simulations with
respect to POI occupancy characteristics, as informed by commute
and work statistics obtained from the PUMS. Specifically, we used
work arrival times associated with each synthetic worker (PUMS
JWAP) to timestamp the start of each work day, and incremented
this by daily hours worked (derived from PUMS WKHP) to create
a second timestamp for work departure. The estimated departure
time assumes that each educator travels to the school for a typical
5-day workweek, and is estimated as JWAP+ WKHP

5 .

9. https://pypi.org/project/kmodes

130 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 2: Optimal allocations for one simulation of 10th grade public school students in Knox County, TN.

Fig. 3: Compositional characteristics of K–12 public schools in Knox County, TN based on 6 student profiles. Glyph plot methodolgy adapted
from [GLC+15].

LIKENESS: A TOOLKIT FOR CONNECTING THE SOCIAL FABRIC OF PLACE TO HUMAN DYNAMICS 131

Fig. 4: Hourly worker occupancy estimates for K–12 schools in Knox County, TN.

Roughly 50 educator agents per simulation were not attributed
with work arrival times, possibly due to the source PUMS re-
spondents being away from their typical workplaces (e.g., on
summer or winter break) but still working virtually when they
were surveyed. We filled in these unkown arrival times with the
modal arrival time observed across all simulations (7:25 AM).

Figure 4 displays the hourly proportion of educators present
at each school in Knox County between 7:00 AM (t700) and
6:00 PM (t1800). Morning worker arrivals occur more rapidly
than afternoon departures. Between the hours of 7:00 AM and
9:00 AM (t700–t900), schools transition from nearly empty
of workers to being close to capacity. In the afternoon, workers
begin to gradually depart at 3:00 PM (t1500) with somewhere
between 50%–70% of workers still present by 4:00 PM (t1600),
then workers begin to depart in earnest at 5:00 PM into 6:00 PM
(t1700–t1800), by which most have returned home.

Geographic differences are also visible and may be a function
of (1) a higher concentration of a particular school type (e.g.,
elementary, middle, high) in this area and (2) staggered starts
between these types (to accommodate bus schedules, etc.). This
could be due in part to concentrations of different school schedules
by grade level, especially elementary schools starting much earlier
than middle and high schools10. For example, schools near the
center of Knox County reach worker capacity more quickly in the
morning, starting around 8:00 AM (t800), but also empty out
more rapidly than schools in surrounding areas beginning around
4:00 PM (t1600).

Validation & Diagnostics

A determination of modeling output robustness was needed to
validate our results. Specifically, we aimed to ensure the preser-
vation of relative facility size and composition. To perform this
validation, we tested the optimal allocations of those generated by
Likeness against the maximally adjusted reported enrollment &
faculty employment counts. We used the maximum adjusted value
to account for scenarios where the population synthesis phase
resulted in a total demographic segment greater than reported total
facility capacity. We employed Canonical Correlation Analysis
(CCA) [Kna78] for the K–12 public school student allocations
due to their stratified nature, and an ordinary least squares (OLS)
simple linear regression for the educator allocations [PVG+11].
Because CCA is a multivariate measure, it is only a suitable
diagnostic for activity allocation when multiple segments (e.g.,
students by grade) are of interest. For educators, which we
treated as a single agent segment without stratification, we used
OLS regression instead. The CCA for students was performed in
two components: Between-Destination, which measures capacity
across facilities, and Within-Destination, which measures capacity
across strata.

Descriptive Monte Carlo statistics from the 30 simulations
were run on the resultant coefficients of determination (R2),
which show a goodness of fit (approaching 1). As seen in Table
1, all models performed exceedingly well, though the Within-
Destination CCA performed slightly less well than both the
Between-Destination CCA and the OLS linear regression. In fact,
the global minimum of all R2 scores approaches 0.99 (students
– Within-Destination), which demonstrates robust preservation of

10. https://www.knoxschools.org/Page/5553

132 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

K–12 R2 Type Min Median Mean Max

Students (public schools) Between-Destination CCA 0.9967 0.9974 0.9973 0.9976
Within-Destination CCA 0.9883 0.9894 0.9896 0.9910

Educators (public & private schools) OLS Linear Regression 0.9977 0.9983 0.9983 0.9991

TABLE 1: Validating optimal allocations considering reported enrollment at public schools & faculty employment at all schools.

true capacities in our synthetic activity modeling. Furthermore,
a global maximum of greater than 0.999 is seen for educators,
which indicates a near perfect replication of relative faculty sizes
by school.

Discussion

Our Case Study demonstrates the twofold benefits of modeling
human dynamics with vivid synthetic populations. Using Like-
ness, we are able to both produce a more reasoned estimate of the
neighborhoods in which people reside and interact than existing
synthetic population frameworks, as well as support more nuanced
characterization of human activities at specific POIs (e.g., social
contact networks, occupancy).

The examples provided in the Case Study show how this
refined understanding of human dynamics can benefit planning
applications. For example, in the event of a localized emergency,
the results of Students could be used to examine schools for
which rendezvous with caregivers might pose an added challenge
towards students (e.g., more students from single caregiver vs.
married family households). Additionally, the POI occupancy
dynamics demonstrated in Workers (Educators) could be used
to assess the times at which worker commutes to/from places
of employment might be most sensitive to a nearby disruption.
Another application in the public health sphere might be to use
occupancy estimates to anticipate the best time of day to reach
workers, during a vaccination campaign, for example.

Our case study had several limitations that we plan to over-
come in future work. First, we assumed that all travel within our
study area occurs along road networks. While road-based travel
is the dominant means of travel in the Knoxville CBSA, this
assumption is not transferable to other urban areas within the
United States. Our eventual goal is to build in additional modes of
travel like public transit, walk/bike, and ferries by expanding our
ingest of OpenStreetMap features.

Second, we do not yet offer direct support for non-traditional
schools (e.g., populations with special needs, families on military
bases). For example, the Tennessee School for the Deaf falls
within our study area, and its compositional estimate could be
refined if we reapportioned students more likely in attendance to
that location.

Third, we did not account for teachers in virtual schools,
which may form a portion of the missing work arrival times
discussed in Workers (Educators). Work-from-home populations
can be better incorporated into our travel simulations by apply-
ing work schedules from time-use surveys to probabilistically
assign in-person or remote status based on occupation. We are
particularly interested in using this technique with Likeness to
better understand changing patterns of life during the COVID-19
pandemic in 2020.

Conclusion

The Likeness toolkit enhances agent creation for modeling human
dynamics through its dual capabilities of high-fidelity ("vivid")

agent characterization and travel along real-world transportation
networks to POIs. These capabilities benefit planners and urban
researchers by providing a richer understanding of how spatial
policy interventions can be designed with respect to how people
live, move, and interact. Likeness strives to be flexible toward a
variety of research applications linked to human security, among
them spatial epidemiology, transportation equity, and environmen-
tal hazards.

Several ongoing developments will further Likeness’ capa-
bilities. First, we plan to expand our support for POIs curated
by location services (e.g., Google, Facebook, Here, TomTom,
FourSquare) by the ORNL PlanetSense project [TBP+15] by
incorporating factors like facility size, hours of operation, and pop-
ularity curves to refine the destination capacity estimates required
to perform actlike simulations. Second, along with multi-
modal travel, we plan to incorporate multiple trip models based
on large-scale human activity datasets like the American Time Use
Survey11 and National Household Travel Survey12. Together, these
improvements will extend our travel simulations to "non-obligate"
population segments traveling to civic, social, and recreational
activities [BMWR22]. Third, the current procedure for spatial
allocation uses block groups as the target scale for population
synthesis. However, there are a limited number of constraining
variables available at the block group level. To include a larger
volume of constraints (e.g., vehicle access, language), we are
exploring an additional tract-level approach. P-MEDM in this
case is run on cross-covariances between tracts and "supertract"
aggregations created with the Max-p-regions problem [DAR12],
[WRK21] implemented in PySAL’s spopt [RA07], [FGK+21],
[RAA+21], [FBG+22].

As a final note, the Likeness toolkit is being developed on top
of key open source dependencies in the Scientific Python ecosys-
tem, the core of which are, of course, numpy [HMvdW+20]
and scipy [VGO+20]. Although an exhaustive list would be
prohibitive, major packages not previously mentioned include
geopandas [JdBF+21], matplotlib [Hun07], networkx
[HSS08], pandas [pdt20], [WM10], and shapely [G+]. Our
goal is contribute to the community with releases of the packages
comprising Likeness, but since this is an emerging project its
development to date has been limited to researchers at ORNL.
However, we plan to provide a fully open-sourced code base
within the coming year through GitHub13.

Acknowledgements

This material is based upon the work supported by the U.S.
Department of Energy under contract no. DE-AC05-00OR22725.

REFERENCES

[ANM+18] H.M. Abdul Aziz, Nicholas N. Nagle, April M. Morton,
Michael R. Hilliard, Devin A. White, and Robert N. Stew-

11. https://www.bls.gov/tus
12. https://nhts.ornl.gov
13. https://github.com/ORNL

LIKENESS: A TOOLKIT FOR CONNECTING THE SOCIAL FABRIC OF PLACE TO HUMAN DYNAMICS 133

art. Exploring the impact of walk–bike infrastructure, safety
perception, and built-environment on active transportation
mode choice: a random parameter model using New York
City commuter data. Transportation, 45(5):1207–1229, 2018.
doi:10.1007/s11116-017-9760-8.

[BBE+08] Christopher L. Barrett, Keith R. Bisset, Stephen G. Eubank,
Xizhou Feng, and Madhav V. Marathe. EpiSimdemics: an ef-
ficient algorithm for simulating the spread of infectious disease
over large realistic social networks. In SC’08: Proceedings of
the 2008 ACM/IEEE Conference on Supercomputing, pages
1–12. IEEE, 2008. doi:10.1109/SC.2008.5214892.

[BBM96] Richard J. Beckman, Keith A. Baggerly, and Michael D.
McKay. Creating synthetic baseline populations. Transporta-
tion Research Part A: Policy and Practice, 30(6):415–429,
1996. doi:10.1016/0965-8564(96)00004-3.

[BCD+06] Dimitris Ballas, Graham Clarke, Danny Dorling, Jan Rigby,
and Ben Wheeler. Using geographical information systems and
spatial microsimulation for the analysis of health inequalities.
Health Informatics Journal, 12(1):65–79, 2006. doi:10.
1177/1460458206061217.

[BFH+17] Komal Basra, M. Patricia Fabian, Raymond R. Holberger,
Robert French, and Jonathan I. Levy. Community-engaged
modeling of geographic and demographic patterns of mul-
tiple public health risk factors. International Journal of
Environmental Research and Public Health, 14(7):730, 2017.
doi:10.3390/ijerph14070730.

[BMWR22] Christa Brelsford, Jessica J. Moehl, Eric M. Weber, and
Amy N. Rose. Segmented Population Models: Improving the
LandScan USA Non-Obligate Population Estimate (NOPE).
American Association of Geographers 2022 Annual Meeting,
2022.

[Boe17] Geoff Boeing. OSMnx: New methods for acquiring, con-
structing, analyzing, and visualizing complex street networks.
Computers, Environment and Urban Systems, 65:126–139,
September 2017. doi:10.1016/j.compenvurbsys.
2017.05.004.

[CGSdG08] Isabel Correia, Luís Gouveia, and Francisco Saldanha-da
Gama. Solving the variable size bin packing problem
with discretized formulations. Computers & Operations Re-
search, 35(6):2103–2113, June 2008. doi:10.1016/j.
cor.2006.10.014.

[CLB09] Fuyuan Cao, Jiye Liang, and Liang Bai. A new initialization
method for categorical data clustering. Expert Systems with
Applications, 36(7):10223–10228, 2009. doi:10.1016/j.
eswa.2009.01.060.

[DAR12] Juan C. Duque, Luc Anselin, and Sergio J. Rey. THE MAX-
P-REGIONS PROBLEM*. Journal of Regional Science,
52(3):397–419, 2012. doi:10.1111/j.1467-9787.
2011.00743.x.

[DKA+08] M. Diaz, J.J. Kim, G. Albero, S. De Sanjose, G. Clifford, F.X.
Bosch, and S.J. Goldie. Health and economic impact of HPV
16 and 18 vaccination and cervical cancer screening in India.
British Journal of Cancer, 99(2):230–238, 2008. doi:10.
1038/sj.bjc.6604462.

[dV21] Nelis J. de Vos. kmodes categorical clustering library. https:
//github.com/nicodv/kmodes, 2015–2021.

[FBG+22] Xin Feng, Germano Barcelos, James D. Gaboardi, Elijah
Knaap, Ran Wei, Levi J. Wolf, Qunshan Zhao, and Sergio J.
Rey. spopt: a python package for solving spatial optimization
problems in PySAL. Journal of Open Source Software,
7(74):3330, 2022. doi:10.21105/joss.03330.

[FGK+21] Xin Feng, James D. Gaboardi, Elijah Knaap, Sergio J. Rey,
and Ran Wei. pysal/spopt, jan 2021. URL: https://github.com/
pysal/spopt, doi:10.5281/zenodo.4444156.

[FL86] D.K. Friesen and M.A. Langston. Variable Sized Bin Packing.
SIAM Journal on Computing, 15(1):222–230, February 1986.
doi:10.1137/0215016.

[FW12] Fletcher Foti and Paul Waddell. A Generalized Com-
putational Framework for Accessibility: From the Pedes-
trian to the Metropolitan Scale. In Transportation Re-
search Board Annual Conference, pages 1–14, 2012.
URL: https://onlinepubs.trb.org/onlinepubs/conferences/2012/
4thITM/Papers-A/0117-000062.pdf.

[G+] Sean Gillies et al. Shapely: manipulation and analysis of
geometric objects, 2007–. URL: https://github.com/shapely/
shapely.

[GFH20] James D. Gaboardi, David C. Folch, and Mark W. Horner.
Connecting Points to Spatial Networks: Effects on Discrete
Optimization Models. Geographical Analysis, 52(2):299–322,
2020. doi:10.1111/gean.12211.

[GLC+15] Isabella Gollini, Binbin Lu, Martin Charlton, Christopher
Brunsdon, and Paul Harris. GWmodel: An R package for
exploring spatial heterogeneity using geographically weighted
models. Journal of Statistical Software, 63(17):1–50, 2015.
doi:10.18637/jss.v063.i17.

[GT22] James D. Gaboardi and Joseph V. Tuccillo. Simulating Travel
to Points of Interest for Demographically-rich Synthetic Popu-
lations, February 2022. American Association of Geographers
Annual Meeting. doi:10.5281/zenodo.6335783.

[Hew97] Kenneth Hewitt. Vulnerability Perspectives: the Human Ecol-
ogy of Endangerment. In Regions of Risk: A Geographical
Introduction to Disasters, chapter 6, pages 141–164. Addison
Wesley Longman, 1997.

[HHSB12] Kirk Harland, Alison Heppenstall, Dianna Smith, and Mark H.
Birkin. Creating realistic synthetic populations at varying
spatial scales: A comparative critique of population synthesis
techniques. Journal of Artificial Societies and Social Simula-
tion, 15(1):1, 2012. doi:10.18564/jasss.1909.

[Hit41] Frank L. Hitchcock. The Distribution of a Product from
Several Sources to Numerous Localities. Journal of Mathe-
matics and Physics, 20(1-4):224–230, 1941. doi:10.1002/
sapm1941201224.

[HMvdW+20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der
Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerk-
wijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río,
Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin
Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,
Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357–362, September 2020.
doi:10.1038/s41586-020-2649-2.

[HNB+11] Jan A.C. Hontelez, Nico Nagelkerke, Till Bärnighausen, Roel
Bakker, Frank Tanser, Marie-Louise Newell, Mark N. Lurie,
Rob Baltussen, and Sake J. de Vlas. The potential impact of
RV144-like vaccines in rural South Africa: a study using the
STDSIM microsimulation model. Vaccine, 29(36):6100–6106,
2011. doi:10.1016/j.vaccine.2011.06.059.

[HSS08] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart.
Exploring Network Structure, Dynamics, and Function using
NetworkX. In Gaël Varoquaux, Travis Vaught, and Jarrod
Millman, editors, Proceedings of the 7th Python in Science
Conference, pages 11 – 15, Pasadena, CA USA, 2008. URL:
https://www.osti.gov/biblio/960616.

[Hun07] J. D. Hunter. Matplotlib: A 2D graphics environment. Com-
puting in Science & Engineering, 9(3):90–95, 2007. doi:
10.1109/MCSE.2007.55.

[JdBF+21] Kelsey Jordahl, Joris Van den Bossche, Martin Fleischmann,
James McBride, Jacob Wasserman, Adrian Garcia Badaracco,
Jeffrey Gerard, Alan D. Snow, Jeff Tratner, Matthew Perry,
Carson Farmer, Geir Arne Hjelle, Micah Cochran, Sean
Gillies, Lucas Culbertson, Matt Bartos, Brendan Ward, Gia-
como Caria, Mike Taves, Nick Eubank, sangarshanan, John
Flavin, Matt Richards, Sergio Rey, maxalbert, Aleksey Bi-
logur, Christopher Ren, Dani Arribas-Bel, Daniel Mesejo-
León, and Leah Wasser. geopandas/geopandas: v0.10.2, Octo-
ber 2021. doi:10.5281/zenodo.5573592.

[Kna78] Thomas R. Knapp. Canonical Correlation Analysis: A general
parametric significance-testing system. Psychological Bulletin,
85(2):410–416, 1978. doi:10.1037/0033-2909.85.
2.410.

[Koo49] Tjalling C. Koopmans. Optimum Utilization of the Transporta-
tion System. Econometrica, 17:136–146, 1949. Publisher:
[Wiley, Econometric Society]. doi:10.2307/1907301.

[LB13] Robin Lovelace and Dimitris Ballas. ‘Truncate, replicate,
sample’: A method for creating integer weights for spa-
tial microsimulation. Computers, Environment and Urban
Systems, 41:1–11, September 2013. doi:10.1016/j.
compenvurbsys.2013.03.004.

[LNB13] Stefan Leyk, Nicholas N. Nagle, and Barbara P. Buttenfield.
Maximum Entropy Dasymetric Modeling for Demographic
Small Area Estimation. Geographical Analysis, 45(3):285–
306, July 2013. doi:10.1111/gean.12011.

134 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

[MCB+08] Karyn Morrissey, Graham Clarke, Dimitris Ballas, Stephen
Hynes, and Cathal O’Donoghue. Examining access to GP
services in rural Ireland using microsimulation analysis. Area,
40(3):354–364, 2008. doi:10.1111/j.1475-4762.
2008.00844.x.

[MNP+17] April M. Morton, Nicholas N. Nagle, Jesse O. Piburn,
Robert N. Stewart, and Ryan McManamay. A hybrid dasy-
metric and machine learning approach to high-resolution
residential electricity consumption modeling. In Advances
in Geocomputation, pages 47–58. Springer, 2017. doi:
10.1007/978-3-319-22786-3_5.

[MOD11] Stuart Mitchell, Michael O’Sullivan, and Iain
Dunning. PuLP: A Linear Programming Toolkit
for Python. Technical report, 2011. URL:
https://www.dit.uoi.gr/e-class/modules/document/file.php/
216/PAPERS/2011.%20PuLP%20-%20A%20Linear%
20Programming%20Toolkit%20for%20Python.pdf.

[MPN+17] April M. Morton, Jesse O. Piburn, Nicholas N. Nagle, H.M.
Aziz, Samantha E. Duchscherer, and Robert N. Stewart. A
simulation approach for modeling high-resolution daytime
commuter travel flows and distributions of worker subpopula-
tions. In GeoComputation 2017, Leeds, UK, pages 1–5, 2017.
URL: http://www.geocomputation.org/2017/papers/44.pdf.

[MS01] Harvey J. Miller and Shih-Lung Shaw. Geographic Informa-
tion Systems for Transportation: Principles and Applications.
Oxford University Press, New York, 2001.

[MS15] Harvey J. Miller and Shih-Lung Shaw. Geographic Informa-
tion Systems for Transportation in the 21st Century. Geogra-
phy Compass, 9(4):180–189, 2015. doi:10.1111/gec3.
12204.

[NBLS14] Nicholas N. Nagle, Barbara P. Buttenfield, Stefan Leyk, and
Seth Spielman. Dasymetric modeling and uncertainty. Annals
of the Association of American Geographers, 104(1):80–95,
2014. doi:10.1080/00045608.2013.843439.

[NCA13] Markku Nurhonen, Allen C. Cheng, and Kari Auranen. Pneu-
mococcal transmission and disease in silico: a microsimu-
lation model of the indirect effects of vaccination. PloS
one, 8(2):e56079, 2013. doi:10.1371/journal.pone.
0056079.

[NLHH07] Michael K. Ng, Mark Junjie Li, Joshua Zhexue Huang, and
Zengyou He. On the impact of dissimilarity measure in
k-modes clustering algorithm. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 29(3):503–507, 2007.
doi:10.1109/TPAMI.2007.53.

[pdt20] The pandas development team. pandas-dev/pandas: Pandas,
February 2020. doi:10.5281/zenodo.3509134.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011. URL: https://www.jmlr.org/
papers/v12/pedregosa11a.html.

[QC13] Fang Qiu and Robert Cromley. Areal Interpolation and
Dasymetric Modeling: Areal Interpolation and Dasymetric
Modeling. Geographical Analysis, 45(3):213–215, July 2013.
doi:10.1111/gean.12016.

[RA07] Sergio J. Rey and Luc Anselin. PySAL: A Python Library of
Spatial Analytical Methods. The Review of Regional Studies,
37(1):5–27, 2007. URL: https://rrs.scholasticahq.com/article/
8285.pdf, doi:10.52324/001c.8285.

[RAA+21] Sergio J. Rey, Luc Anselin, Pedro Amaral, Dani Arribas-
Bel, Renan Xavier Cortes, James David Gaboardi, Wei Kang,
Elijah Knaap, Ziqi Li, Stefanie Lumnitz, Taylor M. Oshan,
Hu Shao, and Levi John Wolf. The PySAL Ecosystem:
Philosophy and Implementation. Geographical Analysis, 2021.
doi:10.1111/gean.12276.

[RSF+21] Krishna P. Reddy, Fatma M. Shebl, Julia H.A. Foote, Guy
Harling, Justine A. Scott, Christopher Panella, Kieran P. Fitz-
maurice, Clare Flanagan, Emily P. Hyle, Anne M. Neilan, et al.
Cost-effectiveness of public health strategies for COVID-19
epidemic control in South Africa: a microsimulation modelling
study. The Lancet Global Health, 9(2):e120–e129, 2021.
doi:10.1016/S2214-109X(20)30452-6.

[RWM+17] Amy N. Rose, Eric M. Weber, Jessica J. Moehl, Melanie L.
Laverdiere, Hsiu-Han Yang, Matthew C. Whitehead, Kelly M.
Sims, Nathan E. Trombley, and Budhendra L. Bhaduri. Land-

Scan USA 2016 [Data set]. Technical report, Oak Ridge
National Laboratory, 2017. doi:10.48690/1523377.

[SEM14] Samarth Swarup, Stephen G. Eubank, and Madhav V. Marathe.
Computational epidemiology as a challenge domain for multi-
agent systems. In Proceedings of the 2014 international con-
ference on Autonomous agents and multi-agent systems, pages
1173–1176, 2014. URL: https://www.ifaamas.org/AAMAS/
aamas2014/proceedings/aamas/p1173.pdf.

[SNGJ+09] Beate Sander, Azhar Nizam, Louis P. Garrison Jr., Maarten J.
Postma, M. Elizabeth Halloran, and Ira M. Longini Jr. Eco-
nomic evaluation of influenza pandemic mitigation strate-
gies in the United States using a stochastic microsimulation
transmission model. Value in Health, 12(2):226–233, 2009.
doi:10.1111/j.1524-4733.2008.00437.x.

[SPH11] Dianna M. Smith, Jamie R. Pearce, and Kirk Harland. Can
a deterministic spatial microsimulation model provide reli-
able small-area estimates of health behaviours? An example
of smoking prevalence in New Zealand. Health & Place,
17(2):618–624, 2011. doi:10.1016/j.healthplace.
2011.01.001.

[ST20] Haroldo G. Santos and Túlio A.M. Toffolo. Mixed Integer Lin-
ear Programming with Python. Technical report, 2020. URL:
https://python-mip.readthedocs.io/_/downloads/en/latest/pdf/.

[TBP+15] Gautam S. Thakur, Budhendra L. Bhaduri, Jesse O. Piburn,
Kelly M. Sims, Robert N. Stewart, and Marie L. Urban.
PlanetSense: a real-time streaming and spatio-temporal an-
alytics platform for gathering geo-spatial intelligence from
open source data. In Proceedings of the 23rd SIGSPATIAL
International Conference on Advances in Geographic Informa-
tion Systems, pages 1–4, 2015. doi:10.1145/2820783.
2820882.

[TCR08] Melanie N. Tomintz, Graham P. Clarke, and Janette E. Rigby.
The geography of smoking in Leeds: estimating individual
smoking rates and the implications for the location of stop
smoking services. Area, 40(3):341–353, 2008. doi:10.
1111/j.1475-4762.2008.00837.x.

[TG22] Joseph V. Tuccillo and James D. Gaboardi. Connecting Vivid
Population Data to Human Dynamics, June 2022. Distilling
Diversity by Tapping High-Resolution Population and Survey
Data. doi:10.5281/zenodo.6607533.

[TM21] Joseph V. Tuccillo and Jessica Moehl. An Individual-
Oriented Typology of Social Areas in the United States, May
2021. 2021 ACS Data Users Conference. doi:10.5281/
zenodo.6672291.

[TMKD17] Matthias Templ, Bernhard Meindl, Alexander Kowarik, and
Olivier Dupriez. Simulation of synthetic complex data: The
R package simPop. Journal of Statistical Software, 79:1–38,
2017. doi:10.18637/jss.v079.i10.

[Tuc21] Joseph V. Tuccillo. An Individual-Centered Approach for
Geodemographic Classification. In 11th International Con-
ference on Geographic Information Science 2021 Short Paper
Proceedings, pages 1–6, 2021. doi:10.25436/E2H59M.

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski,
Pearu Peterson, Warren Weckesser, Jonathan Bright, Sté-
fan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C.J. Carey, İlhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E.A. Quin-
tero, Charles R. Harris, Anne M. Archibald, Antônio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy
1.0 Contributors. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17:261–272,
2020. doi:10.1038/s41592-019-0686-2.

[WCC+09] William D. Wheaton, James C. Cajka, Bernadette M. Chas-
teen, Diane K. Wagener, Philip C. Cooley, Laxminarayana
Ganapathi, Douglas J. Roberts, and Justine L. Allpress.
Synthesized population databases: A US geospatial database
for agent-based models. Methods report (RTI Press),
2009(10):905, 2009. doi:10.3768/rtipress.2009.
mr.0010.0905.

[WM10] Wes McKinney. Data Structures for Statistical Computing in
Python. In Stéfan van der Walt and Jarrod Millman, editors,
Proceedings of the 9th Python in Science Conference, pages 56
– 61, 2010. doi:10.25080/Majora-92bf1922-00a.

[WRK21] Ran Wei, Sergio J. Rey, and Elijah Knaap. Efficient re-

LIKENESS: A TOOLKIT FOR CONNECTING THE SOCIAL FABRIC OF PLACE TO HUMAN DYNAMICS 135

gionalization for spatially explicit neighborhood delineation.
International Journal of Geographical Information Science,
35(1):135–151, 2021. doi:10.1080/13658816.2020.
1759806.

[ZFJ14] Yi Zhu and Joseph Ferreira Jr. Synthetic population gener-
ation at disaggregated spatial scales for land use and trans-
portation microsimulation. Transportation Research Record,
2429(1):168–177, 2014. doi:10.3141/2429-18.

136 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

poliastro: a Python library for interactive
astrodynamics

Juan Luis Cano Rodríguez‡∗, Jorge Martínez Garrido‡

https://www.youtube.com/watch?v=VCpTgU1pb5k

F

Abstract—Space is more popular than ever, with the growing public awareness
of interplanetary scientific missions, as well as the increasingly large number
of satellite companies planning to deploy satellite constellations. Python has
become a fundamental technology in the astronomical sciences, and it has also
caught the attention of the Space Engineering community.

One of the requirements for designing a space mission is studying the
trajectories of satellites, probes, and other artificial objects, usually ignoring
non-gravitational forces or treating them as perturbations: the so-called n-body
problem. However, for preliminary design studies and most practical purposes, it
is sufficient to consider only two bodies: the object under study and its attractor.

Even though the two-body problem has many analytical solutions, or-
bit propagation (the initial value problem) and targeting (the boundary value
problem) remain computationally intensive because of long propagation times,
tight tolerances, and vast solution spaces. On the other hand, astrodynamics
researchers often do not share the source code they used to run analyses and
simulations, which makes it challenging to try out new solutions.

This paper presents poliastro, an open-source Python library for interactive
astrodynamics that features an easy-to-use API and tools for quick visualization.
poliastro implements core astrodynamics algorithms (such as the resolution
of the Kepler and Lambert problems) and leverages numba, a Just-in-Time
compiler for scientific Python, to optimize the running time. Thanks to Astropy,
poliastro can perform seamless coordinate frame conversions and use proper
physical units and timescales. At the moment, poliastro is the longest-lived
Python library for astrodynamics, has contributors from all around the world,
and several New Space companies and people in academia use it.

Index Terms—astrodynamics, orbital mechanics, orbit propagation, orbit visu-
alization, two-body problem

Introduction

History

The term "astrodynamics" was coined by the American as-
tronomer Samuel Herrick, who received encouragement from
the space pioneer Robert H. Goddard, and refers to the branch
of space science dealing with the motion of artificial celestial
bodies ([Dub73], [Her71]). However, the roots of its mathematical
foundations go back several centuries.

Kepler first introduced his laws of planetary motion in 1609
and 1619 and derived his famous transcendental equation (1),
which we now see as capturing a restricted form of the two-body

* Corresponding author: hello@juanlu.space
‡ Unaffiliated

Copyright © 2022 Juan Luis Cano Rodríguez et al. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

problem. This work was generalized by Newton to give birth to
the n-body problem, and many other mathematicians worked on
it throughout the centuries (Daniel and Johann Bernoulli, Euler,
Gauss). Poincaré established in the 1890s that no general closed-
form solution exists for the n-body problem, since the resulting
dynamical system is chaotic [Bat99]. Sundman proved in the
1900s the existence of convergent solutions for a few restricted
with n = 3.

M = E− esinE (1)

In 1903 Tsiokovsky evaluated the conditions required for artificial
objects to leave the orbit of the earth; this is considered as a foun-
dational contribution to the field of astrodynamics. Tsiokovsky
devised equation 2 which relates the increase in velocity with the
effective exhaust velocity of thrusted gases and the fraction of used
propellant.

∆v = ve ln
m0

m f
(2)

Further developments by Kondratyuk, Hohmann, and Oberth in
the early 20th century all added to the growing field of orbital
mechanics, which in turn enabled the development of space flight
in the USSR and the United States in the 1950s and 1960s.

The two-body problem

In a system of i ∈ 1, ...,n bodies subject to their mutual attraction,
by application of Newton’s law of universal gravitation, the total
force fi affecting mi due to the presence of the other n−1 masses
is given by [Bat99]:

fi =−G
n

∑
j 6=i

mim j

|ri j|3
ri j (3)

where G = 6.67430 · 10−11 N m2 kg−2 is the universal gravita-
tional constant, and ri j denotes the position vector from mi to m j.
Applying Newton’s second law of motion results in a system of n
differential equations:

d2 ri

d t2 =−G
n

∑
j 6=i

m j

|ri j|3
ri j (4)

By setting n = 2 in 4 and subtracting the two resulting equali-
ties, one arrives to the fundamental equation of the two-body
problem:

d2 r
d t2 =− µ

r3 r (5)

where µ = G(m1 +m2) = G(M+m). When m�M (for example,
an artificial satellite orbiting a planet), one can consider µ = GM
a property of the attractor.

POLIASTRO: A PYTHON LIBRARY FOR INTERACTIVE ASTRODYNAMICS 137

Keplerian vs non-keplerian motion

Conveniently manipulating equation 5 leads to several properties
[Bat99] that were already published by Johannes Kepler in the
1610s, namely:

1) The orbit always describes a conic section (an ellipse, a
parabola, or an hyperbola), with the attractor at one of
the two foci and can be written in polar coordinates like
r = p

1+ecosν (Kepler’s first law).
2) The magnitude of the specific angular momentum h =

r2 dθ
d t is constant an equal to two times the areal velocity

(Kepler’s second law).
3) For closed (circular and elliptical) orbits, the period is

related to the size of the orbit through P = 2π
√

a3

µ
(Kepler’s third law).

For many practical purposes it is usually sufficient to limit
the study to one object orbiting an attractor and ignore all other
external forces of the system, hence restricting the study to
trajectories governed by equation 5. Such trajectories are called
"Keplerian", and several problems can be formulated for them:

• The initial-value problem, which is usually called prop-
agation, involves determining the position and velocity of
an object after an elapse period of time given some initial
conditions.

• Preliminary orbit determination, which involves using
exact or approximate methods to derive a Keplerian orbit
from a set of observations.

• The boundary-value problem, often named the Lambert
problem, which involves determining a Keplerian orbit
from boundary conditions, usually departure and arrival
position vectors and a time of flight.

Fortunately, most of these problems boil down to finding
numerical solutions to relatively simple algebraic relations be-
tween time and angular variables: for elliptic motion (0 ≤ e < 1)
it is the Kepler equation, and equivalent relations exist for the
other eccentricity regimes [Bat99]. Numerical solutions for these
equations can be found in a number of different ways, each one
with different complexity and precision tradeoffs. In the Methods
section we list the ones implemented by poliastro.

On the other hand, there are many situations in which natural
and artificial orbital perturbations must be taken into account so
that the actual non-Keplerian motion can be properly analyzed:

• Interplanetary travel in the proximity of other planets. On
a first approximation it is usually enough to study the
trajectory in segments and focus the analysis on the closest
attractor, hence patching several Keplerian orbits along
the way (the so-called "patched-conic approximation")
[Bat99]. The boundary surface that separates one segment
from the other is called the sphere of influence.

• Use of solar sails, electric propulsion, or other means
of continuous thrust. Devising the optimal guidance laws
that minimize travel time or fuel consumption under these
conditions is usually treated as an optimization problem
of a dynamical system, and as such it is particularly
challenging [Con14].

• Artificial satellites in the vicinity of a planet. This is
the regime in which all the commercial space industry
operates, especially for those satellites in Low-Earth Orbit
(LEO).

State of the art

In our view, at the time of creating poliastro there were a number
of issues with existing open source astrodynamics software that
posed a barrier of entry for novices and amateur practitioners.
Most of these barriers still exist today and are described in the
following paragraphs. The goals of the project can be condensed
as follows:

1) Set an example on reproducibility and good coding prac-
tices in astrodynamics.

2) Become an approachable software even for novices.
3) Offer a performant software that can be also used in

scripting and interactive workflows.

The most mature software libraries for astrodynamics are
arguably Orekit [noa22c], a "low level space dynamics library
written in Java" with an open governance model, and SPICE
[noa22d], a toolkit developed by NASA’s Navigation and An-
cillary Information Facility at the Jet Propulsion Laboratory.
Other similar, smaller projects that appeared later on and that
are still maintained to this day include PyKEP [IBD+20], be-
yond [noa22a], tudatpy [noa22e], sbpy [MKDVB+19], Skyfield
[Rho20] (Python), CelestLab (Scilab) [noa22b], astrodynamics.jl
(Julia) [noa] and Nyx (Rust) [noa21a]. In addition, there are
some Graphical User Interface (GUI) based open source programs
used for Mission Analysis and orbit visualization, such as GMAT
[noa20] and gpredict [noa18], and complete web applications for
tracking constellations of satellites like the SatNOGS project by
the Libre Space Foundation [noa21b].

The level of quality and maintenance of these packages is
somewhat heterogeneous. Community-led projects with a strong
corporate backing like Orekit are in excellent health, while on
the other hand smaller projects developed by volunteers (beyond,
astrodynamics.jl) or with limited institutional support (PyKEP,
GMAT) suffer from lack of maintenance. Part of the problem
might stem from the fact that most scientists are never taught how
to build software efficiently, let alone the skills to collaboratively
develop software in the open [WAB+14], and astrodynamicists are
no exception.

On the other hand, it is often difficult to translate the advances
in astrodynamics research to software. Classical algorithms devel-
oped throughout the 20th century are described in papers that are
sometimes difficult to find, and source code or validation data
is almost never available. When it comes to modern research
carried in the digital era, source code and validation data is
still difficult, even though they are supposedly provided "upon
reasonable request" [SSM18] [GBP22].

It is no surprise that astrodynamics software often requires
deep expertise. However, there are often implicit assumptions that
are not documented with an adequate level of detail which orig-
inate widespread misconceptions and lead even seasoned profes-
sionals to make conceptual mistakes. Some of the most notorious
misconceptions arise around the use of general perturbations data
(OMMs and TLEs) [Fin07], the geometric interpretation of the
mean anomaly [Bat99], or coordinate transformations [VCHK06].

Finally, few of the open source software libraries mentioned
above are amenable to scripting or interactive use, as promoted by
computational notebooks like Jupyter [KRKP+16].

The following sections will now discuss the various areas of
current research that an astrodynamicist will engage in, and how
poliastro improves their workflow.

138 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Methods

Software Architecture

The architecture of poliastro emerges from the following set of
conflicting requirements:

1) There should be a high-level API that enables users to
perform orbital calculations in a straightforward way and
prevent typical mistakes.

2) The running time of the algorithms should be within the
same order of magnitude of existing compiled implemen-
tations.

3) The library should be written in a popular open-source
language to maximize adoption and lower the barrier to
external contributors.

One of the most typical mistakes we set ourselves to prevent
with the high-level API is dimensional errors. Addition and
substraction operations of physical quantities are defined only for
quantities with the same units [Dro53]: for example, the operation
1 km + 100 m requires a scale transformation of at least one
of the operands, since they have different units (kilometers and
meters) but the same dimension (length), whereas the operation
1 km + 1 kg is directly not allowed because dimensions are
incompatible (length and mass). As such, software systems oper-
ating with physical quantities should raise exceptions when adding
different dimensions, and transparently perform the required scale
transformations when adding different units of the same dimen-
sion.

With this in mind, we evaluated several Python packages for
unit handling (see [JGAZJT+18] for a recent survey) and chose
astropy.units [TPWS+18].

radius = 6000 # km
altitude = 500 # m

Wrong!
distance = radius + altitude

from astropy import units as u

Correct
distance = (radius << u.km) + (altitude << u.m)

This notion of providing a "safe" API extends to other parts
of the library by leveraging other capabilities of the Astropy
project. For example, timestamps use astropy.time objects,
which take care of the appropriate handling of time scales
(such as TDB or UTC), reference frame conversions leverage
astropy.coordinates, and so forth.

One of the drawbacks of existing unit packages is that
they impose a significant performance penalty. Even though
astropy.units is integrated with NumPy, hence allowing
the creation of array quantities, all the unit compatibility checks
are implemented in Python and require lots of introspection, and
this can slow down mathematical operations by several orders of
magnitude. As such, to fulfill our desired performance requirement
for poliastro, we envisioned a two-layer architecture:

• The Core API follows a procedural style, and all the
functions receive Python numerical types and NumPy
arrays for maximum performance.

• The High level API is object-oriented, all the methods
receive Astropy Quantity objects with physical units,
and computations are deferred to the Core API.

Nice, high level API

Dangerous™ algorithms

Fig. 1: poliastro two-layer architecture

Most of the methods of the High level API consist only
of the necessary unit compatibility checks, plus a wrapper over
the corresponding Core API function that performs the actual
computation.
@u.quantity_input(E=u.rad, ecc=u.one)
def E_to_nu(E, ecc):

"""True anomaly from eccentric anomaly."""
return (

E_to_nu_fast(
E.to_value(u.rad),
ecc.value

) << u.rad
).to(E.unit)

As a result, poliastro offers a unit-safe API that performs the least
amount of computation possible to minimize the performance
penalty of unit checks, and also a unit-unsafe API that offers
maximum performance at the cost of not performing any unit
validation checks.

Finally, there are several options to write performant code that
can be used from Python, and one of them is using a fast, compiled
language for the CPU intensive parts. Successful examples of this
include NumPy, written in C [HMvdW+20], SciPy, featuring a
mix of FORTRAN, C, and C++ code [VGO+20], and pandas,
making heavy use of Cython [BBC+11]. However, having to
write code in two different languages hinders the development
speed, makes debugging more difficult, and narrows the potential
contributor base (what Julia creators called "The Two Language
Problem" [BEKS17]).

As authors of poliastro we wanted to use Python as the
sole programming language of the implementation, and the best
solution we found to improve its performance was to use Numba,
a LLVM-based Python JIT compiler [LPS15].

Usage

Basic Orbit and Ephem creation

The two central objects of the poliastro high level API are Orbit
and Ephem:

• Orbit objects represent an osculating (hence Keplerian)
orbit of a dimensionless object around an attractor at a
given point in time and a certain reference frame.

• Ephem objects represent an ephemerides, a sequence of
spatial coordinates over a period of time in a certain
reference frame.

There are six parameters that uniquely determine a Keplerian
orbit, plus the gravitational parameter of the corresponding attrac-
tor (k or µ). Optionally, an epoch that contextualizes the orbit
can be included as well. This set of six parameters is not unique,
and several of them have been developed over the years to serve
different purposes. The most widely used ones are:

• Cartesian elements: Three components for the position
(x,y,z) and three components for the velocity (vx,vy,vz).
This set has no singularities.

POLIASTRO: A PYTHON LIBRARY FOR INTERACTIVE ASTRODYNAMICS 139

• Classical Keplerian elements: Two components for the
shape of the conic (usually the semimajor axis a or
semiparameter p and the eccentricity e), three Euler angles
for the orientation of the orbital plane in space (inclination
i, right ascension of the ascending node Ω, and argument
of periapsis ω), and one polar angle for the position of the
body along the conic (usually true anomaly f or ν). This
set of elements has an easy geometrical interpretation and
the advantage that, in pure two-body motion, five of them
are fixed (a,e, i,Ω,ω) and only one is time-dependent
(ν), which greatly simplifies the analytical treatment of
orbital perturbations. However, they suffer from singular-
ities steming from the Euler angles ("gimbal lock") and
equations expressed in them are ill-conditioned near such
singularities.

• Walker modified equinoctial elements: Six parameters
(p, f ,g,h,k,L). Only L is time-dependent and this set has
no singularities, however the geometrical interpretation of
the rest of the elements is lost [WIO85].

Here is how to create an Orbit from cartesian and from clas-
sical Keplerian elements. Walker modified equinoctial elements
are supported as well.
from astropy import units as u

from poliastro.bodies import Earth, Sun
from poliastro.twobody import Orbit
from poliastro.constants import J2000

Data from Curtis, example 4.3
r = [-6045, -3490, 2500] << u.km
v = [-3.457, 6.618, 2.533] << u.km / u.s

orb_curtis = Orbit.from_vectors(
Earth, # Attractor
r, v # Elements

)

Data for Mars at J2000 from JPL HORIZONS
a = 1.523679 << u.au
ecc = 0.093315 << u.one
inc = 1.85 << u.deg
raan = 49.562 << u.deg
argp = 286.537 << u.deg
nu = 23.33 << u.deg

orb_mars = Orbit.from_classical(
Sun,
a, ecc, inc, raan, argp, nu,
J2000 # Epoch

)

When displayed on an interactive REPL, Orbit objects provide
basic information about the geometry, the attractor, and the epoch:
>>> orb_curtis
7283 x 10293 km x 153.2 deg (GCRS) orbit
around Earth (X) at epoch J2000.000 (TT)

>>> orb_mars
1 x 2 AU x 1.9 deg (HCRS) orbit
around Sun (X) at epoch J2000.000 (TT)

Similarly, Ephem objects can be created using a variety of class-
methods as well. Thanks to astropy.coordinates built-in
low-fidelity ephemerides, as well as its capability to remotely
access the JPL HORIZONS system, the user can seamlessly build
an object that contains the time history of the position of any Solar
System body:
from astropy.time import Time
from astropy.coordinates import solar_system_ephemeris

from poliastro.ephem import Ephem

Configure high fidelity ephemerides globally
(requires network access)
solar_system_ephemeris.set("jpl")

For predefined poliastro attractors
earth = Ephem.from_body(Earth, Time.now().tdb)

For the rest of the Solar System bodies
ceres = Ephem.from_horizons("Ceres", Time.now().tdb)

There are some crucial differences between Orbit and Ephem
objects:

• Orbit objects have an attractor, whereas Ephem objects
do not. Ephemerides can originate from complex trajecto-
ries that don’t necessarily conform to the ideal two-body
problem.

• Orbit objects capture a precise instant in a two-body mo-
tion plus the necessary information to propagate it forward
in time indefinitely, whereas Ephem objects represent a
bounded time history of a trajectory. This is because the
equations for the two-body motion are known, whereas
an ephemeris is either an observation or a prediction
that cannot be extrapolated in any case without external
knowledge. As such, Orbit objects have a .propagate
method, but Ephem ones do not. This prevents users from
attempting to propagate the position of the planets, which
will always yield poor results compared to the excellent
ephemerides calculated by external entities.

Finally, both types have methods to convert between them:

• Ephem.from_orbit is the equivalent of sampling a
two-body motion over a given time interval. As explained
above, the resulting Ephem loses the information about
the original attractor.

• Orbit.from_ephem is the equivalent of calculating
the osculating orbit at a certain point of a trajectory,
assuming a given attractor. The resulting Orbit loses
the information about the original, potentially complex
trajectory.

Orbit propagation

Orbit objects have a .propagatemethod that takes an elapsed
time and returns another Orbit with new orbital elements and an
updated epoch:
>>> from poliastro.examples import iss

>>> iss
>>> 6772 x 6790 km x 51.6 deg (GCRS) ...

>>> iss.nu.to(u.deg)
<Quantity 46.59580468 deg>

>>> iss_30m = iss.propagate(30 << u.min)

>>> (iss_30m.epoch - iss.epoch).datetime
datetime.timedelta(seconds=1800)

>>> (iss_30m.nu - iss.nu).to(u.deg)
<Quantity 116.54513153 deg>

The default propagation algorithm is an analytical procedure
described in [FCM13] that works seamlessly in the near parabolic
region. In addition, poliastro implements analytical propagation
algorithms as described in [DB83], [OG86], [Mar95], [Mik87],
[PP13], [Cha22], and [VM07].

140 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 2: Osculating (Keplerian) vs perturbed (true) orbit (source:
Wikipedia, CC BY-SA 3.0)

Natural perturbations

As showcased in Figure 2, at any point in a trajectory we
can define an ideal Keplerian orbit with the same position and
velocity under the attraction of a point mass: this is called the
osculating orbit. Some numerical propagation methods exist that
model the true, perturbed orbit as a deviation from an evolving,
osculating orbit. poliastro implements Cowell’s method [CC10],
which consists in adding all the perturbation accelerations and then
integrating the resulting differential equation with any numerical
method of choice:

d2 r
d t2 =− µ

r3 r+ad (6)

The resulting equation is usually integrated using high order
numerical methods, since the integration times are quite large
and the tolerances comparatively tight. An in-depth discussion of
such methods can be found in [HNW09]. poliastro uses Dormand-
Prince 8(5,3) (DOP853), a commonly used method available in
SciPy [HMvdW+20].

There are several natural perturbations included: J2 and J3
gravitational terms, several atmospheric drag models (exponential,
[Jac77], [AAAA62], [AAA+76]), and helpers for third body
gravitational attraction and radiation pressure as described in [?].
@njit
def combined_a_d(

t0, state, k, j2, r_eq, c_d, a_over_m, h0, rho0
):

return (
J2_perturbation(

t0, state, k, j2, r_eq
) + atmospheric_drag_exponential(

t0, state, k, r_eq, c_d, a_over_m, h0, rho0
)

)

def f(t0, state, k):
du_kep = func_twobody(t0, state, k)
ax, ay, az = combined_a_d(

t0,
state,
k,
R=R,
C_D=C_D,
A_over_m=A_over_m,
H0=H0,
rho0=rho0,
J2=Earth.J2.value,

)
du_ad = np.array([0, 0, 0, ax, ay, az])

return du_kep + du_ad

rr = propagate(
orbit,
tofs,
method=cowell,
f=f,

)

Continuous thrust control laws

Beyond natural perturbations, spacecraft can modify their trajec-
tory on purpose by using impulsive maneuvers (as explained in
the next section) as well as continuous thrust guidance laws. The
user can define custom guidance laws by providing a perturbation
acceleration in the same way natural perturbations are used. In
addition, poliastro includes several analytical solutions for con-
tinuous thrust guidance laws with specific purposes, as studied in
[CR17]: optimal transfer between circular coplanar orbits [Ede61]
[Bur67], optimal transfer between circular inclined orbits [Ede61]
[Kec97], quasi-optimal eccentricity-only change [Pol97], simulta-
neous eccentricity and inclination change [Pol00], and agument of
periapsis adjustment [Pol98]. A much more rigorous analysis of a
similar set of laws can be found in [DCV21].

from poliastro.twobody.thrust import change_ecc_inc

ecc_f = 0.0 << u.one
inc_f = 20.0 << u.deg
f = 2.4e-6 << (u.km / u.s**2)

a_d, _, t_f = change_ecc_inc(orbit, ecc_f, inc_f, f)

Impulsive maneuvers

Impulsive maneuvers are modeled considering a change in the
velocity of a spacecraft while its position remains fixed. The
poliastro.maneuver.Maneuver class provides various
constructors to instantiate popular impulsive maneuvers in the
framework of the non-perturbed two-body problem:

• Maneuver.impulse
• Maneuver.hohmann
• Maneuver.bielliptic
• Maneuver.lambert

from poliastro.maneuver import Maneuver

orb_i = Orbit.circular(Earth, alt=700 << u.km)
hoh = Maneuver.hohmann(orb_i, r_f=36000 << u.km)

Once instantiated, Maneuver objects provide information regard-
ing total ∆v and ∆t:

>>> hoh.get_total_cost()
<Quantity 3.6173981270031357 km / s>

>>> hoh.get_total_time()
<Quantity 15729.741535747102 s>

Maneuver objects can be applied to Orbit instances using the
apply_maneuver method.

>>> orb_i
7078 x 7078 km x 0.0 deg (GCRS) orbit
around Earth (X)

>>> orb_f = orb_i.apply_maneuver(hoh)
>>> orb_f
36000 x 36000 km x 0.0 deg (GCRS) orbit
around Earth (X)

POLIASTRO: A PYTHON LIBRARY FOR INTERACTIVE ASTRODYNAMICS 141

Targeting

Targeting is the problem of finding the orbit connecting two
positions over a finite amount of time. Within the context of
the non-perturbed two-body problem, targeting is just a matter
of solving the BVP, also known as Lambert’s problem. Because
targeting tries to find for an orbit, the problem is included in the
Initial Orbit Determination field.

The poliastro.iod package contains izzo and
vallado modules. These provide a lambert function for solv-
ing the targeting problem. Nevertheless, a Maneuver.lambert
constructor is also provided so users can keep taking advantage of
Orbit objects.
Declare departure and arrival datetimes
date_launch = time.Time(

'2011-11-26 15:02', scale='tdb'
)
date_arrival = time.Time(

'2012-08-06 05:17', scale='tdb'
)

Define initial and final orbits
orb_earth = Orbit.from_ephem(

Sun, Ephem.from_body(Earth, date_launch),
date_launch

)
orb_mars = Orbit.from_ephem(

Sun, Ephem.from_body(Mars, date_arrival),
date_arrival

)

Compute targetting maneuver and apply it
man_lambert = Maneuver.lambert(orb_earth, orb_mars)
orb_trans, orb_target = ss0.apply_maneuver(

man_lambert, intermediate=true
)

Targeting is closely related to quick mission design by means of
porkchop diagrams. These are contour plots showing all combi-
nations of departure and arrival dates with the specific energy for
each transfer orbit. They allow for quick identification of the most
optimal transfer dates between two bodies.

The poliastro.plotting.porkchop provides the
PorkchopPlotter class which allows the user to generate
these diagrams.
from poliastro.plotting.porkchop import (

PorkchopPlotter
)
from poliastro.utils import time_range

Generate all launch and arrival dates
launch_span = time_range(

"2020-03-01", end="2020-10-01", periods=int(150)
)
arrival_span = time_range(

"2020-10-01", end="2021-05-01", periods=int(150)
)

Create an instance of the porkchop and plot it
porkchop = PorkchopPlotter(

Earth, Mars, launch_span, arrival_span,
)

Previous code, with some additional customization, generates
figure 3.

Plotting

For visualization purposes, poliastro provides the
poliastro.plotting package, which contains various
utilities for generating 2D and 3D graphics using different
backends such as matplotlib [Hun07] and Plotly [Inc15].

2020-03
2020-04

2020-05
2020-06

2020-07
2020-08

2020-09
2020-10

Launch date

2020-10

2020-11

2020-12

2021-01

2021-02

2021-03

2021-04

2021-05

Ar
ri

va
l d

at
e

Earth - Mars for year 2020-2021, C3 launch

15
.5

17
.118

.6

20
.2

21
.7

23
.3

24
.8

24
.8

26.4

26
.4

27
.9

27
.9

29
.5

29
.5

31
.0

31
.0

32
.6

32
.6

34
.1

34
.1

35
.7

35
.737

.2

37
.2

38
.8

38
.8

40
.3

40
.3

41
.9

41
.9

43
.4

43
.4 45

.0

45
.0

10
0.0

20
0.0

30
0.0

40
0.0

3.
8

3.
8

5.
0

5.0

5.
0 Days of flight

Arrival velocity km/s

Perseverance
Tianwen-1
Hope Mars

0.00

4.66

9.31

13.97

18.62

23.28

27.93

32.59

37.24

41.90

km
2

/ s
2

Fig. 3: Porkchop plot for Earth-Mars transfer arrival energy showing
latest missions to the Martian planet.

Generated graphics can be static or interactive. The main
difference between these two is the ability to modify the camera
view in a dynamic way when using interactive plotters.

The most important classes in the poliastro.plotting
package are StaticOrbitPlotter and OrbitPlotter3D.
In addition, the poliastro.plotting.misc module con-
tains the plot_solar_system function, which allows the user
to visualize inner and outter both in 2D and 3D, as requested by
users.

The following example illustrates the plotting capabilities of
poliastro. At first, orbits to be plotted are computed and their
plotting style is declared:
from poliastro.plotting.misc import plot_solar_system

Current datetime
now = Time.now().tdb

Obtain Florence and Halley orbits
florence = Orbit.from_sbdb("Florence")
halley_1835_ephem = Ephem.from_horizons(

"90000031", now
)
halley_1835 = Orbit.from_ephem(

Sun, halley_1835_ephem, halley_1835_ephem.epochs[0]
)

Define orbit labels and color style
florence_style = {label: "Florence", color: "#000000"}
halley_style = {label: "Florence", color: "#84B0B8"}

The static two-dimensional plot can be created using the following
code:
Generate a static 2D figure
frame2D = rame = plot_solar_system(

epoch=now, outer=False
)
frame2D.plot(florence, **florence_style)
frame2D.plot(florence, **halley_style)

As a result, figure 4 is obtained.
The interactive three-dimensional plot can be created using the

following code:

142 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 4: Two-dimensional view of the inner Solar System, Florence,
and Halley.

Generate an interactive 3D figure
frame3D = rame = plot_solar_system(

epoch=now, outer=False,
use_3d=True, interactive=true

)
frame3D.plot(florence, **florence_style)
frame3D.plot(florence, **halley_style)

As a result, figure 5 is obtained.

Fig. 5: Three-dimensional view of the inner Solar System, Florence,
and Halley.

Commercial Earth satellites

Figure 6 gives a clear picture of the most important natural pertur-
bations affecting satellites in LEO, namely: the first harmonic of
the geopotential field J2 (representing the attractor oblateness),
the atmospheric drag, and the higher order harmonics of the
geopotential field.

At least the most significant of these perturbations need to be
taken into account when propagating LEO orbits, and therefore
the methods for purely Keplerian motion are not enough. As
seen above, poliastro implements a number of these perturbations
already - however, numerical methods are much slower than
analytical ones, and this can render them unsuitable for large
scale simulations, satellite conjunction assesment, propagation in
constrained hardware, and so forth.

To address this issue, semianalytical propagation methods
were devised that attempt to strike a balance between the fast
running times of analytical methods and the necessary inclusion
of perturbation forces. One of such semianalytical methods are

Fig. 6: Natural perturbations affecting Low-Earth Orbit (LEO) mo-
tion (source: [VM07])

the Simplified General Perturbation (SGP) models, first developed
in [HK66] and then refined in [LC69] into what we know these
days as the SGP4 propagator [HR80] [VCHK06]. Even though
certain elements of the reference frame used by SGP4 are not
properly specified [VCHK06] and that its accuracy might still be
too limited for certain applications [Ko09] [Lar16], it is nowadays
the most widely used propagation method thanks in large part to
the dissemination of General Perturbations orbital data by the US
501(c)(3) CelesTrak (which itself obtains it from the 18th Space
Defense Squadron of the US Space Force).

The starting point of SGP4 is a special element set that uses
Brouwer mean orbital elements [Bro59] plus a ballistic coefficient
based on an approximation of the atmospheric drag [LC69], and
its results are expressed in a special coordinate system called True
Equator Mean Equinox (TEME). Special care needs to be taken
to avoid mixing mean elements with osculating elements, and to
convert the output of the propagation to the appropriate reference
frame. These element sets have been traditionally distributed in a
compact text representation called Two-Line Element sets (TLEs)
(see 7 for an example). However this format is quite cryptic and
suffers from a number of shortcomings, so recently there has
been a push to use the Orbit Data Messages international standard
developed by the Consultive Committee for Space Data Systems
(CCSDS 502.0-B-2).

1 25544U 98067A 22156.15037205 .00008547 00000+0 15823-3 0 9994
2 25544 51.6449 36.2070 0004577 196.3587 298.4146 15.49876730343319

Fig. 7: Two-Line Element set (TLE) for the ISS (retrieved on 2022-
06-05)

At the moment, general perturbations data both in OMM and
TLE format can be integrated with poliastro thanks to the sgp4
Python library and the Ephem class as follows:
from astropy.coordinates import TEME, GCRS

from poliastro.ephem import Ephem
from poliastro.frames import Planes

def ephem_from_gp(sat, times):
errors, rs, vs = sat.sgp4_array(times.jd1, times.jd2)
if not (errors == 0).all():

warn(
"Some objects could not be propagated, "

POLIASTRO: A PYTHON LIBRARY FOR INTERACTIVE ASTRODYNAMICS 143

"proceeding with the rest",
stacklevel=2,

)
rs = rs[errors == 0]
vs = vs[errors == 0]
times = times[errors == 0]

cart_teme = CartesianRepresentation(
rs << u.km,
xyz_axis=-1,
differentials=CartesianDifferential(

vs << (u.km / u.s),
xyz_axis=-1,

),
)
cart_gcrs = (

TEME(cart_teme, obstime=times)
.transform_to(GCRS(obstime=times))
.cartesian

)

return Ephem(
cart_gcrs,
times,
plane=Planes.EARTH_EQUATOR

)

However, no native integration with SGP4 has been implemented
yet in poliastro, for technical and non-technical reasons. On one
hand, this propagator is too different from the other methods, and
we have not yet devised how to add it to the library in a way
that does not create confusion. On the other hand, adding such
a propagator to poliastro would probably open the flood gates of
corporate users of the library, and we would like to first devise
a sustainability strategy for the project, which is addressed in the
next section.

Future work

Despite the fact that poliastro has existed for almost a decade, for
most of its history it has been developed by volunteers on their
free time, and only in the past five years it has received funding
through various Summer of Code programs (SOCIS 2017, GSOC
2018-2021) and institutional grants (NumFOCUS 2020, 2021).
The funded work has had an overwhemingly positive impact on
the project, however the lack of a dedicated maintainer has caused
some technical debt to accrue over the years, and some parts of
the project are in need of refactoring or better documentation.

Historically, poliastro has tried to implement algorithms that
were applicable for all the planets in the Solar System, however
some of them have proved to be very difficult to generalize for
bodies other than the Earth. For cases like these, poliastro ships a
poliastro.earth package, but going forward we would like
to continue embracing a generic approach that can serve other
bodies as well.

Several open source projects have successfully used poliastro
or were created taking inspiration from it, like spacetech-ssa
by IBM1 or mubody [BBVPFSC22]. AGI (previously Analytical
Graphics, Inc., now Ansys Government Initiatives) published a
series of scripts to automate the commercial tool STK from Python
leveraging poliastro2. However, we have observed that there is still
lots of repeated code across similar open source libraries written
in Python, which means that there is an opportunity to provide
a "kernel" of algorithms that can be easily reused. Although
poliastro.core started as a separate layer to isolate fast, non-
safe functions as described above, we think we could move it to
an external package so it can be depended upon by projects that

do not want to use some of the higher level poliastro abstractions
or drag its large number of heavy dependencies.

Finally, the sustainability of the project cannot yet be taken for
granted: the project has reached a level of complexity that already
warrants dedicated development effort that cannot be covered with
short-lived grants. Such funding could potentially come from the
private sector, but although there is evidence that several for-profit
companies are using poliastro, we have very little information of
how is it being used and what problems are those users having,
let alone what avenues for funded work could potentially work.
Organizations like the Libre Space Foundation advocate for a
strong copyleft licensing model to convince commercial actors to
contribute to the commons, but in principle that goes against the
permissive licensing that the wider Scientific Python ecosystem,
including poliastro, has adopted. With the advent of new business
models and the ever increasing reliance in open source by the
private sector, a variety of ways to engage commercial users and
include them in the conversation exist. However, these have not
been explored yet.

Acknowledgements

The authors would like to thank Prof. Michèle Lavagna for her
original guidance and inspiration, David A. Vallado for his en-
couragement and for publishing the source code for the algorithms
from his book for free, Dr. T.S. Kelso for his tireless efforts in
maintaining CelesTrak, Alejandro Sáez for sharing the dream of
a better way, Prof. Dr. Manuel Sanjurjo Rivo for believing in my
work, Helge Eichhorn for his enthusiasm and decisive influence
in poliastro, the whole OpenAstronomy collaboration for opening
the door for us, the NumFOCUS organization for their immense
support, and Alexandra Elbakyan for enabling scientific progress
worldwide.

REFERENCES

[AAA+76] United States Committee on Extension to the Standard At-
mosphere, United States National Aeronautics, Space Ad-
ministration, United States National Oceanic, Atmospheric
Administration, and United States Air Force. U.S. Stan-
dard Atmosphere, 1976. NOAA - SIT 76-1562. National
Oceanic and Amospheric [sic] Administration, 1976. URL:
https://books.google.es/books?id=x488AAAAIAAJ.

[AAAA62] United States Committee on Extension to the Standard At-
mosphere, United States National Aeronautics, Space Admin-
istration, and United States Environmental Science Services
Administration. U.S. Standard Atmosphere, 1962: ICAO
Standard Atmosphere to 20 Kilometers; Proposed ICAO Ex-
tension to 32 Kilometers; Tables and Data to 700 Kilo-
meters. U.S. Government Printing Office, 1962. URL:
https://books.google.es/books?id=fWdTAAAAMAAJ.

[Bat99] Richard H. Battin. An Introduction to the Mathematics
and Methods of Astrodynamics, Revised Edition. American
Institute of Aeronautics and Astronautics, Inc., Reston, VA,
January 1999. URL: https://arc.aiaa.org/doi/book/10.2514/4.
861543, doi:10.2514/4.861543.

[BBC+11] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dal-
cin, Dag Sverre Seljebotn, and Kurt Smith. Cython: The
Best of Both Worlds. Computing in Science & Engineering,
13(2):31–39, March 2011. URL: http://ieeexplore.ieee.org/
document/5582062/, doi:10.1109/MCSE.2010.118.

[BBVPFSC22] Juan Bermejo Ballesteros, José María Vergara Pérez,
Alejandro Fernández Soler, and Javier Cubas. Mu-
body, an astrodynamics open-source Python library fo-
cused on libration points. Barcelona, Spain, April
2022. URL: https://sseasymposium.org/wp-content/uploads/
2022/04/4thSSEA_AllAbstracts.pdf.

1. https://github.com/IBM/spacetech-ssa
2. https://github.com/AnalyticalGraphicsInc/STKCodeExamples/

144 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

[BEKS17] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Vi-
ral B. Shah. Julia: A Fresh Approach to Numerical
Computing. SIAM Review, 59(1):65–98, January 2017.
URL: https://epubs.siam.org/doi/10.1137/141000671, doi:
10.1137/141000671.

[Bro59] Dirk Brouwer. Solution of the problem of artificial satellite
theory without drag. The Astronomical Journal, 64:378,
November 1959. URL: http://adsabs.harvard.edu/cgi-bin/bib_
query?1959AJ.....64..378B, doi:10.1086/107958.

[Bur67] E.G.C. Burt. On space manoeuvres with con-
tinuous thrust. Planetary and Space Science,
15(1):103–122, January 1967. URL: https:
//linkinghub.elsevier.com/retrieve/pii/0032063367900700,
doi:10.1016/0032-0633(67)90070-0.

[CC10] Philip Herbert Cowell and Andrew Claude Crommelin. Inves-
tigation of the Motion of Halley’s Comet from 1759 to 1910.
Neill & Company, limited, 1910.

[Cha22] Kevin Charls. Recursive solution to Kepler’s problem for
elliptical orbits - application in robust Newton-Raphson and
co-planar closest approach estimation. 2022. Publisher:
Unpublished Version Number: 1. URL: https://rgdoi.net/
10.13140/RG.2.2.18578.58563/1, doi:10.13140/RG.2.
2.18578.58563/1.

[Con14] Bruce A. Conway. Spacecraft trajectory optimization. Num-
ber 29 in Cambridge aerospace series. Cambridge university
press, Cambridge (GB), 2014.

[CR17] Juan Luis Cano Rodríguez. Study of analytical solutions for
low-thrust trajectories. Master’s thesis, Universidad Politéc-
nica de Madrid, March 2017.

[DB83] J. M. A. Danby and T. M. Burkardt. The solution of Kepler’s
equation, I. Celestial Mechanics, 31(2):95–107, October
1983. URL: http://link.springer.com/10.1007/BF01686811,
doi:10.1007/BF01686811.

[DCV21] Marilena Di Carlo and Massimiliano Vasile. Analytical
solutions for low-thrust orbit transfers. Celestial Mechanics
and Dynamical Astronomy, 133(7):33, July 2021. URL: https:
//link.springer.com/10.1007/s10569-021-10033-9, doi:10.
1007/s10569-021-10033-9.

[Dro53] S. Drobot. On the foundations of Dimensional Analysis.
Studia Mathematica, 14(1):84–99, 1953. URL: http://www.
impan.pl/get/doi/10.4064/sm-14-1-84-99, doi:10.4064/
sm-14-1-84-99.

[Dub73] G. N. Duboshin. Book Review: Samuel Herrick. Astrodynam-
ics. Soviet Astronomy, 16:1064, June 1973. ADS Bibcode:
1973SvA....16.1064D. URL: https://ui.adsabs.harvard.edu/
abs/1973SvA....16.1064D.

[Ede61] Theodore N. Edelbaum. Propulsion Requirements for Con-
trollable Satellites. ARS Journal, 31(8):1079–1089, August
1961. URL: https://arc.aiaa.org/doi/10.2514/8.5723, doi:
10.2514/8.5723.

[FCM13] Davide Farnocchia, Davide Bracali Cioci, and Andrea Milani.
Robust resolution of Kepler’s equation in all eccentricity
regimes. Celestial Mechanics and Dynamical Astronomy,
116(1):21–34, May 2013. URL: http://link.springer.com/10.
1007/s10569-013-9476-9, doi:10.1007/s10569-013-
9476-9.

[Fin07] D Finkleman. "TLE or Not TLE?" That is the Question (AAS
07-126). ADVANCES IN THE ASTRONAUTICAL SCIENCES,
127(1):401, 2007. Publisher: Published for the American
Astronautical Society by Univelt; 1999.

[GBP22] Mirko Gabelica, Ružica Bojčić, and Livia Puljak. Many
researchers were not compliant with their published
data sharing statement: mixed-methods study. Jour-
nal of Clinical Epidemiology, page S089543562200141X,
May 2022. URL: https://linkinghub.elsevier.com/retrieve/
pii/S089543562200141X, doi:10.1016/j.jclinepi.
2022.05.019.

[Her71] Samuel Herrick. Astrodynamics. Van Nostrand Reinhold Co,
London, New York, 1971.

[HK66] CG Hilton and JR Kuhlman. Mathematical models for the
space defense center. Philco-Ford Publication No. U-3871,
17:28, 1966.

[HMvdW+20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der
Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del

Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant,
Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer
Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array pro-
gramming with NumPy. Nature, 585(7825):357–362, Septem-
ber 2020. URL: https://www.nature.com/articles/s41586-020-
2649-2, doi:10.1038/s41586-020-2649-2.

[HNW09] E. Hairer, S. P. Nørsett, and Gerhard Wanner. Solving ordi-
nary differential equations I: nonstiff problems. Number 8
in Springer series in computational mathematics. Springer,
Heidelberg ; London, 2nd rev. ed edition, 2009. OCLC:
ocn620251790.

[HR80] Felix R. Hoots and Ronald L. Roehrich. Models for prop-
agation of NORAD element sets. Technical report, Defense
Technical Information Center, Fort Belvoir, VA, December
1980. URL: http://www.dtic.mil/docs/citations/ADA093554.

[Hun07] J. D. Hunter. Matplotlib: A 2D graphics environment. Com-
puting in Science & Engineering, 9(3):90–95, 2007. Pub-
lisher: IEEE COMPUTER SOC. doi:10.1109/MCSE.
2007.55.

[IBD+20] Dario Izzo, Will Binns, Dariomm098, Alessio Mereta,
Christopher Iliffe Sprague, Dhennes, Bert Van Den Abbeele,
Chris Andre, Krzysztof Nowak, Nat Guy, Alberto Isaac Bar-
quín Murguía, Pablo, Frédéric Chapoton, GiacomoAcciarini,
Moritz V. Looz, Dietmarwo, Mike Heddes, Anatoli Babenia,
Baptiste Fournier, Johannes Simon, Jonathan Willitts, Ma-
teusz Polnik, Sanjeev Narayanaswamy, The Gitter Badger,
and Jack Yarndley. esa/pykep: Optimize, October 2020.
URL: https://zenodo.org/record/4091753, doi:10.5281/
ZENODO.4091753.

[Inc15] Plotly Technologies Inc. Collaborative data science, 2015.
Place: Montreal, QC Publisher: Plotly Technologies Inc. URL:
https://plot.ly.

[Jac77] L. G. Jacchia. Thermospheric Temperature, Density, and
Composition: New Models. SAO Special Report, 375, March
1977. ADS Bibcode: 1977SAOSR.375.....J. URL: https:
//ui.adsabs.harvard.edu/abs/1977SAOSR.375.....J.

[JGAZJT+18] Nathan J. Goldbaum, John A. ZuHone, Matthew J. Turk,
Kacper Kowalik, and Anna L. Rosen. unyt: Handle, ma-
nipulate, and convert data with units in Python. Jour-
nal of Open Source Software, 3(28):809, August 2018.
URL: http://joss.theoj.org/papers/10.21105/joss.00809, doi:
10.21105/joss.00809.

[Kec97] Jean Albert Kechichian. Reformulation of Edelbaum’s Low-
Thrust Transfer Problem Using Optimal Control Theory.
Journal of Guidance, Control, and Dynamics, 20(5):988–
994, September 1997. URL: https://arc.aiaa.org/doi/10.2514/
2.4145, doi:10.2514/2.4145.

[Ko09] TS Kelso and others. Analysis of the Iridium 33-Cosmos
2251 collision. Advances in the Astronautical Sciences,
135(2):1099–1112, 2009. Publisher: Citeseer.

[KRKP+16] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez,
Brian E Granger, Matthias Bussonnier, Jonathan Frederic,
Kyle Kelley, Jessica B Hamrick, Jason Grout, Sylvain Cor-
lay, and others. Jupyter Notebooks-a publishing format for
reproducible computational workflows., volume 2016. 2016.

[Lar16] Martin Lara. Analytical and Semianalytical Propagation
of Space Orbits: The Role of Polar-Nodal Variables. In
Gerard Gómez and Josep J. Masdemont, editors, Astro-
dynamics Network AstroNet-II, volume 44, pages 151–
166. Springer International Publishing, Cham, 2016. Se-
ries Title: Astrophysics and Space Science Proceedings.
URL: http://link.springer.com/10.1007/978-3-319-23986-6_
11, doi:10.1007/978-3-319-23986-6_11.

[LC69] M. H. Lane and K. Cranford. An improved ana-
lytical drag theory for the artificial satellite problem.
In Astrodynamics Conference, Princeton,NJ,U.S.A., August
1969. American Institute of Aeronautics and Astronautics.
URL: https://arc.aiaa.org/doi/10.2514/6.1969-925, doi:10.
2514/6.1969-925.

[LPS15] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: a
LLVM-based Python JIT compiler. In Proceedings of the Sec-
ond Workshop on the LLVM Compiler Infrastructure in HPC
- LLVM ’15, pages 1–6, Austin, Texas, 2015. ACM Press.
URL: http://dl.acm.org/citation.cfm?doid=2833157.2833162,
doi:10.1145/2833157.2833162.

[Mar95] F. Landis Markley. Kepler Equation solver. Celes-
tial Mechanics & Dynamical Astronomy, 63(1):101–111,

POLIASTRO: A PYTHON LIBRARY FOR INTERACTIVE ASTRODYNAMICS 145

1995. URL: http://link.springer.com/10.1007/BF00691917,
doi:10.1007/BF00691917.

[Mik87] Seppo Mikkola. A cubic approximation for Kepler’s equa-
tion. Celestial Mechanics, 40(3-4):329–334, September
1987. URL: http://link.springer.com/10.1007/BF01235850,
doi:10.1007/BF01235850.

[MKDVB+19] Michael Mommert, Michael Kelley, Miguel De Val-Borro,
Jian-Yang Li, Giannina Guzman, Brigitta Sipőcz, Josef
Ďurech, Mikael Granvik, Will Grundy, Nick Moskovitz,
Antti Penttilä, and Nalin Samarasinha. sbpy: A Python
module for small-body planetary astronomy. Jour-
nal of Open Source Software, 4(38):1426, June 2019.
URL: http://joss.theoj.org/papers/10.21105/joss.01426, doi:
10.21105/joss.01426.

[noa] Astrodynamics.jl. URL: https://github.com/JuliaSpace/
Astrodynamics.jl.

[noa18] gpredict, January 2018. URL: https://github.com/csete/
gpredict/releases/tag/v2.2.1.

[noa20] GMAT, July 2020. URL: https://sourceforge.net/projects/
gmat/files/GMAT/GMAT-R2020a/.

[noa21a] nyx, November 2021. URL: https://gitlab.com/nyx-space/
nyx/-/tags/1.0.0.

[noa21b] SatNOGS, October 2021. URL: https://gitlab.com/
librespacefoundation/satnogs/satnogs-client/-/tags/1.7.

[noa22a] beyond, January 2022. URL: https://pypi.org/project/beyond/
0.7.4/.

[noa22b] celestlab, January 2022. URL: https://atoms.scilab.org/
toolboxes/celestlab/3.4.1.

[noa22c] Orekit, June 2022. URL: https://gitlab.orekit.org/orekit/
orekit/-/releases/11.2.

[noa22d] SPICE, January 2022. URL: https://naif.jpl.nasa.gov/naif/
toolkit.html.

[noa22e] tudatpy, January 2022. URL: https://github.com/tudat-team/
tudatpy/releases/tag/0.6.0.

[OG86] A. W. Odell and R. H. Gooding. Procedures for solving
Kepler’s equation. Celestial Mechanics, 38(4):307–334, April
1986. URL: http://link.springer.com/10.1007/BF01238923,
doi:10.1007/BF01238923.

[Pol97] James E Pollard. Simplified approach for assessment of low-
thrust elliptical orbit transfers. In 25th International Electric
Propulsion Conference, Cleveland, OH, pages 97–160, 1997.

[Pol98] James Pollard. Evaluation of low-thrust orbital maneuvers.
In 34th AIAA/ASME/SAE/ASEE Joint Propulsion Confer-
ence and Exhibit, Cleveland,OH,U.S.A., July 1998. Ameri-
can Institute of Aeronautics and Astronautics. URL: https:
//arc.aiaa.org/doi/10.2514/6.1998-3486, doi:10.2514/6.
1998-3486.

[Pol00] J. E. Pollard. Simplified analysis of low-thrust orbital maneu-
vers. Technical report, Defense Technical Information Center,
Fort Belvoir, VA, August 2000. URL: http://www.dtic.mil/
docs/citations/ADA384536.

[PP13] Adonis Reinier Pimienta-Penalver. Accurate Kepler equation
solver without transcendental function evaluations. State
University of New York at Buffalo, 2013.

[Rho20] Brandon Rhodes. Skyfield: Generate high precision research-
grade positions for stars, planets, moons, and Earth satellites,
February 2020.

[SSM18] Victoria Stodden, Jennifer Seiler, and Zhaokun Ma. An
empirical analysis of journal policy effectiveness for
computational reproducibility. Proceedings of the National
Academy of Sciences, 115(11):2584–2589, March 2018.
URL: https://pnas.org/doi/full/10.1073/pnas.1708290115,
doi:10.1073/pnas.1708290115.

[TPWS+18] The Astropy Collaboration, A. M. Price-Whelan, B. M.
Sipőcz, H. M. Günther, P. L. Lim, S. M. Crawford, S. Conseil,
D. L. Shupe, M. W. Craig, N. Dencheva, A. Ginsburg, J. T.
VanderPlas, L. D. Bradley, D. Pérez-Suárez, M. de Val-Borro,
(Primary Paper Contributors), T. L. Aldcroft, K. L. Cruz, T. P.
Robitaille, E. J. Tollerud, (Astropy Coordination Commit-
tee), C. Ardelean, T. Babej, Y. P. Bach, M. Bachetti, A. V.
Bakanov, S. P. Bamford, G. Barentsen, P. Barmby, A. Baum-
bach, K. L. Berry, F. Biscani, M. Boquien, K. A. Bostroem,
L. G. Bouma, G. B. Brammer, E. M. Bray, H. Breytenbach,
H. Buddelmeijer, D. J. Burke, G. Calderone, J. L. Cano
Rodríguez, M. Cara, J. V. M. Cardoso, S. Cheedella, Y. Copin,
L. Corrales, D. Crichton, D. D’Avella, C. Deil, É. Depagne,
J. P. Dietrich, A. Donath, M. Droettboom, N. Earl, T. Erben,

S. Fabbro, L. A. Ferreira, T. Finethy, R. T. Fox, L. H.
Garrison, S. L. J. Gibbons, D. A. Goldstein, R. Gommers, J. P.
Greco, P. Greenfield, A. M. Groener, F. Grollier, A. Hagen,
P. Hirst, D. Homeier, A. J. Horton, G. Hosseinzadeh, L. Hu,
J. S. Hunkeler, Ž. Ivezić, A. Jain, T. Jenness, G. Kanarek,
S. Kendrew, N. S. Kern, W. E. Kerzendorf, A. Khvalko,
J. King, D. Kirkby, A. M. Kulkarni, A. Kumar, A. Lee,
D. Lenz, S. P. Littlefair, Z. Ma, D. M. Macleod, M. Mastropi-
etro, C. McCully, S. Montagnac, B. M. Morris, M. Mueller,
S. J. Mumford, D. Muna, N. A. Murphy, S. Nelson, G. H.
Nguyen, J. P. Ninan, M. Nöthe, S. Ogaz, S. Oh, J. K. Parejko,
N. Parley, S. Pascual, R. Patil, A. A. Patil, A. L. Plunkett,
J. X. Prochaska, T. Rastogi, V. Reddy Janga, J. Sabater,
P. Sakurikar, M. Seifert, L. E. Sherbert, H. Sherwood-Taylor,
A. Y. Shih, J. Sick, M. T. Silbiger, S. Singanamalla, L. P.
Singer, P. H. Sladen, K. A. Sooley, S. Sornarajah, O. Stre-
icher, P. Teuben, S. W. Thomas, G. R. Tremblay, J. E. H.
Turner, V. Terrón, M. H. van Kerkwijk, A. de la Vega,
L. L. Watkins, B. A. Weaver, J. B. Whitmore, J. Woillez,
V. Zabalza, and (Astropy Contributors). The Astropy Project:
Building an Open-science Project and Status of the v2.0
Core Package. The Astronomical Journal, 156(3):123, August
2018. URL: https://iopscience.iop.org/article/10.3847/1538-
3881/aabc4f, doi:10.3847/1538-3881/aabc4f.

[VCHK06] David Vallado, Paul Crawford, Ricahrd Hujsak, and T.S.
Kelso. Revisiting Spacetrack Report #3. In AIAA/AAS Astro-
dynamics Specialist Conference and Exhibit, Keystone, Col-
orado, August 2006. American Institute of Aeronautics and
Astronautics. URL: https://arc.aiaa.org/doi/10.2514/6.2006-
6753, doi:10.2514/6.2006-6753.

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski,
Pearu Peterson, Warren Weckesser, Jonathan Bright, Sté-
fan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quin-
tero, Charles R. Harris, Anne M. Archibald, Antônio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, SciPy 1.0
Contributors, Aditya Vijaykumar, Alessandro Pietro Bardelli,
Alex Rothberg, Andreas Hilboll, Andreas Kloeckner, Anthony
Scopatz, Antony Lee, Ariel Rokem, C. Nathan Woods, Chad
Fulton, Charles Masson, Christian Häggström, Clark Fitzger-
ald, David A. Nicholson, David R. Hagen, Dmitrii V. Pasech-
nik, Emanuele Olivetti, Eric Martin, Eric Wieser, Fabrice
Silva, Felix Lenders, Florian Wilhelm, G. Young, Gavin A.
Price, Gert-Ludwig Ingold, Gregory E. Allen, Gregory R. Lee,
Hervé Audren, Irvin Probst, Jörg P. Dietrich, Jacob Silterra,
James T Webber, Janko Slavič, Joel Nothman, Johannes Buch-
ner, Johannes Kulick, Johannes L. Schönberger, José Vinícius
de Miranda Cardoso, Joscha Reimer, Joseph Harrington, Juan
Luis Cano Rodríguez, Juan Nunez-Iglesias, Justin Kuczynski,
Kevin Tritz, Martin Thoma, Matthew Newville, Matthias
Kümmerer, Maximilian Bolingbroke, Michael Tartre, Mikhail
Pak, Nathaniel J. Smith, Nikolai Nowaczyk, Nikolay She-
banov, Oleksandr Pavlyk, Per A. Brodtkorb, Perry Lee,
Robert T. McGibbon, Roman Feldbauer, Sam Lewis, Sam
Tygier, Scott Sievert, Sebastiano Vigna, Stefan Peterson,
Surhud More, Tadeusz Pudlik, Takuya Oshima, Thomas J.
Pingel, Thomas P. Robitaille, Thomas Spura, Thouis R. Jones,
Tim Cera, Tim Leslie, Tiziano Zito, Tom Krauss, Utkarsh
Upadhyay, Yaroslav O. Halchenko, and Yoshiki Vázquez-
Baeza. SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nature Methods, 17(3):261–272,
March 2020. URL: http://www.nature.com/articles/s41592-
019-0686-2, doi:10.1038/s41592-019-0686-2.

[VM07] David A. Vallado and Wayne D. McClain. Fundamentals
of astrodynamics and applications. Number 21 in Space
technology library. Microcosm Press [u.a.], Hawthorne, Calif.,
3. ed., 1. printing edition, 2007.

[WAB+14] Greg Wilson, D. A. Aruliah, C. Titus Brown, Neil P.
Chue Hong, Matt Davis, Richard T. Guy, Steven H. D. Had-
dock, Kathryn D. Huff, Ian M. Mitchell, Mark D. Plumbley,
Ben Waugh, Ethan P. White, and Paul Wilson. Best Practices
for Scientific Computing. PLoS Biology, 12(1):e1001745,
January 2014. URL: https://dx.plos.org/10.1371/journal.pbio.

146 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

1001745, doi:10.1371/journal.pbio.1001745.
[WIO85] M. J. H. Walker, B. Ireland, and Joyce Owens. A set modified

equinoctial orbit elements. Celestial Mechanics, 36(4):409–
419, August 1985. URL: http://link.springer.com/10.1007/
BF01227493, doi:10.1007/BF01227493.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022) 147

A New Python API for Webots Robotics Simulations

Justin C. Fisher‡∗

F

Abstract—Webots is a popular open-source package for 3D robotics simula-
tions. It can also be used as a 3D interactive environment for other physics-
based modeling, virtual reality, teaching or games. Webots has provided a sim-
ple API allowing Python programs to control robots and/or the simulated world,
but this API is inefficient and does not provide many "pythonic" conveniences.
A new Python API for Webots is presented that is more efficient and provides a
more intuitive, easily usable, and "pythonic" interface.

Index Terms—Webots, Python, Robotics, Robot Operating System (ROS),
Open Dynamics Engine (ODE), 3D Physics Simulation

1. Introduction

Webots is a popular open-source package for 3D robotics sim-
ulations [Mic01], [Webots]. It can also be used as a 3D in-
teractive environment for other physics-based modeling, virtual
reality, teaching or games. Webots uses the Open Dynamics
Engine [ODE], which allows physical simulations of Newtonian
bodies, collisions, joints, springs, friction, and fluid dynamics.
Webots provides the means to simulate a wide variety of robot
components, including motors, actuators, wheels, treads, grippers,
light sensors, ultrasound sensors, pressure sensors, range finders,
radar, lidar, and cameras (with many of these sensors drawing
their inputs from GPU processing of the simulation). A typical
simulation will involve one or more robots, each with somewhere
between 3 and 30 moving parts (though more would be possible),
each running its own controller program to process information
taken in by its sensors to determine what control signals to send to
its devices. A simulated world typically involves a ground surface
(which may be a sloping polygon mesh) and dozens of walls,
obstacles, and/or other objects, which may be stationary or moving
in the physics simulation.

Webots has historically provided a simple Python API, allow-
ing Python programs to control individual robots or the simulated
world. This Python API is a thin wrapper over a C++ API, which
itself is a wrapper over Webots’ core C API. These nested layers
of API-wrapping are inefficient. Furthermore, this API is not very
"pythonic" and did not provide many of the conveniences that
help to make development in Python be fast, intuitive, and easy
to learn. This paper presents a new Python API [NewAPI01] that
more efficiently interfaces directly with the Webots C API and
provides a more intuitive, easily usable, and "pythonic" interface
for controlling Webots robots and simulations.

* Corresponding author: fisher@smu.edu
‡ Southern Methodist University, Department of Philosophy

Copyright © 2022 Justin C. Fisher. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

In qualitative terms, the old API feels like one is awkwardly
using Python to call C and C++ functions, whereas the new API
feels much simpler, much easier, and like it is fully intended for
Python. Here is a representative (but far from comprehensive) list
of examples:

• Unlike the old API, the new API contains helpful Python
type annotations and docstrings.

• Webots employs many vectors, e.g., for 3D positions, 4D
rotations, and RGB colors. The old API typically treats
these as lists or integers (24-bit colors). In the new API
these are Vector objects, with conveniently addressable
components (e.g. vector.x or color.red), conve-
nient helper methods like vector.magnitude and
vector.unit_vector, and overloaded vector arith-
metic operations, akin to (and interoperable with) NumPy
arrays.

• The new API also provides easy interfacing between
high-resolution Webots sensors (like cameras and Lidar)
and Numpy arrays, to make it much more convenient to
use Webots with popular Python packages like Numpy
[NumPy], [Har01], Scipy [Scipy], [Vir01], PIL/PILLOW
[PIL] or OpenCV [OpenCV], [Brad01]. For example,
converting a Webots camera image to a NumPy array is
now as simple as camera.array and this now allows
the array to share memory with the camera, making this
extremely fast regardless of image size.

• The old API often requires that all function parameters be
given explicitly in every call, whereas the new API gives
many parameters commonly used default values, allowing
them often to be omitted, and keyword arguments to be
used where needed.

• Most attributes are now accessible (and alterable, when ap-
plicable) by pythonic properties like motor.velocity.

• Many devices now have Python methods like __bool__
overloaded in intuitive ways. E.g., you can now use if
bumper to detect if a bumper has been pressed, rather
than the old if bumper.getValue().

• Pythonic container-like interfaces are now provided.
You may now use for target in radar to iterate
through the various targets a radar device has detected or
for packet in receiver to iterate through com-
munication packets that a receiver device has received
(and it now automatically handles a wide variety of Python
objects, not just strings).

• The old API requires supervisor controllers to use a
wide variety of separate functions to traverse and in-
teract with the simulation’s scene tree, including dif-

148 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

ferent functions for different VRML datatypes (like
SFVec3f or MFInt32). The new API automatically
handles these datatypes and translates intuitive Python
syntax (like dot-notation and square-bracket indexing)
to the Webots equivalents. E.g., you can now move
a particular crate 1 meter in the x direction using
a command like world.CRATES[3].translation
+= [1,0,0]. Under the old API, this would require
numerous function calls (calling getNodeFromDef to
find the CRATES node, getMFNode to find the child
with index 3, getSFField to find its translation field,
and getSFVec3f to retrieve that field’s value, then some
list manipulation to alter the x-component of that value,
and finally a call to setSFVec3f to set the new value).

As another example illustrating how much easier the new
API is to use, here are two lines from Webots’ sample
supervisor_draw_trail, as it would appear in the old
Python API.
f = supervisor.getField(supervisor.getRoot(),

"children")
f.importMFNodeFromString(-1, trail_plan)

And here is how that looks written using the new API:
world.children.append(trail_plan)

The new API is mostly backwards-compatible with the old Python
Webots API, and provides an option to display deprecation warn-
ings with helpful advice for changing to the new API.

The new Python API is planned for inclusion in an upcoming
Webots release, to replace the old one. In the meantime, an early-
access version is available, distributed under Apache 2.0 licence,
the same permissibe open-source license that Webots is distributed
under.

In what follows, the history and motivation for this new API
is discussed, including its use in teaching an interdisciplinary
undergraduate Cognitive Science course called Minds, Brains and
Robotics. Some of the design decisions for the new API are
discussed, which will not only aid in understanding it, but also
have broader relevance to parallel dilemmas that face many other
software developers. And some metrics are given to quantify how
the new API has improved over the old.

2. History and Motivation.

Much of this new API was developed by the author in the
course of teaching an interdisciplinary Southern Methodist Uni-
versity undergraduate Cognitive Science course entitled Minds,
Brains and Robotics (PHIL 3316). Before the Covid pandemic,
this course had involved lab activities where students build and
program physical robots. The pandemic forced these activities
to become virtual. Fortunately, Webots simulations actually have
many advantages over physical robots, including not requiring
any specialized hardware (beyond a decent personal computer),
making much more interesting uses of altitude rather than having
the robots confined to a safely flat surface, allowing robots
to engage in dangerous or destructive activities that would be
risky or expensive with physical hardware, allowing a much
broader array of sensors including high-resolution cameras, and
enabling full-fledged neural network and computational vision
simulations. For example, an early activity in this class involves
building Braitenburg-style vehicles [Bra01] that use light sensors
and cameras to detect a lamp carried by a hovering drone, as

well as ultrasound and touch sensors to detect obstables. Using
these sensors, the robots navigate towards the lamp in a cluttered
playground sandbox that includes sloping sand, an exterior wall,
and various obstacles including a puddle of water and platforms
from which robots may fall.

This interdisciplinary class draws students with diverse back-
grounds, and programming skills. Accomodating those with fewer
skills required simplifying many of the complexities of the old
Webots API. It also required setting up tools to use Webots
"supervisor" powers to help manipulate the simulated world, e.g.
to provide students easier customization options for their robots.
The old Webots API makes the use of such supervisor powers
tedious and difficult, even for experienced coders, so this prac-
tically required developing new tools to streamline the process.
These factors led to the development of an interface that would be
much easier for novice students to adapt to, and that would make it
much easier for an experienced programmer to make much use of
supervisor powers to manipulate the simulated world. Discussion
of this with the core Webots development team then led to the
decision to incorporate these improvements into Webots, where
they can be of benefit to a much broader community.

3. Design Decisions.

This section discusses some design decisions that arose in develop-
ing this API, and discusses the factors that drove these decisions.
This may help give the reader a better understanding of this API,
and also of relevant considerations that would arise in many other
development scenarios.

3.1. Shifting from functions to properties.

The old Python API for Webots consists largely
of methods like motor.getVelocity() and
motor.setVelocity(new_velocity). In the new API
these have quite uniformly been changed to Python properties, so
these purposes are now accomplished with motor.velocity
and motor.velocity = new_velocity.

Reduction of wordiness and punctuation helps to make pro-
grams easier to read and to understand, and it reduces the cognitive
load on coders. However, there are also drawbacks.

One drawback is that properties can give the mistaken impres-
sion that some attributes are computationally cheap to get or set. In
cases where this impression would be misleading, more traditional
method calls were retained and/or the comparative expense of the
operation was clearly documented.

Two other drawbacks are related. One is that inviting ordinary
users to assign properties to API objects might lead them to assign
other attributes that could cause problems. Since Python lacks
true privacy protections, it has always faced this sort of worry, but
this worry becomes even worse when users start to feel familiar
moving beyond just using defined methods to interact with an
object.

Relatedly, Python debugging provides direct feedback in
cases where a user misspells motor.setFoo(v) but not when
someone mispells ’motor.foo = v‘. If a user inadvertently types
motor.setFool(v) they will get an AttributeError
noting that motor lacks a setFool attribute. But if a user
inadvertently types motor.fool = v, then Python will silently
create a new .fool attribute for motor and the user will often
have no idea what has gone wrong.

These two drawbacks both involve users setting an attribute
they shouldn’t: either an attribute that has another purpose, or one

A NEW PYTHON API FOR WEBOTS ROBOTICS SIMULATIONS 149

that doesn’t. Defenses against the first include "hiding" important
attributes behind a leading "_", or protecting them with a Python
property, which can also help provide useful doc-strings. Unfor-
tunately it’s much harder to protect against misspellings in this
piece-meal fashion.

This led to the decision to have robot devices like motors
and cameras employ a blanket __setattr__ that will generate
warnings if non-property attributes of devices are set from outside
the module. So the user who inadvertently types motor.fool
= v will immediately be warned of their mistake. This does incur
a performance cost, but that cost is often worthwhile when it saves
development time and frustration. For cases when performance is
crucial, and/or a user wants to live dangerously and meddle inside
API objects, this layer of protection can be deactivated.

An alternative approach, suggested by Matthew Feickert,
would have been to use __slots__ rather than an ordinary
__dict__ to store device attributes, which would also have the
effect of raising an error if users attempt to modify unexpected
attributes. Not having a __dict__ can make it harder to do
some things like cached properties and multiple inheritance. But
in cases where such issues don’t arise or can be worked around,
readers facing similar challenges may find __slots__ to be a
preferable solution.

3.2 Backwards Compatibility.

The new API offers many new ways of doing things, many
of which would seem "better" by most metrics, with the main
drawback being just that they differ from old ways. The possibility
of making a clean break from the old API was considered, but that
would stop old code from working, alienate veteran users, and
risk causing a schism akin to the deep one that arose between
Python 2 and Python 3 communities when Python 3 opted against
backwards compatibility.

Another option would have been to refrain from adding a
"new-and-better" feature to avoid introducing redundancies or
backward incompatibilities. But that has obvious drawbacks too.

Instead, a compromise was typically adopted: to provide both
the "new-and-better" way and the "worse-old" way. This redun-
dancy was eased by shifting from getFoo / setFoo methods
to properties, and from CamelCase to pythonic snake_case,
which reduced the number of name collisions between old and
new. Employing the "worse-old" way leads to a deprecation
warning that includes helpful advice regarding shifting to the
"new-and-better" way of doing things. This may help users to
transition more gradually to the new ways, or they can shut these
warnings off to help preserve good will, and hopefully avoid a
schism.

3.3 Separating robot and world.

In Webots there is a distinction between "ordinary robots" whose
capabilities are generally limited to using the robot’s own devices,
and "supervisor robots" who share those capabilities, but also have
virtual omniscience and omnipotence over most aspects of the
simulated world. In the old API, supervisor controller programs
import a Supervisor subclass of Robot, but typically still
call this unusually powerful robot robot, which has led to many
confusions.

In the new API these two sorts of powers are strictly separated.
Importing robot provides an object that can be used to control
the devices in the robot itself. Importing world provides an
object that can be used to observe and enact changes anywhere

in the simulated world (presuming that the controller has such
permissions, of course). In many use cases, supervisor robots don’t
actually have bodies and devices of their own, and just use their
supervisor powers incorporeally, so all they will need is world.
In the case where a robot’s controller wants to exert both forms
of control, it can import both robot to control its own body, and
world to control the rest of the world.

This distinction helps to make things more intuitively clear.
It also frees world from having all the properties and methods
that robot has, which in turn reduces the risk of name-collisions
as world takes on the role of serving as the root of the proxy
scene tree. In the new API, world.children refers to the
children field of the root of the scene tree which contains (al-
most) all of the simulated world, world.WorldInfo refers to
one of these children, a WorldInfo node, and world.ROBOT2
dynamically returns a node within the world whose Webots
DEF-name is "ROBOT2". These uses of world would have
been much less intuitive if users thought of world as being
a special sort of robot, rather than as being their handle on
controlling the simulated world. Other sorts of supervisor func-
tionality also are very intuitively associated with world, like
world.save(filename) to save the state of the simulated
world, or world.mode = 'PAUSE'.

Having world.attributes dynamically fetch nodes and
fields from the scene tree did come with some drawbacks. There
is a risk of name-collisions, though these are rare since Webots
field-names are known in advance, and nodes are typically sought
by ALL-CAPS DEF-names, which won’t collide with world
’s lower-case and MixedCase attributes. Linters like MyPy and
PyCharm also cannot anticipate such dynamic references, which
is unfortunate, but does not stop such dynamic references from
being extremely useful.

4. Readability Metrics

A main advantage of the new API is that it allows Webots
controllers to be written in a manner that is easier for coders to
read, write, and understand. Qualitatively, this difference becomes
quite apparent upon a cursory inspection of examples like the one
given in section 1. As another representative example, here are
three lines from Webots’ included supervisor_draw_trail
sample as they would appear in the old Python API:

trail_node = world.getFromDef("TRAIL")
point_field = trail_node.getField("coord")\

.getSFNode()\

.getField("point")
index_field = trail_node.getField("coordIndex")

And here is their equivalent in the new API:

point_field = world.TRAIL.coord.point
index_field = world.TRAIL.coordIndex

Brief inspection should reveal that the latter code is much easier
to read, write and understand, not just because it is shorter, but
also because its punctuation is limited to standard Python syntax
for traversing attributes of objects, because it reduces the need
to introduce new variables like trail_node for things that
it already makes easy to reference (via world.TRAIL, which
the new API automatically caches for fast repeat reference), and
because it invisibly handles selecting appropriate C-API functions
like getField and getSFNode, saving the user from needing
to learn and remember all these functions (of which there are
many).

150 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Metric New API Old API

Lines of Code (with blanks, comments) 43 49
Source Lines of Code (without those) 29 35
Logical Lines of Code (single commands) 27 38
Cyclomatic Complexity 5 (A) 8 (B)

TABLE 1
Length and Complexity Metrics. Raw measures for

supervisor_draw_trail as it would be written with the new Python API
for Webots or the old Python API for Webots. The "lines of codes" measures
differ with respect to how they count blank lines, comments, and lines that

combine multiple commands. Cyclomatic complexity measures the number of
potential branching points in the code.

This intuitive impression is confirmed by automated metrics
for code readability. The measures in what follows consider the
full supervisor_draw_trail sample controller (from which
the above snippet was drawn), since this is the Webots sample
controller that makes the most sustained use of supervisor func-
tionality to perform a fairly plausible supervisor task (maintaining
the position of a streamer that trails behind the robot). Webots
provides this sample controller in C [SDTC], but it was re-
implemented using both the Old Python API and the New Python
API [Metrics], maintaining straightforward correspondence be-
tween the two, with the only differences being directly due to
the differences in the API’s.

Some raw measures for the two controllers are shown in
Table 1. These were gathered using the Radon code-analysis
tools [Radon]. (These metrics, as well as those below, may be
reproduced by (1) installing Radon [Radon], (2) downloading
the source files to compare and the script for computing Metrics
[Metrics], (3) ensuring that the path at the top of the script refers
to the local location of the source files to be compared, and
(4) running this script.) Multiple metrics are reported because
theorists disagree about which are most relevant in assessing
code readability, because some of these play a role in computing
other metrics discussed below, and because this may help to allay
potential worries that a few favorable metrics might have been
cherry-picked. This paper provides some explanation of these
metrics and of their potential significance, while remaining neutral
regarding which, if any, of these metrics is best.

The "lines of code" measures reflect that the new API makes
it easier to do more things with less code. The measures differ
in how they count blank lines, comments, multi-line statements,
and multi-statement lines like if p: q(). Line counts can be
misleading, especially when the code with fewer lines has longer
lines, though upcoming measures will show that that is not the
case here.

Cyclomatic Complexity counts the number of potential
branching points that appear within the code, like if, while and
for. [McC01] Cyclomatic Complexity is strongly correlated with
other plausible measures of code readability involving indentation
structure [Hin01]. The new API’s score is lower/"better" due to its
automatically converting vector-like values to the format needed
for importing new nodes into the Webots simulation, and due to
its automatic caching allowing a simpler loop to remove unwanted
nodes. By Radon’s reckoning this difference in complexity already
gives the old API a "B" grade, as compared to the new API’s "A".
These complexity measures would surely rise in more complex
controllers employed in larger simulations, but they would rise less

Halstead Metric New API Old API

Vocabulary = (n1)operators+(n2)operands 18 54
Length = (N1)operator + (N2)operand instances 38 99
Volume = Length * log2(Vocabulary) 158 570
Difficulty = (n1 * N2) / (2 * n2) 4.62 4.77
Effort = Difficulty * Volume 731 2715
Time = Effort / 18 41 151
Bugs = Volume / 3000 0.05 0.19

TABLE 2
Halstead Metrics. Halstead metrics for supervisor_draw_trail as it

would be written with the new and old Python API’s for Webots. Lower numbers
are commonly construed as being better.

quickly under the new API, since it provides many simpler ways
of doing things, and need never do any worse since it provides
backwards-compatible options.

Another collection of classic measures of code readability
was developed by Halstead. [Hal01] These measures (especially
volume) have been shown to correlate with human assessments
of code readability [Bus01], [Pos01]. These measures generally
penalize a program for using a "vocabulary" involving more
operators and operands. Table 2 shows these metrics, as computed
by Radon. (Again all measures are reported, while remaining
neutral about which are most significant.) The new API scores
significantly lower/"better" on these metrics, due in large part
to its automatically selecting among many different C-API calls
without these needing to appear in the user’s code. E.g. hav-
ing motor.velocity as a unified property involves fewer
unique names than having users write both setVelocity() and
getVelocity(), and often forming a third local velocity
variable. And having world.children[-1] access the last
child that field in the simulation saves having to count getField,
and getMFNode in the vocabulary, and often also saves forming
additional local variables for nodes or fields gotten in this way.
Both of these factors also help the new API to greatly reduce
parentheses counts.

Lastly, the Maintainability Index and variants thereof are
intended to measure of how easy to support and change source
code is. [Oman01] Variants of the Maintainability Index are
commonly used, including in Microsoft Visual Studio. These
measures combine Halstead Volume, Source Lines of Code, and
Cyclomatic Complexity, all mentioned above, and two variants
(SEI and Radon) also provide credit for percentage of comment
lines. (Both samples compared here include 5 comment lines, but
these compose a higher percentage of the new API’s shorter code).
Different versions of this measure weight and curve these factors
somewhat differently, but since the new API outperforms the old
on each factor, all versions agree that it gets the higher/"better"
score, as shown in Table 3. (These measures were computed based
on the input components as counted by Radon.)

There are potential concerns about each of these measures
of code readability, and one can easily imagine playing a form
of "code golf" to optimize some of these scores without actually
improving readability (though it would be difficult to do this for all
scores at once). Fortunately, most plausible measures of readabil-
ity have been observed to be strongly correllated across ordinary
cases, [Pos01] so the clear and unanimous agreement between
these measures is a strong confirmation that the new API is indeed

A NEW PYTHON API FOR WEBOTS ROBOTICS SIMULATIONS 151

Maintainability Index version New API Old API

Original [Oman01] 89 79
Software Engineering Institute 78 62
Microsoft Visual Studio 52 46
Radon 82 75

TABLE 3
Maintainability Index Metrics. Maintainability Index metrics for

supervisor_draw_trail as it would be written with the new and old
versions of the Python API for Webots, according to different versions of the

Maintainability Index. Higher numbers are commonly construed as being better.

more readable. Other plausible measures of readability would take
into account factors like whether the operands are ordinary English
words, [Sca01] or how deeply nested (or indented) the code ends
up being, [Hin01] both of which would also favor the new API.
So the mathematics confirm what was likely obvious from visual
comparison of code samples above, that the new API is indeed
more "readable" than the old.

5. Conclusions

A new Python API for Webots robotic simulations was presented.
It more efficiently interfaces directly with the Webots C API and
provides a more intuitive, easily usable, and "pythonic" interface
for controlling Webots robots and simulations. Motivations for the
API and some of its design decisions were discussed, including
decisions use python properties, to add new functionality along-
side deprecated backwards compatibility, and to separate robot and
supervisor/world functionality. Advantages of the new API were
discussed and quantified using automated code readability metrics.

More Information

An early-access version of the new API and a variety of sam-
ple programs and metric computations: https://github.com/Justin-
Fisher/new_python_api_for_webots

Lengthy discussion of the new API and its planned inclusion
in Webots: https://github.com/cyberbotics/webots/pull/3801

Webots home page, including free download of Webots: https:
//cyberbotics.com/

REFERENCES

[Brad01] Bradski, G. The OpenCV Library. Dr Dobb’s Journal of Soft-
ware Tools. 2000.

[Bra01] Braitenberg, V. Vehicles: Experiments in synthetic psychology.
Cambridge, MA: MIT Press. 1984.

[Bus01] Buse, R and W Weimer. Learning a metric for code readability.
IEEE Transactions on Software Engineering, 36(4): 546-58.
2010. doi: 10.1109/TSE.2009.70.

[Metrics] Fisher, J. Readability Metrics for a New Python API for Webots
Robotics Simulations. 2022. doi: 10.5281/zenodo.6813819.

[Hal01] Halstead, M. Elements of software science. Elsevier New York.
1977.

[Har01] Harris, C., K. Millman, S. van der Walt, et al. Array pro-
gramming with NumPy. Nature 585, 357–62. 2020. doi:
10.1038/s41586-020-2649-2.

[Hin01] Hindle, A, MW Godfrey and RC Holt. "Reading beside the
lines: Indentation as a proxy for complexity metric." Program
Comprehension. The 16th IEEE International Conference, 133-
42. 2008. doi: 10.1109/icpc.2008.13.

[McC01] McCabe, TJ. "A Complexity Measure" , 2(4): 308-320. 1976.
[Mic01] Michel, O. "Webots: Professional Mobile Robot Simulation.

Journal of Advanced Robotics Systems. 1(1): 39-42. 2004. doi:
10.5772/5618.

[NewAPI01] https://github.com/Justin-Fisher/new_python_api_for_webots
[NumPy] Numerical Python (NumPy). https://www.numpy.org
[ODE] Open Dynamics Engine. https://www.ode.org/
[Oman01] Oman, P and J Hagemeister. "Metrics for assessing a software

system’s maintainability," Proceedings Conference on Software
Maintenance, 337-44. 1992. doi: 10.1109/ICSM.1992.242525.

[OpenCV] Open Source Computer Vision Library for Python. https://
github.com/opencv/opencv-python

[PIL] Python Imaging Library. https://python-pillow.org/
[Pos01] Posnet, D, A Hindle and P Devanbu. "A simpler model of

software readability." Proceedings of the 8th working conference
on mining software repositories, 73-82. 2011.

[Radon] Radon. https://radon.readthedocs.io/en/latest/index.html
[Sca01] Scalabrino, S, M Linares-Vasquez, R Oliveto and D Poshy-

vanyk. "A Comprehensive Model for Code Readability."
Jounal of Software: Evolution and Process, 1-29. 2017. doi:
10.1002/smr.1958.

[Scipy] https://www.scipy.org
[SDTC] https://cyberbotics.com/doc/guide/samples-howto#supervisor_

draw_trail-wbt
[SDTNew] https://github.com/Justin-Fisher/new_python_api_for_webots/

blob/d180bcc7f505f8168246bee379f8067dfaf373ea/webots_
new_python_api_samples/controllers/supervisor_draw_trail_
python/supervisor_draw_trail_new_api_bare_bones.py

[SDTOld] https://github.com/Justin-Fisher/new_python_api_for_webots/
blob/d180bcc7f505f8168246bee379f8067dfaf373ea/webots_
new_python_api_samples/controllers/supervisor_draw_trail_
python/supervisor_draw_trail_old_api_bare_bones.py

[Vir01] Virtanen, P, R. Gommers, T. Oliphant, et al. SciPy 1.0: Funda-
mental Algorithms for Scientific Computing in Python. Nature
Methods, 17(3), 261-72. 2020. doi: 10.1038/s41592-019-0686-2.

[Webots] Webots Open Source Robotic Simulator. https://cyberbotics.
com/

152 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

pyAudioProcessing: Audio Processing, Feature
Extraction, and Machine Learning Modeling

Jyotika Singh‡∗

F

Abstract—pyAudioProcessing is a Python based library for processing audio
data, constructing and extracting numerical features from audio, building and
testing machine learning models, and classifying data with existing pre-trained
audio classification models or custom user-built models. MATLAB is a popular
language of choice for a vast amount of research in the audio and speech
processing domain. On the contrary, Python remains the language of choice
for a vast majority of machine learning research and functionality. This library
contains features built in Python that were originally published in MATLAB.
pyAudioProcessing allows the user to compute various features from audio files
including Gammatone Frequency Cepstral Coefficients (GFCC), Mel Frequency
Cepstral Coefficients (MFCC), spectral features, chroma features, and others
such as beat-based and cepstrum-based features from audio. One can use
these features along with one’s own classification backend or any of the pop-
ular scikit-learn classifiers that have been integrated into pyAudioProcessing.
Cleaning functions to strip unwanted portions from the audio are another offering
of the library. It further contains integrations with other audio functionalities
such as frequency and time-series visualizations and audio format conversions.
This software aims to provide machine learning engineers, data scientists,
researchers, and students with a set of baseline models to classify audio.
The library is available at https://github.com/jsingh811/pyAudioProcessing and
is under GPL-3.0 license.

Index Terms—pyAudioProcessing, audio processing, audio data, audio clas-
sification, audio feature extraction, gfcc, mfcc, spectral features, spectrogram,
chroma

Introduction

The motivation behind this software is to make available complex
audio features in Python for a variety of audio processing tasks.
Python is a popular choice for machine learning tasks. Having
solutions for computing complex audio features using Python
enables easier and unified usage of Python for building machine
learning algorithms on audio. This not only implies the need for
resources to guide solutions for audio processing, but also signifies
the need for Python guides and implementations to solve audio and
speech cleaning, transformation, and classification tasks.

Different data processing techniques work well for different
types of data. For example, in natural language processing, word
embedding is a term used for the representation of words for
text analysis, typically in the form of a real-valued numerical
vector that encodes the meaning of the word such that the words

* Corresponding author: singhjyotika811@gmail.com
‡ Placemakr

Copyright © 2022 Jyotika Singh. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

that are closer in the vector space are expected to be similar
in meaning [Wik22b]. Word embeddings work great for many
applications surrounding textual data [JS21]. However, passing
numbers, an audio signal, or an image through a word embeddings
generation method is not likely to return any meaningful numerical
representation that can be used to train machine learning models.
Different data types correlate with feature formation techniques
specific to their domain rather than a one-size-fits-all. These
methods for audio signals are very specific to audio and speech
signal processing, which is a domain of digital signal processing.
Digital signal processing is a field of its own and is not feasible to
master in an ad-hoc fashion. This calls for the need to have sought-
after and useful processes for audio signals to be in a ready-to-use
state by users.

There are two popular approaches for feature building in audio
classification tasks.

1. Computing spectrograms from audio signals as images and
using an image classification pipeline for the remainder.

2. Computing features from audio files directly as numerical
vectors and applying them to a classification backend.

pyAudioProcessing includes the capability of computing spec-
trograms, but focusses most functionalities around the latter for
building audio models. This tool contains implementations of
various widely used audio feature extraction techniques, and
integrates with popular scikit-learn classifiers including support
vector machine (SVM), SVM radial basis function kernel (RBF),
random forest, logistic regression, k-nearest neighbors (k-NN),
gradient boosting, and extra trees. Audio data can be cleaned,
trained, tested, and classified using pyAudioProcessing [Sin21].

Some other useful libraries for the domain of audio pro-
cessing include librosa [MRL+15], spafe [Mal20], essentia
[BWG+13], pyAudioAnalysis [Gia15], and paid services from
service providers such as Google1.

The use of pyAudioProcessing in the community inspires the
need and growth of this software. It is referenced in a text book
titled Artificial Intelligence with Python Cookbook published by
Packt Publishing in October 2020 [Auf20]. Additionally, pyAu-
dioProcessing is a part of specific admissions requirement for a
funded PhD project at University of Portsmouth2. It is further
referenced in this thesis paper titled "Master Thesis AI Method-
ologies for Processing Acoustic Signals AI Usage for Processing
Acoustic Signals" [Din21], in recent research on audio processing
for assessing attention levels in Attention Deficit Hyperactivity

1. https://developers.google.com/learn/pathways/get-started-audio-
classification

PYAUDIOPROCESSING: AUDIO PROCESSING, FEATURE EXTRACTION, AND MACHINE LEARNING MODELING 153

Disorder (ADHD) students [BGSR21], and more. There are thus
far 16000+ downloads via pip for pyAudioProcessing with 1000+
downloads in the last month [PeP22]. As several different audio
features need development, new issues are created on GitHub
and contributions to the code by the open-source community are
welcome to grow the tool faster.

Core Functionalities

pyAudioProcessing aims to provide an end-to-end processing so-
lution for converting between audio file formats, visualizing time
and frequency domain representations, cleaning with silence and
low-activity segments removal from audio, building features from
raw audio samples, and training a machine learning model that
can then be used to classify unseen raw audio samples (e.g., into
categories such as music, speech, etc.). This library allows the user
to extract features such as Mel Frequency Cepstral Coefficients
(MFCC) [CD14], Gammatone Frequency Cepstral Coefficients
(GFCC) [JDHP17], spectral features, chroma features and other
beat-based and cepstrum based features from audio to use with
one’s own classification backend or scikit-learn classifiers that
have been built into pyAudioProcessing. The classifier implemen-
tation examples that are a part of this software aim to give the
users a sample solution to audio classification problems and help
build the foundation to tackle new and unseen problems.

pyAudioProcessing provides seven core functionalities com-
prising different stages of audio signal processing.

1. Converting audio files to .wav format to give the users
the ability to work with different types of audio to increase
compatibility with code and processes that work best with .wav
audio type.

2. Audio visualization in time-series and frequency represen-
tation, including spectrograms.

3. Segmenting and removing low-activity segments from audio
files for removing unwanted audio segments that are less likely to
represent meaningful information.

4. Building numerical features from audio that can be used
to train machine learning models. The set of features supported
evolves with time as research informs new and improved algo-
rithms.

5. Ability to export the features built with this library to use
with any custom machine learning backend of the user’s choosing.

6. Capability that allows users to train scikit-learn classifiers
using features of their choosing directly from raw data. pyAudio-
Processing

a). runs automatic hyper-parameter tuning
b). returns to the user the training model metrics

along with cross-validation confusion matrix (a cross-
validation confusion matrix is an evaluation matrix from
where we can estimate the performance of the model
broken down by each class/category) for model evalua-
tion

c). allows the user to test the created classifier with
the same features used for training

7. Includes pre-trained models to provide users with baseline
audio classifiers.

2. https://www.port.ac.uk/study/postgraduate-research/research-degrees/
phd/explore-our-projects/detection-of-emotional-states-from-speech-and-text

Class Metric
Accuracy Precision F1

music 97.60% 98.79% 98.19%
speech 98.80% 97.63% 98.21%

TABLE 1: Per-class evaluation metrics for audio type (speech vs
music) classification pre-trained model.

Class Metric
Accuracy Precision F1

music 94.60% 96.93% 95.75%
speech 97.00% 97.79% 97.39%
birds 100.00% 96.89% 98.42%

TABLE 2: Per-class evaluation metrics for audio type (speech vs
music vs bird sound) classification pre-trained model.

Methods and Results

Pre-trained models

pyAudioProcessing offers pre-trained audio classification models
for the Python community to aid in quick baseline establishment.
This is an evolving feature as new datasets and classification
problems gain prominence in the field.

Some of the pre-trained models include the following.
1. Audio type classifier to determine speech versus music:

Trained a Support Vector Machine (SVM) classifier for classifying
audio into two possible classes - music, speech. This classifier
was trained using Mel Frequency Cepstral Coefficients (MFCC),
spectral features, and chroma features. This model was trained on
manually created and curated samples for speech and music. The
per-class evaluation metrics are shown in Table 1.

2. Audio type classifier to determine speech versus music ver-
sus bird sounds: Trained Support Vector Machine (SVM) classifier
for classifying audio into three possible classes - music, speech,
birds. This classifier was trained using Mel Frequency Cepstral
Coefficients (MFCC), spectral features, and chroma features. The
per-class evaluation metrics are shown in Table 2.

3. Music genre classifier using the GTZAN [TEC01]: Trained
on SVM classifier using Gammatone Frequency Cepstral Coef-
ficients (GFCC), Mel Frequency Cepstral Coefficients (MFCC),
spectral features, and chroma features to classify music into 10
genre classes - blues, classical, country, disco, hiphop, jazz, metal,
pop, reggae, rock. The per-class evaluation metrics are shown in
Table 3.

These models aim to present capability of audio feature gen-
eration algorithms in extracting meaningful numeric patterns from
the audio data. One can train their own classifiers using similar
features and different machine learning backend for researching
and exploring improvements.

Audio features

There are multiple types of features one can extract from audio.
Information about getting started with audio processing is well
described in [Sin19]. pyAudioProcessing allows users to compute
GFCC, MFCC, other cepstral features, spectral features, temporal
features, chroma features, and more. Details on how to extract
these features are present in the project documentation on GitHub.

154 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Class Metric
Accuracy Precision F1

pop 72.36% 78.63% 75.36%
met 87.31% 85.52% 86.41%
dis 62.84% 59.45% 61.10%
blu 83.02% 72.96% 77.66%
reg 79.82% 69.72% 74.43%
cla 90.61% 86.38% 88.44%
rock 53.10% 51.50% 52.29%
hip 60.94% 77.22% 68.12%
cou 58.34% 62.53% 60.36%
jazz 78.10% 85.17% 81.48%

TABLE 3: Per-class evaluation metrics for music genre classification pre-trained model.

Generally, features useful in different audio prediction tasks (es-
pecially speech) include Linear Prediction Coefficients (LPC) and
Linear Prediction Cepstral Coefficients (LPCC), Bark Frequency
Cepstral Coefficients (BFCC), Power Normalized Cepstral Coef-
ficients (PNCC), and spectral features like spectral flux, entropy,
roll off, centroid, spread, and energy entropy.

While MFCC features find use in most commonly encountered
audio processing tasks such as audio type classification, speech
classification, GFCC features have been found to have application
in speaker identification or speaker diarization (the process of
partitioning an input audio stream into homogeneous segments
according to the human speaker identity [Wik22a]). Applications,
comparisons and uses can be found in [ZW13], [pat21], and
[pat22].

pyAudioProcessing library includes computation of these fea-
tures for audio segments of a single audio, followed by computing
mean and standard deviation of all the signal segments.

Mel Frequency Cepstral Coefficients (MFCC):

The mel scale relates perceived frequency, or pitch, of a pure
tone to its actual measured frequency. Humans are much better
at discerning small changes in pitch at low frequencies compared
to high frequencies. Incorporating this scale makes our features
match more closely what humans hear. The mel-frequency scale is
approximately linear for frequencies below 1 kHz and logarithmic
for frequencies above 1 kHz, as shown in Figure 1. This is
motivated by the fact that the human auditory system becomes
less frequency-selective as frequency increases above 1 kHz.

The signal is divided into segments and a spectrum is com-
puted. Passing a spectrum through the mel filter bank, followed by
taking the log magnitude and a discrete cosine transform (DCT)
produces the mel cepstrum. DCT extracts the signal’s main infor-
mation and peaks. For this very property, DCT is also widely used
in applications such as JPEG and MPEG compressions. The peaks
after DCT contain the gist of the audio information. Typically,
the first 13-20 coefficients extracted from the mel cepstrum are
called the MFCCs. These hold very useful information about audio
and are often used to train machine learning models. The process
of developing these coefficients can be seen in the form of an
illustration in Figure 1. MFCC for a sample speech audio can be
seen in Figure 2.

Gammatone Frequency Cepstral Coefficients (GFCC):

Another filter inspired by human hearing is the gammatone
filter bank. The gammatone filter bank shape looks similar to the
mel filter bank, expect the peaks are smoother than the triangular
shape of the mel filters. gammatone filters are conceived to be a
good approximation to the human auditory filters and are used as
a front-end simulation of the cochlea. Since a human ear is the
perfect receiver and distinguisher of speakers in the presence of
noise or no noise, construction of gammatone filters that mimic
auditory filters became desirable. Thus, it has many applications
in speech processing because it aims to replicate how we hear.

GFCCs are formed by passing the spectrum through a gam-
matone filter bank, followed by loudness compression and DCT,
as seen in Figure 3. The first (approximately) 22 features are
called GFCCs. GFCCs have a number of applications in speech
processing, such as speaker identification. GFCC for a sample
speech audio can be seen in Figure 4.

Temporal features:

Temporal features from audio are extracted from the signal
information in its time domain representations. Examples include
signal energy, entropy, zero crossing rate, etc. Some sample mean
temporal features can be seen in Figure 5.

Spectral features:

Spectral features on the other hand derive information con-
tained in the frequency domain representation of an audio signal.
The signal can be converted from time domain to frequency
domain using the Fourier transform. Useful features from the
signal spectrum include fundamental frequency, spectral entropy,
spectral spread, spectral flux, spectral centroid, spectral roll-off,
etc. Some sample mean spectral features can be seen in Figure
6.

Chroma features:

Chroma features are highly popular for music audio data. In
Western music, the term chroma feature or chromagram closely re-
lates to the twelve different pitch classes. Chroma-based features,
which are also referred to as "pitch class profiles", are a powerful
tool for analyzing music whose pitches can be meaningfully
categorized (often into twelve categories : A, A#, B, C, C#, D,

PYAUDIOPROCESSING: AUDIO PROCESSING, FEATURE EXTRACTION, AND MACHINE LEARNING MODELING 155

Fig. 1: MFCC from audio spectrum.

Fig. 2: MFCC from a sample speech audio.

D#, E, F, F#, G, G#) and whose tuning approximates to the equal-
tempered scale [con22]. A prime characteristic of chroma features
is that they capture the harmonic and melodic attributes of audio,
while being robust to changes in timbre and instrumentation. Some
sample mean chroma features can be seen in Figure 7.

Audio data cleaning/de-noising

Often times an audio sample has multiple segments present in the
same signal that do not contain anything but silence or a slight
degree of background noise compared to the rest of the audio.
For most applications, those low activity segments make up the
irrelevant information of the signal.

The audio clip shown in Figure 8 is a human saying the word
"london" and represents the audio plotted in the time domain, with
signal amplitude as y-axis and sample number as x-axis. The areas
where the signal looks closer to zero/low in amplitude are areas
where speech is absent and represents the pauses the speaker took
while saying the word "london".

Figure 9 shows the spectrogram of the same audio signal. A
spectrogram contains time on the x-axis and frequency of the y-
axis. A spectrogram is a visual representation of the spectrum of
frequencies of a signal as it varies with time. When applied to
an audio signal, spectrograms are sometimes called sonographs,
voiceprints, or voicegrams. When the data are represented in a 3D
plot they may be called waterfalls. As [Wik21] mentions, spectro-
grams are used extensively in the fields of music, linguistics, sonar,
radar, speech processing, seismology, and others. Spectrograms
of audio can be used to identify spoken words phonetically, and
to analyze the various calls of animals. A spectrogram can be
generated by an optical spectrometer, a bank of band-pass filters,
by Fourier transform or by a wavelet transform. A spectrogram is

Features boston acc london acc

mfcc 0.765 0.412
clean+mfcc 0.823 0.471

TABLE 4: Performance comparison on test data between MFCC
feature trained model with and without cleaning.

usually depicted as a heat map, i.e., as an image with the intensity
shown by varying the color or brightness.

After applying the algorithm for signal alteration to remove
irrelevant and low activity audio segments, the resultant audio’s
time-series plot looks like Figure 10. The spectrogram looks like
Figure 11. It can be seen that the low activity areas are now
missing from the audio and the resultant audio contains more
activity filled regions. This algorithm removes silences as well
as low-activity regions from the audio.

These visualizations were produced using pyAudioProcessing
and can be produced for any audio signal using the library.

Impact of cleaning on feature formations for a classifica-
tion task:

A spoken location name classification problem was considered
for this evaluation. The dataset consisted of 23 samples for
training per class and 17 samples for testing per class. The total
number of classes is 2 - london and boston. This dataset was
manually created and can be found linked in the project readme
of pyAudioProcessing. For comparative purposes, the classifier is
kept constant at SVM, and the parameter C is chosen based on grid
search for each experiment based on best precision, recall and F1
score. Results in table 4 show the impact of applying the low-
activity region removal using pyAudioProcessing prior to training
the model using MFCC features.

It can be seen that the accuracies increased when audio sam-
ples were cleaned prior to training the model. This is especially
useful in cases where silence or low-activity regions in the audio
do not contribute to the predictions and act as noise in the signal.

Integrations

pyAudioProcessing integrates with third-party tools such as scikit-
learn, matplotlib, and pydub to offer additional functionalities.

156 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 3: GFCC from audio spectrum.

Fig. 4: GFCC from a sample speech audio.

Fig. 5: Temporal extractions from a sample speech audio.

Training, classification, and evaluation:

The library contains integrations with scikit-learn classifiers
for passing audio through feature extraction followed by classi-
fication directly using the raw audio samples as input. Training
results include computation of cross-validation results along with
hyperparameter tuning details.

Audio format conversion:

Some applications and integrations work best with .wav data
format. pyAudioProcessing integrates with tools that perform
format conversion and presents them as a functionality via the
library.

Fig. 6: Spectral features from a sample speech audio.

Fig. 7: Chroma features from a sample speech audio.

Audio visualization:

Spectrograms are 2-D images representing sequences of spec-
tra with time along one axis, frequency along the other, and bright-
ness or color representing the strength of a frequency component
at each time frame [Wys17]. Not only can one see whether there
is more or less energy at, for example, 2 Hz vs 10 Hz, but one
can also see how energy levels vary over time [PNS]. Some of
the convolutional neural network architectures for images can be
applied to audio signals on top of the spectrograms. This is a dif-
ferent route of building audio models by developing spectrograms
followed by image processing. Time-series, frequency-domain,
and spectrogram (both time and frequency domains) visualizations
can be retrieved using pyAudioProcessing and its integrations. See
figures 10 and 9 as examples.

PYAUDIOPROCESSING: AUDIO PROCESSING, FEATURE EXTRACTION, AND MACHINE LEARNING MODELING 157

Fig. 8: Time-series representation of speech for "london".

Fig. 9: Spectrogram of speech for "london".

Conclusion

In this paper pyAudioProcessing, an open-source Python library,
is presented. The tool implements and integrates a wide range
of audio processing functionalities. Using pyAudioProcessing,
one can read and visualize audio signals, clean audio signals by
removal of irrelevant content, build and extract complex features
such as GFCC, MFCC, and other spectrum and cepstrum based
features, build classification models, and use pre-built trained
baseline models to classify different types of audio. Wrappers
along with command-line usage examples are provided in the

Fig. 10: Time-series representation of cleaned speech for "london".

Fig. 11: Spectrogram of cleaned speech for "london".

software’s readme and wiki for giving the user a guide and the
flexibility of usage. pyAudioProcessing has been used in active
research around audio processing and can be used as the basis for
further python-based research efforts.

pyAudioProcessing is updated frequently in order to apply
enhancements and new functionalities with recent research efforts
of the digital signal processing and machine learning community.
Some of the ongoing implementations include additions of cepstral
features such as LPCC, integration with deep learning backends,
and a variety of spectrogram formations that can be used for image
classification-based audio classification tasks.

REFERENCES

[Auf20] Ben Auffarth. Artificial Intelligence with Python Cookbook. Packt
Publishing, 10 2020.

[BGSR21] Srivi Balaji, Meghana Gopannagari, Svanik Sharma, and Preethi
Rajgopal. Developing a machine learning algorithm to assess atten-
tion levels in adh students in a virtual learning setting using audio
and video processing. International Journal of Recent Technology
and Engineering (IJRTE), 10, 5 2021. doi:10.35940/ijrte.
A5965.0510121.

[BWG+13] Dmitry Bogdanov, N Wack, Emilia Gómez, Sankalp Gulati,
Perfecto Herrera, Oscar Mayor, G Roma, Justin Salamon, Jose
Zapata, and Xavier Serra. Essentia: an audio analysis library for
music information retrieval. 11 2013.

[CD14] Paresh M. Chauhan and Nikita P. Desai. Mel frequency cepstral
coefficients (mfcc) based speaker identification in noisy envi-
ronment using wiener filter. In 2014 International Conference
on Green Computing Communication and Electrical Engineer-
ing (ICGCCEE), pages 1–5, 2014. doi:10.1109/ICGCCEE.
2014.6921394.

[con22] Wikipedia contributors. Chroma feature — wikipedia the
free encyclopedia, 2022. Online; accessed 18-May-2022.
URL: https://en.wikipedia.org/w/index.php?title=Chroma_feature&
oldid=1066722932.

[Din21] Vincent Dinger. Master Thesis KI Methodiken fÃ¼r die Ver-
arbeitung akustischer Signale AI Usage for Processing Acoustic
Signals. PhD thesis, Kaiserslautern University of Applied Sciences,
03 2021. doi:10.13140/RG.2.2.15872.97287.

[Gia15] Theodoros Giannakopoulos. pyaudioanalysis: An open-source
python library for audio signal analysis. PloS one, 10(12), 2015.
doi:10.1371/journal.pone.0144610.

[JDHP17] Medikonda Jeevan, Atul Dhingra, M. Hanmandlu, and Bijaya
Panigrahi. Robust Speaker Verification Using GFCC Based i-
Vectors, volume 395, pages 85–91. Springer, 10 2017. doi:
10.1007/978-81-322-3592-7_9.

[JS21] Jyotika Singh. Social Media Analysis using Natural Lan-
guage Processing Techniques. In Meghann Agarwal, Chris Cal-
loway, Dillon Niederhut, and David Shupe, editors, Proceed-
ings of the 20th Python in Science Conference, pages 52 –
58, 2021. URL: http://conference.scipy.org/proceedings/scipy2021/

158 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

pdfs/jyotika_singh.pdf, doi:10.25080/majora-1b6fd038-
009.

[Mal20] Ayoub Malek. spafe/spafe: 0.1.2, April 2020. URL: https://github.
com/SuperKogito/spafe.

[MRL+15] Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt
McVicar, Eric Battenberg, and Oriol Nieto. librosa: Audio and
music signal analysis in python. In Proceedings of the 14th python
in science conference, volume 8, 2015. doi:10.5281/zenodo.
4792298.

[pat21] Method for optimizing media and marketing content using cross-
platform video intelligence, 2021. URL: https://patents.google.com/
patent/US10949880B2/en.

[pat22] Media and marketing optimization with cross platform consumer
and content intelligence, 2022. URL: https://patents.google.com/
patent/US20210201349A1/en.

[PeP22] PePy. PePy download statistics, 2022. URL: https://pepy.tech/
project/pyAudioProcessing.

[PNS] PNSN. What is a spectrogram? URL: https://pnsn.org/
spectrograms/what-is-a-spectrogram#.

[Sin19] Jyotika Singh. An introduction to audio processing and machine
learning using python, 2019. URL: https://opensource.com/article/
19/9/audio-processing-machine-learning-python.

[Sin21] Jyotika Singh. jsingh811/pyAudioProcessing: Audio pro-
cessing, feature extraction and classification, July 2021.
URL: https://github.com/jsingh811/pyAudioProcessing, doi:10.
5281/zenodo.5121041.

[TEC01] George Tzanetakis, Georg Essl, and Perry Cook. Automatic musical
genre classification of audio signals, 2001. URL: http://ismir2001.
ismir.net/pdf/tzanetakis.pdf.

[Wik21] Wikipedia contributors. Spectrogram — Wikipedia, the free
encyclopedia, 2021. [Online; accessed 19-July-2021]. URL:
https://en.wikipedia.org/w/index.php?title=Spectrogram&oldid=
1031156666.

[Wik22a] Wikipedia contributors. Speaker diarisation — Wikipedia,
the free encyclopedia, 2022. [Online; accessed 23-June-
2022]. URL: https://en.wikipedia.org/w/index.php?title=Speaker_
diarisation&oldid=1090834931.

[Wik22b] Wikipedia contributors. Word embedding — Wikipedia,
the free encyclopedia, 2022. [Online; accessed 23-June-
2022]. URL: https://en.wikipedia.org/w/index.php?title=Word_
embedding&oldid=1091348337.

[Wys17] Lonce Wyse. Audio spectrogram representations for processing
with convolutional neural networks. 06 2017.

[ZW13] Xiaojia Zhao and DeLiang Wang. Analyzing noise robustness
of mfcc and gfcc features in speaker identification. In 2013
IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 7204–7208, 2013. doi:10.1109/ICASSP.
2013.6639061.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022) 159

Phylogeography: Analysis of genetic and climatic data
of SARS-CoV-2

Aleksandr Koshkarov‡§¶∗, Wanlin Li‡¶, My-Linh Luu‖, Nadia Tahiri‡

F

Abstract—Due to the fact that the SARS-CoV-2 pandemic reaches its peak,
researchers around the globe are combining efforts to investigate the genetics
of different variants to better deal with its distribution. This paper discusses
phylogeographic approaches to examine how patterns of divergence within
SARS-CoV-2 coincide with geographic features, such as climatic features. First,
we propose a python-based bioinformatic pipeline called aPhylogeo for phylo-
geographic analysis written in Python 3 that help researchers better understand
the distribution of the virus in specific regions via a configuration file, and then
run all the analysis operations in a single run. In particular, the aPhylogeo tool
determines which parts of the genetic sequence undergo a high mutation rate
depending on geographic conditions, using a sliding window that moves along
the genetic sequence alignment in user-defined steps and a window size. As a
Python-based cross-platform program, aPhylogeo works on Windows®, MacOS
X® and GNU/Linux. The implementation of this pipeline is publicly available
on GitHub (https://github.com/tahiri-lab/aPhylogeo). Second, we present an ex-
ample of analysis of our new aPhylogeo tool on real data (SARS-CoV-2) to
understand the occurrence of different variants.

Index Terms—Phylogeography, SARS-CoV-2, Bioinformatics, Genetic, Climatic
Condition

Introduction

The global pandemic caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) is at its peak and more and
more variants of SARS-CoV-2 were described over time. Among
these, some are considered variants of concern (VOC) by the
World Health Organization (WHO) due to their impact on global
public health, such as Alpha (B.1.1.7), Beta (B.1.351), Gamma
(P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) [CRA+22].
Although significant progress was made in vaccine development
and mass vaccination is being implemented in many countries, the
continued emergence of new variants of SARS-CoV-2 threatens
to reverse the progress made to date. Researchers around the
world collaborate to better understand the genetics of the different
variants, along with the factors that influence the epidemiology of
this infectious disease. Genetic studies of the different variants

* Corresponding author: Nadia.Tahiri@USherbrooke.ca
‡ Department of Computer Science, University of Sherbrooke, Sherbrooke, QC
J1K2R1, Canada
§ Center of Artificial Intelligence, Astrakhan State University, Astrakhan,
414056, Russia
¶ Contributed equally
|| Department of Computer Science, University of Quebec at Montreal, Mon-
treal, QC, Canada

Copyright © 2022 Aleksandr Koshkarov et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

contributed to the development of vaccines to better combat
the spread of the virus. Studying the factors (e.g., environment,
host, agent of transmission) that influence epidemiology helps
us to limit the continued spread of infection and prepare for the
future re-emergence of diseases caused by subtypes of coronavirus
[LFZK06]. However, few studies report associations between
environmental factors and the genetics of different variants. Dif-
ferent variants of SARS-CoV-2 are expected to spread differently
depending on geographical conditions, such as the meteorological
parameters. The main objective of this study is to find clear corre-
lations between genetics and geographic distribution of different
variants of SARS-CoV-2.

Several studies showed that COVID-19 cases and related
climatic factors correlate significantly with each other ([OCFC20],
[SDdPS+20], and [SMVS+22]). Oliveiros et al. [OCFC20] re-
ported a decrease in the rate of SARS-CoV-2 progression with the
onset of spring and summer in the northern hemisphere. Sobral
et al. [SDdPS+20] suggested a negative correlation between mean
temperature by country and the number of SARS-CoV-2 infec-
tions, along with a positive correlation between rainfall and SARS-
CoV-2 transmission. This contrasts with the results of the study by
Sabarathinam et al. [SMVS+22], which showed that an increase in
temperature led to an increase in the spread of SARS-CoV-2. The
results of Chen et al. [CPK+21] imply that a country located 1000
km closer to the equator can expect 33% fewer cases of SARS-
CoV-2 per million population. Some virus variants may be more
stable in environments with specific climatic factors. Sabarathinam
et al. [SMVS+22] compared mutation patterns of SARS-CoV-
2 with time series of changes in precipitation, humidity, and
temperature. They suggested that temperatures between 43°F and
54°F, humidity of 67-75%, and precipitation of 2-4 mm may be
the optimal environment for the transition of the mutant form from
D614 to G614.

In this study, we examine the geospatial lineage of SARS-
CoV-2 by combining genetic data and metadata from associated
sampling locations. Thus, an association between genetics and the
geographic distribution of SARS-CoV-2 variants can be found. We
focus on developing a new algorithm to find relationships between
a reference tree (i.e., a tree of geographic species distributions, a
temperature tree, a habitat precipitation tree, or others) with their
genetic compositions. This new algorithm can help find which
genes or which subparts of a gene are sensitive or favorable to a
given environment.

160 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Problem statement and proposal

Phylogeography is the study of the principles and processes that
govern the distribution of genealogical lineages, particularly at the
intraspecific level. The geographic distribution of species is often
correlated with the patterns associated with the species’ genes
([A+00] and [KM02]). In a phylogeographic study, three major
processes should be considered (see [Nag92] for more details),
which are:

1) Genetic drift is the result of allele sampling errors. These
errors are due to generational transmission of alleles and
geographical barriers. Genetic drift is a function of the
size of the population. Indeed, the larger the population,
the lower the genetic drift. This is explained by the ability
to maintain genetic diversity in the original population.
By convention, we say that an allele is fixed if it reaches
the frequency of 100%, and that it is lost if it reaches the
frequency of 0%.

2) Gene flow or migration is an important process for
conducting a phylogeographic study. It is the transfer
of alleles from one population to another, increasing
intrapopulation diversity and decreasing interpopulation
diversity.

3) There are many selections in all species. Here we indicate
the two most important of them, if they are essential
for a phylogeographic study. (a) Sexual selection is a
phenomenon resulting from an attractive characteristic
between two species. Therefore, this selection is a func-
tion of the size of the population. (b) Natural selection
is a function of fertility, mortality, and adaptation of a
species to a habitat.

Populations living in different environments with varying
climatic conditions are subject to pressures that can lead to
evolutionary divergence and reproductive isolation ([OS98] and
[Sch01]). Phylogeny and geography are then correlated. This
study, therefore, aims to present an algorithm to show the possible
correlation between certain genes or gene fragments and the
geographical distribution of species.

Most studies in phylogeography consider only genetic data
without directly considering climatic data. They indirectly take
this information as a basis for locating the habitat of the species.
We have developed the first version of a phylogeography that
integrates climate data. The sliding window strategy provides more
robust results, as it particularly highlights the areas sensitive to
climate adaptation.

Methods and Python scripts

In order to achieve our goal, we designed a workflow and then
developed a script in Python version 3.9 called aPhylogeo for
phylogeographic analysis (see [LLKT22] for more details). It in-
teracts with multiple bioinformatic programs, taking climatic data
and nucleotide data as input, and performs multiple phylogenetic
analyses on nucleotide sequencing data using a sliding window
approach. The process is divided into three main steps (see Figure
1).

The first step involves collecting data to search for quality
viral sequences that are essential for the conditions of our results.
All sequences were retrieved from the NCBI Virus website (Na-
tional Center for Biotechnology Information, https://www.ncbi.
nlm.nih.gov/labs/virus/vssi/#/). In total, 20 regions were selected

to represent 38 gene sequences of SARS-CoV-2. After collecting
genetic data, we extracted 5 climatic factors for the 20 regions,
i.e., Temperature, Humidity, Precipitation, Wind speed, and Sky
surface shortwave downward irradiance. This data was obtained
from the NASA website (https://power.larc.nasa.gov/).

In the second step, trees are created with climatic data and
genetic data, respectively. For climatic data, we calculated the
dissimilarity between each pair of variants (i.e., from different
climatic conditions), resulting in a symmetric square matrix. From
this matrix, the neighbor joining algorithm was used to construct
the climate tree. The same approach was implemented for genetic
data. Using nucleotide sequences from the 38 SARS-CoV-2 lin-
eages, phylogenetic reconstruction is repeated to construct genetic
trees, considering only the data within a window that moves along
the alignment in user-defined steps and window size (their length
is denoted by the number of base pairs (bp)).

In the third step, the phylogenetic trees constructed in each
sliding window are compared to the climatic trees using the
Robinson and Foulds (RF) topological distance [RF81]. The
distance was normalized by 2n−6, where n is the number of leaves
(i.e., taxa). The proposed approach considers bootstrapping. The
implementation of sliding window technology provides a more
accurate identification of regions with high gene mutation rates.

As a result, we highlighted a correlation between parts of
genes with a high rate of mutations depending on the geographic
distribution of viruses, which emphasizes the emergence of new
variants (i.e., Alpha, Beta, Delta, Gamma, and Omicron).

The creation of phylogenetic trees, as mentioned above, is an
important part of the solution and includes the main steps of the
developed pipeline. This function is intended for genetic data. The
main parameters of this part are as follows:

def create_phylo_tree(gene,
window_size,
step_size,
bootstrap_threshold,
rf_threshold,
data_names):

number_seq = align_sequence(gene)
sliding_window(window_size, step_size)
...
for file in files:

try:
...
create_bootstrap()
run_dnadist()
run_neighbor()
run_consense()
filter_results(gene,

bootstrap_threshold,
rf_threshold,
data_names,
number_seq,
file))

...
except Exception as error:

raise

This function takes gene data, window size, step size, boot-
strap threshold, threshold for the Robinson and Foulds dis-
tance, and data names as input parameters. Then the func-
tion sequentially connects the main steps of the pipeline:
align_sequence(gene), sliding_window(window_size, step_size),
create_bootstrap(), run_dnadist(), run_neighbor(), run_consense(),
and filter_results with parameters. As a result, we obtain a phylo-
genetic tree (or several trees), which is written to a file.

PHYLOGEOGRAPHY: ANALYSIS OF GENETIC AND CLIMATIC DATA OF SARS-COV-2 161

We have created a function (create_tree) to create the climate
trees. The function is described as follow:
def create_tree(file_name, names):

for i in range(1, len(names)):

create_matrix(file_name,
names[0],
names[i],
"infile")

os.system("./exec/neighbor " +
"< input/input.txt")

subprocess.call(["mv",
"outtree",
"intree"])

subprocess.call(["rm",
"infile",
"outfile"])

os.system("./exec/consense "+
"< input/input.txt")

newick_file = names[i].replace(" ", "_") +
"_newick"

subprocess.call(["rm",
"outfile"])

subprocess.call(["mv",
"outtree",
newick_file])

The sliding window strategy can detect genetic fragments depend-
ing on environmental parameters, but this work requires time-
consuming data preprocessing and the use of several bioinformat-
ics programs. For example, we need to verify that each sequence
identifier in the sequencing data always matches the corresponding
metadata. If samples are added or removed, we need to check
whether the sequencing dataset matches the metadata and make
changes accordingly. In the next stage, we need to align the
sequences (multiple sequence alignment, MSA) and integrate all
step by step into specific software such as MUSCLE [Edg04],
Phylip package (i.e. Seqboot, DNADist, Neighbor, and Consense)
[Fel05], RF [RF81], and raxmlHPC [Sta14]. The use of each
software requires expertise in bioinformatics. In addition, the
intermediate analysis steps inevitably generate many files, the
management of which not only consumes the time of the biologist,
but is also subject to errors, which reduces the reproducibility
of the study. At present, there are only a few systems designed
to automate the analysis of phylogeography. In this context, the
development of a computer program for a better understanding
of the nature and evolution of coronavirus is essential for the
advancement of clinical research.

The following sliding window function illustrates moving the
sliding window through an alignment with window size and step
size as parameters. The first 11 characters are allocated to species
names, plus a space.
def sliding_window(window_size=0, step=0):

try:
f = open("infile", "r")
...
slide the window along the sequence
start = 0
fin = start + window_size
while fin <= longueur:

index = 0
with open("out", "r") as f, ... as out:

...

for line in f:
if line != "\n":

espece = list_names[index]
nb_espace = 11 - len(espece)
out.write(espece)
for i in range(nb_espace):

out.write(" ")
out.write(line[debut:fin])
index = index + 1

out.close()
f.close()
start = start + step
fin = fin + step

except:
print("An error occurred.")

Algorithmic complexity

The complexity of the algorithm described in the previous section
depends on the complexity of the various external programs used
and the number of windows that the alignment can contain, plus
one for the total alignment that the program will process.

Recall the different complexities of the different external
programs used in the algorithm:

• SeqBoot program: O(r×n×SA)
• DNADist program: O(n2)
• Neighbor program: O(n3)
• Consense program: O(r×n2)
• RaxML program: O(e×n×SA)
• RF program: O(n2),

where n is a number of species (or taxa), r is a number of
replicates, SA is a size of the multiple sequence alignment (MSA),
and e is a number of refinement steps performed by the RaxML
algorithm. For all SA ∈ N∗ and for all WS,S ∈ N, the number of
windows can be evaluated as follow (Eq. 1):

nb =

⌊
SA−WS

S
+1

⌋
, (1)

where WS is a window size, and S is a step.

Dataset

The following two principles were applied to select the samples
for analysis.

1) Selection of SARS-CoV-2 Pango lineages that are
dispersed in different phylogenetic clusters whenever
possible.

The Pango lineage nomenclature system is hierarchical and
fine-scaled and is designed to capture the leading edge of
pandemic transmission. Each Pango lineage aims to define an
epidemiologically relevant phylogenetic cluster, for instance, an
introduction into a distinct geographic area with evidence of
onward transmission [RHO+20]. From one side, Pango lineages
signify groups or clusters of infections with shared ancestry.
If the entire pandemic can be thought of as a vast branching
tree of transmission, then the Pango lineages represent individual
branches within that tree. From another side, Pango lineages are
intended to highlight epidemiologically relevant events, such as
the appearance of the virus in a new location, a rapid increase in
the number of cases, or the evolution of viruses with new phe-
notypes [OSU+21]. Therefore, to have some sequence diversity
in the selected samples, we avoided selecting lineages belonging
to the same or similar phylogenetic clusters. For example, among

162 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 1: The workflow of the algorithm. The operations within this workflow include several blocks. The blocks are highlighted by three different
colors. The first block (grey color) is responsible for creating the trees based on the climate data. The second block (green color) performs the
function of input parameter validation. The third block (blue color) allows the creation of phylogenetic trees. This is the most important block
and the basis of this study, through the results of which the user receives the output data with the necessary calculations.

PHYLOGEOGRAPHY: ANALYSIS OF GENETIC AND CLIMATIC DATA OF SARS-COV-2 163

C.36, C.36.1, C.36.2, C.36.3 and C.36.3.1, only C.36 was used as
a sample for analysis.

2) Selection of the lineages that are clearly dominant in
a particular region compared to other regions.

Through significant advances in the generation and ex-
change of SARS-CoV-2 genomic data in real time, international
spread of lineages is tracked and recorded on the website (cov-
lineages.org/global_report.html) [OHP+21]. Based on the statis-
tical information provided by the website, our study focuses on
SARS-CoV-2 lineages that were first identified (Earliest date)
and widely disseminated in a particular country (Most common
country) during a certain period (Table 1).

We list four examples of the distribution of a set of lineages:

• Both lineages A.2.3 and B.1.1.107 have 100% distribu-
tion in the United Kingdom. Both lineages D.2 and D.3
have 100% distribution in Australia. B.1.1.172, L.4 and
P.1.13 have 100% distribution in the United States. Finally,
AH.1, AK.2, C.7 have 100% distribution in Switzerland,
Germany, and Denmark, respectively.

• The country with the widest distribution of L.2 is the
Netherlands (77.0%), followed by Germany (19.0%). Due
to a 58% difference in the distribution of L.2 between the
two locations, we consider the Netherlands as the main
distribution country of L.2 and, therefore, it was selected
as a sample.

• Similarly, the most predominant country of distribution of
C.37 is Peru (44%), followed by Chile (19.0%), with a
difference of 25%. Among all samples of this study, C.37
was the lineage with the least difference in distribution per-
centage between the two countries. Considering the need
to increase the diversity of the geographical distribution of
the samples, C.37 was also selected.

• In contrast, the distribution of C.6 is 17.0% in France,
14.0% in Angola, 13.0% in Portugal, and 8.0% in Switzer-
land, and we concluded that C.6 does not show a tendency
in terms of geographic distribution and, therefore, was not
included as a sample for analysis.

In accordance with the above principles, we selected 38
lineages with regional characteristics for further study. Based on
location information, complete nucleotide sequencing data for
these 38 lineages was collected from the NCBI Virus website
(https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/). In the case of
the availability of multiple sequencing results for the same lineage
in the same country, we selected the sequence whose collection
date was closest to the earliest date presented. If there are several
sequencing results for the same country on the same date, the
sequence with the least number of ambiguous characters (N per
nucleotide) is selected (Table 1).

Based on the sampling locations (consistent with the most
common country, but accurate to specific cities) of each lineage
sequence in Table 1, combined with the time when the lineage
was first discovered, we obtained data on climatic conditions at
the time each lineage was first discovered. The meteorological
parameters include Temperature at 2 meters, Specific humidity at
2 meters, Precipitation corrected, Wind speed at 10 meters, and
All sky surface shortwave Downward irradiance. The daily data
for the above parameters were collected from the NASA website
(https://power.larc.nasa.gov/). Considering that the spread of the
virus in a country and the data statistics are time-consuming, we

Fig. 2: Climatic conditions of each lineage in most common country
at the time of first detection. The climate factors involved include
Temperature at 2 meters (C), Specific humidity at 2 meters (g/kg),
Precipitation corrected (mm/day), Wind speed at 10 meters (m/s), and
All sky surface shortwave downward irradiance (kW −hr/m2/day).

collected climatological data for the three days before the earliest
reporting date corresponding to each lineage and averaged them
for analysis (Fig. 2).

Although the selection of samples was based on the phyloge-
netic cluster of lineage and transmission, most of the sites involved
represent different meteorological conditions. As shown in Figure
2, the 38 samples involved temperatures ranging from -4 C to 32.6
C, with an average temperature of 15.3 C. The Specific humidity
ranged from 2.9 g/kg to 19.2 g/kg with an average of 8.3 g/kg. The
variability of Wind speed and All sky surface shortwave downward
irradiance was relatively small across samples compared to other
parameters. The Wind speed ranged from 0.7 m/s to 9.3 m/s with
an average of 4.0 m/s, and All sky surface shortwave downward
irradiance ranged from 0.8 kW-hr/m2/day to 8.6 kW-hr/m2/day
with an average of 4.5 kW-hr/m2/day. In contrast to the other
parameters, 75% of the cities involved receive less than 2.2 mm
of precipitation per day, and only 5 cities have more than 5 mm
of precipitation per day. The minimum precipitation is 0 mm/day,
the maximum precipitation is 12 mm/day, and the average value
is 2.1 mm/day.

Results

In this section, we describe the results obtained on our dataset (see
Data section) using our new algorithm (see Method section).

The size of the sliding window and the advanced step for
the sliding window play an important role in the analysis. We
restricted our conditions to certain values. For comparison, we
applied five combinations of parameters (window size and step
size) to the same dataset. These include the choice of different
window sizes (20bp, 50bp, 200bp) and step sizes (10bp, 50bp,
200bp). These combinations of window sizes and steps provide an
opportunity to have three different movement strategies (overlap-
ping, non-overlapping, with gaps). Here we fixed the pair (window

164 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Lineage Most Common Country Earliest Date Sequence Accession
A.2.3 United Kingdom 100.0% 2020-03-12 OW470304.1
AE.2 Bahrain 100.0% 2020-06-23 MW341474
AH.1 Switzerland 100.0% 2021-01-05 OD999779
AK.2 Germany 100.0% 2020-09-19 OU077014
B.1.1.107 United Kingdom 100.0% 2020-06-06 OA976647
B.1.1.172 USA 100.0% 2020-04-06 MW035925
BA.2.24 Japan 99.0% 2022-01-27 BS004276
C.1 South Africa 93.0% 2020-04-16 OM739053.1
C.7 Denmark 100.0% 2020-05-11 OU282540
C.17 Egypt 69.0% 2020-04-04 MZ380247
C.20 Switzerland 85.0% 2020-10-26 OU007060
C.23 USA 90.0% 2020-05-11 ON134852
C.31 USA 87.0% 2020-08-11 OM052492
C.36 Egypt 34.0% 2020-03-13 MW828621
C.37 Peru 43.0% 2021-02-02 OL622102
D.2 Australia 100.0% 2020-03-19 MW320730
D.3 Australia 100.0% 2020-06-14 MW320869
D.4 United Kingdom 80.0% 2020-08-13 OA967683
D.5 Sweden 65.0% 2020-10-12 OU370897
Q.2 Italy 99.0% 2020-12-15 OU471040
Q.3 USA 99.0% 2020-07-08 ON129429
Q.6 France 92.0% 2021-03-02 ON300460
Q.7 France 86.0% 2021-01-29 ON442016
L.2 Netherlands 73.0% 2020-03-23 LR883305
L.4 USA 100.0% 2020-06-29 OK546730
N.1 USA 91.0% 2020-03-25 MT520277
N.3 Argentina 96.0% 2020-04-17 MW633892
N.4 Chile 92.0% 2020-03-25 MW365278
N.6 Chile 98.0% 2020-02-16 MW365092
N.7 Uruguay 100.0% 2020-06-18 MW298637
N.8 Kenya 94.0% 2020-06-23 OK510491
N.9 Brazil 96.0% 2020-09-25 MZ191508
M.2 Switzerland 90.0% 2020-10-26 OU009929
P.1.7.1 Peru 94.0% 2021-02-07 OK594577
P.1.13 USA 100.0% 2021-02-24 OL522465
P.2 Brazil 58.0% 2020-04-13 ON148325
P.3 Philippines 83.0% 2021-01-08 OL989074
P.7 Brazil 71.0% 2020-07-01 ON148327

TABLE 1: SARS-CoV-2 lineages analyzed. The lineage assignments covered in the table were last updated on March 1, 2022. Among all
Pango lineages of SARS-CoV-2, 38 lineages were analyzed. Corresponding sequencing data were found in the NCBI database based on the
date of earliest detection and country of most common. The table also marks the percentage of the virus in the most common country compared
to all countries where the virus is present.

size, step size) at some values (20, 10), (20, 50), (50, 50), (200,
50) and (200, 200).

1) Robinson and Foulds baseline and bootstrap thresh-
old: the phylogenetic trees constructed in each sliding
window are compared to the climatic trees using the
Robinson and Foulds topological distance (the RF dis-
tance). We defined the value of the RF distance ob-
tained for regions without any mutations as the baseline.
Although different sample sizes and sample sequence
characteristics can cause differences in the baseline, how-
ever, regions without any mutation are often accompanied
by very low bootstrap values. Using the distribution
of bootstrap values and combining it with validation
of alignment visualization, we confirmed that the RF
baseline value in this study was 50, and the bootstrap
values corresponding to this baseline were smaller than
10.

2) Sliding window: the implementation of sliding window
technology with bootstrap threshold provides a more
accurate identification of regions with high gene mutation
rates. Figure 3 shows the general pattern of the RF
distance changes over alignment windows with different

climate conditions on bootstrap values greater than 10.
The trend of RF values variation under different climatic
conditions does not vary much throughout this whole
sequence sliding window scan, which may be related
to the correlation between climatic factors (Wind Speed,
Downward Irradiance, Precipitation, Humidity, Temper-
ature). Windows starting from or containing position
(28550bp) were screened in all five scans for different
combinations of window size and step size. The window
formed from position 29200bp to position 29470bp is
screened out in all four scans except for the combination
of 50bp window size with 50bp step size. As Figure 3
shows, if there are gaps in the scan (window size: 20bp,
step size: 50bp), some potential mutation windows are not
screened compared to other movement strategies because
the sequences of the gap part are not computed by the
algorithm. In addition, when the window size is small,
the capture of the window mutation signal becomes more
sensitive, especially when the number of samples is small.
At this time, a single base change in a single sequence can
cause a change in the value of the RF distance. Therefore,
high quality sequencing data is required to prevent errors

PHYLOGEOGRAPHY: ANALYSIS OF GENETIC AND CLIMATIC DATA OF SARS-COV-2 165

caused by ambiguous characters (N in nucleotide) on the
RF distance values. In cases where a larger window size
(200bp) is selected, the overlapping movement strategy
(window size: 200bp, step size: 50bp) allows the signal of
base mutations to be repeatedly verified and enhanced in
adjacent window scans compared to the non-overlapping
strategy (window size: 200bp, step size: 200bp). In this
situation, the range of the RF distance values is relatively
large, and the number of windows eventually screened is
relatively greater. Due to the small number of the SARS-
CoV-2 lineages sequences that we analyzed in this study,
we chose to scan the alignment sequences with a larger
window and overlapping movement strategy for further
analysis (window size: 200bp, step size: 50bp).

3) Comparaison between genetic trees and climatic trees:
the RF distance quantified the difference between a phy-
logenetic tree constructed in specific sliding windows and
a climatic tree constructed in corresponding climatic data.
Relatively low RF distance values represent relatively
more similarity between the phylogenetic tree and the
climatic tree. With our algorithm based on the sliding
window technique, regions with high mutation rates can
be identified (Fig 4). Subsequently, we compare the
RF values of these regions. In cases where there is a
correlation between the occurrence of mutations and the
climate factors studied, the regions with relatively low
RF distance values (the alignment position of 15550bp
– 15600bp and 24650bp-24750bp) are more likely to
be correlated with climate factors than the other loci
screened for mutations.

In addition, we can state that we have made an effort to
make our tool as independent as possible of the input data and
parameters. Our pipeline can also be applied to phylogeographic
studies of other species. In cases where it is determined (or
assumed) that the occurrence of a mutation is associated with
certain geographic factors, our pipeline can help to highlight
mutant regions and specific mutant regions within them that are
more likely to be associated with that geographic parameter. Our
algorithm can provide a reference for further biological studies.

Conclusions and future work

In this paper, a bioinformatics pipeline for phylogeographic
analysis is designed to help researchers better understand the
distribution of viruses in specific regions using genetic and climate
data. We propose a new algorithm called aPhylogeo [LLKT22]
that allows the user to quickly and intuitively create trees from
genetic and climate data. Using a sliding window, the algorithm
finds specific regions on the viral genetic sequences that can
be correlated to the climatic conditions of the region. To our
knowledge, this is the first study of its kind that incorporates
climate data into this type of study. It aims to help the scientific
community by facilitating research in the field of phylogeography.
Our solution runs on Windows®, MacOS X® and GNU/Linux
and the code is freely available to researchers and collaborators on
GitHub (https://github.com/tahiri-lab/aPhylogeo).

As a future work on the project, we plan to incorporate the
following additional features:

1) We can handle large amounts of data, especially when
considering many countries and longer time periods

(dates). In addition, since the size of the sliding window
and the forward step play an important role in the anal-
ysis, we need to perform several tests to choose the best
combination of parameters. In this case, it is important to
provide the faster performance of this solution, and we
plan to adapt the code to parallelize the computations.
In addition, we intend to use the resources of Compute
Canada and Compute Quebec for these high load calcu-
lations.

2) To enable further analysis of this topic, it would be
interesting to relate the results obtained, especially the
values obtained from the best positions of the multiple
sequence alignments, to the dimensional structure of the
proteins, or to the map of the selective pressure exerted
on the indicated alignment fragments.

3) We can envisage a study that would consist in selecting
only different phenotypes of a single species, for exam-
ple, Homo Sapiens, in different geographical locations. In
this case, we would have to consider a larger geographical
area in order to significantly increase the variation of
the selected climatic parameters. This type of research
would consist in observing the evolution of the genes
of the selected species according to different climatic
parameters.

4) We intend to develop a website that can help biologists,
ecologists and other interested professionals to perform
calculations in their phylogeography projects faster and
easier. We plan to create a user-friendly interface with
the input of the necessary initial parameters and the
possibility to save the results (for example, by sending
them to an email). These results will include calculated
parameters and visualizations.

Acknowledgements

The authors thank SciPy conference and reviewers for their valu-
able comments on this paper. This work was supported by Natural
Sciences and Engineering Research Council of Canada and the
University of Sherbrooke grant.

REFERENCES

[A+00] John C Avise et al. Phylogeography: the history and formation
of species. Harvard University Press, 2000. doi:10.1093/
icb/41.1.134.

[CPK+21] Simiao Chen, Klaus Prettner, Michael Kuhn, Pascal Geldsetzer,
Chen Wang, Till Bärnighausen, and David E Bloom. Climate
and the spread of covid-19. Scientific Reports, 11(1):1–6, 2021.
doi:10.1038/s41598-021-87692-z.

[CRA+22] Marco Cascella, Michael Rajnik, Abdul Aleem, Scott C Dule-
bohn, and Raffaela Di Napoli. Features, evaluation, and treat-
ment of coronavirus (covid-19). Statpearls [internet], 2022.

[Edg04] Robert C Edgar. Muscle: a multiple sequence alignment method
with reduced time and space complexity. BMC bioinformatics,
5(1):1–19, 2004. doi:10.1186/1471-2105-5-113.

[Fel05] Joseph Felsenstein. PHYLIP (Phylogeny Inference Package)
version 3.6. Distributed by the author. Department of Genome
Sciences, University of Washington, Seattle, 2005.

[KM02] L Lacey Knowles and Wayne P Maddison. Statistical phylo-
geography. Molecular Ecology, 11(12):2623–2635, 2002. doi:
10.1146/annurev.ecolsys.38.091206.095702.

[LFZK06] Kun Lin, Daniel Yee-Tak Fong, Biliu Zhu, and Johan Karl-
berg. Environmental factors on the sars epidemic: air tem-
perature, passage of time and multiplicative effect of hospital
infection. Epidemiology & Infection, 134(2):223–230, 2006.
doi:10.1017/S0950268805005054.

166 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 3: Heatmap of Robinson and Foulds topological distance over alignment windows. Five different combinations of parameters were applied
(a) window size = 20bp and step size = 10bp; (b) window size = 20bp and step size = 50bp; (c) window size = 50bp and step size = 50bp;
(d) window size = 200bp and step size = 50bp; and (e) window size = 200bp and step size = 200bp. Robinson and Foulds topological
distance was used to quantify the distance between a phylogenetic tree constructed in certain sliding windows and a climatic tree constructed
in corresponding climatic data (wind speed, downward irradiance, precipitation, humidity, temperature).

Fig. 4: Robinson and Foulds topological distance normalized changes
over the alignment windows. Multiple phylogenetic analyses were
performed using a sliding window (window size = 200 bp and step size
= 50 bp). Phylogenetic reconstruction was repeated considering only
data within a window that moved along the alignment in steps. The
RF normalized topological distance was used to quantify the distance
between the phylogenetic tree constructed in each sliding window and
the climate tree constructed in the corresponding climate data (Wind
speed, Downward irradiance, Precipitation, Humidity, Temperature).
Only regions with high genetic mutation rates were marked in the
figure.

[LLKT22] Wanlin Li, My-Lin Luu, Aleksandr Koshkarov, and Nadia
Tahiri. aPhylogeo (version 1.0), July 2022. URL: https://
github.com/tahiri-lab/aPhylogeo, doi:doi.org/10.5281/
zenodo.6773603.

[Nag92] Thomas Nagylaki. Rate of evolution of a quantitative character.
Proceedings of the National Academy of Sciences, 89(17):8121–
8124, 1992. doi:10.1073/pnas.89.17.8121.

[OCFC20] Barbara Oliveiros, Liliana Caramelo, Nuno C Ferreira, and
Francisco Caramelo. Role of temperature and humidity in the
modulation of the doubling time of covid-19 cases. MedRxiv,
2020. doi:10.1101/2020.03.05.20031872.

[OHP+21] Áine O’Toole, Verity Hill, Oliver G Pybus, Alexander Watts,
Issac I Bogoch, Kamran Khan, Jane P Messina, The COVID,
Genomics UK, et al. Tracking the international spread
of sars-cov-2 lineages b. 1.1. 7 and b. 1.351/501y-v2 with

grinch. Wellcome open research, 6, 2021. doi:10.12688/
wellcomeopenres.16661.2.

[OS98] Matthew R Orr and Thomas B Smith. Ecology and speciation.
Trends in Ecology & Evolution, 13(12):502–506, 1998. doi:
10.1016/s0169-5347(98)01511-0.

[OSU+21] Áine O’Toole, Emily Scher, Anthony Underwood, Ben Jack-
son, Verity Hill, John T McCrone, Rachel Colquhoun, Chris
Ruis, Khalil Abu-Dahab, Ben Taylor, et al. Assignment of
epidemiological lineages in an emerging pandemic using the
pangolin tool. Virus Evolution, 7(2):veab064, 2021. doi:
10.1093/ve/veab064.

[RF81] David F Robinson and Leslie R Foulds. Comparison of phyloge-
netic trees. Mathematical biosciences, 53(1-2):131–147, 1981.
doi:10.1016/0025-5564(81)90043-2.

[RHO+20] Andrew Rambaut, Edward C Holmes, Áine O’Toole, Verity
Hill, John T McCrone, Christopher Ruis, Louis du Plessis, and
Oliver G Pybus. A dynamic nomenclature proposal for sars-
cov-2 lineages to assist genomic epidemiology. Nature micro-
biology, 5(11):1403–1407, 2020. doi:10.1038/s41564-
020-0770-5.

[Sch01] Dolph Schluter. Ecology and the origin of species. Trends in
ecology & evolution, 16(7):372–380, 2001. doi:10.1016/
s0169-5347(01)02198-x.

[SDdPS+20] Marcos Felipe Falcão Sobral, Gisleia Benini Duarte, Ana
Iza Gomes da Penha Sobral, Marcelo Luiz Monteiro Marinho,
and André de Souza Melo. Association between climate vari-
ables and global transmission of sars-cov-2. Science of The
Total Environment, 729:138997, 2020. doi:10.1016/j.
scitotenv.2020.138997.

[SMVS+22] Chidambaram Sabarathinam, Prasanna Mohan Viswanathan,
Venkatramanan Senapathi, Shankar Karuppannan, Dhanu Radha
Samayamanthula, Gnanachandrasamy Gopalakrishnan, Ra-
manathan Alagappan, and Prosun Bhattacharya. Sars-cov-2
phase i transmission and mutability linked to the interplay of
climatic variables: a global observation on the pandemic spread.
Environmental Science and Pollution Research, pages 1–18,
2022. doi:10.1007/s11356-021-17481-8.

[Sta14] Alexandros Stamatakis. Raxml version 8: a tool for phy-
logenetic analysis and post-analysis of large phylogenies.
Bioinformatics, 30(9):1312–1313, 2014. doi:10.1093/
bioinformatics/btu033.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022) 167

Global optimization software library for research and
education

Nadia Udler‡∗

F

Abstract—Machine learning models are often represented by functions given
by computer programs. Optimization of such functions is a challenging task
because traditional derivative based optimization methods with guaranteed
convergence properties cannot be used.. This software allows to create new
optimization methods with desired properties, based on basic modules. These
basic modules are designed in accordance with approach for constructing global
optimization methods based on potential theory [KAP]. These methods do not
use derivatives of objective function and as a result work with nondifferentiable
functions (or functions given by computer programs, or black box functions), but
have guaranteed convergence. The software helps to understand principles of
learning algorithms. This software may be used by researchers to design their
own variations or hybrids of known heuristic optimization methods. It may be
used by students to understand how known heuristic optimization methods work
and how certain parameters affect the behavior of the method.

Index Terms—global optimization, black-box functions, algorithmically defined
functions, potential functions

Introduction

Optimization lies at the heart of machine learning and data
science. One of the most relevant problems in machine learning is
automatic selection of the algorithm depending on the objective.
This is necessary in many applications such as robotics, simulating
biological or chemical processes, trading strategies optimization,
to name a few [KHNT]. We developed a library of optimization
methods as a first step for self-adapting algorithms. Optimization
methods in this library work with all objectives including very
onerous ones, such as black box functions and functions given by
computer code, and the convergences of methods is guaranteed.
This library allows to create customized derivative free learning
algorithms with desired properties by combining building blocks
from this library or other Python libraries.

The library is intended primarily for educational purposes
and its focus is on transparency of the methods rather than on
efficiency of implementation.

The library can be used by researches to design optimization
methods with desired properties by varying parameters of the
general algorithm.

As an example, consider variant of simulated annealing (SA)
proposed in [FGSB] where different values of parameters (Boltz-
man distribution parameters, step size, etc.) are used depending of

* Corresponding author: nadiakap@optonline.net
‡ University of Connecticut (Stamford)

Copyright © 2022 Nadia Udler. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

the distance to optimal point. In this paper the basic SA algorithm
is used as a starting point. We can offer more basic module as a
starting point (and by specifying distribution as ’exponential’ get
the variant of SA) thus achieving more flexible design opportuni-
ties for custom optimization algorithm. Note that convergence of
the newly created hybrid algorithm does not need to be verified
when using minpy basic modules, whereas previously mentioned
SA-based hybrid has to be verified separately (see [GLUQ])

Testing functions are included in the library. They represent
broad range of use cases covering above mentioned difficult
functions. In this paper we describe the approach underlying these
optimization methods. The distinctive feature of these methods
is that they are not heuristic in nature. The algorithms are de-
rived based on potential theory [KAP], and their convergence is
guaranteed by their derivation method [KPP]. Recently potential
theory was applied to prove convergence of well known heuristic
methods, for example see [BIS] for convergence of PSO, and to
re prove convergence of well known gradient based methods, in
particular, first order methods - see [NBAG] for convergence of
gradient descent and [ZALO] for mirror descent. For potential
functions approach for stochastic first order optimization methods
see [ATFB].

Outline of the approach

The approach works for non-smooth or algorithmically defined
functions. For detailed description of the approach see [KAP],
[KP]. In this approach the original optimization problem is re-
placed with a randomized problem, allowing the use of Monte-
Carlo methods for calculating integrals. This is especially impor-
tant if the objective function is given by its values (no analytical
formula) and derivatives are not known. The original problem
is restated in the framework of gradient (sub gradient) methods,
employing the standard theory (convergence theorems for gradient
(sub gradient) methods), whereas no derivatives of the objective
function are needed. At the same time, the method obtained is
a method of nonlocal search unlike other gradient methods. It
will be shown, that instead of measuring the gradient of the
objective function we can measure the gradient of the potential
function at each iteration step , and the value of the gradient
can be obtained using values of objective function only, in the
framework of Monte Carlo methods for calculating integrals.
Furthermore, this value does not have to be precise, because
it is recalculated at each iteration step. It will also be shown
that well-known zero-order optimization methods (methods that
do not use derivatives of objective function but its values only)

168 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

are generalized into their adaptive extensions. The generalization
of zero-order methods (that are heuristic in nature) is obtained
using standardized methodology, namely, gradient (sub gradient)
framework. We consider the unconstrained optimization problem

f (x1,x2, ..xn)→ min
x∈Rn

(1)

By randomizing we get

F(X) = E[f (X)]→ min
x∈Rn

(2)

where X is a random vector from Rn, {X} is a set of such random
vectors, and E[·] is the expectation operator.

Problem 2 is equivalent to problem 1 in the sense that any
realization of the random vector X∗, where X∗ is a solution to 2,
that has a nonzero probability, will be a solution to problem 1 (see
[KAP] for proof).

Note that 2 is the stochastic optimization problem of the
functional F(X) .

To study the gradient nature of the solution algorithms for
problem 2, a variation of objective functional F(X) will be consid-
ered.

The suggested approach makes it possible to obtain opti-
mization methods in systematic way, similar to the methodology
adopted in smooth optimization. Derivation includes random-
ization of the original optimization problem, finding directional
derivative for the randomized problem and choosing moving
direction Y based on the condition that directional derivative in
the direction of Y is being less or equal to 0.

Because of randomization, the expression for directional
derivative doesn’t contain the differential characteristics of the
original function. We obtain the condition for selecting the di-
rection of search Y in terms of its characteristics - conditional
expectation. Conditional expectation is a vector function (or
vector field) and can be decomposed (following the theorem of
decomposition of the vector field) into the sum of the gradient
of scalar function P and a function with zero divergence. P is
called a potential function. As a result the original problem is
reduced to optimization of the potential function, furthermore, the
potential function is specific for each iteration step. Next, we arrive
at partial differential equation that connects P and the original
function. To define computational algorithms it is necessary to
specify the dynamics of the random vectors. For example, the
dynamics can be expressed in a form of densities. For certain class
of distributions, for example normal distribution, the dynamics can
be written in terms of expectation and covariance matrix. It is also
possible to express the dynamics in mixed characteristics.

Expression for directional derivative

Derivative of objective functional F(X) in the direction of the
random vector Y at the point X0 (Gateaux derivative) is:

δY F(X0) = d
dε F(X0 + εY)ε=0 = d

dε F(Xε)dxε=0 =
d

dε
∫

f (X)pxε (x)ε=0

where density function of the random vector Xε = X0 + εY
may be expressed in terms of joint density function pX0,Y (x,y) of
X0 and Y as follows:

pxε (x) =
∫

Rn
pxε (x− εy,y)dy (3)

The following relation (property of divergence) will be needed
later

d
dε

pxε (x− εy,y) = (−∇x pxε (x,y),y) =−divx(pxε (x,y)y) (4)

where (,) defines dot product.
Assuming differentiability of the integrals (for example, by

selecting the appropriate pxε (x,y) and using 3, 4 we get

δY F(X0) = [
d

dε

∫

Rn

∫

Rn
f (x)pxε (x− εy,y)dxdy]ε=0 =

= [d
dε

∫
Rn f (x)

∫
Rn pxε (x−εy,y)dxdy]ε=0 = [

∫
Rn f (x)(d

dε
∫

Rn pxε (x−
εy,y)dy)dx]ε=0 =

=
∫

Rn f (x)(
∫

Rn [d
dε pxε (x − εy,y)]ε=0dy)dx =

−∫
Rn f (x)(

∫
Rn [divx(pxε (x,y)y)]dy)dx =

−
∫

Rn
f (x)divx[

∫

Rn
(pxε (x,y)y)dy]dx

Using formula for conditional distribution pY/X0=x(y) =
pxε y(x,y)
pxε (x)) ,

where pxε (x) =
∫

Rn pxε y(x,u)du
we get δY F(X0) =−∫

Rn f (x)divx[pxε (x)
∫

Rn pY/X0=x(y)ydy]dx
Denote y(x) =

∫
Rn ypY/X0=x(y)dy = E[Y/X0 = x]

Taking into account normalization condition for density we
arrive at the following expression for directional derivative:

δY F(X0) =−
∫

Rn
(f (x)−C)divx[px0(x)y(x)]dx

where C is arbitrary chosen constant
Considering solution to δY F(X0) → minY allows to obtain

gradient-like algorithms for optimization that use only objective
function values (do not use derivatives of objective function)

Potential function as a solution to Poisson’s equation

Decomposing vector field px0(x)y(x) into potential field ∇ϕ0(x)
and divergence-free component W0(x):

px0(x)y(x) = ∇φ0(x)+W0(x)

we arrive at Poisson’s equation for potential function:

∆ϕ0(x) =−L[f (x)−C]pu(x)

where L is a constant
Solution to Poisson’s equation approaching 0 at infinity may

be written in the following form

ϕ0(x) =
∫

Rn
E(x,ξ)[f (ξ)−C]pu(ξ)dξ

where E(x,ξ) is a fundamental solution to Laplace’s equation.
Then for potential component ∆ϕ0(x) we have

∆ϕ0(x) =−LE[∆xE(x,u)(f (x)−C)]

To conclude, the representation for gradient-like direction is
obtained. This direction maximizes directional derivative of the
objective functional F(X). Therefore, this representation can be
used for computing the gradient of the objective function f(x)
using only its values. Gradient direction of the objective function
f(x) is determined by the gradient of the potential function ϕ0(x),
which, in turn, is determined by Poisson’s equation.

GLOBAL OPTIMIZATION SOFTWARE LIBRARY FOR RESEARCH AND EDUCATION 169

Practical considerations

The dynamics of the expectation of objective function may be
written in the space of random vectors as follows:

XN+1 = XN +αN+1YN+1

where N - iteration number, Y N+1 - random vector that defines
direction of move at (N+1)th iteration, αN+1 -step size on (N+1)th
iteration. Y N+1 must be feasible at each iteration, i.e. the objective
functional should decrease: F(XN+1)< (XN). Applying expection
to (12) and presenting E[YN+1 asconditional expectation ExE[Y/X]
we get:

XN+1 = E[XN]+αN+1EXN E[Y N+1/XN]

Replacing mathematical expectations E[XN] and YN+1] with their
estimates EN+1 and y(XN) we get:

EN+1
= EN

+αN+1EXN [y(XN)]

Note that expression for y(XN) was obtained in the previos section
up to certain parameters. By setting parameters to certain values
we can obtain stochastic extensions of well known heuristics such
as Nelder and Mead algorithm or Covariance Matrix Adaptation
Evolution Strategy. In minpy library we use several common build-
ing blocks to create different algorithms. Customized algorithms
may be defined by combining these common blocks and varying
their parameters.

Main building blocks include computing center of mass of the
sample points and finding newtonian potential.

Key takeaways, example algorithm, and code organization

Many industry professionals and researchers utilize mathematical
optimization packages to search for better solutions of their
problems. Examples of such problem include minimization of
free energy in physical system [FW], robot gait optimization
from robotics [PHS], designing materials for 3D printing [ZM],
[TMAACBA], wine production [CTC], [CWC], optimizing chem-
ical reactions [VNJT]. These problems may involve "black box
optimization", where the structure of the objective function is
unknown and is revealed through a small sequence of expen-
sive trials. Software implementations for these methods become
more user friendly. As a rule, however, certain modeling skills
are needed to formulate real world problem in a way suitable
for applying software package. Moreover, selecting optimization
method appropriate for the model is a challenging task. Our
educational software helps users of such optimization packages
and may be considered as a companion to them. The focus
of our software is on transparency of the methods rather than
on efficiency. A principal benefit of our software is the unified
approach for constructing algorithms whereby any other algorithm
is obtained from the generalized algorithm by changing certain
parameters. Well known heuristic algorithms such as Nelder and
Mead (NM) algorithm may be obtained using this generalized
approach, as well as new algorithms. Although some derivative-
free optimization packages (matlab global optimization toolbox,
Tensorflow Probability optimizers, Excel Evolutionary Solver,
scikit-learn Stochastic Gradient Descent class, scipy.optimize.shgo
method) put a lot of effort in transparency and educational value,
they don’t have the same level of flexibility and generality as our
system. An example of educational-only optimization software is
[SAS]. It is limited to teach Particle Swarm Optimization.

The code is organized in such a way that it allows to pair the
algorithm with objective function. The new algorithm may be im-
plmented as method of class Minimize. Newly created algorithm
can be paired with test objectivve function supplied with a library
or with externally supplied objective function (implemented in
separate python module). New algorithms can be made more or
less universal, that is, may have different number of parameters
that user can specify. For example, it is possible to create Nelder
and Mead algorithm (NM) using basic modules, and this would
be an example of the most specific algorithm. It is also possible
to create Stochastic Extention of NM (more generic than classic
NM, similar to Simplicial Homology Global Optimisation [ESF]
method) and with certain settings of adjustable parameters it may
work identical to classic NM. Library repository may be found
here: https://github.com/nadiakap/MinPy_edu

The following algorithms demonstrate steps similar to steps of
Nelder and Mead algorithm (NM) but select only those points with
objective function values smaller or equal to mean level of objec-
tive funtion. Such an improvement to NM assures its convergence
[KPP]. Unlike NM, they are derived from the generic approach.
First variant (NM-stochastic) resembles NM but corrects some
of its drawbacks, and second variant (NM-nonlocal) has some
similarity to random search as well as to NM and helps to resolve
some other issues of classical NM algorithm.

Steps of NM-stochastic:

1) Initialize the search by generating K ≥ n separate real-
izations of ui

0, i=1,..K of the random vector U0, and set
m0 =

1
K ∑K

i=0 ui
0

2) On step j = 1, 2, ...

a.Compute the mean level c j−1 =
1
K ∑K

i=1 f (ui
j−1)

b.Calculate new set of vertices:

ui
j = m j−1 + ε j−1(f (ui

j−1)− c j−1)
m j−1−ui

j−1

||m j−1−ui
j−1||n

c.Set m j =
1
K ∑K

i=0 ui
j

d.Adjust the step size ε j−1 so that f (m j) < f (m j−1). If
approximate ε j−1 cannot be obtained within the specified number
of trails, then set mk = m j−1

e.Use sample standard deviation as termination criterion:

D j = (
1

K−1

K

∑
i=1

(f (ui
j)− c j)

2)1/2

Note that classic simplex search methods do not use values of
objective function to calculate reflection/expantion/contraction co-
efficients. Those coefficients are the same for all vertices, whereas
in NM-stochastic the distance each vertex will travel depends
on the difference between objective function value and average
value across all vertices (f (ui

j)− c j). NM-stochastic shares the
following drawbacks with classic simplex methods: a. simlex may
collapse into a nearly degenerate figure, and usually proposed
remedy is to restart the simlex every once in a while, b. only initial
vertices are randomly generated, and the path of all subsequent
vertices is deterministic. Next variant of the algorithm (NM-
nonlocal) maintains the randomness of vertices on each step, while
adjusting the distribution of U0 to mimic the pattern of the modi-
fied vertices. The corrected algorithm has much higher exploration
power than the first algorithm (similar to the exploration power of
random search algorithms), and has exploitation power of direct -
search algorithms.

170 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Steps of NM - nonlocal

1) Choose a starting point x0 and set m0 = x0.

2. On step j = 1, 2, ... Obtain K separate realizations of ui
i,

i=1,..K of the random vector U j
a.Compute f (ui

j−1), j = 1,2, ..K, and the sample mean level

c j−1 =
1
K

K

∑
i=1

f (ui
j−1)

b.Generate the new estimate of the mean:

m j = m j−1 + ε j
1
K

K

∑
i=1

[(f (ui
j)− c j)

m j−1−ui
j

||m j−1−ui
j||n

]

Adjust the step size ε j−1 so that f (m j)< f (m j−1). If approximate
ε j−1 cannot be obtained within the specified number of trails, then
set mk = m j−1

c.Use sample standard deviation as termination criterion

D j = (
1

K−1

K

∑
i=1

(f (ui
j)− c j)

2)1/2

REFERENCES

[KAP] Kaplinskii, A.I.,Pesin, A.M.,Propoi, A.I.(1994). Analysis of
search methods of optimization based on potential theory. I:
Nonlocal properties. Automation and Remote Control. Volume
55, N.9, Part 2, September, pp.1316-1323 (rus. pp.97-105),
1994

[KP] Kaplinskii, A.I. and Propoi, A.I., Nonlocal Optimization Meth-
ods ofthe First Order Based on Potential Theory, Automation
and Remote Control. Volume 55, N.7, Part 2, July, pp.1004-
1011 (rus. pp.97-102), 1994

[KPP] Kaplinskii, A.I., Pesin, A.M.,Propoi, A.I. Analysis of search
methods of optimization based on potential theory. III: Conver-
gence of methods. Automation and remote Control, Volume 55,
N.11, Part 1, November, pp.1604-1610 (rus. pp.66-72), 1994.

[NBAG] Nikhil Bansal, Anupam Gupta, Potential-function proofs for
gradient methods, Theory of Computing, Volume 15, (2019)
Article 4 pp. 1-32, https://doi.org/10.4086/toc.2019.v015a004

[ATFB] Adrien Taylor, Francis Bach, Stochastic first-order meth-
ods: non-asymptotic and computer-aided analyses via
potential functions, arXiv:1902.00947 [math.OC], 2019,
https://doi.org/10.48550/arXiv.1902.00947

[ZALO] Zeyuan Allen-Zhu and Lorenzo Orecchia, Linear Coupling: An
Ultimate Unification of Gradient and Mirror Descent, Inno-
vations in Theoretical Computer Science Conference (ITCS),
2017, pp. 3:1-3:22, https://doi.org/10.4230/LIPIcs.ITCS.2017.3

[BIS] Berthold Immanuel Schmitt, Convergence Analysis for Particle
Swarm Optimization, FAU University Press, 2015

[FGSB] FJuan Frausto-Solis, Ernesto Liñán-García, Juan Paulo
Sánchez-Hernández, J. Javier González-Barbosa, Carlos
González-Flores, Guadalupe Castilla-Valdez, Multiphase Sim-
ulated Annealing Based on Boltzmann and Bose-Einstein
Distribution Applied to Protein Folding Problem, Advances
in Bioinformatics, Volume 2016, Article ID 7357123, https:
//doi.org/10.1155/2016/7357123

[GLUQ] Gong G., Liu, Y., Qian M, Simulated annealing with a potential
function with discontinuous gradient on Rd , Ici. China Ser. A-
Math. 44, 571-578, 2001, https://doi.org/10.1007/BF02876705

[PHS] Valdez, S.I., Hernandez, E., Keshtkar, S. (2020). A Hybrid
EDA/Nelder-Mead for Concurrent Robot Optimization. In:
Madureira, A., Abraham, A., Gandhi, N., Varela, M. (eds)
Hybrid Intelligent Systems. HIS 2018. Advances in Intel-
ligent Systems and Computing, vol 923. Springer, Cham.
https://doi.org/10.1007/978-3-030-14347-3_20

[FW] Fan, Yi & Wang, Pengjun & Heidari, Ali Asghar & Chen,
Huiling & HamzaTurabieh, & Mafarja, Majdi, 2022. "Random
reselection particle swarm optimization for optimal design of
solar photovoltaic modules," Energy, Elsevier, vol. 239(PA),
https://doi.org/10.1016/j.energy.2021.121865

[VNJT] Fath, Verena, Kockmann, Norbert, Otto, Jürgen, Röder,
Thorsten, Self-optimising processes and real-time-optimisation
of organic syntheses in a microreactor system using
Nelder–Mead and design of experiments, React. Chem. Eng.,
2020,5, 1281-1299, https://doi.org/10.1039/D0RE00081G

[ZM] Plüss, T.; Zimmer, F.; Hehn, T.; Murk, A. Characterisation and
Comparison of Material Parameters of 3D-Printable Absorbing
Materials. Materials 2022, 15, 1503. https://doi.org/10.3390/
ma15041503

[TMAACBA] Thoufeili Taufek, Yupiter H.P. Manurung, Mohd Shahriman
Adenan, Syidatul Akma, Hui Leng Choo, Borhen Louhichi,
Martin Bednardz, and Izhar Aziz.3D Printing and Additive
Manufacturing, 2022, http://doi.org/10.1089/3dp.2021.0197

[CTC] Vismara, P., Coletta, R. & Trombettoni, G. Constrained global
optimization for wine blending. Constraints 21, 597–615
(2016), https://doi.org/10.1007/s10601-015-9235-5

[CWC] Terry Hui-Ye Chiu, Chienwen Wu, Chun-Hao Chen, A Gen-
eralized Wine Quality Prediction Framework by Evolutionary
Algorithms, International Journal of Interactive Multimedia
and Artificial Intelligence, Vol. 6, Nº7,2021, https://doi.org/10.
9781/ijimai.2021.04.006

[KHNT] Pascal Kerschke, Holger H. Hoos, Frank Neumann, Heike
Trautmann; Automated Algorithm Selection: Survey and Per-
spectives. Evol Comput 2019; 27 (1): 3–45, https://doi.org/10.
1162/evco_a_00242

[SAS] Leandro dos Santos Coelho, Cezar Augusto Sierakowski, A
software tool for teaching of particle swarm optimization
fundamentals, Advances in Engineering Software, Volume 39,
Issue 11, 2008, Pages 877-887, ISSN 0965-9978, https://doi.
org/10.1016/j.advengsoft.2008.01.005.

[ESF] Endres, S.C., Sandrock, C. & Focke, W.W. A simplicial ho-
mology algorithm for Lipschitz optimisation. J Glob Optim 72,
181–217 (2018), https://doi.org/10.1007/s10898-018-0645-y

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022) 171

Temporal Word Embeddings Analysis for Disease
Prevention

Nathan Jacobi‡∗, Ivan Mo‡§, Albert You‡, Krishi Kishore‡, Zane Page‡, Shannon P. Quinn‡¶, Tim Heckman‖

F

Abstract—Human languages’ semantics and structure constantly change over
time through mediums such as culturally significant events. By viewing the
semantic changes of words during notable events, contexts of existing and
novel words can be predicted for similar, current events. By studying the initial
outbreak of a disease and the associated semantic shifts of select words, we
hope to be able to spot social media trends to prevent future outbreaks faster
than traditional methods. To explore this idea, we generate a temporal word
embedding model that allows us to study word semantics evolving over time.
Using these temporal word embeddings, we use machine learning models to
predict words associated with the disease outbreak.

Index Terms—Natural Language Processing, Word Embeddings, Bioinformat-
ics, Social Media, Disease Prediction

Introduction & Background

Human languages experience continual changes to their semantic
structures. Natural language processing techniques allow us to
examine these semantic alterations through methods such as word
embeddings. Word embeddings provide low dimension numerical
representations of words, mapping lexical meanings into a vector
space. Words that lie close together in this vector space represent
close semantic similarities [MCCD13]. This numerical vector
space allows for quantitative analysis of semantics and contextual
meanings, allowing for more use in machine learning models that
utilize human language.

We hypothesize that disease outbreaks can be predicted faster
than traditional methods by studying word embeddings and their
semantic shifts during past outbreaks. By surveying the context
of select medical terms and other words associated with a disease
during the initial outbreak, we create a generalized model that can
be used to catch future similar outbreaks quickly. By leveraging
social media activity, we predict similar semantic trends can be
found in real time. Additionally, this allows novel terms to be
evaluated in context without requiring a priori knowledge of them,
allowing potential outbreaks to be detected early in their lifespans,
thus minimizing the resultant damage to public health.

Given a corpus spanning a fixed time period, multiple word
embeddings can be created at set temporal intervals, which can

* Corresponding author: Nathan.Jacobi@uga.edu
‡ Computer Science Department, University of Georgia
§ Linguistics Department, University of Georgia
¶ Cellular Biology Department, University of Georgia
|| Public Health Department, University of Georgia

Copyright © 2022 Nathan Jacobi et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

then be studied to track contextual drift over time. However, a
common issue in these so-called “temporal word embeddings”
is that they are often unaligned — i.e. the embeddings do not
lie within the same embedding space. Past proposed solutions
to aligning temporal word embeddings require multiple separate
alignment problems to be solved, or for “anchor words” – words
that have no contextual shifts between times – to be used for
mapping one time period to the next [HLJ16]. Yao et al. propose a
solution to this alignment issue, shown to produce accurate and
aligned temporal word embeddings, through solving one joint
alignment problem across all time slices, which we utilize here
[YSD+18].

Methodology

Data Collection & Pre-Processing

Our data set is a corpus D of over 7 million tweets collected
from Scott County, Indiana from the dates January 1st, 2014 until
January 17th, 2017. The data was lent to us from Twitter after
a data request, and has not yet been made publicly available.
During this time period, an HIV outbreak was taking place in
Scott County, with an eventual 215 confirmed cases being linked
to the outbreak [PPH+16]. Gonsalves et al. predicts an additional
126 undiagnosed HIV cases were linked to this same outbreak
[GC18]. The state’s response led to questioning if the outbreak
could have been stemmed or further prevented with an earlier
response [Gol17]. Our corpus was selected with a focus on tweets
related to the outbreak. By closely studying the semantic shifts
during this outbreak, we hope to accurately predict similar future
outbreaks before they reach large case numbers, allowing for a
critical earlier response.

To study semantic shifts through time, the corpus was split
into 18 temporal buckets, each spanning a 2 month period. All data
utilized in scripts was handled via the pandas Python package. The
corpus within each bucket is represented by Dt , with t representing
the temporal slice. Within each 2 month period, tweets were split
into 12 pre-processed output csv files. Pre-processing steps first
removed retweets, links, images, emojis, and punctuation. Com-
mon stop words were removed from the tweets using the NLTK
Python package, and each tweet was tokenized. A vocabulary
dictionary was then generated for each of the 18 temporal buckets,
containing each unique word and a count of its occurrences
within its respective bucket. The vocabulary dictionaries for each
bucket were then combined into a global vocabulary dictionary,
containing the total counts for each unique word across all 18
buckets. Our experiments utilized two vocabulary dictionaries: the

172 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

first being the 10,000 most frequently occurring words from the
global vocabulary for ensuring proper generation of embedding
vectors, the second being a combined vocabulary of 15,000 terms,
including our target HIV/AIDS related terms. This combined
vocabulary consisted of the top 10,000 words across D as well
as an additional 473 HIV/AIDS related terms that occurred at
least 8 times within the corpus. The 10,000th most frequent term
in D occurred 39 times, so to ensure results were not influenced
by sparsity in the less frequent HIV/AIDS terms, 4,527 randomly
selected terms with occurrences between 10 and 25 times were
added to the vocabulary, bringing it to a total of 15,000 terms.
The HIV/AIDS related terms came from a list of 1,031 terms we
compiled, primarily coming from the U.S. Department of Veteran
Affairs published list of HIV/AIDS related terms, and other terms
we thought were pertinent to include, such as HIV medications
and terms relating to sexual health [Aff05].

Temporally Aligned Vector Generation

Generating word2vec embeddings is typically done through 2
primary methods: continuous bag-of-words (CBOW) and skip-
gram, however many other various models exist [MCCD13]. Our
methods use a CBOW approach at generating embeddings, which
generates a word’s vector embedding based on the context the
word appears in, i.e. the words in a window range surrounding
the target word. Following pre-processing of our corpus, steps
for generating word embeddings were applied to each temporal
bucket. For each time bucket, co-occurrence matrices were first
created, with a window size w = 5. These matrices contained
the total occurrences of each word against every other within a
window range L of 5 words within the corpus at time t. Each
co-occurrence matrix was of dimensions |V |× |V |. Following the
generation of each of these co-occurrence matrices, a |V | × |V |
dimensioned Positive Pointwise Mutual Information matrix was
calculated. The value in each cell was calculated as follows:

PPMI(t,L)w,c = max{PMI(Dt ,L)w,c,0},
where w and c are two words in V. Embeddings generated by
word2vec can be approximated by PMI matrices, where given
embedding vectors utilize the following equation [YSD+18]:

uT
wuc ≈ PMI(D,L)w,c

Each embedding u has a reduced dimensionality d, typically
around 25 - 200. Each PPMI from our data set is created inde-
pendently from each other temporal bucket. After these PPMI
matrices are made, temporal word embeddings can be created
using the method proposed by Yao et al. [YSD+18]. The proposed
solution focuses on the equation:

U(t)U(t)T ≈ PPMI(t,L)

where U is a set of embeddings from time period t. Decomposing
each PPMI(t) will yield embedding U(t), however each U(t) is not
guaranteed to be in the same embedding space. Yao et al. derives
U(t)A = B with the following equation234 [YSD+18]:

A =U(t)TU(t)+(γ +λ +2τ)I,

1. All code used can be found here https://github.com/quinngroup/Twitter-
Embedding-Analysis/

2. γ represents the forcing regularizer. λ represents the Frobenius norm
regularizer. τ represents the smoothing regularizer.

3. Y(t) represents PPMI(t).
4. The original equation uses W(t), but this acts as identical to U(t) in the

code. We replaced it here to improve readability.

B = Y (t)U(t)+ γU(t)+ τ(U(t−1)+U(t +1))

To decompose PPMI(t) in our model, SciPy’s linear algebra
package was utilized to solve for eigendecomposition of each
PPMI(t), and the top 100 terms were kept to generate an em-
bedding of d = 100. The alignment was then applied, yielding
18 temporally aligned word embedding sets of our vocabulary,
with dimensions |V |×d, or 15,000 x 100. These word embedding
sets are aligned spatially and in terms of rotations, however there
appears to be some spatial drift that we hope to remove by tuning
hyperparameters. Following alignment, these vectors are usable
for experimentation and analysis.

Predictions for Detecting Modern Shifts

Following the generation of temporally aligned word embedding,
they can be used for semantic shift analysis. Using the word
embedding vectors generated for each temporal bucket, 2 new
data sets were created to use for determining patterns in the
semantic shifts surrounding HIV outbreaks. Both of these data
sets were constructed using our second vocabulary of 15,000
terms, including the 473 HIV/AIDS related terms, and each term’s
embedding of d = 100 that were generated by the dynamic
embedding model. The first experimental data set was the shift
in the d = 100 embedding vector between each time bucket and
the one that immediately followed it. These shifts were calculated
by simply subtracting the next temporal and initial vectors from
each other. In addition to the change in the 100 dimensional vector
between each time bucket and its next, the initial and next 10
dimensional embeddings were included from each, which were
generated using the same dynamic embedding model. This yielded
each word having 17 observations and 121 features: {d_vec0 . . .
d_vec99, v_init_0 . . . v_init_9, v_fin_0 . . . v_fin_9, label}. This
data set will be referred to as "data_121". The reasoning to include
these lower dimensional embeddings was so that both the shift
and initial and next positions in the embedding space would be
used in our machine learning algorithms. The other experimental
data set was constructed similarly, but rather than subtracting the
two vectors and including lower dimensions vectors, the initial
and next 100 dimensional vectors were listed as features. This
allowed machine learning algorithms to have access to the full
positional information of each vector alongside the shift between
the two. This yielded each word having 17 observations and 201
features: {vec_init0 . . . vec_init99, vec_fin0 . . . vec_fin99, label}.
This data set will be referred to as "data_201". With the 15,000
terms each having 17 observations, it led to a total of 255,000
observations. It should be noted that in addition to the vector
information, the data sets also listed the number of days since
the outbreak began, the predicted number of cases at that point
in time, from [GC18], and the total magnitude of the shift in the
vector between the corresponding time buckets. All these features
were dropped prior to use within the models, as the magnitude
feature was colinear with the other positional features, and the case
and day data will not be available in predicting modern outbreaks.
Using these data, two machine learning algorithms were applied:
unsupervised k-means clustering and a supervised neural network.

K-means Clustering

To examine any similarities within shifts, k-means clustering was
performed on the data sets at first. Initial attempts at k-means with
the 100 dimensional embeddings yielded extremely large inertial
values and poor results. In an attempt to reduce inertia, features

TEMPORAL WORD EMBEDDINGS ANALYSIS FOR DISEASE PREVENTION 173

for data that k-means would be performed onto were assessed.
K-means was performed on a reduced dimensionality data set,
with embedding vectors of dimensionality d = 10, however this
led to strict convergence and poor results again. The data set
with the change in an embeddings vector, data_121, continued
to contain the changes of vectors between each time bucket and
its next. However, rather than the 10 dimensional position vectors
for both time buckets, 2 dimensional positions were used instead,
generated by UMAP from the 10 dimensioned vectors. The second
data set, data_201, always led to strict convergence on clustering,
even when reduced to just the 10 dimensional representations.
Therefore, k-means was performed explicitly on the data_121
set, with the 2 dimensional representations alongside the 100
dimensional change in the vectors. Separate two dimensional
UMAP representations were generated for use as a feature and
for visual examination. The data set also did not have the term’s
label listed as a feature for clustering.

Inertia at convergence on clustering for k-means was reduced
significantly, as much as 86% after features were reassessed, yield-
ing significantly better results. Following the clustering, the results
were analyzed to determine which clusters contained the higher
than average incidence rates of medical terms and HIV/AIDS
related terms. These clusters can then be considered target clusters,
and large incidences of words being clustered within these can be
flagged as indicative as a possible outbreak.

Neural Network Predictions

In addition to the k-means model, we created a neural network
model for binary classification of our terms. Our target class was
terms that we hypothesized were closely related to the HIV epi-
demic in Scott County, i.e. any word in our HIV terms list. Several
iterations with varying number of layers, activation functions, and
nodes within each layer were attempted to maximize performance.
Each model used an 80% training, 20% testing split on these data,
with two variations performed of this split on training and testing
data. The first was randomly splitting all 255,000 observations,
without care of some observations for a term being in both training
set and some being in the testing set. This split of data will
be referred to as "mixed" data, as the terms are mixed between
the splits. The second split of data split the 15,000 words into
80% training and 20% testing. After the vocabulary was split,
the corresponding observations in the data were split accordingly,
leaving all observations for each term within the same split.
Additionally, we tested a neural network that would accept the
same data as the input, either data_201 or data_121, with the
addition of the label assigned to that observation by the k-means
model as a feature. The goal of these models, in addition was to
correctly identifying terms we classified as related to the outbreak,
was to discover new terms that shift in similar ways to the HIV
terms we labeled.

The neural network model used was four layers, with three
ReLu layers with 128, 256, and 256 neurons, followed by a single
neuron sigmoid output layer. This neural network was constructed
using the Keras module of the TensorFlow library. The main
difference between them was the input data itself. The input data
were data_201 with and without k-means labels, data_121 with
and without k-means labels. On each of these, there were two splits
of the training and testing data, as in the previously mentioned
"mixed" terms. Parameters of the neural network layers were
adjusted, but results did not improve significantly across the data
sets. All models were trained with a varying number of epochs: 50,

100, 150, and 200. Additionally, several certainty thresholds for a
positive classification were tested on each of the models. The best
results from each will be listed in the results section. As we begin
implementation of these models on other HIV outbreak related
data sets, the proper certainty thresholds can be better determined.

Results

Analysis of Embeddings

To ensure accuracy in word embeddings generated in this model,
we utilized word2vec (w2v), a proven neural network method of
embeddings [MCCD13]. For each temporal bucket, a static w2v
embedding of d = 100 was generated to compare to the temporal
embedding generated from the same bucket. These vectors were
generated from the same corpus as the ones generated by the
dynamic model. As the vectors do not lie within the same
embedding space, the vectors cannot be directly compared. As
the temporal embeddings generated by the alignment model are
influenced by other temporal buckets, we hypothesize notably
different vectors. Methods for testing quality in [YSD+18] rely
on a semi-supervised approach: the corpus used is an annotated
set of New York Times articles, and the section (Sports, Business,
Politics, etc.) are given alongside the text, and can be used to
assess strength of an embedding. Additionally, the corpus used
spans over 20 years, allowing for metrics such as checking the
closest word to leaders or titles, such as "president" or "NYC
mayor" throughout time. These methods show that this dynamic
word embedding alignment model yields accurate results.

Major differences can be attributed to the word2vec model
only being given a section of the corpus at a time, while our model
had access to the entire corpus across all temporal buckets. Terms
that might not have appeared in the given time bucket might still
appear in the embeddings generated by our model, but not at all
within the word2vec embeddings. For example, most embeddings
generated by the word2vec model did not often have hashtagged
terms in their top 10 closest terms, while embeddings generated
by our model often did. As hashtagged terms are very related to
ongoing events, keeping these terms can give useful information
to this outbreak. Modern hashtagged terms will likely be the most
common novel terms that we have no prior knowledge on, and we
hypothesize that these terms will be relevant to ongoing outbreaks.

Given that our corpus spans a significantly shorter time period
than the New York Times set, and does not have annotations, we
use existing baseline data sets of word similarities. We evaluated
the accuracy of both models’ vectors using a baseline sources
for the semantic similarity of terms. The first source used was
SimLex-999, which contains 999 word pairings, with correspond-
ing human generated similarity scores on a scale of 0-10, where
10 is the highest similarity [HRK15]. Cosine similarities for each
pair of terms in SimLex-999 were calculated for both the w2v
model vectors as well as vectors generated by the dynamic model
for each temporal bucket. Pairs containing terms that were not
present in the model generated vectors were omitted for that
models similarity measurements. The cosine similarities were then
compared to the assigned SimLex scores using the Spearman’s
rank correlation coefficient. The results of this baseline can be seen
in Table 1. The Spearman’s coefficient of both sets of embeddings,
averaged across all 18 temporal buckets, was .151334 for the
w2v vectors and .15506 for the dynamic word embedding (dwe)
vectors. The dwe vectors slightly outperformed the w2v baseline
in this test of word similarities. However, it should be noted that

174 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Time
Bucket

w2v Score
(MEN)

dwe Score
(MEN)

Difference
(MEN)

w2v
Score
(SL)

dwe
Score
(SL)

Difference
(SL)

0 0.437816 0.567757 0.129941 0.136146 0.169702 0.033556
1 0.421271 0.561996 0.140724 0.131751 0.167809 0.036058
2 0.481644 0.554162 0.072518 0.113067 0.165794 0.052727
3 0.449981 0.543395 0.093413 0.137704 0.163349 0.025645
4 0.360462 0.532634 0.172172 0.169419 0.158774 -0.010645
5 0.353343 0.521376 0.168032 0.133773 0.157173 0.023400
6 0.365653 0.511323 0.145669 0.173503 0.154299 -0.019204
7 0.358100 0.502065 0.143965 0.196332 0.152701 -0.043631
8 0.380266 0.497222 0.116955 0.152287 0.154338 .002051
9 0.405048 0.496563 0.091514 0.149980 0.148919 -0.001061
10 0.403719 0.499463 0.095744 0.145412 0.142114 -0.003298
11 0.381033 0.504986 0.123952 0.181667 0.141901 -0.039766
12 0.378455 0.511041 0.132586 0.159254 0.144187 -0.015067
13 0.391209 0.514521 0.123312 0.145519 0.147816 0.002297
14 0.405100 0.519095 0.113995 0.151422 0.152477 0.001055
15 0.419895 0.522854 0.102959 0.117026 0.154963 0.037937
16 0.400947 0.524462 0.123515 0.158833 0.157687 -0.001146
17 0.321936 0.525109 0.203172 0.170925 0.157068 -0.013857
Average 0.437816 0.567757 0.129941 0.151334 0.155059 0.003725

TABLE 1: Spearman’s correlation coefficients for w2v vectors and dynamic word embedding (dwe) vectors for all 18 temporal clusters against
the SimLex word pair data set.

Fig. 1: 2 Dimensional Representation of Embeddings from Time Bucket 0.

TEMPORAL WORD EMBEDDINGS ANALYSIS FOR DISEASE PREVENTION 175

Fig. 2: 2 Dimensional Representation of Embeddings from Time Bucket 17.

these Spearman’s coefficients are very low compared to baselines
such as in [WWC+19], where the average Spearman’s coefficient
amongst common models was .38133 on this data set of words.
These models, however, were trained on corpus generated from
Wikipedia pages — wiki2010. The lower Spearman’s coefficients
can likely be accounted to our corpus. In 2014-2017, when
this corpus was generated, Twitter had a 140 character limit on
tweets. The limited characters have been shown to affect user’s
language within their tweets [BTKSDZ19], possibly affecting our
embeddings. Boot et al. show that Twitter increasing the character
limit to 280 characters in 2017 impacted the language within the
tweets. As we test this pipeline on more Twitter data from various
time intervals, the character increase in 2017 is something to keep
in mind.

The second source of baseline was the MEN Test Collection,
containing 3,000 pairs with similarity scores of 0-50, with 50
being the most similar [BTB14]. Following the same methodology
for assessing the strength of embeddings as we did for the
SimLex-999 set, the Spearman’s coefficients from this set yielded
much better results than from the SimLex-999 set. The average
of the Spearman’s coefficients, across all 18 temporal buckets,
was .39532 for the w2v embeddings and .52278 for the dwe
embeddings. The dwe significantly outperformed the w2v baseline
on this set, but still did not reach the average correlation of
.7306 that other common models achieved in the baseline tests
in [WWC+19].

Two dimensional representations of embeddings, generated by

UMAP, can be seen in Figure 1 and Figure 2. Figure 1 represents
the embedding generated for the first time bucket, while Figure
2 represents the embedding generated for the final time bucket.
These UMAP representations use cosine distance as their metric
over Euclidian distance, leading to more dense clusters and more
accurate representations of nearby terms within the embedding
space. The section of terms outlying from the main grouping
appears to be terms that do not appear often within that temporal
cluster itself, but may appear several times later in a temporal
bucket. Figure 1 contains a zoomed in view of this outlying group,
as well as a subgrouping on the outskirts of the main group,
containing food related terms. The majority of these terms are
ones that would likely be hashtagged frequently during a brief time
period within one temporal bucket. These terms are still relevant
to study, as hashtagged terms that appear frequently for a brief
period of time are most likely extremely attached to an ongoing
event. In future iterations, the length of each temporal bucket will
be decreased, hopefully giving more temporal buckets access to
terms that only appear within one currently.

K-Means Clustering Results

The results of the k-means clustering can be seen below in
Figures 4 and 5. Figure 4 shows the results of k-means clustering
with the corresponding 2 dimensional UMAP positions generated
from the 10 dimensional vector that were used as features in
the clustering. Figure 5 shows the results of k-means clustering
with the corresponding 2 dimensional UMAP representation of the

176 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Cluster All Words HIV Terms Difference

0 0.173498 0.287048 0.113549
1 0.231063 0.238876 0.007814
2 0.220039 0.205600 -0.014440
3 0.023933 0.000283 -0.023651
4 0.108078 0.105581 -0.002498
5 0.096149 0.084276 -0.011873
6 0.023525 0.031391 0.007866
7 0.123714 0.046946 -0.076768

TABLE 2: Distribution of HIV terms and all terms within k-means
clusters

Fig. 3: Bar graph showing k-means clustering distribution of HIV
terms against all terms.

entire data set used in clustering. The k-means clustering revealed
semantic shifts of HIV related terms being clustered with higher
incidence than other terms in one cluster. Incidence rates for all
terms and HIV terms in each cluster can be seen in Table 2 and
Figure 3. This increased incidence rate of HIV related terms in
certain clusters leads us to hypothesize that semantic shifts of
terms in future datasets can be clustered using the same k-means
model, and analyzed to search for outbreaks. Clustering of terms
in future data sets can be compared to these clustering results, and
similarities between the data can be recognized.

Neural Network Results

Neural network models we generated showed promising results
on classification of HIV related terms. The goal of the models
was to identify and discover terms surrounding the HIV outbreak.
Therefore we were not concerned about the rate of false positive
terms. False positive terms likely had semantic shifts very similar
to the HIV related terms, and therefore can be related to the
outbreak. These terms can be labeled as potentially HIV related
while studying future data sets, which can aid the identifying of
if an outbreak is ongoing during the time tweets in the corpus
were tweeted. We looked for a balance of finding false positive
terms without lowering our certainty threshold to include too many
terms. Results of the testing data for data_201 set can be seen in
3, and results of the testing data for data_121 set can be seen in 4.
The certainty threshold for the unmixed split in both sets was .01,

Fig. 4: Results of k-means clustering shown over the 2 dimensional
UMAP representation of the 10 dimensional embeddings.

Fig. 5: Results of k-means clustering shown over the 2 dimensional
UMAP representation of the full data set.

and .1 for the mixed split in both sets. The difference in certainty
thresholds was due to any mixed term data set having an extremely
large number of false positives on .01, but more reasonable results
on .1.

These results show that classification of terms surrounding
the Scott County HIV outbreak is achievable, but the model will
need to be refined on more data. It can be seen that the mixed
term split of data led to a high rate of true positives, however
it quickly became much more specific to terms outside of our
target class on higher epochs, with false positives dropping to
lower rates. Additionally, accuracy on data_201 begins to increase
between 150 and 200 epoch models for the unmixed split, so
even higher epoch models might improve results further for the
unmixed split. Outliers, such as in the true positives in data_121
with 100 epochs without k-means labels, can be explained by
the certainty threshold. If the certainty threshold was .05 for that
model, there would have been 86 true positives, and 1,129 false
positives. A precise certainty threshold can be found as we test this
model on other HIV related data sets and control data sets. With

TEMPORAL WORD EMBEDDINGS ANALYSIS FOR DISEASE PREVENTION 177

With K-Means Label Without K-Means Label

Epochs Accuracy Precision Recall TP FP TN FN Accuracy Precision Recall TP FP TN FN
50 0.9589 0.0513 0.0041 8 148 48897 1947 0.9571 0.1538 0.0266 52 286 48759 1903
100 0.9589 0.0824 0.0072 14 156 48889 1941 0.9608 0.0893 0.0026 5 51 48994 1950
150 0.6915 0.0535 0.4220 825 14602 34443 1130 0.7187 0.0451 0.3141 614 13006 36039 1341
200 0.7397 0.0388 0.2435 476 11797 37248 1479 0.7566 0.0399 0.2317 453 10912 38133 1502
50Mix 0.9881 0.9107 0.7967 1724 169 48667 440 0.9811 0.9417 0.5901 1277 79 48757 887
100Mix 0.9814 0.9418 0.5980 1294 80 48756 870 0.9823 0.9090 0.6465 1399 140 48696 765
150Mix 0.9798 0.9595 0.5471 1184 50 48786 980 0.9752 0.9934 0.4191 907 6 48830 1257
200Mix 0.9736 0.9846 0.3835 830 13 48823 1334 0.9770 0.9834 0.4658 1008 17 48819 1156

TABLE 3: Results of the neural network run on the data_201 set. The epochs column shows the number of training epochs on the models, as
well as if the words were mixed between the training and testing data, denoted by "Mix".

With K-Means Label Without K-Means Label

Epochs Accuracy Precision Recall TP FP TN FN Accuracy Precision Recall TP FP TN FN
50 0.9049 0.0461 0.0752 147 3041 46004 1808 0.9350 0.0652 0.0522 102 1463 47582 1853
100 0.9555 0.1133 0.0235 46 360 48685 1909 0.8251 0.0834 0.3565 697 7663 41382 1258
150 0.9554 0.0897 0.0179 35 355 48690 1920 0.9572 0.0957 0.0138 27 255 48790 1928
200 0.9496 0.0335 0.0113 22 635 48410 1933 0.9525 0.0906 0.0266 52 522 48523 1903
50Mix 0.9285 0.2973 0.5018 1086 2567 46269 1078 0.9487 0.4062 0.4501 974 1424 47412 1190
100Mix 0.9475 0.3949 0.4464 966 1480 47356 1198 0.9492 0.4192 0.5134 1111 1539 47297 1053
150Mix 0.9344 0.3112 0.4496 973 2154 46682 1191 0.9514 0.4291 0.4390 950 1264 47572 1214
200Mix 0.9449 0.3779 0.4635 1003 1651 47185 1161 0.9500 0.4156 0.4395 951 1337 47499 1213

TABLE 4: Results of the neural network on the data_121 set. The epochs column shows the number of training epochs on the models, as well
as if the words were mixed between the training and testing data, denoted by "Mix".

enough experimentation and data, a set can be run through our
pipeline and a certainty of there being a potential HIV outbreak in
the region the data originated from can be generated by a future
model.

Conclusion

Our results prove promising, with high accuracy and decent recall
on classification of HIV/AIDS related terms, as well as potentially
discovering new terms related to the outbreak. Given more HIV
related data sets and control data sets, we could begin examining
and generating thresholds of what might be indicative of an
outbreak. To improve results, metrics for our word2vec baseline
model and statistical analysis could be further explored, as well as
exploring previously mentioned noise and biases from our data.
Additionally, sparsity of data in earlier temporal buckets may
lead to some loss of accuracy. Fine tuning hyperparameters of
the alignment model through grid searching would likely even
further improve these results. We predict that given more data sets
containing tweets from areas and times that had similar HIV/AIDS
outbreaks to Scott County, as well as control data sets that are
not directly related to an HIV outbreak, we could determine
a threshold of words that would define a county as potentially
undergoing an HIV outbreak. With a refined pipeline and model
such as this, we hope to be able to begin biosurveillance to try to
prevent future outbreaks.

Future Work

Case studies of previous datasets related to other diseases and
collection of more modern tweets could not only provide critical

insight into relevant medical activity, but also further strengthen
and expand our model and its credibility. There is a large source
of data potentially related to HIV/AIDS on Twitter, so finding
and collecting this data would be a crucial first step. One potent
example of data could be from the 220 United States counties
determined by the CDC to be considered vulnerable to HIV and/or
viral hepatitis outbreaks due to injection drug use, similar to the
outbreak that occurred in Scott County [VHRH+16]. Our next
data set that is being studied is tweets from Cabell County, West
Virginia, from January of 2018 through 2020. During this time
an HIV outbreak similar to the one that took place in Scott
County in 2014 occurred [AMK20]. The end goal is to create
a pipeline that can perform live semantic shift analysis at set
intervals of time within these counties, and classify these shifts
as they happen. A future model can predict whether or not the
number of terms classified as HIV related is indicative of an
outbreak. If enough terms classified by our model as potentially
indicative of an outbreak become detected, or if this future model
predicts a possible outbreak, public health officials can be notified
and the severity of a possible outbreak can be mitigated if properly
handled.

Expansion into other social media platforms would increase
the variety of data our model has access to, and therefore what
our model is able to respond to. With the foundational model
established, we will be able to focus on converting the data and
addressing the differences between social networks (e.g. audience
and online etiquette). Reddit and Instagram are two points of
interest due to their increasing prevalence, as well as vastness of
available data.

An idea for future implementation following the generation

178 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

of a generalized model would be creating a web application. The
ideal audience would be medical officials and organizations, but
even public or research use for trend prediction could be potent.
The application would give users the ability to pick from a given
glossary of medical terms, defining their own set of significant
words to run our model on. Our model would then expose any
potential trends or insight for the given terms in contemporary
data, allowing for quicker responses to activity. Customization of
the data pool could also be a feature, where tweets and other
social media posts are filtered to specified geographic regions or
time windows, yielding more specific results.

Additionally, we would like to reassess our embedding model
to try and improve embeddings generated and our understanding
of the semantic shifts. This project has been ongoing for several
years, and new models, such as the use of bidirectional encoders,
as in BERT [DCLT18], have proven to have high performance.
BERT based models have also been used for temporal embedding
studies, such as in [LMD+19], a study focused on clinical corpora.
We predict that updating our pipeline to match more modern
methodology can lead to more effective disease detection.

REFERENCES

[Aff05] Veteran Affairs. Glossary of HIV/AIDS terms: Veterans affairs,
Dec 2005. URL: https://www.hiv.va.gov/provider/glossary/
index.asp.

[AMK20] A Atkins, RP McClung, and M Kilkenny. Notes from the
field: Outbreak of Human Immunodeficiency Virus infection
among persons who inject drugs — Cabell County, West
Virginia, 2018–2019. Morbidity and Mortality Weekly Report,
69(16):499–500, 2020. doi:10.15585/mmwr.mm6916a2.

[BTB14] Elia Bruni, Nam Khanh Tran, and Marco Baroni. Multimodal
distributional semantics. J. Artif. Int. Res., 49(1):1–47, 2014.
doi:10.1613/jair.4135.

[BTKSDZ19] Arnout Boot, Erik Tjon Kim Sang, Katinka Dijkstra, and
Rolf Zwaan. How character limit affects language usage
in tweets. Palgrave Communications, 5(76), 2019. doi:
10.1057/s41599-019-0280-3.

[DCLT18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional transform-
ers for language understanding, 2018. doi:10.18653/v1/
N19-1423.

[GC18] Gregg S Gonsalves and Forrest W Crawford. Dynamics of
the HIV outbreak and response in Scott County, IN, USA,
2011–15: A modelling study. The Lancet HIV, 5(10), 2018.
URL: https://pubmed.ncbi.nlm.nih.gov/30220531/.

[Gol17] Nicholas J. Golding. The needle and the damage done: In-
diana’s response to the 2015 HIV epidemic and the need to
change state and federal policies regarding needle exchanges
and intravenous drug users. Indiana Health Law Review,
14(2):173, 2017. doi:10.18060/3911.0038.

[HLJ16] William L. Hamilton, Jure Leskovec, and Dan Jurafsky. Di-
achronic word embeddings reveal statistical laws of seman-
tic change. CoRR, abs/1605.09096, 2016. arXiv:1605.
09096, doi:10.48550/arXiv.1605.09096.

[HRK15] Felix Hill, Roi Reichart, and Anna Korhonen. SimLex-
999: Evaluating semantic models with (genuine) similarity
estimation. Computational Linguistics, 41(4):665–695, 2015.
doi:10.1162/COLI_a_00237.

[LMD+19] Chen Lin, Timothy Miller, Dmitriy Dligach, Steven Bethard,
and Savova Guergana. A BERT-based universal model for both
within- and cross-sentence clinical temporal relation extraction.
In Proceedings of the 2nd Clinical Natural Language Process-
ing Workshop, pages 65–71. Association for Computational
Linguistics, 2019. doi:10.18653/v1/W19-1908.

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
Efficient estimation of word representations in vector space,
2013. doi:10.48550/ARXIV.1301.3781.

[PPH+16] Philip J. Peters, Pamela Pontones, Karen W. Hoover, Monita R.
Patel, Romeo R. Galang, Jessica Shields, Sara J. Blosser,
Michael W. Spiller, Brittany Combs, William M. Switzer, and
et al. HIV infection linked to injection use of Oxymorphone
in Indiana, 2014–2015. New England Journal of Medicine,
375(3):229–239, 2016. doi:10.1056/NEJMoa1515195.

[VHRH+16] Michelle M. Van Handel, Charles E. Rose, Elaine J. Hallisey,
Jessica L. Kolling, Jon E. Zibbell, Brian Lewis, Michele K.
Bohm, Christopher M. Jones, Barry E. Flanagan, Azfar-E-Alam
Siddiqi, and et al. County-level vulnerability assessment for
rapid dissemination of HIV or HCV infections among persons
who inject drugs, United States. JAIDS Journal of Acquired
Immune Deficiency Syndromes, 73(3):323–331, 2016. doi:
10.1097/qai.0000000000001098.

[WWC+19] Bin Wang, Angela Wang, Fenxiao Chen, Yuncheng Wang, and
C.-C. Jay Kuo. Evaluating word embedding models: Methods
and experimental results. APSIPA Transactions on Signal and
Information Processing, 8(1), 2019. doi:10.1017/atsip.
2019.12.

[YSD+18] Zijun Yao, Yifan Sun, Weicong Ding, Nikhil Rao, and Hui
Xiong. Dynamic word embeddings for evolving semantic dis-
covery. In Proceedings of the Eleventh ACM International Con-
ference on Web Search and Data Mining:, WSDM ’18, page
673–681, New York, NY, USA, 2018. Association for Comput-
ing Machinery. doi:10.1145/3159652.3159703.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022) 179

Design of a Scientific Data Analysis Support Platform

Nathan Martindale‡∗, Jason Hite‡, Scott Stewart‡, Mark Adams‡

F

Abstract—Software data analytic workflows are a critical aspect of modern
scientific research and play a crucial role in testing scientific hypotheses. A
typical scientific data analysis life cycle in a research project must include
several steps that may not be fundamental to testing the hypothesis, but are
essential for reproducibility. This includes tasks that have analogs to software
engineering practices such as versioning code, sharing code among research
team members, maintaining a structured codebase, and tracking associated
resources such as software environments. Tasks unique to scientific research
include designing, implementing, and modifying code that tests a hypothesis.
This work refers to this code as an experiment, which is defined as a software
analog to physical experiments.

A software experiment manager should support tracking and reproducing
individual experiment runs, organizing and presenting results, and storing and
reloading intermediate data on long-running computations. A software experi-
ment manager with these features would reduce the time a researcher spends
on tedious busywork and would enable more effective collaboration. This work
discusses the necessary design features in more depth, some of the existing
software packages that support this workflow, and a custom developed open-
source solution to address these needs.

Index Terms—reproducible research, experiment life cycle, data analysis sup-
port

Introduction

Modern science increasingly uses software as a tool for conducting
research and scientific data analyses. The growing number of
libraries and frameworks facilitating this work has greatly low-
ered the barrier to usage, allowing more researchers to benefit
from this paradigm. However, as a result of the dependence on
software, there is a need for more thorough integration of sound
software engineering practices with the scientific process. The
fragility of complex environments containing heavily intercon-
nected packages coupled with a lack of provenance of the artifacts
generated throughout the development of an experiment increases
the potential for long-term problems, undetected bugs, and failure
to reproduce previous analyses.

* Corresponding author: martindalena@ornl.gov
‡ Oak Ridge National Laboratory

Copyright © 2022 Oak Ridge National Laboratory. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.
Notice: This manuscript has been authored by UT-Battelle, LLC, under
contract DE-AC05-00OR22725 with the US Department of Energy (DOE).
The US government retains and the publisher, by accepting the article for pub-
lication, acknowledges that the US government retains a nonexclusive, paid-up,
irrevocable, worldwide license to publish or reproduce the published form of
this manuscript, or allow others to do so, for US government purposes. DOE
will provide public access to these results of federally sponsored research in ac-
cordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

Fundamentally, science revolves around the ability for others
to repeat and reproduce prior published works, and this has
become a difficult task with many computation-based studies.
Often, scientists outside of a computer science field may not have
training in software engineering best practices, or they may simply
disregard them because the focus of a researcher is on scientific
publications rather than the analysis software itself. Lack of docu-
mentation and provenance of research artifacts and frequent failure
to publish repositories for data and source code has led to a crisis
in reproducibility in artificial intelligence (AI) and other fields that
rely heavily on computation [SBB13], [DMR+09], [Hut18]. One
study showed that quantifiably few machine learning (ML) papers
document specifics in how they ran their experiments [GGA18].
This gap between established practices from the software engi-
neering field and how computational research is conducted has
been studied for some time, and the problems that can stem from
it are discussed at length in [Sto18].

To mitigate these issues, computation-based research requires
better infrastructure and tooling [Pen11] as well as applying
relevant software engineering principles [Sto18], [Dub05] to allow
data scientists to ensure their work is effective, correct, and
reproducible. In this paper we focus on the ability to manage re-
producible workflows for scientific experiments and data analyses.
We discuss the features that software to support this might require,
compare some of the existing tools that address them, and finally
present the open-source tool Curifactory which incorporates the
proposed design elements.

Related Work

Reproducibility of AI experiments has been separated into three
different degrees [GK18]: Experiment reproduciblity, or repeata-
bility, refers to using the same code implementation with the
same data to obtain the same results. Data reproducibility, or
replicability, is when a different implementation with the same
data outputs the same results. Finally, method reproducibility
describes when a different implementation with different data is
able to achieve consistent results. These degrees are discussed
in [GGA18], comparing the implications and trade-offs on the
amount of work for the original researcher versus an external
researcher, and the degree of generality afforded by a reproduced
implementation. A repeatable experiment places the greatest bur-
den on the original researcher, requiring the full codebase and
experiment to be sufficiently documented and published so that
a peer is able to correctly repeat it. At the other end of the
spectrum, method reproducibility demands the greatest burden
on the external researcher, as they must implement and run the
experiment from scratch. For the remainder of this paper, we refer

180 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

to "reproducibility" as experiment reproducibility (repeatability).
Tooling that is able to assist with documentation and organization
of a published experiment reduces the amount of work for the
original researcher and still allows for the lowest level of burden
to external researchers to verify and extend previous work.

In an effort to encourage better reproducibility based on
datasets, the Findable, Accessible, Interoperable, and Reusable
(FAIR) data principles [WDA+16] were established. These prin-
ciples recommend that data should have unique and persistent
identifiers, use common standards, and provide rich metadata
description and provenance, allowing both humans and machines
to effectively parse them. These principles have been extended
more broadly to software [LGK+20], computational workflows
[GCS+20], and to entire data pipelines [MLC+21].

Various works have surveyed software engineering practices
and identified practices that provide value in scientific computing
contexts, including various forms of unit and regression testing,
proper source control usage, formal verification, bug tracking,
and agile development methods [Sto18], [Dub05]. In particular,
[Sto18] described many concepts from agile development as being
well suited to an experimental context, where the current knowl-
edge and goals may be fairly dynamic throughout the project. They
noted that although many of these techniques could be directly
applied, some required adaptation to make sense in the scientific
software domain.

Similar to this paper, two other works [DGST09], [WWG21]
discuss sets of design aspects and features that a workflow
manager would need. Deelman et al. describe the life cycle of
a workflow as composition, mapping, execution, and provenance
capture [DGST09]. A workflow manager must then support each
of these aspects. Composition is how the workflow is constructed,
such as through a graphical interface or with a text configuration
file. Mapping and execution are determining the resources to be
used for a workflow and then utilizing those resources to run it,
including distributing to cloud compute and external representa-
tional state transfer (REST) services. This also refers to scheduling
subworkflows/tasks to reuse intermediate artifacts as available.
Provenance, which is crucial for enabling repeatability, is how all
artifacts, library versions, and other relevant metadata are tracked
during the execution of a workflow.

Wratten, Wilm, and Göke surveyed many bioinformatics pi-
pline and workflow management tools, listing the challenges that
tooling should address: data provenance, portability, scalability,
and re-entrancy [WWG21]. Provenance is defined the same way
as in [DGST09], and further states the need for generating
reports that include the tracking information and metadata for
the associated experiment run. Portability—allowing set up and
execution of an experiment in a different environment—can be
a challenge because of the dependency requirements of a given
system and the ease with which the environment can be specified
and reinitialized on a different machine or operating system.
Scalability is important especially when large scale data, many
compute-heavy steps, or both are involved throughout the work-
flow. Scalability in a manager involves allowing execution on a
high-performance computing (HPC) system or with some form of
parallel compute. Finally they mention re-entrancy, or the ability
to resume execution of a compute step from where it last stopped,
preventing unnecessary recomputation of prior steps.

One area of the literature that needs further discussion is
the design of automated provenance tracking systems. Existing
workflow management tools generally require source code mod-

ifications to take full advantage of all features. This can entail
a significant learning curve and places additional burden on
the researcher. To address this, some sources propose automatic
documentation of experiments and code through static source code
analysis [NFP+20], [Red19].

Beyond the preexisting body of knowledge about software
engineering principles, other works [SNTH13], [KHS09] de-
scribe recommended rules and practices to follow when conduct-
ing computation-based research. These include avoiding manual
data manipulation in favor of scripted changes, keeping detailed
records of how results are produced (manual provenance), tracking
the versions of libraries and programs used, and tracking random
seeds. Many of these ideas can be assisted or encapsulated through
appropriate infrastructure decisions, which is the premise on
which this work bases its software reviews.

Although this paper focuses on the scientific workflow, a
growing related field tackles many of the same issues from
an industry standpoint: machine learning operations (MLOps)
[Goy20]. MLOps, an ML-oriented version of DevOps, is con-
cerned with supporting an entire data science life cycle, from data
acquisition to deployment of a production model. Many of the
same challenges are present, reproducibility and provenance are
crucial in both production and research workflows [RMRO21].
Infrastructure, tools, and practices developed for MLOps may also
hold value in the scientific community.

A taxonomy for ML tools that we reference throughout this
work is from [QCL21], which describes a characterization of tools
consisting of three primary categories: general, analysis support,
and reproducibility support, each of which is further subdivided
into aspects to describe a tool. For example, these subaspects
include data visualization, web dashboard capabilities, experiment
logging, and the interaction modes the tool supports, such as a
command line interface (CLI) or application programming inter-
face (API).

Design Features

We combine the two sets of capabilities from [DGST09] and
[WWG21] with the taxonomy from [QCL21] to propose a set
of six design features that are important for an experiment
manager. These include orchestration, parameterization, caching,
reproducibility, reporting, and scalability. The crossover between
these proposed feature sets are shown in Table 1. We expand on
each of these in more depth in the subsections below.

Orchestration

Orchestration of an experiment refers to the mechanisms used
to chain and compose a sequence of smaller logical steps into
an overarching pipeline. This provides a higher-level view of an
experiment and helps abstract away some of the implementation
details. Operation of most workflow managers is based on a
directed acyclic graph (DAG), which specifies the stages/steps as
nodes and the edges connecting them as their respective inputs and
outputs. The intent with orchestration is to encourage designing
distinct, reusable steps that can easily be composed in different
ways to support testing different hypotheses or overarching ex-
periment runs. This allows greater focus on the design of the
experiments than the implementation of the underlying functions
that the experiments consist of. As discussed in the taxonomy
[QCL21], pipeline creation can consist of a combination of scripts,
configuration files, or a visual tool. This aspect falls within the
composition capability discussed in [DGST09].

DESIGN OF A SCIENTIFIC DATA ANALYSIS SUPPORT PLATFORM 181

This work [DGST09] [WWG21] Taxonomy [QCL21]

Orchestration Composition — Reproducibility/pipeline creation
Parameterization — — —
Caching — Re-entrancy —
Reproducibility Provenance Provenance, portability Reproducibility
Reporting — — Analysis/visualization, web dashboard
Scalability Mapping, execution Scalability Analysis/computational resources

TABLE 1: Comparing design features listed in various works.

Parameterization

Parameterization specifies how a compute pipeline is customized
for a particular run by passing in configuration values to change
aspects of the experiment. The ability to customize analysis code
is crucial to conducting a compute-based experiment, providing a
mechanism to manipulate a variable under test to verify or reject
a hypothesis.

Conventionally, parameterization is done either through spec-
ifying parameters in a CLI call or by passing configuration files
in a format like JSON or YAML. As discussed in [DGST09],
parameterization sometimes consists of more complicated needs,
such as conducting parameter sweeps or grid searches. There are
libraries dedicated to managing parameter searches like this, such
as hyperopt [BYC13] used in [RMRO21].

Although not provided as a design capability in the other
works, we claim the mechanisms provided for parameterization
are important, as these mechanisms are the primary way to con-
figure, modify, and vary experiment execution without explicitly
changing the code itself or modifying hard-coded values. This
means that a recorded parameter set can better "describe" an
experiment run, increasing provenance and making it easier for
another researcher to understand what pieces of an experiment
can be readily changed and explored.

Some support is provided for this in [DGST09], stating that
the necessity of running many slight variations on workflows
sometimes leads to the creation of ad hoc scripts to generate the
variants, which leads to increased complexity in the organization
of the codebase. Improved mechanisms to parameterize the same
workflow for many variants helps to manage this complexity.

Caching

Refining experiment code and finding bugs is often a lengthy
iterative process, and removing the friction of constantly rerunning
all intermediate steps every time an experiment is wrong can
improve efficiency. Caching values between each step of an
experiment allows execution to resume at a certain spot in the
pipeline, rather than starting from scratch every time. This is
defined as re-entrancy in [WWG21].

In addition to increasing the speed of rerunning experiments
and running new experiments that combine old results for analysis,
caching is useful to help find and debug mistakes throughout
an experiment. Cached outputs from each step allow manual
interrogation outside of the experiment. For example, if a cleaning
step was implemented incorrectly and a user noticed an invalid
value in an output data table, they could use a notebook to load
and manipulate the intermediate artifact tables for that data to
determine what stage introduced the error and what code should
be used to correctly fix it.

Reproducibility

Mechanisms for reproducibility are one of the most important fea-
tures for a successful data analysis support platform. Reproducibil-
ity is challenging because of the complexity of constantly evolving
codebases, complicated and changing dependency graphs, and
inconsistent hardware and environments. Reproducibility entails
two subcomponents: provenance and portability. This falls under
the provenance aspect from [DGST09], both data provenance and
portability from [WWG21], and the entire reproducibility support
section of the taxonomy [QCL21].

Data provenance is about tracking the history, configuration,
and steps taken to produce an intermediate or final data artifact.
In ML this would include the cleaning/munging steps used and
the intermediate tables created in the process, but provenance can
apply more broadly to any type of artifact an experiment may
produce, such as ML models themselves, or "model provenance"
[SH18]. Applying provenance beyond just data is critical, as
models may be sensitive to the specific sets of training data and
conditions used to produce them [Hut18]. This means that every-
thing required to directly and exactly reproduce a given artifact
is recorded, such as the manipulations applied to its predecessors
and all hyperparameters used within those manipulations.

Portability refers to the ability to take an experiment and
execute it outside of the initial computing environment it was
created in [WWG21]. This can be a challenge if all software
dependency versions are not strictly defined, or when some de-
pendencies may not be available in all environments. Minimally,
allowing portability requires keeping explicit track of all packages
and the versions used. A 2017 study [OBA17] found that even
this minimal step is rarely taken. Another mechanism to support
portability is the use of containerization, such as with Docker or
Podman [SH18].

Reporting

Reporting is an important step for analyzing the results of an
experiment, through visualizations, summaries, comparisons of
results, or combinations thereof. As a design capability, reporting
refers to the mechanisms available for the system to export or
retrieve these results for human analysis. Although data visu-
alization and analysis can be done manually by the scientist,
tools to assist with making these steps easier and to keep results
organized are valuable from a project management standpoint.
Mechanisms for this might include a web interface for exploring
individual or multiple runs. Under the taxonomy [QCL21], this
falls primarily within analysis support, such as data visualization
or a web dashboard.

182 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Scalability

Many data analytic problems require large amounts of space
and compute resources, often beyond what can be handled on
an individual machine. To efficiently support running a large
experiment, mechanisms for scaling execution are important and
could include anything from supporting parallel computation on
an experiment or stage level, to allowing the execution of jobs on
remote machines or within an HPC context. This falls within both
mapping and execution from [DGST09], the scalability aspect
from [WWG21], and the computational resources category within
the taxonomy [QCL21].

Existing Tools

A wide range of pipeline and workflow tools have been devel-
oped to support many of these design features, and some of the
more common examples include DVC [KPP+22] and MLFlow
[MLf22]. We briefly survey and analyze a small sample of these
tools to demonstrate the diversity of ideas and their applicability in
different situations. Table 2 compares the support of each design
feature by each tool.

DVC

DVC [KPP+22] is a Git-like version control tool for datasets.
Orchestration is done by specifying stages, or runnable script
commands, either in YAML or directly on the CLI. A stage is
specified with output file paths and input file paths as dependen-
cies, allowing an implicit pipeline or DAG to form, representing all
the processing steps. Parameterization is done by defining within a
YAML file what the possible parameters are, along with the default
values. When running the DAG, parameters can be customized on
the CLI. Since inputs and outputs are file paths, caching and re-
entrancy come for free, and DVC will intelligently determine if
certain stages do not need to be re-computed.

A saved experiment or state is frozen into each commit, so
all parameters and artifacts are available at any point. No explicit
tracking of the environment (e.g., software versions and hardware
info) is present, but this could be manually included by tracking it
in a separate file. Reporting can be done by specifying per-stage
metrics to track in the YAML configuration. The CLI includes a
way to generate HTML files on the fly to render requested plots.
There is also an external "Iterative Studio" project, which provides
a live web dashboard to view continually updating HTML reports
from DVC. For scalability, parallel runs can be achieved by
queuing an experiment multiple times in the CLI.

MLFlow

MLFlow [MLf22] is a framework for managing the entire life
cycle of an ML project, with an emphasis on scalability and de-
ployment. It has no specific mechanisms for orchestration, instead
allowing the user to intersperse MLFlow API calls in an existing
codebase. Runnable scripts can be provided as entry points into
a configuration YAML, along with the parameters that can be
provided to it. Parameters are changed through the CLI. Although
MLFlow has extensive capabilities for tracking artifacts, there are
no automatic re-entrancy methods. Reproducibility is a strong fea-
ture, and provenance and portability are well supported. The track-
ing module provides provenance by recording metadata such as the
Git commit, parameters, metrics, and any user-specified artifacts
in the code. Portability is done by allowing the environment for
an entry point to be specified as a Conda environment or Docker

container. MLFlow then ensures that the environment is set up and
active before running. The CLI even allows directly specifying a
GitHub link to an mlflow-enabled project to download, set up, and
then run the associated experiment. For reporting, the MLFlow
tracking UI lets the user view and compare various runs and their
associated artifacts through a web dashboard. For scalability, both
distributed storage for saving/loading artifacts as well as execution
of runs on distributed clusters is supported.

Sacred

Sacred [GKC+17] is a Python library and CLI tool to help
organize and reproduce experiments. Orchestration is managed
through the use of Python decorators, a "main" for experiment
entry point functions and "capture" for parameterizable functions,
where function arguments are automatically populated from the
active configuration when called. Parameterization is done directly
in Python through applying a config decorator to a function that
assigns variables. Configurations can also be written to or read
from JSON and YAML files, so parameters must be simple types.
Different observers can be specified to automatically track much
of the metadata, environment information, and current parameters,
and within the code the user can specify additional artifacts and
resources to track during the run. Each run will store the requested
outputs, although there is no re-entrant use of these cached values.
Portability is supported through the ability to print the versions of
libraries needed to run a particular experiment. Reporting can be
done through a specific type of observer, and the user can provide
custom templated reports that are generated at the end of each run.

Kedro

Kedro [ABC+22] is another Python library/CLI tool for managing
reproducible and modular experiments. Orchestration is particu-
larly well done with "node" and "pipeline" abstractions, a node
referring to a single compute step with defined inputs and outputs,
and a pipeline implemented as an ordered list of nodes. Pipelines
can be composed and joined to create an overarching workflow.
Possible parameters are defined in a YAML file and either set
in other parameter files or configured on the CLI. Similar to
MLFlow, while tracking outputs are cached, there’s no automatic
mechanism for re-entrancy. Provenance is achieved by storing
user-specified metrics and tracked datasets for each run, and it
has a few different mechanisms for portability. This includes the
ability to export an entire project into a Docker container. A
separate Kedro-Viz tool provides a web dashboard to show a map
of experiments, as well as showing each tracked experiment run
and allowing comparison of metrics and outputs between them.
Projects can be deployed into several different cloud providers,
such as Databricks and Dask clusters, allowing for several options
for scalability.

Curifactory

Curifactory [MHSA22] is a Python API and CLI tool for organiz-
ing, tracking, reproducing, and exporting computational research
experiments and data analysis workflows. It is intended primarily
for smaller teams conducting research, rather than production-
level or large-scale ML projects. Curifactory is available on
GitHub1 with an open-source BSD-3-Clause license. Below, we
describe the mechanisms within Curifactory to support each of the
six capabilities, and compare it with the tools discussed above.

1. https://github.com/ORNL/curifactory

DESIGN OF A SCIENTIFIC DATA ANALYSIS SUPPORT PLATFORM 183

Orchestration Parameterization Caching Provenance Portability Reporting Scalability

DVC + + ++ + + + +
MLFlow + * ++ ++ ++ ++
Sacred + ++ * ++ + +
Kedro + + * + ++ ++ ++
Curifactory + ++ ++ ++ ++ + +

TABLE 2: Supported design features in each tool. Note, + indicates that a feature is supported, ++ indicates very strong support, and *
indicates tooling that supports caching artifacts as a provenance tool but does not provide a mechanism for automatically reloading cached
values as a form of re-entrancy.

Fig. 1: Stages are composed into an experiment.

Orchestration

Curifactory provides several abstractions, the lowest level of which
is a stage. A stage is a function that takes a defined set of input
variable names, a defined set of output variable names, and an
optional set of caching strategies for the outputs. Stages are similar
to Kedro’s nodes but implemented with @stage() decorators on
the target function rather than passing the target function to a
node() call. One level up from a stage is an experiment: an
experiment describes the orchestration of these stages as shown in
Figure 1, functionally chaining them together without needing to
explicitly manage what variables are passed between the stages.

@stage(inputs=None, outputs=["data"])
def load_data(record):

every stage has the currently active record
passed to it, which contains the "state", or
all previous output values associated with
the current argset, as defined in the
Parameterization section
...

@stage(inputs=["data"], outputs=["model", "stats"])
def train_model(record, data):

...

@stage(inputs=["model"], outputs=["results"])
def test_model(record, model):

...

def run(argsets, manager):
"""An example experiment definition.

The primary intent of an experiment is to run
each set of arguments through the desired
stages, in order to compare results at the end.
"""
for argset in argsets:

A record is the "pipeline state"
associated with each set of arguments.
Stages take and return a record,
automatically handling pushing and
pulling inputs and outputs from the
record state.
record = Record(manager, argsets)
test_model(train_model(load_data(record)))

Parameterization

Parameterization in Curifactory is done directly in Python scripts.
The user defines a dataclass with the parameters they need
throughout their various stages in order to customize the exper-
iment, and they can then define parameter files that each return
one or more instances of this arguments class. All stages in an
experiment are automatically given access to the current argument
set in use while an experiment is running.

While configuration can also be done directly in Python in
Sacred, Curifactory makes a different trade-off: A parameter file
or get_params() function in Curifactory returns an array of
one or more argument sets, and arguments can directly include
complex Python objects. Unlike Sacred, this means Curifactory
cannot directly translate back and forth from static configuration
files, but in exchange allows for grid searches to be defined directly
and easily in a single parameter file, as well as allowing argument
sets to be composed or even inherit from other argument set
instances. Importantly, Curifactory can still encode representations
of arguments into JSON for provenance, but this is a one direc-
tional transformation.

This approach allows a great deal of flexibility, and is valuable
in experiments where a large range of parameters need to be
tested or there is significant repetition among parameter sets.
For example, in an experiment testing different effects of model
training hyperparameters, there may be several parameter files
meant to vary only the arguments needed for model training while
using the same base set of data cleaning arguments. Composing
these parameter sets from a common imported set means that any
subsequent changes to the data cleaning arguments only need to

184 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

be modified in one place, rather than each individual parameter
file.
@dataclass
class MyArgs(curifactory.ExperimentArgs):

"""Define the possible arguments needed in the
stages."""
random_seed: int = 42
train_test_ratio: float = 0.8
layers: tuple = (100,)
activation: str = "relu"

def get_params():
"""Define a simple grid search: return
many arguments instances for testing."""
args = []
layer_sizes = [10, 20, 50, 100]
for size in layer_sizes:

args.append(MyArgs(name=f"network_{size}",
layers=(size,)))

return args

Caching

Curifactory supports per-stage caching, similar to memoization,
through a set of easy-to-use caching strategies. When a stage
executes, it uses the specified cache mechanism to store the stage
outputs to disk, with a filename based on the experiment, stage,
and a hash of the arguments. When the experiment is re-executed,
if it finds an existing output on disk based on this name, it short-
circuits the stage computation and simply reloads the previously
cached files, allowing a form of re-entrancy. Adding this caching
ability to a stage is done through simply providing the list of
caching strategies to the stage decorator, one for each output:
@stage(

inputs=["data"],
outputs=["training_set", "testing_set"],
cachers=[PandasCSVCacher]*2

):
def split_data(record, data):

stage definition

Reproducibility

As mentioned before, reproducibility consists of tracking prove-
nance and metadata of artifacts as well as providing a means to set
up and repeat an experiment in a different compute environment.
To handle provenance, Curifactory automatically records metadata
for every experiment run executed, including a logfile of the
console output, current Git commit hash, argument sets used and
the rendered versions of those arguments, and the CLI command
used to start the run. The final reports from each run also include a
graphical representation of the stage DAG, and shows each output
artifact and what its cache file location is.

Curifactory has two mechanisms to fully track and export an
experiment run. The first is to execute a "full store" run, which
creates a single exported folder containing all metadata mentioned
above, along with a copy of every cache file created, the output
run report (mentioned below), as well as a Python requirements.txt
and Conda environment dump, containing a list of all packages in
the environment and their respective versions. This run folder can
then be distributed. Reproducing from the folder consists of setting
up an environment based on the Conda/Python dependencies as
needed, and running the experiment command using the exported
folder as the cache directory.

The second mechanism is a command to create a Docker con-
tainer that includes the environment, entire codebase, and artifact
cache for a specific experiment run. Curifactory comes with a

Fig. 2: Metadata block at the top of a report.

default Dockerfile for this purpose, and running the experiment
with the Docker flag creates an image that exposes a Jupyter
notebook to repeat the run and keep the artifacts in memory, as
well as a file server pointing to the appropriate cache for manual
exploration and inspection. Directly reproducing the experiment
can be done either through the exposed notebook or by running
the Curifactory experiment command inside of the image.

Reporting

While Curifactory does not run a live web dashboard like MLFlow,
DVC’s Iterative Studio, and Kedro-viz, every experiment run
outputs an HTML experiment report and updates a top-level index
HTML page linking to the new report, which can be browsed
from a file manager or statically served if running from an
external compute resource. Although simplistic, this reduces the
dependencies and infrastructure needed to achieve a basic level
of reporting, and produces stand-alone folders for consumption
outside of the original environment if needed.

Every report from Curifactory includes all relevant metadata
mentioned above, including the machine host name, experiment
sequential run number, Git commit hash, parameters, and com-
mand line string. Stage code can add user-defined objects to output
in each report, such as tables, figures, and so on. Curifactory comes
with a default set of helpers for several basic types of output
visualizations, including basic line plots, entire Matplotlib figures,
and dataframes.

The output report also contains a graphical representation of
the DAG for the experiment, rendered using Graphviz, and shows
the artifacts produced by each stage and the file path where they
are cached. An example of some of the components of this report
are rendered in figures 2, 3, 4, and 5.

DESIGN OF A SCIENTIFIC DATA ANALYSIS SUPPORT PLATFORM 185

Fig. 3: User-defined objects to report ("reportables").

Fig. 4: Graphviz rendering of experiment DAG. Each large colored
area represents a single record associated with a specific argset. White
ellipses are stages, and the blocks in between them are the input and
output artifacts.

Scalability

Curifactory has no integrated method of executing portions of jobs
on external compute resources like Kedro and MLFlow, but it does
allow local multi-process parallelization of parameter sets. When
an experiment run would entail executing a series of stages for
each argument set in series, Curifactory can divide the collection
of argument sets into one subcollection per process, and runs the
experiment in parallel on each subcollection. By taking advantage
of the caching mechanism, when all parallel runs complete, the
experiment reruns in a single process to aggregate all of the
precached values into a single report.

Fig. 5: Graphviz rendering of each record in more depth, showing
cache file paths and artifact data types.

Conclusion

The complexity in modern software, environments, and data ana-
lytic approaches threaten the reproducibility and effectiveness of
computation-based studies. This has been compounded by the lack
of standardization in infrastructure tools and software engineering
principles applied within scientific research domains. While many
novel tools and systems are in development to address these
shortcomings, several design critieria must be met, including the
ability to easily compose and orchestrate experiments, parameter-
ize them to manipulate variables under test, cache intermediate
artifacts, record provenance of all artifacts and allow the software
to port to other systems, produce output visualizations and reports
for analysis, and scale execution to the resource requirements
of the experiment. We developed Curifactory to address these
criteria specifically for small research teams running Python based
experiments.

Acknowledgements

The authors would like to acknowledge the US Department of
Energy, National Nuclear Security Administration’s Office of De-
fense Nuclear Nonproliferation Research and Development (NA-
22) for supporting this work.

REFERENCES

[ABC+22] Sajid Alam, Lorena Bălan, Gabriel Comym, Yetunde Dada, Ivan
Danov, Lim Hoang, Rashida Kanchwala, Jiri Klein, Antony
Milne, Joel Schwarzmann, Merel Theisen, and Susanna Wong.
Kedro. https://kedro.org/, March 2022.

[BYC13] James Bergstra, Daniel Yamins, and David Cox. Making a Sci-
ence of Model Search: Hyperparameter Optimization in Hundreds
of Dimensions for Vision Architectures. In Proceedings of the
30th International Conference on Machine Learning, pages 115–
123. PMLR, February 2013.

[DGST09] Ewa Deelman, Dennis Gannon, Matthew Shields, and Ian Taylor.
Workflows and e-Science: An overview of workflow system
features and capabilities. Future Generation Computer Systems,
25:524–540, May 2009. doi:10.1016/j.future.2008.
06.012.

[DMR+09] David L. Donoho, Arian Maleki, Inam Ur Rahman, Morteza
Shahram, and Victoria Stodden. Reproducible Research in Com-
putational Harmonic Analysis. Computing in Science Engineer-
ing, 11(1):8–18, January 2009. doi:10.1109/MCSE.2009.
15.

[Dub05] P.F. Dubois. Maintaining correctness in scientific programs.
Computing in Science Engineering, 7(3):80–85, May 2005. doi:
10.1109/MCSE.2005.54.

[GCS+20] Carole Goble, Sarah Cohen-Boulakia, Stian Soiland-Reyes,
Daniel Garijo, Yolanda Gil, Michael R. Crusoe, Kristian Peters,
and Daniel Schober. FAIR Computational Workflows. Data
Intelligence, 2(1-2):108–121, January 2020. doi:10.1162/
dint_a_00033.

[GGA18] Odd Erik Gundersen, Yolanda Gil, and David W. Aha. On Repro-
ducible AI: Towards Reproducible Research, Open Science, and
Digital Scholarship in AI Publications. AI Magazine, 39(3):56–
68, September 2018. doi:10.1609/aimag.v39i3.2816.

[GK18] Odd Erik Gundersen and Sigbjørn Kjensmo. State of the Art:
Reproducibility in Artificial Intelligence. Proceedings of the
AAAI Conference on Artificial Intelligence, 32(1), April 2018.
doi:10.1609/aaai.v32i1.11503.

[GKC+17] Klaus Greff, Aaron Klein, Martin Chovanec, Frank Hutter, and
Jürgen Schmidhuber. The Sacred Infrastructure for Computa-
tional Research. In Proceedings of the 16th Python in Sci-
ence Conference, pages 49–56, Austin, Texas, 2017. SciPy.
doi:10.25080/shinma-7f4c6e7-008.

[Goy20] A. Goyal. Machine learning operations, 2020.
[Hut18] Matthew Hutson. Artificial intelligence faces reproducibility

crisis. Science, 359(6377):725–726, February 2018. doi:
10.1126/science.359.6377.725.

186 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

[KHS09] Diane Kelly, Daniel Hook, and Rebecca Sanders. Five Rec-
ommended Practices for Computational Scientists Who Write
Software. Computing in Science Engineering, 11(5):48–53,
September 2009. doi:10.1109/MCSE.2009.139.

[KPP+22] Ruslan Kuprieiev, Saugat Pachhai, Dmitry Petrov, Paweł
Redzyński, Casper da Costa-Luis, Peter Rowlands, Alexander
Schepanovski, Ivan Shcheklein, Batuhan Taskaya, Jorge Orpinel,
Gao, Fábio Santos, David de la Iglesia Castro, Aman Sharma,
Zhanibek, Dani Hodovic, Nikita Kodenko, Andrew Grigorev,
Earl, Nabanita Dash, George Vyshnya, maykulkarni, Max Hora,
Vera, Sanidhya Mangal, Wojciech Baranowski, Clemens Wolff,
and Kurian Benoy. DVC: Data Version Control - Git for Data
& Models. Zenodo, April 2022. doi:10.5281/zenodo.
6417224.

[LGK+20] Anna-Lena Lamprecht, Leyla Garcia, Mateusz Kuzak, Car-
los Martinez, Ricardo Arcila, Eva Martin Del Pico, Victoria
Dominguez Del Angel, Stephanie van de Sandt, Jon Ison,
Paula Andrea Martinez, Peter McQuilton, Alfonso Valencia,
Jennifer Harrow, Fotis Psomopoulos, Josep Ll Gelpi, Neil
Chue Hong, Carole Goble, and Salvador Capella-Gutierrez. To-
wards FAIR principles for research software. Data Science,
3(1):37–59, January 2020. doi:10.3233/DS-190026.

[MHSA22] Nathan Martindale, Jason Hite, Scott L. Stewart, and Mark
Adams. Curifactory. https://github.com/ORNL/curifactory,
March 2022.

[MLC+21] Sonia Natalie Mitchell, Andrew Lahiff, Nathan Cummings,
Jonathan Hollocombe, Bram Boskamp, Dennis Reddyhoff, Ryan
Field, Kristian Zarebski, Antony Wilson, Martin Burke, Blair
Archibald, Paul Bessell, Richard Blackwell, Lisa A. Boden, Alys
Brett, Sam Brett, Ruth Dundas, Jessica Enright, Alejandra N.
Gonzalez-Beltran, Claire Harris, Ian Hinder, Christopher David
Hughes, Martin Knight, Vino Mano, Ciaran McMonagle, Do-
minic Mellor, Sibylle Mohr, Glenn Marion, Louise Matthews,
Iain J. McKendrick, Christopher Mark Pooley, Thibaud Por-
phyre, Aaron Reeves, Edward Townsend, Robert Turner, Jeremy
Walton, and Richard Reeve. FAIR Data Pipeline: Provenance-
driven data management for traceable scientific workflows.
arXiv:2110.07117 [cs, q-bio], October 2021. arXiv:2110.
07117.

[MLf22] MLflow: A Machine Learning Lifecycle Platform. https://mlflow.
org/, April 2022.

[NFP+20] Mohammad Hossein Namaki, Avrilia Floratou, Fotis Psallidas,
Subru Krishnan, Ashvin Agrawal, Yinghui Wu, Yiwen Zhu,
and Markus Weimer. Vamsa: Automated Provenance Tracking
in Data Science Scripts. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD ’20, pages 1542–1551, New York, NY, USA,
August 2020. Association for Computing Machinery. doi:
10.1145/3394486.3403205.

[OBA17] Babatunde K. Olorisade, Pearl Brereton, and Peter Andras. Re-
producibility in Machine Learning-Based Studies: An Example
of Text Mining. In Reproducibility in ML Workshop, 34th In-
ternational Conference on Machine Learning, ICML 2017, June
2017.

[Pen11] Roger D. Peng. Reproducible Research in Computational Sci-
ence. Science, 334(6060):1226–1227, December 2011. doi:
10.1126/science.1213847.

[QCL21] Luigi Quaranta, Fabio Calefato, and Filippo Lanubile. A Taxon-
omy of Tools for Reproducible Machine Learning Experiments.
In AIxIA 2021 Discussion Papers, 20th International Conference
of the Italian Association for Artificial Intelligence, pages 65–76,
2021.

[Red19] Sergey Redyuk. Automated Documentation of End-to-End Ex-
periments in Data Science. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE), pages 2076–2080,
April 2019. doi:10.1109/ICDE.2019.00243.

[RMRO21] Philipp Ruf, Manav Madan, Christoph Reich, and Djaffar Ould-
Abdeslam. Demystifying MLOps and Presenting a Recipe for the
Selection of Open-Source Tools. Applied Sciences, 11(19):8861,
January 2021. doi:10.3390/app11198861.

[SBB13] Victoria Stodden, Jonathan Borwein, and David H. Bailey. Pub-
lishing Standards for Computational Science: “Setting the Default
to Reproducible”. Pennsylvania State University, 2013.

[SH18] Peter Sugimura and Florian Hartl. Building a Reproducible
Machine Learning Pipeline. arXiv:1810.04570 [cs, stat], October
2018. arXiv:1810.04570.

[SNTH13] Geir Kjetil Sandve, Anton Nekrutenko, James Taylor, and Eivind

Hovig. Ten Simple Rules for Reproducible Computational Re-
search. PLOS Computational Biology, 9(10):e1003285, October
2013. doi:10.1371/journal.pcbi.1003285.

[Sto18] Tim Storer. Bridging the Chasm: A Survey of Software Engineer-
ing Practice in Scientific Programming. ACM Computing Surveys,
50(4):1–32, July 2018. doi:10.1145/3084225.

[WDA+16] Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg,
Gabrielle Appleton, Myles Axton, Arie Baak, Niklas Blomberg,
Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E.
Bourne, Jildau Bouwman, Anthony J. Brookes, Tim Clark, Mercè
Crosas, Ingrid Dillo, Olivier Dumon, Scott Edmunds, Chris T.
Evelo, Richard Finkers, Alejandra Gonzalez-Beltran, Alasdair
J. G. Gray, Paul Groth, Carole Goble, Jeffrey S. Grethe, Jaap
Heringa, Peter A. C. ’t Hoen, Rob Hooft, Tobias Kuhn, Ruben
Kok, Joost Kok, Scott J. Lusher, Maryann E. Martone, Al-
bert Mons, Abel L. Packer, Bengt Persson, Philippe Rocca-
Serra, Marco Roos, Rene van Schaik, Susanna-Assunta Sansone,
Erik Schultes, Thierry Sengstag, Ted Slater, George Strawn,
Morris A. Swertz, Mark Thompson, Johan van der Lei, Erik
van Mulligen, Jan Velterop, Andra Waagmeester, Peter Wit-
tenburg, Katherine Wolstencroft, Jun Zhao, and Barend Mons.
The FAIR Guiding Principles for scientific data management
and stewardship. Scientific Data, 3(1):160018, March 2016.
doi:10.1038/sdata.2016.18.

[WWG21] Laura Wratten, Andreas Wilm, and Jonathan Göke. Reproducible,
scalable, and shareable analysis pipelines with bioinformatics
workflow managers. Nature Methods, 18(10):1161–1168, Oc-
tober 2021. doi:10.1038/s41592-021-01254-9.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022) 187

The Geoscience Community Analysis Toolkit: An
Open Development, Community Driven Toolkit in the

Scientific Python Ecosystem

Orhan Eroglu‡∗, Anissa Zacharias‡, Michaela Sizemore‡, Alea Kootz‡, Heather Craker‡, John Clyne‡

https://www.youtube.com/watch?v=34zFGkDwJPc

F

Abstract—The Geoscience Community Analysis Toolkit (GeoCAT) team de-
velops and maintains data analysis and visualization tools on structured and
unstructured grids for the geosciences community in the Scientific Python
Ecosystem (SPE). In response to dealing with increasing geoscientific data
sizes, GeoCAT prioritizes scalability, ensuring its implementations are scalable
from personal laptops to HPC clusters. Another major goal of the GeoCAT
team is to ensure community involvement throughout the whole project lifecycle,
which is realized through an open development mindset by encouraging users
and contributors to get involved in decision-making. With this model, we not
only have our project stack open-sourced but also ensure most of the project
assets that are directly related to the software development lifecycle are publicly
accessible.

Index Terms—data analysis, geocat, geoscience, open development, open
source, scalability, visualization

Introduction

The Geoscience Community Analysis Toolkit (GeoCAT) team,
established in 2019, leads the software engineering efforts of
the National Center for Atmospheric Research (NCAR) “Pivot
to Python” initiative [Geo19]. Before then, NCAR Command
Language (NCL) [BBHH12] was developed by NCAR as an
interpreted, domain-specific language that was aimed to support
the analysis and visualization needs of the global geosciences
community. NCL had been serving several tens of thousands of
users for decades. It is still available for use but has not been
actively developed as it has been in maintenance mode.

The initiative had an initial two-year roadmap with major
milestones being: (1) Replicating NCL’s computational routines in
Python, (2) training and support for transitioning NCL users into
Python, and (3) moving tools into an open development model.
GeoCAT aims to create scalable data analysis and visualization
tools on structured and unstructured grids for the geosciences
community in the SPE. The GeoCAT team is committed to
open development, which helps the team prioritize community
involvement at any level of the project lifecycle alongside having
the whole software stack open-sourced.

* Corresponding author: oero@ucar.edu
‡ National Center for Atmospheric Research

Copyright © 2022 Orhan Eroglu et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

GeoCAT has seven Python tools for geoscientific computation
and visualization. These tools are built upon the Pangeo [HRA18]
ecosystem. In particular, they rely on Xarray [HH17], and Dask
[MR15], as well as they are compatible with Numpy and use
Jupyter Notebooks for demonstration purposes. Dask compatibil-
ity allows the GeoCAT functions to scale from personal laptops
to high performance computing (HPC) systems such as NCAR’s
Casper, Cheyenne, and upcoming Derecho clusters [CKZ+22].
Additionally, GeoCAT also utilizes Numba, an open source just-
in-time (JIT) compiler [LPS15], to translate Python and NumPy
code into machine codes in order to get faster executions wherever
possible. GeoCAT’s visualization components rely on Matplotlib
[Hun07] for most of the plotting functionalities, Cartopy [Met15]
for projections, as well as the Datashader and Holoviews stack
[Anaa] for big data rendering. Figure 1 shows these technologies
with their essential roles around GeoCAT.

Briefly, GeoCAT-comp houses computational operators for
applications ranging from regridding and interpolation, to cli-
matology and meteorology. GeoCAT-examples provides over 140
publication-quality plotting scripts in Python for Earth sciences. It
also houses Jupyter notebooks with high-performance, interactive
plots that enable features such as pan and zoom on fine-resolution,
unstructured geoscience data (e.g. ~3 km data rendered within
a few tens of seconds to a few minutes on personal laptops).
This is achieved by making use of the connectivity information
in the unstructured grid and rendering data via the Datashader
and Holoviews ecosystem [Anaa]. GeoCAT-viz enables higher-
level implementation of Matplotlib and Cartopy plotting capabil-
ities through its variety of easy to use visualization convenience
functions for GeoCAT-examples. GeoCAT also maintains WRF-
Python (Weather Research and Forecasting), which works with
WRF-ARW model output and provides diagnostic and interpola-
tion routines.

GeoCAT was recently awarded Project Raijin, which is an
NSF EarthCube-funded effort [NSF21] [CEMZ21]. Its goal is to
enhance the open-source analysis and visualization tool landscape
by developing community-owned, sustainable, scalable tools that
facilitate operating on unstructured climate and global weather
data in the SPE. Throughout this three-year project, GeoCAT
will work on the development of data analysis and visualization
functions that operate directly on the native grid as well as
establish an active community of user-contributors.

188 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 1: The core Python technologies on which GeoCAT relies on

This paper will provide insights about GeoCAT’s software
stack and current status, team scope and near-term plans, open
development methodology, as well as current pathways of com-
munity involvement.

GeoCAT Software

The GeoCAT team develops and maintains several open-source
software tools. Before describing those tools, it is vital to explain
in detail how the team implements the continuous integration and
continuous delivery/deployment (CI/CD) in consistence for all of
those tools.

Continuous Integration and Continuous Delivery/Deployment
(CI/CD)

GeoCAT employs a continuous delivery model, with a monthly
package release cycle on package management systems and pack-
age indexes such as Conda [Anab] and PyPI [Pyt]. This model
helps the team make new functions available as soon as they are
implemented and address potential errors quickly. To assist this
process, the team utilizes multiple tools throughout GitHub assets
to ensure automation, unit testing and code coverage, as well as
licensing and reproducibility. Figure 2, for example, shows the
set of badges displaying the near real-time status of each CI/CD
implementation in the GitHub repository homepage from one of
our software tools.

CI build tests of our repositories are implemented and au-
tomated (for pushed commits, pull requests, and daily scheduled
execution) via GitHub Actions workflows [Git], with the CI badge
shown in Figure 2 displaying the status (i.e. pass or fail) of
those workflows. Similarly, the CONDA-BUILDS badge shows
if the conda recipe works successfully for the repository. The
Python package "codecov" [cod] analyzes the percentage of code
coverage from unit tests in the repository. Additionally, the overall
results as well as details for each code script can be seen via
the COVERAGE badge. Each of our software repositories has
a corresponding documentation page that is populated mostly-
automatically through the Sphinx Python documentation generator
[Bra21] and published through ReadTheDocs [rea] via an auto-
mated building and versioning schema. The DOCS badge provides
a link to the documentation page along with showing failures, if
any, with the documentation rendering process. Figure 3 shows
the documentation homepage of GeoCAT-comp. The NCAR and

PYPI badges in the Package row shows and links to the latest
versions of the software tool distributed through NCAR’s Conda
channel and PyPI, respectively. The LICENSE badge provides a
link to our software licenses, Apache License version 2.0 [Apa04],
for all of the GeoCAT stack, enabling the redistribution of the
open-source software products on an "as is" basis. Finally, to
provide reproducibility of our software products (either for the
latest or any older version), we publish version-specific Digital
Object Identifiers (DOIs), which can be accessed through the DOI
badge. This allows the end-user to accurately cite the specific
version of the GeoCAT tools they used for science or research
purposes.

Fig. 2: GeoCAT-comp’s badges in the beginning of its README file
(i.e. the home page of the Githug repository) [geob]

GeoCAT-comp (and GeoCAT-f2py)

GeoCAT-comp is the computational component of the GeoCAT
project as can be seen in Figure 4. GeoCAT-comp houses im-
plementations of geoscience data analysis functions. Novel re-
search and development is conducted for analyzing both structured
and unstructured grid data from various research fields such as
climate, weather, atmosphere, ocean, among others. In addition,
some of the functionalities of GeoCAT-comp are inspired or
reimplemented from the NCL in order to address the first goal
of the "Pivot to Python effort. For that purpose, 114 NCL rou-
tines were selected, excluding some functionalities such as date
routines, which could be handled by other packages in the Python
ecosystem today. These functions were ranked by order of website
documentation access from most to least, and prioritization was
made based on those ranks. Today, GeoCAT-comp provides the

THE GEOSCIENCE COMMUNITY ANALYSIS TOOLKIT: AN OPEN DEVELOPMENT, COMMUNITY DRIVEN TOOLKIT IN THE SCIENTIFIC PYTHON ECOSYSTEM 189

Fig. 3: GeoCAT-comp documentation homepage built with Sphinx using a theme provided by ReadTheDocs [geoa]

same or similar capabilities of about 39% (44 out of 114) of those
functions.

Some of the functions that are made available through
GeoCAT-comp are listed below, for which the GeoCAT-comp
documentation [geoa] provides signatures and descriptions as well
as links to the usage examples:

• Spherical harmonics (both decomposition and recomposi-
tion as well as area weighting)

• Fourier transforms such as band-block, band-pass, low-
pass, and high-pass

• Meteorological variable computations such as relative hu-
midity, dew-point temperature, heat index, saturation vapor
pressure, and more

• Climatology functions such as climate average over mul-
tiple years, daily/monthly/seasonal averages, as well as
anomalies

• Regridding of curvilinear grid to rectilinear grid, unstruc-
tured grid to rectilinear grid, curvilinear grid to unstruc-
tured grid, and vice versa

• Interpolation methods such as bilinear interpolation of a
rectilinear to another rectilinear grid, hybrid-sigma levels
to isobaric levels, and sigma to hybrid coordinates

• Empirical orthogonal function (EOF) analysis

Many of the computational functions in GeoCAT are im-
plemented in pure Python. However, there are others that were
originally implemented in Fortran but are now wrapped up in
Python with the help of Numpy’s F2PY, Fortran to Python in-
terface generator. This is mostly because re-implementing some
functions would require understanding of complicated algorithm
flows and implementation of extensive unit tests that would end
up taking too much time, compared to wrapping their already-
implemented Fortran routines up in Python. Furthermore, outside
contributors from science background would keep considering to
add new functions to GeoCAT from their older Fortran routines
in the future. To facilitate contribution, the whole GeoCAT-comp
structure is split into two repositories with respect to being
either pure-Python or Python with compiled code (i.e. Fortran)
implementations. Such implementation layers are handled with
the GeoCAT-comp and GeoCAT-f2py repositories, respectively.

GeoCAT-comp code-base does not explicitly contain or require
any compiled code, making it more accessible to the general
Python community at large. In addition, GeoCAT-f2py is auto-
matically installed through GeoCAT-comp installation, and all
functions contained in the "geocat.f2py" package are imported
transparently into the "geocat.comp" namespace. Thus, GeoCAT-
comp serves as a user API to access the entire computational
toolkit even though its GitHub repository itself only contains pure
Python code from the developer’s perspective. Whenever prospec-
tive contributors want to contribute computational functionality in
pure Python, GeoCAT-comp is the only GitHub repository they
need to deal with. Therefore, there is no onus on contributors of
pure Python code to build, compile, or test any compiled code
(e.g. Fortran) at GeoCAT-comp level.

GeoCAT-examples (and GeoCAT-viz)

GeoCAT-examples [geoe] was created to address a few of the
original milestones of NCAR’s "Pivot to Python" initiative: (1)
to provide the geoscience community with well-documented visu-
alization examples for several plotting classes in the SPE, and (2)
to help transition NCL users into the Python ecosystem through
providing such resources. It was born in early 2020 as the result of
a multi-day hackathon event among the GeoCAT team and several
other scientists and developers from various NCAR labs/groups.
It has since grown to house novel visualization examples and
showcase the capabilities of other GeoCAT components, like
GeoCAT-comp, along with newer technologies like interactive
plotting notebooks. Figure 5 illustrates one of the unique GeoCAT-
examples cases that was aimed at exploring the best practices for
data visualization like choosing color blind friendly colormaps.

The GeoCAT-examples [geod] gallery contains over 140 ex-
ample Python plotting scripts, demonstrating functionalities from
Python packages like Matplotlib, Cartopy, Numpy, and Xarray.
The gallery includes plots from a range of visualization categories
such as box plots, contours, meteograms, overlays, projections,
shapefiles, streamlines, and trajectories among others. The plotting
categories and scripts under GeoCAT-examples cover almost all of
the NCL plot types and techniques. In addition, GeoCAT-examples
houses plotting examples for individual GeoCAT-comp analysis
functions.

190 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 4: GeoCAT project structure with all of the software tools [geoc]

Fig. 5: Comparison between NCL (left) and Python (right) when
choosing a colormap; GeoCAT-examples aiming at choosing color
blind friendly colormaps [SEKZ22]

Despite Matplotlib and Cartopy’s capabilities to reproduce
almost all of NCL plots, there was one significant caveat with
using their low-level implementations against NCL: NCL’s high-
level plotting functions allowed scientists to plot most of the cases
in only tens of lines of codes (LOC) while the Matplotlib and
Cartopy stack required writing a few hundred LOC. In order
to build a higher-level implementation on top of Matplotlib and
Cartopy while recreating the NCL-like plots (from vital plotting
capabilities that were not readily available in the Python ecosystem
at the time such as Taylor diagrams and curly vectors to more
stylistic changes such as font sizes, color schemes, etc. that resem-
ble NCL plots), the GeoCAT-viz library [geof] was implemented.
Use of functions from this library in GeoCAT-examples signifi-
cantly reduces the LOC requirements for most of the visualization
examples to comparable numbers to those of NCL’s. Figure 6
shows Taylor diagram and curly vector examples that have been
created with the help of GeoCAT-viz. To exemplify how GeoCAT-

viz helps keep the LOC comparable to NCL, one of the Taylor
diagrams (i.e. Taylor_6) took 80 LOC in NCL, and its Python
implementation in GeoCAT-examples takes 72 LOC. If many
of the Matplotlib functions (e.g. figure and axes initialization,
adjustment of several axes parameters, call to plotting functions for
Taylor diagram, management of grids, addition of titles, contours,
etc.) used in this example weren’t wrapped up in GeoCAT-viz
[geof], the same visualization would easily end up in around two
hundred LOC.

Fig. 6: Taylor diagram and curly vector examples that created with
the help of GeoCAT-viz

Recently, the GeoCAT team has been focused on interactive
plotting technologies, especially for larger data sets that contain
millions of data points. This effort was centered on unstructured
grid visualization as part of Project Raijin, which is detailed in
a later section in this manuscript. That is because unstructured
meshes are a great research and application field for big data
and interactivity such as zoom in/out for regions of interest. As
a result of this effort, we created a new notebooks gallery under
GeoCAT-examples to house such interactive data visualizations.
The first notebook, a screenshot from which is shown in Figure 7,
in this gallery is implemented via the Datashader and Holoviews

THE GEOSCIENCE COMMUNITY ANALYSIS TOOLKIT: AN OPEN DEVELOPMENT, COMMUNITY DRIVEN TOOLKIT IN THE SCIENTIFIC PYTHON ECOSYSTEM 191

ecosystem [Anaa], and it provides a high-performance, interactive
visualization of a Model for Prediction Across Scales (MPAS)
Global Storm-Resolving Model weather simulation dataset. The
interactivity features are pan and zoom to reveal greater data
fidelity globally and regionally. The data used in this work is
the courtesy of the DYAMOND effort [SSA+19] and has varying
resolutions from 30 km to 3.75 km. Our notebook in the gallery
uses the 30 km resolution data for the users to be able to download
and work on it in their local configuration. However, our work
with the 3.75 km resolution data (i.e. about 42 million hexagonal
cells globally) showed that rendering the data took only a few
minutes on a decent laptop, even without any parallelization. The
main reason behind such a high performance was that we used the
cell-to-node connectivity information in the MPAS data to render
the native grid directly (i.e. without remapping to the structured
grid) along with utilizing the Datashader stack. Without using the
connectivity information, it would require to run much costly
Delaunay triangulation. The notebook provides a comparison
between these two approaches as well.

GeoCAT-datafiles

GeoCAT-datafiles is GeoCAT’s small data storage component as
a Github repository. This tool houses many datasets in different
file formats such as NetCDF, which can be used along with other
GeoCAT tools or ad-hoc data needs in any other Python script.
The datasets can be accessed by the end-user through a lightweight
convenience function:
geocat.datafiles.get("folder_name/filename")

GeoCAT-datafiles fetches the file by simply reading from the
local storage, if any, or downloading from the GeoCAT-datafiles
repository, if not in the local storage, with the help of Pooch
framework [USR+20].

WRF-Python

WRF-Python was created in early 2017 in order to replicate NCL’s
Weather Research and Forecasting (WRF) package in the SPE, and
it covers 100% of the routines in that package. About two years
later, NCAR’s “Pivot to Python” initiative was announced, and the
GeoCAT team has taken over development and maintenance of
WRF-Python.

The package focuses on creating a Python package that elim-
inates the need to work across multiple software platforms when
using WRF datasets. It contains more than 30 computational
(e.g. diagnostic calculations, several interpolation routines) and
visualization routines that aim at reducing the amount of post-
processing tools necessary to visualize WRF output files.

Even though there is no continuous development in WRF-
Python, as is seen in the rest of the GeoCAT stack, the package is
still maintained with timely responses and bug-fix releases to the
issues reported by the user community.

Project Raijin

“Collaborative Research: EarthCube Capabilities: Raijin: Commu-
nity Geoscience Analysis Tools for Unstructured Mesh Data”, i.e.
Project Raijin, of the consortium between NCAR and Pennsylva-
nia State University has been awarded by NSF 21-515 EarthCube
for an award period of 1 September, 2021 - 31 August, 2024
[NSF21]. Project Raijin aims at developing community-owned,
sustainable, scalable tools that facilitate operating on unstructured
climate and global weather data [rai]. The GeoCAT team is in

charge of the software development of Project Raijin, which
mainly consists of implementing visualization and analysis func-
tions in the SPE to be executed on native grids. While doing so,
GeoCAT is also responsible for establishing an open development
environment, clearly documenting the implementation work, and
aligning deployments with the project milestones as well as SPE
requirements and specifications.

GeoCAT has created the Xarray-based Uxarray package [uxa]
to recognize unstructured grid models through partnership with
geoscience community groups. UXarray is built on top of the
built-in Xarray Dataset functionalities while recognizing several
unstructured grid formats (UGRID, SCRIP, and Exodus for now).
Since there are more unstructured mesh models in the community
than UXarray natively supports, its architecture will also support
addition of new models. Figure 8 shows the regularly structured
“latitude-longitude” grids versus a few unstructured grid models.

The UXarray project has implemented data input/output func-
tions for UGRID, SCRIP, and Exodus, as well as methods for
surface area and integration calculations so far. The team is cur-
rently conducting open discussions (through GitHub Discussions)
with community members, who are interested in unstructured
grids research and development in order to prioritize data analysis
operators to be implemented throughout the project lifecycle.

Scalability

GeoCAT is aware of the fact that today’s geoscientific models
are capable of generating huge sizes of data. Furthermore, these
datasets, such as those produced by global convective-permitting
models, are going to grow even larger in size in the future.
Therefore, computational and visualization functions that are
being developed in the geoscientific research and development
workflows need to be scalable from personal devices (e.g. laptops)
to HPC (e.g. NCAR’s Casper, Cheyenne, and upcoming Derecho
clusters) and cloud platforms (e.g. AWS).

In order to keep up with the scalability objectives, GeoCAT
functions are implemented to operate on Dask arrays in addition
to natively supporting NumPy arrays and Xarray DataArrays.
Therefore, the GeoCAT functions can trivially and transparently be
parallelized to be run on shared-memory and distributed-memory
platforms after having Dask cluster/client properly configured and
functions fed with Dask arrays or Dask-backed Xarray DataArrays
(i.e. chunked Xarray DataArrays that wrap up Dask arrays).

Open Development

To ensure community involvement at every level in the develop-
ment lifecycle, GeoCAT is committed to an open development
model. In order to implement this model, GeoCAT provides all
of its software tools as GitHub repositories with public GitHub
project boards and roadmaps, issue tracking and development re-
viewing, comprehensive documentation for users and contributors
such as Contributor’s Guide [geoc] and toolkit-specific documen-
tation, along with community announcements on the GeoCAT
blog. Furthermore, GeoCAT encourages community feedback and
contribution at any level with inclusive and welcoming language.
As a result of this, community requests and feedback have played
significant role in forming and revising the GeoCAT roadmap and
projects’ scope.

192 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 7: The interactive plot interface from the MPAS visualization notebook in GeoCAT-examples

Fig. 8: Regular grid (left) vs MPAS-A & CAM-SE grids

Community engagement

To further promote engagement with the geoscience community,
GeoCAT organizes and attends various community events. First
of all, scientific conferences and meetings are great venues for
such a scientific software engineering project to share updates
and progress with the community. For instance, the American
Meteorological Society (AMS) Annual Meeting and American
Geophysical Union (AGU) Fall Meeting are two significant sci-
entific events that the GeoCAT team presented one or multiple
publications every year since its birth to inform the community.
The annual Scientific Computing with Python (SciPy) conference
is another great fit to showcase what GeoCAT has been conducting
in geoscience. The team also attended The International Confer-
ence for High Performance Computing, Networking, Storage, and
Analysis (SC) a few times to keep up-to-date with the industry
state-of-the-arts in these technologies.

Creating internship projects is another way of improving com-
munity interactions as it triggers collaboration through GeoCAT,
institutions, students, and university in general. The GeoCAT
team, thus,encourages undergraduate and graduate student engage-
ment in the Python ecosystem through participation in NCAR’s
Summer Internships in Parallel Computational Science (SIParCS).
Such programs are quite beneficial for both students and scientific
software development teams. To exemplify, GeoCAT-examples

and GeoCAT-viz in particular has received significant contribu-
tions through SIParCS in 2020 and 2021 summers (i.e. tens
of visualization examples as well as important infrastructural
changes were made available by our interns) [CKZ+22] [LLZ+21]
[CFS21]. Furthermore, the team has created three essential and
one collaboration project through SIParCS 2022 summer through
which advanced geoscientific visualization, unstructured grid vi-
sualization and data analysis, Fortran to Python algorithm and
code development, as well as GPU optimization for GeoCAT-
comp routines will be investigated.

Project Pythia

The GeoCAT effort is also a part of the NSF funded Project
Pythia. Project Pythia aims to provide a public, web-accessible
training resource that could help educate earth scientists to more
effectively use the SPE and cloud computing for dealing with
big data in geosciences. GeoCAT helps with Pythia development
through content creation and infrastructure contributions. GeoCAT
has also contributed several Python tutorials (such as Numpy, Mat-
plotlib, Cartopy, etc.) to the educational resources created through
Project Pythia. These materials consist of live tutorial sessions,
interactive Jupyter notebook demonstrations, Q&A sessions, as
well as published video recording of the event on Pythia’s Youtube
channel. As a result, it helps us engage with the community
through multiple channels.

Future directions

GeoCAT aims to keep increasing the number of data analysis and
visualization functionalities in both structured and unstructured
meshes with the same pace as has been done so far. The team will
continue prioritizing scalability and open development in future
development and maintenance of its software tools landscape. To
achieve the goals with scalability of our tools, we will ensure our
implementations are compatible with the state-of-the-art and up-
to-date with the best practices of the technology we are using, e.g.

THE GEOSCIENCE COMMUNITY ANALYSIS TOOLKIT: AN OPEN DEVELOPMENT, COMMUNITY DRIVEN TOOLKIT IN THE SCIENTIFIC PYTHON ECOSYSTEM 193

Dask. To enhance the community involvement in our open devel-
opment model, we will continue interacting with the community
members through significant events such as Pangeo community
meetings, scientific conferences, tutorials and workshops of Geo-
CAT’s own as well as other community members; we will keep
our timely communication with the stakeholders through GitHub
assets and other communication channels.

REFERENCES

[Anaa] Anaconda. Datashader. https://datashader.org/. Online; accessed 29
June 2022.

[Anab] Anaconda, Inc. Conda package manager. https://docs.conda.io/en/
latest/. Online; accessed 18 May 2022.

[Apa04] Apache Software Foundation. Apache License, version 2.0. https:
//www.apache.org/licenses/LICENSE-2.0, 2004. Online; accessed
18 May 2022.

[BBHH12] David Brown, Rick Brownrigg, Mary Haley, and Wei Huang.
NCAR Command Language (ncl), 2012. doi:http://dx.doi.
org/10.5065/D6WD3XH5.

[Bra21] Georg Brandl. Sphinx documentation. URL http://sphinx-doc.
org/sphinx. pdf, 2021.

[CEMZ21] John Clyne, Orhan Eroglu, Brian Medeiros, and Colin M Zarzy-
cki. Project raijin: Community geoscience analysis tools for unstruc-
tured grids. In AGU Fall Meeting 2021. AGU, 2021.

[CFS21] Heather Rose Craker, Claire Anne Fiorino, and Michaela Victoria
Sizemore. Rebuilding the ncl visualization gallery in python. In
101nd American Meteorological Society Annual Meeting. AMS,
2021.

[CKZ+22] Heather Craker, Alea Kootz, Anissa Zacharias, Michaela Size-
more, and Orhan Eroglu. NCAR’s GeoCAT Announcement of
Computational Tools. In 102nd American Meteorological Society
Annual Meeting. AMS, 2022.

[cod] Codecov. https://about.codecov.io/. Online; accessed 18 May 2022.
[geoa] GeoCAT-comp documentation page. https://geocat-

comp.readthedocs.io/en/latest/index.html. Online; accessed 20
May 2022. doi:doi:10.5281/zenodo.6607205.

[geob] GeoCAT-comp GitHub repository. https://github.com/NCAR/
geocat-comp. Online; accessed 20 May 2022. doi:doi:10.
5281/zenodo.6607205.

[geoc] GeoCAT Contributor’s Guide. https://geocat.ucar.edu/pages/
contributing.html. Online; accessed 20 May 2022. doi:10.5065/
a8pp-4358.

[geod] GeoCAT-examples documentation page. https://geocat-examples.
readthedocs.io/en/latest/index.html. Online; accessed 20 May 2022.
doi:10.5281/zenodo.6678258.

[geoe] GeoCAT-examples GitHub repository. https://github.com/NCAR/
geocat-examples. Online; accessed 20 May 2022. doi:10.5281/
zenodo.6678258.

[geof] GeoCAT-viz GitHub repository. https://github.com/NCAR/geocat-
viz. Online; accessed 20 May 2022. doi:10.5281/zenodo.
6678345.

[Geo19] GeoCAT. The future of NCL and the Pivot to Python. https:
//www.ncl.ucar.edu/Document/Pivot_to_Python, 2019. Online; ac-
cessed 17 May 2022. doi:http://dx.doi.org/10.5065/
D6WD3XH5.

[Git] GitHub. Github Actions. https://docs.github.com/en/actions. Online;
accessed 18 May 2022.

[HH17] Stephan Hoyer and Joseph Hamman. xarray: N-D labeled arrays
and datasets in Python. Journal of Open Research Software, 5(1):10,
2017. doi:http://doi.org/10.5334/jors.148.

[HRA18] Joseph Hamman, Matthew Rocklin, and Ryan Abernathy. Pangeo:
A big-data ecosystem for scalable earth system science. EGU
General Assembly Conference Abstracts, 2018.

[Hun07] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in
Science & Engineering, 9(3):90–95, 2007. doi:10.1109/MCSE.
2007.55.

[LLZ+21] Erin Lincoln, Jiaqi Li, Anissa Zacharias, Michaela Sizemore,
Orhan Eroglu, and Julia Kent. Expanding and strengthening the
transition from NCL to Python visualizations. In AGU Fall Meeting
2021. AGU, 2021.

[LPS15] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A
llvm-based python jit compiler. In Proceedings of the Second Work-
shop on the LLVM Compiler Infrastructure in HPC, pages 1–6, 2015.
doi:https://doi.org/10.1145/2833157.2833162.

[Met15] Met Office. Cartopy: a cartographic python library with a matplotlib
interface. Exeter, Devon, 2010 - 2015. URL: http://scitools.org.uk/
cartopy.

[MR15] Matthew Rocklin. Dask: Parallel Computation with Blocked algo-
rithms and Task Scheduling. In Kathryn Huff and James Bergstra,
editors, Proceedings of the 14th Python in Science Conference, pages
126 – 132, 2015. doi:10.25080/Majora-7b98e3ed-013.

[NSF21] NSF. Collaborative research: Earthcube capabilities: Raijin:
Community geoscience analysis tools for unstructured mesh
data. https://nsf.gov/awardsearch/showAward?AWD_ID=2126458&
HistoricalAwards=false, 2021. Online; accessed 17 May 2022.

[Pyt] Python Software Foundation. The Python Package Index - PyPI.
https://pypi.org/. Online; accessed 18 May 2022.

[rai] Raijin homepage. https://raijin.ucar.edu/. Online; accessed 21 May
2022.

[rea] ReadTheDocs. https://readthedocs.org/. Online; accessed 18 May
2022.

[SEKZ22] Michaela Sizemore, Orhan Eroglu, Alea Kootz, and Anissa
Zacharias. Pivoting to Python: Lessons Learned in Recreating the
NCAR Command Language in Python. 102nd American Meteoro-
logical Society Annual Meeting, 2022.

[SSA+19] Bjorn Stevens, Masaki Satoh, Ludovic Auger, Joachim Bier-
camp, Christopher S Bretherton, Xi Chen, Peter Düben, Falko
Judt, Marat Khairoutdinov, Daniel Klocke, et al. DYAMOND:
the DYnamics of the Atmospheric general circulation Modeled
On Non-hydrostatic Domains. Progress in Earth and Planetary
Science, 6(1):1–17, 2019. doi:https://doi.org/10.1186/
s40645-019-0304-z.

[USR+20] Leonardo Uieda, Santiago Rubén Soler, Rémi Rampin, Hugo
Van Kemenade, Matthew Turk, Daniel Shapero, Anderson Bani-
hirwe, and John Leeman. Pooch: A friend to fetch your data
files. Journal of Open Source Software, 5(45):1943, 2020. doi:
10.21105/joss.01943.

[uxa] UXarray GitHub repository. https://github.com/UXARRAY/uxarray.
Online; accessed 20 May 2022. doi:10.5281/zenodo.
5655065.

194 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

popmon: Analysis Package for Dataset Shift Detection

Simon Brugman‡∗, Tomas Sostak§, Pradyot Patil‡, Max Baak‡

F

Abstract—popmon is an open-source Python package to check the stability of
a tabular dataset. popmon creates histograms of features binned in time-slices,
and compares the stability of its profiles and distributions using statistical tests,
both over time and with respect to a reference dataset. It works with numerical,
ordinal and categorical features, on both pandas and Spark dataframes, and
the histograms can be higher-dimensional, e.g. it can also track correlations
between sets of features. popmon can automatically detect and alert on
changes observed over time, such as trends, shifts, peaks, outliers, anomalies,
changing correlations, etc., using monitoring business rules that are either static
or dynamic. popmon results are presented in a self-contained report.

Index Terms—dataset shift detection, population shift, covariate shift, his-
togramming, profiling

Introduction

Tracking model performance is crucial to guarantee that a model
behaves as designed and trained initially, and for determining
whether to promote a model with the same initial design but
trained on different data to production. Model performance de-
pends directly on the data used for training and the data predicted
on. Changes in the latter (e.g. certain word frequency, user demo-
graphics, etc.) can affect the performance and make predictions
unreliable.

Given that input data often change over time, it is important to
track changes in both input distributions and delivered predictions
periodically, and to act on them when they are significantly
different from past instances – e.g. to diagnose and retrain an
incorrect model in production. Predictions may be far ahead in
time, so the performance can only be verified later, for example in
one year. Taking action at that point might already be too late.

To make monitoring both more consistent and semi-automatic,
ING Bank has created a generic Python package called popmon.
popmon monitors the stability of data populations over time and
detects dataset shifts, based on techniques from statistical process
control and the dataset shift literature.

popmon employs so-called dynamic monitoring rules to flag
and alert on changes observed over time. Using a specified refer-
ence dataset, from which observed levels of variation are extracted
automatically, popmon sets allowed boundaries on the input data.
If the reference dataset changes over time, the effective ranges on
the input data can change accordingly. Dynamic monitoring rules

* Corresponding author: simon.brugman@ing.com
‡ ING Analytics Wholesale Banking
§ Vinted

Copyright © 2022 Simon Brugman et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Fig. 1: The popmon package logo

make it easy to detect which (combinations of) features are most
affected by changing distributions.

popmon is light-weight. For example, only one line is required
to generate a stability report.
report = popmon.df_stability_report(

df,
time_axis="date",
time_width="1w",
time_offset="2022-1-1"

)
report.to_file("report.html")

The package is built on top of Python’s scientific computing
ecosystem (numpy, scipy [HMvdW+20], [VGO+20]) and sup-
ports pandas and Apache Spark dataframes [pdt20], [WM10],
[ZXW+16]. This paper discusses how popmon monitors for
dataset changes. The popmon code is modular in design and user
configurable. The project is available as open-source software.1

Related work

Many algorithms detecting dataset shift exist that follow a similar
structure [LLD+18], using various data structures and algorithms
at each step [DKVY06], [QAWZ15]. However, few are readily
available to use in production. popmon offers both a framework
that generalizes pipelines needed to implement those algorithms,
and default data drift pipelines, built on histograms with statistical
comparisons and profiles (see Sec. data representation).

Other families of tools have been developed that work on
individual data points, for model explanations (e.g. SHAP [LL17],
feature attributions [SLL20]), rule-based data monitoring (e.g.
Great Expectations, Deequ [GCSG22], [SLS+18]) and outlier
detection (e.g. [RGL19], [LPO17]).

alibi-detect [KVLC+20], [VLKV+22] is somewhat
similar to popmon. This is an open-source Python library that

1. See https://github.com/ing-bank/popmon for code, documentation, tutori-
als and example stability reports.

POPMON: ANALYSIS PACKAGE FOR DATASET SHIFT DETECTION 195

focuses on outlier, adversarial and drift detection. It allows for
monitoring of tabular, text, images and time series data, using
both online and offline detectors. The backend is implemented
in TensorFlow and PyTorch. Much of the reporting functionality,
such as feature distributions, are restricted to the (commercial) en-
terprise version called seldon-deploy. Integrations for model
deployment are available based on Kubernetes. The infrastructure
setup thus is more complex and restrictive than for popmon,
which can run on any developer’s machine.

Contributions

The advantage of popmon’s dynamic monitoring rules over con-
ventional static ones, is that little prior knowledge is required of
the input data to set sensible limits on the desired level of stability.
This makes popmon a scalable solution over multiple datasets.

To the best of our knowledge, no other monitoring tool exists
that suits our criteria to monitor models in production for dataset
shift. In particular, no other, light-weight, open-source package is
available that performs such extensive stability tests of a pandas
or Spark dataset.

We believe the combination of wide applicability, out-of-the-
box performance, available statistical tests, and configurability
makes popmon an ideal addition to the toolbox of any data
scientist or machine learning engineer.

Approach

popmon tests the dataset stability and reports the results through
a sequence of steps (Fig. 2):

1) The data are represented by histograms of features,
binned in time-slices (Sec. data representation).

2) The data is arranged according to the selected reference
type (Sec. comparisons).

3) The stability of the profiles and distributions of those
histograms are compared using statistical tests, both with
respect to a reference and over time. It works with numer-
ical, ordinal, categorical features, and the histograms can
be higher-dimensional, e.g. it can also track correlations
between any two features (Sec. comparisons).

4) popmon can automatically flag and alert on changes
observed over time, such as trends, anomalies, changing
correlations, etc, using monitoring rules (Sec. alerting).

5) Results are reported to the user via a dedicated, self-
contained report (Sec. reporting).

Dataset shift

In the context of supervised learning, one can distinguish dataset
shift as a shift in various distributions:

1) Covariate shift: shift in the independent variables (p(x)).
2) Prior probability shift: shift in the target variable (the

class, p(y)).
3) Concept shift: shift in the relationship between the inde-

pendent and target variables (i.e. p(x|y)).
Note that there is a lot of variation in terminology used, refer-

ring to probabilities prevents this ambiguity. For more information
on dataset shift see Quinonero-Candela et al. [QCSSL08].

popmon is primarily interested in monitoring the distributions
of features p(x) and labels p(y) for monitoring trained classifiers.
These data in deployment ideally resembles the training data.

Historical data

Data (nD)

D1 D2 D3 D4 D5

Partition on
time-axis

Source data

Temporal partitioning

D1 D2 D3 D4 D5

New data

Comparison generation

External
Reference

dataset
(optional)

Metric

Statistical comparison

Dynamic bounds

Reporting

Tim
e-axis

Data representation

Value of interest
over time Reference distribution Traffic light bounds

Value of interest
over time

Partitioned dataset

Histograms per feature for each partition

Fig. 2: Step-by-step overview of popmon’s pipeline as described in
section approach onward.

196 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

However, the package can be used more widely, for instance
by monitoring interactions between features and the label, or the
distribution of model predictions.

Temporal representation

popmon requires features to be distributed as a function of time
(bins), which can be provided in two ways:

1) Time axis. Two-dimensional (or higher) distributions are
provided, where the first dimension is time and the second
is the feature to monitor. To get time slices, the time
column needs to be specified, e.g. “date”, including the
bin width, e.g. one week (“1w”), and the offset, which is
the lower edge of one time-bin, e.g. a certain start date
(“2022-1-1”).

2) Ordered data batches. A set of distributions of features
is provided, corresponding to a new batch of data. This
batch is considered a new time-slice, and is stitched to
an existing set of batches, in order of incoming batches,
where each batch is assigned a unique, increasing index.
Together the indices form an artificial, binned time-axis.

Data representation

popmon uses histogram-based monitoring to track potential
dataset shift and outliers over time, as detailed in the next sub-
section.

In the literature, alternative data representations are also em-
ployed, such as kdq-trees [DKVY06]. Different data representa-
tions are in principle compatible with the popmon pipeline, as it
is similarly structured to alternative methods (see [LLD+18], c.f.
Fig 5).

Dimensionality reduction techniques may be used to transform
the input dataset into a space where the distance between instances
are more meaningful for comparison, before using popmon, or in-
between steps. For example a linear projection may be used as a
preprocessing step, by taking the principal components of PCA as
in [QAWZ15]. Machine learning classifiers or autoencoders have
also been used for this purpose [LWS18], [RGL19] and can be
particularly helpful for high-dimensional data such as images or
text.

Histogram-based monitoring

There are multiple reasons behind the histogram-based monitoring
approach taken in popmon.

Histograms are small in size, and thus are efficiently stored and
transferred, regardless of the input dataset size. Once data records
have been aggregated feature-wise, with a minimum number of
entries per bin, they are typically no longer privacy sensitive (e.g.
knowing the number of records with age 30-35 in a dataset).

popmon is primarily looking for changes in data distributions.
Solely monitoring the (main) profiles of a distribution, such as
the mean, standard deviation and min and max values, does not
necessarily capture the changes in a feature’s distribution. Well-
known examples of this are Anscome’s Quartet [Ans73] and the
dinosaurs datasets [MF17], where – between different datasets –
the means and correlation between two features are identical, but
the distributions are different. Histograms of the corresponding
features (or feature pairs), however, do capture the corresponding
changes.

Implementation

For the creation of histograms from data records the open-source
histogrammar package has been adopted. histogrammar
has been implemented in both Scala and Python [PS21],
[PSSE16], and works on Spark and pandas dataframes re-
spectively. The two implementations have been tested exten-
sively to guarantee compatibility. The histograms coming out
of histogrammar form the basis of the monitoring code in
popmon, which otherwise does not require input dataframes. In
other words, the monitoring code itself has no Spark or pandas
data dependencies, keeping the code base relatively simple.

Histogram types

Three types of histograms are typically used:

• Normal histograms, meant for numerical features with
known, fixed ranges. The bin specifications are the lowest
and highest expected values and the number of (equidis-
tant) bins.

• Categorical histograms, for categorical and ordinal fea-
tures, typically boolean or string-based. A categorical
histogram accepts any value: when not yet encountered,
it creates a new bin. No bin specifications are required.

• Sparse histograms are open-ended histograms, for numer-
ical features with no known range. The bin specifications
only need the bin-width, and optionally the origin (the
lower edge of bin zero, with a default value of zero).
Sparse histograms accept any value. When the value is
not yet encountered, a new bin gets created.

For normal and sparse histograms reasonable bin specifica-
tions can be derived automatically. Both categorical and sparse
histograms are dictionaries with histogram properties. New (index,
bin) pairs get created whenever needed. Although this could result
in out-of-memory problems, e.g. when histogramming billions
of unique strings, in practice this is typically not an issue, as
this can be easily mitigated. Features may be transformed into
a representation with a lower number of distinct values, e.g. via
embedding or substrings; or one selects the top-n most frequently
occurring values.

Open-ended histograms are ideal for monitoring dataset shift
and outliers: they capture any kind of (large) data change. When
there is a drift, there is no need to change the low- and high-range
values. The same holds for outlier detection: if a new maximum
or minimum value is found, it is still captured.

Dimensionality

A histogram can be multi-dimensional, and any combination of
types is possible. The first dimension is always the time axis,
which is always represented by a sparse histogram. The second
dimension is the feature to monitor over time. When adding a third
axis for another feature, the heatmap between those two features
is created over time. For example, when monitoring financial
transactions: the first axis could be time, the second axis client
type, and the third axis transaction amount.

Usually one feature is followed over time, or at maximum two.
The synthetic datasets in section synthetic datasets contain exam-
ples of higher-dimensional histograms for known interactions.

POPMON: ANALYSIS PACKAGE FOR DATASET SHIFT DETECTION 197

Additivity

Histograms are additive. As an example, a batch of data records
arrives each week. A new batch arrives, containing timestamps
that were missing in a previous batch. When histograms are made
of the new batch, these can be readily summed with the histograms
of the previous batches. The missing records are immediately put
into the right time-slices.

It is important that the bin specifications are the same between
different batches of data, otherwise their histograms cannot be
summed and comparisons are impossible.

Limitations

There is one downside to using histograms: since the data get
aggregated into bins, and profiles and statistical tests are obtained
from the histograms, slightly lower resolution is achieved than
on the full dataset. In practice, however, this is a non-issue;
histograms work great for data monitoring. The reference type
and time-axis binning configuration allow the user for selecting an
effective resolution.

Comparisons

In popmon the monitoring of data stability is based on statistical
process control (SPC) techniques. SPC is a standard method to
manage the data quality of high-volume data processing opera-
tions, for example in a large data warehouse [Eng99]. The idea
is as follows. Most features have multiple sources of variation
from underlying processes. When these processes are stable, the
variation of a feature over time should remain within a known
set of limits. The level of variation is obtained from a reference
dataset, one that is deemed stable and trustworthy.

For each feature in the input data (except the time column),
the stability is determined by taking the reference dataset – for
example the data on which a classification model was trained –
and contrasting each time slot in the input data.

The comparison can be done in two ways:

1) Comparisons: statistically comparing each time slot
to the reference data (for example using Kolmogorov-
Smirnov testing, χ2 testing, or the Pearson correlation).

2) Profiles: for example, tracking the mean of a distribution
over time and contrasting this to the reference data.
Similar analyses can be done for other summary statistics,
such as the median, min, max or quantiles. This is related
to the CUsUM technique [Pag54], a well-known method
in SPC.

Reference types

Consider X to be an N-dimensional dataset representing our
reference data, and X ′ to be our incoming data. A covariate shift
occurs when p(X) 6= p(X ′) is detected. Different choices for X
and X ′ may detect different types of drift (e.g. sudden, gradual,
incremental). p(X) is referred to as the reference dataset.

Many change-detection algorithms use a window-based solu-
tion that compares a static reference to a test window [DKVY06],
or a sliding window for both, where the reference is dynamically
updated [QAWZ15]. A static reference is a wise choice for mon-
itoring of a trained classifier: the performance of such a classifier
depends on the similarity of the test data to the training data.
Moreover, it may pick up an incremental departure (trend) from
the initial distribution, that will not be significant in comparison to

the adjacent time-slots. A sliding reference, on the other hand,
is updated with more recent data, that incorporates this trend.
Consider the case where the data contain a price field that is yearly
indexed to the inflation, then using a static reference may alert
purely on the trend.

The reference implementations are provided for common sce-
narios, such as working with a fixed dataset, batched dataset or
with streaming data. For instance, a fixed dataset is common for
exploratory data analysis and one-off monitoring, whereas batched
or streaming data is more common in a production setting.

The reference may be static or dynamic. Four different refer-
ence types are possible:

1) Self-reference. Using the full dataset on which the sta-
bility report is built as a reference. This method is static:
each time slot is compared to all the slots in the dataset.
This is the default reference setting.

2) External reference. Using an external reference set, for
example the training data of your classifier, to identify
which time slots are deviating. This is also a static
method: each time slot is compared to the full reference
set.

3) Rolling reference. Using a rolling window on the input
dataset, allowing one to compare each time slot to a
window of preceding time slots. This method is dynamic:
one can set the size of the window and the shift from the
current time slot. By default the 10 preceding time slots
are used.

4) Expanding reference. Using an expanding reference,
allowing one to compare each time slot to all preceding
time slots. This is also a dynamic method, with variable
window size, since all available previous time slots are
used. For example, with ten available time slots the
window size is 9.

Statistical comparisons

Users may have various reasons to prefer a two-sample test over
another. The appropriate comparison depends on our confidence in
the reference dataset [Ric22], and certain tests may be more com-
mon in some fields. Many common tests are related [DKVY06],
e.g. the χ2 function is the first-order expansion of the KL distance
function.

Therefore, popmon provides an extensible framework that
allows users to provide custom two-sample tests using a simple
syntax, via the registry pattern:
@Comparisons.register(key="jsd", description="JSD")
def jensen_shannon_divergence(p, q):

m = 0.5 * (p + q)
return (

0.5 *
(kl_divergence(p, m) + kl_divergence(q, m))

)

Most commonly used test statistics are implemented, such as the
Population-Stability-Index and the Jensen-Shannon divergence.
The implementations of the χ2 and Kolmogorov-Smirnov tests
account for statistical fluctuations in both the input and reference
distributions. For example, this is relevant when comparing adja-
cent, low-statistics time slices.

Profiles

Tracking the distribution of values of interest over time is achieved
via profiles. These are functions of the input histogram. Metrics

198 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

may be defined for all dimensions (e.g. count, correlations), or
for specific dimensions as in the case of 1D numerical histograms
(e.g. quantiles). Extending the existing set of profiles is possible
via a syntax similar as above:
@Profiles.register(

key=["q5", "q50", "q95"],
description=[

"5% percentile",
"50% percentile (median)",
"95% percentile"

],
dim=1,
type="num"

)
def profile_quantiles(values, counts):

return logic_goes_here(values, counts)

Denote xi(t) as the profile i of feature x at time t, for example the
5% quantile of the histogram of incoming transaction amounts in
a given week. Identical bin specifications are assumed between the
reference and incoming data. x̄i is defined as the average of that
metric on the reference data, and σxi as the corresponding standard
deviation.

The normalized residual between the incoming and reference
data, also known as the “pull” or “Z-score”, is given by:

pulli(t) =
xi(t)− x̄i

σxi

.

When the underlying sources of variation are stable, and assuming
the reference dataset is asymptotically large and independent from
the incoming data, pulli(t) follows a normal distribution centered
around zero and with unit width, N(0,1), as dictated by the central
limit theorem [Fis11].

In practice, the criteria for normality are hardly ever met. Typi-
cally the distribution is wider with larger tails. Yet, approximately
normal behaviour is exhibited. Chebyshev’s inequality [Che67]
guarantees that, for a wide class of distributions, no more than 1

k2

of the distribution’s values can be k or more standard deviations
away from the mean. For example, a minimum of 75% (88.9%) of
values must lie within two (three) standard deviations of the mean.
These boundaries reoccur in Sec. dynamic monitoring rules.

Alerting

For alerting, popmon uses traffic-light-based monitoring rules,
raising green, yellow or red alerts to the user. Green alerts signal
the data are fine, yellow alerts serve as warnings of meaningful
deviations, and red alerts need critical attention. These monitoring
rules can be static or dynamic, as explained in this section.

Static monitoring rules

Static monitoring rules are traditional data quality rules (e.g.
[RD00]). Denote xi(t) as metric i of feature x at time t, for example
the number of NaNs encountered in feature x on a given day. As
an example, the following traffic lights might be set on xi(t):

T L(xi, t) =

Green, if xi(t)≤ 1
Yellow, if 1 < xi(t)≤ 10
Red, if xi(t)> 10

The thresholds of this monitoring rule are fixed, and considered
static over time. They need to be set by hand, to sensible values.
This requires domain knowledge of the data and the processes
that produce it. Setting these traffic light ranges is a time-costly
process when covering many features and corresponding metrics.

Fig. 3: A snapshot of part of the HTML stability report. It shows the
aggregated traffic light overview. This view can be used to prioritize
features for inspection.

Dynamic monitoring rules

Dynamic monitoring rules are complementary to static rules. The
levels of variation in feature metrics are assumed to have been
measured on the reference data. Per feature metric, incoming data
are compared against the reference levels. When (significantly)
outside of the known bounds, instability of the underlying sources
is assumed, and a warning gets raised to the user.

popmon’s dynamic monitoring rules raise traffic lights to
the user whenever the normalized residual pulli(t) falls outside
certain, configurable ranges. By default:

T L(pulli, t) =

Green, if |pulli(t)| ≤ 4
Yellow, if 4 < |pulli(t)| ≤ 7
Red, if |pulli(t)|> 7

If the reference dataset is changing over time, the effective ranges
on xi(t) can change as well. The advantage of this approach over
static rules is that significant deviations in the incoming data can
be flagged and alerted to the user for a large set of features and
corresponding metrics, requiring little (or no) prior knowledge of
the data at hand. The relevant knowledge is all extracted from the
reference dataset.

With multiple feature metrics, many dynamic monitoring tests
can get performed on the same dataset. This raises the multiple
comparisons problem: the more inferences are made, the more
likely erroneous red flags are raised. To compensate for a large
number of tests being made, typically one can set wider traffic
light boundaries, reducing the false positive rate.2 The boundaries
control the size of the deviations - or number of red and yellow
alerts - that the user would like to be informed of.

Reporting

popmon outputs monitoring results as HTML stability reports.
The reports offer multiple views of the data (histograms and
heatmaps), the profiles and comparisons, and traffic light alerts.
There are several reasons for providing self-contained reports: they
can be opened in the browser, easily shared, stored as artifacts, and
tracked using tools such as MLFlow. The reports also have no need
for an advanced infrastructure setup, and are possible to create and

2. Alternatively one may apply the Bonferroni correction to counteract this
problem [Bon36].

POPMON: ANALYSIS PACKAGE FOR DATASET SHIFT DETECTION 199

Fig. 4: LED: Pearson correlation compared with previous histogram.
The shifting points are correctly identified at every 5th of the LED
dataset. Similar patterns are visible for other comparisons, e.g. χ2.

view in many environments: from a local machine, a (restricted)
environment, to a public cloud. If, however, a certain dashboarding
tool is available, then the metrics computed by popmon are
exposed and can be exported into that tool, for example Kibana
[Ela22]. One downside of producing self-contained reports is that
they can get large when the plots are pre-rendered and embedded.
This is mitigated by embedding plots as JSON that are (lazily)
rendered on the client-side. Plotly express [Plo22] powers the
interactive embedded plots in popmon as of v1.0.0.

Note that multiple reference types can be used in the same sta-
bility report. For instance, popmon’s default reference pipelines
always include a rolling comparison with window size 1, i.e.
comparing to the preceding time slot.

Synthetic datasets

In the literature synthetic datasets are commonly used to test the
effectiveness of dataset shift monitoring approaches [LLD+18].
One can test the detection for all kinds of shifts, as the generation
process controls when and how the shift happens. popmon has
been tested on multiple of such artificial datasets: Sine1, Sine2,
Mixed, Stagger, Circles, LED, SEA and Hyperplane [PVP18],
[SK], [Fan04]. These datasets cover myriad dataset shift charac-
teristics: sudden and gradual drifts, dependency of the label on
just one or multiple features, binary and multiclass labels, and
containing unrelated features. The dataset descriptions and sample
popmon configurations are available in the code repository.

The reports generated by popmon capture features and time
bins where the dataset shift is occurring for all tested datasets.
Interactions between features and the label can be used for
feature selection, in addition to monitoring the individual feature
distributions. The sudden and gradual drifts are clearly visible
using a rolling reference, see Fig. 4 for examples. The drift in the
Hyperplane dataset, incremental and gradual, is not expected to be
detected using a rolling reference or self-reference. Moreover, the
dataset is synthesized so that the distribution of the features and
the class balance does not change [Fan04].

The process to monitor this dataset could be set up in multiple
ways, one of which is described here. A logistic regression model
is trained on the first 10% of the data, which is also used as static

Fig. 5: Sine1: The dataset shifts around data points 20.000, 40.000,
60.000 and 80.000 of the Sine1 dataset are clearly visible.

Fig. 6: Hyperplane: The incremental drift compared to the reference
dataset is observed for the PhiK correlation between the predictions
and the label.

reference. The predictions of this model are added to the dataset,
simulating a machine learning model in production. popmon is
able to pick up the divergence between the predictions and the
class label, as depicted in Figure 6.

Conclusion

This paper has presented popmon, an open-source Python pack-
age to check the stability of a tabular dataset. Built around
histogram-based monitoring, it runs on a dataset of arbitrary size,
supporting both pandas and Spark dataframes. Using the variations
observed in a reference dataset, popmon can automatically detect
and flag deviations in incoming data, requiring little prior domain
knowledge. As such, popmon is a scalable solution that can be
applied to many datasets. By default its findings get presented
in a single HTML report. This makes popmon ideal for both
exploratory data analysis and as a monitoring tool for machine
learning models running in production. We believe the combina-
tion of out-of-the-box performance and presented features makes
popmon an excellent addition to the data practitioner’s toolbox.

200 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Acknowledgements

We thank our colleagues from the ING Analytics Wholesale
Banking team for fruitful discussions, all past contributors to
popmon, and in particular Fabian Jansen and Ilan Fridman Rojas
for carefully reading the manuscript. This work is supported by
ING Bank.

REFERENCES

[Ans73] F.J. Anscome. Graphs in statistical analysis. American
Statistician. 27 (1), pages 17–21, 1973. URL: https://doi.org/
10.2307/2682899, doi:10.2307/2682899.

[Bon36] Carlo Bonferroni. Teoria statistica delle classi e calcolo delle
probabilita. Pubblicazioni del R Istituto Superiore di Scienze
Economiche e Commericiali di Firenze, 8:3–62, 1936.

[Che67] Pafnutii Lvovich Chebyshev. Des valeurs moyennes, liou-
ville’s. J. Math. Pures Appl., 12:177–184, 1867.

[DKVY06] Tamraparni Dasu, Shankar Krishnan, Suresh Venkatasubra-
manian, and Ke Yi. An information-theoretic approach to
detecting changes in multi-dimensional data streams. In In
Proc. Symp. on the Interface of Statistics, Computing Science,
and Applications. Citeseer, 2006.

[Ela22] Elastic. Kibana, 2022. URL: https://github.com/elastic/kibana.
[Eng99] Larry English. Improving Data Warehouse and Business Infor-

mation Quality: Methods for Reducing Costs and Increasing
Profits. Wiley, 1999.

[Fan04] Wei Fan. Systematic data selection to mine concept-drifting
data streams. In Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, KDD ’04, page 128–137, New York, NY, USA, 2004.
Association for Computing Machinery. URL: https://doi.
org/10.1145/1014052.1014069, doi:10.1145/1014052.
1014069.

[Fis11] Hans Fischer. The Central Limit Theorem from Laplace to
Cauchy: Changes in Stochastic Objectives and in Analytical
Methods, pages 17–74. Springer New York, New York, NY,
2011. URL: https://doi.org/10.1007/978-0-387-87857-7_2,
doi:10.1007/978-0-387-87857-7_2.

[GCSG22] Abe Gong, James Campbell, Superconductive, and Great Ex-
pectations. Great Expectations, 2022. URL: https://github.
com/great-expectations/great_expectations, doi:10.5281/
zenodo.5683574.

[HMvdW+20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der
Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del
Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant,
Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer
Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array pro-
gramming with NumPy. Nature, 585(7825):357–362, Septem-
ber 2020. URL: https://doi.org/10.1038/s41586-020-2649-2,
doi:10.1038/s41586-020-2649-2.

[KVLC+20] Janis Klaise, Arnaud Van Looveren, Clive Cox, Giovanni
Vacanti, and Alexandru Coca. Monitoring and explainability
of models in production. arXiv preprint arXiv:2007.06299,
2020. URL: https://doi.org/10.48550/arXiv.2007.06299, doi:
10.48550/arXiv.2007.06299.

[LL17] Scott M Lundberg and Su-In Lee. A unified approach to in-
terpreting model predictions. Advances in neural information
processing systems, 30, 2017.

[LLD+18] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and
Guangquan Zhang. Learning under concept drift: A review.
IEEE Transactions on Knowledge and Data Engineering,
31(12):2346–2363, 2018. doi:10.1109/TKDE.2018.
2876857.

[LPO17] David Lopez-Paz and Maxime Oquab. Revisiting classifier
two-sample tests. In International Conference on Learning
Representations, 2017.

[LWS18] Zachary Lipton, Yu-Xiang Wang, and Alexander Smola. De-
tecting and correcting for label shift with black box predictors.
In International conference on machine learning, pages 3122–
3130. PMLR, 2018.

[MF17] Justin Matejka and George Fitzmaurice. Same stats, different
graphs: generating datasets with varied appearance and identi-
cal statistics through simulated annealing. In Proceedings of
the 2017 CHI conference on human factors in computing sys-
tems, pages 1290–1294, 2017. URL: https://doi.org/10.1145/
3025453.3025912, doi:10.1145/3025453.3025912.

[Pag54] Ewas S Page. Continuous inspection schemes. Biometrika,
41(1/2):100–115, 1954. URL: https://doi.org/10.2307/
2333009, doi:10.2307/2333009.

[pdt20] The pandas development team. pandas-dev/pandas: Pan-
das, February 2020. URL: https://doi.org/10.5281/zenodo.
3509134, doi:10.5281/zenodo.3509134.

[Plo22] Plotly Development Team. Plotly.py: The interactive graphing
library for Python (includes Plotly Express), 6 2022. URL:
https://github.com/plotly/plotly.py.

[PS21] Jim Pivarski and Alexey Svyatkovskiy.
histogrammar/histogrammar-scala: v1.0.20, April
2021. URL: https://doi.org/10.5281/zenodo.4660177,
doi:10.5281/zenodo.4660177.

[PSSE16] Jim Pivarski, Alexey Svyatkovskiy, Ferdinand Schenck,
and Bill Engels. histogrammar-python: 1.0.0, September
2016. URL: https://doi.org/10.5281/zenodo.61418, doi:10.
5281/zenodo.61418.

[PVP18] Ali Pesaranghader, Herna Viktor, and Eric Paquet. Reser-
voir of diverse adaptive learners and stacking fast hoeffding
drift detection methods for evolving data streams. Machine
Learning, 107(11):1711–1743, 2018. URL: https://doi.org/10.
1007/s10994-018-5719-z, doi:10.1007/s10994-018-
5719-z.

[QAWZ15] Abdulhakim A Qahtan, Basma Alharbi, Suojin Wang, and
Xiangliang Zhang. A pca-based change detection frame-
work for multidimensional data streams: Change detection
in multidimensional data streams. In Proceedings of the
21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 935–944, 2015. doi:
10.1145/2783258.2783359.

[QCSSL08] Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton
Schwaighofer, and Neil D Lawrence. Dataset shift in machine
learning. Mit Press, 2008.

[RD00] Erhard Rahm and Hong Hai Do. Data cleaning: Problems and
current approaches. IEEE Data Eng. Bull., 23(4):3–13, 2000.

[RGL19] Stephan Rabanser, Stephan Günnemann, and Zachary
Lipton. Failing loudly: An empirical study of
methods for detecting dataset shift. Advances in
Neural Information Processing Systems, 32, 2019.
URL: https://proceedings.neurips.cc/paper/2019/hash/
846c260d715e5b854ffad5f70a516c88-Abstract.html.

[Ric22] Oliver E Richardson. Loss as the inconsistency of a proba-
bilistic dependency graph: Choose your model, not your loss
function. In International Conference on Artificial Intelligence
and Statistics, pages 2706–2735. PMLR, 2022.

[SK] W Nick Street and YongSeog Kim. A streaming ensemble
algorithm (sea) for large-scale classification. In Proceedings
of the Seventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’01, page
377–382, New York, NY, USA. Association for Comput-
ing Machinery. URL: https://doi.org/10.1145/502512.502568,
doi:10.1145/502512.502568.

[SLL20] Pascal Sturmfels, Scott Lundberg, and Su-In Lee. Visu-
alizing the impact of feature attribution baselines. Distill,
2020. https://distill.pub/2020/attribution-baselines. doi:
10.23915/distill.00022.

[SLS+18] Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem
Celikel, Felix Biessmann, and Andreas Grafberger. Automat-
ing large-scale data quality verification. Proc. VLDB Endow.,
11(12):1781–1794, aug 2018. URL: https://doi.org/10.14778/
3229863.3229867, doi:10.14778/3229863.3229867.

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski,
Pearu Peterson, Warren Weckesser, Jonathan Bright, Sté-
fan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quin-
tero, Charles R. Harris, Anne M. Archibald, Antônio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy

POPMON: ANALYSIS PACKAGE FOR DATASET SHIFT DETECTION 201

1.0 Contributors. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17:261–272,
2020. doi:10.1038/s41592-019-0686-2.

[VLKV+22] Arnaud Van Looveren, Janis Klaise, Giovanni Vacanti, Oliver
Cobb, Ashley Scillitoe, and Robert Samoilescu. Alibi Detect:
Algorithms for outlier, adversarial and drift detection, 4 2022.
URL: https://github.com/SeldonIO/alibi-detect.

[WM10] Wes McKinney. Data Structures for Statistical Computing in
Python. In Stéfan van der Walt and Jarrod Millman, editors,
Proceedings of the 9th Python in Science Conference, pages
56–61, 2010. doi:10.25080/Majora-92bf1922-00a.

[ZXW+16] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata
Das, Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh
Rosen, Shivaram Venkataraman, Michael J. Franklin, Ali Gh-
odsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. Apache
spark: A unified engine for big data processing. Commun.
ACM, 59(11):56–65, oct 2016. URL: https://doi.org/10.1145/
2934664, doi:10.1145/2934664.

202 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

pyDAMPF: a Python package for modeling
mechanical properties of hygroscopic materials under

interaction with a nanoprobe

Willy Menacho‡§, Gonzalo Marcelo Ramírez-Ávila‡§, Horacio V. Guzman¶‖‡§∗

F

Abstract—pyDAMPF is a tool oriented to the Atomic Force Microscopy (AFM)
community, which allows the simulation of the physical properties of materials
under variable relative humidity (RH). In particular, pyDAMPF is mainly focused
on the mechanical properties of polymeric hygroscopic nanofibers that play an
essential role in designing tissue scaffolds for implants and filtering devices.
Those mechanical properties have been mostly studied from a very coarse
perspective reaching a micrometer scale. However, at the nanoscale, the me-
chanical response of polymeric fibers becomes cumbersome due to both exper-
imental and theoretical limitations. For example, the response of polymeric fibers
to RH demands advanced models that consider sub-nanometric changes in the
local structure of each single polymer chain. From an experimental viewpoint,
choosing the optimal cantilevers to scan the fibers under variable RH is not
trivial.

In this article, we show how to use pyDAMPF to choose one optimal
nanoprobe for planned experiments with a hygroscopic polymer. Along these
lines, We show how to evaluate common and non-trivial operational parame-
ters from an AFM cantilever of different manufacturers. Our results show in a
stepwise approach the most relevant parameters to compare the cantilevers
based on a non-invasive criterion of measurements. The computing engine is
written in Fortran, and wrapped into Python. This aims to reuse physics code
without losing interoperability with high-level packages. We have also introduced
an in-house and transparent method for allowing multi-thread computations to
the users of the pyDAMPF code, which we benchmarked for various comput-
ing architectures (PC, Google Colab and an HPC facility) and results in very
favorable speed-up compared to former AFM simulators.

Index Terms—Materials science, Nanomechanical properties, AFM, f2py, multi-
threading CPUs, numerical simulations, polymers

Introduction and Motivation

This article provides an overview of pyDAMPF, which is a
BSD licensed, Python and Fortran modeling tool that enables
AFM users to simulate the interaction between a probe (can-
tilever) and materials at the nanoscale under diverse environments.
The code is packaged in a bundle and hosted on GitHub at
(https://github.com/govarguz/pyDAMPF).

‡ Instituto de Investigaciones Físicas.
§ Carrera de Física, Universidad Mayor de San Andrés. Campus Universitario
Cota Cota. La Paz, Bolivia
* Corresponding author: horacio.guzman@ijs.si
¶ Department of Theoretical Physics
|| Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

Copyright © 2022 Willy Menacho et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

Despite the recent open-source availability of dynamic AFM
simulation packages [GGG15], [MHR08], a broad usage for the
assessment and planning of experiments has yet to come. One of
the problems is that it is often hard to simulate several operational
parameters at once. For example, most scientists evaluate differ-
ent AFM cantilevers before starting new experiments. A typical
evaluation criterion is the maximum exerted force that prevents
invasivity of the nanoprobe into the sample. The variety of AFM
cantilevers depends on the geometrical and material characteristics
used for its fabrication. Moreover, manufacturers’ nanofabrication
techniques may change from time to time, according to the
necessities of the experiments, like sharper tips and/or higher
oscillation frequencies. From a simulation perspective, evaluating
observables for reaching optimal results on upcoming experiments
is nowadays possible for tens or hundreds of cantilevers. On top of
other operational parameters in the case of dynamic AFM like the
oscillation amplitude A0, set-point Asp, among other materials ex-
pected properties that may feed simulations and create simulations
batches of easily thousands of cases. Given this context, we focus
this article on choosing a cantilever out of an initial pyDAMPF
database of 30. In fact, many of them are similar in terms of spring
constant kc, cantilever volume Vc and also Tip’s radius RT . Then
we focus on seven archetypical and distinct cases/cantilevers to
understand the characteristics of each of the parameters specified
in the manufacturers’ datasheets, by evaluating the maximum
(peak) forces.

We present four scenarios comparing a total of seven can-
tilevers and the same sample, where we use as a test-case Poly-
Vinyl Acetate (PVA) fiber. The first scenario (Figure 1) illustrates
the difference between air and a moist environment. On the
second one, a cantilever, only very soft and stiff cantilever spring
constants are compared (see Figure :ref:fig1b‘). At the same time,
the different volumes along the 30 cantilevers are depicted in
Figure 3. A final and mostly very common comparison is scenario
4, by comparing one of the most sensitive parameters to the force
of the tip’s radii (see Figure 4).

The quantitative analysis for these four scenarios is presented
and also the advantages of computing several simulation cases
at once with our in-house development. Such a comparison is
performed under the most common computers used in science,
namely, personal computers (PC), cloud (Colab) and supercom-
puting (small Xeon based cluster). We reach a Speed-up of 20
over the former implementation [GGG15].

PYDAMPF: A PYTHON PACKAGE FOR MODELING MECHANICAL PROPERTIES OF HYGROSCOPIC MATERIALS UNDER INTERACTION WITH A NANOPROBE 203

Another novelty of pyDAMPF is the detailed [GS05] calcu-
lation of the environmental-related parameters, like the quality
factor Q.

Here, we summarize the main features of pyDAMPF are:

• Highly efficient structure in terms of time-to-result, at least
one order of magnitude faster than existing approaches.

• Easy to use for scientists without a computing background,
in particular in the use of multi-threads.

• It supports the addition of further AFM cantilevers and
parameters into the code database.

• Allows an interactive analysis, including a graphical and
table-based comparison of results through Jupyter Note-
books.

The results presented in this article are available as Google
Colaboratory notebook, which facilitates to explore pyDAMPF
and these examples.

Methods

Processing inputs

pyDAMPF counts with an initial database of 30 cantilevers,
which can be extended at any time by accessing to the file can-
tilevers_data.txt then, the program inputs_processor.py reads the
cantilever database and asks for further physical and operational
variables, required to start the simulations. This will generate
tempall.txt, which contains all cases e.g. 30 to be simulated with
pyDAMPF

def inputs_processor(variables,data):
a,b = np.shape(data)
final = gran_permutador(variables, data)
f_name = ' tempall.txt'
np.savetxt(f_name,final)
directory = os.getcwd()
shutil.copy(directory+'/tempall.txt',directory+'

/EXECUTE_pyDAMPF/')
shutil.copy(directory+'/tempall.txt',directory+'

/EXECUTE_pyDAMPF/pyDAMPF_BASE/nrun/')

The variables inside the argument of the function inputs_processor
are interactively requested from a shell command line. Then the
file tempall.txt is generated and copied to the folders that will
contain the simulations.

Execute pyDAMPF

For execution in a single or multi-thread way, we require first
to wrap our numeric core from Fortran to Python by using
f2py [Vea20]. Namely, the file pyDAMPF.f90 within the folder
EXECUTE_pyDAMPF.

Compilation with f2py: This step is only required once
and depends on the computer architecture the code for this reads:

f2py -c --fcompiler=gnu95 pyDAMPF.f90 -m mypyDAMPF

This command-line generates mypyDAMPF.so, which will be
automatically located in the simulation folders.

Once we have obtained the numerical code as Python modules,
we need to choose the execution mode, which can be serial or
parallel. Whereby parallel refers to multi-threading capabilities
only within this first version of the code.

Serial method: This method is completely transparent to
the user and will execute all the simulation cases found in the file
tempall.txt by running the script inputs_processor.py. Our in-house
development creates an individual folder for each simulation case,
which can be executed in one thread.

def serial_method(tcases, factor, tempall):
lst = gen_limites(tcases, factor)
change_dir()
for i in range(1,factor+1):

direc = os.getcwd()
direc2 = direc+'/pyDAMPF_BASE/'
direc3 = direc+'/SERIALBASIC_0/'+str(i)+'/'
shutil.copytree (direc2,direc3)

os.chdir (direc+'/SERIALBASIC_0/1/nrun/')
exec(open('generate_cases.py').read())

As arguments, the serial method requires the total number of
simulation cases obtained from tempall.txt. In contrast, the factor
parameter has, in this case,a default value of 1.

Parallel method: The parallel method uses more than one
computational thread. It is similar to the serial method; however,
this method distributes the total load along the available threads
and executes in a parallel-fashion. This method comprises two
parts: first, a function that takes care of the bookkeeping of cases
and folders:

def Parallel_method(tcases, factor, tempall):
lst = gen_limites(tcases, factor)
change_dir()
for i in range(1,factor+1):

lim_inferior=lst[i-1][0]
lim_superior=lst[i-1][1]
direc =os.getcwd()
direc2 =direc+'/pyDAMPF_BASE/'
direc3 =direc+'/SERIALBASIC_0/'+str(i)+'/'
shutil.copytree (direc2,direc3)
factorantiguo = ' factor=1'
factornuevo='factor='+str(factor)
rangoantiguo = '(0,paraleliz)'
rangonuevo='('+str(lim_inferior)+','

+str(lim_superior)+')'
os.chdir(direc+'/PARALLELBASIC_0/'+str(i))
pyname =' nrun/generate_cases.py'
newpath=direc+'/PARALLELBASIC_0/'+str(i)+'/'

+pyname
reemplazo(newpath,factorantiguo,factornuevo)
reemplazo(newpath,rangoantiguo,rangonuevo)
os.chdir(direc)

This part generates serial-like folders for each thread’s number of
cases to be executed.

The second part of the parallel method will execute pyDAMPF,
which contains at the same time two scripts. One for executing
pyDAMPF in a common UNIX based desktop or laptop. While the
second is a python script that generated SLURM code to launch
jobs in HPC facilities.

• Execution with SLURM

It runs pyDAMPF in different threads under the SLURM
queuing system.

def cluster(factor):
for i in range(1,factor+1):

with open('jobpyDAMPF'+str(i)+'.x','w')
as ssf :

ssf.write('#/bin/bashl|n ')
ssf.write('#SBATCH--time=23:00:00

\n')
ssf.write('#SBATCH--constraint=

epyc3\n')

204 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

ssf.write('\n')
ssf.write('ml Anaconda3/2019.10\n')
ssf.write('\n')
ssf.write('ml foss/2018a\n')
ssf.write('\n')
ssf.write('cd/home/$<USER>/pyDAMPF/

EXECUTE_pyDAMPF/PARALLELBASIC_0/'+str(i)+'/nrun
\n')

ssf.write('\n')
ssf.write('echo$pwd\n')
ssf.write('\n')
ssf.write('python3 generate_cases.py

\n')
ssf.close();

os.system(sbatch jobpyDAMPF)'+str(i)+'
.x;')

os.system(rm jobpyDAMPF)'+str(i)+'.x;')

The above script generates SLURM jobs for a chosen set of
threads; after launched, those jobs files are erased in order to
improve bookkeeping.

• Parallel execution with UNIX based Laptops or Desktops

Usually, microscopes (AFM) computers have no SLURM pre-
installed; for such a configuration, we run the following script:

def compute(factor):
direc = os.getcwd()
for i in range(1,factor+1):

os.chdir(direc+'/PARALLELBASIC_0/'+
str(i)+'/nrun')

os.system('python3 generate_cases.py
&')

os.chdir(direc)

This function allows the proper execution of the parallel case
without a queuing system and where a slight delay might appear
from thread to thread execution.

Analysis

Graphically:

• With static graphics, as shown in Figures 5, 9, 13 and 17.

python3 Graphical_analysis.py

• With interactive graphics, as shown in Figure 18.

pip install plotly

jupyter notebook Graphical_analysis.ipynb

Quantitatively:

• With static data table:

python3 Quantitative_analysis.py

• With interactive tables
Quantitative_analysis.ipynb uses a minimalistic dashboard
application for tabular data visualization tabloo with easy
installation.:

pip install tabloo

jupyter notebook Quantitative_analysis.ipynb

Results and discussions

In Figure 1, we show four scenarios to be tackled in this test-
case for pyDAMPF. As described in the introduction, the first
scenario (Figure 1), compares between air and moist environment,
the second tackles soft and stiff cantilevers(see Figure 2), next
is Figure Figure 3, with the cantilever volume comparison and

Fig. 1: Schematic of the tip-sample interface comparing air at a given
Relative Humidity with air.

Fig. 2: Schematic of the tip-sample interface comparing a hard (stiff)
cantilever with a soft cantilever.

Fig. 3: Schematic of the tip-sample interface comparing a cantilever
with a high volume compared with a cantilever with a small volume.

PYDAMPF: A PYTHON PACKAGE FOR MODELING MECHANICAL PROPERTIES OF HYGROSCOPIC MATERIALS UNDER INTERACTION WITH A NANOPROBE 205

Fig. 4: Schematic of the tip-sample interface comparing a cantilever
with a wide tip with a cantilever with a sharp tip.

Fig. 5: Time-varying force for PVA at RH = 60.1% for different
cantilevers. The simulations show elastic (Hertz) responses. For each
curve, the maximum force value is the peak force. Two complete
oscillations are shown corresponding to air at a given Relative
Humidity with air. The simulations were performed for Asp/A0 = 0.8
.

the force the tip’s radio (see Figure 4). Further details of the
cantilevers depicted here are included in Table 22.

The AFM is widely used for mechanical properties mapping of
matter [Gar20]. Hence, the first comparison of the four scenarios
points out to the force response versus time according to a
Hertzian interaction [Guz17]. In Figure 5, we see the humid air
(RH = 60.1%) changes the measurement conditions by almost
10%. Using a stiffer cantilever (kc = 2.7[N/m]) will also increase
the force by almost 50% from the softer one (kc = 0.8[N/m]),
see Figure 6. Interestingly, the cantilever’s volume, a smaller
cantilever, results in the highest force by almost doubling the force
by almost five folds of the smallest volume (Figure 7). Finally, the
Tip radius difference between 8 and 20 nm will impact the force
in roughly 40 pN (Figure 8).

Now, if we consider literature values for different
RH [FCK+12], [HLLB09], we can evaluate the Peak or Maximum
Forces. This force in all cases depicted in Figure 9 shows a
monotonically increasing behavior with the higher Young mod-
ulus. Remarkably, the force varies in a range of 25% from dried

Fig. 6: Time-varying force for PVA at RH = 60.1% for different
cantilevers. The simulations show elastic (Hertz) responses. For each
curve, the maximum force value is the peak force. Two complete
oscillations are shown corresponding to a hard (stiff) cantilever with
a soft cantilever. The simulations were performed for Asp/A0 = 0.8 .

Fig. 7: Time-varying force for PVA at RH = 60.1% for different
cantilevers. The simulations show elastic (Hertz) responses. For each
curve, the maximum force value is the peak force. Two complete os-
cillations are shown corresponding to a cantilever with a high volume
compared with a cantilever with a small volume. The simulations were
performed for Asp/A0 = 0.8 .

Fig. 8: Time-varying force for PVA at RH = 60.1% for different
cantilevers. The simulations show elastic (Hertz) responses. For each
curve, the maximum force value is the peak force. Two complete
oscillations are shown corresponding to a cantilever with a wide tip
with a cantilever with a sharp tip. The simulations were performed
for Asp/A0 = 0.8 .

206 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 9: Peak force reached for a PVA sample subjected to different
relative humidities 0.0%, 29.5%, 39.9% and 60.1% corresponding
to air at a given Relative Humidity with air. The simulations were
performed for Asp/A0 = 0.8 .

Fig. 10: Peak force reached for a PVA sample subjected to different
relative humidities 0.0%, 29.5%, 39.9% and 60.1% corresponding to
a hard (stiff) cantilever with a soft cantilever. The simulations were
performed for Asp/A0 = 0.8 .

PVA to one at RH = 60.1% (see Figure 9).
In order to properly describe operational parameters in dy-

namic AFM we analyze the peak force dependence with the set-
point amplitude Asp. In Figure 13, we have the comparison of
peak forces for the different cantilevers as a function of Asp. The
sensitivity of the peak force is higher for the type of cantilevers
with varying kc and Vc. Nonetheless, the peak force dependence
given by the Hertzian mechanics has a dependence with the
square root of the tip radius, and for those Radii on Table 22
are not influencing the force much. However, they could strongly
influence resolution [GG13].

Figure 17 shows the dependence of the peak force as a function
of kc, Vc, and RT , respectively, for all the cantilevers listed in
Table 22; constituting a graphical summary of the seven analyzed
cantilevers for completeness of the analysis.

Another way to summarize the results in AFM simulations
if to show the Force vs. Distance curves (see Fig. 18), which in
these case show exactly how for example a stiffer cantilever may
penetrate more into the sample by simple checking the distance
cantilever e reaches. On the other hand, it also jumps into the

Fig. 11: Peak force reached for a PVA sample subjected to different
relative humidities 0.0%, 29.5%, 39.9% and 60.1% corresponding to
a cantilever with a high volume compared with a cantilever with a
small volume. The simulations were performed for Asp/A0 = 0.8 .

Fig. 12: Peak force reached for a PVA sample subjected to different
relative humidities 0.0%, 29.5%, 39.9% and 60.1% corresponding to
a cantilever with a wide tip with a cantilever with a sharp tip. The
simulations were performed for Asp/A0 = 0.8 .

Fig. 13: Dependence of the maximum force on the set-point amplitude
corresponding to air at a given Relative Humidity with air.

PYDAMPF: A PYTHON PACKAGE FOR MODELING MECHANICAL PROPERTIES OF HYGROSCOPIC MATERIALS UNDER INTERACTION WITH A NANOPROBE 207

Fig. 14: Dependence of the maximum force on the set-point amplitude
corresponding to a hard (stiff) cantilever with a soft cantilever.

Fig. 15: Dependence of the maximum force on the set-point amplitude
corresponding to a cantilever with a high volume compared with a
cantilever with a small volume.

Fig. 16: Dependence of the maximum force on the set-point amplitude
corresponding to a cantilever with a wide tip with a cantilever with a
sharp tip.

Fig. 17: Dependence of the maximum force with the most important
characteristics of each cantilever, filtering the cantilevers used for the
scenarios , the figure shows maximum force dependent on the: (a)
force constant k, (b) cantilever tip radius, and (c) cantilever volume,
respectively. The simulations were performed for A_{sp}/A_{0} =
0.8.

Fig. 18: Three-dimensional plots of the various cantilevers provided
by the manufacturer and those in the pyDAMPF database that
establish a given maximum force at a given distance between the
tip and the sample for a PVA polymer subjected to RH= 0% with E =
930 [MPa].

eyes that a cantilever with small volume f has less damping from
the environment and thus it also indents more than the ones with
higher volume. Although these type of plots are the easiest to
make, they carry lots of experimental information. In addition,
pyDAMPF can plot such 3D figures interactively that enables a
detailed comparison of those curves.

As we aim a massive use of pyDAMPF, we also perform the
corresponding benchmarks on four different computing platforms,
where two of them resembles the standard PC or Laptop found
at the labs, and the other two aim to cloud and HPC facilities,

208 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 19: Three-dimensional plots of the various cantilevers provided
by the manufacturer and those in the pyDAMPF database that
establish a given maximum force at a given distance between the
tip and the sample for a PVA polymer subjected to RH = 60.1% with
E = 248.8 [MPa].

Fig. 20: Comparison of times taken by both the parallel method and
the serial method.

respectively (see Table 23 for details).
Figure 20 shows the average run time for the serial and parallel

implementation. Despite a slightly higher performance for the case
of the HPC cluster nodes, a high-end computer (PC 2) may also
reach similar values, which is our current goal. Another striking
aspect observed by looking at the speed-up, is the maximum
and minimum run times, which notoriously show the on-demand
character of cloud services. As their maxima and minima show the
highest variations.

To calculate the speed up we use the following equation:

S =
ttotal

tthread

Where S is the speed up , tT hread is the execution time of a
computational thread, and tTotal is the sum of times, shown in
the table 24. For our calculations we used the highest, the average
and the lowest execution time per thread.

Fig. 21: Speed up parallel method.

Fig. 22: Data used for Figs. 5, 9 and 13 with an A0 = 10[nm] . Observe
that the quality factor and Young’s modulus have three different values
respectively for RH1 = 29.5%, RH2 = 39.9% y RH3 = 60.1%. ∗∗
The values presented for Quality Factor Q were calculated at Google
Colaboratory notebook Q calculation, using the method proposed by
[GS05], [Sad98].

Fig. 23: Computers used to run pyDAMPF and Former work
[GGG15], ∗ the free version of Colab provides this capability, there
are two paid versions which provide much greater capacity, these
versions known as Colab Pro and Colab Pro+ are only available in
some countries.

Fig. 24: Execution times per computational thread, for each computer.
Note that each Thread consists of 9 simulation cases, with a sum time
showing the total of 90 cases for evaluating 3 different Young moduli
and 30 cantilevers at the same time.

PYDAMPF: A PYTHON PACKAGE FOR MODELING MECHANICAL PROPERTIES OF HYGROSCOPIC MATERIALS UNDER INTERACTION WITH A NANOPROBE 209

Limitations

The main limitation of dynamic AFM simulators based in con-
tinuum modeling is that sometimes a molecular behavior is over-
looked. Such a limitation comes from the multiple time and length
scales behind the physics of complex systems, as it is the case
of polymers and biopolymers. In this regard, several efforts on
the multiscale modeling of materials have been proposed, joining
mainly efforts to stretch the multiscale gap [GTK+19]. We also
plan to do so, within a current project, for modeling the polymeric
fibers as molecular chains and providing "feedback" between mod-
els from a top-down strategy. Code-wise, the implementation will
be also gradually improved. Nonetheless, to maintain scientific
code is a challenging task. In particular without the support for
our students once they finish their thesis. In this respect, we will
seek software funding and more community contributions.

Future work

There are several improvements that are planned for pyDAMPF.

• We plan to include a link to molecular dynamics simula-
tions of polymer chains in a multiscale like approach.

• We plan to use experimental values with less uncertainty
to boost semi-empirical models based on pyDAMPF.

• The code is still not very clean and some internal cleanup
is necessary. This is especially true for the Python backend
which may require a refactoring.

• Some AI optimization was also envisioned, particularly for
optimizing criteria and comparing operational parameters.

Conclusions

In summary, pyDAMPF is a highly efficient and adaptable simu-
lation tool aimed at analyzing, planning and interpreting dynamic
AFM experiments.

It is important to keep in mind that pyDAMPF uses cantilever
manufacturers information to analyze, evaluate and choose a
certain nanoprobe that fulfills experimental criteria. If this will
not be the case, it will advise the experimentalists on what to
expect from their measurements and the response a material may
have. We currently support multi-thread execution using in-house
development. However, in our outlook, we plan to extend the
code to GPU by using transpiling tools, like compyle [Ram20],
as the availability of GPUs also increases in standard worksta-
tions. In addition, we have shown how to reuse a widely tested
Fortran code [GPG13] and wrap it as a python module to profit
from pythonic libraries and interactivity via Jupyter notebooks.
Implementing new interaction forces for the simulator is straight-
forward. However, this code includes the state-of-the-art contact,
viscous, van der Waals, capillarity and electrostatic forces used for
physics at the interfaces. Moreover, we plan to implement soon
semi-empirical analysis and multiscale modeling with molecular
dynamics simulations.

Acknowledgments

H.V.G thanks the financial support by the Slovenian Research
Agency (Funding No. P1-0055). We gratefully acknowledge the
fruitful discussions with Tomas Corrales and our joint Fondecyt
Regular project 1211901.

REFERENCES

[FCK+12] Kathrin Friedemann, Tomas Corrales, Michael Kappl, Katharina
Landfester, and Daniel Crespy. Facile and large-scale fabrication
of anisometric particles from fibers synthesized by colloid elec-
trospinning. Small, 8:144–153, 2012. doi:10.1002/smll.
201101247.

[Gar20] Ricardo Garcia. Nanomechanical mapping of soft materials with
the atomic force microscope: methods, theory and applications.
The Royal Society of Chemistry, 49:5850–5884, 2020. doi:10.
1039/d0cs00318b.

[GG13] Horacio V. Guzman and Ricardo Garcia. Peak forces and lateral
resolution in amplitude modulation force microscopy in liquid.
Beilstein Journal of Nanotechnology, 4:852–859, 2013. doi:
10.3762/bjnano.4.96.

[GGG15] Horacio V. Guzman, Pablo D. Garcia, and Ricardo Garcia. Dy-
namic force microscopy simulator (dforce): A tool for planning
and understanding tapping and bimodal afm experiments. Beilstein
Journal of Nanotechnology, 6:369–379, 2015. doi:10.3762/
bjnano.6.36.

[GPG13] Horacio V. Guzman, Alma P. Perrino, and Ricardo Garcia. Peak
forces in high-resolution imaging of soft matter in liquid. ACS
Nano, 7:3198–3204, 2013. doi:10.1021/nn4012835.

[GS05] Christopher P. Green and John E. Sader. Frequency response of
cantilever beams immersed in viscous fluids near a solid surface
with applications to the atomic force microscope. Journal of Ap-
plied Physics, 98:114913, 2005. doi:10.1063/1.2136418.

[GTK+19] Horacio V. Guzman, Nikita Tretyakov, Hideki Kobayashi, Aoife C.
Fogarty, Karsten Kreis, Jakub Krajniak, Christoph Junghans, Kurt
Kremer, and Torsten Stuehn. Espresso++ 2.0: Advanced methods
for multiscale molecular simulation. Computer Physics Communi-
cations, 238:66–76, 2019. doi:10.1016/j.cpc.2018.12.
017.

[Guz17] Horacio V. Guzman. Scaling law to determine peak forces
in tapping-mode afm experiments on finite elastic soft matter
systems. Beilstein Journal of Nanotechnology, 8:968–974, 2017.
doi:10.3762/bjnano.8.98.

[HLLB09] Fei Hang, Dun Lu, Shuang Wu Li, and Asa H. Barber. Stress-strain
behavior of individual electrospun polymer fibers using combina-
tion afm and sem. Materials Research Society, 1185:1185–II07–
10, 2009. doi:10.1557/PROC-1185-II07-10.

[MHR08] John Melcher, Shuiqing Hu, and Arvind Raman. Veda: A
web-based virtual environment for dynamic atomic force mi-
croscopy. Review of Scientific Instruments, 79:061301, 2008.
doi:10.1063/1.2938864.

[Ram20] Prabhu Ramachandran. Compyle: a Python package for paral-
lel computing. In Meghann Agarwal, Chris Calloway, Dillon
Niederhut, and David Shupe, editors, Proceedings of the 19th
Python in Science Conference, pages 32 – 39, 2020. doi:
10.25080/majora-342d178e-005.

[Sad98] John E. Sader. Frequency response of cantilever beams immersed
in viscous fluids with applications to the atomic force microscope.
Journal of Applied Physics, 84:64–76, 1998. doi:10.1063/1.
368002.

[Vea20] Pauli Virtanen and et al. Scipy 1.0: fundamental algorithms for
scientific computing in Python. Nature Methods, 17:261–272,
2020. doi:10.1038/s41592-019-0686-2.

210 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Improving PyDDA’s atmospheric wind retrievals using
automatic differentiation and Augmented Lagrangian

methods
Robert Jackson‡∗, Rebecca Gjini§, Sri Hari Krishna Narayanan‡, Matt Menickelly, Paul Hovland‡, Jan Hückelheim‡,

Scott Collis‡

F

Introduction

Meteorologists require information about the spatiotemporal dis-
tribution of winds in thunderstorms in order to analyze how
physical and dynamical processes govern thunderstorm evolution.
Knowledge of such processes is vital for predicting severe and
hazardous weather events. However, acquiring wind observations
in thunderstorms is a non-trivial task. There are a variety of in-
struments that can measure winds including radars, anemometers,
and vertically pointing wind profilers. The difficulty in acquiring
a three dimensional volume of the 3D wind field from these
sensors is that these sensors typically only measure either point
observations or only the component of the wind field parallel
to the direction of the antenna. Therefore, in order to obtain 3D
wind fields, the weather radar community uses a weak variational
technique that finds a 3D wind field that minimizes a cost function
J.

J(V) = µmJm +µoJo +µvJv +µbJb +µsJs (1)

Here, Jm is how much the wind field V violates the anelastic mass
continuity equation. Jo is how much the wind field is different
from the radar observations. Jv is how much the wind field violates
the vertical vorticity equation. Jb is how much the wind field
differs from a prescribed background. Finally Js is related to
the smoothness of the wind field, quantified as the Laplacian
of the wind field. The scalars µx are weights determining the
relative contribution of each cost function to the total J. The
flexibility in this formulation potentially allows for factoring in
the uncertainties that are inherent in the measurements. This
formulation is expandable to include cost functions related to data
from other sources such as weather forecast models and soundings.
For more specific information on these cost functions, see [SPG09]
and [PSX12].

PyDDA is an open source Python package that implements the
weak variational technique for retrieving winds. It was originally
developed in order to modernize existing codes for the weak
variational retrievals such as CEDRIC [MF98] and Multidop

* Corresponding author: rjackson@anl.gov
‡ Argonne National Laboratory, 9700 Cass Ave., Argonne, IL, 60439
§ University of California at San Diego

Copyright © 2022 Robert Jackson et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

[LSKJ17] as detailed in the 2019 SciPy Conference proceedings
(see [JCL+20], [RJSCTL+19]). It provided a much easier to
use and more portable interface for wind retrievals than was
provided by these packages. In PyDDA versions 0.5 and prior,
the implementation of Equation (1) uses NumPy [HMvdW+20]
to calculate J and its gradient. In order to find the wind field
V that minimizes J, PyDDA used the limited memory Broy-
den–Fletcher–Goldfarb–Shanno bounded (L-BFGS-B) from SciPy
[VGO+20]. L-BFGS-B requires gradients of J in order to mini-
mize J. Considering the antiquity of the CEDRIC and Multidop
packages, these first steps provided the transition to Python that
was needed in order to enhance accessibility of wind retrieval
software by the scientific community. For more information
about PyDDA versions 0.5 and prior, consult [RJSCTL+19] and
[JCL+20].

However, there are further improvements that still needed
to be made in order to optimize both the accuracy and speed
of the PyDDA retrievals. For example, the cost functions and
gradients in PyDDA 0.5 are implemented in NumPy which does
not take advantage of GPU architectures for potential speedups
[HMvdW+20]. In addition, the gradients of the cost function that
are required for the weak variational technique are hand-coded
even though packages such as Jax [BFH+18] and TensorFlow
[AAB+15] can automatically calculate these gradients. These
needs motivated new features for the release of PyDDA 1.0. In
PyDDA 1.0, we utilize Jax and TensorFlow’s automatic differen-
tiation capabilities for differentiating J, making these calculations
less prone to human error and more efficient.

Finally, upgrading PyDDA to use Jax and TensorFlow allows it
to take advantage of GPUs, increasing the speed of retrievals. This
paper shows how Jax and TensorFlow are used to automatically
calculate the gradient of J and improve the performance of
PyDDA’s wind retrievals using GPUs.

In addition, a drawback to the weak variational technique
is that the technique requires user specified constants µ . This
therefore creates the possibility that winds retrieved from different
datasets may not be physically consistent with each other, affecting
reproducibility. Therefore, for the PyDDA 1.1 release, this paper
also details a new approach that uses Augmented Lagrangian
solvers in order to place strong constraints on the wind field such
that it satisfies a mass continuity constraint to within a specified
tolerance while minimizing the rest of the cost function. This
new approach also takes advantage of the automatically calculated

IMPROVING PYDDA’S ATMOSPHERIC WIND RETRIEVALS USING AUTOMATIC DIFFERENTIATION AND AUGMENTED LAGRANGIAN METHODS 211

gradients that are implemented in PyDDA 1.0. This paper will
show that this new approach eliminates the need for user specified
constants, ensuring the reproducibility of the results produced by
PyDDA.

Weak variational technique

This section summarizes the weak variational technique that was
implemented in PyDDA previous to version 1.0 and is currently
the default option for PyDDA 1.1. PyDDA currently uses the
weak variational formulation given by Equation (1). For this
proceedings, we will focus our attention on the mass continuity
Jm and observational cost function Jo. In PyDDA, Jm is given as
the discrete volume integral of the square of the anelastic mass
continuity equation

Jm(u,v,w) = ∑
volume

[
δ (ρsu)

δx
+

δ (ρsv)
δy

+
δ (ρsw)

δ z

]2

, (2)

where u is the zonal component of the wind field and v is the
meridional component of the wind field. ρs is the density of air,
which is approximated in PyDDA as ρs(z) = e−z/10000 where z is
the height in meters. The physical interpretation of this equation is
that a column of air in the atmosphere is only allowed to compress
in order to generate changes in air density in the vertical direction.
Therefore, wind convergence at the surface will generate vertical
air motion. A corollary of this is that divergent winds must occur
in the presence of a downdraft. At the scales of winds observed
by PyDDA, this is a reasonable approximation of the winds in the
atmosphere.

The cost function Jo metricizes how much the wind field is
different from the winds measured by each radar. Since a scanning
radar will scan a storm while pointing at an elevation angle θ and
an azimuth angle φ , the wind field must first be projected to the
radar’s coordinates. After that, PyDDA finds the total square error
between the analysis wind field and the radar observed winds as
done in Equation (3).

Jo(u,v,w) = ∑
volume

(ucosθ sinφ + vcosθ cosφ +(w−wt)sinθ)2

(3)
Here, wt is the terminal velocity of the particles scanned by
the radar volume. This is approximated using empirical relation-
ships between wt and the radar reflectivity Z. PyDDA then uses
the limited memory Broyden–Fletcher–Goldfarb–Shanno bounded
(L-BFGS-B) algorithm (see, e.g., [LN89]) to find the u, v, and w
that solves the optimization problem

min
u,v,w

J(u,v,w), µmJm(u,v,w)+µvJv(u,v,w). (4)

For experiments using the weak variational technique, we run
the optimization until either the Linf norm of the gradient of J
is less than 10−8 or when the maximum change in u, v, and
w between iterations is less than 0.01 m/s as done by [PSX12].
Typically, the second criteria is reached first. Before PyDDA 1.0,
PyDDA utilized SciPy’s L-BFGS-B implementation. However,
as of PyDDA 1.0 one can also use TensorFlow’s L-BFGS-B
implementation, which is used here for the experiments with the
weak variational technique [AAB+15].

Using automatic differentiation

The optimization problem in Equation (4) requires the gradients
of J. In PyDDA 0.5 and prior, the gradients of the cost function

J were calculated by finding the closed form of the gradient
by hand and then coding the closed form in Python. The code
snippet below provides an example of how the cost function Jm is
implemented in PyDDA using NumPy.
def calculate_mass_continuity(u, v, w, z, dx, dy, dz):

dudx = np.gradient(u, dx, axis=2)
dvdy = np.gradient(v, dy, axis=1)
dwdz = np.gradient(w, dz, axis=0)

div = dudx + dvdy + dwdz

return coeff * np.sum(np.square(div)) / 2.0

In order to hand code the gradient of the cost function above, one
has to write the closed form of the derivative into another function
like below.
def calculate_mass_continuity_gradient(u, v, w, z, dx,

dy, dz, coeff):
dudx = np.gradient(u, dx, axis=2)
dvdy = np.gradient(v, dy, axis=1)
dwdz = np.gradient(w, dz, axis=0)

grad_u = -np.gradient(div, dx, axis=2) * coeff
grad_v = -np.gradient(div, dy, axis=1) * coeff
grad_w = -np.gradient(div, dz, axis=0) * coeff

y = np.stack([grad_u, grad_v, grad_w], axis=0)
return y.flatten()

Hand coding these functions can be labor intensive for compli-
cated cost functions. In addition, there is no guarantee that there is
a closed form solution for the gradient. Therefore, we tested using
both Jax and TensorFlow to automatically compute the gradients
of J. Computing the gradients of J using Jax can be done in two
lines of code using jax.vjp:
primals, fun_vjp = jax.vjp(

calculate_radial_vel_cost_function,
vrs, azs, els, u, v, w, wts, rmsVr, weights,
coeff)

_, _, _, p_x1, p_y1, p_z1, _, _, _, _ = fun_vjp(1.0)

Calculating the gradients using automatic differentiation us-
ing TensorFlow is also a simple code snippet using
tf.GradientTape:
with tf.GradientTape() as tape:

tape.watch(u)
tape.watch(v)
tape.watch(w)
loss = calculate_radial_vel_cost_function(

vrs, azs, els, u, v, w,
wts, rmsVr, weights, coeff)

grad = tape.gradient(loss)

As one can see, there is no more need to derive the closed form of
the gradient of the cost function. Rather, the cost function itself is
now the input to a snippet of code that automatically provides the
derivative. In PyDDA 1.0, there are now three different engines
that the user can specify. The classic "scipy" mode uses the
NumPy-based cost function and hand coded gradients used by
versions of PyDDA previous to 1.0. In addition, there are now
TensorFlow and Jax modes that use both cost functions and
automatically generated gradients generated using TensorFlow or
Jax.

Improving performance with GPU capabilities

The implementation of a TensorFlow-based engine provides Py-
DDA the capability to take advantage of CUDA-compatible GPUs.

212 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 1: The time in seconds of execution of the Hurricane Florence
retrieval example when using the TensorFlow and SciPy engines on
an Intel Core i7 MacBook in CPU mode and on a node of Argonne
National Laboratory’s Lambda cluster, utilizing a single NVIDIA
Tesla A100 GPU for the calculation.

Method 0.5 km 1 km 2.5 km 5.0 km

SciPy Engine ~50 days 5771.2 s 871.5 s 226.9 s
TensorFlow
Engine

7372.5 s 341.5 s 28.1 s 7.0 s

NVIDIA
Tesla A100
GPU

89.4 s 12.0 s 3.5 s 2.6 s

TABLE 1: Run times for each of the benchmarks in Figure 1.

Given that weather radar datasets can span decades and processing
each 10 minute time period of data given by the radar can take
on the order of 1-2 minutes with PyDDA using regular CPU
operations, if this time were reduced to seconds, then processing
winds from years of radar data would become tenable. Therefore,
we used the TensorFlow-based PyDDA using the weak variational
technique on the Hurricane Florence example in the PyDDA
Documentation. On 14 September 2018, Hurricane Florence was
within range of 2 radars from the NEXRAD network: KMHX
stationed in Newport, NC and KLTX stationed in Wilmington,
NC. In addition, the High Resolution Rapid Refresh model runs
provided an additional constraint for the wind retrieval. For more
information on this example, see [RJSCTL+19]. The analysis
domain spans 400 km by 400 km horizontally, and the horizontal
resolution was allowed to vary for different runs in order to com-
pare how both the CPU and GPU-based retrievals’ performance
would be affected by grid resolution. The time of completion of
each of these retrievals is shown in Figure 1.

Figure 1 and Table 1 show that, in general, the retrievals took
anywhere from 10 to 100 fold less time on the GPU compared to
the CPU. The discrepancy in performance between the GPU and

CPU-based retrievals increases as resolution decreases, demon-
strating the importance of the GPU for conducting high-resolution
wind retrievals. In Table 1, using a GPU to retrieve the Hurricane
Florence example at 1 km resolution reduces the run time from 341
s to 12 s. Therefore, these performance improvements show that
PyDDA’s TensorFlow-based engine now enables it to handle both
spatial scales of hundreds of kms at a 1 km resolution. For a day
of data at this resolution, assuming five minutes between scans, an
entire day of data can be processed in 57 minutes. With the use of
multi-GPU clusters and selecting for cases where precipitation is
present, this enables the ability to process winds from multi-year
radar datasets within days instead of months.

In addition, simply using TensorFlow’s implementation of
L-BFGS-B as well as the TensorFlow calculated cost function
and gradients provides a significant performance improvement
compared to the original "scipy" engine in PyDDA 0.5, being up
to a factor of 30 faster. In fact, running PyDDA’s original "scipy"
engine on the 0.5 km resolution data for the Hurricane Florence
example would have likely taken 50 days to complete on an Intel
Core i7-based MacBook laptop. Therefore, that particular run was
not tenable to do and therefore not shown in Figure 1. In any case,
this shows that upgrading the calculations to use TensorFlow’s
automatically generated gradients and L-BFGS-B implementation
provides a very significant speedup to the processing time.

Augmented Lagrangian method

The release of PyDDA 1.0 focused on improving its performance
and gradient accuracy by using automatic differentiation for cal-
culating the gradient. For PyDDA 1.1, the PyDDA development
team focused on implementing a technique that enables the user to
automatically determine the weight coefficients µ . This technique
builds upon the automatic differentiation work done for PyDDA
1.0 by using the automatically generated gradients. In this work,
we consider a constrained reformulation of Equation (4) that
requires wind fields returned by PyDDA to (approximately) satisfy
mass continuity constraints. That is, we focus on the constrained
optimization problem

min
u,v,w

Jv(u,v,w)

s. to Jm(u,v,w) = 0,
(5)

where we now interpret Jm as a vector mapping that outputs, at
each grid point in the discretized volume δ (ρsu)

δx + δ (ρsv)
δy + δ (ρsw)

δ z .
Notice that the formulation in Equation (5) has no dependencies
on scalars µ .

To solve the optimization problem in Equation (5), we im-
plemented an augmented Lagrangian method with a filter mech-
anism inspired by [LV20]. An augmented Lagrangian method
considers the Lagrangian associated with an equality-constrained
optimization problem, in this case L0(u,v,w,λ) = Jv(u,v,w)−
λ>Jm(u,v,w), where λ is a vector of Lagrange multipliers of
the same length as the number of grid points in the discretized
volume. The Lagrangian is then augmented with an additional
squared-penalty term on the constraints to yield Lµ(u,v,w,λ) =
L0(u,v,w,λ)+ µ

2 ‖Jm(u,v,w)‖2, where we have intentionally used
µ > 0 as the scalar in the penalty term to make comparisons
with Equation (4) transparent. It is well known (see, for instance,
Theorem 17.5 of [NW06]) that under some not overly restrictive
conditions there exists a finite µ̄ such that if µ ≥ µ̄ , then each local
solution of Equation (5) corresponds to a strict local minimizer

IMPROVING PYDDA’S ATMOSPHERIC WIND RETRIEVALS USING AUTOMATIC DIFFERENTIATION AND AUGMENTED LAGRANGIAN METHODS 213

of Lµ(u,v,w,λ ∗) for a suitable choice of multipliers λ ∗. Essen-
tially, augmented Lagrangian methods solve a short sequence of
unconstrained problems Lµ(u,v,w,λ), with different values of µ
until a solution is returned that is a local, feasible solution to
Equation (5). In our implementation of an augmented Lagrangian
method, the coarse minimization of Lµ(u,v,w,λ) is performed
by the Scipy implementation of LBFGS-B with the TensorFlow
implementation of the cost function and gradients. Additionally, in
our implementation, we employ a filter mechanism (see a survey
in [FLT06]) recently proposed for augmented Lagrangian methods
in [LV20] in order to guarantee convergence. We defer details
to that paper, but note that the feasibility restoration phase (the
minimization of a squared constraint violation) required by such
a filter method is also performed by the SciPy implementation of
LBFGS-B.

The PyDDA documentation contains an example of a
mesoscale convective system (MCS) that was sampled by a C-
band Polarization Radar (CPOL) and a Bureau of Meteorology
Australia radar on 20 Jan 2006 in Darwin, Australia. For more
details on this storm and the radar network configuration, see
[CPMW13]. For more information about the CPOL radar dataset,
see [JCL+18]. This example with its data is included in the
PyDDA Documentation as the "Example of retrieving and plotting
winds."

Figure 2 shows the winds retrieved by the Augmented La-
grangian technique with µ = 1 and from the weak variational
technique with µ = 1 on the right. Figure 2 shows that both tech-
niques are capturing similar horizontal wind fields in this storm.
However, the Augmented Lagrangian technique is resolving an
updraft that is not present in the wind field generated by the weak
variational technique. Since there is horizontal wind convergence
in this region, we expect there to be an updraft present in this
box in order for the solution to be physically realistic. Therefore,
for µ = 1, the Augmented Lagrangian technique is doing a better
job at resolving the updrafts present in the storm than the weak
variational technique is. This shows that adjusting µ is required in
order for the weak variational technique to resolve the updraft.

We solve the unconstrained formulation (4) using the imple-
mentation of L-BFGS-B currently employed in PyDDA; we fix
the value µv = 1 and vary µm = 2 j : j = 0,1,2, . . . ,16. We also
solve the constrained formulation (5) using our implementation
of a filter Augmented Lagrangian method, and instead vary the
initial guess of penalty parameter µ = 2 j : j = 0,1,2, . . . ,16. For
the initial state, we use the wind profile from the weather balloon
launch at 00 UTC 20 Jan 2006 from Darwin and apply it to
the whole analysis domain. A summary of results is shown in
Figures 3 and 4. We applied a maximum constraint violation
tolerance of 10−3 to the filter Augmented Lagrangian method.
This is a tolerance that assumes that the winds do not violate
the mass continuity constraint by more than 0.001 m2s−2. Notice
that such a tolerance is impossible to supply to the weak vari-
ational method, highlighting the key advantage of employing a
constrained method. Notice that in this example, only 5 settings of
µm lead to sufficiently feasible solutions returned by the variational
technique.

Finally, a variable of interest to atmospheric scientists for
winds inside MCSes is the vertical wind velocity. It provides a
measure of the intensity of the storm by demonstrating the amount
of upscale growth contributing to intensification. Figure 5 shows
the mean updraft velocities inside the box in Figure 2 as a function
of height for each of the runs of the TensorFlow L-BFGS-B and

Fig. 2: The PyDDA retrieved winds overlaid over reflectivity from the
C-band Polarization Radar for the MCS that passed over Darwin,
Australia on 20 Jan 2006. The winds were retrieved using the weak
variational technique with µ = 1 (a) and the Augmented Lagrangian
technique with µ = 1 (b). The contours represent vertical velocities at
3.05 km altitude. The boxed region shows the updrafts that generated
the heavy precipitation.

214 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 3: The x-axis shows, on a logarithmic scale, the maximum
constraint violation in the units of divergence of the wind field and
the y-axis shows the value of the data-fitting term Jv at the optimal
solution. The legend lists the number of function/gradient calls made
by the filter Augmented Lagrangian Method, which is the dominant
cost of both approaches. The dashed line at 10−3 denotes the tolerance
on the maximum constraint violation that was supplied to the filter
Augmented Lagrangian method.

Fig. 4: As 3, but for the weak variational technique that uses L-BFGS-
B.

Augmented Lagrangian techniques. Table 2 summarizes the mean
and spread of the solutions in Figure 5. For the updraft velocities
produced by the Augmented Lagrangian technique, there is a 1 m/s
spread of velocities produced for given values of µ at altitudes
< 7.5 km in Table 2. At an altitude of 10 km, this spread is
1.9 m/s. This is likely due to the reduced spatial coverage of
the radars at higher altitudes. However, for the weak variational
technique, the sensitivity of the retrieval to µ is much more
pronounced, with up to 2.8 m/s differences between retrievals.
Therefore, using the Augmented Lagrangian technique makes the
vertical velocities less sensitive to µ . Therefore, this shows that

Fig. 5: The mean updraft velocity obtained by (left) the weak
variational and (right) the Augmented Lagrangian technique inside
the updrafts in the boxed region of Figure 2. Each line represents a
different value of µ for the given technique.

using the Augmented Lagrangian technique will result in more
reproducible wind fields from radar wind networks since it is
less sensitive to user-defined parameters than the weak variational
technique. However, a limitation of this technique is that, for now,
this technique is limited to two radars and to the mass continuity
and vertical vorticity constraints.

Concluding remarks

Atmospheric wind retrievals are vital for forecasting severe
weather events. Therefore, this motivated us to develop an open
source package for developing atmospheric wind retrievals called
PyDDA. In the original releases of PyDDA (versions 0.5 and

IMPROVING PYDDA’S ATMOSPHERIC WIND RETRIEVALS USING AUTOMATIC DIFFERENTIATION AND AUGMENTED LAGRANGIAN METHODS 215

Min Mean Max Std. Dev.

Weak variational
2.5 km 1.2 1.8 2.7 0.6
5 km 2.2 2.9 4.0 0.7
7.5 km 3.2 3.9 5.0 0.4
10 km 2.3 3.3 4.9 1.0
Aug. Lagrangian
2.5 km 1.8 2.8 3.3 0.5
5 km 3.1 3.3 3.5 0.1
7.5 km 3.2 3.5 3.9 0.1
10 km 3.0 4.3 4.9 0.5

TABLE 2: Minimum, mean, maximum, and standard deviation of w
(m/s) for select levels in Figure 5.

prior), the original goal of PyDDA was to convert legacy wind
retrieval packages such as CEDRIC and Multidop to be fully
Pythonic, open source, and accessible to the scientific community.
However, there remained many improvements to be made to
PyDDA to optimize the speed of the retrievals and to make it
easier to add constraints to PyDDA.

This therefore motivated two major changes to PyDDA’s wind
retrieval routine for PyDDA 1.0. The first major change to PyDDA
in PyDDA 1.0 was to simplify the wind retrieval process by
automating the calculation of the gradient of the cost function
used for the weak variational technique. To do this, we utilized
Jax and TensorFlow’s capabilities to do automatic differentiation
of functions. This also allows PyDDA to take advantage of GPU
resources, significantly speeding up retrieval times for mesoscale
retrievals at kilometer-scale resolution. In addition, running the
TensorFlow-based version of PyDDA provided significant perfor-
mance improvements even when using a CPU.

These automatically generated gradients were then used to
implement an Augmented Lagrangian technique in PyDDA 1.1
that allows for automatically determining the weights for each
cost function in the retrieval. The Augmented Lagrangian tech-
nique guarantees convergence to a physically realistic solution,
something that is not always the case for a given set of weights
for the weak variational technique. Therefore, this both creates
more reproducible wind retrievals and simplifies the process of
retrieving winds for the non-specialist user. However, since the
Augmented Lagrangian technique currently only supports the
ingesting of radar data into the retrieval, plans for PyDDA 1.2 and
beyond include expanding the Augmented Lagrangian technique
to support multiple data sources such as models and rawinsondes.

Code Availability

PyDDA is available for public use with documentation and
examples available at https://openradarscience.org/PyDDA. The
GitHub repository that hosts PyDDA’s source code is available
at https://github.com/openradar/PyDDA.

Acknowledgments

The submitted manuscript has been created by UChicago Argonne,
LLC, Operator of Argonne National Laboratory (’Argonne’). Ar-
gonne, a U.S. Department of Energy Office of Science laboratory,
is operated under Contract No. DE-AC02-06CH11357. The U.S.
Government retains for itself, and others acting on its behalf,

a paid-up nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies
to the public, and perform publicly and display publicly, by or
on behalf of the Government. The Department of Energy will
provide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan. This
material is based upon work supported by Laboratory Directed
Research and Development (LDRD) funding from Argonne Na-
tional Laboratory, provided by the Director, Office of Science, of
the U.S. Department of Energy under Contract No. DE-AC02-
06CH11357. This material is also based upon work funded by
program development funds from the Mathematics and Computer
Science and Environmental Science departments at Argonne Na-
tional Laboratory.

REFERENCES

[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfel-
low, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software available
from tensorflow.org. URL: https://www.tensorflow.org/.

[BFH+18] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James
Johnson, Chris Leary, Dougal Maclaurin, George Necula,
Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne,
and Qiao Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. URL: http://github.com/
google/jax.

[CPMW13] Scott Collis, Alain Protat, Peter T. May, and Christopher
Williams. Statistics of storm updraft velocities from twp-ice
including verification with profiling measurements. Journal
of Applied Meteorology and Climatology, 52(8):1909 – 1922,
2013. doi:10.1175/JAMC-D-12-0230.1.

[FLT06] Roger Fletcher, Sven Leyffer, and Philippe Toint. A brief
history of filter methods. Technical report, Argonne National
Laboratory, 2006. URL: http://www.optimization-online.org/
DB_FILE/2006/10/1489.pdf.

[HMvdW+20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der
Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerk-
wijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río,
Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin
Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,
Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357–362, September 2020.
doi:10.1038/s41586-020-2649-2.

[JCL+18] R. C. Jackson, S. M. Collis, V. Louf, A. Protat, and L. Ma-
jewski. A 17 year climatology of the macrophysical prop-
erties of convection in darwin. Atmospheric Chemistry and
Physics, 18(23):17687–17704, 2018. doi:10.5194/acp-
18-17687-2018.

[JCL+20] Robert Jackson, Scott Collis, Timothy Lang, Corey Potvin,
and Todd Munson. Pydda: A pythonic direct data assimilation
framework for wind retrievals. Journal of Open Research
Software, 8(1):20, 2020. doi:10.5334/jors.264.

[LN89] Dong C. Liu and Jorge Nocedal. On the limited memory
bfgs method for large scale optimization. MATHEMATI-
CAL PROGRAMMING, 45:503–528, 1989. doi:10.1007/
bf01589116.

[LSKJ17] Timothy Lang, Mario Souto, Shahin Khobahi, and Bobby
Jackson. nasa/multidop: Multidop v0.3, October 2017. doi:
10.5281/zenodo.1035904.

216 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

[LV20] Sven Leyffer and Charlie Vanaret. An augmented lagrangian
filter method. Mathematical Methods of Operations Research,
92(2):343–376, 2020. URL: https://doi.org/10.1007/s00186-
020-00713-x, doi:10.1007/s00186-020-00713-x.

[MF98] L. Jay Miller and Sherri M. Fredrick. Custom editing and
display of reduced information in cartesian space. Technical
report, National Center for Atmospheric Research, 1998.

[NW06] Jorge Nocedal and Stephen J. Wright. Numerical Optimization.
Springer, New York, NY, USA, second edition, 2006.

[PSX12] Corey K. Potvin, Alan Shapiro, and Ming Xue. Impact of
a vertical vorticity constraint in variational dual-doppler wind
analysis: Tests with real and simulated supercell data. Journal
of Atmospheric and Oceanic Technology, 29(1):32 – 49, 2012.
doi:10.1175/JTECH-D-11-00019.1.

[RJSCTL+19] Robert Jackson, Scott Collis, Timothy Lang, Corey Potvin,
and Todd Munson. PyDDA: A new Pythonic Wind Re-
trieval Package. In Chris Calloway, David Lippa, Dillon
Niederhut, and David Shupe, editors, Proceedings of the
18th Python in Science Conference, pages 111 – 117, 2019.
doi:10.25080/Majora-7ddc1dd1-010.

[SPG09] Alan Shapiro, Corey K. Potvin, and Jidong Gao. Use of a verti-
cal vorticity equation in variational dual-doppler wind analysis.
Journal of Atmospheric and Oceanic Technology, 26(10):2089
– 2106, 2009. doi:10.1175/2009JTECHA1256.1.

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski,
Pearu Peterson, Warren Weckesser, Jonathan Bright, Sté-
fan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quin-
tero, Charles R. Harris, Anne M. Archibald, Antônio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy
1.0 Contributors. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17:261–272,
2020. doi:10.1038/s41592-019-0686-2.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022) 217

RocketPy: Combining Open-Source and Scientific
Libraries to Make the Space Sector More Modern and

Accessible
João Lemes Gribel Soares‡∗, Mateus Stano Junqueira‡, Oscar Mauricio Prada Ramirez‡, Patrick Sampaio dos

Santos Brandão‡§, Adriano Augusto Antongiovanni‡, Guilherme Fernandes Alves‡, Giovani Hidalgo Ceotto‡

F

Abstract—In recent years we are seeing exponential growth in the space sector,
with new companies emerging in it. On top of that more people are becoming
fascinated to participate in the aerospace revolution, which motivates students
and hobbyists to build more High Powered and Sounding Rockets. However,
rocketry is still a very inaccessible field, with high knowledge of entry-level and
concrete terms. To make it more accessible, people need an active community
with flexible, easy-to-use, and well-documented tools. RocketPy is a software
solution created to address all those issues, solving the trajectory simulation
for High-Power rockets being built on top of SciPy and the Python Scien-
tific Environment. The code allows for a sophisticated 6 degrees of freedom
simulation of a rocket’s flight trajectory, including high fidelity variable mass
effects as well as descent under parachutes. All of this is packaged into an
architecture that facilitates complex simulations, such as multi-stage rockets,
design and trajectory optimization, and dispersion analysis. In this work, the
flexibility and usability of RocketPy are indicated in three example simulations:
a basic trajectory simulation, a dynamic stability analysis, and a Monte Carlo
dispersion simulation. The code structure and the main implemented methods
are also presented.

Index Terms—rocketry, flight, rocket trajectory, flexibility, Monte Carlo analysis

Introduction

When it comes to rockets, there is a wide field ranging from
orbital rockets to model rockets. Between them, two types of
rockets are relevant to this work: sounding rockets and High-
Powered Rockets (HPRs). Sounding rockets are mainly used
by government agencies for scientific experiments in suborbital
flights while HPRs are generally used for educational purposes,
with increasing popularity in university competitions, such as the
annual Spaceport America Cup, which hosts more than 100 rocket
design teams from all over the world. After the university-built
rocket TRAVELER IV [AEH+19] successfully reached space by
crossing the Kármán line in 2019, both Sounding Rockets and
HPRs can now be seen as two converging categories in terms of
overall flight trajectory.

HPRs are becoming bigger and more robust, increasing their
potential hazard, along with their capacity, making safety an

* Corresponding author: jgribel@usp.br
‡ Escola Politécnica of the University of São Paulo
§ École Centrale de Nantes.

Copyright © 2022 João Lemes Gribel Soares et al. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

important issue. Moreover, performance is always a requirement
both for saving financial and time resources while efficiently
launch performance goals.

In this scenario, crucial parameters should be determined be-
fore a safe launch can be performed. Examples include calculating
with high accuracy and certainty the most likely impact or landing
region. This information greatly increases range safety and the
possibility of recovering the rocket [Wil18]. As another example,
it is important to determine the altitude of the rocket’s apogee in
order to avoid collision with other aircraft and prevent airspace
violations.

To better attend to those issues, RocketPy was created as a
computational tool that can accurately predict all dynamic param-
eters involved in the flight of sounding, model, and High-Powered
Rockets, given parameters such as the rocket geometry, motor
characteristics, and environmental conditions. It is an open source
project, well structured, and documented, allowing collaborators
to contribute with new features with minimum effort regarding
legacy code modification [CSA+21].

Background

Rocketry terminology

To better understand the current work, some specific terms regard-
ing the rocketry field are stated below:

• Apogee: The point at which a body is furthest from earth
• Degrees of freedom: Maximum number of independent

values in an equation
• Flight Trajectory: 3-dimensional path, over time, of the

rocket during its flight
• Launch Rail: Guidance for the rocket to accelerate to a

stable flight speed
• Powered Flight: Phase of the flight where the motor is

active
• Free Flight: Phase of the flight where the motor is inactive

and no other component but its inertia is influencing the
rocket’s trajectory

• Standard Atmosphere: Average pressure, temperature, and
air density for various altitudes

• Nozzle: Part of the rocket’s engine that accelerates the
exhaust gases

• Static hot-fire test: Test to measure the integrity of the
motor and determine its thrust curve

218 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

• Thrust Curve: Evolution of thrust force generated by a
motor

• Static Margin: Is a non-dimensional distance to analyze
the stability

• Nosecone: The forward-most section of a rocket, shaped
for aerodynamics

• Fin: Flattened append of the rocket providing stability
during flight, keeping it in the flight trajectory

Flight Model

The flight model of a high-powered rocket takes into account at
least three different phases:

1. The first phase consists of a linear movement along the
launch rail: The motion of the rocket is restricted to one dimen-
sion, which means that only the translation along with the rail
needs to be modeled. During this phase, four forces can act on
the rocket: weight, engine thrust, rail reactions, and aerodynamic
forces.

2. After completely leaving the rail, a phase of 6 degrees of
freedom (DOF) is established, which includes powered flight and
free flight: The rocket is free to move in three-dimensional space
and weight, engine thrust, normal and axial aerodynamic forces
are still important.

3. Once apogee is reached, a parachute is usually deployed,
characterizing the third phase of flight: the parachute descent. In
the last phase, the parachute is launched from the rocket, which is
usually divided into two or more parts joined by ropes. This phase
ends at the point of impact.

Design: RocketPy Architecture

Four main classes organize the dataflow during the simulations:
motor, rocket, environment, and flight [CSA+21]. Furthermore,
there is also a helper class named function, which will be described
further. In the Motor class, the main physical and geometric
parameters of the motor are configured, such as nozzle geometry,
grain parameters, mass, inertia, and thrust curve. This first-class
acts as an input to the Rocket class where the user is also asked
to define certain parameters of the rocket such as the inertial mass
tensor, geometry, drag coefficients, and parachute description.
Finally, the Flight class joins the rocket and motor parameters with
information from another class called Environment, such as wind,
atmospheric, and earth models, to generate a simulation of the
rocket’s trajectory. This modular architecture, along with its well-
structured and documented code, facilitates complex simulations,
starting with the use of Jupyter Notebooks that people can adapt
for their specific use case. Fig. 1 illustrates RocketPy architecture.

Fig. 1: RocketPy classes interaction [CSA+21]

Function

Variable interpolation meshes/grids from different sources can
lead to problems regarding coupling different data types. To
solve this, RocketPy employs a dedicated Function class which
allows for more natural and dynamic handling of these objects,
structuring them as Rn→ R mathematical functions.

Through the use of those methods, this approach allows for
quick and easy arithmetic operations between lambda expressions
and list-defined interpolated functions, as well as scalars. Different
interpolation methods are available to be chosen from, among
them simple polynomial, spline, and Akima ([Aki70]). Extrapo-
lation of Function objects outside the domain constrained by a
given dataset is also allowed.

Furthermore, evaluation of definite integrals of these Function
objects is among their feature set. By cleverly exploiting the
chosen interpolation option, RocketPy calculates the values fast
and precisely through the use of different analytical methods. If
numerical integration is required, the class makes use of SciPy’s
implementation of the QUADPACK Fortran library [PdDKÜK83].
For 1-dimensional Functions, evaluation of derivatives at a point
is made possible through the employment of a simple finite
difference method.

Finally, to increase usability and readability, all Function
object instances are callable and can be presented in multiple
ways depending on the given arguments. If no argument is given,
a Matplotlib figure opens and the plot of the function is shown in-
side its domain. Only 2-dimensional and 3-dimensional functions
can be plotted. This is especially useful for the post-processing
methods where various information on the classes responsible for
the definition of the rocket and its flight is presented, providing for
more concise code. If an n-sized array is passed instead, RocketPy
will try and evaluate the value of the Function at this given point
using different methods, returning its value. An example of the
usage of the Function class can be found in the Examples section.

Additionally, if another Function object is passed, the class
will try to match their respective domain and co-domain in order
to return a third instance, representing a composition of functions,
in the likes of: h(x)= (g◦ f)(x)= g(f (x)). With different Function
objects defined, the comparePlots method can be used to plot, in
a single graph, different functions.

By imitating, in syntax, commonly used mathematical no-
tation, RocketPy allows for more understandable and human-
readable code, especially in the implementation of the more
extensive and cluttered rocket equations of motion.

Environment

The Environment class reads, processes and stores all the infor-
mation regarding wind and atmospheric model data. It receives
as inputs launch point coordinates, as well as the length of the
launch rail, and then provides the flight class with six profiles as
a function of altitude: wind speed in east and north directions,
atmospheric pressure, air density, dynamic viscosity, and speed
of sound. For instance, an Environment object can be set as
representing New Mexico, United States:
1 from rocketpy import Environment
2

3 ex_env = Environment(
4 railLength=5.2,
5 latitude=32.990254,
6 longitude=-106.974998,
7 elevation=1400
8)

ROCKETPY: COMBINING OPEN-SOURCE AND SCIENTIFIC LIBRARIES TO MAKE THE SPACE SECTOR MORE MODERN AND ACCESSIBLE 219

RocketPy requires datetime library information specifying the
year, month, day and hour to compute the weather conditions on
the specified day of launch. An optional argument, the timezone,
may also be specified. If the user prefers to omit it, RocketPy will
assume the datetime object is given in standard UTC time, just as
follows:
1 import datetime
2 tomorrow = (
3 datetime.date.today() +
4 datetime.timedelta(days=1)
5)
6

7 date_info = (
8 tomorrow.year,
9 tomorrow.month,

10 tomorrow.day,
11 12
12) # Hour given in UTC time

By default, the International Standard Atmosphere [ISO75] static
atmospheric model is loaded. However, it is easy to set other
models by importing data from different meteorological agencys’
public datasets, such as Wyoming Upper-Air Soundings and Eu-
ropean Centre for Medium-Range Weather Forecasts (ECMWF);
or to set a customized atmospheric model based on user-defined
functions. As RocketPy supports integration with different meteo-
rological agencies’ datasets, it allows for a sophisticated definition
of weather conditions including forecasts and historical reanalysis
scenarios.

In this case, NOAA’s RUC Soundings data model is used, a
worldwide and open-source meteorological model made available
online. The file name is set as GFS, indicating the use of the Global
Forecast System provided by NOAA, which features a forecast
with a quarter degree equally spaced longitude/latitude grid with
a temporal resolution of three hours.
1 ex_env.setAtmosphericModel(
2 type='Forecast',
3 file='GFS')
4 ex_env.info()

What is happening on the back-end of this code’s snippet is Rock-
etPy utilizing the OPeNDAP protocol to retrieve data arrays from
NOAA’s server. It parses by using the netCDF4 data management
system, allowing for the retrieval of pressure, temperature, wind
velocity, and surface elevation data as a function of altitude. The
Environment class then computes the following parameters: wind
speed, wind heading, speed of sound, air density, and dynamic
viscosity. Finally, plots of the evaluated parameters concerning
the altitude are all passed on to the mission analyst by calling the
Env.info() method.

Motor

RocketPy is flexible enough to work with most types of motors
used in sound rockets. The main function of the Motor class
is to provide the thrust curve, the propulsive mass, the inertia
tensor, and the position of its center of mass as a function of time.
Geometric parameters regarding propellant grains and the motor’s
nozzle must be provided, as well as a thrust curve as a function
of time. The latter is preferably obtained empirically from a static
hot-fire test, however, many of the curves for commercial motors
are freely available online [Cok98].

Alternatively, for homemade motors, there is a wide range
of open-source internal ballistics simulators, such as OpenMotor
[Rei22], can predict the produced thrust with high accuracy for a
given sizing and propellant combination. There are different types

of rocket motors: solid motors, liquid motors, and hybrid motors.
Currently, a robust Solid Motor class has been fully implemented
and tested. For example, a typical solid motor can be created as an
object in the following way:
1 from rocketpy import SolidMotor
2

3 ex_motor = SolidMotor(
4 thrustSource='Motor_file.eng',
5 burnOut=2,
6 reshapeThrustCurve= False,
7 grainNumber=5,
8 grainSeparation=3/1000,
9 grainOuterRadius=33/1000,

10 grainInitialInnerRadius=15/1000,
11 grainInitialHeight=120/1000,
12 grainDensity= 1782.51,
13 nozzleRadius=49.5/2000,
14 throatRadius=21.5/2000,
15 interpolationMethod='linear')

Rocket

The Rocket Class is responsible for creating and defining the
rocket’s core characteristics. Mostly composed of physical at-
tributes, such as mass and moments of inertia, the rocket object
will be responsible for storage and calculate mechanical parame-
ters.

A rocket object can be defined with the following code:
1 from rocketpy import Rocket
2

3 ex_rocket = Rocket(
4 motor=ex_motor,
5 radius=127 / 2000,
6 mass=19.197 - 2.956,
7 inertiaI=6.60,
8 inertiaZ=0.0351,
9 distanceRocketNozzle=-1.255,

10 distanceRocketPropellant=-0.85704,
11 powerOffDrag="data/rocket/powerOffDragCurve.csv",
12 powerOnDrag="data/rocket/powerOnDragCurve.csv",
13)

As stated in [RocketPy architecture], a fundamental input of the
rocket is its motor, an object of the Motor class that must be
previously defined. Some inputs are fairly simple and can be easily
obtained with a CAD model of the rocket such as radius, mass,
and moment of inertia on two different axes. The distance inputs
are relative to the center of mass and define the position of the
motor nozzle and the center of mass of the motor propellant. The
powerOffDrag and powerOnDrag receive .csv data that represents
the drag coefficient as a function of rocket speed for the case where
the motor is off and other for the motor still burning, respectively.

At this point, the simulation would run a rocket with a tube of a
certain diameter, with its center of mass specified and a motor at its
end. For a better simulation, a few more important aspects should
then be defined, called Aerodynamic surfaces. Three of them are
accepted in the code, these being the nosecone, fins, and tail. They
can be simply added to the code via the following methods:
1 nose_cone = ex_rocket.addNose(
2 length=0.55829, kind="vonKarman",
3 distanceToCM=0.71971
4)
5 fin_set = ex_rocket.addFins(
6 4, span=0.100, rootChord=0.120, tipChord=0.040,
7 distanceToCM=-1.04956
8)
9 tail = ex_rocket.addTail(

10 topRadius=0.0635, bottomRadius=0.0435,
11 length=0.06, distanceToCM=-1.194656
12)

220 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

All these methods receive defining geometrical parameters and
their distance to the rocket’s center of mass (distanceToCM)
as inputs. Each of these surfaces generates, during the flight,
a lift force that can be calculated via a lift coefficient, which
is calculated with geometrical properties, as shown in [Bar67].
Further on, these coefficients are used to calculate the center of
pressure and subsequently the static margin. In each of these
methods, the static margin is reevaluated.

Finally, the parachutes can be added in a similar manner to
the aerodynamic surfaces. However, a few inputs regarding the
electronics involved in the activation of the parachute are required.
The most interesting of them is the trigger and samplingRate
inputs, which are used to define the parachute’s activation. The
trigger is a function that returns a boolean value that signifies
when the parachute should be activated. The samplingRate is the
time interval that the trigger will be evaluated in the simulation
time steps.
1 def parachute_trigger(p, y):
2 if vel_z < 0 and height < 800:
3 boole = True
4 else:
5 boole = False
6 return boole
7

8 ex_parachute = ex_rocket.addParachute(
9 'ParachuteName',

10 CdS=10.0,
11 trigger=parachute_trigger,
12 samplingRate=105,
13 lag=1.5,
14 noise=(0, 8.3, 0.5)
15)

With the rocket fully defined, the Rocket.info() and
Rocket.allInfo() methods can be called giving us informa-
tion and plots of the calculations performed in the class. One of the
most relevant outputs of the Rocket class is the static margin, as
it is important for the rocket stability and makes possible several
analyses. It is visualized through the time plot in Fig. 2, which
shows the variation of the static margin as the motor burns its
propellant.

Fig. 2: Static Margin

Flight

The Flight class is responsible for the integration of the rocket’s
equations of motion overtime [CSA+21]. Data from instances of

the Rocket class and the Environment class are used as input to
initialize it, along with parameters such as launch heading and
inclination relative to the Earth’s surface:
1 from rocketpy import Flight
2

3 ex_flight = Flight(
4 rocket=rocket,
5 environment=env,
6 inclination=85,
7 heading=0
8)

Once the simulation is initialized, run, and completed, the
instance of the Flight class stores relevant raw data. The
Flight.postProcess() method can then be used to com-
pute secondary parameters such as the rocket’s Mach number
during flight and its angle of attack.

To perform the numerical integration of the equations of mo-
tion, the Flight class uses the LSODA solver [Pet83] implemented
by Scipy’s scipy.integrate module [VGO+20]. Usually,
well-designed rockets result in non-stiff equations of motion.
However, during flight, rockets may become unstable due to
variations in their inertial and aerodynamic properties, which can
result in a stiff system. LSODA switches automatically between
the nonstiff Adams method and the stiff BDF method, depending
on the detected stiffness, perfectly handle both cases.

Since a rocket’s flight trajectory is composed of multiple
phases, each with its own set of governing equations, RocketPy
employs a couple of clever methods to run the numerical inte-
gration. The Flight class uses a FlightPhases container to
hold each FlightPhase. The FlightPhases container will
orchestrate the different FlightPhase instances, and compose
them during the flight.

This is crucial because there are events that may or may not
happen during the simulation, such as the triggering of a parachute
ejection system (which may or may not fail) or the activation of a
premature flight termination event. There are also events such as
the departure from the launch rail or the apogee that is known to
occur, but their timestamp is unknown until the simulation is run.
All of these events can trigger new flight phases, characterized by
a change in the rocket’s equations of motion. Furthermore, such
events can happen close to each other and provoke delayed phases.

To handle this, the Flight class has a mechanism for creating
new phases and adding them dynamically in the appropriate order
to the FlightPhases container.

The constructor of the FlightPhase class takes the follow-
ing arguments:

• t: a timestamp that symbolizes at which instant such flight
phase should begin;

• derivative: a function that returns the time derivatives
of the rocket’s state vector (i.e., calculates the equations of
motion for this flight phase);

• callbacks: a list of callback functions to be run when
the flight phase begins (which can be useful if some
parameters of the rocket need to be modified before the
flight phase begins).

The constructor of the Flight class initializes the
FlightPhases container with a rail phase and also a dummy
max time phase which marks the maximum flight duration. Then,
it loops through the elements of the container.

Inside the loop, an important attribute of the current
flight phase is set: FlightPhase.timeBound, the maxi-

ROCKETPY: COMBINING OPEN-SOURCE AND SCIENTIFIC LIBRARIES TO MAKE THE SPACE SECTOR MORE MODERN AND ACCESSIBLE 221

mum timestamp of the flight phase, which is always equal
to the initial timestamp of the next flight phase. Ordinar-
ily, it would be possible to run the LSODA solver from
FlightPhase.t to FlightPhase.timeBound. However,
this is not an option because the events which can trigger new
flight phases need to be checked throughout the simulation. While
scipy.integrate.solve_ivp does offer the events ar-
gument to aid in this, it is not possible to use it with most of the
events that need to be tracked, since they cannot be expressed in
the necessary form.

As an example, consider the very common event of a parachute
ejection system. To simulate real-time algorithms, the necessary
inputs to the ejection algorithm need to be supplied at regular
intervals to simulate the desired sampling rate. Furthermore, the
ejection algorithm cannot be called multiple times without real
data since it generally stores all the inputs it gets to calculate if
the rocket has reached the apogee to trigger the parachute release
mechanism. Discrete controllers can present the same peculiar
properties.

To handle this, the instance of the FlightPhase class holds
a TimeNodes container, which stores all the required timesteps,
or TimeNode, that the integration algorithm should stop at so
that the events can be checked, usually by feeding the necessary
data to parachutes and discrete control trigger functions. When it
comes to discrete controllers, they may change some parameters
in the rocket once they are called. On the other hand, a parachute
triggers rarely actually trigger, and thus, rarely invoke the creation
of a new flight phase characterized by descent under parachute
governing equations of motion.

The Flight class can take advantage of this fact by employing
overshootable time nodes: time nodes that the integrator does
not need to stop. This allows the integration algorithm to use
more optimized timesteps and significantly reduce the number of
iterations needed to perform a simulation. Once a new timestep
is taken, the Flight class checks all overshootable time nodes that
have passed and feeds their event triggers with interpolated data.
In case when an event is triggered, the simulation is rolled back to
that state.

In summary, throughout a simulation, the Flight class loops
through each non-overshootable TimeNode of each element of
the FlightPhases container. At each TimeNode, the event
triggers are fed with the necessary input data. Once an event is
triggered, a new FlightPhase is created and added to the main
container. These loops continue until the simulation is completed,
either by reaching the maximum flight duration or by reaching a
terminal event, such as ground impact.

Once the simulation is completed, raw data can al-
ready be accessed. To compute secondary parameters, the
Flight.postProcess() is used. It takes advantage of the
fact that the FlightPhases container keeps all relevant flight
information to essentially retrace the trajectory and capture more
information about the flight.

Once secondary parameters are computed, the
Flight.allInfo method can be used to show and plot
all the relevant information, as illustrated in Fig. 3.

The adaptability of the Code and Accessibility

RocketPy’s development started in 2017, and since the beginning,
certain requirements were kept in mind:

• Execution times should be fast. There is a high interest in
performing sensitivity analysis, optimization studies and

Fig. 3: 3D flight trajectory, an output of the Flight.allInfo method

Monte Carlo simulations, which require a large number of
simulations to be performed (10,000 ~ 100,000).

• The code structure should be flexible. This is important
due to the diversity of possible scenarios that exist in a
rocket design context. Each user will have their simulation
requirements and should be able to modify and adapt new
features to meet their needs. For this reason, the code was
designed in a fashion such that each major component is
separated into self-encapsulated classes, responsible for a
single functionality. This tenet follows the concepts of the
so-called Single Responsibility Principle (SRP) [MNK03].

• Finally, the software should aim to be accessible. The
source code was openly published on GitHub (https:
//github.com/Projeto-Jupiter/RocketPy), where the com-
munity started to be built and a group of developers, known
as the RocketPy Team, are currently assigned as dedicated
maintainers. The job involves not only helping to improve
the code, but also working towards building a healthy
ecosystem of Python, rocketry, and scientific computing
enthusiasts alike; thus facilitating access to the high-
quality simulation without a great level of specialization.

The following examples demonstrate how RocketPy can be a
useful tool during the design and operation of a rocket model,
enabling functionalities not available by other simulation software
before.

Examples

Using RocketPy for Rocket Design

1) Apogee by Mass using a Function helper class

Because of performance and safety reasons, apogee is one of
the most important results in rocketry competitions, and it’s highly
valuable for teams to understand how different Rocket parameters
can change it. Since a direct relation is not available for this kind
of computation, the characteristic of running simulation quickly is
utilized for evaluation of how the Apogee is affected by the mass
of the Rocket. This function is highly used during the early phases
of the design of a Rocket.

222 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

An example of code of how this could be achieved:
1 from rocketpy import Function
2

3 def apogee(mass):
4 # Prepare Environment
5 ex_env = Environment(...)
6

7 ex_env.setAtmosphericModel(
8 type="CustomAtmosphere",
9 wind_v=-5

10)
11

12 # Prepare Motor
13 ex_motor = SolidMotor(...)
14

15 # Prepare Rocket
16 ex_rocket = Rocket(
17 ...,
18 mass=mass,
19 ...
20)
21

22 ex_rocket.setRailButtons([0.2, -0.5])
23 nose_cone = ex_rocket.addNose(.....)
24 fin_set = ex_rocket.addFins(....)
25 tail = ex_rocket.addTail(....)
26

27 # Simulate Flight until Apogee
28 ex_flight = Flight(.....)
29 return ex_flight.apogee
30

31 apogee_by_mass = Function(
32 apogee, inputs="Mass (kg)",
33 outputs="Estimated Apogee (m)"
34)
35 apogee_by_mass.plot(8, 20, 20)

The possibility of generating this relation between mass and
apogee in a graph shows the flexibility of Rocketpy and also the
importance of the simulation being designed to run fast.

1) Dynamic Stability Analysis

In this analysis the integration of three different RocketPy
classes will be explored: Function, Rocket, and Flight. The moti-
vation is to investigate how static stability translates into dynamic
stability, i.e. different static margins result relies on different
dynamic behavior, which also depends on the rocket’s rotational
inertia.

We can assume the objects stated in [motor] and [rocket]
sections and just add a couple of variations on some input data
to visualize the output effects. More specifically, the idea will be
to explore how the dynamic stability of the studied rocket varies
by changing the position of the set of fins by a certain factor.

To do that, we have to simulate multiple flights with different
static margins, which is achieved by varying the rocket’s fin
positions. This can be done through a simple python loop, as
described below:
1 simulation_results = []
2 for factor in [0.5, 0.7, 0.9, 1.1, 1.3]:
3 # remove previous fin set
4 ex_rocket.aerodynamicSurfaces.remove(fin_set)
5 fin_set = ex_rocket.addFins(
6 4, span=0.1, rootChord=0.120, tipChord=0.040,
7 distanceToCM=-1.04956 * factor
8)
9 ex_flight = Flight(

10 rocket=ex_rocket,
11 environment=env,
12 inclination=90,
13 heading=0,
14 maxTimeStep=0.01,
15 maxTime=5,

16 terminateOnApogee=True,
17 verbose=True,
18)
19 ex_flight.postProcess()
20 simulation_results += [(
21 ex_flight.attitudeAngle,
22 ex_rocket.staticMargin(0),
23 ex_rocket.staticMargin(ex_flight.outOfRailTime),
24 ex_rocket.staticMargin(ex_flight.tFinal)
25)]
26 Function.comparePlots(
27 simulation_results,
28 xlabel="Time (s)",
29 ylabel="Attitude Angle (deg)",
30)

The next step is to start the simulations themselves, which can
be done through a loop where the Flight class is called, perform
the simulation, save the desired parameters into a list and then
follow through with the next iteration. The post-process flight data
method is being used to make RocketPy evaluate additional result
parameters after the simulation.

Finally, the Function.comparePlots() method is used to plot
the final result, as reported at Fig. 4.

Fig. 4: Dynamic Stability example, unstable rocket presented on blue
line

Monte Carlo Simulation

When simulating a rocket’s trajectory, many input parameters
may not be completely reliable due to several uncertainties in
measurements raised during the design or construction phase of
the rocket. These uncertainties can be considered together in a
group of Monte Carlo simulations [RK16] which can be built on
top of RocketPy.

The Monte Carlo method here is applied by running a signifi-
cant number of simulations where each iteration has a different
set of inputs that are randomly sampled given a previously
known probability distribution, for instance the mean and standard
deviation of a Gaussian distribution. Almost every input data
presents some kind of uncertainty, except for the number of fins or
propellant grains that a rocket presents. Moreover, some inputs,
such as wind conditions, system failures, or the aerodynamic
coefficient curves, may behave differently and must receive special
treatment.

Statistical analysis can then be made on all the simulations,
with the main result being the 1σ , 2σ , and 3σ ellipses representing
the possible area of impact and the area where the apogee is

ROCKETPY: COMBINING OPEN-SOURCE AND SCIENTIFIC LIBRARIES TO MAKE THE SPACE SECTOR MORE MODERN AND ACCESSIBLE 223

reached (Fig. 5). All ellipses can be evaluated based on the method
presented by [Che66].

Fig. 5: 1 1σ , 2 2σ , and 3 3σ dispersion ellipses for both apogee and
landing point

When performing the Monte Carlo simulations on RocketPy,
all the inputs - i.e. the parameters along with their respective
standard deviations - are stored in a dictionary. The randomized
set of inputs is then generated using a yield function:
1 def sim_settings(analysis_params, iter_number):
2 i = 0
3 while i < iter_number:
4 # Generate a simulation setting
5 sim_setting = {}
6 for p_key, p_value in analysis_params.items():
7 if type(p_value) is tuple:
8 sim_setting[p_key] = normal(*p_value)
9 else:

10 sim_setting[p_key] = choice(p_value)
11 # Update counter
12 i += 1
13 # Yield a simulation setting
14 yield sim_setting

Where analysis_params is the dictionary with the inputs and
iter_number is the total number of simulations to be performed. At
that time the function yields one dictionary with one set of inputs,
which will be used to run a simulation. Later the sim_settings
function is called again and another simulation is run until the
loop iterations reach the number of simulations:
1 for s in sim_settings(analysis_params, iter_number):
2 # Define all classes to simulate with the current
3 # set of inputs generated by sim_settings
4

5 # Prepare Environment
6 ex_env = Environment(.....)
7 # Prepare Motor
8 ex_motor = SolidMotor(.....)
9 # Prepare Rocket

10 ex_rocket = Rocket(.....)
11 nose_cone = ex_rocket.addNose(.....)
12 fin_set = ex_rocket.addFins(....)
13 tail = ex_rocket.addTail(.....)
14

15 # Considers any possible errors in the simulation
16 try:
17 # Simulate Flight until Apogee
18 ex_flight = Flight(.....)
19

20 # Function to export all output and input
21 # data to a text file (.txt)

22 export_flight_data(s, ex_flight)
23 except Exception as E:
24 # if an error occurs, export the error
25 # message to a text file
26 print(E)
27 export_flight_error(s)

Finally, the set of inputs for each simulation along with its set of
outputs, are stored in a .txt file. This allows for long-term data
storage and the possibility to append simulations to previously
finished ones. The stored output data can be used to study the final
probability distribution of key parameters, as illustrated on Fig. 6.

Fig. 6: Distribution of apogee altitude

Finally, it is also worth mentioning that all the information
generated in the Monte Carlo simulation is based on RocketPy
may be of utmost importance to safety and operational manage-
ment during rocket launches, once it allows for a more reliable
prediction of the landing site and apogee coordinates.

Validation of the results: Unit, Dimensionality and Acceptance
Tests

Validation is a big problem for libraries like RocketPy, where
true values for some results like apogee and maximum velocity
is very hard to obtain or simply not available. Therefore, in
order to make RocketPy more robust and easier to modify, while
maintaining precise results, some innovative testing strategies have
been implemented.

First of all, unit tests were implemented for all classes and
their methods ensuring that each function is working properly.
Given a set of different inputs that each function can receive, the
respective outputs are tested against expected results, which can be
based on real data or augmented examples cases. The test fails if
the output deviates considerably from the established conditions,
or an unexpected error occurs along the way.

Since RocketPy relies heavily on mathematical functions to
express the governing equations, implementation errors can occur
due to the convoluted nature of such expressions. Hence, to reduce
the probability of such errors, there is a second layer of testing
which will evaluate if such equations are dimensionally correct.

To accomplish this, RocketPy makes use of the numericalunits
library, which defines a set of independent base units as randomly-
chosen positive floating point numbers. In a dimensionally-correct
function, the units all cancel out when the final answer is divided
by its resulting unit. And thus, the result is deterministic, not

224 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

random. On the other hand, if the function contains dimensionally-
incorrect equations, there will be random factors causing a
randomly-varying final answer. In practice, RocketPy runs two
calculations: one without numericalunits, and another with the
dimensionality variables. The results are then compared to assess
if the dimensionality is correct.

Here is an example. First, a SolidMotor object and a Rocket
object are initialized without numericalunits:
1 @pytest.fixture
2 def unitless_solid_motor():
3 return SolidMotor(
4 thrustSource="Cesaroni_M1670.eng",
5 burnOut=3.9,
6 grainNumber=5,
7 grainSeparation=0.005,
8 grainDensity=1815,
9 ...

10)
11

12 @pytest.fixture
13 def unitless_rocket(solid_motor):
14 return Rocket(
15 motor=unitless_solid_motor,
16 radius=0.0635,
17 mass=16.241,
18 inertiaI=6.60,
19 inertiaZ=0.0351,
20 distanceRocketNozzle=-1.255,
21 distanceRocketPropellant=-0.85704,
22 ...
23)

Then, a SolidMotor object and a Rocket object are initialized with
numericalunits:
1 import numericalunits
2

3 @pytest.fixture
4 def m():
5 return numericalunits.m
6

7

8 @pytest.fixture
9 def kg():

10 return numericalunits.kg
11

12 @pytest.fixture
13 def unitful_motor(kg, m):
14 return SolidMotor(
15 thrustSource="Cesaroni_M1670.eng",
16 burnOut=3.9,
17 grainNumber=5,
18 grainSeparation=0.005 * m,
19 grainDensity=1815 * (kg / m**3),
20 ...
21)
22

23 @pytest.fixture
24 def unitful_rocket(kg, m, dimensionless_motor):
25 return Rocket(
26 motor=unitful_motor,
27 radius=0.0635 * m,
28 mass=16.241 * kg,
29 inertiaI=6.60 * (kg * m**2),
30 inertiaZ=0.0351 * (kg * m**2),
31 distanceRocketNozzle=-1.255 * m,
32 distanceRocketPropellant=-0.85704 * m,
33 ...
34)

Then, to ensure that the equations implemented in both classes
(Rocket and SolidMotor) are dimensionally correct, the val-
ues computed can be compared. For example, the Rocket class
computes the rocket’s static margin, which is a non-dimensional
value and the result from both calculations should be the same:

1 def test_static_margin_dimension(
2 unitless_rocket,
3 unitful_rocket
4):
5 ...
6 s1 = unitless_rocket.staticMargin(0)
7 s2 = unitful_rocket.staticMargin(0)
8 assert abs(s1 - s2) < 1e-6

In case the value of interest has units, such as the position of the
center of pressure of the rocket, which has units of length, then
such value must be divided by the relevant unit for comparison:
1 def test_cp_position_dimension(
2 unitless_rocket,
3 unitful_rocket
4):
5 ...
6 cp1 = unitless_rocket.cpPosition(0)
7 cp2 = unitful_rocket.cpPosition(0) / m
8 assert abs(cp1 - cp2) < 1e-6

If the assertion fails, we can assume that the formula responsible
for calculating the center of pressure position was implemented
incorrectly, probably with a dimensional error.

Finally, some tests at a larger scale, known as acceptance
tests, were implemented to validate outcomes such as apogee,
apogee time, maximum velocity, and maximum acceleration when
compared to real flight data. A required accuracy for such values
were established after the publication of the experimental data by
[CSA+21]. Such tests are crucial for ensuring that the code doesn’t
lose precision as a result of new updates.

These three layers of testing ensure that the code is trustwor-
thy, and that new features can be implemented without degrading
the results.

Conclusions

RocketPy is an easy-to-use tool for simulating high-powered
rocket trajectories built with SciPy and the Python Scientific
Environment. The software’s modular architecture is based on
four main classes and helper classes with well-documented code
that allows to easily adapt complex simulations to various needs
using the supplied Jupyter Notebooks. The code can be a useful
tool during Rocket design and operation, allowing to calculate
of key parameters such as apogee and dynamic stability as well
as high-fidelity 6-DOF vehicle trajectory with a wide variety of
customizable parameters, from its launch to its point of impact.
RocketPy is an ever-evolving framework and is also accessible to
anyone interested, with an active community maintaining it and
working on future features such as the implementation of other
engine types, such as hybrids and liquids motors, and even orbital
flights.

Installing RocketPy

RocketPy was made to run on Python 3.6+ and requires the
packages: Numpy >=1.0, Scipy >=1.0 and Matplotlib >= 3.0. For
a complete experience we also recommend netCDF4 >= 1.4. All
these packages, except netCDF4, will be installed automatically if
the user does not have them. To install, execute:
pip install rocketpy

or
conda install -c conda-forge rocketpy

The source code, documentation and more examples are available
at https://github.com/Projeto-Jupiter/RocketPy

ROCKETPY: COMBINING OPEN-SOURCE AND SCIENTIFIC LIBRARIES TO MAKE THE SPACE SECTOR MORE MODERN AND ACCESSIBLE 225

Acknowledgments

The authors would like to thank the University of São Paulo, for
the support during the development of the current publication, and
also all members of Projeto Jupiter and the RocketPy Team who
contributed to the making of the RocketPy library.

REFERENCES

[AEH+19] Adam Aitoumeziane, Peter Eusebio, Conor Hayes, Vivek Ra-
machandran, Jamie Smith, Jayasurya Sridharan, Luke St Regis,
Mark Stephenson, Neil Tewksbury, Madeleine Tran, and Hao-
nan Yang. Traveler IV Apogee Analysis. Technical report,
USC Rocket Propulsion Laboratory, Los Angeles, 2019. URL:
http://www.uscrpl.com/s/Traveler-IV-Whitepaper.

[Aki70] Hiroshi Akima. A new method of interpolation and smooth
curve fitting based on local procedures. Journal of the ACM
(JACM), 17(4):589–602, 1970. doi:10.1145/321607.
321609.

[Bar67] James S Barrowman. The Practical Calculation of the Aero-
dynamic Characteristics of Slender Finned Vehicles. PhD
thesis, Catholic University of America, Washington, DC United
States, 1967.

[Che66] Victor Chew. Confidence, Prediction, and Tolerance Re-
gions for the Multivariate Normal Distribution. Journal of
the American Statistical Association, 61(315), 1966. doi:
10.1080/01621459.1966.10480892.

[Cok98] J Coker. Thrustcurve.org — rocket motor performance data
online, 1998. URL: https://www.thrustcurve.org/.

[CSA+21] Giovani H Ceotto, Rodrigo N Schmitt, Guilherme F Alves, Lu-
cas A Pezente, and Bruno S Carmo. Rocketpy: Six degree-of-
freedom rocket trajectory simulator. Journal of Aerospace En-
gineering, 34(6), 2021. doi:10.1061/(ASCE)AS.1943-
5525.0001331.

[ISO75] ISO Central Secretary. Standard Atmosphere. Technical Report
ISO 2533:1975, International Organization for Standardization,
Geneva, CH, 5 1975.

[MNK03] Robert C Martin, James Newkirk, and Robert S Koss. Agile
software development: principles, patterns, and practices, vol-
ume 2. Prentice Hall Upper Saddle River, NJ, 2003.

[PdDKÜK83] Robert Piessens, Elise de Doncker-Kapenga, Christoph W
Überhuber, and David K Kahaner. Quadpack: a subroutine
package for automatic integration, volume 1. Springer Science
& Business Media, 1983. doi:10.1007/978-3-642-
61786-7.

[Pet83] Linda Petzold. Automatic Selection of Methods for Solving
Stiff and Nonstiff Systems of Ordinary Differential Equa-
tions. SIAM Journal on Scientific and Statistical Computing,
4(1):136–148, 3 1983. doi:10.1137/0904010.

[Rei22] A Reilley. openmotor: An open-source internal ballistics
simulator for rocket motor experimenters, 2022. URL: https:
//github.com/reilleya/openMotor.

[RK16] Reuven Y Rubinstein and Dirk P Kroese. Simulation and the
Monte Carlo method. John Wiley & Sons, 2016. doi:10.
1002/9781118631980.

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haber-
land, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu
Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van
der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman,
Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert
Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert
Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fun-
damental Algorithms for Scientific Computing in Python. Na-
ture Methods, 17:261–272, 2020. doi:10.1038/s41592-
019-0686-2.

[Wil18] Paul D. Wilde. Range safety requirements and methods for
sounding rocket launches. Journal of Space Safety Engineer-
ing, 5(1):14–21, 3 2018. doi:10.1016/j.jsse.2018.
01.002.

226 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Wailord: Parsers and Reproducibility for Quantum
Chemistry

Rohit Goswami‡§∗

F

Abstract—Data driven advances dominate the applied sciences landscape,
with quantum chemistry being no exception to the rule. Dataset biases and
human error are key bottlenecks in the development of reproducible and general-
ized insights. At a computational level, we demonstrate how changing the granu-
larity of the abstractions employed in data generation from simulations can aid in
reproducible work. In particular, we introduce wailord (https://wailord.xyz), a
free-and-open-source python library to shorten the gap between data-analysis
and computational chemistry, with a focus on the ORCA suite binaries. A two
level hierarchy and exhaustive unit-testing ensure the ability to reproducibly
describe and analyze "computational experiments". wailord offers both input
generation, with enhanced analysis, and raw output analysis, for traditionally
executed ORCA runs. The design focuses on treating output and input gener-
ation in terms of a mini domain specific language instead of more imperative
approaches, and we demonstrate how this abstraction facilitates chemical in-
sights.

Index Terms—quantum chemistry, parsers, reproducible reports, computational
inference

Introduction

The use of computational methods for chemistry is ubiquitous
and few modern chemists retain the initial skepticism of the field
[Koh99], [Sch86]. Machine learning has been further earmarked
[MSH19], [Dra20], [SGT+19] as an effective accelerator for
computational chemistry at every level, from DFT [GLL+16] to
alchemical searches [DBCC16] and saddle point searches [ÁJ18].
However, these methods trade technical rigor for vast amounts of
data, and so the ability to reproduce results becomes increasingly
more important. Independently, the ability to reproduce results
[Pen11], [SNTH13] in all fields of computational research, and
has spawned a veritable flock of methodological and program-
matic advances [CAB+19], including the sophisticated provenance
tracking of AiiDA [PCS+16], [HZU+20].

Dataset bias

[EIS+20], [BS19], [RBA+19] has gained prominence in the ma-
chine learning literature, but has not yet percolated through to
the chemical sciences community. At its core, the argument for
dataset biases in generic machine learning problems of image

* Corresponding author: rog32@hi.is
‡ Science Institute, University of Iceland
§ Quansight Austin, TX, USA

Copyright © 2022 Rohit Goswami. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

and text classification, can be linked to the difficulty in obtaining
labeled results for training purposes. This is not an issue in the
computational physical sciences at all, as the training data can
often be labeled without human intervention. This is especially
true when simulations are carried out at varying levels of accuracy.
However, this also leads to a heavy reliance on high accuracy
calculations on "benchmark" datasets and results [HMSE+21],
[SEJ+19].

Compute is expensive, and the reproduction of data which
is openly available is often hard to justify as a valid scientific
endeavor. Rather than focus on the observable outputs of cal-
culations, instead we assert that it is best to be able to have
reproducible confidence in the elements of the workflow. In the
following sections, we will outline wailord, a library which
implements a two level structure for interacting with ORCA
[Nee12] to implement an end-to-end workflow to analyze and
prepare datasets. Our focus on ORCA is due to its rapid and
responsive development cycles, that it is free to use (but not open
source) and also because of its large repertoire of computational
chemistry calculations. Notably, the black-box nature of ORCA
(in that the source is not available) mirrors that of many other
packages (which are not free) like VASP [Haf08]. Using ORCA
then, allows us to design a workflow which is best suited for
working with many software suites in the community.

We shall understand this wailord from the lens of what is
often known as a design pattern in the practice of computational
science and engineering. That is, a template or description to solve
commonly occurring problems in the design of programs.

Structure and Implementation

Python has grown to become the lingua-franca for much of the
scientific community [Oli07], [MA11], in no small part because
of its interactive nature. In particular, the REPL (read-evaluate-
print-loop) structure which has been prioritized (from IPython to
Jupyter) is one of the prime motivations for the use of Python
as an exploratory tool. Additionally, PyPI, the python package
index, accelerates the widespread disambiguation of software
packages. Thus wailord is implemented as a free and open
source python library.

Structure

Data generation involves set of known configurations (say, xyz
inputs) and a series of common calculations whose outputs are
required. Computational chemistry packages tend to be focused
on acceleration and setup details on a per-job scale. wailord,

WAILORD: PARSERS AND REPRODUCIBILITY FOR QUANTUM CHEMISTRY 227

in contrast, considers the outputs of simulations to form a tree,
where the actual run and its inputs are the leaves, and each layer
of the tree structure holds information which is collated into a
single dataframe which is presented to the user.

Downstream tasks for simulations of chemical systems involve
questions phrased as queries or comparative measures. With that in
mind, wailord generates pandas dataframes which are indis-
tinguishable from standard machine learning information sources,
to trivialize the data-munging and preparation process. The outputs
of wailord represent concrete information and it is not meant to
store runs like the ASE database [LMB+17] , nor run a process to
manage discrete workflows like AiiDA [HZU+20].

By construction, it differs also from existing "interchange"
formats as those favored by the materials data repositories like
the QCArchive project [SAB+21] and is partially close in spirit to
the cclib endeavor [OTL08].

Implementation

Two classes form the backbone of the data-harvesting process. The
intended point of interface with a user is the orcaExp class which
collects information from multiple ORCA outputs and produces
dataframes which include relevant metadata (theory, basis, system,
etc.) along with the requested results (energy surfaces, energies,
angles, geometries, frequencies, etc.). A lower level "orca visitor"
class is meant to parse each individual ORCA output. Until the
release of ORCA 5 which promises structured property files,
the outputs are necessarily parsed with regular expressions, but
validated extensively. The focus on ORCA has allowed for more
exotic helper functions, like the calculation of rate constants from
orcaVis files. However, beyond this functionality offered by the
quantum chemistry software (ORCA), a computational chemistry
workflow requires data to be more malleable. To this end, the
plain-text or binary outputs of quantum chemistry software must
be further worked on (post-processed) to gain insights. This means
for example, that the outputs may be entered into a spreadsheet,
or into a plain text note, or a lab notebook, but in practice,
programming languages are a good level of abstraction. Of the
programming languages, Python as a general purpose program-
ming language with a high rate of community adoption is a good
starting place.

Python has a rich set of structures implemented in the standard
library, which have been liberally used for structuring outputs.
Furthermore, there have been efforts to convert the grammar
of graphics [WW05] and tidy-data [WAB+19] approaches to
the pandas package which have also been adapted internally,
including strict unit adherence using the pint library. The user
is not burdened by these implementation details and is instead
ensured a pandas data-frame for all operations, both at the
orcaVis level, and the orcaExp level.

Software industry practices have been followed throughout the
development process. In particular, the entire package is written in
a test-driven-development (TDD) fashion which has been proven
many times over for academia [DJS08] and industry [BN06].
In essence, each feature is accompanied by a test-case. This is
meant to ensure that once the end-user is able to run the test-
suite, they are guaranteed the features promised by the software.
Additionally, this means that potential bugs can be submitted
as a test case which helps isolate errors for fixes. Furthermore,
software testing allows for coverage metrics, thereby enhancing
user and development confidence in different components of any
large code-base.

Fig. 1: Some implemented workflows including the two input YML
files. VPT2 stands for second-order vibrational perturbation theory
and Orca_vis objects are part of wailord’s class structure. PES
stands for potential energy surface.

User Interface

The core user interface is depicted in Fig. [[fig:uiwail]]. The
test suites cover standard usage and serve as ad-hoc tutorials.
Additionally, jupyter notebooks are also able to effectively
run wailord which facilitates its use over SSH connections to
high-performance-computing (HPC) clusters. The user is able to
describe the nature of calculations required in a simple YAML file
format. A command line interface can then be used to generate
inputs, or another YAML file may be passed to describe the
paths needed. A very basic harness script for submissions is also
generated which can be rate limited to ensure optimal runs on an
HPC cluster.

Design and Usage

A simulation study can be broken into:

• Inputs + Configuration for runs + Data for structures
• Outputs per run
• Post-processing and aggregation

From a software design perspective, it is important to rec-
ognize the right level of abstraction for the given problem. An
object-oriented pattern is seen to be the correct design paradigm.
However, though combining test driven development and object
oriented design is robust and extensible, the design of wailord
is meant to tackle the problem at the level of a domain specific
language. Recall from formal language theory [AA07] the fact
that a grammar is essentially meant to specify the entire possible
set of inputs and outputs for a given language. A grammar can
be expressed as a series of tokens (terminal symbols) and non-
terminal (syntactic variables) symbols along with rules defining
valid combinations of these.

It may appear that there is little but splitting hairs between
parsing data line by line as is traditionally done in libraries, com-
pared to defining the exact structural relations between allowed
symbols. However, this design, apart from disallowing invalid
inputs, also makes sense from a pedagogical perspective.

228 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

For example, of the inputs, structured data like configurations
(XYZ formats) are best handled by concrete grammars, where
each rule is followed in order:
grammar_xyz = Grammar(

r"""
meta = natoms ws coord_block ws?
natoms = number
coord_block = (aline ws)+
aline = (atype ws cline)
atype = ~"[a-zA-Z]" / ~"[0-9]"
cline = (float ws float ws float)
float = pm number "." number
pm = ~"[+-]?"
number = ~"\\d+"
ws = ~"\\s*"
"""

)

This definition maps neatly into the exact specification of an xyz
file:
2

H -2.8 2.8 0.1
H -3.2 3.4 0.2

Where we recognize that the overarching structure is of the
number of atoms, followed by multiple coordinate blocks followed
by optional whitespace. We move on to define each coordinate
block as a line of one or many aline constructs, each of which
is an atype with whitespace and three float values representing
coordinates. Finally we define the positive, negative, numeric and
whitespace symbols to round out the grammar. This is the exact
form of every valid xyz file. The parsimonious library allows
handling grammatical constructs in a Pythonic manner.

However, the generation of inputs is facilitated through the
use of generalized templates for "experiments" controlled by
cookiecutter. This allows for validations on the workflow
during setup itself.

For the purposes of the simulation study, one "experiment"
consists of multiple single-shot runs; each of which can take a
long time.

Concretely, the top-level "experiment" is controlled by a
YAML file:
project_slug: methylene
project_name: singlet_triplet_methylene
outdir: "./lab6"
desc: An experiment to calculate singlet and triplet
states differences at a QCISD(T) level
author: Rohit
year: "2020"
license: MIT
orca_root: "/home/orca/"
orca_yml: "orcaST_meth.yml"
inp_xyz: "ch2_631ppg88_trip.xyz"

Where each run is then controlled individually.
qc:
active: True
style: ["UHF", "QCISD", "QCISD(T)"]
calculations: ["OPT"]
basis_sets:
- 6-311++G**

xyz: "inp.xyz"
spin:
- "0 1" # Singlet
- "0 3" # Triplet

extra: "!NUMGRAD"
viz:
molden: True
chemcraft: True

jobscript: "basejob.sh"

Usage is then facilitated by a high-level call.
waex.cookies.gen_base(
template="basicExperiment",
absolute=False,
filen="./lab6/expCookieST_meth.yml",
)

The resulting directory tree can be sent to a High Performance
Computing Cluster (HPC), and once executed via the generated
run-script helper; locally analysis can proceed.
mdat = waio.orca.genEBASet(Path("buildOuts") / \
"methylene",
deci=4)
print(mdat.to_latex(index=False,
caption="CH2 energies and angles \
at various levels of theory, with NUMGRAD"))

In certain situations, ordering may be relevant as well (e.g. for gen-
erating curves of varying density functional theoretic complexity).
This can be handled as well.

For the outputs, similar to the key ideas across signac, nix,
spack and other tools, control is largely taken away from the user
in terms of the auto-generated directory structure. The outputs of
each run is largely collected through regular expressions, due to
the ever changing nature of the outputs of closed source software.

Importantly, for a code which is meant to confer insights,
the concept of units is key. wailord with ORCA has first class
support for units using pint.

Dissociation of H2

As a concrete example, we demonstrate a popular pedagogical
exercise, namely to obtain the binding energy curves of the H2
molecule at varying basis sets and for the Hartree Fock, along with
the results of Kolos and Wolniewicz [KW68]. We first recognize,
that even for a moderate 9 basis sets with 33 points, we expect
around 1814 data points. Where each basis set requires a separate
run, this is easily expected to be tedious.

Naively, this would require modifying and generating ORCA
input files.
!UHF 3-21G ENERGY

%paras
R = 0.4, 2.0, 33 # x-axis of H1

end

*xyz 0 1
H 0.00 0.0000000 0.0000000
H {R} 0.0000000 0.0000000
*

We can formulate the requirement imperatively as:
qc:
active: True
style: ["UHF", "QCISD", "QCISD(T)"]
calculations: ["ENERGY"] # Same as single point or SP
basis_sets:
- 3-21G
- 6-31G
- 6-311G
- 6-311G*
- 6-311G**
- 6-311++G**
- 6-311++G(2d,2p)
- 6-311++G(2df,2pd)
- 6-311++G(3df,3pd)

xyz: "inp.xyz"
spin:
- "0 1"

params:
- name: R

WAILORD: PARSERS AND REPRODUCIBILITY FOR QUANTUM CHEMISTRY 229

range: [0.4, 2.00]
points: 33
slot:
xyz: True
atype: "H"
anum: 1 # Start from 0
axis: "x"

extra: Null
jobscript: "basejob.sh"

This run configuration is coupled with an experiment setup file,
similar to the one in the previous section. With this in place,
generating a data-set of all the required data is fairly trivial.

kolos = pd.read_csv(
"../kolos_H2.ene",
skiprows=4,
header=None,
names=["bond_length", "Actual Energy"],
sep=" ",

)
kolos['theory']="Kolos"

expt = waio.orca.orcaExp(expfolder=Path("buildOuts") / "h2")
h2dat = expt.get_energy_surface()

Finally, the resulting data can be plotted using tidy principles.

imgname = "images/plotH2A.png"
p1a = (

p9.ggplot(
data=h2dat, mapping=p9.aes(x="bond_length",
y="Actual Energy",
color="theory")

)
+ p9.geom_point()
+ p9.geom_point(mapping=p9.aes(x="bond_length",
y="SCF Energy"),
color="black", alpha=0.1,
shape='*', show_legend=True)

+ p9.geom_point(mapping=p9.aes(x="bond_length",
y="Actual Energy",
color="theory"),
data=kolos,
show_legend=True)

+ p9.scales.scale_y_continuous(breaks
= np.arange(h2dat["Actual Energy"].min(),
h2dat["Actual Energy"].max(), 0.05))

+ p9.ggtitle("Scan of an H2 \
bond length (dark stars are SCF energies)")

+ p9.labels.xlab("Bond length in Angstrom")
+ p9.labels.ylab("Actual Energy (Hatree)")
+ p9.facet_wrap("basis")

)
p1a.save(imgname, width=10, height=10, dpi=300)

Which gives rise to the concise representation Fig. 2 from which
all required inference can be drawn.

In this particular case, it is possible to see the deviations from
the experimental results at varying levels of theory for different
basis sets.

Conclusions

We have discussed wailord in the context of generating, in
a reproducible manner the structured inputs and output datasets
which facilitate chemical insight. The formulation of bespoke
datasets tailored to the study of specific properties across a wide
range of materials at varying levels of theory has been shown.
The test-driven-development approach is a robust methodology
for interacting with closed source software. The design patterns
expressed, of which the wailord library is a concrete imple-
mentation, is expected to be augmented with more workflows, in
particular, with a focus on nudged elastic band. The methodology

Fig. 2: Plots generated from tidy principles for post-processing
wailord parsed outputs.

here has been applied to ORCA, however, the two level structure
has generalizations to most quantum chemistry codes as well.

Importantly, we note that the ideas expressed form a design
pattern for interacting with a plethora of computational tools
in a reproducible manner. By defining appropriate scopes for
our structured parsers, generating deterministic directory trees,
along with a judicious use of regular expressions for output data
harvesting, we are able to leverage tidy-data principles to analyze
the results of a large number of single-shot runs.

Taken together, this tool-set and methodology can be used to
generate elegant reports combining code and concepts together
in a seamless whole. Beyond this, the interpretation of each
computational experiment in terms of a concrete domain specific
language is expected to reduce the requirement of having to re-run
benchmark calculations.

Acknowledgments

R Goswami thanks H. Jónsson and V. Ásgeirsson for discussions
on the design of computational experiments for inference in
computation chemistry. This work was partially supported by the
Icelandic Research Fund, grant number 217436052.

REFERENCES

[AA07] Alfred V. Aho and Alfred V. Aho, editors. Compilers: Principles,
Techniques, & Tools. Pearson/Addison Wesley, Boston, 2nd ed
edition, 2007.

[ÁJ18] Vilhjálmur Ásgeirsson and Hannes Jónsson. Exploring Potential
Energy Surfaces with Saddle Point Searches. In Wanda Andreoni
and Sidney Yip, editors, Handbook of Materials Modeling, pages
1–26. Springer International Publishing, Cham, 2018. doi:
10.1007/978-3-319-42913-7_28-1.

[BN06] Thirumalesh Bhat and Nachiappan Nagappan. Evaluating the
efficacy of test-driven development: Industrial case studies. In
Proceedings of the 2006 ACM/IEEE International Symposium
on Empirical Software Engineering, ISESE ’06, pages 356–363,
New York, NY, USA, September 2006. Association for Comput-
ing Machinery. doi:10.1145/1159733.1159787.

[BS19] Avrim Blum and Kevin Stangl. Recovering from Biased Data:
Can Fairness Constraints Improve Accuracy? arXiv:1912.01094
[cs, stat], December 2019. arXiv:1912.01094.

230 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

[CAB+19] The Turing Way Community, Becky Arnold, Louise Bowler,
Sarah Gibson, Patricia Herterich, Rosie Higman, Anna Krys-
talli, Alexander Morley, Martin O’Reilly, and Kirstie Whitaker.
The Turing Way: A Handbook for Reproducible Data Science.
Zenodo, March 2019.

[DBCC16] Sandip De, Albert P. Bartók, Gábor Csányi, and Michele
Ceriotti. Comparing molecules and solids across struc-
tural and alchemical space. Physical Chemistry Chemical
Physics, 18(20):13754–13769, May 2016. doi:10.1039/
C6CP00415F.

[DJS08] Chetan Desai, David Janzen, and Kyle Savage. A survey
of evidence for test-driven development in academia. ACM
SIGCSE Bulletin, 40(2):97–101, June 2008. doi:10.1145/
1383602.1383644.

[Dra20] Pavlo O. Dral. Quantum Chemistry in the Age of Ma-
chine Learning. The Journal of Physical Chemistry Let-
ters, 11(6):2336–2347, March 2020. doi:10.1021/acs.
jpclett.9b03664.

[EIS+20] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris
Tsipras, Jacob Steinhardt, and Aleksander Madry. Identifying
Statistical Bias in Dataset Replication. arXiv:2005.09619 [cs,
stat], May 2020. arXiv:2005.09619.

[GLL+16] Ting Gao, Hongzhi Li, Wenze Li, Lin Li, Chao Fang, Hui Li, Li-
Hong Hu, Yinghua Lu, and Zhong-Min Su. A machine learning
correction for DFT non-covalent interactions based on the S22,
S66 and X40 benchmark databases. Journal of Cheminformatics,
8(1):24, May 2016. doi:10.1186/s13321-016-0133-7.

[Haf08] Jürgen Hafner. Ab-initio simulations of materials using VASP:
Density-functional theory and beyond. Journal of Computa-
tional Chemistry, 29(13):2044–2078, 2008. doi:10.1002/
jcc.21057.

[HMSE+21] Johannes Hoja, Leonardo Medrano Sandonas, Brian G. Ernst,
Alvaro Vazquez-Mayagoitia, Robert A. DiStasio Jr., and Alexan-
dre Tkatchenko. QM7-X, a comprehensive dataset of quantum-
mechanical properties spanning the chemical space of small
organic molecules. Scientific Data, 8(1):43, February 2021.
doi:10.1038/s41597-021-00812-2.

[HZU+20] Sebastiaan P. Huber, Spyros Zoupanos, Martin Uhrin, Leopold
Talirz, Leonid Kahle, Rico Häuselmann, Dominik Gresch,
Tiziano Müller, Aliaksandr V. Yakutovich, Casper W. Andersen,
Francisco F. Ramirez, Carl S. Adorf, Fernando Gargiulo, Snehal
Kumbhar, Elsa Passaro, Conrad Johnston, Andrius Merkys, An-
drea Cepellotti, Nicolas Mounet, Nicola Marzari, Boris Kozin-
sky, and Giovanni Pizzi. AiiDA 1.0, a scalable computa-
tional infrastructure for automated reproducible workflows and
data provenance. Scientific Data, 7(1):300, September 2020.
doi:10.1038/s41597-020-00638-4.

[Koh99] W. Kohn. Nobel Lecture: Electronic structure of matter—
wave functions and density functionals. Reviews of Modern
Physics, 71(5):1253–1266, October 1999. doi:10.1103/
RevModPhys.71.1253.

[KW68] W. Kolos and L. Wolniewicz. Improved Theoretical Ground-
State Energy of the Hydrogen Molecule. The Journal of Chem-
ical Physics, 49(1):404–410, July 1968. doi:10.1063/1.
1669836.

[LMB+17] Ask Hjorth Larsen, Jens Jørgen Mortensen, Jakob Blomqvist,
Ivano E. Castelli, Rune Christensen, Marcin Du\lak, Jesper
Friis, Michael N. Groves, Bjørk Hammer, Cory Hargus, Eric D.
Hermes, Paul C. Jennings, Peter Bjerre Jensen, James Kermode,
John R. Kitchin, Esben Leonhard Kolsbjerg, Joseph Kubal, Kris-
ten Kaasbjerg, Steen Lysgaard, Jón Bergmann Maronsson, Tris-
tan Maxson, Thomas Olsen, Lars Pastewka, Andrew Peterson,
Carsten Rostgaard, Jakob Schiøtz, Ole Schütt, Mikkel Strange,
Kristian S. Thygesen, Tejs Vegge, Lasse Vilhelmsen, Michael
Walter, Zhenhua Zeng, and Karsten W. Jacobsen. The atomic
simulation environment—a Python library for working with
atoms. Journal of Physics: Condensed Matter, 29(27):273002,
June 2017. doi:10.1088/1361-648X/aa680e.

[MA11] K. J. Millman and M. Aivazis. Python for Scientists and
Engineers. Computing in Science Engineering, 13(2):9–12,
March 2011. doi:10/dc343g.

[MSH19] Ralf Meyer, Klemens S. Schmuck, and Andreas W. Hauser.
Machine Learning in Computational Chemistry: An Evalua-
tion of Method Performance for Nudged Elastic Band Cal-
culations. Journal of Chemical Theory and Computation,
15(11):6513–6523, November 2019. doi:10.1021/acs.
jctc.9b00708.

[Nee12] Frank Neese. The ORCA program system. WIREs Computa-
tional Molecular Science, 2(1):73–78, 2012. doi:10.1002/
wcms.81.

[Oli07] T. E. Oliphant. Python for Scientific Computing. Comput-
ing in Science Engineering, 9(3):10–20, May 2007. doi:
10/fjzzc8.

[OTL08] Noel M. O’boyle, Adam L. Tenderholt, and Karol M.
Langner. Cclib: A library for package-independent computa-
tional chemistry algorithms. Journal of Computational Chem-
istry, 29(5):839–845, 2008. doi:10.1002/jcc.20823.

[PCS+16] Giovanni Pizzi, Andrea Cepellotti, Riccardo Sabatini, Nicola
Marzari, and Boris Kozinsky. AiiDA: Automated interactive
infrastructure and database for computational science. Compu-
tational Materials Science, 111:218–230, January 2016. doi:
10.1016/j.commatsci.2015.09.013.

[Pen11] Roger D. Peng. Reproducible Research in Computational Sci-
ence. Science, 334(6060):1226–1227, December 2011. doi:
10/fdv356.

[RBA+19] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler,
Min Lin, Fred Hamprecht, Yoshua Bengio, and Aaron Courville.
On the Spectral Bias of Neural Networks. In Proceedings of
the 36th International Conference on Machine Learning, pages
5301–5310. PMLR, May 2019.

[SAB+21] Daniel G. A. Smith, Doaa Altarawy, Lori A. Burns, Matthew
Welborn, Levi N. Naden, Logan Ward, Sam Ellis, Benjamin P.
Pritchard, and T. Daniel Crawford. The MolSSI QCArchive
project: An open-source platform to compute, organize, and
share quantum chemistry data. WIREs Computational Molecular
Science, 11(2):e1491, 2021. doi:10.1002/wcms.1491.

[Sch86] Henry F. Schaefer. Methylene: A Paradigm for Computational
Quantum Chemistry. Science, 231(4742):1100–1107, March
1986. doi:10.1126/science.231.4742.1100.

[SEJ+19] Andrew W. Senior, Richard Evans, John Jumper, James Kirk-
patrick, Laurent Sifre, Tim Green, Chongli Qin, Augustin Žídek,
Alexander W. R. Nelson, Alex Bridgland, Hugo Penedones,
Stig Petersen, Karen Simonyan, Steve Crossan, Pushmeet Kohli,
David T. Jones, David Silver, Koray Kavukcuoglu, and Demis
Hassabis. Protein structure prediction using multiple deep neural
networks in the 13th Critical Assessment of Protein Structure
Prediction (CASP13). Proteins: Structure, Function, and Bioin-
formatics, 87(12):1141–1148, 2019. doi:10.1002/prot.
25834.

[SGT+19] K. T. Schütt, M. Gastegger, A. Tkatchenko, K.-R. Müller,
and R. J. Maurer. Unifying machine learning and quantum
chemistry with a deep neural network for molecular wavefunc-
tions. Nature Communications, 10(1):5024, November 2019.
doi:10.1038/s41467-019-12875-2.

[SNTH13] Geir Kjetil Sandve, Anton Nekrutenko, James Taylor, and Eivind
Hovig. Ten Simple Rules for Reproducible Computational Re-
search. PLOS Computational Biology, 9(10):e1003285, October
2013. doi:10/pjb.

[WAB+19] Hadley Wickham, Mara Averick, Jennifer Bryan, Winston
Chang, Lucy D’Agostino McGowan, Romain François, Garrett
Grolemund, Alex Hayes, Lionel Henry, Jim Hester, Max Kuhn,
Thomas Lin Pedersen, Evan Miller, Stephan Milton Bache,
Kirill Müller, Jeroen Ooms, David Robinson, Dana Paige Seidel,
Vitalie Spinu, Kohske Takahashi, Davis Vaughan, Claus Wilke,
Kara Woo, and Hiroaki Yutani. Welcome to the Tidyverse.
Journal of Open Source Software, 4(43):1686, November 2019.
doi:10.21105/joss.01686.

[WW05] Leland Wilkinson and Graham Wills. The Grammar of Graph-
ics. Statistics and Computing. Springer, New York, 2nd ed
edition, 2005.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022) 231

Variational Autoencoders For Semi-Supervised Deep
Metric Learning

Nathan Safir‡∗, Meekail Zain§, Curtis Godwin‡, Eric Miller‡, Bella Humphrey§, Shannon P Quinn§¶

F

Abstract—Deep metric learning (DML) methods generally do not incorporate
unlabelled data. We propose borrowing components of the variational autoen-
coder (VAE) methodology to extend DML methods to train on semi-supervised
datasets. We experimentally evaluate the atomic benefits to the perform- ing
DML on the VAE latent space such as the enhanced ability to train using
unlabelled data and to induce bias given prior knowledge. We find that jointly
training DML with an autoencoder and VAE may be potentially helpful for some
semi-suprevised datasets, but that a training routine of alternating between
the DML loss and an additional unsupervised loss across epochs is generally
unviable.

Index Terms—Variational Autoencoders, Metric Learning, Deep Learning, Rep-
resentation Learning, Generative Models

Introduction

Within the broader field of representation learning, metric learning
is an area which looks to define a distance metric which is smaller
between similar objects (such as objects of the same class) and
larger between dissimilar objects. Oftentimes, a map is learned
from inputs into a low-dimensional latent space where euclidean
distance exhibits this relationship, encouraged by training said
map against a loss (cost) function based on the euclidean distance
between sets of similar and dissimilar objects in the latent space.
Existing metric learning methods are generally unable to learn
from unlabelled data, which is problematic because unlabelled
data is often easier to obtain and is potentially informative.

We take inspiration from variational autoencoders (VAEs),
a generative representation learning architecture, for using un-
labelled data to create accurate representations. Specifically, we
look to evaluate three atomic improvement proposals that detail
how pieces of the VAE architecture can create a better deep metric
learning (DML) model on a semi-supervised dataset. From here,
we can ascertain which specific qualities of how VAEs process
unlabelled data are most helpful in modifying DML methods to
train with semi-supervised datasets.

First, we propose that the autoencoder structure of the VAE
helps the clustering of unlabelled points, as the reconstruction

* Corresponding author: nssafir@gmail.com
‡ Institute for Artificial Intelligence, University of Georgia, Athens, GA 30602
USA
§ Department of Computer Science, University of Georgia, Athens, GA 30602
USA
¶ Department of Cellular Biology, University of Georgia, Athens, GA 30602
USA

Copyright © 2022 Nathan Safir et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

loss may help incorporate semantic information from unlabelled
sources. Second, we propose that the structure of the VAE latent
space, as it is confined by a prior distribution, can be used to
induce bias in the latent space of a DML system. For instance,
if we know a dataset contains N -many classes, creating a prior
distribution that is a learnable mixture of N gaussians may help
produce better representations. Third, we propose that performing
DML on the latent space of the VAE so that the DML task can
be jointly optimized with the VAE to incorporate unlabelled data
may help produce better representations.

Each of the three improvement proposals will be evaluated
experimentally. The improvement proposals will be evaluated by
comparing a standard DML implementation to the same DML
implementation:

• jointly optimized with an autoencoder
• while structuring the latent space around a prior distribu-

tion using the VAE’s KL-divergence loss term between the
approximated posterior and prior

• jointly optimized with a VAE

Our primary contribution is evaluating these three improve-
ment proposals. Our secondary contribution is presenting the
results of the joint approaches for VAEs and DML for more recent
metric losses that have not been jointly optimized with a VAE in
previous literature.

Related Literature

The goal of this research is to investigate how components of the
variational autoencoder can help the performance of deep metric
learning in semi supervised tasks. We draw on previous literature
to find not only prior attempts at this specific research goal but
also work in adjacent research questions that proves insightful.
In this review of the literature, we discuss previous related work
in the areas of Semi-Supervised Metric Learning and VAEs with
Metric Losses.

Semi-Supervised Metric Learning

There have been previous approaches to designing metric learning
architectures which incorporate unlabelled data into the metric
learning training regimen for semi-supervised datasets. One of the
original approaches is the MPCK-MEANS algorithm proposed
by Bilenko et al. ([BBM04]), which adds a penalty for placing
labelled inputs in the same cluster which are of a different class
or in different clusters if they are of the same class. This penalty
is proportional to the metric distance between the pair of inputs.

232 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Baghshah and Shouraki ([BS09]) also looks to impose similar
constraints by introducing a loss term to preserve locally linear
relationships between labelled and unlabelled data in the input
space. Wang et al. ([WYF13]) also use a regularizer term to
preserve the topology of the input space. Using VAEs, in a sense,
draws on this theme: though there is not explicit term to enforce
that the topology of the input space is preserved, a topology of
the inputs is intended to be learned through a low-dimensional
manifold in the latent space.

One more recent common general approach to this problem
is to use the unlabelled data’s proximity to the labelled data
to estimate labels for unlabelled data, effectively transforming
unlabelled data into labelled data. Dutta et al. ([DHS21]) and Li et
al. ([LYZ+19]) propose a model which uses affinity propagation
on a k-Nearest-Neighbors graph to label partitions of unlabelled
data based on their closest neighbors in the latent space. Wu et al.
([WFZ20]) also look to assign pseudo-labels to unlabelled data,
but not through a graph-based approach. Instead, the proposed
model looks to approximate "soft" pseudo-labels for unlabelled
data from the metric learning similarity measure between the
embedding of unlabelled data and the center of each input of each
class of the labelled data.

Several of the recent graph based approaches can be consid-
ered state-of-the-art for semi supervised metric learning. Li et.
al.’s paper states their methods achieve 98.9 percent clustering
accuracy on the MNIST dataset with 10% labelled data, outper-
forming two similar state-of-the-art methods, DFCM ([ARJM18])
and SDEC ([RHD+19]), by roughly 8 points. Dutta et. al.’s method
also outperforms 5 other state for the R@1 metric (the "percentage
of test examples" that have at least one 1 "nearest neighbor from
the same class.") by at leat 1.2 on the MNIST dataset, as well
as the Fashion-MNIST and CIFAR-10 datasets. It is difficult to
compare the two approaches as the evaluation metrics used in
each paper differ. Li et al.’s paper has been cited rather heavily
relative to other papers in the field and can be considered state
of the art for semi-supervised DML on MNIST. The paper also
provides a helpful metric (98.9 percent clustering accuracy on the
MNIST dataset with 10% labelled data) to use as a reference point
for the results in this paper.

VAEs with Metric Loss

Some approaches to incorporating labelled data into VAEs use
a metric loss to govern the latent space more explicitly. Lin et
al. ([LDD+18]) model the intra-class invariance (i.e. the class-
related information of a data point) and intra-class variance (i.e.
the distinct features of a data point not unique to it’s class)
seperately. Like several other models in this section, this paper’s
proposed model incorporates a metric loss term for the latent
vectors representing intra-class invariance and the latent vectors
representing both intra-class invariance and intra-class variance.

Kulkarni et al. ([KCJ20]) incorporate labelled information into
the VAE methodology in two ways. First, a modified architecture
called the CVAE is used in which the encoder and generator of the
VAE is not only conditioned on the input X and latent vector z,
respectively, but also on the label Y . The CVAE was introduced in
previous papers ([SLY15]) ([DCGO19]). Second, the authors add
a metric loss, specifically a multi-class N-pair loss ([Soh16]), in
the overall loss function of the model. While it is unclear how the
CVAE technique would be adapted in a semi-supervised setting,
as there is not a label Y associated with each datapoint X , we

also experiment with adding a (different) metric loss to the overall
VAE loss function.

Most recently, Grosnit et al. ([GTM+21]) leverage a new
training algorithm for combining VAEs and DML for Bayesian
Optimization and said algorithm using simple, contrastive, and
triplet metric losses. We look to build on this literature by also
testing a combined VAE DML architecture on more recent metric
losses, albeit using a simpler training regimen.

Deep Metric Learning (DML)

Metric learning attempts to create representations for data by
training against the similarity or dissimilarity of samples. In a
more technical sense, there are two notable functions in DML
systems. Function fθ is a neural network which maps the input
data X to the latent points Z (i.e. fθ : X 7→ Z, where θ is the
network parameters). Generally, Z exists in a space of much lower
dimensionality than X (eg. X is a set of 28×28 pixel pictures such
that X ⊂ R28×28 and Z ⊂ R10).

The function D fθ (x,y) = D(fθ (x), fθ (y)) represents the dis-
tance between two inputs x,y ∈ X . To create a useful embedding
model fθ , we would like for fθ to produce large values of D fθ (x,y)
when x and y are dissimilar and for fθ to produce small values of
D fθ (x,y) when x and y are similar. In some cases, dissimilarity
and similarity can refer to when inputs are of different and the
same classes, respectively.

It is common for the Euclidean metric (i.e. the L2 metric) to
be used as a distance function in metric learning. The generalized
Lp metric can be defined as follows, where z0,z1 ∈ Rd .

Dp(z0,z1) = ||z0− z1||p = (
d

∑
i=1
|z0i − z1i |p)1/p

If we have chosen fθ (a neural network) and the distance function
D (the L2 metric), the remaining component to be defined in
a metric learning system is the loss function for training f . In
practice, we will be using triplet loss ([SKP15]), one of the most
common metric learning loss functions.

Methodology

We look to discover the potential of applying components of the
VAE methodology to DML systems. We test this through present-
ing incremental modifications to the basic DML architecture. Each
modified architecture corresponds to an improvement proposal
about how a specific part of the VAE training regime and loss
function may be adapted to assist the performance of a DML
method for a semi-supervised dataset.

The general method we will take for creating modified DML
models involves extending the training regimen to two phases,
a supervised and unsupervised phase. In the supervised phase the
modified DML model behaves identically to the base DML model,
training on the same metric loss function. In the unsupervised
phase, the DML model will train against an unsupervised loss
inspired by the VAE. This may require extra steps to be added
to the DML architecture. In the pseudocode, s refers to boolean
variable representing if the current phase is supervised. α is a
hyperparameter which modulates the impact of the unsupervised
on total loss for the DML autoencoder.

VARIATIONAL AUTOENCODERS FOR SEMI-SUPERVISED DEEP METRIC LEARNING 233

Improvement Proposal 1

We first look to evaluate the improvement proposal that adding
a reconstruction loss to a DML system can improve the quality
of clustering in the latent representations on a semi-supervised
dataset. Reconstruction loss in and of itself enforces a similar
semantic mapping onto the latent space as a metric loss, but can
be computed without labelled data. In theory, we believe that the
added constraint that the latent vector must be reconstructed to
approximate the original output will train the spatial positioning
to reflect semantic information. Following this reasoning, obser-
vations which share similar semantic information, specifically
observations of the same class (even if not labelled as such),
should intuitively be positioned nearby within the latent space. To
test if this intuition occurs in practice, we evaluate if a DML model
with an autoencoder structure and reconstruction loss (described in
further detail below) will perform better than a plain DML model
in terms of clustering quality. This will be especially evident for
semi-supervised datasets in which the amount of labelled data is
not feasible for solely supervised DML.

Given a semi-supervised dataset, we assume a standard DML
system will use only the labelled data and train given a metric loss
Lmetric (see Algorithm 1). Our modified model DML Autoencoder
will extend the DML model’s training regime by adding a decoder
network which takes the latent point z as input and produces an
output x̂. The unsupervised loss LU is equal to the reconstruction
loss.

Improvement Proposal 2

Say we are aware that a dataset has n classes. It may be useful
to encourage that there are n clusters in the latent space of a
DML model. This can be enforced by using a prior distribution
containing n many Gaussians. As we wish to measure only
the affect of inducing bias on the representation without adding
any complexity to the model, the prior distribution will not be
learnable (unlike VAE with VampPrior). By testing whether the
classes of points in the latent space are organized along the prior
components we can test whether bias can be induced using a
prior to constrain the latent space of a DML. By testing whether
clustering improves performance, we can evaluate whether this
inductive bias is helpful.

Given a fully supervised dataset, we assume a standard DML
system will use only the labelled data and train given a metric loss
Lmetric. Our modified model will extend the DML system’s training
regime by setting the unsupervised loss to a KL divergence term
that measures the difference between posterior distributions and
a prior distribution. It should also be noted that, like the VAE
encoder, we will map the input not to a latent point but to a
latent distribution. The latent point is stochastically sampled from
the latent distribution during training. Mapping the input to a

distribution instead of a point will allow us to calculate the KL
divergence.

In practice, we will be evaluating a DML model with a unit
prior and a DML model with a mixture of gaussians (GMM) prior.
The latter model constructs the prior as a mixture of n gaussians –
each the vertice of the unit (i.e. each side is 2 units long) hypercube
in the latent space. The logvar of each component is set equal to
one. Constructing the prior in this way is beneficial in that it is
ensured that each component is evenly spaced within the latent
space, but is limiting in that there must be exactly 2d components
in the GMM prior. Thus, to test, we will test a dataset with 10
classes on the latent space dimensionality of 4, such that there
are 24 = 16 gaussian components in the GMM prior. Though the
number of prior components is greater than the number of classes,
the latent mapping may still exhibit the pattern of classes forming
clusters around the prior components as the extra components may
be made redundant.

The drawback of the decision to set the GMM components’
means to the coordinates of the unit hypercube’s vertices is that
the manifold of the chosen dataset may not necessarily exist in 4
dimensions. Choosing gaussian components from a d-dimensional
hypersphere in the latent space Rd would solve this issue, but
there does not appear to be a solution for choosing n evenly spaced
points spanning d dimensions on a d-dimensional hypersphere.
KL Divergence is calculated with a monte carlo approximation
for the GMM and analytically with the unit prior.

Improvement Proposal 3

The third improvement proposal we look to evaluate is that
given a semi-supervised dataset, optimizing a DML model jointly
with a VAE on the VAE’s latent space will produce superior
clustering than the DML model individually. The intuition behind
this approach is that DML methods can learn from only supervised
data and VAE methods can learn from only unsupervised data; the
proposed methodology will optimize both tasks simultaneously to
learn from both supervised and unsupervised data.

The MetricVAE implementation we create jointly optimizes
the VAE task and DML task on the VAE latent space. The
unsupervised loss is set to the VAE loss. The implementation uses
the VAE with VampPrior model instead of the vanilla VAE.

Results

Experimental Configuration

Each set of experiments shares a similar hyperparameter search
space. Below we describe the hyperparameters that are included
in the search space of each experiment and the evaluation method.

Learning Rate (lr): Through informal experimentation, we
have found that the learning rate of 0.001 causes the models to
converge consistently (relative to 0.005 and 0.0005). The learning
rate is thus set to 0.001 in each experiment.

234 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

VARIATIONAL AUTOENCODERS FOR SEMI-SUPERVISED DEEP METRIC LEARNING 235

Latent Space Dimensionality (lsdim): Latent space dimen-
sionality refers to the dimensionality of the vector output of the
encoder of a DML network or the dimensionality of the posterior
distribution of a VAE (also the dimensionality of the latent space).
When the latent space dimensionality is 2, we see the added benefit
of creating plots of the latent representations (though we can
accomplish this through using dimensionality reduction methods
like tSNE for higher dimensionalities as well). Example values for
this hyperparameter used in experiments are 2, 4, and 10.

Alpha: Alpha (α) is a hyperapameter which refers to the
balance between the unsupervised and supervised losses of some
of the modified DML models. More details about the role of α
in the model implementations are discussed in the methodology
section of the model. Potential values for alpha are each between
0 (exclusive) and 1 (inclusive). We do not include 0 in this set as if
α is set to 0, the model is equivalent to the fully supervised plain
DML model because the supervised loss would not be included. If
α is set to 1, then the model would train on only the unsupervised
loss; for instance if the DML Autoencoder had α set to 1, then the
model would be equivalent to an autoencoder.

Partial Labels Percentage (pl%): The partial labels per-
centage hyperparameter refers to the percentage of the dataset that
is labelled and thus the size of the partion of the dataset that can
be used for labelled training. Of course, each of the datasets we
use is fully labelled, so a partially labelled datset can be trivially
constructed by ignoring some of the labels. As the sizes of the
dataset vary, each percentage can refer to a different number of
labelled samples. Values for the partial label percentage we use
across experiments include 0.01, 0.1, and 10 (with each value
referring to the percentage).

Datasets: Two datasets are used for evaluating the models.
The first dataset is MNIST ([LC10]), a very popular dataset
in machine learning containing greyscale images of handwritten
digits. The second dataset we use is the organ OrganAMNIST
dataset from MedMNIST v2 ([YSW+21]). This dataset contains
2D slices from computed tomography images from the Liver
Tumor Segmentation Benchmark – the labels correspond to the
classification of 11 different body organs. The decision to use
a second dataset was motivated because as the improvement
proposals are tested over more datasets, the results supporting the
improvement proposals become more generalizable. The decision
to use the OrganAMNIST dataset specifically is motivated in
part due to the Quinn Research Group working on similar tasks
for biomedical imaging ([ZRS+20]). It is also motivated in part
because OrganAMNIST is a more difficult dataset, at least for
the classfication task, as the leading accuracy for MNIST is .9991
([ALP+20]) while the leading accuracy for OrganAMNIST is .951

([YSW+21]). The MNIST and OrganAMNIST datasets are similar
in dimensionality (1 x 28 x 28), number of samples (60,000 and
58,850, respectively) and in that they are both greyscale.

Evaluation: We evaluate the results by running each model
on a test partition of data. We then take the latent points Z
generated by the model and the corresponding labels Y . Three
classifiers (sklearn’s implementation of RandomForest, MLP, and
kNN) each output predicted labels Ŷ for the latent points. In
most of the charts shown, however, we only include the kNN
classification output due to space constraints and the lack of
meaningful difference between the output for each classifier. We
finally measure the quality of the predicted labels Ŷ using the
Adjusted Mutual Information Score (AMI) ([?]) and accuracy
(which is still helpful but is also easier to interpret in some cases).
This scoring metric is common in research that looks to evaluate
clustering performance ([ZG21]) ([EKGB16]). We will be using
sklearn’s implementation of AMI ([PVG+11]). The performance
of a classifier on the latent points intuitively can be used as a
measure of quality of clustering.

Improvement Proposal 1 Results: Benefits of Reconstruction Loss

In evaluating the first improvement proposal, we compare the
performance of the plain DML model to the DML Autoencoder
model. We do so by comparing the performance of the plain
DML system and the DML Autoencoder across a search space
containing the lsdim, alpha, and pl% hyperparameters and both
datasets.

In Table 1 and Table 2, we observe that for relatively small
amounts of labelled samples (the partial labels percentages of 0.01
and 0.1 correspond to 6 and 60 labelled samples respectively),
the DML Autoencoder severely outperforms the DML model.
However, when the number of labelled samples increases (the
partial labels percentage of 10 correspond to 6000 labelled sam-
ples respectively), the DML model significantly outperforms the
DML Autoencoder. This trend is not too surprising, as when there
is sufficient data to train unsupervised methods and insufficient
data to train supervised method, as is the case for the 0.01 and
0.1 partial label percentages, the unsupervised method will likely
perform better.

The data looks to show that adding a reconstruction loss to a
DML system can improve the quality of clustering in the latent
representations on a semi-supervised dataset when there are small
amounts (roughly less than 100 samples) of labelled data and a
sufficient quantity of unlabelled data. But an important caveat is
that it is not convincing that the DML Autoencoder effectively
combined the unsupervised and supervised losses to create a
superior model, as a plain autoencoder (i.e. the DML Autoencoder

236 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 1: Sample images from the MNIST (left) and OrganAMNIST of MedMNIST (right) datasets

with α = 1) outperforms the DML for the partial labels percentage
of or less than 0.1% and underperforms the DML for the partial
labels percentage of 10%.

Improvement Proposal 2 Results: Incorporating Inductive Bias with
a Prior

In evaluating the second improvement proposal, we compare the
performance of the plain DML model to the DML with a unit prior
and a DML with a GMM prior. The DML prior with the GMM
prior will have 2^2 = 4 gaussian components when lsdim = 2 and
2^4 = 16 components when lsdim = 4. Our broad intention is to
see if changing the shape (specifically the number of components)
of the prior can induce bias by affecting the pattern of embeddings.
We hypothesize that when the GMM prior contains n components
and n is slightly greater than or equal to the number of classes,
each class will cluster around one of the prior components. We will
test this for the GMM prior with 16 components (lsdim = 4) as
both the MNIST and MedMNIST datasets have 10 classes. We are
unable to set the number of GMM components to 10 as our GMM
sampling method only allows for the number of components to
equal a power of 2. Bseline models include a plain DML and a
DML with a unit prior (the distribution N(0, 1)).

In Table 3, it is very evident that across both datasets, the DML
models with any prior distribution all devolve to the null model
(i.e. the classifier is no better than random selection). From the
visualizations of the latent embeddings, we see that the embedded
data for the DML models with priors appears completely random.
In the case of the GMM prior, it also does not appear to take on the
shape of the prior or reflect the number of components in the prior.
This may be due to the training routine of the DML models. As
the KL divergence loss, which can be said to "fit" the embeddings
to the prior, trains on alternating epochs with the supervised DML
loss, it is possible that the two losses are not balanced correctly
during the training process. From the discussed results, it is fair
to state that adding a prior distribution to a DML model through
training the model on the KL divergence between the prior and
approximated posterior distributions on alternating epochs does is
not an effective way to induce bias in the latent space.

Improvement Proposal 3 Results: Jointly Optimizing DML with VAE

To evaluate the third improvement proposal, we compare the
performance of DMLs to MetricVAEs (defined in the previous
chapter) across several metric losses. We run experiments for
triplet loss, supervised loss, and center loss DML and MetricVAE
models. To evaluate the improvement proposal, we will assess
whether the model performance improves for the MetricVAE over
the DML for the same metric loss and other hyper parameters.

Like the previous improvement proposal, the proposed Metric-
VAE model does not perform better than the null model. As with
improvement proposal 2, it is possible this is because the training

routine of alternating between supervised loss (in this case, metric
loss) and unsupervised (in this case, VAE loss) is not optimal for
training the model.

We have trained a seperate combined VAE and DML model
which trains on both the unsupervised and supervised loss each
epoch instead of alternating between the two each epoch. In the
results for this model, we see that an alpha value of over zero
(i.e. incorporating both the supervised metric loss into the overall
MVAE loss function) can help improve performance especially
among lower dimensionalities. Given our analysis of the data, we
see that incorporating the DML loss to the VAE is potentially
helpful, but only when training the unsupervised and supervised
losses jointly. Even in that case, it is unclear whether the MVAE
performs better than the corresponding DML model even if it does
perform better than the corresponding VAE model.

Conclusion

Conclusion

In this work, we have set out to determine how DML can be
extended for semi-supervised datasets by borrowing components
of the variational autoencoder. We have formalized this approach
through defining three specific improvement proposals. To evalu-
ate each improvement proposal, we have created several variations
of the DML model, such as the DML Autoencoder, DML with
Unit/GMM Prior, and MVAE. We then tested the performance
of the models across several semi-supervised partitions of two
datasets, along with other configurations of hyperparameters.

We have determined from the analysis of our results, there
is too much dissenting data to clearly accept any three of the
improvement proposals. For improvement proposal 1, while the
DML Autoencoder outperforms the DML for semisupervised
datasets with small amounts of labelled data, it’s peformance is not
consistently much better than that of a plain autoencoder which
uses no labelled data. For improvement proposal 2, each of the
DML models with an added prior performed extremely poorly,
near or at the level of the null model. For improvement proposal
3, we see the same extremely poor performance from the MVAE
models.

From the results in improvement proposals 1 and 3, we find
that there may be potential in incorporating the autoencoder and
VAE loss terms into DML systems. However, we were unable to
show that any of these improvement proposals would consistently
outperform the both the DML and fully unsupervised architectures
in semisupervised settings. We also found that the training routine
used for the improvement proposals, in which the loss function
would alternate between supervised and unsupervised losses each
epoch, was not effective. This is especially evident in comparing
the two combined VAE DML models for improvement proposal
3.

VARIATIONAL AUTOENCODERS FOR SEMI-SUPERVISED DEEP METRIC LEARNING 237

Fig. 2: Table 1: Comparison of the DML (left) and DML Autoencoder (right) models for the MNIST dataset. Bolded values indicate best
performance for each partial labels percentage partition (pl%).

Fig. 3: Table 2: Comparison of the DML (left) and DML Autoencoder (right) models for the MEDMNIST dataset..

Future Work

In the future, it would be worthwhile to evaluate these improve-
ment proposals using a different training routine. We have stated
previously that perhaps the extremely poor performance of the
DML with a prior and MVAE models may be due to alternating
on training against a supervised and unsupervised loss. Further
research could look to develop or compare several different
training routines. One alternative would be alternating between
losses at each batch instead of each epoch. Another alternative,
specifically for the MVAE, may be first training DML on labelled
data, training a GMM on it’s outputs, and then using the GMM as
the prior distribution for the VAE.

Another potentially interesting avenue for future study is in
investigating a fourth improvement proposal: the ability to define
a Riemannian metric on the latent space. Previous research has
shown a Riemannian metric can be computed on the latent space
of the VAE by computing the pull-back metric of the VAE’s
decoder function ([AHS20]). Through the Riemannian metric we
could calculate metric losses such as triplet loss with a geodesic
instead of euclidean distance. The geodesic distance may be a
more accurate representation of similarity in the latent space than
euclidean distance as it accounts for the structure of the input
data.

REFERENCES

[AHS20] Georgios Arvanitidis, Søren Hauberg, and Bernhard Schölkopf.
Geometrically enriched latent spaces. arXiv preprint
arXiv:2008.00565, 2020. doi:10.48550/arXiv.2008.
00565.

[ALP+20] Sanghyeon An, Min Jun Lee, Sanglee Park, Heerin Yang, and
Jungmin So. An ensemble of simple convolutional neural network
models for MNIST digit recognition. CoRR, abs/2008.10400,
2020. URL: https://arxiv.org/abs/2008.10400, arXiv:2008.
10400, doi:10.48550/arXiv.2008.10400.

[ARJM18] Ali Arshad, Saman Riaz, Licheng Jiao, and Aparna Murthy.
Semi-supervised deep fuzzy c-mean clustering for software fault
prediction. IEEE Access, 6:25675–25685, 2018. doi:10.
1109/ACCESS.2018.2835304.

[BBM04] Mikhail Bilenko, Sugato Basu, and Raymond J Mooney. Integrat-
ing constraints and metric learning in semi-supervised clustering.
In Proceedings of the twenty-first international conference on
Machine learning, page 11, 2004. doi:10.1145/1015330.
1015360.

[BS09] Mahdieh Soleymani Baghshah and Saeed Bagheri Shouraki.
Semi-supervised metric learning using pairwise constraints. In
Twenty-First International Joint Conference on Artificial Intelli-
gence, 2009.

[DCGO19] Sara Dahmani, Vincent Colotte, Valérian Girard, and Slim Ouni.
Conditional variational auto-encoder for text-driven expressive
audiovisual speech synthesis. In INTERSPEECH 2019-20th
Annual Conference of the International Speech Communication
Association, 2019. doi:10.21437/interspeech.2019-
2848.

238 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 4: Table 3: Comparison of the DML model (left) and the DML with prior models with a unit gaussian prior (center) and GMM prior
(right) models for the MNIST dataset.

Fig. 5: Comparison of latent spaces for DML with unit prior (left) and DML with GMM prior containing 4 components (right) for lsdim
= 2 on OrganAMNIST dataset. The gaussian components are shown as black with the raidus equal to variance (1). There appears to be no
evidence of the distinct gaussian components in the latent space on the right. It does appear that the unit prior may regularize the magnitude
of the latent vectors

Fig. 6: Graph of reconstruction loss (componenet of unsupervised loss) of MVAE across epochs. The unsupervised loss does not converge
despite being trained on each epoch.

Fig. 7: Table 4: Experiments performed on MVAE architecture across fully labelled MNIST dataset that trains on objective function L =
LU+γ ∗LS on fully supervised dataset. The best results for the classification accuracy on the MVAE embeddings in a given latent-dimensionality
are bolded.

VARIATIONAL AUTOENCODERS FOR SEMI-SUPERVISED DEEP METRIC LEARNING 239

[DHS21] Ujjal Kr Dutta, Mehrtash Harandi, and Chellu Chandra Sekhar.
Semi-supervised metric learning: A deep resurrection. 2021.
doi:10.48550/arXiv.2105.05061.

[EKGB16] Scott Emmons, Stephen Kobourov, Mike Gallant, and Katy
Börner. Analysis of network clustering algorithms and clus-
ter quality metrics at scale. PloS one, 11(7):e0159161, 2016.
doi:10.1371/journal.pone.0159161.

[GTM+21] Antoine Grosnit, Rasul Tutunov, Alexandre Max Maraval, Ryan-
Rhys Griffiths, Alexander I Cowen-Rivers, Lin Yang, Lin Zhu,
Wenlong Lyu, Zhitang Chen, Jun Wang, et al. High-dimensional
bayesian optimisation with variational autoencoders and deep
metric learning. arXiv preprint arXiv:2106.03609, 2021. doi:
10.48550/arXiv.2106.03609.

[KCJ20] Ajinkya Kulkarni, Vincent Colotte, and Denis Jouvet. Deep
variational metric learning for transfer of expressivity in multi-
speaker text to speech. In International Conference on Statistical
Language and Speech Processing, pages 157–168. Springer, 2020.
doi:10.1007/978-3-030-59430-5_13.

[LC10] Yann LeCun and Corinna Cortes. MNIST handwritten digit
database. 2010. URL: http://yann.lecun.com/exdb/mnist/ [cited
2016-01-14 14:24:11].

[LDD+18] Xudong Lin, Yueqi Duan, Qiyuan Dong, Jiwen Lu, and Jie Zhou.
Deep variational metric learning. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 689–704, 2018.
doi:10.1007/978-3-030-01267-0_42.

[LYZ+19] Xiaocui Li, Hongzhi Yin, Ke Zhou, Hongxu Chen, Shazia Sadiq,
and Xiaofang Zhou. Semi-supervised clustering with deep metric
learning. In International Conference on Database Systems for
Advanced Applications, pages 383–386. Springer, 2019. doi:
10.1007/978-3-030-18590-9_50.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[RHD+19] Yazhou Ren, Kangrong Hu, Xinyi Dai, Lili Pan, Steven CH Hoi,
and Zenglin Xu. Semi-supervised deep embedded clustering. Neu-
rocomputing, 325:121–130, 2019. doi:10.1016/j.neucom.
2018.10.016.

[SKP15] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A unified embedding for face recognition and clus-
tering. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 815–823, 2015. doi:
10.1109/cvpr.2015.7298682.

[SLY15] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning struc-
tured output representation using deep conditional generative
models. Advances in neural information processing systems,
28:3483–3491, 2015.

[Soh16] Kihyuk Sohn. Improved deep metric learning with multi-class n-
pair loss objective. In Advances in neural information processing
systems, pages 1857–1865, 2016.

[WFZ20] Sanyou Wu, Xingdong Feng, and Fan Zhou. Metric learning
by similarity network for deep semi-supervised learning. In
Developments of Artificial Intelligence Technologies in Compu-
tation and Robotics: Proceedings of the 14th International FLINS
Conference (FLINS 2020), pages 995–1002. World Scientific,
2020. doi:10.1142/9789811223334_0120.

[WYF13] Qianying Wang, Pong C Yuen, and Guocan Feng. Semi-
supervised metric learning via topology preserving multiple semi-
supervised assumptions. Pattern Recognition, 46(9):2576–2587,
2013. doi:10.1016/j.patcog.2013.02.015.

[YSW+21] Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao,
Bilian Ke, Hanspeter Pfister, and Bingbing Ni. Medmnist v2:
A large-scale lightweight benchmark for 2d and 3d biomedical
image classification. arXiv preprint arXiv:2110.14795, 2021.
doi:10.48550/arXiv.2110.14795.

[ZG21] Zhen Zhu and Yuan Gao. Finding cross-border collaborative
centres in biopharma patent networks: A clustering comparison
approach based on adjusted mutual information. In International
Conference on Complex Networks and Their Applications, pages
62–72. Springer, 2021. doi:10.1007/978-3-030-93409-
5_6.

[ZRS+20] Meekail Zain, Sonia Rao, Nathan Safir, Quinn Wyner, Isabella
Humphrey, Alexa Eldridge, Chenxiao Li, BahaaEddin AlAila,
and Shannon P. Quinn. Towards an unsupervised spatiotemporal
representation of cilia video using a modular generative pipeline.
2020. doi:10.25080/majora-342d178e-017.

240 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

A Python Pipeline for Rapid Application Development
(RAD)

Scott D. Christensen‡∗, Marvin S. Brown‡, Robert B. Haehnel‡, Joshua Q. Church‡, Amanda Catlett‡, Dallon C.
Schofield‡, Quyen T. Brannon‡, Stacy T. Smith‡

F

Abstract—Rapid Application Development (RAD) is the ability to rapidly pro-
totype an interactive interface through frequent feedback, so that it can be
quickly deployed and delivered to stakeholders and customers. RAD is a critical
capability needed to meet the ever-evolving demands in scientific research and
data science. To further this capability in the Python ecosystem, we have curated
and developed a set of open-source tools, including Panel, Bokeh, and Tethys
Platform. These tools enable prototyping interfaces in a Jupyter Notebook and
facilitate the progression of the interface into a fully-featured, deployable web-
application.

Index Terms—web app, Panel, Tethys, Tethys Platform, Bokeh, Jupyter

Introduction

With the tools for data science continually improving and an al-
most innumerable supply of new data sources, there are seemingly
endless opportunities to create new insights and decision support
systems. Yet, an investment of resources are needed to extract
the value from data using new and improved tools. Well-timed
and impactful proposals are necessary to gain the support and
resources needed from stakeholders and decision makers to pursue
these opportunities. The ability to rapidly prototype capabilities
and new ideas provides a powerful visual tool to communicate
the impact of a proposal. Interactive applications are even more
impactful by engaging the user in the data analysis process.

After a prototype is implemented to communicate ideas and
feasibility of a project, additional success is determined by the
ability to produce the end product on time and within budget.
If the deployable product needs to be completely re-written using
different tools, programing languages, and/or frameworks from the
prototype, then significantly more time and resources are required.
The ability to quickly mature a prototype to production-ready
application using the same tool stack can make the difference in
the success of a project.

Background

At the US Army Engineer Research and Development Center
(ERDC) there are evolving needs to support the missions of the
US Army Corps of Engineers and our partners. The scientific

* Corresponding author: Scott.D.Christensen@usace.army.mil
‡ US Army Engineer Research and Development Center

Copyright © 2022 Scott D. Christensen et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Python ecosystem provides a rich set of tools that can be applied to
various data sources to provide valuable insights. These insitghts
can be integrated into decision support systems that can enhance
the information available when making mission critical decisions.
Yet, while the opportunities are vast, the ability to get the resources
necessary to pursue those opportunities requires effective and
timely communication of the value and feasibility of a proposed
project.

We have found that rapid prototyping is a very impactful way
to concretely show the value that can be obtained from a proposal.
Moreover, it also illustrates with clarity that the project is feasible
and likely to succeed. Many scientific workflows are developed in
Python, and often the prototyping phase is done in a Jupyter Note-
book. The Jupyter environment provides an easy way to quickly
modify code and visualize output. However, the visualizations are
interlaced with the code and thus it does not serve as an ideal way
demonstrate the prototype to stakeholders, that may not be familiar
with Jupyter Notebooks or code. The Jupyter Dashboard project
was addressing this issue before support for it was dropped in
2017. To address this technical gap, we worked with the Holoviz
team to develop the Panel library. [Panel] Panel is a high-level
Python library for developing apps and dashboards. It enables
building layouts with interactive widgets in a Jupyter Notebook
environment, but can then easily transition to serving the same
code on a standalone secure webserver. This capability enabled
us to rapidly prototype workflows and dashboards that could be
directly accessed by potential sponsors.

Panel makes prototyping and deploying simple. It can also
be iterative. As new features are developed we can continue to
work in the Jupyter Notebook environment and then seamlessly
transition the new code to a deployed application. Since appli-
cations continue to mature they often require production-level
features. Panel apps are deployed via Bokeh, and the Bokeh
framework lacks some aspects that are needed in some production
applications (e.g. a user management system for authentication
and permissions, and a database to persist data beyond a session).
Bokeh doesn’t provide either of these aspects natively.

Tethys Platform is a Django-based web framework that is
geared toward making scientific web applications easier to de-
velop by scientists and engineers. [Swain] It provides a Python
Software Development Kit (SDK) that enables web apps to be
created almost purely in Python, while still leaving the flexibility
to add custom HTML, JavaScript, and CSS. Tethys provides
user management and role-based permissions control. It also
enables database persistence and computational job management

A PYTHON PIPELINE FOR RAPID APPLICATION DEVELOPMENT (RAD) 241

[Christensen], in addition to many visualization tools. Tethys of-
fers the power of a fully-featured web framework without the need
to be an expert in full-stack web development. However, Tethys
lacks the ease of prototyping in a Jupyter Notebook environment
that is provided by Panel.

To support both the rapid prototyping capability provided
by Panel and the production-level features of Tethys Platform,
we needed a pipeline that could take our Panel-based code
and integrate it into the Tethys Platform framework. Through
collaborations with the Bokeh development team and developers
at Aquaveo, LLC, we were able to create that integration of
Panel (Bokeh) and Tethys. This paper demonstrates the seamless
pipeline that facilitates Rapid Application Development (RAD).
In the next section we describe how the RAD pipeline is used at
the ERDC for a particular use case, but first we will provide some
background on the use case itself.

Use Case

Helios is a computational fluid dynamics (CFD) code for simulat-
ing rotorcraft. It is very computationally demanding and requires
High Performance Computing (HPC) resources to execute any-
thing but the most basic of models. At the ERDC we often face a
need to run parameter sweeps to determine the affects of varying
a particular parameter (or set of parameters). Setting up a Helios
model to run on the HPC is a somewhat involved process that
requires file management and creating a script to submit the job
to the queueing system. When executing a parameter sweep the
process becomes even more cumbersome, and is often avoided.

While tedeous to perform manually, the process of modifying
input files, transferring to the HPC, and generating and submitting
job scripts to the the HPC queueing system can be automated
with Python. Furthermore, it can be made much more accessible,
even to those without extensive knowledge of how Helios works,
through a web-based interface.

Methods

To automate the process of submitting Helios model parameter
sweeps to the HPC via a simple interactive web application
we developed and used the RAD pipeline. Initially three Helios
parameter sweep workflows were identified:

1) Collective Sweep
2) Speed Sweep
3) Ensemble Analysis

The process of submitting each of these workflows to the HPC
was similar. They each involved the same basic steps:

1) Authentication to the HPC
2) Connecting to a specific HPC system
3) Specifying the parameter sweep inputs
4) Submtting the job to the queuing system
5) Monitoring the job as it runs
6) Visualizing the results

In fact, these steps are essentially the same for any job being
submitted to the HPC. To ensure that we were able to resuse
as much code as possible we created PyUIT, a generic, open-
source Python library that enables this workflow. The ability to
authenticate and connect to the DoD HPC systems is enabled
by a service called User Interface Toolkit Plus (UIT+). [PyUIT]
UIT+ provides an OAuth2 authentication service and a RESTful

Fig. 1: Collective Sweep Inputs Stage rendered in a Jupyter Notebook.

Fig. 2: Collective Sweep Inputs Stage rendered as a stand-alone
Bokeh app.

API to execute commands on the login nodes of the DoD HPC
systems. The PyUIT library provides a Python wrapper for the
UIT+ REST API. Additionally, it provides Panel-based interfaces
for each of the workflow steps listed above. Panel refers to a
workflow comprised of a sequence of steps as a pipeline, and
each step in the pipeline is called a stage. Thus, PyUIT provides a
template stage class for each step in the basisc HPC workflow.

The PyUIT pipeline stages were customized to create inter-
faces for each of the three Helios workflows. Other than the
inputs stage, the rest of the stages are the same for each of the
workflows (See figures 1, 2, and 3). The inputs stage allows the
user to select a Helios input file and then provides inputs to allow
the user to specify the values for the parameter(s) that will be
varied in the sweep. Each of these stages was first created in a
Jupyter Notebook. We were then able to deploy each workflow as
a standalone Bokeh application. Finally we integrated the Panel-
based app into Tethys to leverage the compute job management
system and single-sign-on authentication.

As additional features are required, we are able to leverage

242 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 3: Collective Sweep Inputs Stage rendered in the Helios Tethys
App.

the same pipeline: first developing the capability in a Jupyter
Notebook, then testing with a Bokeh-served app, and finally, a
full integration into Tethys.

Results

By integrating the Panel workflows into the Helios Tethys app
we can take advantage of Tethys Platform features, such as the
jobs table, which persists metadata about computational jobs in a
database.

Fig. 4: Helios Tethys App home page showing a table of previously
submitted Helios simulations.

Each of the three workflows can be launched from the home
page of the Helios Tethys app as shown in Figure 5. Although
the home page was created in the Tethys framework, once the
workflows are launched the same Panel code that was previously
developed is called to display the workflow (refer to figures 1, 2,
and 3).

From the Tethys Jobs Table different actions are available for
each job including viewing results once the job has completed (see
6).

View job results is much more natural in the Tethys app. Helios
jobs often take multiple days to complete. By embedding the
Helios Panel workflows in Tethys users can leave the web app
(ending their session), and then come back later and pull up the

Fig. 5: The Helios Tethys App is the framework for launching each of
the three Panel-based Helios parameter sweep workflows.

Fig. 6: Actions associated with a job. The available actions depend
on the job’s status.

results to view. The pages that display the results are built with
Panel, but Tethys enables them to be populated with information
about the job from the database. Figure 7 shows the Tracking Data
tab of the results viewer page. The plot is a dynamic Bokeh plot
that enables the user to select the data to plot on each axis. This
particular plot is showing the variation of the coeffient of drag of
the fuselage body over the simulation time.

Figure 8 shows what is called CoViz data, or data that is
extracted from the solution as the model is running. This image is
showing an isosurface colored by density.

Conclusion

The Helios Tethys App has demonstrated the value of the RAD pi-
pline, which enables both rapid prototyping and rapid progression
to production. This enables researchers to quickly communicate
and prove ideas and deliver successful products on time. In
addition to the Helios Tethys App, RAD has been instrumental
for the mission success of various projects at the ERDC.

REFERENCES

[Christensen] Christensen, S. D., Swain, N. R., Jones, N. L., Nelson, E.
J., Snow, A. D., & Dolder, H. G. (2017). A Comprehensive
Python Toolkit for Accessing High-Throughput Computing to
Support Large Hydrologic Modeling Tasks. JAWRA Journal
of the American Water Resources Association, 53(2), 333-343.
https://doi.org/10.1111/1752-1688.12455

A PYTHON PIPELINE FOR RAPID APPLICATION DEVELOPMENT (RAD) 243

Fig. 7: Timeseries output associated with a Helios Speed Sweep run.

Fig. 8: Isosurface visualization from a Helios Speed Sweep run.

[Panel] https://www.panel.org
[PyUIT] https://github.com/erdc/pyuit
[Swain] Swain, N. R., Christensen, S. D., Snow, A. D., Dolder, H.,

Espinoza-Dávalos, G., Goharian, E., Jones, N. L., Ames, D.P.,
& Burian, S. J. (2016). A new open source platform for
lowering the barrier for environmental web app development.
Environmental Modelling & Software, 85, 11-26. https://doi.
org/10.1016/j.envsoft.2016.08.003

244 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Monaco: A Monte Carlo Library for Performing
Uncertainty and Sensitivity Analyses

W. Scott Shambaugh∗

F

Abstract—This paper introduces monaco, a Python library for conducting
Monte Carlo simulations of computational models, and performing uncertainty
analysis (UA) and sensitivity analysis (SA) on the results. UA and SA are critical
to effective and responsible use of models in science, engineering, and public
policy, however their use is uncommon. By providing a simple, general, and
rigorous-by-default library that wraps around existing models, monaco makes
UA and SA easy and accessible to practitioners with a basic knowledge of
statistics.

Index Terms—Monte Carlo, Modeling, Uncertainty Quantification, Uncertainty
Analysis, Sensitivity Analysis, Decision-Making, Ensemble Prediction, VARS, D-
VARS

Introduction

Computational models form the backbone of decision-making
processes in science, engineering, and public policy. However,
our increased reliance on these models stands in contrast to the
difficulty in understanding them as we add increasing complexity
to try and capture ever more of the fine details of real-world
interactions. Practitioners will often take the results of their large,
complex model as a point estimate, with no knowledge of how
uncertain those results are [FST16]. Multiple-scenario modeling
(e.g. looking at a worst-case, most-likely, and best-case scenario)
is an improvement, but a complete global exploration of the input
space is needed. That gives insight into the overall distribution of
results (UA) as well as the relative influence of the different input
factors on the ouput variance (SA). This complete understanding is
critical for effective and responsible use of models in any decision-
making process, and policy papers have identified UA and SA as
key modeling practices [ALMR20] [EPA09].

Despite the importance of UA and SA, recent literature reviews
show that they are uncommon – in 2014 only 1.3% of all published
papers [FST16] using modeling performed any SA. And even
when performed, best practices are usually lacking – amongst
papers which specifically claimed to perform sensitivity analysis,
a 2019 review found only 21% performed global (as opposed to
local or zero) UA, and 41% performed global SA [SAB+19].

Typically, UA and SA are done using Monte Carlo simula-
tions, for reasons explored in the following section. There are
Monte Carlo frameworks available, however existing options are
largely domain-specific, focused on narrow sub-problems (i.e.

* Corresponding author: wsshambaugh@gmail.com

Copyright © 2022 W. Scott Shambaugh. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

integration), tailored towards training neural nets, or require a
deep statistical background to use. See [OGA+20], [RJS+21], and
[DSICJ20] for an overview of the currently available Python tools
for performing UA and SA. For the domain expert who wants to
perform UA and SA on their existing models, there is not an easy
tool to do both in a single shot. monaco was written to address
this gap.

Fig. 1: The monaco project logo.

Motivation for Monte Carlo Approach

Mathematical Grounding

Randomized Monte Carlo sampling offers a cure to the curse of
dimensionality: consider an investigation of the output from k
input factors y = f (x1,x2, ...,xk) where each factor is uniformly
sampled between 0 and 1, xi ∈U [0,1]. The input space is then a
k-dimensional hypercube with volume 1. If each input is varied
one at a time (OAT), then the volume V of the convex hull of the
sampled points forms a hyperoctahedron with volume V = 1

k! (or
optimistically, a hypersphere with V = πk/2

2kΓ(k/2+1)), both of which
decrease super-exponentially as k increases. Unless the model is
known to be linear, this leaves the input space wholly unexplored.
In contrast, the volume of the convex hull of n → ∞ random
samples as is obtained with a Monte Carlo approach will converge
to V = 1, with much better coverage within that volume as well
[DFM92]. See Fig. 2.

Benefits and Drawbacks of Basic Monte Carlo Sampling

monaco focuses on forward uncertainty propagation with basic
Monte Carlo sampling. This has several benefits:

• The method is conceptually simple, lowering the barrier of
entry and increasing the ease of communicating results to
a broader audience.

• The same sample points can be used for UA and SA. Gen-
erally, Bayesian methods such as Markov Chain Monte
Carlo provide much faster convergence on UA quantities
of interest, but their undersampling of regions that do not
contribute to the desired quantities is inadequate for SA
and complete exploration of the input space. The author’s

MONACO: A MONTE CARLO LIBRARY FOR PERFORMING UNCERTAINTY AND SENSITIVITY ANALYSES 245

Fig. 2: Volume fraction V of a k-dimensional hypercube enclosed by
the convex hull of n→ ∞ random samples versus OAT samples along
the principle axes of the input space.

experience aligns with [SAB+19] in that there is great
practical benefit in broad sampling without pigeonholing
one’s purview to particular posteriors, through uncovering
bugs and edge cases in regions of input space that were
not being previously considered.

• It can be applied to domains that are not data-rich. See for
example NASA’s use of Monte Carlo simulations during
rocket design prior to collecting test flight data [HB10].

However, basic Monte Carlo sampling is subject to the classi-
cal drawbacks of the method such as poor sampling of rare events
and the slow σ/

√
n convergence on quantities of interest. If the

outputs and regions of interest are firmly known at the outset, then
other sampling methods will be more efficient [KTB13].

Additionally, given that any conclusions are conditional on
the correctness of the underlying model and input parameters,
the task of validation is critical to confidence in the UA and SA
results. However, this is currently out of scope for the library
and must be performed with other tools. In a data-poor domain,
hypothesis testing or probabilistic prediction measures like loss
scores can be used to anchor the outputs against a small number
of real-life test data. More generally, the "inverse problem" of
model and parameter validation is a deep field unto itself and
[C+12] and [SLKW08] are recommended as overviews of some
methods. If monaco’s scope is too limited for the reader’s needs,
the author recommends UQpy [OGA+20] for UA and SA, and
PyMC [SWF16] or Stan [CGH+17] as good general-purpose
probabilistic programming Python libraries.

Workflow

UA and SA of any model follows a common workflow. Probability
distributions for the model inputs are defined, and randomly
sampled values for a large number of cases are fed to the model.
The outputs from each case are collected and the full set of
inputs and outputs can be analyzed. Typically, UA is performed
by generating histograms, scatter plots, and summary statistics for
the output variables, and SA is performed by looking at the effect
of input on output variables through scatter plots, performing
regressions, and calculating sensitivity indices. These results can
then be compared to real-world test data to validate the model or
inform revisions to the model and input variables. See Fig. 3.

Note that with model and input parameter validation currently
outside monaco’s scope, closing that part of the workflow loop is
left up to the user.

Fig. 3: Monte Carlo workflow for understanding the full behavior of
a computational model, inspired by [SAB+19].

monaco Structure

Overall Structure

Broadly, each input factor and model output is a variable that
can be thought of as lists (rows) containing the full range of
randomized values. Cases are slices (columns) that take the i’th
input and output value for each variable, and represent a single
run of the model. Each case is run on its own, and the output
values are collected into output variables. Fig. 4 shows a visual
representation of this.

Fig. 4: Structure of a monaco simulation, showing the relationship
between the major objects and functions. This maps onto the central
block in Fig. 3.

Simulation Setup

The base of a monaco simulation is the Sim object. This object
is formed by passing it a name, the number of random cases
ncases, and a dict fcns of the handles for three user-defined
functions detailed in the next section. A random seed that then
seeds the entire simulation can also be passed in here, and is
highly recommended for repeatability of results.

Input variables then need to be defined. monaco takes in the
handle to any of scipy.stat’s continuous or discrete probability
distributions, as well as the required arguments for that probability
distribution [VGO+20]. If nonnumeric inputs are desired, the
method can also take in a nummap dictionary which maps the
randomly drawn integers to values of other types.

246 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

At this point the sim can be run. The randomized drawing
of input values, creation of cases, running of those cases, and
extraction of output values are automatically executed.

User-Defined Functions

The user needs to define three functions to wrap monaco’s Monte
Carlo structure around their existing computational model. First
is a run function which either calls or directly implements their
model. Second is a preprocess function which takes in a Case
object, extracts the randomized inputs, and structures them with
any other invariant data to pass to the run function. Third is a
postprocess function which takes in a Case object as well as the
results from the model, and extracts the desired output values. The
Python call chain is as:
postprocess(case, *run(*preprocess(case)))

Or equivalently to expand the Python star notation into pseu-
docode:
siminput = (siminput1, siminput2, ...)

= preprocess(case)
simoutput = (simoutput1, simoutput2, ...)

= run(*siminput)
= run(siminput1, siminput2, ...)

_ = postprocess(case, *simoutput)
= postprocess(case, simoutput1, simoutput2, ...)

These three functions must be passed to the simulation in a dict
with keys ’run’, ’preprocess’, and ’postprocess’. See the example
code at the end of the paper for a simple worked example.

Examining Results

After running, users should generally do all of the following
UA and SA tasks to get a full picture of the behavior of their
computational model.

• Plot the results (UA & SA).
• Calculate statistics for input or output variables (UA).
• Calculate sensitivity indices to rank importance of the

input variables on variance of the output variables (SA).
• Investigate specific cases with outlier or puzzling results.
• Save the results to file or pass them to other programs.

Data Flow

A summary of the process and data flow:

1) Instantiate a Sim object.
2) Add input variables to the sim with specified probability

distributions.
3) Run the simulation. This executes the following:

a) Random percentiles pi ∈ U [0,1] are drawn
ndraws times for each of the input variables.

b) These percentiles are transformed into random
values via the inverse cumulative density function
of the target probability distribution xi =F−1(pi).

c) If nonnumeric inputs are desired, the numbers are
converted to objects via a nummap dict.

d) Case objects are created and populated with the
input values for each case.

e) Each case is run by structuring the inputs values
with the preprocess function, passing them to
the run function, and collecting the output values
with the postprocess function.

f) The output values are collected into output vari-
ables and saved back to the sim. If the values are

nonnumeric, a valmap dict assigning numbers to
each unique value is automatically generated.

4) Calculate statistics & sensitivities for input & output
variables.

5) Plot variables, their statistics, and sensitivities.

Incorporating into Existing Workflows

If the user wants to use existing workflows for generating, run-
ning, post-processing, or examining results, any combination of
monaco’s major steps can be replaced with external tooling by
saving and loading input and output variables to file. For example,
monaco can be used only for its parallel processing backend by
importing existing randomly drawn input variables, running the
simulation, and exporting the output variables for outside analysis.
Or, it can be used only for its plotting and analysis capabilities by
feeding it inputs and outputs generated elsewhere.

Resource Usage

Note that monaco’s computational and storage overhead in cre-
ating easily-interrogatable objects for each variable, value, and
case makes it an inefficient choice for computationally simple
applications with high n, such as Monte Carlo integration. If the
preprocessed sim input and raw output for each case (which for
some models may dominate storage) is not retained, then the
storage bottleneck will be the creation of a Val object for each
case’s input and output values with minimum size 0.5 kB. The
maximum n will be driven by the size of the RAM on the host
machine being capable of holding at least 0.5 ∗ n(kin + kout) kB.
On the computational bottleneck side, monaco is best suited for
models where the model runtime dominates the random variate
generation and the few hundred microseconds of dask.delayed
task switching time.

Technical Features

Sampling Methods

Random sampling of the percentiles for each variable can be done
using scipy’s pseudo-random number generator (PRNG), or with
any of the low-discrepancy methods from the scip.stats.qmc quasi-
Monte Carlo (QMC) module. QMC in general provides faster
O(log(n)kn−1) convergence compared to the O(n−1/2) conver-
gence of random sampling [Caf98]. Available low-discrepancy
options are regular or scrambled Sobol sequences, regular or
scrambled Halton sequences, or Latin Hypercube Sampling. In
general, the ’sobol_random’ method that generates scrambled
Sobol sequences [Sob67] [Owe20] is recommended in nearly
all cases as the sequence with the fastest QMC convergence
[CKK18], balanced integration properties as long as the number of
cases is a power of 2, and a fairly flat frequency spectrum (though
sampling spectra are rarely a concern) [PCX+18]. See Fig. 5 for a
visual comparison of some of the options.

Order Statistics, or, How Many Cases to Run?

How many Monte Carlo cases should one run? One answer would
be to choose n ≥ 2k with a sampling method that implements a
(t,m,s) digital net (such as a Sobol or Halton sequence), which
guarantees that there will be at least one sample point in every
hyperoctant of the input space [JK08]. This should be considered
a lower bound for SA, with the number of cases run being some
integer multiple of 2k.

MONACO: A MONTE CARLO LIBRARY FOR PERFORMING UNCERTAINTY AND SENSITIVITY ANALYSES 247

Fig. 5: 256 uniform and normal samples along with the 2D frequency
spectra for PRNG random sampling (top), Sobol sampling (middle),
and scrambled Sobol sampling (bottom, default).

Along a similar vein, [DFM92] suggests that with random
sampling n≥ 2.136k is sufficient to ensure that the volume fraction
V approaches 1. The author hypothesizes that for a digital net, the
n≥ λ k condition will be satisfied with some λ ≤ 2, and so n≥ 2k

will suffice for this condition to hold. However, these methods of
choosing the number of cases may undersample for low k and be
infeasible for high k.

A rigorous way of choosing the number of cases is to first
choose a statistical interval (e.g. a confidence interval for a
percentile, or a tolerance interval to contain a percent of the
population), and then use order statistics to calculate the minimum
n required to obtain that result at a desired confidence level. This
approach is independent of k, making UA of high-dimensional
models tractable. monaco implements order statistics routines
for calculating these statistical intervals with a distribution-free
approach that makes no assumptions about the normality or other
shape characteristics of the output distribution. See Chapter 5 of
[HM91] for background.

A more qualitative UA method would simply be to choose a
reasonably high n (say, n = 210), manually examine the results to
ensure high-interest areas are not being undersampled, and rely
on bootstrapping of the desired variable statistics to obtain the
required confidence levels.

Variable Statistics

For any input or output variable, a statistic can be calculated
for the ensemble of values. monaco builds in some common
statistics (mean, percentile, etc), or alternatively the user can
pass in a custom one. To obtain a confidence interval for this
statistic, the results are resampled with replacement using the
scipy.stats.bootstrap module. The number of bootstrap samples
is determined using an order statistic approach as outlined in the
previous section, and multiplying that number by a scaling factor
(default 10x) for smoothness of results.

Sensitivity Indices

Sensitivity indices give a measure of the relationship between the
variance of a scalar output variable to the variance of each of the
input variables. In other words, they measure which of the input
ranges have the largest effect on an output range. It is crucial that
sensitivity indices are global rather than local measures – global
sensitivity has the stronger theoretical grounding and there is no
reason to rely on local measures in scenarios such as automated
computer experiments where data can be easily and arbitrarily
sampled [SRA+08] [PBPS22].

With computer-designed experiments, it is possible to con-
struct a specially constructed sample set to directly calculate
global sensitivity indices such as the Total-Order Sobol index
[Sob01], or the IVARS100 index [RG16]. However, this special
construction requires either sacrificing the desirable UA properties
of low-discrepancy sampling, or conducting an additional Monte
Carlo analysis of the model with a different sample set. For this
reason, monaco uses the D-VARS approach to calculating global
sensitivity indices, which allows for using a set of given data
[SR20]. This is the first publically available implementation of
the D-VARS algorithm.

Plotting

monaco includes a plotting module that takes in input and output
variables and quickly creates histograms, empirical CDFs, scatter
plots, or 2D or 3D "spaghetti plots" depending on what is most ap-
propriate for each variable. Variable statistics and their confidence
intervals are automatically shown on plots when applicable.

Vector Data

If the values for an output variable are length s lists, NumPy
arrays, or Pandas dataframes, they are treated as timeseries with s
steps. Variable statistics for these variables are calculated on the
ensemble of values at each step, giving time-varying statistics.

The plotting module will automatically plot size (1,s) arrays
against the step number as 2-D lines, size (2,s) arrays as 2-D
parametric lines, and size (3,s) arrays as 3-D parametric lines.

Parallel Processing

monaco uses dask.distributed [Roc15] as a parallel processing
backend, and supports preprocessing, running, and postprocessing
cases in a parallel arrangement. Users familiar with dask can
extend the parallelization of their simulation from their single
machine to a distributed cluster.

For simple simulations such as the example code at the end of
the paper, the overhead of setting up a dask server may outweigh
the speedup from parallel computation, and in those cases monaco
also supports running single-threaded in a single for-loop.

The Median Case

A "nominal" run is often useful as a baseline to compare other
cases against. If desired, the user can set a flag to force the
first case to be the median 50th percentile draw of all the input
variables prior to random sampling.

Debugging Cases

By default, all the raw results from each case’s simulation run
prior to postprocessing are saved to the corresponding Case object.
Individual cases can be interrogated by looking at these raw
results, or by indicating that their results should be highlighted

248 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

in plots. If some cases fail to run, monaco will mark them as
incomplete and those specific cases can be rerun without requiring
the full set of cases to be recomputed. A debug flag can be set to
not skip over failed cases and instead stop at a breakpoint or dump
the stack trace on encountering an exception.

Saving and Loading to File

The base Sim object and the Case objects can be serialized and
saved to or loaded from .mcsim and .mccase files respectively,
which are stored in a results directory. The Case objects are saved
separately since the raw results from a run of the simulation
may be arbitrarily large, and the Sim object can be comparatively
lightweight. Loading the Sim object from file will automatically
attempt to load the cases in the same directory, but can also stand
alone if the raw results are not needed.

Alternatively, the numerical representations for input and out-
put variables can be saved to and loaded from .json or .csv files.
This is useful for interfacing with external tooling, but discards
the metadata that would be present by saving to monaco’s native
objects.

Example

Presented here is a simple example showing a Monte Carlo
simulation of rolling two 6-sided dice and looking at their sum.

The user starts with their run function which here directly
implements their computational model. They must then create
preprocess and postprocess functions to feed in the randomized
input values and collect the outputs from that model.
The 'run' function, which implements the
existing computational model (or wraps it)
def example_run(die1, die2):

dicesum = die1 + die2
return (dicesum,)

The 'preprocess' function grabs the random
input values for each case and structures it
with any other data in the format the 'run'
function expects
def example_preprocess(case):

die1 = case.invals['die1'].val
die2 = case.invals['die2'].val
return (die1, die2)

The 'postprocess' function takes the output
from the 'run' function and saves off the
outputs for each case
def example_postprocess(case, dicesum):

case.addOutVal(name='Sum', val=dicesum)
case.addOutVal(name='Roll Number',

val=case.ncase)
return None

The monaco simulation is initialized, given input variables with
specified probability distributions (here a random integer between
1 and 6), and run.
import monaco as mc
from scipy.stats import randint

dict structure for the three input functions
fcns = {'run' : example_run,

'preprocess' : example_preprocess,
'postprocess': example_postprocess}

Initialize the simulation
ndraws = 1024 # Arbitrary for this example
seed = 123456 # Recommended for repeatability

sim = mc.Sim(name='Dice Roll', ndraws=ndraws,

fcns=fcns, seed=seed)

Generate the input variables
sim.addInVar(name='die1', dist=randint,

distkwargs={'low': 1, 'high': 6+1})
sim.addInVar(name='die2', dist=randint,

distkwargs={'low': 1, 'high': 6+1})

Run the Simulation
sim.runSim()

The results of the simulation can then be analyzed and examined.
Fig. 6 shows the plots this code generates.
Calculate the mean and 5-95th percentile
statistics for the dice sum
sim.outvars['Sum'].addVarStat('mean')
sim.outvars['Sum'].addVarStat('percentile',

{'p':[0.05, 0.95]})

Plots a histogram of the dice sum
mc.plot(sim.outvars['Sum'])

Creates a scatter plot of the sum vs the roll
number, showing randomness
mc.plot(sim.outvars['Sum'],

sim.outvars['Roll Number'])

Calculate the sensitivity of the dice sum to
each of the input variables
sim.calcSensitivities('Sum')
sim.outvars['Sum'].plotSensitivities()

Fig. 6: Output from the example code which calculates the sum of two
random dice rolls. The top plot shows a histogram of the 2-dice sum
with the mean and 5–95th percentiles marked, the middle plot shows
the randomness over the set of rolls, and the bottom plot shows that
each of the dice contributes 50% to the variance of the sum.

Case Studies

These two case studies are toy models meant as illustrative of
potential uses, and not of expertise or rigor in their respective
domains. Please see https://github.com/scottshambaugh/monaco/
tree/main/examples for their source code as well as several more
Monte Carlo implementation examples across a range of domains
including financial modeling, pandemic spread, and integration.

MONACO: A MONTE CARLO LIBRARY FOR PERFORMING UNCERTAINTY AND SENSITIVITY ANALYSES 249

Baseball

This case study models the trajectory of a baseball in flight
after being hit for varying speeds, angles, topspins, aerodynamic
conditions, and mass properties. From assumed initial conditions
immediately after being hit, the physics of the ball’s ballistic flight
are calculated over time until it hits the ground.

Fig. 7 shows some plots of the results. A baseball team might
use analyses like this to determine where outfielders should be
placed to catch a ball for a hitter with known characteristics, or
determine what aspect of a hit a batter should focus on to improve
their home run potential.

Fig. 7: 100 simulated baseball trajectories (top), and the relationship
between launch angle and landing distance (bottom). Home runs are
highlighted in orange.

Election

This case study attempts to predict the result of the 2020 US
presidential election, based on polling data from FiveThirtyEight
3 weeks prior to the election [Fiv20].

Each state independently casts a normally distributed percent-
age of votes for the Democratic, Republican, and Other candidates,
based on polling. Also assumed is a uniform ±3% national
swing due to polling error which is applied to all states equally.
That summed percentage is then normalized so the total for all
candidates is 100%. The winner of each state’s election assigns
their electoral votes to that candidate, and the candidate that wins
at least 270 of the 538 electoral votes is the winner.

The calculated win probabilities from this simulation are
93.4% Democratic, 6.2% Republican, and 0.4% Tie. The 25–75th
percentile range for the number of electoral votes for the Demo-
cratic candidate is 281–412, and the actual election result was 306
electoral votes. See Fig. 8.

Fig. 8: Predicted electoral votes for the Democratic 2020 US Pres-
idential candidate with the median and 25-75th percentile interval
marked (top), and a map of the predicted Democratic win probability
per state (bottom).

Conclusion

This paper has introduced the ideas underlying Monte Carlo
analysis and discussed when it is appropriate to use for conducting
UA and SA. It has shown how monaco implements a rigorous,
parallel Monte Carlo process, and how to use it through a simple
example and two case studies. This library is geared towards
scientists, engineers, and policy analysts that have a computational
model in their domain of expertise, enough statistical knowledge
to define a probability distribution, and a desire to ensure their
model will make accurate predictions of reality. The author hopes
this tool will help contribute to easier and more widespread use of
UA and SA in improved decision-making.

Further Information

monaco is available on PyPI as the package monaco, has API
documentation at https://monaco.rtfd.io/, and is hosted on github
at https://github.com/scottshambaugh/monaco/.

REFERENCES

[ALMR20] I Azzini, G Listorti, TA Mara, and R Rosati. Uncertainty and
sensitivity analysis for policy decision making. An Introductory
Guide. Joint Research Centre, European Commission, Luxem-
bourg, 2020. doi:10.2760/922129.

[C+12] National Research Council et al. Assessing the reliability of
complex models: mathematical and statistical foundations of
verification, validation, and uncertainty quantification. National
Academies Press, 2012. doi:10.17226/13395.

250 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

[Caf98] Russel E Caflisch. Monte carlo and quasi-monte carlo
methods. Acta numerica, 7:1–49, 1998. doi:10.1017/
S0962492900002804.

[CGH+17] Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel
Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker,
Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic
programming language. Journal of statistical software, 76(1),
2017. doi:10.18637/jss.v076.i01.

[CKK18] Per Christensen, Andrew Kensler, and Charlie Kilpatrick. Pro-
gressive multi-jittered sample sequences. In Computer Graphics
Forum, volume 37, pages 21–33. Wiley Online Library, 2018.
doi:10.1111/cgf.13472.

[DFM92] Martin E. Dyer, Zoltan Füredi, and Colin McDiarmid. Volumes
spanned by random points in the hypercube. Random Struc-
tures & Algorithms, 3(1):91–106, 1992. doi:10.1002/rsa.
3240030107.

[DSICJ20] Dominique Douglas-Smith, Takuya Iwanaga, Barry F.W. Croke,
and Anthony J. Jakeman. Certain trends in uncertainty and
sensitivity analysis: An overview of software tools and tech-
niques. Environmental Modelling & Software, 124, 2020. doi:
10.1016/j.envsoft.2019.104588.

[EPA09] US EPA. Guidance on the development, evaluation, and appli-
cation of environmental models (epa/100/k-09/003), 2009. URL:
https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P1003E4R.PDF.

[Fiv20] FiveThirtyEight. 2020 general election forecast - state topline
polls-plus data, October 2020. URL: https://github.com/
fivethirtyeight/data/tree/master/election-forecasts-2020.

[FST16] Federico Ferretti, Andrea Saltelli, and Stefano Tarantola. Trends
in sensitivity analysis practice in the last decade. Science of
the total environment, 568:666–670, 2016. doi:10.1016/j.
scitotenv.2016.02.133.

[HB10] John Hanson and Bernard Beard. Applying monte carlo simu-
lation to launch vehicle design and requirements verification. In
AIAA Guidance, Navigation, and Control Conference. American
Institute of Aeronautics and Astronautics, 2010. doi:10.2514/
6.2010-8433.

[HM91] Gerald J Hahn and William Q Meeker. Statistical intervals: a
guide for practitioners. John Wiley & Sons, 1991. doi:10.
1002/9780470316771.ch5.

[JK08] Stephen Joe and Frances Y Kuo. Constructing sobol sequences
with better two-dimensional projections. SIAM Journal on Sci-
entific Computing, 30(5):2635–2654, 2008. doi:10.1137/
070709359.

[KTB13] Dirk P Kroese, Thomas Taimre, and Zdravko I Botev. Handbook
of monte carlo methods. John Wiley & Sons, 2013. doi:10.
1002/9781118014967.

[OGA+20] Audrey Olivier, Dimitris G. Giovanis, B.S. Aakash, Mohit
Chauhan, Lohit Vandanapu, and Michael D. Shields. Uqpy: A
general purpose python package and development environment
for uncertainty quantification. Journal of Computational Science,
47:101204, 2020. doi:10.1016/j.jocs.2020.101204.

[Owe20] Art B Owen. On dropping the first sobol’point. arXiv
preprint arXiv:2008.08051, 2020. doi:10.48550/arXiv.
2008.08051.

[PBPS22] Arnald Puy, William Becker, Samuele Lo Piano, and An-
drea Saltelli. A comprehensive comparison of total-order es-
timators for global sensitivity analysis. International Journal
for Uncertainty Quantification, 12(2), 2022. doi:int.j.
uncertaintyquantification.2021038133.

[PCX+18] Hélène Perrier, David Coeurjolly, Feng Xie, Matt Pharr, Pat
Hanrahan, and Victor Ostromoukhov. Sequences with low-
discrepancy blue-noise 2-d projections. In Computer Graphics
Forum, volume 37, pages 339–353. Wiley Online Library, 2018.
doi:10.1111/cgf.13366.

[RG16] Saman Razavi and Hoshin V Gupta. A new framework for
comprehensive, robust, and efficient global sensitivity analysis:
1. theory. Water Resources Research, 52(1):423–439, 2016.
doi:10.1002/2015wr017558.

[RJS+21] Saman Razavi, Anthony Jakeman, Andrea Saltelli, Clémentine
Prieur, Bertrand Iooss, Emanuele Borgonovo, Elmar Plischke,
Samuele Lo Piano, Takuya Iwanaga, William Becker, et al. The
future of sensitivity analysis: An essential discipline for systems
modeling and policy support. Environmental Modelling & Soft-
ware, 137:104954, 2021. doi:10.1016/j.envsoft.2020.
104954.

[Roc15] Matthew Rocklin. Dask: Parallel computation with blocked
algorithms and task scheduling. In Proceedings of the 14th python

in science conference, volume 130, page 136. Citeseer, 2015.
doi:10.25080/majora-7b98e3ed-013.

[SAB+19] Andrea Saltelli, Ksenia Aleksankina, William Becker, Pamela
Fennell, Federico Ferretti, Niels Holst, Sushan Li, and Qiongli
Wu. Why so many published sensitivity analyses are false: A
systematic review of sensitivity analysis practices. Environmental
modelling & software, 114:29–39, 2019. doi:10.1016/j.
envsoft.2019.01.012.

[SLKW08] Richard M Shiffrin, Michael D Lee, Woojae Kim, and Eric-
Jan Wagenmakers. A survey of model evaluation approaches
with a tutorial on hierarchical bayesian methods. Cog-
nitive Science, 32(8):1248–1284, 2008. doi:10.1080/
03640210802414826.

[Sob67] Ilya M Sobol. On the distribution of points in a cube and
the approximate evaluation of integrals. Zhurnal Vychislitel’noi
Matematiki i Matematicheskoi Fiziki, 7(4):784–802, 1967. doi:
10.1016/0041-5553(67)90144-9.

[Sob01] Ilya M Sobol. Global sensitivity indices for nonlinear mathe-
matical models and their monte carlo estimates. Mathematics
and computers in simulation, 55(1-3):271–280, 2001. doi:
10.1016/s0378-4754(00)00270-6.

[SR20] Razi Sheikholeslami and Saman Razavi. A fresh look at vari-
ography: measuring dependence and possible sensitivities across
geophysical systems from any given data. Geophysical Re-
search Letters, 47(20):e2020GL089829, 2020. doi:10.1029/
2020gl089829.

[SRA+08] Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campo-
longo, Jessica Cariboni, Debora Gatelli, Michaela Saisana, and
Stefano Tarantola. Global sensitivity analysis: the primer. John
Wiley & Sons, 2008. doi:10.1002/9780470725184.

[SWF16] John Salvatier, Thomas V Wiecki, and Christopher Fonnesbeck.
Probabilistic programming in python using pymc3. PeerJ Com-
puter Science, 2:e55, 2016. doi:10.7717/peerj-cs.55.

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haber-
land, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu
Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0:
fundamental algorithms for scientific computing in python. Na-
ture methods, 17(3):261–272, 2020. doi:10.14293/s2199-
1006.1.sor-life.a7056644.v1.rysreg.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022) 251

Enabling Active Learning Pedagogy and Insight
Mining with a Grammar of Model Analysis

Zachary del Rosario‡∗

F

Abstract—Modern engineering models are complex, with dozens of inputs,
uncertainties arising from simplifying assumptions, and dense output data.
While major strides have been made in the computational scalability of complex
models, relatively less attention has been paid to user-friendly, reusable tools to
explore and make sense of these models. Grama is a python package aimed at
supporting these activities. Grama is a grammar of model analysis: an ontology
that specifies data (in tidy form), models (with quantified uncertainties), and
the verbs that connect these objects. This definition enables a reusable set
of evaluation "verbs" that provide a consistent analysis toolkit across different
grama models. This paper presents three case studies that illustrate pedagogy
and engineering work with grama: 1. Providing teachable moments through
errors for learners, 2. Providing reusable tools to help users self-initiate pro-
ductive modeling behaviors, and 3. Enabling exploratory model analysis (EMA)
– exploratory data analysis augmented with data generation.

Index Terms—engineering, engineering education, exploratory model analysis,
software design, uncertainty quantification

Introduction

Modern engineering relies on scientific computing. Computational
advances enable faster analysis and design cycles by reducing
the need for physical experiments. For instance, finite-element
analysis enables computational study of aerodynamic flutter, and
Reynolds-averaged Navier-Stokes simulation supports the simu-
lation of jet engines. Both of these are enabling technologies
that support the design of modern aircraft [KN05]. Modern ar-
eas of computational research include heterogeneous computing
environments [MV15], task-based parallelism [BTSA12], and big
data [SS13]. Another line of work considers the development of
integrated tools to unite diverse disciplinary perspectives in a sin-
gle, unified environment (e.g., the integration of multiple physical
phenomena in a single code [EVB+20] or the integration of a
computational solver and data analysis tools [MTW+22]). Such
integrated computational frameworks are highlighted as essential
for applications such as computational analysis and design of
aircraft [SKA+14]. While engineering computation has advanced
along the aforementioned axes, the conceptual understanding of
practicing engineers has lagged in key areas.

Every aircraft you have ever flown on has been designed using
probabilistically-flawed, potentially dangerous criteria [dRFI21].

* Corresponding author: zdelrosario@olin.edu
‡ Assistant Professor of Engineering and Applied Statistics, Olin College of
Engineering

Copyright © 2022 Zachary del Rosario. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

The fundamental issue underlying these criteria is a flawed
heuristic for uncertainty propagation; initial human subjects work
suggests that engineers’ tendency to misdiagnose sources of vari-
ability as inconsequential noise may contribute to the persistent
application of flawed design criteria [AFD+21]. These flawed
treatments of uncertainty are not limited to engineering design;
recent work by Kahneman et al. [KSS21] highlights widespread
failures to recognize or address variability in human judgment,
leading to bias in hiring, economic loss, and an unacceptably
capricious application of justice.

Grama was originally developed to support model analysis un-
der uncertainty; in particular, to enable active learning [FEM+14]
– a form of teaching characterized by active student engagement
shown to be superior to lecture alone. This toolkit aims to integrate
the disciplinary perspectives of computational engineering and
statistical analysis within a unified environment to support a
coding to learn pedagogy [Bar16] – a teaching philosophy that
uses code to teach a discipline, rather than as a means to teach
computer science or coding itself. The design of grama is heavily
inspired by the Tidyverse [WAB+19], an integrated set of R
packages organized around the ’tidy data’ concept [Wic14]. Grama
uses the tidy data concept and introduces an analogous concepts
for models.

Grama: A Grammar of Model Analysis

Grama [dR20] is an integrated set of tools for working with data
and models. Pandas [pdt20], [WM10] is used as the underlying
data class, while grama implements a Model class. A grama
model includes a number of functions – mathematical expressions
or simulations – and domain/distribution information for the de-
terministic/random inputs. The following code illustrates a simple
grama model with both deterministic and random inputs1.

Each cp_* function adds information to the model
md_example = (

gr.Model("An example model")
Overloaded `>>` provides pipe syntax
>> gr.cp_vec_function(

fun=lambda df: gr.df_make(f=df.x+df.y+df.z),
var=["x", "y", "z"],
out=["f"],

)
>> gr.cp_bounds(x=(-1, +1))
>> gr.cp_marginals(

y=gr.marg_mom("norm", mean=0, sd=1),
z=gr.marg_mom("uniform", mean=0, sd=1),

)

1. Throughout, import grama as gr is assumed.

252 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

>> gr.cp_copula_gaussian(
df_corr=gr.df_make(

var1="y",
var2="z",
corr=0.5,

)
)

)

While an engineer’s interpretation of the term "model" focuses on
the input-to-output mapping (the simulation), and a statistician’s
interpretation of the term "model" focuses on a distribution, the
grama model integrates both perspectives in a single model.

Grama models are intended to be evaluated to generate data.
The data can then be analyzed using visual and statistical means.
Models can be composed to add more information, or fit to a
dataset. Figure 1 illustrates this interplay between data and models
in terms of the four categories of function "verbs" provided in
grama.

Fig. 1: Verb categories in grama. These grama functions start with an
identifying prefix, e.g. ev_* for evaluation verbs.

Defaults for Concise Code

Grama verbs are designed with sensible default arguments to
enable concise code. For instance, the following code visualizes
input sweeps across its three inputs, similar to a ceteris paribus
profile [KBB19], [Bie20].
(

Concise default analysis
md_example
>> gr.ev_sinews(df_det="swp")
>> gr.pt_auto()

)

This code uses the default number of sweeps and sweep density,
and constructs a visualization of the results. The resulting plot is
shown in Figure 2.

Grama imports the plotnine package for data visualization
[HK21], both to provide an expressive grammar of graphics, but
also to implement a variety of "autoplot" routines. These are
called via a dispatcher gr.pt_auto() which uses metadata
from evaluation verbs to construct a default visual. Combined
with sensible defaults for keyword arguments, these tools provide
a concise syntax even for sophisticated analyses. The same code
can be slightly modified to change a default argument value, or to
use plotnine to create a more tailored visual.
(

md_example
Override default parameters
>> gr.ev_sinews(df_det="swp", n_sweeps=10)
>> gr.pt_auto()

)

(
md_example
>> gr.ev_sinews(df_det="swp")
Construct a targeted plot

Fig. 2: Input sweep generated from the code above. Each panel
visualizes the effect of changing a single input, with all other inputs
held constant.

>> gr.tf_filter(DF.sweep_var == "x")
>> gr.ggplot(gr.aes("x", "f", group="sweep_ind"))
+ gr.geom_line()

)

This system of defaults is important for pedagogical design:
Introductory grama code can be made extremely simple when first
introducing a concept. However, the defaults can be overridden
to carry out sophisticated and targeted analyses. We will see in
the Case Studies below how this concise syntax encourages sound
analysis among students.

Pedagogy Case Studies

The following two case studies illustrate how grama is designed
to support pedagogy: the formal method and practice of teaching.
In particular, grama is designed for an active learning pedagogy
[FEM+14], a style of teaching characterized by active student
engagement.

Teachable Moments through Errors for Learners

An advantage of a unified modeling environment like grama is
the opportunity to introduce design errors for learners in order to
provide teachable moments.

It is common in probabilistic modeling to make problematic
assumptions. For instance, Cullen and Frey [CF99] note that
modelers frequently and erroneously treat the normal distribution
as a default choice for all unknown quantities. Another common
issue is to assume, by default, the independence of all random
inputs to a model. This is often done tacitly – with the indepen-
dence assumption unstated. These assumptions are problematic, as
they can adversely impact the validity of a probabilistic analysis
[dRFI21].

To highlight the dependency issue for novice modelers, grama
uses error messages to provide just-in-time feedback to a user
who does not articulate their modeling choices. For example,
the following code builds a model with no dependency structure
specified. The result is an error message that summarizes the
conceptual issue and points the user to a primer on random
variable modeling.
md_flawed = (

gr.Model("An example model")
>> gr.cp_vec_function(

ENABLING ACTIVE LEARNING PEDAGOGY AND INSIGHT MINING WITH A GRAMMAR OF MODEL ANALYSIS 253

fun=lambda df: gr.df_make(f=df.x+df.y+df.z),
var=["x", "y", "z"],
out=["f"],

)
>> gr.cp_bounds(x=(-1, +1))
>> gr.cp_marginals(

y=gr.marg_mom("norm", mean=0, sd=1),
z=gr.marg_mom("uniform", mean=0, sd=1),

)
NOTE: No dependency specified

)
(

md_flawed
This code will throw an Error
>> gr.ev_sample(n=1000, df_det="nom")

)

Error ValueError: Present model copula must be de-

fined for sampling. Use CopulaIndependence only
when inputs can be guaranteed independent. See the
Documentation chapter on Random Variable Modeling
for more information. https://py-grama.readthedocs.io/en/
latest/source/rv_modeling.html

Grama is designed both as a teaching tool and a scientific
modeling toolkit. For the student, grama offers teachable moments
to help the novice grow as a modeler. For the scientist, grama
enforces practices that promote scientific reproducibility.

Encouraging Sound Analysis

As mentioned above, concise grama syntax is desirable to encour-
age sound analysis practices. Grama is designed to support higher-
level learning outcomes [Blo56]. For instance, rather than focusing
on applying programming constructs to generate model results,
grama is intended to help users study model results ("evaluate,"
according to Bloom’s Taxonomy). Sound computational analysis
demands study of simulation results (e.g., to check for numerical
instabilities). This case study makes this learning outcome distinc-
tion concrete by considering parameter sweeps.

Generating a parameter sweep similar to Figure 2 with stan-
dard Python libraries requires a considerable amount of boilerplate
code, manual coordination of model information, and explicit loop
construction. The following code generates parameter sweep data
using standard libraries. Note that this code sweeps through values
of x holding values of y fixed; additional code would be necessary
to construct a sweep through y2.

Parameter sweep: Manual approach
Gather model info
x_lo = -1; x_up = +1;
y_lo = -1; y_up = +1;
f_model = lambda x, y: x**2 * y
Analysis parameters
nx = 10 # Grid resolution for x
y_const = [-1, 0, +1] # Constant values for y
Generate data
data = np.zeros((nx * len(y_const), 3))
for i, x in enumerate(

np.linspace(x_lo, x_up, num=nx)
):
for j, y in enumerate(y_const):

data[i + j*nx, 0] = f_model(x, y)
data[i + j*nx, 1] = x
data[i + j*nx, 2] = y

Package data for visual
df_manual = pd.DataFrame(

2. Code assumes import numpy as np; import pandas as
pd.

data=data,
columns=["f", "x", "y"],

)

The ability to write low-level programming constructs – such
as the loops above – is an obviously worthy learning outcome
in a course on scientific computing. However, not all courses
should focus on low-level programming constructs. Grama is not
designed to support low-level learning outcomes; instead, the
package is designed to support a "coding to learn" philosophy
[Bar16] focused on higher-order learning outcomes to support
sound modeling practices.

Parameter sweep functionality can be achieved in grama
without explicit loop management and with sensible defaults for
the analysis parameters. This provides a "quick and dirty" tool
to inspect a model’s behavior. A grama approach to parameter
sweeps is shown below.

Parameter sweep: Grama approach
Gather model info
md_gr = (

gr.Model()
>> gr.cp_vec_function(

fun=lambda df: gr.df_make(f=df.x**2 * df.y),
var=["x", "y"],
out=["f"],

)
>> gr.cp_bounds(

x=(-1, +1),
y=(-1, +1),

)
)
Generate data
df_gr = gr.eval_sinews(

md_gr,
df_det="swp",
n_sweeps=3,

)

Once a model is implemented in grama, generating and visualizing
a parameter sweep is trivial, requiring just two lines of code and
zero initial choices for analysis parameters. The practical outcome
of this software design is that users will tend to self-initiate
parameter sweeps: While students will rarely choose to write the
extensive boilerplate code necessary for a parameter sweep (unless
required to do so), students writing code in grama will tend to self-
initiate sound analysis practices.

For example, the following code is unmodified from a student
report3. The original author implemented an ordinary differential
equation model to simulate the track time "finish_time" of
an electric formula car, and sought to study the impact of variables
such as the gear ratio "GR" on "finish_time". While the
assignment did not require a parameter sweep, the student chose
to carry out their own study. The code below is a self-initiated
parameter sweep of the track time model.

Unedited student code
md_car = (

gr.Model("Accel Model")
>> gr.cp_function(

fun = calculate_finish_time,
var = ["GR", "dt_mass", "I_net"],
out = ["finish_time"],

)

>> gr.cp_bounds(
GR=(+1,+4),
dt_mass=(+5,+15),
I_net=(+.2,+.3),

3. Included with permission of the author, on condition of anonymity.

254 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

)
)

gr.plot_auto(
gr.eval_sinews(

md_car,
df_det="swp",
#skip=True,
n_density=20,
n_sweeps=5,
seed=101,

)
)

Fig. 3: Input sweep generated from the student code above. The image
has been cropped for space, and the results are generated with an
older version of grama. The jagged response at higher values of the
input are evidence of solver instabilities.

The parameter sweep shown in Figure 2 gives an overall impres-
sion of the effect of input "GR" on the output "finish_time".
This particular input tends to dominate the results. However,
variable results at higher values of "GR" provide evidence of
numerical instability in the ODE solver underlying the model.
Without this sort of model evaluation, the student author would
not have discovered the limitations of the model.

Exploratory Model Analysis Case Study

This final case study illustrates how grama supports exploratory
model analysis. This iterative process is a computational approach
to mining insights into physical systems. The following use case
illustrates the approach by considering the design of boat hull
cross-sections.

Static Stability of Boat Hulls

Stability is a key consideration in boat hull design. One of the most
fundamental aspects of stability is static stability; the behavior of a
boat when perturbed away from static equilibrium [LE00]. Figure
4 illustrates the physical mechanism governing stability at small
perturbations from an upright orientation.

As a boat is rotated away from its upright orientation, its center
of buoyancy (COB) will tend to migrate. If the boat is in vertical
equilibrium, its buoyant force will be equal in magnitude to its
weight. A stable boat is a hull whose COB migrates in such a way

Fig. 4: Schematic boat hull rotated to 22.5◦. The forces due to gravity
and buoyancy act at the center of mass (COM) and center of buoyancy
(COB), respectively. Note that this hull is upright stable, as the couple
will rotate the boat to upright.

that a restoring torque is generated (Fig. 4). However, this upright
stability is not guaranteed; Figure 5 illustrates a boat design that
does not provide a restoring torque near its upright angle. An
upright-unstable boat will tend to capsize spontaneously.

Fig. 5: Schematic boat hull rotated to 22.5◦. Gravity and buoyancy
are annotated as in Figure 4. Note that this hull is upright unstable,
as the couple will rotate the boat away from upright.

Naval engineers analyze the stability of a boat design by
constructing a moment curve, such as the one pictured in Figure
6. This curve depicts the net moment due to buoyancy at various
angles, assuming the vessel is in vertical equilibrium. From this
figure we can see that the design is upright-stable, as it possesses
a negative slope at upright θ = 0◦. Note that a boat may not have
an unlimited range of stability as Figure 6 exhibits an angle of
vanishing stability (AVS) beyond which the boat does not recover
to upright.

The classical way to build intuition about boat stability is
via mathematical derivations [LE00]. In the following section we
present an alternative way to build intuition through exploratory

ENABLING ACTIVE LEARNING PEDAGOGY AND INSIGHT MINING WITH A GRAMMAR OF MODEL ANALYSIS 255

Fig. 6: Total moment on a boat hull as it is rotated through 180◦.
A negative slope at upright θ = 0◦ is required for upright stability.
Stability is lost at the angle of vanishing stability (AVS).

model analysis.

EMA for Insight Mining

Generation and post-processing of the moment curve are imple-
mented in the grama model md_performance4. This model
parameterizes a 2d boat hull via its height H, width W, shape
of corner n, the vertical height of the center of mass f_com
(as a fraction of the height), and the displacement ratio d (the
ratio of the boat’s mass to maximum water mass displaced).
Note that a boat with d > 1 is incapable of flotation. A
smaller value of d corresponds to a boat that floats higher in
the water. The model md_performance returns stability
= -dMdtheta_0 (the negative of the moment curve slope at
upright) as well as the mass and AVS angle. A positive value
of stability indicates upright stability, while a larger value of
angle indicates a wider range of stability.

The EMA process begins by generating data from the model.
However, the generation of a moment curve is a nontrivial cal-
culation. One should exercise care in choosing an initial sample
of designs to analyze. The statistical problem of selecting efficient
input values for a computer model is called the design of computer
experiments [SSW89]. The grama verb gr.tf_sp() implements the
support points algorithm [MJ18] to reduce a large dataset of target
points to a smaller (but representative) sample. The following code
generates a sample of input design values via gr.ev_sample()
with the skip=True argument, uses gr.tf_sp() to "com-
pact" this large sample, then evaluates the performance model at
the smaller sample.
df_boats = (

md_performance
>> gr.ev_sample(

n=5e3,
df_det="nom",
seed=101,
skip=True,

)
>> gr.tf_sp(n=1000, seed=101)
>> gr.tf_md(md=md_performance)

)

With an initial sample generated, we can perform an ex-
ploratory analysis relating the inputs and outputs. The verb

4. The analysis reported here is available as a jupyter notebook.

gr.tf_iocorr() computes correlations between every pair of
input variables var and outputs out. The routine also attaches
metadata, enabling an autoplot as a tileplot of the correlation
values.
(

df_boats
>> gr.tf_iocorr(

var=["H", "W", "n", "d", "f_com"],
out=["mass", "angle", "stability"],

)
>> gr.pt_auto()

)

Fig. 7: Tile plot of input/output correlations; autoplot gr.pt_auto()
visualization of gr.tf_iocorr() output.

The correlations in Figure 7 suggest that stability is posi-
tively impacted by increasing the width W and displacement ratio
d of a boat, and by decreasing the height H, shape factor n, and
vertical location of the center of mass f_com. The correlations
also suggest a similar impact of each variable on the AVS angle,
but with a weaker dependence on H. These results also suggest that
f_com has the strongest effect on both stability and angle.

Correlations are a reasonable first-check of input/output be-
havior, but linear correlation quantifies only an average, linear
association. A second-pass at the data would be to fit an accurate
surrogate model and inspect parameter sweeps. The following
code defines a gaussian process fit [RW05] for both stability
and angle, and estimates model error using k-folds cross valida-
tion [JWHT13]. Note that a non-default kernel is necessary for a
reasonable fit of the latter output5.
Define fitting procedure
ft_common = gr.ft_gp(

var=["H", "W", "n", "d", "f_com"],
out=["angle", "stability"],
kernels=dict(

stability=None, # Use default
angle=RBF(length_scale=0.1),

)
)
Estimate model accuracy via k-folds CV
(

df_boats
>> gr.tf_kfolds(

ft=ft_common,
out=["angle", "stability"],

)
)

5. RBF is imported as from sklearn.gaussian_process.kernels
import RBF.

256 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

angle stability k
0.771 0.979 0
0.815 0.976 1
0.835 0.95 2
0.795 0.962 3
0.735 0.968 4

TABLE 1: Accuracy (R2) estimated via k-fold cross validation of
gaussian process model.

The k-folds CV results (Tab. 1) suggest a highly accurate
model for stability, and a moderately accurate model for
angle. The following code defines the surrogate model over a
domain that includes the original dataset, and performs parameter
sweeps across all inputs.
md_fit = (

df_boats
>> ft_common()
>> gr.cp_marginals(

H=gr.marg_mom("uniform", mean=2.0, cov=0.30),
W=gr.marg_mom("uniform", mean=2.5, cov=0.35),
n=gr.marg_mom("uniform", mean=1.0, cov=0.30),
d=gr.marg_mom("uniform", mean=0.5, cov=0.30),
f_com=gr.marg_mom(

"uniform",
mean=0.55,
cov=0.47,

),
)
>> gr.cp_copula_independence()

)

(
md_fit
>> gr.ev_sinews(df_det="swp", n_sweeps=5)
>> gr.pt_auto()

)

Fig. 8: Parameter sweeps for fitted GP model. Model *_mean and
predictive uncertainty *_sd values are reported for each output
angle, stability.

Figure 8 displays parameter sweeps for the surrogate model of
stability and angle. Note that the surrogate model reports
both a mean trend *_mean and a predictive uncertainty *_sd.
The former is the model’s prediction for future values, while the
latter quantifies the model’s confidence in each prediction.

The parameter sweeps of Figure 8 show a consistent and strong
effect of f_com on the stability_mean of the boat; note that

Direction H W n d f_com

1 -0.0277 0.0394 -0.1187 0.4009 -0.9071
2 -0.6535 0.3798 -0.0157 -0.6120 -0.2320

TABLE 2: Subspace weights in df_weights.

all the sweeps across f_com for stability_mean tend to be
monotone with a fairly steep slope. This is in agreement with
the correlation results of Figure 7; the f_com sweeps tend to
have the steepest slopes. Given the high accuracy of the model
for stability (as measured by k-folds CV), this trend is
reasonably trustworthy.

However, the same figure shows an inconsistent (non-
monotone) effect of most inputs on the AVS angle_mean.
These results are in agreement with the k-fold CV results shown
above. Clearly, the surrogate model is untrustworthy, and we
should resist trusting conclusions from the parameter sweeps for
angle_mean. This undermines the conclusion we drew from
the input/output correlations pictured in Figure 7. Clearly, angle
exhibits more complex behavior than a simple linear correlation
with each of the boat design variables.

A different analysis of the boat hull angle data helps
develop useful insights. We pursue an active subspace analysis
of the data to reduce the dimensionality of the input space by
identifying directions that best explain variation in the output
[dCI17], [Con15]. The verb gr.tf_polyridge() implements
the variable projection algorithm of Hokanson and Constantine
[HC18]. The following code pursues a two-dimensional reduction
of the input space. Note that the hyperparameter n_degree=6 is
set via a cross-validation study.

Find two important directions
df_weights = (

df_boats
>> gr.tf_polyridge(

var=["H", "W", "n", "d", "f_com"],
out="angle",
n_degree=6, # Set via CV study
n_dim=2, # Seek 2d subspace

)
)

The subspace weights are reported in Table 2. Note that the
leading direction 1 is dominated by the displacement ratio d and
COM location f_com. Essentially, this describes the "loading"
of the vessel. The second direction corresponds to "widening and
shortening" of the hull cross-section (in addition to lowering d and
f_com).

Using the subspace weights in Table 2 to produce a 2d projec-
tion of the feature space enables visualizing all boat geometries in
a single plot. Figure 9 reveals that this 2d projection is very suc-
cessful at separating universally-stable (angle==180), upright-
unstable (angle==0), and intermediate cases (0 < angle <
180). Intermediate cases are concentrated at higher values of
the second active variable. There is a phase transition between
universally-stable and upright-unstable vessels at lower values of
the second active variable.

Interpreting Figure 9 in light of Table 2 provides us with deep
insight about boat stability: Since active variable 1 corresponds to
loading (high displacement ratio d with a low COM f_com), we
can see that the boat’s loading conditions are key to determining
its stability. Since active variable 2 depends on the aspect ratio

ENABLING ACTIVE LEARNING PEDAGOGY AND INSIGHT MINING WITH A GRAMMAR OF MODEL ANALYSIS 257

Fig. 9: Boat design feature vectors projected to 2d active subspace.
The origin corresponds to the mean feature vector.

(higher width, shorter height), Figure 9 suggests that only wider
boats will tend to exhibit intermediate stability.

Conclusions

Grama is a Python implementation of a grammar of model anal-
ysis. The grammar’s design supports an active learning approach
to teaching sound scientific modeling practices. Two case studies
demonstrated the teaching benefits of grama: errors for learners
help guide novices toward a more sound analysis, while concise
syntax encourages novices to carry out sound analysis practices.
Grama can also be used for exploratory model analysis (EMA)
– an exploratory procedure to mine a scientific model for useful
insights. A case study of boat hull design demonstrated EMA.
In particular, the example explored and explained the relationship
between boat design parameters and two metrics of boat stability.

Several ideas from the grama project are of interest to other
practitioners and developers in scientific computing. Grama was
designed to support model analysis under uncertainty. However,
the data/model and four-verb ontology (Fig. 1) underpinning
grama is a much more general idea. This design enables very
concise model analysis syntax, which provides much of the benefit
behind grama.

The design idiom of errors for learners is not simply focused
on writing "useful" error messages, but is rather a design orien-
tation to use errors to introduce teachable moments. In addition
to writing error messages "for humans" [Bry20], an errors for
learners philosophy designs errors not simply to avoid fatal
program behavior, but rather introduces exceptions to prevent
conceptually invalid analyses. For instance, in the case study
presented above, designing gr.tf_sample() to assume independent
random inputs when a copula is unspecified would lead to code
that throws errors less frequently. However, this would silently
endorse the conceptually problematic mentality of "independence
is the default." While throwing an error message for an unspecified
dependence structure leads to more frequent errors, it serves as a
frequent reminder that dependency is an important part of a model
involving random inputs.

Finally, exploratory model analysis holds benefits for both
learners and practitioners of scientific modeling. EMA is an alter-

native to derivation for the activities in an active learning approach.
Rather than structuring courses around deriving and implementing
scientific models, course exercises could have students explore
the behavior of a pre-implemented model to better understand
physical phenomena. Lorena Barba [Bar16] describes some of the
benefits in this style of lesson design. EMA is also an important
part of the modeling practitioner’s toolkit as a means to verify a
model’s implementation and to develop new insights. Grama sup-
ports both novices and practitioners in performing EMA through
a concise syntax.

REFERENCES

[AFD+21] Riya Aggarwal, Mira Flynn, Sam Daitzman, Diane Lam, and
Zachary Riggins del Rosario. A qualitative study of engineer-
ing students’ reasoning about statistical variability. In 2021
Fall ASEE Middle Atlantic Section Meeting, 2021. URL:
https://peer.asee.org/38421.

[Bar16] Lorena Barba. Computational thinking: I do not think
it means what you think it means. Technical re-
port, 2016. URL: https://lorenabarba.com/blog/computational-
thinking-i-do-not-think-it-means-what-you-think-it-means/.

[Bie20] Przemyslaw Biecek. ceterisParibus: Ceteris Paribus Profiles,
2020. R package version 0.4.2. URL: https://cran.r-project.org/
package=ceterisParibus.

[Blo56] Benjamin Samuel Bloom. Taxonomy of educational objectives:
The classification of educational goals. Addison-Wesley Long-
man Ltd., 1956.

[Bry20] Jennifer Bryan. object of type closure is not subsettable. 2020.
rstudio::conf 2020. URL: https://rstd.io/debugging.

[BTSA12] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken.
Legion: Expressing locality and independence with logical re-
gions. In SC’12: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analy-
sis, pages 1–11. IEEE, 2012. URL: https://ieeexplore.ieee.org/
document/6468504, doi:10.1109/SC.2012.71.

[CF99] Alison C Cullen and H Christopher Frey. Probabilistic Tech-
niques In Exposure Assessment: A Handbook For Dealing With
Variability And Uncertainty In Models And Inputs. Springer
Science & Business Media, 1999.

[Con15] Paul G. Constantine. Active Subspaces: Emerging Ideas for
Dimension Reduction in Parameter Studies. SIAM Philadelphia,
2015. doi:10.1137/1.9781611973860.

[dCI17] Zachary del Rosario, Paul G. Constantine, and Gianluca Iac-
carino. Developing design insight through active subspaces.
In 19th AIAA Non-Deterministic Approaches Conference, page
1090, 2017. URL: https://arc.aiaa.org/doi/10.2514/6.2017-1090,
doi:10.2514/6.2017-1090.

[dR20] Zachary del Rosario. Grama: A grammar of model analysis. Jour-
nal of Open Source Software, 5(51):2462, 2020. URL: https://doi.
org/10.21105/joss.02462, doi:10.21105/joss.02462.

[dRFI21] Zachary del Rosario, Richard W Fenrich, and Gianluca Iaccarino.
When are allowables conservative? AIAA Journal, 59(5):1760–
1772, 2021. URL: https://doi.org/10.2514/1.J059578, doi:10.
2514/1.J059578.

[EVB+20] M Esmaily, L Villafane, AJ Banko, G Iaccarino, JK Eaton,
and A Mani. A benchmark for particle-laden turbu-
lent duct flow: A joint computational and experimen-
tal study. International Journal of Multiphase Flow,
132:103410, 2020. URL: https://www.sciencedirect.com/
science/article/abs/pii/S030193222030519X, doi:10.1016/
j.ijmultiphaseflow.2020.103410.

[FEM+14] Scott Freeman, Sarah L Eddy, Miles McDonough, Michelle K
Smith, Nnadozie Okoroafor, Hannah Jordt, and Mary Pat Wen-
deroth. Active learning increases student performance in sci-
ence, engineering, and mathematics. Proceedings of the Na-
tional Academy of Sciences, 111(23):8410–8415, 2014. doi:
10.1073/pnas.1319030111.

[HC18] Jeffrey M Hokanson and Paul G Constantine. Data-driven
polynomial ridge approximation using variable projection. SIAM
Journal on Scientific Computing, 40(3):A1566–A1589, 2018.
doi:10.1137/17M1117690.

258 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

[HK21] Jan Katins gdowding austin matthias-k Tyler Funnell Florian
Finkernagel Jonas Arnfred Dan Blanchard et al. Hassan Kibirige,
Greg Lamp. has2k1/plotnine: v0.8.0. Mar 2021. doi:10.
5281/zenodo.4636791.

[JWHT13] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshi-
rani. An Introduction to Statistical Learning: with Applications in
R, volume 112. Springer, 2013. URL: https://www.statlearning.
com/.

[KBB19] Michał Kuźba, Ewa Baranowska, and Przemysław Biecek. pyce-
terisparibus: explaining machine learning models with ceteris
paribus profiles in python. Journal of Open Source Software,
4(37):1389, 2019. URL: https://joss.theoj.org/papers/10.21105/
joss.01389, doi:10.21105/joss.01389.

[KN05] Andy Keane and Prasanth Nair. Computational Approaches For
Aerospace Design: The Pursuit Of Excellence. John Wiley &
Sons, 2005.

[KSS21] Daniel Kahneman, Olivier Sibony, and Cass R Sunstein. Noise:
A flaw in human judgment. Little, Brown, 2021.

[LE00] Lars Larsson and Rolf Eliasson. Principles of Yacht Design.
McGraw Hill Companies, 2000.

[MJ18] Simon Mak and V Roshan Joseph. Support points. The Annals
of Statistics, 46(6A):2562–2592, 2018. doi:10.1214/17-
AOS1629.

[MTW+22] Kazuki Maeda, Thiago Teixeira, Jonathan M Wang, Jeffrey M
Hokanson, Caetano Melone, Mario Di Renzo, Steve Jones, Javier
Urzay, and Gianluca Iaccarino. An integrated heterogeneous
computing framework for ensemble simulations of laser-induced
ignition. arXiv preprint arXiv:2202.02319, 2022. URL: https:
//arxiv.org/abs/2202.02319, doi:10.48550/arXiv.2202.
02319.

[MV15] Sparsh Mittal and Jeffrey S Vetter. A survey of cpu-gpu heteroge-
neous computing techniques. ACM Computing Surveys (CSUR),
47(4):1–35, 2015. URL: https://dl.acm.org/doi/10.1145/2788396,
doi:10.1145/2788396.

[pdt20] The pandas development team. pandas-dev/pandas: Pandas,
February 2020. URL: https://doi.org/10.5281/zenodo.3509134,
doi:10.5281/zenodo.3509134.

[RW05] Carl Edward Rasmussen and Christopher K. I. Williams. Gaus-
sian Processes for Machine Learning. The MIT Press, 11
2005. URL: https://doi.org/10.7551/mitpress/3206.001.0001,
doi:10.7551/mitpress/3206.001.0001.

[SKA+14] Jeffrey P Slotnick, Abdollah Khodadoust, Juan Alonso, David
Darmofal, William Gropp, Elizabeth Lurie, and Dimitri J
Mavriplis. Cfd vision 2030 study: A path to revolutionary
computational aerosciences. Technical report, 2014. URL:
https://ntrs.nasa.gov/citations/20140003093.

[SS13] Seref Sagiroglu and Duygu Sinanc. Big data: A review.
In 2013 International Conference on Collaboration Technolo-
gies and Systems (CTS), pages 42–47. IEEE, 2013. URL:
https://ieeexplore.ieee.org/document/6567202, doi:10.1109/
CTS.2013.6567202.

[SSW89] Jerome Sacks, Susannah B. Schiller, and William J. Welch.
Designs for computer experiments. Technometrics, 31(1):41–
47, 1989. URL: http://www.jstor.org/stable/1270363, doi:10.
2307/1270363.

[WAB+19] Hadley Wickham, Mara Averick, Jennifer Bryan, Winston Chang,
Lucy D’Agostino McGowan, Romain François, Garrett Grole-
mund, Alex Hayes, Lionel Henry, Jim Hester, et al. Welcome
to the tidyverse. Journal of Open Source Software, 4(43):1686,
2019. doi:10.21105/joss.01686.

[Wic14] Hadley Wickham. Tidy data. Journal of Statistical Software,
59(10):1–23, 2014. doi:10.18637/jss.v059.i10.

[WM10] Wes McKinney. Data Structures for Statistical Computing in
Python. In Stéfan van der Walt and Jarrod Millman, editors,
Proceedings of the 9th Python in Science Conference, pages 56 –
61, 2010. doi:10.25080/Majora-92bf1922-00a.

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022) 259

Low Level Feature Extraction for Cilia Segmentation

Meekail Zain‡†∗, Eric Miller§†, Shannon P Quinn‡¶, Cecilia Lo‖

F

Abstract—Cilia are organelles found on the surface of some cells in the human
body that sweep rhythmically to transport substances. Dysfunction of ciliary
motion is often indicative of diseases known as ciliopathies, which disrupt
the functionality of macroscopic structures within the lungs, kidneys and other
organs [LWL+18]. Phenotyping ciliary motion is an essential step towards un-
derstanding ciliopathies; however, this is generally an expert-intensive process
[QZD+15]. A means of automatically parsing recordings of cilia to determine
useful information would greatly reduce the amount of expert intervention re-
quired. This would not only improve overall throughput, but also mitigate human
error, and greatly improve the accessibility of cilia-based insights. Such automa-
tion is difficult to achieve due to the noisy, partially occluded and potentially out-
of-phase imagery used to represent cilia, as well as the fact that cilia occupy a
minority of any given image. Segmentation of cilia mitigates these issues, and is
thus a critical step in enabling a powerful pipeline. However, cilia are notoriously
difficult to properly segment in most imagery, imposing a bottleneck on the
pipeline. Experimentation on and evaluation of alternative methods for feature
extraction of cilia imagery hence provide the building blocks of a more potent
segmentation model. Current experiments show up to a 10% improvement over
base segmentation models using a novel combination of feature extractors.

Index Terms—cilia, segmentation, u-net, deep learning

Introduction

Cilia are organelles found on the surface of some cells in the hu-
man body that sweep rhythmically to transport substances [Ish17].
Dysfunction of ciliary motion often indicates diseases known as
ciliopathies, which on a larger scale disrupt the functionality of
structures within the lungs, kidneys and other organs. Pheno-
typing ciliary motion is an essential step towards understanding
ciliopathies. However, this is generally an expert-intensive pro-
cess [LWL+18], [QZD+15]. A means of automatically parsing
recordings of cilia to determine useful information would greatly
reduce the amount of expert intervention required, thus increasing
throughput while alleviating the potential for human error. Hence,
Zain et al. (2020) discuss the construction of a generative pipeline
to model and analyze ciliary motion, a prevalent field of investi-

† These authors contributed equally.
* Corresponding author: meekail.zain@uga.edu
‡ Department of Computer Science, University of Georgia, Athens, GA 30602
USA
§ Institute for Artificial Intelligence, University of Georgia, Athens, GA 30602
USA
¶ Department of Cellular Biology, University of Georgia, Athens, GA 30602
USA
|| Department of Developmental Biology, University of Pittsburgh, Pittsburgh,
PA 15261 USA

Copyright © 2022 Meekail Zain et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Fig. 1: A sample frame from the cilia dataset

gation in the Quinn Research Group at the University of Georgia
[ZRS+20].

The current pipeline consists of three major stages: preprocess-
ing, where segmentation masks and optical flow representations
are created to supplement raw cilia video data; appearance, where
a model learns a condensed spacial representation of the cilia; and
dynamics, which learns a representation from the video, encoded
as a series of latent points from the appearance module. In the
primary module, the segmentation mask is essential in scoping
downstream analysis to the cilia themselves, so inaccuracies at
this stage directly affect the overall performance of the pipeline.
However, due to the high variance of ciliary structure, as well
as the noisy and out-of-phase imagery available, segmentation
attempts have been prone to error.

While segmentation masks for such a pipeline could be
manually generated, the process requires intensive expert labor
[DvBB+21]. Requiring manual segmentation before analysis thus
greatly increases the barrier to entry for this tool. Not only would
it increase the financial strain of adopting ciliary analysis as a
clinical tool, but it would also serve as an insurmountable barrier to
entry for communities that do not have reliable access to such clin-
icians in the first place, such as many developing nations and rural
populations. Not only can automated segmentation mitigate these
barriers to entry, but it can also simplify existing treatment and
analysis infrastructure. In particular, it has the potential to reduce
the magnitude of work required by an expert clinician, thereby

260 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 2: The classical U-Net architecture, which serves as both a
baseline and backbone model for this research

decreasing costs and increasing clinician throughput [QZD+15],
[ZRS+20]. Furthermore, manual segmentation imparts clinician-
specific bias which reduces the reproducability of results, making
it difficult to verify novel techniques and claims [DvBB+21].

A thorough review of previous segmentation models, specif-
ically those using the same dataset, shows that current results
are poor, impeding tasks further along the pipeline. For this
study, model architectures utilize various methods of feature
extraction that are hypothesized to improve the accuracy of a base
segmentation model, such as using zero-phased PCA maps and
Sparse Autoencoder reconstructions with various parameters as a
data augmentation tool. Various experiments with these methods
provide a summary of both qualitative and quantitative results
necessary in ascertaining the viability for such feature extractors
to aid in segmentation.

Related Works

Lu et. al. (2018) utilized a Dense Net segmentation model as an
upstream to a CNN-based Long Short-Term Memory (LSTM)
time-series model for classifying cilia based on spatiotemporal
patterns [LMZ+18]. While the model reports good classification
accuracy and a high F-1 score, the underlying dataset only
contains 75 distinct samples and the results must therefore be
taken with great care. Furthermore, Lu et. al. did not report the
separate performance of the upstream segmentation network. Their
approach did, however, inspire the follow-up methodology of Zain
et. al. (2020) for segmentation. In particular, they employ a Dense
Net segmentation model as well, however they first augment the
underlying images with the calculated optical flow. In this way,
their segmentation strategy employs both spatial and temporal
information. To compare against [LMZ+18], the authors evaluated
their segmentation model in the same way—as an upstream to
an CNN/LSTM classification network. Their model improved
the classification accuracy two points above that of Charles et.
al. (2018). Their reported intersection-over-union (IoU) score is
33.06% and marks the highest performance achieved on this
dataset.

One alternative segmentation model, often used in biomedical
image processing and analysis, where labelled data sets are rela-
tively small, is the U-Net architecture (2) [RFB15]. Developed by
Ronneberger et. al., U-Nets consist of two parts: contraction and

expansion. The contraction path follows the standard strategy of
most convolutional neural networks (CNNs), where convolutions
are followed by Rectified Linear Unit (ReLU) activation func-
tions and max pooling layers. While max pooling downsamples
the images, the convolutions double the number of channels.
Upon expansion, up-convolutions are applied to up-sample the
image while reducing the number of channels. At each stage,
the network concatenates the up-sampled image with the image
of corresponding size (cropped to account for border pixels)
from a layer in the contracting path. A final layer uses pixel-
wise (1× 1) convolutions to map each pixel to a corresponding
class, building a segmentation. Before training, data is generally
augmented to provide both invariance in rotation and scale as well
as a larger amount of training data. In general, U-Nets have shown
high performance on biomedical data sets with low quantities
of labelled images, as well as reasonably fast training times on
graphics processing units (GPUs) [RFB15]. However, in a few
past experiments with cilia data, the U-Net architecture has had
low segmentation accuracy [LMZ+18]. Difficulties modeling cilia
with CNN-based architectures include their fine high-variance
structure, spatial sparsity, color homogeneity (with respect to the
background and ambient cells), as well as inconsistent shape and
distribution across samples. Hence, various enhancements to the
pure U-Net model are necessary for reliable cilia segmentation.

Methodology

The U-Net architecture is the backbone of the model due to its
well-established performance in the biomedical image analysis
domain. This paper focuses on extracting and highlighting the
underlying features in the image through various means. There-
fore, optimization of the U-Net backbone itself is not a major
consideration of this project. Indeed, the relative performance of
the various modified U-Nets sufficiently communicates the effi-
cacy of the underlying methods. Each feature extraction method
will map the underlying raw image to a corresponding feature
map. To evaluate the usefulness of these feature maps, the model
concatenates these augmentations to the original image and use
the aggregate data as input to a U-Net that is slightly modified to
accept multiple input channels.

The feature extractors of interest are Zero-phase PCA sphering
(ZCA) and a Sparse Autoencoder (SAE), on both of which the
following subsections provide more detail. Roughly speaking,
these are both lossy, non-bijective transformations which map
a single image to a single feature map. In the case of ZCA,
empirically the feature maps tend to preserve edges and reduce
the rest of the image to arbitrary noise, thereby emphasizing local
structure (since cell structure tends not to be well-preserved). The
SAE instead acts as a harsh compression and filters out both linear
and non-linear features, preserving global structure. Each extractor
is evaluated by considering the performance of a U-Net model
trained on multi-channel inputs, where the first channel is the
original image, and the second and/or third channels are the feature
maps extracted by these methods. In particular, the objective is for
the doubly-augmented data, or the “composite” model, to achieve
state-of-the-art performance on this challenging dataset.

The ZCA implementation utilizes SciPy linear algebra solvers,
and both U-Net and SAE architectures use the PyTorch deep
learning library. Next, the evaluation stage employs canonical
segmentation quality metrics, such as the Jaccard score and Dice
coefficient, on various models. When applied to the composite

LOW LEVEL FEATURE EXTRACTION FOR CILIA SEGMENTATION 261

model, these metrics determine any potential improvements to the
state-of-the-art for cilia segmentation.

Cilia Data

As in the Zain paper, the input data is a limited set of grayscale
cilia imagery, from both healthy patients and those diagnosed with
ciliopathies, with corresponding ground truth masks provided by
experts. The images are cropped to 128×128 patches. The images
are cropped at random coordinates in order to increase the size
and variance of the sample space, and each image is cropped a
number of times proportional its resolution. Additionally, crops
that contain less than fifteen percent cilia are excluded from the
training/test sets. This method increases the size of the training
set from 253 images to 1409 images. Finally, standard minmax
contrast normalization maps the luminosity to the interval [0,1].

Zero-phase PCA sphering (ZCA)

The first augmentation of the underlying data concatenates the
input to the backbone U-Net model with the ZCA-transformed
data. ZCA maps the underlying data to a version of the data that is
“rotated” through the dataspace to ensure certain spectral proper-
ties. ZCA in effect can implicitly normalize the data using the most
significant (by empirical variance) spatial features present across
the dataset. Given a matrix X with rows representing samples and
columns for each feature, a sphering (or whitening) transformation
W is one which decorrelates X . That is, the covariance of WX
must be equal to the identity matrix. By the spectral theorem,
the symmetric matrix XXT —the covariance matrix corresponding
to the data, assuming the data is centered—can be decomposed
into PDPT , where P is an orthogonal matrix of eigenvectors
and D a diagonal matrix of corresponding eigenvalues of the
covariance matrix. ZCA uses the sphering matrix W = PD−1/2PT

and can be thought of as a transformation into the eigenspace of
its covariance matrix—projection onto the data’s principal axes,
as the minimal projection residual is onto the axes with maximal
variance—followed by normalization of variance along every axis
and rotation back into the original image space. In order to reduce
the amount of two-way correlation in images, Krizhevsky applies
ZCA whitening to preprocess CIFAR-10 data before classification
and shows that this process nicely preserves features, such as edges
[LjWD19].

This ZCA implementation uses the Python SciPy library
(SciPy), which builds on top of low-level hardware-optimized
routines such as BLAS and LAPACK to efficiently calculate many
linear algebra operations. In particular, these expirements imple-
ment ZCA as a generalized whitening technique. While normal the
normal ZCA calculation selects a whitening matrix W =PD−

1
2 PT ,

a more applicable alternative is W = P
√

(D+ εI)−1PT where ε
is a hyperparameter which attenuates eigenvalue sensitivity. This
new "whitening" is actually not a proper whitening since it does
not guarantee an identity covariance matrix. It does however serve
a similar purpose and actually lends some benefits.

Most importantly, it is indeed a generalization of canonical
ZCA. That is to say, ε = 0 recovers canonical ZCA, and λ →

√
1
λ

provides the spectrum of W on the eigenvalues. Otherwise, ε > 0
results in the map λ →

√
1

λ+ε . In this case, while all eigenvalues
map to smaller values compared to the original map, the smallest
eigenvalues map to significantly smaller values compared to the
original map. This means that ε serves to “dampen” the effects
of whitening for particularly small eigenvalues. This is a valuable

feature since often times in image analysis low eigenvalues (and
the span of their corresponding eigenvectors) tend to capture high-
frequency data. Such data is essential for tasks such as texture
analysis, and thus tuning the value of ε helps to preserve this data.
ZCA maps for various values of ε on a sample image are shown
in figure 3.

Fig. 3: Comparison of ZCA maps on a cilia sample image with various
levels of ε . The original image is followed by maps with ε = 1e− 4,
ε = 1e−5, ε = 1e−6, and ε = 1e−7, from left to right.

Sparse Autoencoder (SAE)

Similar in aim to ZCA, an SAE can augment the underlying
images to further filter and reduce noise while allowing the
construction and retention of potentially nonlinear spatial features.
Autoencoders are deep learning models that first compress data
into a low-level latent space and then attempt to reconstruct images
from the low-level representation. SAEs in particular add an
additional constraint, usually via the loss function, that encourages
sparsity (i.e., less activation) in hidden layers of the network. Xu
et. al. use the SAE architecture for breast cancer nuclear detection
and show that the architecture preserves essential, high-level,
and often nonlinear aspects of the initial imagery—even when
unlabelled—such as shape and color [XXL+16]. An adaptation of
the first two terms of their loss function enforces sparsity:

LSAE(θ) =
1
N

N

∑
k=1

(L(x(k),dθ̂ (eθ̌ (x(k)))))+α
1
n

n

∑
j=1

KL(ρ||ρ̂).

The first term is a standard reconstruction loss (mean squared
error), whereas the latter is the mean Kullback-Leibler (KL)
divergence between ρ̂ , the activation of a neuron in the encoder,
and ρ , the enforced activation. For the case of experiments
performed here, ρ = 0.05 remains constant but values of α vary,
specifically 1e− 2, 1e− 3, and 1e− 4, for each of which a static
dataset is created for feeding into the segmentation model. Larger
alpha prioritizes sparsity over reconstruction accuracy, which to
an extent, is hypothesized to retain significant low-level features
of the cilia. Reconstructions with various values of α are shown
in figure 4

Fig. 4: Comparison of SAE reconstructions from different training
instances with various levels of α (the activation loss weight). From
left to right: original image, α = 1e− 2 reconstruction, α = 1e− 3
reconstruction, α = 1e−4 reconstruction.

A significant amount of freedom can be found in potential
architectural choices for SAE. A focus on low-medium complexity
models both provides efficiency and minimizes overfitting and ar-
tifacts as consequence of degenerate autoencoding. One important
danger to be aware of is that SAEs—and indeed, all AEs—are
at risk of a degenerate solution wherein a sufficiently complex

262 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 5: Illustration and pseudocode for Spatial Broadcast Decoding
[WMBL19]

decoder essentially learns to become a hashmap of arbitrary (and
potentially random) encodings.

The SAE will therefore utilize a CNN architecture, as op-
posed to more modern transformer-style architectures, since the
simplicity and induced spatial bias provide potent defenses against
overfitting and mode collapse. Furthermore the encoder will use
Spatial Broadcast Decoding (SBD) which provides a method for
decoding from a latent vector using size-preserving convolutions,
thereby preserving the spatial bias even in decoding, and eliminat-
ing the artifacts generated by alternate decoding strategies such as
“transposed” convolutions [WMBL19].

Spatial Broadcast Decoding (SBD)

Spatial Broadcast Decoding provides an alternative method from
”transposed” (or ”skip”) convolutions to upsample images in the
decoder portion of CNN-based autoencoders. Rather than main-
taining the square shape, and hence associated spatial properties,
of the latent representation, the output of the encoder is reshaped
into a single one-dimensional tensor per input image, which is then
tiled to the shape of the desired image (in this case, 128× 128).
In this way, the initial dimension of the latent vector becomes
the number of input channels when fed into the decoder, and two
additional channels are added to represent 2-dimensional spatial
coordinates. In its initial publication, SBD has been shown to pro-
vide effective results in disentangling latent space representations
in various autoencoder models.

U-Net

All models use a standard U-Net and undergo the same training
process to provide a solid basis for analysis. Besides the number
of input channels to the initial model (1 plus the number of
augmentation channels from SAE and ZCA, up to 3 total chan-
nels), the model architecture is identical for all runs. A single-
channel (original image) U-Net first trains as a basis point for
analysis. The model trains on two-channel inputs provided by
ZCA (original image concatenated with the ZCA-mapped one)
with various ε values for the dataset, and similarly SAE with
various α values, train the model. Finally, composite models train
with a few combinations of ZCA and SAE hyperparameters. Each
training process uses binary cross entropy loss with a learning rate
of 1e−3 for 225 epochs.

Results

Figures 6, 7, 8, and 9 show masks produced on validation data
from instances of the four model types. While the former three
show results near the end of training (about 200-250 epochs),

Fig. 6: Artifacts generated during the training of U-Net. From left to
right: original image, generated segmentation mask (pre-threshold),
ground-truth segmentation mask

Fig. 7: Artifacts generated during the training of ZCA+U-Net. From
left to right: original image, ZCA-mapped image, generated segmen-
tation mask (pre-threshold), ground-truth segmentation mask

figure 9 was taken only 10 epochs into the training process.
Notably, this model, the composite pipeline, produced usable
artifacts in mere minutes of training, whereas other models did
not produce similar results until after about 10-40 epochs.

Figure 10 provides a summary of experiments performed with
SAE and ZCA augmented data, along with a few composite models
and a base U-Net for comparison. These models were produced
with data augmentation at various values of α (for the Sparse
Autoencoder loss function) and ε (for ZCA) discussed above.
While the table provides five metrics, those of primary importance
are the Intersection over Union (IoU), or Jaccard Score, as well
as the Dice (or F1) score, which are the most commonly used
metrics for evaluating the performance of segmentation models.
Most feature extraction models at least marginally improve the
performance in of the U-Net in terms of IoU and Dice scores,
and the best-performing composite model (with ε of 1e− 4
for ZCA and α of 1e− 3 for SAE) provide an improvement
of approximately 10% from the base U-Net in these metrics.
There does not seem to be an obvious correlation between which
feature extraction hyperparameters provided the best performance
for individual ZCA+U-Net and SAE+U-Net models versus those
for the composite pipeline, but further experiments may assist in
analyzing this possibility.

The base U-Net does outperform the others in precision,

Fig. 8: Artifacts generated during the training of SAE+U-Net. From
left to right: original image, SAE-reconstructed image, generated
segmentation mask (pre-threshold), ground-truth segmentation mask

Fig. 9: Artifacts generated 10 epochs into the training of the compos-
ite U-Net. From left to right: original image, ZCA-mapped image,
SAE-mapped image, generated segmentation mask (pre-threshold),
ground-truth segmentation mask

LOW LEVEL FEATURE EXTRACTION FOR CILIA SEGMENTATION 263

Extractor Parameters Scores

Model ε (ZCA) α (SAE) IoU Accuracy Recall Dice Precision

U-Net (base) — — 0.399 0.759 0.501 0.529 0.692

ZCA + U-Net

1e−4 — 0.395 0.754 0.509 0.513 0.625
1e−5 — 0.401 0.732 0.563 0.539 0.607
1e−6 — 0.408 0.756 0.543 0.546 0.644
1e−7 — 0.419 0.758 0.563 0.557 0.639

SAE + U-Net
— 1e−2 0.380 0.719 0.568 0.520 0.558
— 1e−3 0.398 0.751 0.512 0.526 0.656
— 1e−4 0.416 0.735 0.607 0.555 0.603

Composite

1e−4 1e−2 0.401 0.761 0.506 0.521 0.649
1e−4 1e−3 0.441 0.767 0.580 0.585 0.661
1e−4 1e−4 0.305 0.722 0.398 0.424 0.588
1e−5 1e−2 0.392 0.707 0.624 0.530 0.534
1e−5 1e−3 0.413 0.770 0.514 0.546 0.678
1e−5 1e−4 0.413 0.751 0.565 0.550 0.619
1e−6 1e−2 0.392 0.719 0.602 0.527 0.571
1e−6 1e−3 0.395 0.759 0.480 0.521 0.711
1e−6 1e−4 0.405 0.729 0.587 0.545 0.591
1e−7 1e−2 0.383 0.753 0.487 0.503 0.655
1e−7 1e−3 0.380 0.736 0.526 0.519 0.605
1e−7 1e−4 0.293 0.674 0.445 0.418 0.487

Fig. 10: A summary of segmentation scores on test data for a base
U-Net model, ZCA+U-Net, SAE+U-Net, and a composite model, with
various feature extraction hyperparameters. The best result for each
scoring metric is in bold.

Input Images Predicted Masks

Original ZCA SAE Ground Truth Base U-Net ZCA + U-Net SAE + U-Net Composite

Fig. 11: Comparison of predicted masks and ground truth for three
test images. ZCA mapped images with ε = 1e−4 and SAE reconstruc-
tions with α = 1e−3 are used where applicable.

however. Analysis of predicted masks from various models, some
of which are shown in figure 11, shows that the base U-Net
model tends to under-predict cilia, explaining the relatively high
precision. Previous endeavors in cilia segmentation also revealed
this pattern.

Conclusions

This paper highlights the current shortcomings of automated,
deep-learning based segmentation models for cilia, specifically
on the data provided to the Quinn Research Group, and provides
two additional methods, Zero-Phase PCA Sphering (ZCA) and
Sparse Autoencoders (SAE), for performing feature extracting
augmentations with the purpose of aiding a U-Net model in
segmentation. An analysis of U-Nets with various combinations
of these feature extraction and parameters help determine the
feasibility for low-level feature extraction in improving cilia seg-
mentation, and results from initial experiments show up to 10%
increases in relevant metrics.

While these improvements, in general, have been marginal,
these results show that pre-segmentation based feature extraction
methods, particularly the avenues explored, provide a worthwhile
path of exploration and research for improving cilia segmentation.

Implications internal to other projects within the research group
sponsoring this research are clear. As discussed earlier, later
pipelines of ciliary representation and modeling are currently
being bottlenecked by the poor segmentation masks produced by
base U-Nets, and the under-segmented predictions provided by
the original model limits the scope of what these later stages
may achieve. Better predictions hence tend to transfer to better
downstream results.

These results also have significant implications outside of the
specific task of cilia segmentation and modeling. The inherent
problem that motivated an introduction of feature extraction into
the segmentation process was the poor quality of the given dataset.
From occlusion to poor lighting to blurred images, these are
problems that typically plague segmentation models in the real
world, where data sets are not of ideal quality. For many modern
computer vision tasks, segmentation is a necessary technique to
begin analysis of certain objects in an image, including any forms
of objects from people to vehicles to landscapes. Many images
for these tasks are likely to come from low-resolution imagery,
whether that be satellite data or security cameras, and are likely
to face similar problems as the given cilia dataset in terms of
image quality. Even if this is not the case, manual labelling, like
that of this dataset and convenient in many other instances, is
prone to error and is likely to bottleneck results. As experiments
have shown, feature extraction through SAE and ZCA maps are
a potential avenue for improvement of such models and would be
an interesting topic to explore on other problematic datsets.

Especially compelling, aside from the raw numeric results, is
how soon composite pipelines began to produce usable masks on
training data. As discussed earlier, most original U-Net models
would take at least 40-50 epochs before showing any accurate
predictions on training data. However, when feeding in composite
SAE and ZCA data along with the original image, unusually
accurate masks were produced within just a couple minutes, with
usable results at 10 epochs. This has potential implications in
scenarios such as one-shot and/or unsupervised learning, where
models cannot train over a large datset.

Future Research

While this work establishes a primary direction and a novel
perspective for segmenting cilia, there are many interesting and
valuable directions for future planned research. In particular, a
novel and still-developing alternative to the convolution layer
known as a Sharpened Cosine Similarity (SCS) layer has begun
to attract some attention. While regular CNNs are proficient at
filtering, developing invariance to certain forms of noise and
perturbation, they are notoriously poor at serving as a spatial
indicator for features. Convolution activations can be high due to
changes in luminosity and do not necessarily imply the distribu-
tion of the underlying luminosity, therefore losing precise spatial
information. By design, SCS avoids these faults by considering
the mathematical case of a “normalized” convolution, wherein
neither the magnitude of the input, nor of the kernel, affect the final
output. Instead, SCS activations are dictated purely by the relative
magnitudes of weights in the kernel, which is to say by the spatial
distribution of features in the input [Pis22]. Domain knowledge
suggests that cilia, while able to vary greatly, all share relatively
unique spatial distributions when compared to non-cilia such as
cells, out-of-phase structures, microscopy artifacts, etc. Therefore,
SCS may provide a strong augmentation to the backbone U-
Net model by acting as an additional layer in tandem with the

264 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

already existing convolution layers. This way, the model is a true
generalization of the canonical U-Net and is less likely to suffer
poor performance due to the introduction of SCS.

Another avenue of exploration would be a more robust ablation
study on some of the hyperparameters of the feature extractors
used. While most of the hyperparameters were chosen based on
either canonical choices [XXL+16] or through empirical study
(e.g. ε for ZCA whitening), a more comprehensive hyperparameter
search would be worth consideration. This would be especially
valuable for the composite model since the choice of most opti-
mal hyperparameters is dependent on the downstream tasks and
therefore may be different for the composite model than what was
found for the individual models.

More robust data augmentation could additionally improve
results. Image cropping and basic augmentation methods alone
provided minor improvements of just the base U-Net from the
state of the art. Regarding the cropping method, an upper threshold
for the percent of cilia per image may be worth implementing,
as cropped images containing over approximately 90% cilia pro-
duced poor results, likely due to a lack of surrounding context.
Additionally, rotations and lighting/contrast adjustments could
further augment the data set during the training process.

Re-segmenting the cilia images by hand, a planned endeavor,
will likely provide more accurate masks for the training process.
This is an especially difficult task for the cilia dataset, as the poor
lighting and focus even causes medical professionals to disagree
on the exact location of cilia in certain instances. However, the re-
search group associated with this paper is currently in the process
of setting up a web interface for such professionals to ”vote” on
segmentation masks. Additionally, it is likely worth experimenting
with various thresholds for converting U-Net outputs into masks,
and potentially some form of region growing to dynamically aid
the process.

Finally, it is possible to train the SAE and U-Net jointly as
an end-to-end system. Current experimentation has foregone this
path due to the additional computational and memory complexity
and has instead opted for separate training to at least justify this
direction of exploration. Training in an end-to-end fashion could
lead to a more optimal result and potentially even an interesting
latent representation of ciliary features in the image. It is worth
noting that larger end-to-end systems like this tend to be more
difficult to train and balance, and such architectures can fall into
degenerate solutions more readily.

REFERENCES

[DvBB+21] Cenna Doornbos, Ronald van Beek, Ernie MHF Bongers, Dorien
Lugtenberg, Peter Klaren, Lisenka ELM Vissers, Ronald Roep-
man, Machteld M Oud, et al. Cell-based assay for ciliopathy
patients to improve accurate diagnosis using alpaca. Euro-
pean Journal of Human Genetics, 29(11):1677 |–| 1689, 2021.
doi:10.1038/s41431-021-00907-9.

[Ish17] Takashi Ishikawa. Axoneme structure from motile cilia. Cold
Spring Harbor perspectives in biology, 9(1):a028076, 2017.
doi:10.1101/cshperspect.a028076.

[LjWD19] Hui Li, Xiao jun Wu, and Tariq S. Durrani. Infrared and visible
image fusion with resnet and zero-phase component analysis. In-
frared Physics & Technology, 102:103039, 2019. doi:https:
//doi.org/10.1016/j.infrared.2019.103039.

[LMZ+18] Charles Lu, M. Marx, M. Zahid, C. W. Lo, Chakra Chennubhotla,
and Shannon P. Quinn. Stacked neural networks for end-to-
end ciliary motion analysis. CoRR, 2018. doi:10.48550/
arXiv.1803.07534.

[LWL+18] Fangzhao Li, Changjian Wang, Xiaohui Liu, Yuxing Peng, and
Shiyao Jin. A composite model of wound segmentation based
on traditional methods and deep neural networks. Computational
intelligence and neuroscience, 2018, 2018. doi:10.1155/
2018/4149103.

[Pis22] Raphael Pisonir. Sharpened cosine distance as an alternative for
convolutions, Jan 2022. URL: https://www.rpisoni.dev.

[QZD+15] Shannon P Quinn, Maliha J Zahid, John R Durkin, Richard J
Francis, Cecilia W Lo, and S Chakra Chennubhotla. Auto-
mated identification of abnormal respiratory ciliary motion in
nasal biopsies. Science translational medicine, 7(299):299ra124
|–| 299ra124, 2015. doi:10.1126/scitranslmed.
aaa1233.

[RFB15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmentation.
CoRR, 2015. doi:10.48550/arXiv.1505.04597.

[WMBL19] Nicholas Watters, Loïc Matthey, Christopher P. Burgess, and
Alexander Lerchner. Spatial broadcast decoder: A simple archi-
tecture for learning disentangled representations in vaes. CoRR,
2019. doi:10.48550/arXiv.1901.07017.

[XXL+16] Jun Xu, Lei Xiang, Qingshan Liu, Hannah Gilmore, Jianzhong
Wu, Jinghai Tang, and Anant Madabhushi. Stacked sparse au-
toencoder (ssae) for nuclei detection on breast cancer histopathol-
ogy images. IEEE Transactions on Medical Imaging, 35(1):119–
130, 2016. doi:10.1109/TMI.2015.2458702.

[ZRS+20] Meekail Zain, Sonia Rao, Nathan Safir, Quinn Wyner, Isabella
Humphrey, Alex Eldridge, Chenxiao Li, BahaaEddin AlAila,
and Shannon Quinn. Towards an unsupervised spatiotemporal
representation of cilia video using a modular generative pipeline.
In Proceedings of the Python in Science Conference, 2020.
doi:10.25080/majora-342d178e-017.

