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doi.org/10.25080/majora-1b6fd038-028
SCIPY: SCIPY 2021 TOOLS TRACK, Pamphile T. Roy
doi.org/10.25080/majora-1b6fd038-029
SCIPY TOOLS PLENARY: SCIKIT-IMAGE ANNUAL UPDATE, Gregory R. Lee
doi.org/10.25080/majora-1b6fd038-02a

LIGHTNING TALKS

SOCIAL MEDIA ANALYSIS USING NATURAL LANGUAGE PROCESSING TECHNIQUES, Jyotika Singh
doi.org/10.25080/majora-1b6fd038-015
SEABORN-IMAGE : IMAGE DATA VISUALIZATION IN PYTHON, Sarthak Jariwala
doi.org/10.25080/majora-1b6fd038-016



SCHOLARSHIP RECIPIENTS

AHMED ABDELAZEEM ADAM,
JISHAN AHMED,
ERICK FARIA,
T.S.SACHIN VENKATESH,
ALESSANDRO LODI,
PABLO ADRIAN TOLEDO MARGALEF,
MOINAK BOSE,
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How PDFrw and fillable forms improves throughput at
a Covid-19 Vaccine Clinic

Haw-minn Lu‡∗, José Unpingco‡

F

Abstract—PDFrw was used to prepopulate Covid-19 vaccination forms to im-
prove the efficiency and integrity of the vaccination process in terms of federal
and state privacy requirements. We will describe the vaccination process from
the initial appointment, through the vaccination delivery, to the creation of sub-
sequent required documentation. Although Python modules for PDF generation
are common, they struggle with managing fillable forms where a fillable field
may appear multiple times within the same form. Additionally, field types such
as checkboxes, radio buttons, lists and combo boxes are not straightforward to
programmatically fill. Another challenge is combining multiple filled forms while
maintaining the integrity of the values of the fillable fields. Additionally, HIPAA
compliance issues are discussed.

Index Terms—acrobat documents, form filling, HIPAA compliance, COVID-19

Introduction

The coronavirus pandemic has been one of the most disruptive
nationwide events in living memory. The frail, vulnerable, and
elderly have been disproportionately affected by serious hospital-
izations and deaths. Notwithstanding the amazing pace of vaccine
development, logistical problems can still inhibit large-scale vac-
cine distribution, especially among the elderly. Vaccination centers
typically require online appointments to facilitate vaccine distri-
bution by State and Federal governments, but many elderly do not
have Internet access or know how to make online appointments,
or how to use online resources to coordinate transportation to and
from the vaccination site, as needed.

As a personal anecdote, when vaccinations were opened to
all aged 65 and older, one of the authors tried to get his parents
vaccinated and discovered that the experience documented here
[Let21] was unfortunately typical and required regularly pinging
the appointment website for a week to get an appointment.
However, beyond persistence, getting an appointment required
monitoring the website to track when batches of new appointments
were released --- all tasks that require an uncommon knowledge of
Internet infrastructure beyond most patients, not just the elderly.

To help San Diego County with the vaccine rollout, the Gary
and Mary West PACE (WestPACE) center established a pop-up
point of distribution (POD) for the COVID-19 vaccine [pre21]
specifically for the elderly with emphasis on those who are most
vulnerable. The success in the POD was reported in the local news

* Corresponding author: hlu@westhealth.org
‡ Gary and Mary West Health Institute

Copyright © 2021 Haw-minn Lu et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

media [Lit21] [Col21] and prompted the State of California to ask
WestPACE’s sister organization (the Gary and Mary West Health
Institute) to develop a playbook for the deploying a pop-up POD
[pod21].

This paper describes the logistical challenges regarding the
vaccination rollout for WestPACE and focuses on the use of
Python’s PDFrw module to address real-world sensitive data
issues with PDF documents.

This paper gives a little more background of the effort.
Next the overall infrastructure and information flow is described.
Finally, a very detailed discussion on the use of python and the
PDFrw library to address a major bottleneck and volunteer pain
point.

Background

WestPACE operates a Program of All-Inclusive Care for the
Elderly (PACE) center which provides nursing-home-level care
and wrap-around services such as transportation to the most
vulnerable elderly. To provide vaccinations to WestPACE patients
as quickly as possible, WestPACE tried to acquire suitable freezers
(some vaccines require special cold storage) instead of waiting
for San Diego County to provide them; but, due to high-demand,
acquiring a suitably-sized freezer was very problematic. As a
pivot, WestPACE opted to acquire a freezer that was available but
with excess capacity beyond what was needed for just WestPACE,
and then collaborated with the County to use this excess capacity
to establish a walk-up vaccination center for all San Diego senior
citizens, in or out of WestPACE.

WestPACE coordinated with the local 2-1-1 organization re-
sponsible for coordination of community health and disaster ser-
vices. The 2-1-1 organization provided a call center with in-person
support for vaccine appointments and transportation coordination
to and from WestPACE. This immediately eased the difficulty
of making online appointments and the burden of transportation
coordination. With these relationships in place, the vaccination
clinic went from concept to active vaccine distribution site in about
two weeks resulting in the successful vaccination of thousands of
elderly.

Although this is a technical paper, this background describes
the real impact technology can make in the lives of the vulnerable
and elderly in society in a crisis situation.

Infrastructure

The goal of the WestPACE vaccine clinic was to provide a friendly
environment to vaccinate senior citizens. Because this was a non-
profit and volunteer effort, the clinic did not have any pre-existing
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Fig. 1: Vaccination Pipeline

record management practices with corresponding IT infrastruc-
ture to handle sensitive health information according to Health
Insurance Portability and Accountability Act (HIPAA) standards.
One key obstacle is paperwork for appointments, questionnaires,
consent forms, and reminder cards (among others) that must be
processed securely and at speed, given the fierce demand for
vaccines. Putting the burden of dealing with this paperwork on the
patients would be confusing for the patient and time-consuming
and limit the overall count of vaccinations delivered. Thus, the
strategy was to use electronic systems to handle Protected Health
Information (PHI) wherever possible and comply with HIPAA
requirements [MF19] for data encryption at rest and in-transit,
including appropriate Business Associate Agreements (BAA) for
any cloud service providers [FKR+16]. For physical paper, HIPAA
requirements mean that PHI must always be kept in a locked room
or a container with restricted access.

Figure 1 shows a high level view of the user experience and
information flow. Making appointments can be challenging, espe-
cially those with limited caregiver support. Because the appoint-
ment systems were set up in a hurry, many user interfaces were
confusing and poorly designed. In the depicted pipeline, the person
(or caregiver) telephones the 2-1-1 call center and the live operator
collects demographic and health information, and coordinates
any necessary travel arrangements, as needed. The demographic
and health information is entered into the appointment system
managed by the California Department of Public Health. The
information is then downloaded to the clinic from the appointment
system the day before the scheduled vaccination. Next, a forms
packet is generated for every scheduled patient and consolidated
into a PDF file that is then printed and handed to the volunteers at
the clinic. The packet consolidates documents including consent
forms, health forms, and CDC-provided vaccination cards.

When the patient arrives at the clinic, their forms are pulled
and a volunteer reviews the questions while correcting any errors.
Once the information is validated, the patient is directed to sign
the appropriate forms. The crucially efficient part is that the
patient and volunteer only have to validate previously collected
information instead of filling out multiple forms with redundant
information. This was crucial during peak demand so that most
patients experienced less than a five minute delay between arrival
and vaccine administration. While there was consideration of
commercial services to do the electronic form filling and electronic
signatures, they were discounted because these turned out to be too
expensive and time-consuming to set up.

Different entities such as 2-1-1 and the State of California
handle certain elements of the data pipeline, but strict HIPAA
requirements are followed at each step. All clinic communications
with the State appointment system were managed through a
properly authenticated and encrypted system. The vaccine clinic

utilized pre-existing, cloud-based HIPAA-compliant system, with
corresponding BAAs. All sensitive data processing occurred on
this system. The system, which is described at [HmLAKJU20],
uses both python alone and in Jupyter notebooks.

Finally, the processed PDF forms were transferred using en-
cryption to a server at the clinic site where an authorized operator
printed them out. The paper forms were placed in the custody
of a clinic volunteer until they were delivered to a back office
for storage in a locked cabinet, pursuant to health department
regulations.

Though all aspects of the pipeline faced challenges, the pre-
population of forms turned out to be surprisingly difficult due
to the lack of programmatic PDF tools that properly work with
fillable forms. The remainder of the paper discusses the challenges
and provides instructions on how to use Python to fill PDF forms
for printing.

Programmatically Fill Forms

Programmatically filling in PDF forms can be a quick and accurate
way to disseminate forms. Bits and pieces can be found throughout
the Internet and places like Stack Overflow but no single source
provides a complete answer. The Medium blog post by Vivsvaan
Sharma [Sha20] is a good starting place. Another useful resource
is the PDF 1.7 specification [pdf08]. Since the deployment of
the vaccine clinic, the details of the form filling can be found
at WestHealth’s blog [Lu21]. The code is available on GitHub as
described below.

The following imports are used in the examples given below.
import pdfrw
from pdfrw.objects.pdfstring import PdfString
from pdfrw.objects.pdfstring import BasePdfName
from pdfrw import PdfDict, PdfObject

Finding Your Way Around PDFrw and Fillable Forms

Several examples of basic form filling code can be found on the
Internet, including the above-mentioned Medium blog post. The
following is a typical snippet which was taken largely from the
blog post.
pdf = pdfrw.PdfReader(file_path)
for page in pdf.pages:

annotations = page['/Annots']
if annotations is None:

continue

for annotation in annotations:
if annotation['/Subtype']=='/Widget':

if annotation['/T']:
key = annotation['/T'].to_unicode()
print (key)

The type of annotation['/T'] is pdfString. While some
sources use [1:-1] to extract the string from pdfString,
the to_unicode method is the proper way to extract the
string. According to the PDF 1.7 specification § 12.5.6.19,
all fillable forms use widget annotation. The check for
annotation['/SubType'] filters the annotations to only
widget annotations.

To set the value value, a PDFString needs to be created
by encoding value with the encode method. The encoded
PDFString is then used to update the annotation as shown
in the following code snippet.
annotation.update(PdfDict(V=PdfString.encode(value)))
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This converts value into a PdfString and updates the
annotation, creating a value for annotation['/V'].

In addition, at the top level of the PdfReader object pdf, the
NeedAppearances property in the interactive form dictionary,
AcroForm (See § 12.7.2) needs to be set, without this, the fields
are updated but will not necessarily display. To remedy this, the
following code snippet can be used.
pdf.Root.AcroForm.update(PdfDict(

NeedAppearances=PdfObject('true')))

Multiple Fields with Same Name

Combining the code snippets provides a simple method for filling
in text fields, except if there are multiple instances of the same
field. To refer back to the clinic example, each patient’s form
packet comprised multiple forms each with the Name field. Some
forms even had the Name appear twice such as in a demographic
section and then in a Print Name field next to a signature line.
If the code above on such a form were run, the Name field will
not show up.

Whenever the multiple fields occur with the same name, the
situation is more complicated. One way to deal with this is to
simply rename the fields to be different such as Name-1 and
Name-2, which is fine if the sole use of the form is for automated
form filling. This would require access to a form authoring tool. If
the form is also to be used for manual filling, this would require
the user to enter the Name multiple times.

When fields appear multiple times, the widget annotation does
not have the /T field but has a /Parent field. As it turns out
this /Parent contains the field name /T as well as the default
value /V. Each /Parent has one /Kids for each occurrence of
the field. To modify the code to handle repeated occurrences of a
field, the following lines can be inserted:
if not annotation['/T']:

annotation=annotation['/Parent']

These lines allow the inspection and modifications of annotations
that appear more than once. With this modification, the result of
the inspection code yields:
pdf = pdfrw.PdfReader(file_path)
for page in pdf.pages:

annotations = page['/Annots']
if annotations is None:

continue

for annotation in annotations:
if annotation['/Subtype']=='/Widget':

if not annotation['/T']:
annotation=annotation['/Parent']

if annotation['/T']:
key = annotation['/T'].to_unicode()
print (key)

With this code in the above example, Name would be printed
multiple times, once for each instance, but each instance points
to the same /Parent. With this modification, the form filler
actually fills the /Parent value multiple times, but this has no
impact since it is overwriting the default value with the same value.

Checkboxes

In accordance to §12.7.4.2.3, the checkbox state can be set as
follows:
def checkbox(annotation, value):

if value:
val_str = BasePdfName('/Yes')

else:
val_str = BasePdfName('/Off')

annotation.update(PdfDict(V=val_str))

This could work if the export value of the checkbox is Yes, which
is the default, but not when the export value is something else. The
easiest solution is to edit the form to ensure that the export value of
the checkbox is Yes and the default state of the box is unchecked.
The recommendation in the specification is that it be set to Yes.
In the event tools to make this change are not available, the /V and
/AS fields should be set to the export value not Yes. The export
value can be inspected by examining the appearance dictionary
/AP and specifically at the /N field. Each annotation has up to
three appearances in its appearance dictionary: /N, /R and /D,
standing for normal, rollover, and down (§12.5.5). The latter two
have to do with appearance in interacting with the mouse. The
normal appearance has to do with how the form is printed.

There may be circumstances where the form has checkboxes
whose default state is checked. In that case, in order to uncheck a
box, the best practice is to delete the /V as well as the /AS field
from the dictionary.

According to the PDF specification for checkboxes, the ap-
pearance stream /AS should be set to the same value as /V.
Failure to do so may mean that the checkboxes do not appear.

More Complex Forms

For the purpose of the vaccine clinic application, the filling of text
fields and checkboxes were all that were needed. However, for
completeness, other form field types were studied and solutions
are given below.

Radio Buttons

Radio buttons are by far the most complex of the form entry types.
Each widget links to /Kids which represent the other buttons in
the radio group. Each widget in a radio group will link to the same
‘kids’. Much like the ‘parents’ for the repeated forms fields with
the same name, each kid need only be updated once, but the same
update can be used multiple times if it simplifies the code.

In a nutshell, the value /V of each widget in a radio group
needs to be set to the export value of the button selected. In each
kid, the appearance stream /AS should be set to /Off except
for the kid corresponding to the export value. In order to identify
the kid with its corresponding export value, the /N field of the
appearance dictionary /AP needs to be examined just as was done
with the checkboxes.

The resulting code could look like the following:

def radio_button(annotation, value):
for each in annotation['/Kids']:

# determine the export value of each kid
keys = each['/AP']['/N'].keys()
keys.remove('/Off')
export = keys[0]

if f'/{value}' == export:
val_str = BasePdfName(f'/{value}')

else:
val_str = BasePdfName(f'/Off')

each.update(PdfDict(AS=val_str))

annotation.update(PdfDict(
V=BasePdfName(f'/{value}')))
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Combo Boxes and Lists

Both combo boxes and lists are forms of the form type choice.
The combo boxes resemble drop-down menus and lists are similar
to list pickers in HTML. Functionally, they are very similar in
form filling. The value /V and appearance stream /AS need to
be set to their exported values. The /Op field yields a list of lists
associating the exported value with the value that appears in the
widget.

To set the combo box, the value needs to be set to the export
value.
def combobox(annotation, value):

export=None
for each in annotation['/Opt']:

if each[1].to_unicode()==value:
export = each[0].to_unicode()

if export is None:
err = f"Export Value: ""{value} Not Found"
raise KeyError(err)

pdfstr = PdfString.encode(export)
annotation.update(PdfDict(V=pdfstr, AS=pdfstr))

Lists are structurally very similar. The list of exported values can
be found in the /Opt field. The main difference is that lists
based on their configuration can take multiple values. Multiple
values can be set with PDFrw by setting /V and /AS to a list of
PdfStrings. The code presented here uses two separate helpers,
but because of the similarity in structure between list boxes and
combo boxes, they could be combined into one function.
def listbox(annotation, values):

pdfstrs=[]
for value in values:

export=None
for each in annotation['/Opt']:

if each[1].to_unicode()==value:
export = each[0].to_unicode()

if export is None:
err = f"Export Value: {value} Not Found"
raise KeyError(err)

pdfstrs.append(PdfString.encode(export))
annotation.update(PdfDict(V=pdfstrs, AS=pdfstrs))

Determining Form Field Types Programmatically

While PDF authoring tools or visual inspection can identify each
form’s type, the type can be determined programmatically as well.
It is important to understand that fillable forms fall into four form
types, button (push button, checkboxes and radio buttons), text,
choice (combo box and list box), and signature. They correspond
to following values of the /FT form type field of a given anno-
tation, /Btn, /Tx, /Ch and /Sig, respectively. Since signature
filling is not supported and the push button is a widget which can
cause an action but is not fillable, those corresponding types are
omitted from consideration.

To distinguish the types of buttons and choices, the form
flags /Ff field is examined. For radio buttons, the 16th bit
is set. For combo box the 18th bit is set. Please note that
annotation['/Ff'] returns a PdfObject when returned
and must be coerced into an int for bit testing.
def field_type(annotation):

ft = annotation['/FT']
ff = annotation['/Ff']

if ft == '/Tx':
return 'text'

if ft == '/Ch':
if ff and int(ff) & 1 << 17: # test 18th bit

return 'combo'

else:
return 'list'

if ft == '/Btn':
if ff and int(ff) & 1 << 15: # test 16th bit

return 'radio'
else:

return 'checkbox'

For completeness, the following text_form filler helper is
included.
def text_form(annotation, value):

pdfstr = PdfString.encode(value)
annotation.update(PdfDict(V=pdfstr, AS=pdfstr))

This completes the building blocks to an automatic form filler.

Consolidating Multiple Filled Forms

There are two problems with consolidating multiple filled forms.
The first problem is that when two PDF files are merged, fields
with matching names are associated with each other. For instance,
if John Doe were entered in one form’s name field and Jane Doe in
the second. After combining the two forms John Doe will override
the second form’s name field and John Doe would appear in both
forms. The second problem is that most simple command line
or programmatic methods of combining two or more PDF files
lose form data. One solution is to "flatten" each PDF file. This
is equivalent to printing the file to PDF. In effect, this bakes in
the filled form values and does not permit the editing the fields.
Going even further, one could render the PDFs as images if the
only requirement is that the combined files be printable. However,
tools like ghostscript, imagemagick, and PDFUnite don’t
do a good job of preserving form data when rendering PDF files.

Form Field Name Collisions

Combining multiple filled PDF files was an issue for the vaccine
clinic because the same form was filled out for multiple patients.
The alternative of printing hundreds of individual forms was
infeasible. To combine a batch of PDF forms, all form field names
must be different. Thankfully, the solution is quite simple, in the
process of filling out the form using the code above, rename (set)
the value of /T.
def form_filler(in_path, data, out_path, suffix):

pdf = pdfrw.PdfReader(in_path)
for page in pdf.pages:

annotations = page['/Annots']
if annotations is None:

continue

for annotation in annotations:
if annotation['/SubType'] == '/Widget':

key = annotation['/T'].to_unicode()
if key in data:

pdfstr = PdfString.encode(data[key])
new_key = key + suffix
annotation.update(

PdfDict(V=pdfstr, T=new_key))
pdf.Root.AcroForm.update(PdfDict(

NeedAppearances=PdfObject('true')))
pdfrw.PdfWriter().write(out_path, pdf)

Only a unique suffix needs to be supplied to each form. The suffix
can be as simple as a sequential number.

Combining the Files

Solutions for combining PDF files with PDFrw can be found on
the Internet. The following recipe is typical:
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writer = PdfWriter()
for fname in files:

r = PdfReader(fname)
writer.addpages(r.pages)

writer.write("output.pdf")

While the form data still exists in the output file, the rendering
information is lost and won’t show when displayed or printed.
The problem comes from the fact that the written PDF does
not have an interactive form dictionary (see §12.7.2 of the PDF
1.7 specification). In particular, the interactive forms dictionary
contains the boolean NeedAppearances which needs to be
set for fields to be shown. If the forms being combined have
different interactive form dictionaries, they need to be merged.
In this application where the source forms are identical among the
various copies, any AcroForm dictionary can be used.

After obtaining the dictionary from pdf.Root.AcroForm
(assuming the PdfReader object is stored in pdf), it is not clear
how to add it to the PdfWriter object. The clue comes from a
simple recipe for copying a pdf file.
pdf = PdfReader(in_file)
PdfWriter().write(out_file, pdf)

Examination of the underlying source code shows the sec-
ond parameter pdf to be set to the attribute trailer
of the PdfWriter object. Assuming acro_form con-
tains the desired interactive form, the interactive form dic-
tionary can be added to the output document by using
writer.trailer.Root.AcroForm = acro_form.

Conclusion

A complete functional version of this PDF form filler is open
source and can be found at WestHealth’s GitHub repository https:
//github.com/WestHealth/pdf-form-filler. This process was able to
produce large quantities of pre-populated forms for senior citizens
seeking COVID-19 vaccinations relieving one of the bottlenecks
that have plagued many other vaccine clinics.
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Using Python for Analysis and Verification of
Mixed-mode Signal Chains

Mark Thoren‡, Cristina Suteu‡∗

F

Abstract—Any application involving sensitive measurements of the physical
world starts with accurate, precise, and low-noise signal chain. Modern, highly
integrated data acquisition devices can often be directly connected to sensor
outputs, performing analog signal conditioning, digitization, and digital filtering
on a single silicon device, greatly simplifying system electronics. However, a
complete understanding of the signal chain’s noise sources and noise limiting
filters is still required to extract maximum performance from and debug these
modern devices.

Introduction

Mixed-mode signal chains are everywhere. Simply put, any system
that transforms a real-world signal to an electrical representation,
which is then digitized can be classified as a mixed-mode signal
chain. At every point along the chain the signal is degraded in
various ways that can usually be characterized either as some form
of distortion or additive noise. Once in the digital domain, the
processing of the digitized data is not perfect either, but at least it
is, for all practical purposes, immune to many of the offenders that
affect analog signals - component tolerances, temperature drift,
interference from adjacent signals or supply voltage variations.

As the industry continues to push the physical limits, one
thing that can be stated with certainty is this: there is always
room for improvement in analog and mixed signal components
for instrumentation. If an Analog to Digital Converter (ADC) or
a Digital to Analog Converter (DAC) appears on the market that
advances the state of the art in speed, noise, power, accuracy, or
price, industry will happily apply it to existing problems, then
ask for more improvement. However, in order to achieve the
best acquisition system for your application, it is fundamental
to be aware of the components’ limitations and choose these
accordingly.

This tutorial is in extension of Converter Connectivity
Tutorial1 and associated code and simulation files2. A repre-
sentative signal chain will be analyzed and tested, focusing on
noise. Individual signal chain elements will first be modelled with
the help of Python / SciPy3 and LTspice4, then verified using
Python to drive low-cost instrumentation and evaluation boards
via the Linux Industrial Input Output (IIO) framework. While
primarily for the education space, these instruments have adequate

‡ Analog Devices, Inc.
* Corresponding author: cristina.suteu@analog.com

Copyright © 2021 Mark Thoren et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Fig. 1: In a mixed-mode signal chain, some physical phenomenon
such as temperature, light intensity, pH, force, or torque is converted
to an electrical parameter (resistance, current, or directly to voltage).
This signal is then amplified, low-pass filtered, and digitized by an
ADC, which may include internal digital filtering.

performance for many industrial applications. Furthermore, these
techniques can easily be adapted to other bench-top instruments.

A Generic Mixed Signal Chain

Figure 1 shows a generic signal chain typical of a precision
instrumentation application, with a physical input and digital
output. There are numerous background references on analog to
digital converters available5, and most readers will have a sense
that an analog to digital converter samples an input signal at some
point in time (or measures the average of a signal over some
observation time), and produces a numerical representation of that
signal - most often as a binary number with some value between
zero and 2N−1 where N is the number of bits in the output word.

ADC Noise Sources

While there are several noise sources in Figure 1, one that is often
either ignored, or over-emphasized, is the number of bits in the
ADC’s digital output. Historically, an ADC’s "number of bits" was
considered the ultimate figure of merit, where a 16-bit converter
was 4 times better than a 14-bit converter6. But in the case of
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Fig. 2: At a PGA gain of one (left), 13 codes are represented in the
AD7124 output noise, and the standard deviation is about 2.5 codes.
While quantization is visible, thermal noise is more significant. At a
PGA gain of 128 (right), 187 codes are represented, quantization
noise is insignificant. Truncating one or two least-significant bits
(doubling or quadrupling quantization noise) would not result in a
loss of information.

modern, high-resolution converters, the "number of bits" can be
safely ignored. Note a general principle of signal chain design:

"The input noise of one stage should be somewhat lower than
the output noise of the preceding stage."

As with any signal chain, one noise source within an ADC
often dominates. Thus, if a noiseless signal applied to an N-bit
ADC:

• results in either a single output code, or two adjacent
output codes, then quantization noise dominates. The
Signal to Noise Ratio can be no greater than (6.02 N +
1.76) dB7.

• results in a gaussian distribution of "many" output codes,
then thermal noise source dominates. The Signal to
Noise Ratio is no greater than:
20log(Vin(p− p)/(σ/

√
8)), where:

Vin(p− p) is the full-scale input signal
σ is the standard deviation of the output codes in units of
voltage.

Very high resolution converters, such as the AD7124-8 that
will be used as an example shortly, are rarely limited by quantiza-
tion noise; thermal noise dominates in all of the gain / bandwidth
settings, and a shorted input will always produce a fairly Gaussian
distribution of output codes. Figure 2 , from Ref.8 shows the
grounded-input histogram of the AD712482, 24-bit sigma-delta
ADC, with the internal Programmable Gain Amplifier (PGA) set
to 1 and 128, respectively.

Modeling and Measuring ADC noise

Modeling the noise of a thermal-noise limited ADC’s is straight-
forward. If the noise is "well behaved" (Gaussian, as it is
in Figure 2) and constant across the ADC’s input span, the
ADC’s time-domain noise can be modelled using NumPy’s9

random.normal function , then verified by taking the standard
deviation, as seen in the Model Gaussian Noise code block.
# Model Gaussian Noise
# See AD7124 datasheet for noise levels per mode
import numpy as np
offset = 0.000
rmsnoise = 0.42e-6 # AD7124 noise
noise = np.random.normal(loc=offset, scale=rmsnoise,

size=1024)
measured_noise = np.std(noise)
print("Measured Noise: ", measured_noise)

Figure 3 shows the general setup for testing ADC noise and filter
response1.

Fig. 3: The ADALM2000 is a multifunction USB test instrument with
two general-purpose analog inputs and two outputs, with sample rates
of 100Msps and 150Msps, respectively. It can be used as a simple
signal source for measuring ADC noise bandwidth and filter response.
A Raspberry Pi 4 running a kernel with AD7124 device driver support
acts as a simple bridge between the AD7124 and a host computer.

The AD7124 device driver falls under the industry-standard
IIO framework, which has a well-established software API (in-
cluding Python bindings). Application code can run locally (on
the Raspberry Pi) or on a remote machine via network, serial,
or USB connection. Furthermore, the pyadi-iio10 abstraction layer
takes care of much of the boilerplate setup required for interfacing
with IIO devices, greatly simplifying the software interface. The
AD7124-8 Basic Data Capture code block illustrates how to open
a connection to the AD7124-8, configure it, capture a block of
data, then close the connection.

# AD7124-8 Basic Data Capture

import adi # pyadi-iio library
# Connect to AD7124-8 via Raspberry Pi
my_ad7124 = adi.ad7124(uri="ip:analog.local")
ad_channel = 0 # Set channel
# Set PGA gain
my_ad7124.channel[ad_channel].scale = 0.0002983
my_ad7124.sample_rate = 128 # Set sample rate
# Read a single "raw" value
v0 = my_ad7124.channel[ad_channel].raw
# Buffered data capture
my_ad7124.rx_output_type = "SI" # Report in volts
# Only one buffered channel supported for now
my_ad7124.rx_enabled_channels = [ad_channel]
my_ad7124.rx_buffer_size = 1024
my_ad7124._ctx.set_timeout(100000) # Slow
data = my_ad7124.rx() # Fetch buffer of samples

print("A single raw reading: ", v0)
print("A few buffered readings: ", data[:16])
del my_ad7124 # Clean up

With communication to the AD7124-8 established, an extremely
simple, yet extremely useful test can be performed: measuring
input noise directly. Simply shorting the input to an ADC and
looking at the resulting distribution of ADC codes is a valuable
step in characterizing a signal chain design. The AD7124 input
mode is set to unipolar, so only positive values are valid; the test
circuit shown in Figure 4 ensures that the input is always positive.

Figure 5 shows two, 1024-point measurements. The lower
(blue) trace was taken immediately after initially applying power.

The "wandering" can be due to a number of factors - the
internal reference warming up, the external resistors warming up
(and hence drifting), or parasitic thermocouples, where slightly
dissimilar metals will produce a voltage in the presence of
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Fig. 4: A resistor divider is used to generate a 1.25mV bias across the
AD7124-8’s input, overcoming the 15µV maximum offset voltage and
ensuring that ADC readings are always positive.

Fig. 5: Two AD7124-8 data captures are taken with a 1.25mV bias
applied. The lower trace shows initial drift after power-up as the
circuit warms up. The upper trace shows stable readings after a half-
hour warmup time.

thermal gradients. Measured noise after warmup is approximately
565nVRMS - on par with the datasheet noise specification.

Expressing ADC Noise as a Density

The general principle of analog signal chain design (that the
input noise of one stage should be somewhat lower than the
output noise of the preceding stage) is an easy calculation if
all elements include noise density specifications, as most well-
specified sensors, and nearly all amplifiers do.

Unlike amplifiers and sensors, ADC datasheets typically do
not include a noise density specification. Expressing the ADC’s
noise as a density allows it to be directly compared to the noise
at the output of the last element in the analog signal chain, which
may be an ADC driver stage, a gain stage, or the sensor itself.

An ADC’s internal noise will necessarily appear somewhere
between DC and half the sample rate. Ideally this noise is flat, or
at least predictably shaped. In fact, since the ADC’s total noise
is spread out across a known bandwidth, it can be converted to
a noise density that can be directly compared to other elements
in the signal chain. Precision converters typically have total noise
given directly, in volts RMS: eRMS = σ , where eRMS is the total
RMS noise, calculated from the standard deviation of a grounded-
input histogram of codes.

Higher speed converters that are tested and characterized with
sinusoidal signals will typically have a signal to noise (SNR)
specification. If provided, the total RMS noise can be calculated
as:

eRMS =
ADCp− p
√

8∗10
SNR
20

Where ADCp− p is the peak-to-peak input range of the ADC.

Fig. 6: An ADALM2000 waveform generator is used to generate a
range of sinewave frequencies, allowing the AD7124-8’s filer response
to be measured directly. While the script sets the sinewave amplitude
and offset to a safe level, a 1k resistor protects the AD7124-8 in the
event of a malfunction. (The ADALM2000 output voltage range is -5V
to +5V, while the AD7124-8 absolute maximum limits are -0.3V and
+3.6V.)

The equivalent noise density can then be calculated:

en =
eRMS√

f s
2

Where f s is the ADC sample rate in samples/second.
The total noise from Figure 5 after warmup was 565nV at a

data rate of 128sps. The noise density is approximately:

565nV/
√

64Hz = 70nV/
√

Hz

The ADC can now be directly included in the signal chain noise
analysis, and leads to a guideline for optimizing the signal chain’s
gain:

Increase the gain just to the point where the noise density of
the last stage before the ADC is a bit higher than that of the ADC,
then stop. Don’t bother increasing the signal chain gain any more
- you’re just amplifying noise and decreasing the allowable range
of inputs.

This runs counter to the conventional wisdom of "filling"
the ADC’s input range. There may be benefit to using more
of an ADC’s input range if there are steps or discontinuities
in the ADC’s transfer function, but for "well behaved" ADCs
(most sigma delta ADCs and modern, high-resolution Successive
Approximation Register (SAR) ADCs), optimizing by noise is the
preferred approach.

Measuring ADC filter response

The AD7124-8 is a sigma-delta ADC, in which a modulator pro-
duces a high sample rate, but noisy (low resolution), representation
of the analog input. This noisy data is then filtered by an internal
digital filter, producing a lower rate, lower noise output. The type
of filter varies from ADC to ADC, depending on the intended
end application. The AD7124-8 is general-purpose, targeted at
precision applications. As such, the digital filter response and
output data rate are highly configurable. While the filter response
is well-defined in the datasheet, there are occasions when one may
want to measure the impact of the filter on a given signal. The
AD7124-8 Filter Response code block measures the filter response
by applying sinewaves to the ADC input and analyzing the output.
This method can be easily adapted to measuring other waveforms
- wavelets, simulated physical events. The ADALM2000 is con-
nected to the AD7124-8 circuit as shown in Figure 6.
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Fig. 7: A measurement of the AD7124 filter response in 64sps, SINC4
mode shows the filter’s passband, first lobe, and first two nulls.

The AD7124-8 Filter Response code block will set the
ADALM2000’s waveform generator to generate a sinewave at
10Hz, capture 1024 data points, calculate the RMS value,
then append the result to a list. (The send_sinewave and
capture_data are utility functions that send a sinewave to
the ADALM2000 and receive a block of data from the AD7124,
respectively2.) It will then step through frequencies up to 250Hz,
then plot the result as shown in Figure 7.

# AD7124-8 Filter Response
import numpy as np
import matplotlib.pyplot as plt
resp = []
freqs = np.linspace(1, 121, 100, endpoint=True)
for freq in freqs:

print("testing ", freq, " Hz")
send_sinewave(my_siggen, freq) # Set frequency
time.sleep(5.0) # Let settle
data = capture_data(my_ad7124) # Grab data
resp.append(np.std(data)) # Take RMS value
if plt_time_domain:

plt.plot(data)
plt.show()

capture_data(my_ad7124) # Flush
# Plot log magnitude of response.
response_dB = 20.0 * np.log10(resp/0.5*np.sqrt(2))
print("\n Response [dB] \n")
print(response_dB)
plt.figure(2)
plt.plot(freqs, response_dB)
plt.title('AD7124 filter response')
plt.ylabel('attenuation')
plt.xlabel("frequency")
plt.show()

While measuring high attenuation values requires a quieter and
lower distortion signal generator, the response of the first few
major "lobes" is apparent with this setup.

Modeling ADC filters

The ability to measure an ADC’s filter response is a practical tool
for bench verification. However, in order to fully simulate a signal
chain, a model of the filter is needed. This isn’t explicitly provided
for many converters (including the AD7124-8), but a workable
model can be reverse engineered from the information provided in
the datasheet.

Note that what follows is only a model of the AD7124-8 filters,
it is not a bit-accurate representation. Refer to the AD7124-8
datasheet for all guaranteed parameters.

The AD7124’s filters all have frequency responses that are
combinations of various SINC functions (with a frequency re-
sponse proportional to (sin f/ f )N ) . These filters are fairly easy
to construct, and to reverse-engineer when nulls are known.

Fig. 8: The AD7124-8 10Hz notch filter has a SINC1 magnitude
response; the filter’s impulse response is simply an unweighted (rect-
angular) average of samples over a 100ms time interval.

Fig. 9: The AD7124-8 50/60Hz rejection filter response is the combi-
nation of a 50Hz, SINC3 filter and a 60Hz, SINC1 filter.

Figure 8 from Ref.8 shows the AD7124-8’s 10Hz notch filters.
Various combinations of higher-order SINC3 and SINC4 filters
are also available.

The simultaneous 50Hz/60Hz rejection filter shown in Figure
9, from Ref.8 is a nontrivial example. This filter is intended to
strongly reject noise from A.C. power lines, which is either 50Hz
(as in Europe) or 60Hz (as in the United States).

Higher order SINC filters can be generated by convolving
SINC1 filters. For example, convolving two SINC1 filters (with
a rectangular impulse response in time) will result in a triangular
impulse response, and a corresponding SINC2 frequency response.
The AD7124 Filters code block generates a SINC3 filter with a
null at 50Hz, then adds a fourth filter with a null at 60Hz.
# AD7124 Filters
import numpy as np
f0 = 19200
# Calculate SINC1 oversample ratios for 50, 60Hz
osr50 = int(f0/50) # 384
osr60 = int(f0/60) # 320

# Create "boxcar" SINC1 filters
sinc1_50 = np.ones(osr50)
sinc1_60 = np.ones(osr60)

# Calculate higher order filters
sinc2_50 = np.convolve(sinc1_50, sinc1_50)
sinc3_50 = np.convolve(sinc2_50, sinc1_50)
sinc4_50 = np.convolve(sinc2_50, sinc2_50)

# Here's the SINC4-ish filter from datasheet
# Figure 91, with three zeros at 50Hz, one at 60Hz.
filt_50_60_rej = np.convolve(sinc3_50, sinc1_60)

The resulting impulse (time domain) shapes of the filters are
shown in Figure 10. Filter coefficient (tap) values are normalized
for unity (0dB) gain at zero frequency.

And finally, the frequency response can be calculated using
NumPy’s freqz function, as seen in the AD7124 Frequency Re-
sponse code block. The response is shown in Figure 11.
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Fig. 10: Repeatedly convolving rectangular impulse responses pro-
duces triangular, then "Gaussian-like" impulse responses.

Fig. 11: Convolving a SINC3, 50Hz notch filter with a SINC1, 60Hz
filter produces a composite response that strongly rejects both 50Hz
and 60Hz.

# AD7124 Frequency Response
import numpy as np
from scipy import signal
f0 = 19200
w, h = signal.freqz(filt_50_60_rej, 1, worN=16385,

whole = False, fs = f0)
freqs = w * f0/(2.0*np.pi)
hmax = abs(max(h)) # Normalize to unity
response_dB = 20.0 * np.log10(abs(h)/hmax)

Resistance is Futile: A Fundamental Sensor Limitation

All sensors, no matter how perfect, have some maximum input
value (and a corresponding maximum output - which may be
a voltage, current, resistance, or even dial position) and a finite
noise floor - "wiggles" at the output that exist even if the input is
perfectly still. At some point, a sensor with an electrical output
will include an element with a finite resistance (or more generally,
impedance) represented by Rsensor in Figure 12. This represents
one fundamental noise limit that cannot be improved upon - this
resistance will produce, at a minimum:

en(RMS) =
√

4∗K ∗T ∗Rsensor ∗ (F2−F1) Volts of noise,
where:

en(RMS) is the total noise
K is Boltzmann’s constant (1.38e-23 J/K)
T is the resistor’s absolute temperature (Kelvin)
F2 and F1 are the upper and lower limits of the frequency band

of interest.
Normalizing the bandwidth to 1Hz expresses the noise density,

in V√
Hz

.
A sensor’s datasheet may specify a low output impedance

(often close to zero Ohms), but this is likely a buffer stage - which
eases interfacing to downstream circuits, but does not eliminate
noise due to impedances earlier in the signal chain.

There are numerous other sensor limitations - mechanical,
chemical, optical, each with their own theoretical limits and whose

Fig. 12: Sensors often include an internal buffer to simplify connection
to downstream circuits. While the output impedance is low (often
approaching zero Ohms), noise from high impedance sensing elements
is buffered along with the signal.

Fig. 13: A 1M resistor serves as a predictable noise source, which is
then amplified to a usable level by a low-noise operational amplifier.

effects can be modelled and compensated for later. But noise is the
one imperfection that cannot.

A Laboratory Noise Source

A calibrated noise generator functions as a "world’s worst sensor",
that emulates the noise of a sensor without actually sensing
anything. Such a generator allows a signal chain’s response to
noise to be measured directly. The circuit shown in Figure 13 uses
a 1M resistor as a 127nV/

√
Hz (at room temperature) noise source

with "okay accuracy" and bandwidth. While the accuracy is only
"okay", this method has advantages:

• It is based on first principles, so in a sense can act as an
uncalibrated standard.

• It is truly random, with no repeating patterns.

The OP482 is an ultralow bias current amplifier with corre-
spondingly low current noise, and a voltage noise low enough that
the noise due to a 1M input impedance is dominant. Configured
with a gain of 2121, the output noise is 269 µV/

√
Hz.

The noise source was verified with an ADALM2000 USB
instrument, using the Scopy11 GUI’s spectrum analyzer, shown
in Figure 14.

Under the analyzer settings shown, the ADALM2000 noise
floor is 40µV/

√
Hz, well below the 269 µV/

√
Hz of the noise

source.
While Scopy is useful for single, visual measurements, the

functionality can be replicated easily with the SciPy periodogram
function. Raw data is collected from an ADALM2000 using the
libm2k12 and Python bindings, minimally processed to remove
DC content (that would otherwise "leak" into low frequency bins),
and scaled to nV/

√
Hz. This method, shown in the Noise Source

Measurement code block can be applied to any data acquisition
module, so long as the sample rate is fixed and known, and data
can be formatted as a vector of voltages.
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Fig. 14: The output of the resistor-based laboratory noise generator
has a usable bandwidth of approximately 10kHz.

Fig. 15: An LTspice simulation of the laboratory noise source shows
approximately the same usable bandwidth as the measured circuit.

# Noise Source Measurement
import numpy as np
navgs = 32 # Avg. 32 runs to smooth out data
ns = 2**16
vsd = np.zeros(ns//2+1) # /2 for onesided
for i in range(navgs):
ch1 = np.asarray(data[0]) # Extract ch 1 data
ch1 -= np.average(ch1) # Remove DC
fs, psd = periodogram(ch1, 1000000,

window="blackman",
return_onesided=True)

vsd += np.sqrt(psd)
vsd /= navgs

We are now armed with a known noise source and a method to
measure said source, both of which can be used to validate signal
chains.

Modeling Signal Chains in LTspice

LTspice is a freely available, general-purpose analog circuit simu-
lator that can be applied to signal chain design. It can perform tran-
sient analysis, frequency-domain analysis (AC sweep), and noise
analysis, the results of which can be exported and incorporated
into mixed signal models using Python.

Figure 15 shows a noise simulation of the analog noise gen-
erator, with close agreement to experimental results. An op-amp
with similar properties to the OP482 was used for the simulation.

Figure 15 circuit’s noise is fairly trivial to model, given that
it is constant for some bandwidth (in which a signal of interest
would lie), above which it rolls off with approximately a first
order lowpass response. Where this technique comes in handy is
modeling non-flat noise floors, either due to higher order analog
filtering, or active elements themselves. The classic example is the

Fig. 16: The LTC2057 noise density is flat at low frequencies, with a
peak at 50kHz (half of the internal oscillator’s 100kHz frequency).

Fig. 17: LTspice is used to simulate the output nosie of an LTC2057
in a noninverting gain of +10 configuration. LTspice provides simple
tools for integrating noise, but results of any simulation can be
exported and imported into Python for further analysis.

"noise mountain" that often exists in autozero amplifiers such as
the LTC2057, as seen in Figure 16 , from Ref.13.

Importing LTspice noise data for frequency domain analysis in
Python is a matter of setting up the simulation command such that
exact frequencies in the analysis vector are simulated. In this case,
the noise simulation is set up for a simulation with a maximum
frequency of 2.048MHz and resolution of 62.5Hz , corresponding
to the first Nyquist zone at a sample rate of 4.096 MSPS. Figure
17 shows the simulation of the LT2057 in a non-inverting gain of
10, simulation output, and exported data format.

In order to determine the impact of a given band of noise
on a signal (signal to noise ratio) the noise is root-sum-square
integrated across the bandwidth of interest. In LTspice, plotted
parameters can be integrated by setting the plot limits, then
control-clicking the parameter label. The total noise over the entire
2.048MHz simulation is 32µVRMS. A function to implement this
operation in Python is shown in the Integrate Power Spectral
Density code block.
def integrate_psd(psd, bw):

import numpy as np
int_psd_sqd = np.zeros(len(psd))
integrated_psd = np.zeros(len(psd))
int_psd_sqd[0] = psd[0]**2.0
for i in range(1, len(psd)):

int_psd_sqd[i] += int_psd_sqd[i-1]\
+ psd[i-1] ** 2

integrated_psd[i] += int_psd_sqd[i]**0.5
integrated_psd *= bw**0.5
return integrated_psd
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Reading in the exported noise data and passing to the integrate_psd
function results in a total noise of 3.21951e-05, very close to
LTspice’s calculation.

Generating Test Noise

Expanding on the functionality of the purely analog noise genera-
tor above, it is very useful to be able to produce not only flat, but
arbitrary noise profiles - flat "bands" of noise, "pink noise", "noise
mountains" emulating peaking in some amplifiers. The Generate
Time-series From Half-spectrum code block starts with a desired
noise spectral density (which can be generated manually, or taken
from an LTspice simulation), the sample rate of the time series,
and produces a time series of voltage values that can be sent to a
DAC.
def time_points_from_freq(freq, fs=1, density=False):

import numpy as np
N = len(freq)
rnd_ph_pos = (np.ones(N-1, dtype=np.complex)*

np.exp(1j*np.random.uniform
(0.0, 2.0*np.pi, N-1)))

rnd_ph_neg = np.flip(np.conjugate(rnd_ph_pos))
rnd_ph_full = np.concatenate(([1], rnd_ph_pos, [1],

rnd_ph_neg))
r_s_full = np.concatenate((freq, np.roll

(np.flip(freq), 1)))
r_spectrum_rnd_ph = r_s_full * rnd_ph_full
r_time_full = np.fft.ifft(r_spectrum_rnd_ph)

if (density is True):
# Note that this N is "predivided" by 2
r_time_full *= N*np.sqrt(fs/(N))

return(np.real(r_time_full))

This function can be verified by controlling one ADALM2000
through a libm2k script, and verifying the noise profile with a
second ADALM2000 and the spectrum analyzer in the Scopy
GUI. The Push Noise Time-series to ADALM2000 code snippet
generates four "bands" of 1mV/

√
Hz noise on the ADALM2000

W2 output (with a sinewave on W1, for double-checking function-
ality.)
# Push Noise Time-series to ADALM2000
import numpy as np
n = 8192
# create some "bands" of 1mV/rootHz noise
bands = np.concatenate((np.ones(n//16),

np.zeros(n//16),
np.ones(n//16),
np.zeros(n//16),
np.ones(n//16),
np.zeros(n//16),
np.ones(n//16),
np.zeros(n//16)))*1000e-6

bands[0] = 0.0 # Set DC content to zero
buffer2 = time_points_from_freq(bands, fs=75000,

density=True)
buffer = [buffer1, buffer2]
aout.setCyclic(True)
aout.push(buffer)

Figure 18 shows four bands of 1mV/
√

Hz noise being generated
by one ADALM2000. The input vector is 8192 points long at a
sample rate of 75ksps, for a bandwidth of 9.1Hz per point. Each
"band" is 512 points, or 4687Hz wide. The rolloff above ~20kHz
is the SINC rolloff of the DAC. If the DAC is capable of a higher
sample rate, the time series data can be upsampled and filtered by
an interpolating filter14.

This noise generator can be used in conjunction with the pure
analog generator for verifying the rejection properties of a signal
chain.

Fig. 18: The Scopy spectrum analyzer is used to verify the arbitrary
noise generator. Deep notches between noise bands expose the an-
alyzer’s noise floor, showing that an arbitrary noise profile can be
accurately generated.

Modeling and verifying ADC Noise Bandwidth

External noise sources and spurious tones above Fs/2 will fold
back (alias) into the DC-Fs/2 region - and a converter may be
sensitive to noise far beyond Fs/2 - the AD872A mentioned above
has a sample rate of 10Msps, but an input bandwidth of 35MHz.
While performance may not be the best at such high frequencies,
this converter will happily digitize 7 Nyquist zones of noise
and fold them back on top of your signal. This illustrates the
importance of antialias filters for wideband ADCs. But converters
for precision applications, which are typically sigma-delta (like
the AD7124-8) or oversampling SAR architectures, in which the
input bandwidth is limited by design.

It is often useful to think of the "equivalent noise bandwidth"
(ENBW) of a filter, including an ADC’s built-in filter. The ENBW
is the bandwidth of a flat passband "brick wall" filter that lets
through the same amount of noise as the non-flat filter. A common
example is the ENBW of a first-order R-C filter, which is:

ENBW = f c∗π/2

Where f c is the cutoff frequency of the filter. If broadband noise,
from "DC to daylight", is applied to the inputs of both a 1KHz,
first-order lowpass filter and 1.57kHz brickwall lowpass filter, the
total noise power at the outputs will be the same.

The ENBW Example code block accepts a filter magnitude
response, and returns the effective noise bandwidth. A single-pole
filter’s magnitude response is calculated, and used to verify the
ENBW = f c∗ pi/2 relationship.
import numpy as np
def arb_enbw(fresp, bw):

int_frsp_sqd = np.zeros(len(fresp))
int_frsp_sqd[0] = fresp[0]**2.0
for i in range(1, len(fresp)):

int_frsp_sqd[i] += (int_frsp_sqd[i-1] +
fresp[i-1] ** 2)

return int_frsp_sqd[len(int_frsp_sqd)-1]*bw

fc = 1 # Hz
bw_per_point = 200/65536 # Hz/record length
frst_ord = np.ndarray(65536, dtype=float)
# Magnitude = 1/SQRT(1 + (f/fc)^2))
for i in range(65536):

frst_ord[i] = (1.0 /
(1.0 +
(i*bw_per_point)**2.0)**0.5)

fo_enbw = arb_enbw(frst_ord, bw_per_point)
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Fig. 19: A 1mV/
√

Hz noise band is driven into the AD7124-8 input. A
qualitative reduction in noise is apparent; 426mV peak-to-peak noise
at the ADC input results in approximately 25mV peak-to-peak noise
at the ADC output. The 5.1mVRMS total output noise is close to the
predicted 5.69mVRMS, given the 1mV/

√
Hz noise density and 31Hz

ENBW of the ADC’s filter.

This function can be used to calculate the ENBW of an arbitrary
filter response, including the AD7124’s internal filters. The fre-
quency response of the AD7124 SINC4 filter, 128sps sample rate
can be calculated similar to the previous 50/60Hz rejection filter
example. The arb_anbw function returns a ENBW of about 31Hz.

The ADALM2000 noise generator can be used to validate
this result. Setting the test noise generator to generate a band of
1000µV/

√
Hz should result in a total noise of about 5.69mVRMS,

and measured results are approximately 5.1mVRMS total noise.
The oscilloscope capture of the ADC input signal is plotted next
to the ADC output data, in Figure 19. Note the measured peak-to-
peak noise of 426mV, while the ADC peak-to-peak noise is about
26mV. While such a high noise level is (hopefully) unrealistic in
an actual precision signal chain, this exercise demonstrates that
the ADC’s internal filter can be relied on to act as the primary
bandwidth limiting, and hence noise reducing, element in a signal
chain.

Conclusion

Noise is a limiting factor in any signal chain; once noise con-
taminates a signal, information is lost. Before building a signal
acquisition system, the application requirements must be under-
stood, components selected accordingly, and the prototype circuit
tested. This tutorial offers a collection of methods that accurately
model and measure sensor and signal chain noise that can be used
during the design and testing process.

The techniques detailed in this tutorial are, individually,
nothing new. However, in order to achieve an adequate system,
it becomes valuable to have a collection of fundamental, easy

to implement, and low-cost techniques to enable signal chain
modeling and verification. Even though industry continues to offer
parts with increased performance, there will always be a certain
limitation that one must be aware of. These techniques can not
only be used to validate parts before building a mixed-mode signal
chain, but also to identify design faults in an existing one.
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Modernizing computing by structural biologists with
Jupyter and Colab

Blaine H. M. Mooers‡§¶‖∗

F

Abstract—Protein crystallography produces most of the protein structures used
in structure-based drug design. The process of protein structure determination is
computationally intensive and error-prone because many software packages are
involved. Here, we attempt to support the reproducibility of this computational
work by using Jupyter notebooks to document the decisions made, the code,
and selected output. We have made libraries of code templates to ease running
the crystallography packages in Jupyter notebooks when editing them with
JupyterLab or Colab. Our combined use of GitHub, snippet libraries, Jupyter
notebooks, JupyterLab, and Colab will help modernize the computing done by
structural biologists.

Index Terms—literate programming, reproducible research, scientific rigor,
electronic notebooks, JupyterLab, Jupyter notebooks, computational structural
biology, computational crystallography, biomolecular crystallography, protein
crystallography, biomolecular structure, biomedical research, protein*drug inter-
actions, RNA*drug interactions, molecular graphics, molecular visualization, sci-
entific communication, molecular artwork, computational molecular biophysics

Introduction

Structural biologists study the molecular structures of proteins
and nucleic acids to understand how they function in biology
and medicine. The underlying premise of the field is that molec-
ular function follows molecular form. More precise aliases for
these scientists include molecular structural biologists, structural
biochemists, and molecular biophysicists. Some of the methods
used to determine the near-atomic resolution molecular struc-
tures include molecular modeling, X-ray crystallography, nuclear
magnetic resonance (NMR), and cryo electron microscopy (cryo-
EM). These scientists often use the molecular structures of these
large biomolecules to design small-molecule drugs for improved
therapies. As a result, structural biology plays a vital role in drug
discovery and development, and many structural biologists work
in the pharmaceutical industry. Those in academia in the United
States generally have their work funded by the National Institutes
of Health, the National Science Foundation, the Department of
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Defense, the Department of Energy, or one of several disease
oriented medical foundations.

Structural biology is at the intersection of biochemistry, molec-
ular biology, molecular biophysics, and computer science. Struc-
tural biologists have diverse backgrounds and varying levels of
experience with computer programming ranging from minimal to
very advanced. Several decades ago, the barriers to entry into the
field included expertise with running command-line-driven pro-
grams and the ability to write programs to meet data analysis needs
not met by existing software packages. However, these barriers
have been lowered over the past two decades by the widespread
availability of GUI-driven software that is often free for academics
(e.g., CCP4 [Winn11], Phenix [Lieb19], CNS [Brun98], ATSAS
[Mana21], BioXTAS [Hopk17], CCPEM [Burn17]). As a result,
biologists, who often have little formal training in computing, have
become the largest component of the field.

Computing is involved in the six or more steps from structural
data acquisition to publication. Several alternate software pack-
ages are often available for each step. Different combinations of
these alternatives lead to a combinatorial explosion of possible
workflows. In some situations, workers have set up software
pipelines for some of the steps. However, these pipelines are dif-
ficult to transfer or have trouble with the challenging samples that
cannot yet be handled without human intervention. The current
heterogenous computing environment makes the computational
work vulnerable to errors in the tracking of input and output files.
Storing the code and outputs for some of the steps in Jupyter
notebooks would be one way to reduce this vulnerability [Kluy16],
[Gran21]

To ease crystal structure determination in Jupyter, we made
libraries of code templates for crucial programs. We formatted
the libraries for two extensions of JupyterLab that provide access
to code snippets. One extension (jupyterlab-snippets) displays the
snippets in nested pull-down menus [jLsnip]. The other extension
(elyra-code-snippet-extension) uses a search box to locate the de-
sired snippet [ELSN] (also see the blog post by Luciano Resende
[Rese20]). The user can easily add new code snippets to both
systems.

We also ported the libraries to Google Colaboratory or Google
Colab or just Colab [Carn18], [Cola21]. Colab is an integrated
development environment (IDE) for running Jupyter notebooks
on the Google Cloud Platform (GPC). Colab was designed to
promote the adaptation of deep learning software to new problems
and facilitate collaborative computing. Colab is a free service that
provides a temporary instance of a Linux operating system with
access to one K80 GPU through a Jupyter notebook. Access to
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TPUs is also available. The access is terminate after long periods
of inactivity or a 12-hour time limit, whichever is reached first.
The time limit can be extended with a small subscription fee.

Colab comes with some deep learning software and the Python
scientific computing stack including SciPy [SciP20]. Colab spares
the user of the maintenance of the hardware and the operating sys-
tem software. Colab can also serve as a test platform for software
on Linux when one’s primary computing environment is a Mac
or Windows. Colab also eases collaborative work and provides a
uniform computing environment for classes and workshops. The
use of Colab requires that the user have a Google Drive account
for storing software, Jupyter notebooks, and data files.

The user can install additional Python and other packages
including structural biology software, provided the user has the
required software licenses. This software installation step requires
extra time at the start of the Colab session because most structure
biology software packages have numerous dependences. To accel-
erate this setup step, we provide notes and code snippets for the
installation of this software in the Jupyter notebook that serves as
the carrier of the snippet libraries on Colab. The user can install
the required software in several minutes. Although the software
is deleted automatically from Google Cloud at the end of session,
the software can be stored on the user’s Google Drive for faster
reinstallation.

Methods

We created snippet libraries for each structural biology package
to support structural biology computations in Jupyter and Colab.
Any particular workflow is unlikely to require all of the libraries.
For example, a beginner’s workflow is unlikely to use CCTBX,
a library of Python wrapped C++ routines for building molecular
structure determination software. Likewise, a cryo-EM workflow
will not need XDS, a package for processing X-ray diffraction
images. We created a GitHub site for each library to ease the
downloading of only those libraries that interest users (Table ??).
This modularization of the project should ease the correction
and augmentation of individual libraries as the extensions, and
structural biology software packages evolve. We only provided
libraries for JupyterLab because the Jupyter Project plans to phase
out support for the Jupyter Notebook software. Among the several
alternative extensions for code snippets in JupyterLab, we choose
jupyterlab-snippets [jLsnip] and Elyra [Elyra] because these two
extensions are actively maintained and have different features. We
also support a snippet library for Jupyter notebooks on Google
Colab as described below because Colab provides access to GPUs,
which can accelerate some of the larger computational tasks.

The jupyterlab-snippets extension

The jupyterlab-snippets extension adds a snippet menu to the
JupyterLab menu bar. The user accesses the snippets through
a cascading pulldown menu. Each snippet resides in a separate
plain text file without any formatting. This feature dramatically
eases adding new snippets by users and eases keeping the snippets
under version control. The snippets are stored in the Jupyter data
directory (which is found by entering jupyter --path; it is
in ~/Library/Jupyter/snippets on Mac OS). Each snippet library is
stored in a separate subfolder, which appears on the menu bar as
a part of a cascading pulldown menu (Figure 1).

We clustered snippets into categories. Each category has a
cascading submenu. Clicking on a snippet name in the submenu

Fig. 1: Cascading pull-down menu for the Jupyter categories of the
jupyterlabpymolpysnips library.

triggers its insertion into the current cell in the notebook. The
nested menu hierarchy serves well the user who is familiar with
the content of the snippet libraries.

Like most other snippet extensions for Jupyter Notebook and
JupyterLab, the jupyterlab-snippets extension does not support
tab stops or tab triggers. These are common features of snippet
libraries for most text editors and IDEs that accelerate the editing
of parameter values in snippets. The tab stops are particularly
valuable because they direct the user to sites that may need
changes in their parameter values, and they guide the user to all
of the site to ensure that none are overlooked. The overlooking of
parameter values that require changing can be a major source of
bugs. The tab triggers are also often mirrored, so a change at one
instance of the same parameter will be propagate automatically
to other identical instances of the parameter. To compensate for
the lack of tab triggers, we include a second copy of the code
in the same snippet but in a comment and with the tab triggers
marked with curly braces and numbers (Figure 2). The user uses
the code in the comment to direct their editing of the active code.
The user can delete the commented out comment when they have
finished editing. Separate versions of the libraries were made with
commented out code. These versions are distinguished by having
"plus" appended to their names.

The elyra-code-snippet extension

A menu icon labeled with </> provides access to snippets in the
elyra-code-snippet-extension system. After the icon is clicked, the
snippets appear in the left margin of the JupyterLab GUI. Snippets
from all libraries appear in alphabetical order. The user can scroll
through the list of snippets. Hovering the mouse cursor over the
snippet’s name triggers the display of a description of the snippet.
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Fig. 2: Comparison of active code in the bottom code block and the
commented out code above the active code from a code snippet. The
commented lines of code serve as guides for editing because they
have curly braces marking sites to be considered for editing. The
commented lines of code compensate for the absence of tab stops.

Alternatively, the user can enter a search term in the search
box at the top of the menu to reduce the list of snippets. The
search terms can be part of a snippet name or a tag stored with
each snippet.

A tag icon displays all of the available tags in the snippets
as separate icons. The user can select tags to be used to choose
snippets by clicking on the icons.

Each snippet is displayed with several icons (Figure 3). A
triangular toggle can trigger the display of the snippet in a textbox.
A pencil icon enables the editing of the code. Other icons enable
copying the code to the clipboard, inserting code into the current
cell in the notebook, and deleting the snippet.

A plus sign in the upper-righthand corner opens a GUI for the
creation of a new snippet. The GUI occupies a new tab in the
window that houses the Jupyter notebooks. The GUI has a text
box for each kind of metadata: name, description, tags, language,
and the snippet code. There is a save button at the bottom to add
the new snippet to the current library.

Each snippet is stored in a separate JSON file. Each JSON file
has the snippet code plus several rows of metadata, including a list
of tags and the programming language of the snippet. The latter
provides a sanity check. For example, an attempt to insert a C++
snippet into a notebook with an active Python kernel will trigger
the opening of a window with a warning.

All of the snippets reside in the folder
url{JUPYTER_DATA/metadata/code-snippets}. This is the
directory url{~/Library/Jupyter/metadata/code-snippets} on the
Mac. There are no subfolders for individual snippet libraries,
unlike the jupyterlab-snippets extension. The snippets from
multiple libraries are stored together in the code-snippets folder.

The tag system can be used to select all snippets from one library.
The tag system serves well the user who is not familiar with
the content of the installed libraries. The user can download the
snippets from GitHub as zip file and then uncompress this file and
move the snippet files to the final destination.

Colab snippet library

The Colab snippet system resembles the Elyra snippet system in
that the snippets appear in a menu to the left of the notebook and
that search terms in a search box retrieve snippets. However, the
Colab system differs from the Elyra system ins that the snippets
are stored in one or more Jupyter notebooks. The user’s Google
Drive stores the notebook of snippets. The user enters the url for
the notebook in a the Tools --> Settings --> Site --> Custom
Snippet Notebook URL. Multiple URLs for multiple notebooks
can be entered at one time. The user logs out of Colab and upon
logging in again to install the snippets. The user will see the newly
added snippets in the left margin after opening the snippet menu
by clicking on the </> icon.

Each snippet had a markdown cell followed by a code cell. The
markdown cell contained the name of the snippet, a description
of what the snippet does, and the structural biology software.
These features are searched in the search box to narrow the list
of snippets to inspect for selection.

The first snippet in each notebook provided the steps for
installing the software on Colab. The markdown cell listed these
installation steps. Then a series of code snippets contained the
code for carrying out the steps. This installation snippet was the
only one in a notebook that contained more then one code snippet.

A search box at the top of the list of snippets is used to recover
a snippet (Figure 5. The user enters a snippet name in the search
box to display the snippet and its documentation. The user hits the
’Install’ button to install the snippet’s code at the current position
in the notebook. Unlike the Elyra snippets which insert a whole
snippet into one code block, a Colab snippet can have multiple
code blocks that are inserted into the notebook at the current
position of the mouse cursor. One snippet can have different types
of code blocks. For example, the snippet in Figure 5 has a three
blocks of Python code, two blocks of shell commands, and two
blocks of bash cell magics with multiple lines of bash commands.

The list snippet for a library will print in a table below
the current cell a list of the snippets in the library and a brief
description. This table is stored in a pandas DataFrame that can be
searched with the pandas search function. This table can also be
searched for key terms with the search function in the notebook.
The code block and output can be hidden by clicking on the three
blue dots on the left margin of the cell.

Notebooks on Colab open very quickly, but the user must
reinstall their software on each login. We ease this annoying task
by supplying the complete chain of installation steps. For exam-
ple, the installation of the molecular graphics program PyMOL
requires seven code blocks of different types. Some involve the use
of curl, and others use the conda package management system. We
include all steps in one snippet, which is uniquely possible with
the snippet system for Colab (Figure 5). The user only has to select
one snippet and then run each code block in succession.

The use of Colab requires that the user has a Google account
and a Google Drive. Many structural biologists already have both.
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Fig. 3: The GUI from the elyra-code-snippet extension for accessing code snippets is shown on the left. A preview of the hbonddash snippet is
shown in the lower left. A Jupyter notebook with the inserted the hbonddash snippet is shown on the right.

Notebooks with sample workflows

We created a library of Jupyter Notebooks with sample workflows.
This library of notebooks is only representative and not exhaustive
because the combinatorial explosion of possible workflows makes
covering all workflows impractical. These notebooks can serve as
templates for the creation of new notebooks and are available on
our GitHub site [MLGH].

Availability of the snippet libraries

We have shared these libraries on GitHub [MLGH]. Each library
is also archived in zenodo.

Results

We describe here a set of libraries of code templates to support
computational crystallography in Jupyter Notebooks on the cloud
and on local computers. The libraries and notebooks can be loaded
on and run on Google Colab where the user can share the notebook
with collaborators or gain access to GPUs and TPUs. The user
uploads the libraries and notebook to their Google Drive account
and accesses the notebook from Colab. The storage of the libraries
and notebooks on Google Drive persists between logins to Google
Colab, but the crystallographic software must be reinstalled on
each use of Colab. These libraries are installed only once; however,
the crystallographic software must be reinstalled upon each login.
We describe below installation scripts in the form of snippets that
can be quickly run at the top of a Notebook to minimize the effort
required to re-install the software. Another limitation of the Colab

snippet system is that snippets from all libraries are stored in one
pool and have to be accessed by either scrolling through a long list
or by entering the snippet name in a search box. We addressed this
limitation with a snippet for each library that prints a list of the
available snippets with a short description. This list can span more
than the length of a paper, but it can be collapsed to hide it or can
be deleted when no longer needed. After the snippet is pulled out
of the list by the search box, more detailed documentation about
the snippet is displayed. Next, we describe the content of each
library with representative output in the Colab notebook.

Structure determination and refinement workflows with Phenix

A team of professional software developers based at the Berkeley-
Lawrence National Laboratory (BLNL) develops the Phenix soft-
ware to refine protein crystal structures determined from X-ray
diffraction data [Adam02]. The project includes several collabora-
tors located around the world who develop auxiliary components
of the package. Phenix uses Python to interface with the Com-
putational Crystallography Tool Box (CCTBX), which is written
in C++ for speed [Gros02]. CCTBX is also wrapped in Python
and can be imported at as module. While Python eases the use
of CCTBX, mastery of CCTBX requires at least an intermediate
level of Python programming skills. On the other hand, Phenix is
easy to use via the command line or a GUI and has become of the
most popular software packages for biological crystallography.

The Phenix project greatly eased the incorporation of sim-
ulated annealing into crystal structure refinement by hiding the
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Fig. 4: The GUI from elyra-code-snippet extension for the creation of new snippets. The Learn more link takes the user to the documentation
on Read-the-docs.

tedious preparation of the required parameter files from the user.
Simulated annealing involves molecular dynamics (MD) simula-
tion at high temperatures to move parts of a molecular model
out of local energy minima and into conformations that fit the
experimental data better. Twenty minutes of applying simulated
annealing to an early model that still has numerous errors can
significantly improve the model while saving the user a day or
more of the tedious manual rebuilding of the molecular model.
The PDB file does not have sufficient information about chemical
bonding for MD simulations. The molecular dynamics software
that carries out the simulated annealing requires two parameter
files and the coordinate file. The preparation and debugging of the
parameter files manually takes many hours, but Phenix automates
this task.

More recently, Phenix has been extended to refine crystal
structures with neutron diffraction data and for structure determi-
nation and refinement with cryo-EM data [Lieb19]. The addition
of support for cryo-EM help address the recent need for the
ability to fit atomic models to cryo-EM maps that have recently
become available at near atomic resolution because of the dramatic
improvements in detector technology. Users can interact with
Phenix via a GUI interface or the command line, as mentioned
before, but users can also use PHIL, domain-specific language
scripting language for more precise parameter settings for Phenix.
In addition, users can use the phenix.python interpreter.
Unfortunately, the phenix.python interpreter is still limited to
Python2, whereas CCTBX has been available for Python3 for over
a year.
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Fig. 5: Code snippet for installing PyMOL on Colab. The <> icon opens a menu on the left side that lists all of the snippets. The search term
’pymol’ was used to reduce the list of candidate snippets. The highlighted snippets name ’Install PyMOL is new Colab notebook’. Selecting
this snippets opens the snippet below. The snippet description is displayed followed by the seven blocks of code. The description includes the
seven steps for installing the molecular graphics programs. Clicking with the mouse cursor on ’INSERT’ in blue inserts the code into in the
cells on the notebook on the fight.

Jupyter Lab and its extensions are also best run with Python3.
The most practical approach to using Phenix in Jupyter Lab is to
invoke Phenix by utilizing the shell rather than using Python. For
example, the command shown below invokes statistical analysis
of the B-factors in a Protein Data Bank (PDB) file by using one
line of code in the shell. The PDB file uses a legacy, fixed-format
file for storing the atomic coordinates and B-factors of crystal
structures. The B-factors are a measure of the atomic motion, sta-
tistical disorder, or both in individual atoms in a protein structure.
The PDB file format was defined and popularized by the Protein
Data Bank, a repository for atomic coordinates and structural data
that has over 170,000 entries from around the world. The PDB
was started in 1972 and unified with the branches in Japan and
Europe in 2003 as the wwPDB [Berm03]. The wwPDB continues
to play a central role in promoting the principles of open science
and reproducible research in structural biology.

Since 2019, the wwPDB requires the PDBx/mmCIF format
for new depositions [Adam19]. Many structural biology software
packages now have the ability to read files in the PDBx/mmCIF
format.
!phenix.b_factor_statistics 1lw9.pdb

The output form this command is printed below the cell that
invokes the command. Some of the output is shown below.
Starting phenix.b_factor_statistics
on Wed Jun 2 04:49:01 2021 by blaine

Processing files:

Found model, /Users/blaine/pdbFiles/1lw9.pdb

Processing PHIL parameters:

No PHIL parameters found

Final processed PHIL parameters:

data_manager {
model {
file = "/Users/blaine/pdbFiles/1lw9.pdb"

}
default_model = "/Users/blaine/pdbFiles/1lw9.pdb"

}

Starting job
Validating inputs

min max mean <Bi,j> iso aniso
Overall: 6.04 100.00 24.07 N/A 1542 0
Protein: 6.04 100.00 23.12 N/A 1328 0
Water: 9.98 55.93 30.47 N/A 203 0
Other: 14.11 35.47 21.10 N/A 11 0
Chain A: 6.04 100.00 24.07 N/A 1542 0
Histogram:

Values Number of atoms
6.04 - 15.44 309
15.44 - 24.83 858
24.83 - 34.23 187
34.23 - 43.62 78
43.62 - 53.02 32
53.02 - 62.42 16
62.42 - 71.81 8
71.81 - 81.21 6
81.21 - 90.60 2
90.60 - 100.00 46

Job complete
usr+sys time: 1.92 seconds
wall clock time: 2.93 seconds



20 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

There are several dozen commands that can be run via the shell
and return useful output that can be captured in one Jupyter
Notebook rather than in dozens of log files. The output can
be copied and pasted into a new cell and then reformatted in
markdown as a table or the copied output be used as input data
to make a plot with matplotlib. While these are basic data science
tasks, they are intimidating to new users of Jupyter and some
of the details are easy for more experienced users to forget. To
overcome this problem, we supply snippets that demonstrate how
to transform the output and that can be used as templates by the
users.

These commands are becoming harder to find as the on-
line documentation has been migrating to serving only the GUI
interface. The bash script files that run the Phenix commands can
be found on Mac OSX by running the following command:
!ls /Applications/phenix-*/build/bin/phenix.\*

These shell scripts invoke Python scripts that capture the command
line arguments and pass them to the Phenix Python interpreter.
This Python script files can be found on Mac OSX by running the
following command:
!ls /Applications/phenix-1.19.2-4158/modules/phenix/phenix/command_line/*.py.

Molecular graphics with PyMOL

The end result of the crystal structure refinement in Phenix is a set
of atomic coordinates. They can be displayed in one of the many
available molecular graphics programs like PyMOL [PyMO21]. If
PyMOL is available in the current Python environment, PyMOL’s
Python API can be accessed by importing the cmd class. In
addition, it is useful to import the Image class from IPython to
be able to upload images written to disk by PyMOL.
from pymol import cmd
from IPython.display import Image

After installing PyMOL in Colab as outlines in Figure 5 and
the PyMOL snippet library, the T4L snippet was inserted into a
Colab notebook and executed. The snippet includes the IPython
command that was used to upload the image into the Notebook as
shown in Figure 6.

There are several other methods of importing images including
using Markdown or HTML code.

Discussion

Amazon introduced the first cloud computing service in 2006;
there are now over 200 services. These services have the advantage
of providing access to computer hardware and software. These
services can lower barriers for those labs that have limited access
to computer hardware or that have trouble with installing software.
Many of these services supply disk spaces and access to CPUs,
GPUs, and sometimes TPUs. Access to basic services is often free
with additional services, computing power, and disk space being
available for a modest fee. In principle, consumer computers could
be used as an interface for doing all manner of crystallographic
computing on the cloud.

Why Colab?

Colab was developed internally and first released for public use
in 2018. Numerous research papers in the physical and medical
sciences have been published that used Colab. Google Colab
provides fast and easy access for users with a Google account
and Google drive, so many workers in crystallography already

Fig. 6: The code of the T4L snippet inserted into a code block in
Colab. .

have the prerequisites. Many readers are also familiar with Jupyter
Notebooks (10 million shared on GitHub as of early 2021). Jupyter
Notebooks can be loaded onto Google Drive and then opened in
Colab. Colab is a specialized IDE for editing Jupyter Notebooks.
the Colab interfaces has more features that the easy-to-use nteract
IDE, but fewer features than JupyterLab. Colab provides almost
instant loading of specific Jupyter notebooks but at the cost of
needing reinstall the software used in a notebook upon logging in
again or after a 12-hour session. The first point lower the barrier
to resuming work while the second point can be addressed by
including the code for installing the required software at the head
of the notebook.

Microsoft has stopped supporting its Azure Notebook and
has asked users to migrate to several alternative approaches.
One approach is to use of Visual Studio Code (VSC) rather to
JupyterLab to edit and run Jupyter notebooks locally and on
Microsoft’s cloud service. VSC is an advanced text editor that
has stronger support for code snippets because it supports the
use of tab triggers and tab stops, two important features that
are missing from Colab, JupyterLab, and the Classic Jupyter
Notebook. However, VSC is so feature-rich that it can be over-
whelming for some beginning users. To support a wider group of
users, we developed the libraries for Google Colab. We plan to
develop libraries for editing Jupyter Notebooks in VSC.

What is new

We report a set of code template libraries for doing biomolecular
crystallographic computing on Colab. These template libraries
only need to be installed once because they persist between
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logins. These templates include the code for installing the soft-
ware required for crystallographic computing. These installation
templates save time because the installation process involves as
many as seven operations that would be difficult to remember.
Once the user adds the installation code to the top of a given
notebook, the user only needs to rerun these blocks of code upon
logging into Colab to be able to reinstall the software. The user can
modify the installation templates to install the software on their
local machines. Examples of such adaptations are provided on a
dedicated GitHub webpage. The template libraries presented here
lower an important barrier to the use of Colab by those interested
in crystallographic computing on the cloud.

Relation to other work with snippet libraries

To the best of our knowledge, we are the first to provide snippet
libraries for crystallographic computing. This library is among the
first that is domain specific. Most snippet libraries are for program-
ming languages or for hypertext languages like HTML, markdown
and LaTeX. The average snippet also tends to be quite short and
the size of the libraries tends to be quite small. The audience
for these libraries are millions of professional programmers and
web page developers. We reasoned that this great tool should be
brought to the aid of the thousands of workers in crystallography.

The other area where domain specific snippets have been
provided is in molecular graphics. The pioneering work on a
scripting wizard provided templates for use in the molecular
graphics program RasMol [Hort99]. The conscript program pro-
vided a converter from RasMol to PyMOL [Mott10]. Language
converters for translating code between the leading molecular
graphics programs would allow users to more easily find and use
the optimal molecular graphics program for the task at hand.

We also provided snippets for PyMOL, which has 100,000
users, for use in text editors [Moo21a] and Jupyter notebooks
[Moo21b]. The former support tab triggers and tab stops; the latter
does not.

The libraries have to be molecular graphics program specific
because molecular graphics programs have been written in a range
of programming languages. The user issues the commands in ei-
ther in a general programming language like Python or a a domain
specific language (DSL) like pml. It would cause confusion to mix
snippets from multiple languages. To counter this growing tower
of babel, the OpenStructure initiative was formed [Bias13].

We have also worked out how to deploy this snippet libraries in
OnDemand notebooks at High-Performance Computing centers.
These notebooks resemble Colab notebooks in that JupyterLab
extensions cannot be installed. However, they do not have any
alternate support for accessing snippets from menus in the GUI.
Instead, we had to create IPython magics for each snippet that
load the snippet’s code into the code cell. This system would also
work on Colab and may be preferred by expert users because the
snippet names used to invoke magic are under autocompletetion.
That is, the user enters the start of a name and IPython suggests
the remainder of the name in a pop-up menu. We offer a variant
library that inserts a commented out copy of the code that has been
annotated with the sites that are to be edited by the user.

Opportunities for Interoperability

The set of template libraries can encourage synergistic interop-
erability between software packages supported by the snippet
libraries. That is the development of notebooks that use two or
more software packages and even programming languages. More

general and well-known examples of interoperability include the
Cython packages in Python that enable the running of C++ code
inside Python, the reticulate package that enables the running of
Python code in R , and the PyCall package in Julia that enables
the running of the Python packages in Julia. The latter package
is widely used to run matplotlib in Julia. Interoperability already
occurs between the CCP4, clipper, and CCTBX projects and to a
limited extent between CCTBX and PyMOL, but interoperability
could be more widespread if the walls around the software silos
were lowered. The snippet libraries provided here can prompt
interoperability on Colab by their proximity on Colab.

Polyglot snippets

The unique feature of the Colab snippets is that a given snippet
can contain multiple cells. The cells can be a mix of markdown
(text cells) and code cells. The cells can also use a mix of
programming languages invoked by different cell magics. Cell
magics are an alternate method to kernels for switching between
programming languages. The code for defining various cell mag-
ics are included in our snippet library. The supported compiled
programming languages include C, C++, Julia, and Fortran2008.
The bash cell magic is built into Colab. This ability to two or
more programming languages in one snippet leads to polyglot
snippets. Some operations involving two or more programming
languages need to be executed sequentially. These can be best
grouped together in one snippet. This feature of polyglot snippets
save time because the user does not have to reinvent the workflow
by finding and inserting into the notebook a series of snippets.

Ubiquitous computing platform on the cloud

Colab provides the user with a ubiquitous instance of Ubuntu.
Colab is accessed by opening Jupyter Notebooks stored on the
users’ Google Drive account. Colab can be accessed from devices
that can access the Google Drive account. The opening of the
Colab instance is rapid in contrast to the Binder service where
the building of a new Ubuntu instance requires a wait of many
minutes. In addition, the Colab session remains active for up to
12 hours on the free plan and longer on paid plans whereas a
Binder instance closes after ten minutes of inactivity. Binder is an
open-source project while Colab is a closed source project. Colab
maintains the Ubuntu operating system so the user does not need
to spend time on software updates.
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Abstract—The signac data management framework (https://signac.io) helps
researchers execute reproducible computational studies, scales workflows from
laptops to supercomputers, and emphasizes portability and fast prototyping.
With signac, users can track, search, and archive data and metadata for file-
based workflows and automate workflow submission on high performance com-
puting (HPC) clusters. We will discuss recent improvements to the software’s
feature set, scalability, scientific applications, usability, and community. Newly
implemented synced data structures, features for generalized workflow execu-
tion, and performance optimizations will be covered, as well as recent research
using the framework and changes to the project’s outreach and governance as
a response to its growth.

Index Terms—data management, data science, database, simulation, collabo-
ration, workflow, HPC, reproducibility

Introduction

Scientific research addresses problems where questions often
change rapidly, data models are always in flux, and compute
infrastructure varies widely from project to project. The signac
data management framework [ADRG18] is a tool designed by
researchers, for researchers, to simplify the process of prototyp-
ing and then performing reproducible scientific computations. It
forgoes encoding complex data files into a database in favor of
working directly on file systems, providing fast indexing utilities
for a set of directories. Using signac, a data space on the file
system can be initialized, searched, and modified using either a
Python or command-line interface. By its general-purpose design,
signac is agnostic to data content and format. The companion
package signac-flow interacts with the data space to generate
and analyze data through reproducible workflows that scale from
laptops to supercomputers. Arbitrary shell commands can be run
by signac-flow as part of a workflow, making it as flexible as a
script in any language of choice.
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This paper will focus on developments to the signac frame-
work over the last 3 years, during which features, flexibility,
usability, and performance have been greatly improved. The core
data structures in signac have been overhauled to provide a power-
ful and generic implementation of synced collections, that we will
leverage in future versions of signac to enable more performant
data indexing and flexible data layouts. In signac-flow, we have
added support for submitting groups of operations with conditional
dependencies, allowing for more efficient utilization of large HPC
resources. Further developments allow for operations to act on
arbitrary subsets of the data space via aggregation, rather than sin-
gle jobs alone. Moving beyond code development, this paper will
also discuss the scientific research these features have enabled and
organizational developments supported through key partnerships.
We will share our project’s experience in continuously revising
project governance to encourage sustained contributions, adding
more entry points for learning about the project (Slack support,
weekly public office hours), and participating in Google Summer
of Code in 2020 as a NumFOCUS Affiliated Project. Much of
the work has been carried out in conjunction with the Molecular
Simulation Design Framework (MoSDeF) [CMI+21], a National
Science Foundation Cyberinfrastructure for Sustained Scientific
Innovation (CSSI) effort.

Structure and implementation

With signac, file-based data and metadata are organized in folders
and JSON files, respectively (see Figure 1). A signac data space,
or workspace, contains jobs, which are individual directories asso-
ciated with a single primary key known as a state point stored in a
file signac_statepoint.json in that directory. The JSON
files allow signac to index the data space, providing a database-
like interface to a collection of directories. Arbitrary user data may
be stored in user-created files in these jobs, although signac also
provides convenient facilities for storing simple lightweight data
or array-like data via JSON (the "job document") and HDF5 (the
"job data") utilities. Readers seeking more details about signac are
referred to past signac papers [ADRG18], [RAD+18] as well as
the signac website1 and documentation2.

This filesystem-based approach has both advantages and dis-
advantages. Its key advantages lie in flexibility and portability.
The serverless design removes the need for any external running
server process, making it easy to operate on any filesystem. The

1. https://signac.io
2. https://docs.signac.io
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Run simulation
13 @Project.operation
14 def simulate(job):
15     # Run simulation

Analyze data
25 @Project.operation
26 def analyze(job):
27     # Make results.txt

Visualize data
71 @Project.operation
72 def visualize(job):
73     # Make plot.png

s i g n a c

signac (core)

signac-flow

WORKSPACE

project.py

JOB
signac_statepoint.json

signac_job_document.json

results.txt

plot.png

JOB JOB

JOB JOB JOB

JOB

JOB
signac_statepoint.json

signac_job_document.json

Initialize jobs
 9 pr = signac.init_project("MyProject")
10 pr.open_job({"a": 1}).init()

init.py

Fig. 1: Overview of the signac framework. Users first create a project, which initializes a workspace directory on disk. Users define state points
which are dictionaries that uniquely identify a job. The workspace holds a directory for each job, containing JSON files that store the state
point and job document. The job directory name is a hash of the state point’s contents. Here, the init.py file initializes an empty project
and adds one job with state point {"a": 1}. Next, users define a workflow using a subclass of signac-flow’s FlowProject. The workflow
shown has three operations (simulate, analyze, visualize) that, when executed, produce two new files results.txt and plot.png in the
job directory.

design is also intrinsically distributed, making it well suited for
highly parallel workflows where multiple processes concurrently
read or write file-based data stored in job directories. Conversely,
this distributed approach precludes the performance advantages
of centralized data stores with persistent indexes in memory.
Typically, the signac approach works very well for projects up
to 100,000 jobs, while significantly larger projects may have wait
times that constrain interactive usage. These limits are inherent
to signac’s use of small files for each job’s state point, but the
framework has been aggressively optimized and uses extensive
caching/buffering to maximize the achievable throughput within
this model.

The framework is a strong choice for applications meeting one
or more of the following criteria:

• input/output data is primarily file-based
• prototype research code where data schemas may change

or evolve
• computations will use an HPC cluster
• the amount of computation per job is large
• parameter sweeps over a range of values (with values on a

grid or dynamically determined by e.g. active learning)
• heterogeneous data (not all jobs have the same keys present

in their state points)

For example, M. W. Thompson et al. in [TMS+] used
396 jobs/state points to execute computer simulations of room-
temperature ionic liquids with GROMACS [PPS+], [LHvdS],
[HKvdSL], [AMS+] simulations. The study investigated 18 com-

positions (by mass fraction) and 22 unique solvents from five
chemical families (nitriles, alcohols, halocarbons, carbonyls, and
glymes), with a state point for each pairing of mass fraction and
solvent type.

Users working with large tabular data (e.g. flat files on disk or
data from a SQL database) may prefer to use libraries like pandas
[pdt20], [McK], Dask [Tea16], [Roc15], or RAPIDS [Tea18]
that are specifically designed for those use cases. However, it is
possible to create a signac project with state points corresponding
to each row, which may be a good use of signac if there is file-
based data affiliated with each row’s parameters.

Code examples of features presented in this paper can be found
online3.

Applications of signac

The signac framework has been cited 54 times, according to
Google Scholar, and has been used in a range of scientific
fields with various types of computational workflows. Some of
these studies include quantum calculations of small molecules
[GG18], 4,480 simulations of epoxy curing (each containing
millions of particles) [TAH+18], inverse design of pair poten-
tials [AADG18], identifying photonic band gaps in 151,593
crystal structures [CADG21], benchmarking atom-density repre-
sentations for use in machine learning [MVG+21], simulating
fluid flow in polymer solutions [PHMTN19], design of optical
metamaterials [HCVM20], and economic analysis of drought

3. https://github.com/glotzerlab/signac-examples
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risk in agriculture [RD20]. To date, signac users have built
workflows utilizing a wide range of software packages includ-
ing simulation tools such as Cassandra and MoSDeF-Cassandra
[SMRM+17], [DMD+21], foyer [KST+], GROMACS [PPS+],
[LHvdS], [HKvdSL], [AMS+], HOOMD-blue [AGG], [GNA+],
[BLBVRJAASCG20], mBuild [KSJ+], MIT Photonic Bands
[JJ01], Quantum-ESPRESSO [GBB+09], Rigorous Coupled Wave
Analysis (RCWA) [LF12], and VASP [KF96], machine learning
libraries including Keras [C+15], scikit-learn [PVG+11], and
TensorFlow [AAB+15], and analysis libraries for postprocessing
data such as freud [RDH+20], librascal [MVG+21], MDAnalysis
[MADWB11], MDTraj [MBH+15], and OVITO [Stu]. Much of
the published research using signac comes from chemical en-
gineering, materials science, or physics, the fields of many of
signac’s core developers and thus fields where the project has had
greatest exposure. Computational materials research commonly
requires large HPC resources with shared file systems, a use
case where signac excels. However, there are many other fields
with similar hardware needs where signac can be applied. These
include simulation-heavy HPC workloads such as fluid dynamics,
atomic/nuclear physics, or genomics, data-intensive fields such
as economics or machine learning, and applications needing fast,
flexible prototypes for optimization and data analysis.

While there is no "typical" signac project, factors such as com-
putational complexity and data sizes offer some rough guidelines
for when signac’s database-on-the-filesystem is appropriate. For
instance, the time to check the status of a workflow depends on the
number of jobs, number of operations, and number of conditions
to evaluate for those jobs. Typical signac projects have 100 to
10,000 jobs, with each job workspace containing arbitrarily large
data sizes (the total file size of the job workspace has little effect
on the speed of the signac framework). To give a rough idea of
the limits of scalability, signac projects can contain up to around
100,000 jobs while keeping common tasks like checking workflow
status in an "interactive" time scale of 1-2 minutes. Some users that
primarily wish to leverage signac-flow’s workflows for execution
and submission may have a very small number of jobs (< 10). One
example of this would be executing a small number of expensive
biomolecular simulations using different random seeds in each
job’s state point. Importantly, projects with a small number of
jobs can be expanded at a later time, and make use of the same
workflow defined for the initial set of jobs. The abilities to grow
a project and change its schema on-the-fly catalyze the kind of
exploration that is crucial to answering research questions.

The workflow submission features of signac-flow inter-
operates with popular HPC schedulers including SLURM,
PBS/TORQUE, and LSF automating the generation and sub-
mission of scheduler batch scripts. Directives are set through
Python decorators and define resource and execution requests for
operations. Examples of directives include number of CPUs or
GPUs, the walltime, and memory. The use of directives allows
signac-flow workflows to be portable across HPC systems by
generating resource requests that are specific to each machine’s
scheduler.

Overview of new features

The last three years of development of the signac framework have
expanded its usability, feature set, user and developer documenta-
tion, and potential applications. Some of the largest architectural
changes in the framework will be discussed in their own sections,

namely extensions of the workflow model (support for executing
groups of operations and aggregators that allow operations to
act on multiple jobs) and a much more performant and flexible
re-implementation of the core "data structure" classes that syn-
chronize signac’s Python representation of state points and job
documents with JSON-encoded dictionaries on disk.

Data archival

The primary purpose of the core signac package is to simplify and
accelerate data management. The signac command line interface
is a common entry point for users, and provides subcommands for
searching, reading, and modifying the data space. New commands
for import and export simplify the process of archiving signac
projects into a structure that is both human-readable and machine-
readable for future access (with or without signac). Archival is
an integral part of research data operations that is frequently
overlooked. By using highly compatible and long-lived formats
such as JSON for core data storage with simple name schemes,
signac aims to preserve projects and make it easier for studies
to be independently reproduced. This is aligned with the princi-
ples of TRUE (Transparent, Reproducible, Usable by others, and
Extensible) simulations put forth by the MoSDeF collaboration
[TGM+20].

Improved data storage, retrieval, and integrations

Data access via the shell: The signac shell command allows
the user to quickly enter a Python interpreter that is pre-populated
with variables for the current project or job (when in a project
or job directory). This means that manipulating a job document or
reading data can be done through a hybrid of bash/shell commands
and Python commands that are fast to type.
~/project $ ls
signac.rc workspace
~/project $ cd workspace/42b7b4f2921788e.../
~/project/workspace/42b7b4f2921788e... $ signac shell
Python 3.8.3
signac 1.6.0

Project: test
Job: 42b7b4f2921788ea14dac5566e6f06d0
Root: ~/project
Workspace: ~/project/workspace
Size: 1

Interact with the project interface using the
"project" or "pr" variable. Type "help(project)"
or "help(signac)" for more information.

>>> job.sp
{'a': 1}

HDF5 support for storing numerical data: Many applications
used in research generate or consume large numerical arrays. For
applications in Python, NumPy arrays are a de facto standard
for in-memory representation and manipulation. However, saving
these arrays to disk and handling data structures that mix dic-
tionaries and numerical arrays can be cumbersome. The signac
H5Store feature offers users a convenient wrapper around the
h5py library [Col13] for loading and saving both hierarchical/key-
value data and numerical array data in the widely-used HDF5
format [Gro21]. The job.data attribute is an instance of the
H5Store class, and is a key-value store saved on disk as
signac_data.h5 in the job workspace. Users who prefer to
split data across multiple files can use the job.stores API to
save in multiple HDF5 files. Corresponding project.data and
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project.stores attributes exist, which save data files in the
project root directory. Using an instance of H5Store as a context
manager allows users to keep the HDF5 file open while reading
large chunks of the data:
with job.data:

# Copy array data from the file to memory
# (which will persist after the HDF5 file is
# closed) by indexing with an empty tuple:
my_array = job.data["my_array"][()]

Advanced searching and filtering of the workspace: The
signac diff command, available on both the command line
and Python interfaces, returns the difference between two or more
state points and allows for easily assessing subsets of the data
space. By unifying state point and document queries, filtering, and
searching workspaces can be more fine-grained and intuitive.

Data visualization and integrations

Integrating with the PyData ecosystem: Users can now sum-
marize data from a signac project into a pandas DataFrame
for analysis. The project.to_dataframe() feature exports
state point and job document information to a pandas DataFrame
in a consistent way that allows for quick analysis of all jobs’ data.
Support for Jupyter notebooks [KRKP+16] has also been added,
enabling rich HTML representations of signac objects.

Dashboards: The companion package signac-dashboard al-
lows users to quickly visualize data stored in a signac data space.
The dashboard runs in a browser and allows users to display
job state points, edit job documents, render images and videos,
download any file from a job workspace, and search or browse
through state points in their project. Dashboards can be hosted on
remote servers and accessed via port forwarding, which makes it
possible to review data generated on a remote HPC system without
needing to copy it back to a local system for inspection. Users can
quickly save notes into the job document and then search those
notes, which is useful for high throughput studies that require
some manual investigation (e.g. reviewing plots).

Performance enhancements

In early 2021, a significant portion of the codebase was profiled
and refactored to improve performance and these improvements
were released in signac 1.6.0 and signac-flow 0.12.0. As a result
of these changes, large signac projects saw 4-7x speedups for
operations such as iterating over the jobs in a project compared
to the 1.5.0 release of signac. Similarly, performance of a sample
workflow that checks status, runs, and submits a FlowProject with
1,000 jobs, 3 operations, and 2 label functions improved roughly
4x compared to signac-flow 0.11.0. These improvements allow
signac to scale to ~100,000 jobs.

In signac, the core of the Project and Job classes were
refactored to support lazy attribute access and delayed initializa-
tion, which greatly reduces the total amount of disk I/O by waiting
until data is actually requested by the user. Other improvements
include early exits in functions, reducing the number of required
system calls with smarter usage of the os library, and switching
to algorithms that operate in constant time, O(1), instead of linear
time, O(N jobs). Optimizations were identified by profiling the
performance of common operations on small and large real-world
projects with cProfile and visualized with snakeviz [Dav].

Similarly, performance enhancements were also made in the
signac-flow package. Some of the optimizations identified include
lazy evaluation of run commands and directives, and caching of

job status information. In addition, the improvements in signac
such as faster iteration over large signac projects used in signac-
flow made signac-flow’s primary functions — checking project
status, executing operations, and submitting operations to a cluster
— significantly faster.

Improved user output

Workflow graph detection: The preconditions and postcon-
ditions of operations in a signac-flow FlowProject im-
plicitly define a graph. For example, if the operation "ana-
lyze" depends on the operation "simulate" via the precondition
@FlowProject.pre.after(simulate), then there is a
directed edge from "simulate" to "analyze." This graph can now
be detected from the workflow conditions and returned in a
NetworkX [HSS08] compatible format for display or inspection.

Templated status output: Querying the status of a signac-
flow project now has many options controlling the information
displayed and has been templated to allow for plain text, Mark-
down, or HTML output. In doing so, the output has also become
cleaner and compatible with external tools.

Enhanced workflows

Directives: Execution directives (or directives for short) provide
a way to specify required resources on HPC schedulers such as
number of CPUs/GPUs, MPI ranks, OpenMP threads, walltime,
memory, and others. Directives can be a function of the job as
well as the operation, allowing for great flexibility. In addition,
directives work seamlessly with operation groups, job aggrega-
tion, and submission bundling (all of which are described in the
following section).

Dynamic workspaces: The signac-flow package can now
handle workspaces where jobs are created as the result of oper-
ations on other jobs. This is crucial for optimization workflows
and iteratively sampling parameter spaces, and allows projects to
become more automated with some data points only run if a prior
condition on another data point is reached.

Executing complex workflows via groups and aggregation

Two new concepts in signac-flow provide users with significantly
more power to implement complex workflows: groups and aggre-
gation. A related third concept – bundling – which is not new, also
provides flexibility to users in their workflows, but exclusively
affects scheduler submission, not workflow definition. Figure 2
show a graphical illustration of the three concepts.

As the names of both groups and aggregation imply, the fea-
tures enable the "grouping" or "aggregating" of existing concepts:
operations in the case of groups and jobs in the case of aggregates.
The conceptual model of signac-flow builds on signac’s notions
of the Project and Job (the unit of the data space) through a
FlowProject class that adds the ability to define and execute
operations (the unit of a workflow) that act on jobs. Operations are
Python functions or shell commands that act on a job within the
data space, and are defined using Python decorator syntax.
# project.py
from flow import FlowProject

@FlowProject.operation
@Flowproject.post.true("initialized")
def initialize(job):

# perform necessary initialize steps
# for simulation
job.doc.initialized == True
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Use groups to combine associated
operations into a single submission.

simulate(job)
Submit...

analyze(job)
Submit again...

visualize(job)
Submit again...

process(job)

simulate(job)
analyze(job)
visualize(job)

Submit once, run all.

Use aggregation to operate on
multiple jobs.

Use bundling to submit scripts that
execute multiple operations.
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@aggregator.groupby(...)
def make_chart(*jobs):
    # Plot grouped data
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jobC3
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Fig. 2: Aggregation, groups, and bundling allow users to build complex workflows. The features are orthogonal, and can be used in any
combination. Aggregation enables one operation or group to act on multiple jobs. Groups allow users to combine multiple operations into one,
with dependencies among operations resolved at run time. Bundling helps users efficiently leverage HPC schedulers by submitting multiple
commands in the same script, to be executed in serial or parallel.

if __name__ == "__main__":
FlowProject().main()

When this project is run using signac-flow’s command line
API (python project.py run), the current state point is
prepared for simulation. Operations can have preconditions and
postconditions that define their eligibility. All preconditions must
be met in order for a operation to be eligible for a given job. If all
postconditions are met, that indicates an operation is complete
(and thus ineligible). Examples of such conditions include the
existence of an input file in a job’s workspace or a key in the
job document (as shown in the above snippet). However, this
type of conditional workflow can be inefficient when sequential
workflows are coupled with an HPC scheduler interface, because
the user must log on to the HPC and submit the next operation
after the previous operation is complete. The desire to submit
large and long-running jobs to HPC schedulers encourages users to
write large operation functions which are not modular and do not
accurately represent the individual units of the workflow, thereby
limiting signac-flow’s utility and reducing the readability of the
workflow.

Groups

Groups, implemented by the FlowGroup class and
FlowProject.make_group method, allows users to
combine multiple operations into a single entity that can be run or
submitted. Submitting a group allows signac-flow to dynamically
resolve preconditions and postconditions of operations as each
operation is executed, making it possible to combine separate
operations (e.g. for simulation and analysis and plotting) into a
single submission script that will execute eligible operations in
sequence. This allows users to write smaller, modular functions,

which may require a specific order of execution, without
sacrificing the ability to submit large, long-running jobs on HPCs.
Furthermore, groups are aware of directives and can properly
combine the directives of their constituent operations to specify
resources and quantities like walltime whether executing in
parallel or serial.

from flow import FlowProject

example_group = FlowProject.make_group(
name="example_group")

@example_group.with_directives(
{"ngpu": 2,
"walltime": lambda job: job.doc.hours_to_run})

@FlowProject.post.true("simulated")
@FlowProject.operation
def simulate(job):

# run simulation
job.doc.simulated = True

@example_group
@FlowProject.pre.after(simulate)
@FlowProject.post.true("analyzed")
@FlowProject.operation
def analyze(job):

# analyze simulation results
job.doc.analyzed = True

Groups also allow for specifying multiple machine specific re-
sources (CPU or GPU) with the same operation. An operation can
have unique directives for each distinct group to which it belongs.
By associating an operation’s directives with respect to a specific
group, groups can represent distinct compute environments, such
as a local workstation or a remote supercomputing cluster. The be-
low snippet shows an expensive_simulate operation which
can be executed with three different directives depending on how
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it is written. If executed through cpu_group the operation will
request 48 cores, if gpu_group 4 GPUs, if neither then it will
request 4 cores. This represents the real use case where a user may
want to run an operation locally (in this case without a group), or
on a CPU or GPU focused HPC/workstation.

from flow import FlowProject

cpu_group = FlowProject.make_group(name="cpu")
gpu_group = FlowProject.make_group(name="gpu")

@cpu_group.with_directives({"np": 48})
@gpu_group.with_directives({"ngpu": 4})
@FlowProject.operation.with_directives({"np": 4})
def expensive_simulate(job):

# expensive simulation run on CPUs or GPUs
pass

Aggregation

Users also frequently work with multiple jobs when performing
tasks such as plotting data from all jobs in the same figure. Though
the signac package has methods like Project.groupby,
which can generate subsets of the project that are grouped by
a state point key, there has been no way to use these "ag-
gregation" features in signac-flow for defining workflows. The
concept of aggregation provides a straightforward way for users
to write and submit operations that act on arbitrary subsets
of jobs in a signac data space through functions analogous
to Project.groupby. Just as the groups feature acts as an
abstraction over operations, aggregation can be viewed as an ab-
straction over jobs. When decorated with an aggregator, operations
can accept multiple job instances as positional arguments through
Python’s argument unpacking. Decorators are used to define ag-
gregates, encompassed in the @aggregator decorator for single
operations and in the argument aggregator_function to
FlowProject.make_group for groups of operations.

from flow import FlowProject

@aggregator
@FlowProject.operation
def plot_enzyme_activity(*jobs):

import matplotlib.pyplot as plt
import numpy as np

x = [job.sp.temperature for job in jobs]
y = [job.doc.activity for job in jobs]
fig, ax = plt.subplots()
ax.scatter(x, y)
ax.set_title(

"Enzymatic Activity Across Temperature")
fig.savefig("enzyme-activity.png")

Like groups, there are many reasons why a user might
wish to use aggregation. For example, a signac data space
that describes weather data for multiple cities in multi-
ple years might want to plot or analyze data that uses
@aggregator.groupby("city") to show changes over
time for each city in the data space. Similarly, aggregating over
replicas (e.g. the same simulation with different random seeds)
facilitates computing averaged quantities and error bars. Another
example is submitting aggregates with a fixed number of jobs in
each aggregate to enable massive parallelization by breaking a
large MPI communicator into a smaller communicator for each
independent job, which is necessary for efficient utilization of
leadership-class supercomputers like OLCF Summit.

Bundling

Finally, bundling is another way to use workflows in conjunction
with an HPC scheduling system. Whereas aggregates are con-
cerned with jobs and groups operations, bundling is concerned
with combining executable units into a single submission script.
This distinction means that bundling is not part of the workflow
definition, but is a means of tailoring batch scripts for different
HPC systems. Bundles allow users to leverage scheduler resources
effectively and minimize queue time, and can be run in serial
(the default) or parallel. Users enable bundling by passing the
command line argument --bundle, optionally with another
argument --parallel to run each command in the bundle in
parallel (the Python API has corresponding options as well). The
simplest case of a bundle is a submission script with the same op-
eration being executed for multiple jobs. Bundling is what allows
the submission script to contain multiple jobs executing the same
operation. By storing information about the generated bundles
during submission, signac-flow prevents accidental resubmission
just as in the unbundled case. While the example mentioned
above does not use either groups or aggregation, bundles works
seamlessly with both.

Cluster templates

The signac-flow software includes automatic detection and script
support for SLURM, PBS/TORQUE, and LSF schedulers. How-
ever, effective HPC utilization frequently relies on specific infor-
mation such as numbers of cores per compute node or designated
partitions for GPU or large memory applications. To this end,
signac-flow includes templates for a number of HPC clusters
including OLCF Summit and Andes, XSEDE [TCD+14] clusters
such as PSC Bridges-2, SDSC Comet, and TACC Stampede2,
and university clusters such as the University of Michigan’s
Great Lakes and University of Minnesota’s Mangi. These cluster
templates change frequently as HPC systems are brought online
and later decommissioned. Users can create their own templates
to contribute to the package or use locally.

Synced collections: backend-agnostic, persistent, mutable
data structures

Motivation

At its core, signac is a tool for organizing and working with
data on the filesystem, presenting a Pythonic interface for tasks
like creating directories and modifying files. In particular, signac
makes modifying the JSON files used to store a job’s state points
and documents as easy as working with Python dictionaries.
Despite heavy optimization, when seeking to scale signac to ever-
larger data spaces, we quickly realized that the most significant
performance barrier was the overhead of parsing and modifying
large numbers of text files. Unfortunately, the usage of JSON files
in this manner was deeply embedded in our data model, which
made switching to a more performant backend without breaking
APIs or severely complicating our data model a daunting task.

While attempting to separate the signac data model from its
original backend implementation (manipulating JSON files on
disk), we identified a common pattern: providing a dictionary-
like interface for an underlying resource. Several well-known
Python packages such as h5py [Col13] and zarr [MjD+20] also use
dictionary-like interfaces to make working with complex resources
feel natural to Python users. Most such packages implement this
layer directly for their particular use case, but the nature of the
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problem suggested to us the possibility of developing a more
generic representation of this interface. Indeed, the purpose of the
Python standard library’s collections.abc module to make
it easy to define objects that "look like" standard Python objects
while having completely customizable behavior under the hood.
As such, we saw an opportunity to specialize this pattern for
a specific use case: the transparent synchronization of a Python
object with an underlying resource.

The synced collections framework represents the culmination
of our efforts in this direction, providing a generic framework
in which interfaces of any abstract data type can be mapped
to arbitrary underlying synchronization protocols. In signac, this
framework allows us to hide the details of a particular file storage
medium (like JSON) behind a dictionary-like interface, but it can
just as easily be used for tasks such as creating a new, list-like
interface that automatically saves all its data in a plain-text CSV
format. This section will offer a high-level overview of the synced
collections framework and our plans for its use within signac, with
an eye to potential users in other domains as well.

Summary of features

We designed synced collections to be flexible, easily extensible,
and independent of signac’s data model. Most practical use cases
for this framework involve an underlying resource that may be
modified by any number of associated in-memory objects that
behave like standard Python collections, such as dictionaries or
lists. Therefore, all normal operations must be preceded by loading
from this resource and updating the in-memory store, and they
must be succeeded by saving to that resource. The central idea
behind synced collections is to decouple this process into two
distinct groups of tasks: the saving and loading of data from a
particular resource backend, and the synchronization of two in-
memory objects of a given type. This delineation allows us to,
for instance, encapsulate all logic for JSON files into a single
JSONCollection class and then combine it with dictionary-
or list-like SyncedDict/SyncedList classes via inheritance
to create fully functional JSON-backed dictionaries or lists. Such
synchronization significantly lowers performance, so the frame-
work also exposes an API to implement buffering protocols to
collect operations into a single transaction before submitting them
to the underlying resource.

Previously, signac contained a single JSONDict class as part
of its API, along with a separately implemented internal-facing
JSONList that could only be used as a member of a JSONDict.
With the new framework, users can create fully-functional, arbi-
trarily nested JSONDict and JSONList objects that share the
same logic for reading from and writing to JSON files. Just as
importantly, signac can now combine these data structures with
a different backend, allowing us to swap in different storage
mechanisms for improved performance and flexibility with no
change in our APIs. Since different types of resources may have
different approaches to batching transactions — for example, a
SQLite backend may want to exploit true SQL transactions, while
a Redis backend might simply collect all changes in memory
and delay sending memory to the server — synced collections
also support customizable buffering protocols, again via class
inheritance.

Applications of synced collections

The new synced collections promise to substantially simplify both
feature and performance enhancements to the signac framework.

Performance improvements in the form of Redis-based storage
are already possible with synced collections, and as expected they
show substantial speedups over the current JSON-based approach.
We have also exploited the new and more flexible buffering proto-
col to implement and test alternatives to the previous approach. In
certain cases, our new buffering techniques improve performance
of buffered operations by 1-2 orders of magnitude. Some of these
performance improvements are drop-in replacements that require
no changes to our existing data models, and we plan to enable
these in upcoming versions of signac.

The generality of synced collections makes them broadly use-
ful even outside the signac framework. Adding Pythonic APIs to
collection-like objects can be challenging, particularly when those
objects should support arbitrary nesting, but synced collections
enable nesting as a core feature to dramatically simplify this
process. Moreover, while the framework was originally conceived
to support synchronization of an in-memory data structure with
a resource on disk, it can also be used to synchronize with
another in-memory resource. A powerful example of this would
be wrapping a C or C++ extension type, for instance by creating
a SyncedList that synchronizes with a C++ std::vector,
such that changes to either object would be transparently reflected
in the other. With synced collections, creating this class just
requires defining a conversion between a std::vector and a
raw Python list, a trivial task using standard tools for exposing
extension types such as pybind or Cython.

At a higher level, synced collections represent an important
step in improving both the scalability and flexibility of signac. By
abstracting away details of persistent file storage from the rest of
signac, they make it much easier for the rest of signac to focus
on offering flexible data models. One of the most common use
cases of signac is creating data spaces with homogeneous schemas
that fit naturally into tabular data structures. In future iterations
of signac, we plan to allow users to opt into homogeneous
schemas, which would enable us to replace file-based indexes
with SQL-backed databases that would offer orders of magnitude
in performance improvements. Using this flexibility, we could
also move away from our currently rigid workspace model to
allow more general data layouts on disk for cases where users
may benefit from more general folder structures. As such, synced
collections are a stepping stone to creating a more general and
powerful version of signac.

Project evolution

The signac project has evolved from being an open-source project
mostly developed and managed by the Glotzer Group at the
University of Michigan, to being supported by over 30 contributors
and 8 committers/maintainers on 3 continents and with over 55
citations from academic and government research labs and 12
talks at large scientific, Python, and data science conferences.
The growth in involvement with signac results from our focus
on developing features based on user needs, as well as our efforts
to transition signac users into signac contributors, through many
initiatives in the past few years. Through encouraging users to
become contributors, we ensure that signac addresses real users’
needs. Early on, we identified that the framework had the potential
to be used by a wide community of researchers and that its
philosophy was aligned with other projects in the scientific Python
ecosystem. We have expanded signac’s contributor base beyond
the University of Michigan through research collaborations such
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as the MoSDeF CSSI with other universities, sharing the frame-
work at conferences, and through the Google Summer of Code
(GSoC) program, which we applied to under the NumFOCUS
organization. Working with and mentoring students through GSoC
led to a new committer and significant work on the synced
collections and aggregation projects presented above. We provide
active support and open discussion for the contributor and user
community through Slack. In addition, we have started hosting
weekly "office hours" for in-person (virtual) introduction and
guided contributions to the code base. By pairing new contributors
with experienced signac developers, we significantly reduce the
knowledge barrier to joining a new project. Close interactions
between developers and users during office hours has led to
more features and documentation born directly out of user need.
Contributing to documentation has been a productive starting
point for new users-turned-contributors, both for the users and
the project, since it improves the users’ familiarity with the API as
well as addresses weak spots in the documentation that are more
obvious to new users.

In our growth with increasing contributors and users, we
recognized a need to change our governance structure to make
contributing easier and provide a clear organizational structure
to the community. We based our new model on the Meritocratic
Governance Model and our manager roles on Numba [LPS] Czars.
We decided on a four category system with maintainers, commit-
ters, contributors, and users. Code review and pull request merge
responsibilities are granted to maintainers and committers, who
are (self-) nominated and accepted by a vote of the project main-
tainers. Maintainers are additionally responsible for the strategic
direction of the project and administrative duties. Contributors
consist of all members of the community who have contributed in
some way to the framework, which includes adding or refactoring
code as well as filing issues and improving documentation. Finally,
users refer to all those who use signac in any capacity.

In addition, to avoid overloading our committers and main-
tainers, we added three rotating manager roles to our governance
model that ensure project management goes smoothly: triage,
community, and release. These managers have specific rotation
policies based on time (or release cycles). The triage manager
role rotates weekly and looks at new issues or pull requests and
handles cleanup of outdated issues. The community manager role
rotates monthly and is in charge of meeting planning and outreach.
Lastly, the release manager rotates with each release cycle and is
the primary decision maker for the timeline and feature scope
of package releases. This prevents burnout among our senior
developers and provides a sense of ownership to a greater number
of people, instead of relying on a "benevolent dictator/oligarchy
for life" mode of project leadership.

Conclusions

From the birth of the signac framework in 2015 to now, signac has
grown in usability, performance, and use. In the last three years,
we have added exciting new features such as groups, aggregation,
and synced collections, while learning how to manage outreach
and establish sustainable project governance in a burgeoning
scientific open-source project. We hope to continue expanding
the framework through user-oriented development, reach users
in research fields beyond materials science that routinely have
projects suited for signac, and welcome new contributors with
diverse backgrounds and skills to the project.

Installing signac

The signac framework is tested for Python 3.6+ and is compatible
with Linux, macOS, and Windows. The software is available under
the BSD-3 Clause license. To install, execute
conda install -c conda-forge signac \
signac-flow signac-dashboard

or
pip install signac signac-flow signac-dashboard

Source code is available on GitHub45 and documentation is hosted
online by ReadTheDocs6.
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Abstract—The Dark Energy Spectroscopic Instrument (DESI) will create the
most detailed 3D map of the Universe to date by measuring redshifts in light
spectra of over 30 million galaxies. The extraction of 1D spectra from 2D spec-
trograph traces in the instrument output is one of the main computational bot-
tlenecks of DESI data processing pipeline, which is predominantly implemented
in Python. The new Perlmutter supercomputer system at the National Energy
Scientific Research and Computing Center (NERSC) will feature over 6,000
NVIDIA A100 GPUs across 1,500 nodes. The new heterogenous CPU-GPU
computing capability at NERSC opens the door for improved performance for
science applications that are able to leverage the high-throughput computation
enabled by GPUs. We have ported the DESI spectral extraction code to run on
GPU devices to achieve a 20x improvement in per-node throughput compared
to the current state of the art on the CPU-only Haswell partition of the Cori
supercomputer system at NERSC.

Index Terms—Python, HPC, GPU, CUDA, MPI, CuPy, Numba, mpi4py, NumPy,
SciPy, Astronomy, Spectroscopy

Introduction

The Dark Energy Spectroscopic Instrument (DESI) experiment
is a cosmological redshift survey. The survey will create the
most detailed 3D map of the Universe to date, using position
and redshift information from over 30 million galaxies. During
operation, around 1000 CCD frames per night (30 per exposure)
are read out from the instrument and transferred to NERSC for
processing and analysis. Each frame contains 500 2D spectrograph
traces from galaxies, standard stars (for calibration), or just the
sky (for background subtraction). These traces must be extracted
from the CCD frames taking into account optical effects from
the instrument, telescope, and the Earth’s atmosphere. Redshifts
are measured from the extracted The data is processed in near-
real time in order to monitor survey progress and update the
observing schedule for the following night. Periodically, a com-
plete reprocessing of all data observed to-date is performed and
made available as data release to the collaboration and eventually
released to the public.

The DESI spectral extraction code is an implementation of the
spectro-perfectionism algorithm, described in [BS10]. The process
of extracting 1D spectra from 2D spectrograph traces for all 500
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targets per frame is computationally intensive and has been the
primary focus of optimization efforts for several years ([RTD+17],
[STB19]). The DESI data processing pipeline is predominantly
implemented using the Python programming language. A strict
requirement from the DESI data processing team is to keep the
code implementation in Python.

The existing state of the art implementation utilizes a divide
and conquer framework to make spectro-perfectionism algorithm
tractable on existing computing hardware, see Figure 1. The
code utilizes the Message Passing Interface (MPI) via mpi4py to
exploit both multi-core and multi-node parallelism ([DPS05]). The
application uses multidimensional array data structures provided
by NumPy along with several linear algebra and special functions
from the NumPy and SciPy libraries ([HMvdW+20], [VGO+20]).
Several expensive kernels are implemented using Numba just-in-
time compilation ([LPS15]). All input and output files are stored
on disk using the FITS file format. The application is parallelized
by dividing an image into thousands of small patches, performing
the extraction on each individual patch in parallel, and stitching
the result back together.

This has worked well for CPU-only computing architectures
such as the Haswell (Intel Xeon Processor E5-2698 v3) and
Knights Landing (Intel Xeon Phi Processor 7250) partitions on the
Cori1 supercomputer at NERSC. The new Perlmutter2 supercom-
puter system at NERSC will have a partition of GPU accelerated
nodes (AMD EPYC 7763, NVIDIA A100 GPU). The goal of
this work is to speed up the DESI experiment’s data processing
pipeline by porting the spectroscopic extraction step to run on the
GPU partition of the Perlmutter supercomputer at NERSC.

In early 2020, the team began reimplementing the existing
extraction code specter3 by reconsidering the problem. The DESI
spectral extraction problem is fundamentally an image process-
ing problem which historically have been well-suited to GPUs.
However, in many places, the existing CPU version of the code
used loops and branching logic rather than vector or matrix-
based operations. We performed a significant refactor switching
key parts of the analysis to matrix-based operations which would
be well suited to massive GPU parallelism. Additionally, the
refactor enabled more flexible task partitioning and improved node
utilization. From this refactor alone, still running only on the CPU,
we obtained 1.6x speedup compared to the original CPU version.
From here, we began our GPU implementation.

1. https://docs.nersc.gov/systems/cori/
2. https://docs.nersc.gov/systems/perlmutter/
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Fig. 1: The goal of the algorithm is to extract spectra from raw telescope output. Here we show the raw telescope output for a single "patch"
and the corresponding pieces of the extracted spectra. The divide and conquer strategy used in this application divides an image into roughly
5,000 patches which can be extracted in parallel. The extracted pieces are then stiched back together and written to disk for further processing
by the data pipeline.

We describe our iterative approach to porting and optimizing
the application using NVIDIA Nsight Systems for performance
analysis. We use a combination of CuPy and JIT-compiled CUDA
kernels via Numba for GPU-acceleration. In order to maximize
use of resources (both CPUs and GPUs), we use MPI via mpi4py
and CUDA Multi-Process Service. We discuss the lessons we
learned during the course of this work that will help guide future
efforts of the team and inform other science teams looking to
leverage GPU-acceleration in their Python-based data processing
applications. We project that new extraction code gpu_specter4

running on Perlmutter will achieve a 20x improvement in per-
node throughput compared to the current production throughput
on Cori Haswell.

GPU Implementation

The existing CPU implementation uses NumPy and SciPy (BLAS
and LAPACK) for linear algebra, numba just-in-time compilation
for specialized kernels, and mpi4py (MPI) for multi-core and
multi-node scaling. The code is parallelized to run on multiple
CPU cores and nodes using a Single Program Multiple Data
(SPMD) programming pattern enabled by MPI through mpi4py.
The structure of the program is illustrated in Figure 2, which
highlights the main MPI communication points.

In order to leverage the compute capabilities of GPU devices
and adhere to the DESI Python requirement, we decided to
use a GPU-accelerated Python library. The main considerations
for heterogeneous CPU-GPU computing are to minimize data
movement between the CPU host and the GPU device and to feed
the GPU large chunks of data that can be processed in parallel.
Keeping those considerations in mind, we left rest of the GPU
programming details to external libraries. There are many rapidly
maturing Python libraries that allow users to write code that will

3. https://github.com/desihub/specter
4. https://github.com/desihub/gpu_specter

Fig. 2: An illustration of the program structure highlighting main MPI
communication points. Flow runs from top to bottom.

run on GPU hardware, such as CuPy, pyCUDA, pytorch, JAX, and
Numba CUDA. We chose to use CuPy [OUN+17] and Numba
CUDA based on our ability to easily integrate their API with our
existing code.

The initial GPU port was implemented by off-loading compute
intensive steps of the extraction to the GPU using CuPy in
place of NumPy and SciPy. A few custom kernels were also
re-implemented using Numba CUDA just-in-time compilation. In
many cases, we merely replaced an existing API call from numpy,
scipy, or numba.jit with equivalent GPU-accelerated version from
cupy, cupyx.scipy, or numba.cuda.jit.
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The example code below demonstrates how we integrated
cupy, numba.cuda, and the NumPy API:

import cupy
import numba.cuda
import numpy

# CUDA kernel
@numba.cuda.jit
def _cuda_addone(x):

i = numba.cuda.grid(1)
if i < x.size:

x[i] += 1

# convenience wrapper with thread/block configuration
def addone(x):

# threads per block
tpb = 32
# blocks per grid
bpg = (x.size + (tpb - 1)) // tpb
_cuda_addone[bpg, tpb](x)

# create array on device using cupy
x = cupy.zeros(1000)
# pass cupy ndarray to numba.cuda kernel
addone(x)
# Use numpy api with cupy ndarray
total = numpy.sum(x)

We found that this interopability gave us a lot of flexibility to
experiment during development. This achieved our initial goal
porting the application to run on GPU hardware.

In the following sub-sections, we will discuss the major
development milestones that lead to the improved performance
of the application on GPUs.

Profiling the Code

As discussed in previous work [STB19], the team found a lot of
value using profiling tools such as the cProfile Python module.
In this work, we used NVIDIA’s NSight Systems to profile
the application, identify bottlenecks in performance, and focus
optimization efforts. We added CUDA NVTX markers (using the
CuPy API) to label regions of our code using descriptions that we
would be able to easily identify in the profile viewer. Without these
labels, it sometimes difficult to decipher the names of low-level
kernels that are called indirectly by our application. We generally
used a following command to generate profiles of our application:

nsys profile --sample=none \
--trace=cuda,nvtx \
--stats=true \
<optional mpirun/srun> \
<optional mps-wrapper> \
app.py <app args>

The nsys profile launches and profiles our application. Usuaully,
we disable CPU sampling (--sample=none) and only trace CUDA
and NVTX APIs (--trace=cuda,nvtx) to limit noise in the profile
output. When using MPI, we add the mpirun or equivalent (srun
on NERSC systems) executable with its arguments following the
arguments to the nsys profile segment of the command. Simi-
larily, when using the CUDA Multi-Process Service, we include
a wrapper shell script that ensures the service is launches and
shutdowns from a single process per node. Finally, we specify
the executable we wish to profile along with its arguments. The
--stats=true option generates a set of useful summary statistics
that is printed to stdout. For a more detailed look at runtime
performance, it is useful view the generated report file using the
NSight Systems GUI.

Nsight Systems provides a zoomable timeline view that allows
us to visualize the performance of our code. Using Nsight Sys-
tems, we can see the regions of our code that we marked with
NVTX wrappers, as well as the lower level memory and kernel
operations. In Figure 3, we show a screenshot from an early profile
of our GPU port using the NSight Systems GUI. At a high-level,
we see that memory transfers and kernel executions, respectively,
account for 3% and 97% of the time spent on GPU. From this
profile, we identified that approximately 85% of the runtime of
the application is spent in the "decorrelate" step of the algorithm.
We also discovered an unexpected performance issue near the
end patch extraction that we were able to solve using NumPy
advanced array indexing. The execution time of the decorrelate
method is dominated by the eigenvalue decomposition operations.
Profiling also helped identify unexpected performance issues in
code regions we did not expect.

Maximizing Node Utilization

We use multiple GPUs in our application via MPI (mpi4py).
Since the CPU implementation is already using MPI, minimal
refactor was required. Each MPI rank is assigned to a sin-
gle GPU. Mapping MPI ranks to GPUs can be handled using
slurm options (--gpu-bind ), setting environment variables such
as CUDA_VISIBLE_DEVICES, or at runtime using the CuPy
API (cupy.cuda.Device.use() ). We oversubscribe ranks to GPUs
to saturate GPU utilization using CUDA Multi-Process Service
(MPS), which allows kernel and memcopy operations from dif-
ferent processes to overlap on the GPU. Some care must be
taken to avoid over allocating memory on each device. We use
a shell script wrapper to ensure the CUDA MPS control daemon
is started by a single process on each node process server before
launching our application. At NERSC, we use the following script
which references environment variables set by the slurm workload
manager.
#!/bin/bash
# Example mps-wrapper usage:
# > srun -n 2 -c 1 mps-wrapper command arg1 ...
export CUDA_MPS_PIPE_DIRECTORY=/tmp/nvidia-mps
export CUDA_MPS_LOG_DIRECTORY=/tmp/nvidia-log
# Launch MPS from a single rank per node
if [ $SLURM_LOCALID -eq 0 ]; then

nvidia-cuda-mps-control -d
fi
# Wait for MPS to start
sleep 5
# Run the command
"$@"
# Quit MPS control daemon before exiting
if [ $SLURM_LOCALID -eq 0 ]; then

echo quit | nvidia-cuda-mps-control
fi

In Figure 4, we show how performance scales with the number
of GPUs used and the number of MPI ranks per GPU. The solid
colored lines indicate the improved performance as we increase the
number of GPU used. Different colors represent varying degrees of
the number of MPI ranks per GPU. In this case, using 2 MPI ranks
per GPU seems to saturate performance and we observe a slight
degradation in performance oversubscribing further. We reached
the GPU memory limit when attempting to go beyond 4 MPI
ranks per GPU. The measurements for the analysis shown here
were performed on test node at NERSC using 4 NVIDIA V100
GPUs. The Perlmutter system will use NVIDIA A100 (40GB)
GPUs which have more cores and significantly more memory than
the V100 (16GB) GPUs. A similar analysis showed that we could
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Fig. 3: A screenshot of a profile from an early GPU port using NVIDIA Nsight Systems.

go up to 5 MPI ranks per GPU on a test system with A100s. We
note that while this configuration maximizes the expected GPU
utilization on a Perlmutter with 4 A100 GPUs, the 64-core AMD
Milan CPU is only at 31.25% utilization with 20 MPI ranks. Later
on, we will discuss one way to utilize a few of these spare CPU
cores.

Fig. 4: Performance scaling with multiple NVIDIA V100 GPUs. The
solid colored lines indicate the improved performance as we increase
the number of GPU used. Different colors represent varying degrees
of the number of MPI ranks per GPU as indicated in the legend.
The horizontal blue lines representing CPU-only measurements were
approximate and only used for reference.

Batching GPU Operations

Earlier, we observed that eigenvalue decomposition accounted for
a significant portion of the execution time of our program. In the

spectro-perfectionism algorithm, an eigenvalue decomposition is
performed on the inverse covariance matrix which is then used
to calculate the covariance matrix followed by several smaller
eigenvalue decompositions that are performaned on the diagonal
blocks of the covariance matrix. Since the small eigenvalue de-
compositions are performed on independent sub-matrices, we tried
"batching" (or "stacking") the operations. We noted the existance
of a syevjBatched function in CUDA cuSOLVER library which
could perform eigenvalue decomposition on batches of input ma-
trices using a Jacobi eigenvalue solver. This was not immediately
available in Python via CuPy but we were able to implement
Cython wrappers in CuPy using similar wrappers already present
in CuPy as a guide. We submitted our implementation as a pull-
request to the CuPy project on GitHub5.

In Figure 5, we show profile snippets of that demonstate the
improved performance using the Jacobi eigenvalue solvers from
the cuSOLVER library. The execution time of the "decorrelate"
method improved by a factor of two.

This inspired us to look for opportunities to use batched
operations in our program. We found a significant speedup by
refactoring the application to extract spectra from multiple patches
in a subbundle using batched array and linear algebra operations.
This allowed us to leverage batched Cholesky decomposition and
solver operations on the GPU (potrfBatched and potrsBatched in
the cuSOLVER library). We contributed cupyx.linalg.posv (named
after LAPACK’s xPOSV routines) to solve the linear equations
A x = b via Cholesky factorization of A, where A is a real
symmetric or complex Hermitian positive-definite matrix6. Our
implementation was essentially a generalization of an existing
method cupyx.linalg.invh, which was implemented as the special
case where the right-hand side of the equation is the Identity
matrix. In Figure 6, we compare the profile timelines before
and after implementing batch Cholesky decomposition and solver
operations. The runtime for extraction over an entire subbundle of
5 spectra is 3.3 times faster using batched Cholesky operations.

5. https://github.com/cupy/cupy/pull/3488
6. https://github.com/cupy/cupy/pull/4291
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Fig. 5: The "decorrelate" is twice as fast using the Jacobi eigenvalue solvers from the cuSOLVER library.

Fig. 6: Profile demonstrating speedup from batch Cholesky solve.

Overlapping Compute and IO

At this point, we observed that reading the input data and writing
the output results accounted for approximately 25%-30% of the
total wall time to process 30 frames from a single exposure in
series using a single node. The input data is read by a single MPI
rank, transferred to GPU memory, and then broadcast to other
MPI ranks using CUDA-aware MPI. After extraction, each MPI
rank transfers its results back to CPU memory and the results
are gathered to the root MPI rank. The root MPI rank combines
the results and writes the output to a FITS file on disk. Using
spare CPU cores, we were able to hide most of this IO latency
and better utilize the resources available on a node. When there
are multiple frames processed per node, the write and read steps
between successive frames can be interleaved with computation.

In Figure 7, we demonstrate how a subset of the MPI ranks

communicate to achieve this functionality. At a high level, the
processing of a single frame can be broken down into 3 distinct
phases: read, work, and write. The frames are processed in series,
frame one (green) is processed, then frame two (orange), and
finally frame (three). Panel a shows the non-overlapping sequence
of steps to process 3 frames in series. Panel b shows how the
overlapping of IO and computation is orchestrated using two
additional MPI ranks, dedicated reader and writer ranks. At the
start of the program, the reader rank reads the input data while
all worker ranks wait. The reader rank performs some initial
preprocessing and sends the data to the root computation rank.
Once the data has been sent, the reader rank begins reading
the next frame. After the worker root receives the input data, it
performs the work which can involve broadcasting the data to
additional worker ranks in the computation group (not shown in
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the diagram). The result on the root computation rank is then sent
to a specially designated writer rank. The computation group ranks
move on to processing the next frame which has already been read
from disk by a specially designated read rank. Meanwhile, the
writer rank finishes writing the previous result and is now waiting
to receive the next result.

Overlapping compute and IO in this manner effectively hides
the intermediate read and write operations between frames pro-
cessed serially on a node, reducing the wall time by over 60
seconds and providing a 1.34x speedup in per-node throughput.

Results

Throughout development, we performed a standard benchmark
after major feature implementations to track progress over time.
For DESI, a useful and practical benchmark of performance is
the number of frames that can be processed per node-time on
NERSC systems. Specifically, we use the throughput measure
frames-per-node-hour (FPNH) as the figure of merit (FoM) for
this application. This figure enables DESI to cost out how much
data it can process given a fixed allocation of compute resources.

A summary of benchmark results by major feature milestone
is shown in Figure 8 and listed in Table 1. The benchmark uses
data from a single exposure containing 30 CCD frames. After
major feature implementations, we typically perform a scan of hy-
perparameter values to identify the optimal settings. For example,
after the "batch-subbundle" implementation, the optimal number
of wavelength bins per patch changed from 50 to 30. The baseline
FoM for this application on the Edison and Cori supercomputers
is 27.89 FPNH and 40.15 FPNH, respectively. The initial refactor
improved the CPU-only performance on Cori Haswell by more
than 50%. Our initial GPU port achieved 6.15 FPNH on Cori
GPU nodes, an unimpressive mark compared to the baseline CPU
benchmarks. Using visual profiling to guide optimization effort,
we were able to iterively improve the performance to 362.2 FPNH
on Cori GPU nodes.

Since the Perlmutter system is not available at the time of
writing, we estimate the expected performance by running the
benchmark on an NVIDIA DGX-A100 system. A Perlmutter GPU
node will have the same NVIDIA A100 GPUs as the DGX system
and the newer AMD Milan CPU compared to the AMD Rome
CPU on DGX. The projected FoM for this application on the
new Perlmutter supercomputer is 575.25 FPNH, a roughly 20x
improvement over the Edison baseline.

Going forward, the team will need to re-evaluate where to
refocus optimization efforts. The performance of the spectral
extraction step is now comparable to other steps in the DESI data
processing pipeline. We are currently evaluating other steps in the
DESI pipeline for GPU acceleration. The DESI team may also
opt to spend the improved efficiency to perform more compute
intensive processing if there is a scientific opportunity.

Conclusion

The rising popularity of heterogenous CPU-GPU computing plat-
forms offers an opportunity for improving the performance of
science applications. Adapting scientific Python applications to
use GPU devices is relatively seamless due to the community
of developers working on GPU-accelerated libraries that provide

*. Note that the initial-gpu benchmark only processed a single frame instead
of all 30 frames from an expoosure.

Numpy-compatible and SciPy-compataible APIs and, of course,
the excellent foundation provided by NumPy and SciPy projects.
Profiling tools such as NVIDA Nsight Systems and the cProfile
Python module often provide actionable insights to that can focus
optimization efforts. Refactoring code to expose parallelism and
use more vectorized operations often improves performance on
both CPU and GPU computing architectures. For DESI, the
transition to GPUs on Perlmutter will shorten the time it takes
to process years worth of data from weeks to months down to
hours to days.
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MPI-parallel Molecular Dynamics Trajectory Analysis
with the H5MD Format in the MDAnalysis Python

Package

Edis Jakupovic‡, Oliver Beckstein‡∗

F

Abstract—Molecular dynamics (MD) computer simulations help elucidate de-
tails of the molecular processes in complex biological systems, from protein
dynamics to drug discovery. One major issue is that these MD simulation files
are now commonly terabytes in size, which means analyzing the data from
these files becomes a painstakingly expensive task. In the age of national
supercomputers, methods of parallel analysis are becoming a necessity for the
efficient use of time and high performance computing (HPC) resources but for
any approach to parallel analysis, simply reading the file from disk becomes
the performance bottleneck that limits overall analysis speed. One promising
way around this file I/O hurdle is to use a parallel message passing interface
(MPI) implementation with the HDF5 (Hierarchical Data Format 5) file format to
access a single file simultaneously with numerous processes on a parallel file
system. Our previous feasibility study suggested that this combination can lead
to favorable parallel scaling with hundreds of CPU cores, so we implemented a
fast and user-friendly HDF5 reader (the H5MDReader class) that adheres to
H5MD (HDF5 for Molecular Dynamics) specifications. We made H5MDReader
(together with a H5MD output class H5MDWriter) available in the MDAnalysis
library, a Python package that simplifies the process of reading and writing vari-
ous popular MD file formats by providing a streamlined user-interface that is in-
dependent of any specific file format. We benchmarked H5MDReader’s parallel
file reading capabilities on three HPC clusters: ASU Agave, SDSC Comet, and
PSC Bridges. The benchmark consisted of a simple split-apply-combine scheme
of an I/O bound task that split a 90k frame (113 GiB) coordinate trajectory
into N chunks for N processes, where each process performed the commonly
used RMSD (root mean square distance after optimal structural superposition)
calculation on their chunk of data, and then gathered the results back to the
root process. For baseline performance, we found maximum I/O speedups at 2
full nodes, with Agave showing 20x, and a maximum computation speedup on
Comet of 373x on 384 cores (all three HPCs scaled well in their computation
task). We went on to test a series of optimizations attempting to speed up
I/O performance, including adjusting file system stripe count, implementing a
masked array feature that only loads relevant data for the computation task,
front loading all I/O by loading the entire trajectory into memory, and manually
adjusting the HDF5 dataset chunk shapes. We found the largest improvement in
I/O performance by optimizing the chunk shape of the HDF5 datasets to match
the iterative access pattern of our analysis benchmark. With respect to baseline
serial performance, our best result was a 98x speedup at 112 cores on ASU
Agave. In terms of absolute time saved, the analysis went from 4623 seconds
in the baseline serial run to 47 seconds in the parallel, properly chunked run.
Our results emphasize the fact that file I/O is not just dependent on the access
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pattern of the file, but more so the synergy between access pattern and the
layout of the file on disk.

Index Terms—Molecular Dynamics Simulations, High Performance Computing,
Python, MDAnalysis, HDF5, H5MD, MPI I/O

Introduction

The molecular dynamics (MD) simulation approach [HBD+19]
is widely used across the biomolecular and materials sciences,
accounting for more than one quarter of the total computing time
[FQC+19] in the Extreme Science and Engineering Discovery
Environment (XSEDE) network of national supercomputers in
the US [TCD+14]. MD simulations, especially in the realm of
studying protein dynamics, serve an important purpose in charac-
terizing the dynamics, and ultimately the function of a protein
[Oro14]. For example, recent award-winning work [CDG+21]
involving the SARS-CoV-2 spike protein was able to use all-
atom MD simulations to elucidate the dynamics of the virus-to-
human cell interaction that was inaccessible to experiment. While
the parameters involved in fine tuning the physics driving these
simulations continue to improve, the computational demand of
longer, more accurate simulations increases [DDG+12]. As high
performance computing (HPC) resources continue to improve in
performance, the size of MD simulation files are now commonly
terabytes in size, making serial analysis of these trajectory files
impractical [CR15]. Parallel analysis is a necessity for the effi-
cient use of both HPC resources and a scientist’s time [BFJ18],
[FQC+19]. MD trajectory analysis can be parallelized using task-
based or MPI-based (message passing interface) approaches, each
with their own advantages and disadvantages [PLK+18]. Here
we investigate parallel trajectory analysis with the MDAnalysis
Python library [MADWB11], [GLB+16]. MDAnalysis is a widely
used package in the molecular simulation community that can
read and write over 25 popular MD trajectory file formats while
providing a common object-oriented interface that makes data
available as numpy arrays [HMvdW+20]. MDAnalysis aims to
bridge the entrenched user communities of different MD packages,
allowing scientists to more easily (and productively) move be-
tween these entrenched communities. Previous work that focused
on developing a task-based approach to parallel analysis found
that an I/O bound task only scaled to 12 cores due to a file I/O
bottleneck [SFMLIP+19]. Our recent feasibility study suggested
that parallel reading via MPI-IO and the HDF5 file format could
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lead to good scaling although only a reduced size custom HDF5
trajectory was investigated and no usable implementation of a true
MD trajectory reader was provided [KPF+20].

H5MD, or "HDF5 for molecular data", is an HDF5-based file
format that is used to store MD simulation data, such as particle
coordinates, box dimensions, and thermodynamic observables
[dBCH14]. A Python reference implementation for H5MD exists
(pyh5md [dBCH14]) but the library is not maintained anymore,
and with advice from the original author of pyh5md, we imple-
mented native support for H5MD I/O in the MDAnalysis package.
HDF5 is a structured, binary file format that organizes data into
two objects: groups and datasets. It implements a hierarchical,
tree-like structure, where groups represent nodes of the tree, and
datasets represent the leaves [Col14]. An HDF5 file’s datasets
can be stored either contiguously on disk, or scattered across
the disk in different locations in chunks. These chunks must be
defined on initialization of the dataset, and for any element to be
read from a chunk, the entire chunk must be read. The HDF5
library can be built on top of a message passing interface (MPI)
implementation so that a file can be accessed in parallel on a
parallel file system such as Lustre or BeeGFS. We implemented a
parallel MPI-IO capable HDF5-based file format trajectory reader
into MDAnalysis, H5MDReader, that adheres to the H5MD spec-
ifications. H5MDReader interfaces with h5py, a high level Python
package that provides a Pythonic interface to the HDF5 format
[Col14]. In h5py, accessing a file in parallel is accomplished
by passing a keyword argument into h5py.File, which then
manages parallel disk access.

The BeeGFS and Lustre parallel file systems are well suited
for multi-node MPI parallelization. One key feature of a Lustre
parallel file systems is file striping, which is the ability to store
data from a file across multiple physical locations, known as object
storage targets (OSTs), where "stripe count" refers to the number
of OSTs to which a single file is striped across. Thinking carefully
about the synchronization of chunk shape and stripe settings
can be crucial to establishing optimal I/O performance [How10].
We tested various algorithmic optimizations for our benchmark,
including using various stripe counts (1, 48, 96), loading only
necessary coordinate information with numpy masked arrays
[HMvdW+20], and front loading all I/O by loading the entire
trajectory chunk into memory prior to the RMSD calculation.

We benchmarked H5MDReader’s parallel reading capabilities
with MDAnalysis on three HPC clusters: ASU Agave at Arizona
State University, and SDSC Comet and PSC Bridges, which are
part of XSEDE [TCD+14]. The benchmark consisted of a simple
split-apply-combine scheme [Wic11] of an I/O-bound task that
split a 90k frame (113 GiB) trajectory into N chunks for N
processes, where each process performed a computation on their
chunk of data, and the results were finally gathered back to the
root process. For the computational task, we computed the time
series of the root mean squared distance (RMSD) of the positions
of the Cα (alpha carbon) atoms in the protein to their initial
coordinates at the first frame of the trajectory. At each frame (time
step) in the trajectory, the protein was optimally superimposed
on the reference frame to remove translations and rotations. The
RMSD calculation is a very common task performed to analyze
the dynamics of the structure of a protein [MM14]. Because it is
a fast computation that is bounded by how quickly data can be
read from the file it is a suitable task to test the I/O capabilities of
H5MDReader.

We tested the effects of HDF5 file chunking and file compres-

sion on I/O performance. In general we found that altering the
stripe count and loading only necessary coordinates via masked
arrays provided little improvement in benchmark times. Loading
the entire trajectory into memory in one pass instead of iterating
through, frame by frame, showed the greatest improvement in
performance. This was compounded by our results with HDF5
chunking. Our baseline test file was auto-chunked with the auto-
chunking algorithm in h5py. When we recast the file into a
contiguous form and a custom, optimized chunk layout, we saw
improvements in serial I/O on the order of 10x. Additionally, our
results from applying gzip compression to the file showed no loss
in performance at higher processor counts, indicating H5MD files
can be compressed without losing performance in parallel analysis
tasks.

Methods

HPC environments

We tested the parallel MPI I/O capabilities of our H5MD imple-
mentation on three supercomputing environments: ASU Agave,
PSC Bridges, and SDSC Comet. The Agave supercomputer offers
498 compute nodes. We utilized the Parallel Compute Nodes that
offer 2 Intel Xeon E5-2680 v4 CPUs (2.40GHz, 14 cores/CPU,
28 cores/node, 128GB RAM/node) with a 1.2PB scratch BeeGFS
file system that uses an Intel OmniPath interconnect system. The
Bridges supercomputer offers over 850 compute nodes that supply
1.3018 Pf/s and 274 TiB RAM. We utilized the Regular Shared
Memory Nodes that offer 2 Intel Haswell E5-2695 v3 CPUs (2.3-
3.3GHz, 14 cores/CPU, 28 cores/node, 128GB RAM/node) with
a 10PB scratch Lustre parallel file system that uses an InfiniBand
interconnect system. The Comet supercomputer offers 2 Pf/s with
1944 standard compute nodes. We utilized the Intel Haswell
Standard Compute Nodes that offer 2 Intel Xeon E5-2680 v3
CPUs (2.5GHz, 12 cores/CPU, 24 cores/node, 128GB RAM/node)
with a 13PB scratch Lustre parallel file system that also uses an
InfiniBand interconnect system.

Our software library stacks were built with conda environ-
ments. Table 1 gives the versions of each library involved in
the stack. We used GNU C compilers on Agave and Bridges
and the Intel C-compiler on Comet for MPI parallel jobs as
recommended by the Comet user guide. We used OpenMPI as the
MPI implementation on all HPC resources as this was generally
the recommended environment and in the past we found it also
the easiest to build against [KPF+20]. The mpi4py [DPKC11]
package was used to make MPI available in Python code, as
required by h5py. In general, our software stacks were built in
the following manner:

• module load anaconda3
• create new conda environment
• module load parallel hdf5 build
• module load OpenMPI implementation
• install mpi4py with env MPICC=/path/to/mpicc

pip install mpi4py
• install h5py with CC="mpicc" HDF5_MPI="ON"

HDF5_DIR=/path/to/parallel-hdf5 pip
install --no-binary=h5py h5py

• install development MDAnalysis as outlined in the MD-
Analysis User Guide
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System ASU Agave PSC Bridges SDSC Comet

Python 3.8.5 3.8.5 3.6.9
C compiler gcc 4.8.5 gcc 4.8.5 icc 18.0.1

HDF5 1.10.1 1.10.2 1.10.3
OpenMPI 3.0.0 3.0.0 3.1.4

h5py 2.9.0 3.1.0 3.1.0
mpi4py 3.0.3 3.0.3 3.0.3

MDAnalysis 2.0.0-dev0 2.0.0-dev0 2.0.0-dev0

TABLE 1: Library versions installed for each HPC environment.

name format file size (GiB)

H5MD-default H5MD 113
H5MD-chunked H5MD 113

H5MD-contiguous H5MD 113
H5MD-gzipx1 H5MD 77
H5MD-gzipx9 H5MD 75

DCD DCD 113
XTC XTC 35
TRR TRR 113

TABLE 2: Data files benchmarked on all three HPCS. name is the
name that is used to identify the file in this paper. format is the
format of the file, and file size gives the size of the file in gibibytes.
H5MD-default original data file written with pyh5md which uses the
auto-chunking algorithm in h5py. H5MD-chunked is the same file
but written with chunk size (1, n atoms, 3) and H5MD-contiguous is
the same file but written with no HDF5 chunking. H5MD-gzipx1 and
H5MD-gzipx9 have the same chunk arrangement as H5MD-chunked
but are written with gzip compression where 1 is the lowest level of
compression and 9 is the highest level. DCD, XTC, and TRR are
copies H5MD-contiguous written with MDAnalysis.

Benchmark Data Files

The test data files used in our benchmark consist of a topol-
ogy file YiiP_system.pdb with 111,815 atoms and a tra-
jectory file YiiP_system_9ns_center100x.h5md with
90100 frames. The initial trajectory data file (H5MD-default
in Table 2) was generated with pyh5md [dBCH14] using the
XTC file YiiP_system_9ns_center.xtc [SFMLIP+19],
[LRFK+21], using the "ChainReader" facility in MDAnalysis with
the list 100 * ["YiiP_system_9ns_center.xtc"] as
input. The rest of the test files were copies of H5MD-default and
were written with MDAnalysis using different HDF5 chunking
arrangements and compression settings. Table 2 gives all of the
files benchmarked with how they are identified in this paper as
well as their corresponding file size.

Parallel Algorithm Benchmark

We implemented a simple split-apply-combine parallelization
algorithm [Wic11], [SFMLIP+19], [KPF+20] that divides the
number of frames in the trajectory evenly among all available
processes. Each process receives a unique start and stop for
which to iterate through their section of the trajectory. As the
computational task, the root mean square distance (RMSD) of the
protein Cα atoms after optimal structural superposition [MM14]
is computed at each frame with the QCProt algorithm [The05], as
described in our previous work [SFMLIP+19], [KPF+20].

In order to obtain detailed timing information we instrumented
code as follows below. Table 3 outlines the specific lines in the
code that were timed in the benchmark.
1 import MDAnalysis as mda
2 from MDAnalysis.analysis.rms import rmsd
3 from mpi4py import MPI

line number id description

11 t init_top load topology file
12 t init_traj load trajectory file
38 tI/O read data from time step into memory
39 tcompute perform rmsd computation
42 twait wait for processes to synchronize
47 tcomm_gather combine results back into root process

TABLE 3: All timings collected from the example benchmark code.
id gives the reference name used in this paper to reference the
corresponding line number and timing collected. description gives
a short description of what that specific line of code is doing in the
benchmark.

4 import numpy as np
5

6 comm = MPI.COMM_WORLD
7 size = comm.Get_size()
8 rank = comm.Get_rank()
9

10 def benchmark(topology, trajectory):
11 u = mda.Universe(topology)
12 u.load_new(trajectory,
13 driver="mpio",
14 comm=comm)
15 CA = u.select_atoms("protein and name CA")
16 x_ref = CA.positions.copy()
17

18 # make_balanced_slices divides n_frames into
19 # equally sized blocks and returns start:stop
20 # indices for each block
21 slices = make_balanced_slices(n_frames,
22 size,
23 start=0,
24 stop=n_frames,
25 step=1)
26 start = slices[rank].start
27 stop = slices[rank].stop
28 bsize = stop - start
29

30 # sendcounts is used for Gatherv() to know how
31 # many elements are sent from each rank
32 sendcounts = np.array([
33 slices[i].stop - slices[i].start
34 for i in range(size)])
35

36 rmsd_array = np.empty(bsize, dtype=float)
37 for i, frame in enumerate(range(start, stop)):
38 ts = u.trajectory[frame]
39 rmsd_array[i] = rmsd(CA.positions,
40 x_ref,
41 superposition=True)
42 comm.Barrier()
43 rmsd_buffer = None
44 if rank == 0:
45 rmsd_buffer = np.empty(n_frames,
46 dtype=float)
47 comm.Gatherv(sendbuf=rmsd_array,
48 recvbuf=(rmsd_buffer, sendcounts), root=0)

The HDF5 file is opened with the mpio driver and the
MPI.COMM_WORLD communicator to ensure the file is accessed
in parallel via MPI I/O. The topology and trajectory initialization
times must be analyzed separately because the topology file is
not opened in parallel and represents a fixed cost each process
must pay to open the file. MDAnalysis reads data from MD
trajectory files one frame, or "snapshot" at a time. Each time
the u.trajectory[frame] is iterated through, MDAnalysis
reads the file and fills in numpy arrays [HMvdW+20] correspond-
ing to that time step. Each MPI process runs an identical copy
of the script, but receives a unique start and stop variable



MPI-PARALLEL MOLECULAR DYNAMICS TRAJECTORY ANALYSIS WITH THE H5MD FORMAT IN THE MDANALYSIS PYTHON PACKAGE 43

such that the entire file is read in parallel. Gathering the results is
done collectively by MPI, which means all processes must finish
their iteration blocks before the results can be returned. Therefore,
it is important to measure twait as it represents the existence of
"straggling" processes. If one process takes substantially longer
than the others to finish its iteration block, all processes are slowed
down. These 6 timings are returned and saved as an array for each
benchmark run.

We applied this benchmark scheme to H5MD test files on
Agave, Bridges, and Comet. Each benchmark run received a
unique, freshly copied test file that was only used once so as
to avoid any caching effects of the operating system or file
system. We also tested three algorithmic optimizations: Lus-
tre file striping, loading the entire trajectory into memory, and
using masked arrays in numpy to only load the Cα coor-
dinates required for the RMSD calculation. For striping, we
ran the benchmark on Bridges and Comet with a file stripe
count of 48 and 96. For the into memory optimization, we
used MDAnalysis.Universe.transfer_to_memory()
to read the entire file in one go and pass all file
I/O to the HDF5 library. For the masked array optimiza-
tion, we allowed u.load_new() to take a list or ar-
ray of atom indices as an argument, sub, so that the
MDAnalysis.Universe.trajectory.ts arrays are in-
stead initialized as numpy.ma.masked_array instances and
only the indices corresponding to sub are read from the file.

Performance was quantified by measuring the I/O timing
returned from the benchmarks, and strong scaling was assessed
by calculating the speedup S(N) = t1/tN and the efficiency
E(N) = S(N)/N.

Data Sharing

All of our SLURM submission shell scripts and Python bench-
mark scripts for all three HPC environments are available in the
repository https://github.com/Becksteinlab/scipy2021-mpiH5MD-
data and are archived under DOI 10.5281/zenodo.5083858.

Results and Discussion

Baseline Benchmarks

We first ran benchmarks with the simplest parallelization scheme
of splitting the frames of the trajectory evenly among all partici-
pating processes. The H5MD file involved in the benchmarks was
written with the pyh5md library, the original Python reference
implementation for the H5MD format [dBCH14]. The datasets in
the data file were chunked automatically by the auto-chunking
algorithm in h5py. File I/O remains the largest contributor to
the total benchmark time, as shown by Figure 1 (A). Figure 1
(B, D-F) also show that the initialization, computation, and MPI
communication times are negligible with regards to the overall
analysis time. twait, however, becomes increasingly relevant as the
number of processes increases (Figure 1 C), indicating a growing
variance in the iteration block time across all processes. In effect,
twait is measuring the occurrence of "straggling" processes, which
has been previously observed to be an issue on busy, multi-user
HPC environments [KPF+20]. We found that the total benchmark
time continues to decrease as the number of processes increases
to over 100 (from 4648 ± 319 seconds at N = 1 to 315.6 ± 59.8
seconds at N = 112 on Agave) (Fig. 2 A). While the absolute time
of each benchmark is important in terms of measuring the actual
amount of time saved with our parallelization scheme, results are
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Fig. 1: Benchmark timings breakdown for the ASU Agave, PSC
Bridges, and SDSC Comet HPC clusters. The benchmark was run
on up to 4 full nodes on each HPC, where Nprocesses was 1, 28, 56,
and 112 for Agave and Bridges, and 1, 24, 48, and 96 on Comet.
The H5MD-default file was used in the benchmark, where the
trajectory was split in N chunks for each corresponding N process
benchmark. Points represent the mean over three repeats with the
standard deviation shown as error bars.

1 28 56 112
101

102

103

104

Ti
m

e(
s)

Total Benchmark Time

1 28 56 112
0

20
40
60
80

100
120

S(
N

)=
t 1

/t N

Scaling

1 28 56 112
0.0

0.2

0.4

0.6

0.8

1.0

E(
N

)=
S(

N
)/N

Efficiency

Agave Bridges Comet
IO
RMSD

NProcesses

A B C

Fig. 2: Strong scaling I/O and RMSD performance of the RMSD
analysis task of the H5MD-default data file on Agave, Bridges,
and Comet. Nprocesses ranged from 1 core, to 4 full nodes on each
HPC, and the number of trajectory blocks was equal to the number
of processes involved. Points represent the mean over three repeats
where the error bars are derived with the standard error propagation
from the standard deviation of absolute times.

often highly variable in a crowded HPC environment [How10] and
therefore we focus our analysis on the speedup and efficiency of
each benchmark run. The maximum total I/O speedup observed is
only 15x and efficiencies at around 0.2 (Fig. 2 B, C). The RMSD
computation scaling, on the other hand, remains high, with nearly
ideal scaling on Bridges and Comet, with Agave trailing behind at
71x speedup at 122 cores. Therefore, for a computationally bound
analysis task, our parallel H5MD implementation will likely scale
well.

Effects of Algorithmic Optimizations on File I/O

We tested three optimizations aimed at shortening file I/O time
for the same data file. In an attempt to optimize I/O, we tried
to minimize "wasted I/O". For example, in any analysis task,
not all coordinates in the trajectory may be necessary for the
computation. In our analysis test case, the RMSD was calculated
for only the Cα atoms of the protein backbone, therefore the
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Fig. 3: Benchmark timings breakdown for the ASU Agave, PSC
Bridges, and SDSC Comet HPC clusters for the masked_array
optimization technique. The benchmark was run on up to 4 full nodes
on each HPC, where N processes was 1, 28, 56, and 112 for Agave
and Bridges, and 1, 24, 48, and 96 on Comet. The H5MD-default
file was used in the benchmark, where the trajectory was split in N
chunks for each corresponding N process benchmark. Points represent
the mean over three repeats with the standard deviation shown as
error bars.

coordinates of all other atoms read from the file is essentially
wasted I/O. To circumvent this issue, we implemented the use of
NumPy ma.masked_array [HMvdW+20], where the arrays of
coordinate data are instead initialized as masked arrays that only
fill data from selected coordinate indices. We found that Bridges
showed the best scaling with the masked array implementation,
with a total scaling of 23x at 4 full nodes (1642 ± 115 seconds at
N = 1 to 71 ± 33 seconds at N = 112 cores) as seen in Figure 4
(A, B). Agave showed a maximum scaling of 11x at 2 full nodes,
while Comet showed 5x scaling at 4 full nodes (Figure 4 B). In
some cases, the masked array implementation resulted in slower
I/O times. For example, Agave went from 4623 seconds in the
baseline 1 core run to 5991 seconds with masked arrays. This
could be due to the HDF5 library not being optimized to work
with masked arrays as with numpy arrays. On the other hand, for
Bridges and Comet, we observed an approximate 5x speedup in
I/O time (Fig. 4 B) for the masked array case when compared
to the baseline benchmark. In terms of the RMSD computation
scaling, we once again found all three systems scaled well, with
Comet displaying ideal scaling all the way to 4 full nodes, while
Agave and Bridges hovering around 85x at 112 cores.

With an MPI implementation, processes participating in par-
allel I/O communicate with one another. It is commonly un-
derstood that repeated, small file reads performs worse than a
large, contiguous read of data. With this in mind, we tested
this concept in our benchmark by loading the entire trajectory
into memory prior to the RMSD task. Modern super computers
make this possible as they contain hundreds of GiB of memory
per node. On Bridges, loading into memory strangely resulted in
slower I/O times (1466s baseline to 2196s at N = 1 and 307s
baseline to 523s at N = 112, Fig. 1 A and Fig. 5 A). Agave and
Comet, on the other hand, showed surprisingly different results.
They both performed substantially better for the N = 1 core case.
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Fig. 4: Strong scaling performance of the RMSD analysis task with
the masked_array optimization technique. The benchmark used the
H5MD-default data file on Agave, Bridges, and Comet. Nprocesses
ranged from 1 core, to 4 full nodes on each HPC, and the number
of trajectory blocks was equal to the number of processes involved.
Points represent the mean over three repeats where the error bars
are derived with the standard error propagation from the standard
deviation of absolute times.

Agave’s serial I/O performance was boosted from 4623s to 891s
(Fig. 5 A) by loading the data into memory in one slurp rather
than iterating through the trajectory frame by frame. Similarly,
Comet’s serial I/O performance went from 4101s to 1740s, with
multi-node performance continuing to show improvement versus
the baseline numbers (excluding the peak at N = 48). Agave
steady improvements in performance all the way to 4 full nodes,
where the I/O time reached 73s (Fig. 5 A, Fig. 6 A). Figure 7
gives a direct comparison on Agave of the baseline benchmark
performance with the two optimization methods outlined. With
respect to the baseline serial performance, loading into memory
gives a 91x speedup (4658s at 1 core to 73s at 112 cores) (Figure 7,
A). This result was interesting in that the only difference between
the two was the access pattern of the data - in one case, the file
was read in small repeated bursts, while in the other the file was
read from start to finish with HDF5. We hypothesized that this
was due to layout of the file itself on disk.

Also, we found that the twait does not increase as the number of
processes increases as in all of the other benchmark cases (Figure
5 C). In the other benchmarks, twait was typically on the order of
10-200 seconds, whereas twait on the order of 0.01 seconds for the
memory benchmarks (Figure 7 C). This indicates that the cause
of the iteration block time variance among processes stems from
MPI rank coordination when many small read requests are made.

To investigate MPI rank competition, we increased the stripe
count on Bridge’s and Comet’s Lustre file system up to 96, where
found marginal I/O scaling improvements of 1.2x on up to 4 full
nodes (not shown). While our data showed no improvement with
altering the stripe count, this may have been a byproduct the poor
chunk layout of the original file on disk. In the next section we
discuss the effects of HDF5 chunking on I/O performance.

Effects of HDF5 Chunking on File I/O

To test the hypothesis that the increase in serial file I/O between
the baseline performance in loading into memory performance was
caused by the layout of the file on disk, we created H5MDWriter,
an MDAnalysis file format writer class that gives one the ability
to write H5MD files with the MDAnalysis user interface. These
files can be written with user-decided custom chunk layouts, file
compression settings, and can be opened with MPI parallel drivers
that enable parallel writing. We ran some initial serial writing
tests and found that writing from DCD, TRR, and XTC to H5MD
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Fig. 5: Benchmark timings breakdown for the ASU Agave, PSC
Bridges, and SDSC Comet HPC clusters for the loading-into-memory
optimization technique. The benchmark was run on up to 4 full nodes
on each HPC, where N processes was 1, 28, 56, and 112 for Agave
and Bridges, and 1, 24, 48, and 96 on Comet. The H5MD-default
file was used in the benchmark, where the trajectory was split in N
chunks for each corresponding N process benchmark. Points represent
the mean over three repeats with the standard deviation shown as
error bars.
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Fig. 6: Strong scaling I/O performance of the RMSD analysis task
with the loading-into-memory optimization technique. The benchmark
used the H5MD-default data file on Agave, Bridges, and Comet.
Nprocesses ranged from 1 core, to 4 full nodes on each HPC, and the
number of trajectory blocks was equal to the number of processes
involved. Points represent the mean over three repeats where the
error bars are derived with the standard error propagation from the
standard deviation of absolute times.

typically took ~360 seconds on Agave. For the 113 GiB test file,
this was a 0.31 GiB/s write bandwidth. We rewrote the H5MD-
default test file and tested two cases: one in which the file is
written with no chunking applied (H5MD-contiguous), and one
in which we applied a custom chunk layout to match the access
pattern on the file (H5MD-chunked). Our benchmark follows a
common MD trajectory analysis scheme in that it iterates through
the trajectory one frame at a time. Therefore, we applied a chunk
shape of (1, n atoms, 3) which matched exactly the shape
of data to be read at each iteration step. An important feature of
HDF5 chunking to note is that, for any element in a chunk to
be read, the entire chunk must be read. When we investigated
the chunk shape of the H5MD-default that was auto-chunked with
h5py’s chunking algorithm, we found that each chunk contained
data elements from multiple different time steps. This means,
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Fig. 7: Benchmark timings on ASU Agave comparing the baseline
benchmark with the masked array and loading into memory opti-
mizations. Each benchmark was run on up to 4 full nodes where N
processes was 1, 28, 56, and 112. The H5MD-default test file was
used in all benchmarks. Points represent the mean over three repeats
with the standard deviation shown as error bars.

for every time step of data read, an exorbitant amount of excess
data was being read and discarded at each iteration step. Before
approaching the parallel tests, we tested how the chunk layout
affects baseline serial I/O performance for the file. We found
I/O performance strongly depends on the chunk layout of the
file on disk. The auto-chunked H5MD-default file I/O time was
4101s, while our custom chunk layout resulted in an I/O time of
460s (Figure 8). So, we effectively saw a 10x speedup just from
optimizing the chunk layout alone, where even the file with no
chunking applied showed similar improvements in performance.
In our previous serial I/O tests, we found that H5MD performed
worse than other file formats, so we repeated those tests with
our custom chunked file, H5MD-chunked. We found for our test
file of 111,815 atoms and 90100 frames, H5MD outperformed
XTC and TRR, while performing equally well to the DCD file, an
encouraging result (Fig. 9).

Next, we investigated what effect the chunk layout had on
parallel I/O performance. We repeated our benchmarks on Agave
(at this point, Bridges had been decommissioned and our Comet
allocation had expired) but with the H5MD-chunked and H5MD-
contiguous data files. For the serial one process case, we found
a similar result in that the I/O time was dramatically increased
with an approximate 10x speedup for both the contiguous and
chunked file, with respect to the baseline benchmark (Figure 10
A). The rest of the timings remained unaffected (Figure 10 B-F).
Although the absolute total benchmark time is much improved
(Figure 11 A), the scaling remains challenging, with a maximum
observed speedup of 12x for the contiguous file (Figure 11 B).
The N = 112 H5MD-contiguous run’s I/O time was 47s (Fig. 10
A). When compared to the 4623s baseline serial time, this is a
98x speedup. Similarly, the H5MD-chunked 4 node run resulted
in an I/O time of 83s, which is a 56x speedup when compared to
baseline serial performance. Therefore, the boost in performance
seen by loading the H5MD-default trajectory into memory rather
than iterating frame by frame is indeed most likely due to the
original file’s chunk layout. This emphasizes the point that one
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Fig. 8: Serial I/O time for H5MD-default, H5MD-contiguous, and
H5MD-chunked data files. Each file contained the same data (113
GiB, 90100 frames) but was written with a different HDF5 chunk
arrangement, as outlined in Table 2. Each bar represents the mean of
5 repeat benchmark runs, with the standard deviation shown as error
bars.
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Fig. 9: Comparison of serial I/O time for various popular MD file
formats. All files contain the same amount of data (90100 frames).
Each bar represents the mean of 10 repeat benchmark runs, with the
standard deviation shown as error bars.

may garner substantial I/O improvements if one thinks carefully
not only about how their algorithm accesses the file, but also
how the file is actually stored on disk. The relationship between
layout on disk and disk access pattern is crucial for optimized I/O.
Furthermore, as the auto-chunked layout of the H5MD-default
file scattered data from a single time step across multiple chunks,
it is very likely that these chunks themselves were also scattered
across stripes. In this case, multiple processes are still attempting
to read from the same chunk which would nullify any beneficial
effect striping has on file contention. We would have liked to
further test the effects of striping with a proper chunk layout,
but our XSEDE allocation expired.

Effects of HDF5 GZIP Compression on File I/O

HDF5 files also offer the ability to compress the files. With our
writer, users are easily able to apply any of the compression
settings allowed by HDF5. To see how compression affected
parallel I/O, we tested HDF5’s gzip compression with a minimum
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Fig. 10: Benchmark timings breakdown on ASU Agave for the three
chunk arrangements tested. The benchmark was run on up to 4 full
nodes on each HPC, where N processes was 1, 28, 56, and 112.
H5MD-default was auto-chunked by h5py. H5MD-contiguous was
written with no chunking applied, and H5MD-chunked was written
with a chunk shape of (1, n atoms, 3). The trajectory was split
in N chunks for each corresponding N process benchmark. Points
represent the mean over three repeats with the standard deviation
shown as error bars.
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Fig. 11: Strong scaling I/O performance of the RMSD analysis task
with various chunk layouts tested on ASU Agave. Nprocesses ranged
from 1 core, to 4 full nodes, and the number of trajectory blocks was
equal to the number of processes involved. Points represent the mean
over three repeats where the error bars are derived with the standard
error propagation from the standard deviation of absolute times.

setting of 1 and a maximum setting of 9. In the serial 1 process
case, we found that I/O performance is slightly hampered, with I/O
times approximately 4x longer with compression applied (Figure
13 A) This is expected as you are giving up disk space for the time
it takes to decompress the file, as is seen in the highly compressed
XTC format (Fig. 9). However, at increasing number of processes
(N > 28), we found that this difference disappears (Figure 13 A
and Figure 12 A). This shows a clear benefit of applying gzip
compression to a chunked HDF5 file for parallel analysis tasks, as
the compressed file is ~2/3 the size of the original. Additionally we
found speedups of up to 36x on 2 full nodes for the compressed
data file benchmarks (Figure 13 B), although we recognize this
number is slightly inflated due to the slower serial I/O time. From
this data we can safely assume that H5MD files can be compressed
without fear of losing parallel I/O performance, which is a nice
boon in the age of terabyte sized trajectory files.
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Fig. 12: Benchmark timings breakdown on ASU Agave for the
minimum gzip compression 1 and maximum gzip compression 9. The
benchmark was run on up to 4 full nodes on each HPC, where N
processes was 1, 28, 56, and 112. The trajectory was split in N chunks
for each corresponding N process benchmark. Points represent the
mean over three repeats with the standard deviation shown as error
bars.
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Fig. 13: Strong scaling I/O performance of the RMSD analysis task
with minimum and maximum gzip compression applied. Nprocesses
ranged from 1 core, to 4 full nodes, and the number of trajectory
blocks was equal to the number of processes involved. Points represent
the mean over three repeats where the error bars are derived with the
standard error propagation from the standard deviation of absolute
times.

Conclusions

The growing size of trajectory files demands parallelization of
trajectory analysis. However, file I/O has become a bottleneck
in the workflow of analyzing simulation trajectories. Our im-
plementation of an HDF5-based file format trajectory reader in
MDAnalysis can perform parallel MPI I/O, and our benchmarks
on various national HPC environments show that speed-ups on
the order of 20x for 48 cores are attainable. Scaling up to
achieve higher parallel data ingestion rates remains challenging,
so we developed several algorithmic optimizations in our analysis
workflows that lead to improvements in I/O times. The results
from these optimization attempts led us to find that the our original
data file that was auto-chunked by h5py’s chunking algorithm had
an incredibly inefficient chunk layout of the original file. With a
custom, optimized chunk layout and gzip compression, we found
maximum scaling of 36x on 2 full nodes on Agave. In terms
of speedup with respect to the file chunked automatically, our
properly chunked file led to I/O time speedups of 98x at 112 cores

on Agave, which means carefully thinking not only about how
your file is accessed, but also how the file is stored on disk can
result in a reduction of analysis time from 4623 to 47 seconds.
To garner further improvements in parallel I/O performance, a
more sophisticated I/O pattern may be required, such as two-
phase MPI I/O or carefully synchronizing chunk sizes with Lustre
stripes. The addition of the HDF5 reader provides a foundation for
the development of parallel trajectory analysis with MPI and the
MDAnalysis package.
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Jan Domański, Sébastien Buchoux, Ian M. Kenney, and Oliver
Beckstein. MDAnalysis: A Python package for the rapid
analysis of molecular dynamics simulations. In Sebastian
Benthall and Scott Rostrup, editors, Proceedings of the 15th
Python in Science Conference, pages 98–105, Austin, TX,
2016. SciPy. doi:10.25080/Majora-629e541a-00e.

[HBD+19] David J. Huggins, Philip C. Biggin, Marc A. Dämgen,
Jonathan W. Essex, Sarah A. Harris, Richard H. Hench-
man, Syma Khalid, Antonija Kuzmanic, Charles A. Laughton,
Julien Michel, Adrian J. Mulholland, Edina Rosta, Mark
S. P. Sansom, and Marc W. van der Kamp. Biomolecular
simulations: From dynamics and mechanisms to computa-
tional assays of biological activity. Wiley Interdisciplinary
Reviews: Computational Molecular Science, 9(3):e1393, 2019.
doi:10.1002/wcms.1393.

[HMvdW+20] Charles R Harris, K Jarrod Millman, Stéfan J van der
Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H van Kerk-
wijk, Matthew Brett, Allan Haldane, Jaime Fernández Del Río,
Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin
Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,
Christoph Gohlke, and Travis E Oliphant. Array program-
ming with numpy. Nature, 585(7825):357–362, 09 2020.
doi:10.1038/s41586-020-2649-2.

[How10] Mark Howison. Tuning HDF5 for Lustre File Systems.
September 2010. URL: https://escholarship.org/uc/item/
46r9d86r.

[KPF+20] Mahzad Khoshlessan, Ioannis Paraskevakos, Geoffrey C. Fox,
Shantenu Jha, and Oliver Beckstein. Parallel performance
of molecular dynamics trajectory analysis. Concurrency
and Computation: Practice and Experience, 32:e5789, 2020.
doi:10.1002/cpe.5789.

[LRFK+21] Maria Lopez-Redondo, Shujie Fan, Akiko Koide, Shohei
Koide, Oliver Beckstein, and David L. Stokes. Zinc binding
alters the conformational dynamics and drives the transport cy-
cle of the cation diffusion facilitator YiiP. Journal of General
Physiology, 153(8), July 2021. URL: https://doi.org/10.1085/
jgp.202112873, doi:10.1085/jgp.202112873.

[MADWB11] Naveen Michaud-Agrawal, Elizabeth Jane Denning,
Thomas B. Woolf, and Oliver Beckstein. MDAnalysis:
A toolkit for the analysis of molecular dynamics
simulations. J Comp Chem, 32:2319–2327, 2011.
doi:10.1002/jcc.21787.

[MM14] Cameron Mura and Charles E. McAnany. An introduction to
biomolecular simulations and docking. Molecular Simulation,
40(10-11):732–764, 2014. doi:10.1080/08927022.
2014.935372.

[Oro14] Modesto Orozco. A theoretical view of protein dynamics.
Chem. Soc. Rev., 43:5051–5066, 2014. doi:10.1039/
C3CS60474H.

[PLK+18] Ioannis Paraskevakos, Andre Luckow, Mahzad Khoshlessan,
Goerge Chantzialexiou, Thomas E. Cheatham, Oliver Beck-
stein, Geoffrey Fox, and Shantenu Jha. Task-parallel analysis
of molecular dynamics trajectories. In ICPP 2018: 47th
International Conference on Parallel Processing, August 13–
16, 2018, Eugene, OR, USA, page Article No. 49, New York,
NY, USA, August 13–16 2018. Association for Computing
Machinery, ACM. doi:10.1145/3225058.3225128.

[SFMLIP+19] Shujie Fan, Max Linke, Ioannis Paraskevakos, Richard J. Gow-
ers, Michael Gecht, and Oliver Beckstein. PMDA - Parallel

Molecular Dynamics Analysis. In Chris Calloway, David
Lippa, Dillon Niederhut, and David Shupe, editors, Proceed-
ings of the 18th Python in Science Conference, pages 134 –
142, Austin, TX, 2019. SciPy. doi:10.25080/Majora-
7ddc1dd1-013.

[TCD+14] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither,
A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D.
Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr.
XSEDE: Accelerating scientific discovery. Computing in
Science & Engineering, 16(5):62–74, Sept.-Oct. 2014. doi:
10.1109/MCSE.2014.80.

[The05] Douglas L Theobald. Rapid calculation of RMSDs using
a quaternion-based characteristic polynomial. Acta Crys-
tallogr A, 61(Pt 4):478–80, Jul 2005. doi:10.1107/
S0108767305015266.

[Wic11] Hadley Wickham. The split-apply-combine strategy for data
analysis. Journal of Statistical Software, 40(1):1–29, 2011.
doi:10.18637/jss.v040.i01.



PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021) 49

Natural Language Processing with Pandas
DataFrames

Frederick Reiss‡∗, Bryan Cutler§, Zachary Eichenberger¶‡

F

Abstract—Most areas of Python data science have standardized on using Pan-
das DataFrames for representing and manipulating structured data in memory.
Natural Language Processing (NLP), not so much.

We believe that Pandas has the potential to serve as a universal data
structure for NLP data. DataFrames could make every phase of NLP easier, from
creating new models, to evaluating their effectiveness, to building applications
that integrate those models. However, Pandas currently lacks important data
types and operations for representing and manipulating crucial types of data in
many of these NLP tasks.

This paper describes Text Extensions for Pandas, a library of extensions to
Pandas that make it possible to build end-to-end NLP applications while repre-
senting all of the applications’ internal data with DataFrames. We leverage the
extension points built into Pandas library to add new data types, and we provide
important NLP-specfific operations over these data types and and integrations
with popular NLP libraries and data formats.

Index Terms—natural language processing, Pandas, DataFrames

Background and Motivation

This paper describes our work on applying general purpose data
analysis tools from the Python data science stack to Natural
Language Processing (NLP) applications. This work is motivated
by our experiences working on NLP products from IBM’s Watson
portfolio, including IBM Watson Natural Language Understanding
[Intb] and IBM Watson Discovery [Inta].

These products include many NLP components, such as state-
of-the-art machine learning models, rule engines for subject matter
experts to write business rules, and user interfaces for displaying
model results. However, the bulk of the development work on
these products involves not the core NLP components, but data
manipulation tasks, such as converting between the output formats
of different models, manipulating training data, analyzing the
outputs of models for correctness, and serializing data for transfer
across programming language and machine boundaries.

Although the raw input to our NLP algorithms is text in a
natural language, most of the code in our NLP systems operates
over machine data. Examples of this machine data include:

• Relational tables of training data in formats like CoNLL-U
[NdMG+20]
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• Model outputs formatted as tables for comparison against
training data

• Arrays of dense tensors that represent BERT embeddings
[DCLT19]

• Graphs that represent dependency-based parse trees
• Relational tables that represent document structure

This focus on data manipulation tasks instead of core AI
algorithms is not unique to IBM, or indeed to NLP [SHG+15].
However, NLP is unique in the quantity of redundant data struc-
tures and low-level algorithms that different systems reimplement
over and over again. One can see this trend clearly in open source
NLP libraries, where free access to internal code also exposes
the internal data structures. Each of the major NLP libraries
implements its own custom data structures for basic NLP concepts.

Consider the concept of a span: a region of a document, usu-
ally expressed as a range of characters or tokens. NLP systems use
spans to represent the locations of information they extract from
text. This information includes tokens, named entities, arguments
to semantic role labeling predicates, and many others.

Here is how some popular Python NLP libraries represent
spans:

• spaCy [HMVLB20] has a Python class named Span that
represents a range of tokens. The locations of these tokens
are stored inside the class Doc. The __getitem__
method of Doc returns instances of the class Token,
which encodes the location of the token as a beginning
character offset and a length in characters [Exp21].

• Stanza [QZZ+20] has a Python class also named Span
that represents a range of characters. Information about
the tokens that are contained within the character range is
stored in the tokens property of the Span as objects of
type Token [Mai21a]. These classes, Span and Token,
are different from the spaCy classes with the same names.

• nltk [LB02] models text as a Python list. Depending on
the stage of processing, the elements of the list can be
Python strings or tuples. Spans over tokens are represented
by slices of the list, and information about character
locations is generally not available [BKL09].

• transformers [WDS+20] does not generally model
spans; instead it leaves that choice up to the
user. One exception to this policy is the library’s
TokenClassificationPipeline class, which has
a method group_entities that returns a Python dic-
tionary for each entity. The fields start and end in
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this dictionary hold the span of the entity, measured in
characters [Hug21].

• TensorFlow Text [Mai21b] represents lists of spans as
either a pair of one-dimensional tensors (for tokenization)
or as a single two-dimensional tensor (for span comparison
operations). The elements of the tensors can represent byte,
character, or token offsets. Users need to track which type
of offset is stored in a given tensor [Mai21c].

All of these representations are incompatible with each other.
Users who want to use any two of these libraries together will
need to write code to convert between their outputs. Users are
also left to invent their own algorithms for even the most basic
operations over spans, including serializing them, finding their
covered text, determining whether two spans overlap, and finding
matches between two sets of spans.

The redundancy that these libraries display at the level of in-
dividual spans is pervasive across all the more complex structures
that they extract from text. Both users and library developers spend
considerable amounts of time reading the documentation for these
different data structures, writing code to convert between them,
and reimplementing basic operations over them.

An Alternative Approach

The Python data science community has developed effective tools
for managing and analyzing data in memory, chief among them
being the DataFrame library Pandas [pdt21b]. Could we use
these general-purpose tools instead of continually reinventing data
structures and algorithms for basic NLP tasks?

We prototyped some use cases and quickly discovered that
NLP-related data involves domain-specific concepts; and some of
these concepts are inconvenient to express in Pandas. For example,
the span concept that we described in the previous section is a
crucial part of many applications. The closest analog to a span
in Pandas’ data model is the interval type, which represents
an interval using a pair of numbers. When we prototyped some
common NLP applications using interval to represent spans,
we needed additional code and data structures to track the relation-
ships between intervals and target strings; as well as between spans
and different tokenizations. We also needed code to distinguish
between intervals measured in characters and in tokens. All of this
additional code negated much of the benefit of the general-purpose
tool.

To reduce the amount of code that users would need to write,
we started working on extensions to Pandas to better represent
NLP-specific data and to support key operations over that data.
We call the library that we eventually developed Text Extensions
for Pandas.

Extending Pandas

Text Extensions for Pandas includes three types of extensions:

• NLP-specific data types (dtypes) for Pandas DataFrames
• NLP-specific operations over these new data types
• Integrations between Pandas and common NLP libraries

Pandas includes APIs for library developers to add new data
types to Pandas, and we used these facilities to implement the
NLP-specific data types in Text Extensions for Pandas.

The core component of the Pandas extension
type system is the extension array. The Python class
pandas.api.extensions.ExtensionArray defines

key operations for a columnar array object that backs a Pandas
Series [pdt21a]. Classes that extend ExtensionArray
and implement a relatively short list of required operations can
serve as the backing stores for Pandas Series objects while
supporting nearly all the operations that Pandas built-in types
support, including filtering, slicing, aggregation, and binary I/O.

Indeed, many of the newer built-in types in Pandas, such
as the interval and categorical, are implemented as
subclasses of ExtensionArray. Text Extensions for Pandas
includes three different extension types based on this API. The
first two extension types are for spans with character- and token-
based offsets, respectively. The third extension type that we add
represents tensors.

Spans

We implement character-based spans with a Python class called
SpanArray, which derives from Pandas’ ExtensionArray
base class. A SpanArray object represents a column of span
data, and it stores this data internally using three NumPy
[HMvdWea20] arrays, plus a shared reference to the underlying
text.

The three arrays that represent a column of span data consist
of arrays of begin and end offsets (in characters), plus a third array
of indices into a table of unique target strings. The SpanArray
object also stores a shared reference to this table of strings.

The string table is necessary because a Pandas Series can
contain spans over many target strings. The spans in the Series
might come from multiple documents, or they may come from
multiple fields of the same document. Users need to be able
to perform operations over the containing DataFrames without
performing many string equality checks or creating many copies
of the text of each document. Representing the target text of each
span as an index into the table allows us to quickly check whether
two spans are over the same string. The string table also allows
the SpanArray class to track exactly which unique strings the
array’s spans cover. Keeping track of this set of strings is important
for efficient serialization, as well as for efficiently appending one
SpanArray to another. As an additional optimization, slicing
and filtering operations over a SpanArray do not modify the
string table; a slice of an array will share the same table as the
original array.

In addition to spans with character offsets, we also support
spans whose begin and end offsets are measured in tokens. Most
machine learning models and rule engines for NLP do not operate
over sequences of characters but over sequences of tokens—ranges
of characters that correspond to elements like words, syllables, or
punctuation marks. Character-based spans are useful for compar-
ing, visualizing, and combining the outputs of multiple models,
because those models may use different tokenizations internally.
When analyzing the inputs and outputs of a single model (or
rule set, in the case of a rule-based NLP system), tokens are
a more appropriate unit for the begin and end offsets of spans.
Representing spans with token offsets allows for operations like
computing token distances between spans and can prevent errors
that could lead to spans not starting or ending on a token boundary.
The loss functions used to train most NLP models also tend to
operate over tokens.

There can be multiple different tokenizations of the same
document, even within a single application. When storing token-
based span offsets, it is important to retain information about
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which tokenization of which document each token offset corre-
sponds to. The TokenSpanArray class represents each distinct
tokenization of a document with an instance of SpanArray
containing the locations of the tokens. The representation of the
token-based spans themselves consists of three NumPy arrays,
holding begin and end offsets (in tokens) and a pointer to the
SpanArray containing the token offsets.

Although it stores the locations of spans as token offsets, the
TokenSpanArray class can generate character-based begin and
offsets on demand from its internal tables of token locations. This
facility allows TokenSpanArray to be used in any code that
works over instances of SpanArray. For example, code that
detects pairs of overlapping spans can easily work over arbitrary
combinations of token- and character-based spans, which is useful
when merging the outputs of models that represent span offsets
differently.

The internal structure of our SpanArray and
TokenSpanArray extension arrays allows for efficient
vectorized implementations of common Pandas operations like
slicing, filtering, and aggregation. Slicing operations over a
SpanArray produce a new SpanArray with views of the
original SpanArray object’s internal NumPy arrays, avoiding
unnecessary copying of span data.

Tensors

Tensors—dense n-dimensional arrays—are another common con-
cept in modern NLP. The deep learning models that drive much of
state-of-the-art NLP today take tensors as inputs and outputs and
operate internally over other tensors. Embeddings—data structures
that encode information about a block of text as a dense vector
amenable to analysis with algorithms that expect dense input—are
a key part of many NLP algorithms and can be efficiently repre-
sented with tensors. Tensors are also useful for more traditional
types of NLP data, such as n-grams and one-hot-encoded feature
vectors.

Our TensorArray extension array class represents a Pandas
Series where each element is a tensor. Internally, we represent
the entire Series’ data as a single dense NumPy array. The
TensorArray class translates Pandas array operations to vectorized
operations over the underlying NumPy array. Because CPython
[cd21], the most common runtime for Python, uses an intepreter
to run Python code, these vectorized operations are much more
efficient than iterating over a list of tensors.

Since the individual data items in a TensorArray are actu-
ally slices of a larger NumPy array, our tensor data type integrates
seamlessly with third party libraries that accept NumPy arrays.
For example, Figure 1 shows how our tensor data type works with
the matplotlib [Hun07] plotting library in a Jupyter notebook.

Some libraries, notably xarray [HH17], provide Pandas-like
dataframes specialized for numeric tensor or array data. These
libraries are useful for cases where dataframes consist almost
entirely of tensor data. Our TensorArray extension type is a
complementary alternative for applications where the data is a
mixture of tensors, spans, and built-in Pandas data types with a
wide variety of different schemas. For example, figure 2 shows
an example of a DataFrame that mixes spans, tensors, and Pandas
categorical types to store features of the tokens in a document. For
applications that need this kind of mixture of data, our tensor type
allows users to leverage Pandas’ collection of built-in operations
and third-party visualizations, while still operating efficiently over
tensor-valued data series.

Fig. 1: Example of using our tensor data type to store a time
series while visualizing those time series with the matplotlib
[Hun07] library in a Jupyter notebook. In the top half of the
window is a DataFrame where each cell of the rightmost four
columns contains an entire time series of COVID-19 case data as a
tensor. The bottom half of the screen shows the results of plotting
these tensors directly out of the DataFrame. This example note-
book is available at https://github.com/CODAIT/covid-notebooks/
blob/master/notebooks/analyze_fit_us_data.ipynb.

Fig. 2: Slice of a DataFrame of information about tokens con-
structed with our library’s integration with the transformers
library for masked language models. Each row of the DataFrame
represents a token in the document. The leftmost column uses our
span extension type to store the position of the token. The right-
most column stores a BERT embedding at that token position.
The columns in between hold token metadata that was created by
aligning the corpus’ original tokenization with the language model’s
tokenization, then propagating the corpus labels between pairs of
aligned tokens. The notebook in which this example appears (avail-
able at https://github.com/CODAIT/ text-extensions-for-pandas/blob/
master/notebooks/Model_Training_with_BERT.ipynb) shows how to
use this DataFrame as the input for training a named entity recogni-
tion model with the sklearn library.

Serialization

Many areas of modern NLP involve large collections of docu-
ments, and common NLP operations can expand the size of this
data by orders of magnitude. Pandas includes facilities for efficient
serialization of Pandas data types using Apache Arrow [Com21].
Text Extensions for Pandas uses this support to convert data from
the library’s extension types into Arrow format for efficient storage
and transfer.

Efficient binary I/O can make reading and writing NLP corpora
orders of magnitude faster. Figure 3 compares the amount of time
required to read the training fold of the CoNLL-2003 corpus
[TKSDM03] from a local filesystem when the corpus is stored
in three different formats. Reading the corpus with Pandas and the
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Fig. 3: Comparison of the amount of time required to read the training
fold of the CoNLL-2003 named entity recognition corpus into memory,
when the corpus is stored in three different file formats. Binary I/O
with Pandas and the Apache Parquet file format is 2-3 orders of
magnitude faster than the other file formats tested.

Apache Parquet binary file format is 60 times faster than reading
the original CoNLL-format text file with nltk and 800 times
faster than reading the corpus in DocBin format with spaCy.

Text Extensions for Pandas also supports reading files in
the text-based formats known as CoNLL and CoNLL-U. Many
benchmark datasets for NLP are released in these formats. Text
Extensions for Pandas can convert these files into DataFrames
with one line per token, using our span extension type to store
the location of a given token and the location of the sentence that
contains the token.

Spanner Algebra

In addition to representing span data, NLP applications need to
filter, transform, and aggregate this data, often in ways that are
unique to NLP.

The document spanners formalism [FKRV15] extends the
relational algebra with additional operations to cover a wide gamut
of critical NLP operations.

Since it is an extension of the relational algebra, much of
document spanners can already be expressed with Pandas core
operations. We have implemented several of the remaining parts
of document spanners as operations over Pandas Series of data
type Span.

Specifically, we have NLP-specific join operations (sometimes
referred to as "merge") for identifying matching pairs of spans
from two input sets, where the spans in a matching pair have
an overlap, containment, or adjacency relationship. These join
operations are crucial for combining the results of multiple NLP
models, and they also play a role in rule-based business logic.
For example, a domain expert might need to find out matches
of one model that overlap with matches of a different model. If
the output spans are in the "span" columns of two DataFrames,
model_1_out and model_2_out, then the user can find all
such matching pairs by running the following line of code:

import text_extensions_for_pandas as tp

# Find output spans of model 1 that contain output
# spans of model 2.
# This expression returns a DataFrame with two
# columns, span_1 and span_2, both of type span.
span_pairs = tp.spanner.contain_join(

model_1_out["span"], model_2_out["span"],
"span_1", "span_2")

We include two implementations of the extract operator, which
produces a set of spans over the current document that satisfy a
constraint. Our current implementations of extract support extract-
ing the set of spans that match a regular expression or a gazetteer
(dictionary).

We include a version of the consolidate operator, which takes
as input a set of spans and removes overlap among the spans
by applying a consolidation policy. This operator is useful for
business logic that combines the results of multiple models and/or
extraction rules as well as for resolving ambiguity when a single
model produces overlapping spans in its output.

Other Span Operations

We support span operations that are not part of the document
spanners formalism but are important for key NLP tasks. These
operations include:

• aligning spans based on one tokenization of the document
to a different tokenization

• lemmatizing spans—that is, converting the text that the
span covers to a normalized form

• converting sequences of tokens tagged with inside-outside-
beginning (IOB) tags [RM95] into spans of entities, and
vice versa.

Jupyter Notebook Integration

Jupyter notebooks have built-in facilities for displaying Pandas
DataFrames. Our extensions to Pandas also work with these
facilities. If the last line of a notebook cell returns a DataFrame
containing span and tensor data, then Jupyter will display an
HTML representation of the DataFrame, including cells that
contain our extension types. Figure 2 shows how a DataFrame
containing a column of spans and a column of tensors renders as
HTML when shown in a Juypter notebook.

Other Python development tools, including Visual Studio
Code, PyCharm, and Google Colab, use extended versions of the
Jupyter DataFrame display facilities to show DataFrames in their
own user interfaces. Our extension types also work with these
interfaces.

There is also an ecosystem of interactive libraries for exploring
and visualizing Pandas DataFrames. Examples of such libraries
include D-Tale [dt21a], Qgrid [dt21b], and the Spyder [Con21]
Variable Explorer. These libraries also work with our extension
types. Figure 4 shows an example of using Text Extensions for
Pandas to display span data with the D-Tale interactive data
analysis tool [dt21a].

Because our extension types for tensors use NumPy’s ndarray
type for individual cell values, these extension types work with
many tools that accept NumPy arrays. Figure 1 shows an example
of storing time series in the cells of a DataFrame and plotting
those time series directly out of the DataFrame using the graphics
library matplotlib in a Jupyter notebook.

It is often useful to visualize spans in the context of the source
text. We use Jupyter’s built-in application programming interface
(API) for HTML rendering to facilitate this kind of visualization.
If the last expression in a notebook cell returns a SpanArray or
TokenSpanArray object, then Jupyter will automatically display
the spans in the context of the target text, as shown in Figure 5.
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Fig. 4: Displaying a DataFrame containing span data in the D-Tale
interactive visualizer [dt21a]. Our extension types for NLP work with
third-party libraries without requiring any changes to those libraries.

Fig. 5: Displaying the contents of a Pandas Series of span data in
the context of the target document, using the integration between Text
Extensions for Pandas and Jupyter’s APIs for HTML display. The
spans shown in this example represent all pronouns in sentences that
contain the name "Arthur". We generated this set by cross-referencing
the outputs of two models using Pandas operations. This notebook can
be found at https://github.com/CODAIT/ text-extensions-for-pandas/
blob/master/notebooks/Analyze_Text.ipynb.

Taken together with JupyterLab’s ability to display multiple
widgets and views of the same notebook, these facilities allow
users to visualize NLP data from several perspectives at once, as
shown in Figure 11.

NLP Library Integrations

Text Extensions for Pandas provides facilities for transforming the
outputs of several common NLP libraries into Pandas DataFrames
to represent NLP concepts.

spaCy

spaCy [HMVLB20] is a Python library that provides a suite of
NLP models intended for production use. Users of spaCy access
most of the library’s functionality through spaCy language models,
Python objects that encapsulate a pipeline of rule-based and
machine learning models. A spaCy language model takes natural
language text as input and extracts features such as parts of speech,
named entities, and dependency relationships from the text. These
features are useful in various downstream NLP tasks.

Our spaCy integration converts the output of a spaCy language
model into a DataFrame of token information. Figure 6 shows an

Fig. 6: Example of converting the output of a spaCy language
model. Each row of the DataFrame holds information about a
single token, including the span of the token and the span of
the containing sentence. The code for this example is avail-
able at https://github.com/CODAIT/ text-extensions-for-pandas/blob/
master/notebooks/ Integrate_NLP_Libraries.ipynb.

example of using this integration to process the first paragraph
of the Wikipedia article for the film Monty Python and the Holy
Grail.

Converting from spaCy’s internal representation to
DataFrames allows usage of Pandas operations to analyze
and transform the outputs of the language model. For example,
users can use Pandas’ filtering, grouping, and aggregation to
count the number of nouns in each sentence:
# Filter tokens to those that are tagged as nouns
nouns = tokens[tokens["pos"] == "NOUN"]

# Compute the number of nouns in each sentence
nouns.groupby("sentence").size() \

.to_frame(name="num_nouns")

Or they could use our span-specific join operations and Pan-
das’ merge function to match all pronouns in the document with
the person entities that are in the same sentence:
import text_extensions_for_pandas as tp

# Find person names
entities = tp.io.conll.iob_to_spans(tokens)
person_names = entities[

entities["ent_type"] == "PERSON"]["span"]

# Find all pronouns
pronouns = tokens[tokens["tag"] == "PRP"] \

[["span", "sentence"]]

# Find all sentences
sentences = tokens[["sentence"]].drop_duplicates() \

["sentence"]

# Match names and pronouns in the same sentence
pronoun_person_pairs = (

pronouns.rename(columns={"span": "prounoun"})
.merge(tp.spanner.contain_join(

sentences, person_names,
"sentence", "person")))

We also support using spaCy’s DisplaCy visualization library to
display dependency parse trees stored in DataFrames. Users can
filter the output of the language model using Pandas operations,
then display the resulting subgraph of the parse tree in a Jupyter
notebook. This display facility will work with any DataFrame that
encodes a dependency parse as a Pandas Series of token spans,
token IDs, and head IDs.

transformers

transformers [WDS+20] is a library that provides imple-
mentations of many state of the art masked language models
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such as BERT [DCLT19] and RoBERTa [LOG+19]. In addition
to the language models themselves, transformers includes
dedicated tokenizers for these models, most of which use subword
tokenizers like SentencePiece [KR18] to improve accuracy.

Text Extensions for Pandas can transform two types of outputs
from the transformers library for masked language models
into Pandas DataFrames. We can convert the output of the library’s
tokenizers into DataFrames of token metadata, including spans
marking the locations of each token.

Our tensor data type can also represent embeddings from
the encoder stage of a transformers language model. Since
the language models in transformers have a limited se-
quence length, we also include utility functions for dividing
large DataFrames of token information into fixed-size windows,
generating embeddings for each window, and concatenating the
resulting embeddings to produce a new column for the original
DataFrame. Figure 2 shows a DataFrame of token features that
includes both a span column with token location and a tensor
column with embeddings at each token position.

IBM Watson Natural Language Understanding

Watson Natural Language Understanding [Intb] is an API that
provides access to prebuilt NLP models for common tasks across
a wide variety of natural languages. Users can use these APIs to
process several thousands documents per month for free, with paid
tiers of the service available for higher data rates.

Our Pandas integration with Watson Natural Language Un-
derstanding can translate the outputs of all of Watson Natural
Language Understanding’s information extraction models into
Pandas DataFrames. The supported models are:

• syntax, which performs syntax analysis tasks like tokeniza-
tion, lemmatization, and part of speech tagging.

• entities, which identifies mentions of named entities such
as persons, organizations, and locations.

• keywords, which identifies instances of a user-configurable
set of keywords as well as information about the sentiment
that the document expresses towards each keyword.

• semantic_roles, which performs semantic role labeling,
extracting subject-verb-object triples that describe events
which occur in the text.

• relations, which identifies relationships betwen pairs of
named entities.

Converting the outputs of these models to DataFrames makes
building notebooks and applications that analyze these outputs
much easier. For example, with two lines of Python code, users
can produce a DataFrame with information about all person names
that a document mentions:

import text_extensions_for_pandas as tp

# The variable "response" holds the JSON output
# of the Natural Language Understanding service.
# Convert to DataFrames and retrieve the DataFrame
# of entity mentions.
entities = tp.io.watson.nlu.parse_response(response) \

["entity_mentions"]

# Filter entity mentions down to just mentions of
# persons by name.
persons = entities[entities["type"] == "Person"]

Figure 7 shows the DataFrame that this code produces when run
over an IBM press release.

Fig. 7: DataFrame of person names in a document created
by converting the output of the Watson Natural Language
Understanding’s entities model to a DataFrame of entity
mentions. We then used Pandas filtering operations to select the entity
mentions of type "Person". The first column holds spans that tell
where in the document each mention occurred. The original press
release can be found at https://newsroom.ibm.com/2020-12-02-IBM-
Named-a-Leader-in-the-2020-IDC-MarketScape-For-Worldwide-
Advanced-Machine-Learning-Software-Platform.

Fig. 8: Excerpt from DataFrame containing the names of 301 ex-
ecutives extracted from 191 IBM press releases. To generate this
table, we first converted the outputs of Watson Natural Language
Understanding’s entities model, which finds mentions of person
names, and the product’s semantic_roles model, which extracts
information about the context in which words occur. Then we used a
series of standard Pandas operations, plus operations from spanner
algebra, to cross-reference the outputs of the two models. Code and a
full explanation of this use case can be found in the article "Market
Intelligence with Pandas and IBM Watson on the IBM Data and AI
blog [RC21].

With a few additional steps, users can combine the results
of multiple models to produce sophisticated document analysis
pipelines. Figure 8 shows a DataFrame with the names of 301
executives extracted from 191 IBM press releases by cross-
referencing the outputs of Watson Natural Language Understand-
ing’s entities and semantic_roles models. All of the
analysis steps that went into producing this result were done with
high-level operations from Pandas and Text Extensions for Pandas.
Source code for this example is available on our blog post about
this use case [RC21].

IBM Watson Discovery

IBM Watson Discovery [Inta] is a document management platform
that uses intelligent search and text analytics to eliminate barriers
to sharing data between teams and to retrieve information buried
inside enterprise data. One of the key features of the IBM Watson
Discovery product is Table Understanding, a document enrich-
ment model that identifies and parses human-readable tables of
data in PDF and HTML documents.

Text Extensions for Pandas can convert the output of Wat-
son Discovery’s Table Understanding enrichment into Pandas
DataFrames. This facility allows users to reconstruct the contents
and layout of the original table as a DataFrame, which is useful
for debugging and analysis of these outputs. Figure 9 shows an
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Fig. 9: An example table from a PDF document in its original,
human-readable form (left) and after using Text Extensions for Pandas
to convert the output of Watson Discovery’s Table Understanding
enrichment into a Pandas DataFrame.

Fig. 10: DataFrame containing ten years of IBM revenue bro-
ken down by geography, obtained by loading ten years of
IBM annual reports int IBM Watson Discovery; converting the
outputs of Watson Discovery’s Table Understanding enrichment
to DataFrames; then cleaning and deduplicating the resulting
data using Pandas. The code that produced this result can
be found at https://github.com/CODAIT/ text-extensions-for-pandas/
blob/master/notebooks/Understand_Tables.ipynb.

example DataFrame from this process next to the original table in
the source PDF document.

Our conversion also produces the "shredded" representation of
the table as a DataFrame with one line for each cell of the original
table. This data format facilitates data integration and cleaning
of the extracted information. Pandas’ facilities for data cleaning,
filtering, and aggregation are extremely useful for turning raw
information about extracted tables into clean, deduplicated data
suitable to insert into a database. Figure 10 shows how, by cleaning
and merging this shredded representation of a revenue table across
multiple IBM annual reports, one can construct a DataFrame with
ten years of revenue information broken down by geography.

Usage in Natural Language Processing Research

We are using Text Extensions for Pandas in ongoing research on
semisupervised identification of errors in NLP corpora. Pandas’
data analysis facilities provide a powerful substrate for cross-
referencing and analyzing the outputs of NLP models in order
to pinpoint potentially-incorrect labels.

One example of this type of application is work that we and
several other coauthors recently published on correcting errors in
the highly-cited CoNLL-2003 corpus for named entity recognition
[RXC+20]. We identified over 1300 errors in the corpus and
published a corrected version of the corpus. We also revisited
recent results in named entity recognition using the corrected
corpus.

Nearly every step of our analysis used Text Extensions for
Pandas. We started by using our library’s input format support to
read the model results from the 16 teams in the dataset’s original
2003 competition. Then we used Text Extensions for Pandas to
convert these outputs from labeled tokens to DataFrames of <span,

Fig. 11: Example of using our extensions to Pandas and JupyterLab
to create an ad-hoc interface for inspecting potentially incorrect
labels in a named entity recognition corpus. The top three panes of
this JupyterLab session display three different views of a collection
of named entities for human evaluation. All of these views are
driven off of Pandas DataFrames of <span, entity type> pairs. The
bottom pane is where human evaluators flag incorrectly labeled
entities. This Jupyter notebook is part of an in-depth tutorial avail-
able at https://github.com/CODAIT/ text-extensions-for-pandas/ tree/
master/ tutorials/corpus.

label> pairs, with one such pair for each entity mention. Using
spanner algebra, we cross-referenced these entity mentions with
the entity mentions to find cases where there was strong agreement
among the teams’ models coupled with disagreement with the
corpus labels. A large fraction of these cases involved incorrect
corpus labels.

Since we did not have model outputs for the training
fold of the corpus, we used our library’s integration with the
transformers library to retokenize this part of the corpus with
the BERT tokenizer. Then we used spanner algebra to match the
corpus’s token labels with the corresponding subword tokens from
the BERT tokenizer. Again, we used our library’s integration with
transformers to add a column to our DataFrame of tokens
containing BERT embeddings at each token position as tensors.
Then we used scikit-learn [PVG+11] to train an ensemble
of 17 token classification models over multiple different Gaussian
random projections. By cross-referencing the outputs of these
models, again using Pandas and spanner algebra, we were able
to identify a large number of additional incorrect labels in the test
fold.

We also used Text Extensions for Pandas’ integration with
Jupyter to build an interface for human review of the suspicious
labels that our analysis of model outputs had flagged. Figure 11
shows this interface in action.

The code that we used in this paper is available as a col-
lection of Jupyter notebooks at https://github.com/CODAIT/text-
extensions-for-pandas/tree/master/tutorials/corpus. We are cur-
rently working to extend the techniques we developed in order
to cover a wider variety of token classification corpora and to
incorporate several of the techniques used in our paper into the
Text Extensions for Pandas library [MRX+21].

Conclusion

This paper has introduced our library, Text Extensions for Pandas.
Text Extensions for Pandas provides a collection of extension
data types, NLP-specific operations, and NLP library integrations
that turn Pandas DataFrames into a universal data structure for
managing the machine data that flows through NLP applications.
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Text Extensions for Pandas is freely available as both an in-
stallable Python package and as source code. We publish packages
on the PyPI and Conda-Forge package repositories. Since our
library is implemented in pure Python, these packages work on
most operating systems.

The source code for Text Extensions for Pandas is available
at https://github.com/CODAIT/text-extensions-for-pandas under
version 2 of the Apache license. We welcome community con-
tributions to the code as well as feedback from users about bugs
and feature requests.
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CLAIMED, a visual and scalable component library for
Trusted AI

Romeo Kienzler‡∗, Ivan Nesic§
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Abstract—CLAIMED is a component library for artificial intelligence, machine
learning, "extract, transform, load" processes and data science. The goal is
to enable low-code/no-code rapid prototyping by providing ready-made com-
ponents for various business domains, supporting various computer languages,
working on various data flow editors and running on diverse execution engines.
To demonstrate its utility, we constructed a workflow composed exclusively of
CLAIMED components. For this purpose, we made use of a publicly available
Computed Tomography (CT) scans dataset [covidata] and created a deep learn-
ing model, which is supposed to classify exams as either COVID-19 positive or
negative. The pipeline was built with Elyra’s Pipeline Visual Editor, with support
for local, Airflow and Kubeflow execution.

Index Terms—Kubernetes, Kubeflow, JupyterLab, Elyra, KFServing, TrustedAI,
AI Explainability, AI Fairness, AI Adversarial Robustness

Introduction

In our Hospital Research Department we regularly have Citizen
Data Scientists (CDS) [citizends] (in our case, mostly medi-
cal doctors) working on large corpora of clinical data. Often,
monolithic scripts are used for prototyping, lacking quality and
reproducibility. Therefore, in cooperation with CDS we’ve defined
the following requirements for a new way of applying data-driven
clinical research:

• low-code / no-code environment for rapid prototyping with
visual editing and jupyter notebooks

• seamless scaling during development and deployment
• GPU support
• pre-build components for various business domains
• support for the complete python and R tooling including

Apache Spark, TensorFlow, PyTorch, pandas and scikit-
learn

• seamless extensibility
• reproducibility of work
• data lineage
• collaboration support

We’ve evaluated the following software tools but we found that
these tools, even when used in conjunction, support only a subset
of our requirements: Slurm [slurm], Snakemake [snakemake],
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QSub [qsub], HTCondor [htcondor], Apache Nifi [nifi], NodeRED
[nodered], KNIME [knime], Galaxy [galaxy], Reana [reana],
WEKA [weka], Rabix [rabix], Nextflow [nextflow], OpenWDL
[openwdl], CWL [cwl] or Cromwell [cromwell].

To not reinvent the wheel but rather fill the gap, we have built
an extensible component library to be used in low-code / no-code
environments called CLAIMED - the visual Component Library
for Artificial Inteligence (AI), Machine Learning (ML), Extract,
Transform, Load (ETL) and Data Science. In the following sec-
tion we elaborate on the implementation details followed by a
description of an exemplary pipeline to showcase the capabilities
of CLAIMED. We continue to elaborate on different ideas how
CLAIMED can be improved in the "Future Work" section, finally
followed by the conclusion.

Implementation

Before we address how CLAIMED fulfills the previously defined
requirements and how the exemplary workflow has been con-
structed, we will introduce some terms and technologies.

Technology breakdown

Containerization and Kubernetes: Virtualization opened
up a lot of potential for managing the infrastructure, mainly the
ability to run different operating systems on the same hardware
at the same time. Next step of isolation can be performed for
each of the microservices running on the server, but instead
of managing access rights and resources on the host operating
system, we can containerize these in separate packages with their
own environments. Practical effect of this is that we are running
each of the microservices as if they have their own dedicated
virtual machine, but without the overhead of such endeavour. This
is accomplished by running containers on top of the host operating
system. An example of the containerization platform is Docker.

With the opportunity to run a vast number of containers,
arose the need of their orchestration. The system needs to be
constantly monitored and adjusted so that it stays in a desired state.
Containers need to be scaled up and down, the communication
has to be managed, they have to be scheduled, authentication
needs to be managed, there is the need for load balancing etc.
There are multiple optins on the market, but Kubernetes is the
market leader in this domain. It was donated to Cloud Native
Computing Foundation (CNCF) [cncf] by Google, which means
a lot of Google’s know-how and years of experience went into it.
The system can run on public, on-premises or on hybrid clouds.
On-premises installation is very important for institutions dealing



CLAIMED, A VISUAL AND SCALABLE COMPONENT LIBRARY FOR TRUSTED AI 59

with sensitive data. For IBM, Kubernetes is also strategic. IBM
acts as a Kubernetes runtime provider in the cloud and - through
the acquisition of RedHat - has become the major vendor for
on-premises Kubernetes. IBM is now able to deliver software
solutions - so called "Cloud Paks" - on top of Kubernetes, mak-
ing them run everywhere (hybrid cloud). Therefore, IBM joined
CNCF [ibmcncf], and moved all Watson Services to Kubernetes.
This makes IBM the 3rd largest committer to Kubernetes. Not
only for IBM but also for us, Kubernetes enables the hybrid cloud
scenario of transparently moving workload across different on-
premises, remote and cloud data centers seamlessly.

Deep Learning with TensorFlow: TensorFlow is the sec-
ond incarnation of the Google Brain project’s scalable distributed
training and inference system named DistBelief [tf]. It supports
myriad of hardware platforms, from mobile phones to GPU/TPU
clusters, for both training and inference. It can even train and
run models in browser, without the data ever leaving the user’s
environment. Apart from being a valuable tool in research domain,
it is also being used in demanding production environments. On
a development side, representing machine learning algorithms in
tree-like structures makes it a good expression interface. Lastly, on
the performance vs usability side, both graph and eager modes are
supported. Eager mode allows for easier debugging since the code
is executed in Python control flow, as opposed to the TensorFlow
specific graph control flow [tfeager]. The advantages of graph
mode is usage in distributed training, performance optimization
and production deployment. In-depth analysis of these two modes
can be found here [tfbook].

Kubeflow: Having a compute cluster capable of scaling
at container level granularity calls for a workflow execution
engine leveraging the advantages of containerization and container
orchestration by integrating with Kubernetes seamlessly. This is
where Kubeflow [kubeflow] kicks in. It is a machine learning
pipeline management and execution system running as first class
citizen on top of Kubernetes. Beside making use of Kubernetes
scalability, it allows for defining reproducible work products
as machine learning pipelines, where results and intermediate
artifacts of the executions are stored in a metadata repository.

Jupyter Notebooks / JupyterLab: When it comes to col-
laboration and reproducibility, document centric coding tools
like Apache Zeppelin or Jupyter Notebooks are a great choice.
Recently, JupyterLab [jupyter] started setting the standard for the
research and data science community [jupyter_standard]. There-
fore we consider Jupyter Lab not only as an Integrated Devel-
opment Environment (IDE) but more as a technology standard
practitioners love to work with.

Elyra: Visual editing using drag and drop editing in "no
code" / "low code" environments is gaining popularity [lowcode].
As a representative of such environments we introduce Elyra.
Elyra [elyra] started as a set of extensions for the JupyterLab
ecosystem. Here we concentrate on the pipeline editor, developed
by IBM in Open Source under supervision of the authors, which
allows for expression of machine learning workflows using a
drag and drop editor. Inspired by CWL [cwl] and OpenWDL
[openwdl], Elyra uses an open and interchangeable, JSON based
format to represent the workflows. This allows Elyra to transpile
workflows to different execution engines like Kubeflow or Airflow.
This means non-programmers can understand and create machine
learning workflows on their own without coding and at the same
time making use of Kubernetes massive scalability. Elyra also
ships with a browser extension for visualizing such pipelines in the

Fig. 1: Example on how LIME helps to identify classification relevant
areas of an image.

browser (e.g. from a github repository) to improve collaboration.
AI Explainability: Despite the good performance, deep

learning models are viewed as being black box approaches. Tech-
nically, deep learning models are a series of non-linear feature
space transformations, but an intuitive understanding of each of
the individual processing steps is not trivial. There are techniques
with which we can look over a deep learning model’s shoulder.
The one we are using is called LIME [lime]. LIME takes the
existing classification model and permutes images taken from the
validation set (therefore the real class label is known to LIME) as
long as a misclassification is happening. That way LIME can be
used to create heat maps as image overlays to indicate regions of
images which are most relevant for the classifier. In other words,
we identify regions of the image the classifier is looking at.

As Fig. 1 illustrates, the most relevant areas in an image for
classifying for COVID-19 are areas containing bones over lung
tissue which indicates a problem with that particular classifier.

AI Fairness and Bias: "Bias is a disproportionate weight in
favor of or against an idea or thing, usually in a way that is closed-
minded, prejudicial, or unfair" [bias]. But what we want from our
model is to be fair and unbiased towards protected attributes like
race, age, socioeconomic status, religion and so on. So wouldn’t
it be easier if we just "hid" those columns from the model during
the training? Unfortunately the problem is convoluted. Protected
attributes are often encoded inside the other attributes (latent
features). For example, race, religion and socioeconomic status
are latently encoded in attributes like zip codes, contact methods
or types of products purchased. Therefore, fairness assessment
and bias detection is quite challenging. Luckily, a huge number
of single number metrics exist to assess bias in data and models.
Here, we are using the AIF360 [aif360] library. IBM donated it to
the Linux Foundation AI, which puts it under open governance.

AI Adversarial Robustness: Another pillar of Trusted AI
is adversarial robustness. For example, as researchers found out,
adversarial noise can be introduced in data (data poisoning)
or models (model poisoning) to influence models decisions in
favor of the adversarial. Libraries like the Adversarial Robustness
Toolbox ART [art] support all state-of-the-art attacks and defenses.

Requirements and System Architecture

In the following section we cover the system architecture and it’s
requirements. There are two major components: execution engine
and integrated tools.

Execution Engine: An execution engine takes a pipeline
description and executes it on top of physical machines, reads
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Requirement KF AF Slurm SM Qsub HTCondor Reana

Kubernetes Sup-
port

X X X X X

GPU support X X X X X X X
Component
Library

X

Reproducibility X X X X X
Data Lineage X X

TABLE 1: Fulfilment of requirements for execution engines. (Abbre-
viations: KF=Kubeflow, AF=Airflow, SM=Snakemake)

source data and creates output data. The following requirements
have been defined in order to assess the adequacy of the execution
engine.

• Kubernetes Support
We defined Kubernetes as the lowest layer of abstraction
because that way the executor layer is agnostic of the
underlying Infrastructure as a service (IaaS) architecture.
In addition, Kubernetes provides better resource utilization
if multiple pipelines are run in parallel on the system. We
can consume Kubernetes as a service (aaS) offered by a
variety of Cloud providers like IBM, Amazon, Google,
Microsoft, OVH or Linode. A lot of workload for this
particular project has been envisioned to be outsourced to
SciCore [scicore] - a scientific computing data center part
of the Swiss Personalized Health Network (SPHN) [sphn]
and the Swiss Institute of Bioinformatics [sib]. Best to our
knowledge, their cluster runs on OpenStack and provides
Kubernetes as part of it (Magnum). University Hospital of
Basel has on-premises RedHat OpenShift platform.

• GPU support
GPU support is essential since a large fraction of the
workload is training of deep learning neural networks with
TensorFlow and PyTorch. Training those models on CPU
doesn’t make sense economically and ecologically.

• Component Library
Predefined, ready to use components, are convenient to
use, they save time and, if well tested, reduce the proba-
bility of an error. Kubeflow for example has components
for parallel training of TensorFlow models (TFJob), par-
allel execution of Apache Spark jobs as a pipeline step,
parallel hyperparameter tuning (Katib) and model serving
(KFServing/ KNative)

• Reproducibility
From a legal point of view, in certain domains, it is
necessary to reconstruct a certain decision, model or output
dataset for verification and audit. Therefore the ability to
reproduce and re-run a pipeline is a critical requirement.
Of course, there are other examples where this is impera-
tive, like in science.

• Data Lineage
Although a subset of reproducibility, Data Lineage is a
crucial feature when it comes to visualizing the changes
the datasets went through during the pipeline execution.

Integrated tools: Integrated tools are tools which include
a visual data flow editor, a component library and an execution
engine. Prominent candidates in the open source space are Apache
Nifi, NodeRED, KNIME and Galaxy.

Requirement Nifi NodeRED KNIME Galaxy Elyra

Kubernetes Sup-
port

X X

GPU support X X
Component
Library

X X X X X

Reproducibility X X X X
Data Lineage X X X
Visual Editing X X X X X
Jupyter
Notebooks

X

TABLE 2: Fulfilment of requirements for integrated tools.

Fig. 2: Runtime architecture of CLAIMED.

The following additional requirements have been defined for a
suitable tool:

• Low-Code/No-Code/Visual Editing
Citizen data scientists (in our demo example, medical
doctors) need to work with the tool, so visual editing
is necessary. But apart from being a visual editing tool,
support for creating custom pipeline components on the
fly using R and python is necessary as well.

• Jupyter Notebooks
Researchers in general like to implement tasks in jupyter
notebooks. This makes support for JupyterLab, as well as
having an easy way of making Jupyter notebooks part of
the data processing pipeline, a key requirement.

Final technology choice: As it can be seen from the tables
1 and 2, only Kubeflow on the execution engine side, and Elyra as
the integrated tool are capable of covering all of the requirements.
Therefore we select this pair as our primary technology choice.

Elyra’s pipeline editor supports drag and drop functionality, for
adding arbitrary scripts (shell, R, python) and Jupyter notebooks
to the canvas. Each script gets a container image assigned to be
executed in. At the moment, Elyra supports pipeline submissions
to Airflow and Kubeflow.

Together with Kubeflow and JupyterLab (where Elyra runs as
an extension), all our requirements are fulfilled.

As it can be seen on Figure 2, Elyra - specifically the pipeline
editor of the Elyra Extension to JupyterLab - allows for visually
building data pipelines with a set of assets like notebooks and
scripts dragged onto a canvas and transparently published to
Kubeflow, as a Kubeflow pipeline.

The only thing missing is a set of re-usable notebooks for
different kinds of tasks and this is where CLAIMED comes in.
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Fig. 3: The exemplary TrustedAI pipeline for the health care use case.

We’ve published CLAIMED as an open source library [complib].
In the next sections we will introduce the demo use case, along
with how components found in CLAIMED have been used to
implement this pipeline.

System Implementation and Demo Use Case

A TrustedAI image classification pipeline

As mentioned, pipelines are a great way to introduce reproducibil-
ity, scaling, auditability and collaboration in machine learning.
Pipelines are often a central part of a MLOps strategy. This holds
for TrustedAI pipelines too, since reproducibility and auditability
are even more important in this case. Figure 3 illustrates the
exemplary TrustedAI pipeline we have built using the compo-
nent library and Figure 4 is a screenshot taken from Kubeflow
displaying the pipeline after finishing it’s run.

Pipeline Components

This section exemplifies each existing category with at least one
component which has been used for this particular pipeline. There
are also other components that are not part of the pipeline, so they
are not introduced here. Please note that the core feature of our
software is threefold:

• the CLAIMED component library
• Elyra with it’s capability to use CLAIMED to create a

pipeline and push it to Kubeflow
• the pipeline itself

Input Components: There are input components for differ-
ent types of data source, like files and databases.

In this particular case, we’re pulling data directly from the
GitHub repository via a public and permanent link [covidata]. We
only pull the metadata.csv and images directory.

Transform Components: Sometimes, transformations on
the metadata, or any other structured dataset, are necessary.
Therefore, we provide a generic transformation component - in
the example, we used it to change to format of the categories
as the original file contained forward slashes which made it hard
to use on the underlying operating system. This is performed by
specifying a column name and a function that has to be applied.

Filter Components: Similar to changing content of rows
in a dataset, removing rows is also a common task in data
engineering. The filter stage allows doing exactly that. It is enough
to provide a predicate - specifically for our case the predicate
~metadata.filename.str.contains('.gz') removes
invalid images.

Fig. 4: The pipeline once executed in Kubeflow.

Fig. 5: Example of directory structure supported by TensorFlow
Dataset API.

Image Transformer Components: One supported standard
for the conversion of image datasets into the TensorFlow’s dataset
supported format, is to organize images into directories represent-
ing their classes [tfimgprep]. TensorFlow Dataset is an API that
allows for a convenient way to create datasets from various input
data, apply transformations and preprocessing steps and make
iteration over the data easier and memory efficient [tfdataset].

In our example, the data isn’t in the required format. It is
organized as a directory full of images and alongside it is a CSV
file which defines the attributes. Available attributes are exam
finding, sex and age, from which we only require the finding
for our example. The images are then arranged by following
the previously described directory structure, as illustrated by Fig.
5. After performing this step, the data can be consumed by the
Tensorflow Dataset API.
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Fig. 6: Source code of the wrapped training component.

Training Components: Understanding, defining and train-
ing deep learning models is not a simple task. Training a deep
learning image classification model requires a properly designed
neural network architecture. Luckily, the community trends to-
wards predefined model architectures, which are parameterized
through hyper-parameters. At this stage, we are using the Mo-
bileNetV2, a small deep learning neural network architecture with
the set of the most common parameters. It ships with the Ten-
sorFlow distribution - ready to use, without any further definition
of neurons or layers. As shown in Figure 6, only a couple of
parameters need to be specified.

Although possible, hyper-parameter search is not considered in
this processing stage. The reason being, we want to make use of
Kubeflow’s hyper-parameter search capabilities leveraged through
Katib [katib] in the future.

Evaluation Components: A model needs to be evaluated
before it goes into production. Evaluating classification perfor-
mance against the target labels has been a common metric since
the early days of machine learning, therefore we have also de-
veloped evaluation components, with confusion matrix support
for instance. But taking TrustedAI measures into account is a
newly emerging practice. Therefore, components for AI Fairness
[aif360], AI Explainability [aix360] and AI Adversarial Robust-
ness [art] have been also added to the component library.

Blessing Components: In Trusted AI (but not limited to)
it is important to obtain a blessing of assets like generated data,
models or reports to be published and used by other subsystems
or humans. Therefore, a blessing component uses the results of
the evaluation components to decide if the assets are ready for
publishing.

Publishing Components: Depending on the asset type,
publishing means either persisting a dataset to a data store,
deploying a machine learning model for consumption of other
subsystems, or publishing a report to be consumed by humans.
Here, we exemplify this category by a KFServing [kfserving]
component which publishes the trained TensorFlow deep learning
model to Kubernetes. KFServing, on top of KNative, is partic-
ularly interesting as it draws from Kubernetes capabilities, like
canary deployment and scalability (including scale to zero), in
addition to built-in Trusted AI functionality.

Future Work

We have financial support to add functionality to CLAIMED in
multiple dimensions. Below we give a summary of the next steps.

Extend component library

To this date, at least one representative component for each cate-
gory has been released. Components are added to the library on
a regular basis. The components due to be published are: Parallel
Tensorflow Training with TFJob, Parallel Hyperparameter Tuning
with Katib and Parallel Data Processing with Apache Spark.

Fig. 7: C3 - The CLAIMED Component Compiler transpiles and
publishes pipeline components for different target platforms

Component exporter for Kubeflow

Containerizing notebooks and scripts is a frequent task in the data
science community. In our environment, this involves attaching the
arbitrary assets, like jupyter notebooks and scripts, to a container
image and then transpiling a Kubeflow component out of it. We
are currently in the process of implementing a tool that would
facilitate this workflow. The name of the tool is C3 [c3], and it
stands for CLAIMED component compiler. Currently, transpiling
from notebooks to Kubeflow Pipeline components is supported. In
addition, publishing these components to component repositories
will also be possible. C3 already supports publishing components
to Machine Learning Exchange (MLX) [mlx], an open source asset
repository for notebooks, pipelines, data sets, machine learning
models and pipeline components. Figure 7 illustrates the concept.

Import/Export of components to/from Galaxy

As seen in Table 2, Galaxy covers a majority of our requirements
already. Unfortunately, Galaxy components - called "tools" -
are very skewed towards genomics. Adding new components
and extending functionality onto other domains would make the
tool interesting for a wider audience. Reverse is also true, the
existing component library Galaxy is extensive, well established
and tested. It makes sense to automatically transpile those tools as
components into CLAIMED. We are currently looking into adding
import/export support between CLAIMED and Galaxy into C3.

UX improvements of the Elyra pipeline editor

The components are isolated, so only explicitly shared information
can be put into context for all of them. In order for the com-
ponents’ executor, e.g. Kubflow, to do this, it must be provided
a configuration. We envision for Elyra to automatically deduce
interesting parameters from the code and from the environment,
upon which it would create dynamic forms. For example, fields
like checkboxes and dropdowns where one can select input and
output files mentioned in the code. Currently, only environment
variables are provided in a rudimentary UI with one text field per
variable. One proposal is to introduce an optional configuration
block to the scripts and notebooks. It would then be interpreted by
Elyra and the appropriate UI would be rendered.

One successful example of such implementation is Galaxy’s
UI [galaxy_ui]. A complex UI behavior is expressed by XML
configuration. So we are also exploring an option of either using
Galaxy’s XML Schema or defining a new one and support the
transformation from one into the other.
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Add CWL support to the Elyra pipeline editor

CWL is a powerful workflow expression language supported
already by various tools we’ve evaluated. Currently, Elyra uses its
own, proprietary pipeline representation format. Adding support of
CWL to Elyra would improve interoperability between different
software components. For example, the Reana execution engine
used in the particle physics community, and Galaxy (partially)
already support CWL. This means it would be possible to export
pipelines from Elyra to Reana, without the need of transpiling the
pipeline. Alternatively, Elyra could integrate export and import of
CWL into its pipeline editor.

Import 3rd party component libraries

Since the only thing needed for arbitrary code to become a
CLAIMED component is to be wrapped in a container image
and to be assigned with meta data, it is possible for 3rd party
component libraries like those from KNIME or Nifi and to be
imported into CLAIMED. This also holds true for Kubeflow
components. It is also possible to wrap different components
from KNIME, Nifi or similar tools in this manner and use it
within Elyra, as well as in the other execution engines CLAIMED
supports.

Create more (exemplary) pipelines

At the moment, CLAIMED ships with three exemplary pipelines.
The health care inspired TrustedAI pipeline which was covered
in this paper, a pipeline to visualize and predict soil temperature
from a historic data set and an IoT sensor data analysis pipeline.
The next pipeline in line is a genomics pipeline for the Swiss Insti-
tute of Bioinformatics affiliates University Hospital Berne/Berne
University and potentially for particle physics at CERN.

Conclusion

We’ve build a trustable, low-code, scalable and open source
component library, targeting visual data pipeline systems. We’ve
showcased the library’s capabilities by building a domain specific
pipeline on Elyra, an emerging visual pipeline editor and running
it on widely used Kubeflow execution engine. We believe that
future import/export functionality of CLAIMED will improve
reproducibility of data centric work even further.
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PyCID: A Python Library for Causal Influence
Diagrams

James Fox‡∗, Tom Everitt§, Ryan Carey‡, Eric Langlois¶, Alessandro Abate‡, Michael Wooldridge‡

F

Abstract—Why did a decision maker select a certain decision? What behaviour
does a certain objective incentivise? How can we improve this behaviour and
ensure that a decision-maker chooses decisions with safer or fairer conse-
quences? This paper introduces the Python package PyCID, built upon pgmpy,
that implements (causal) influence diagrams, a widely used graphical modelling
framework for decision-making problems. By providing a range of methods to
solve and analyse (causal) influence diagrams, PyCID helps answer questions
about behaviour and incentives in both single-agent and multi-agent settings.

Index Terms—Influence Diagrams, Causal Models, Probabilistic Graphical
Models, Game Theory, Decision Theory

Introduction

Influence-diagrams (IDs) are used to represent and analyse deci-
sion making situations under uncertainty [HM05], [MIMH+76].
Like Bayesian Networks, IDs have at their core a directed acyclic
graph (DAG), but IDs also specify decision and utility nodes. Re-
lationships between variables are given by conditional probability
distributions. When these are specified, we call it an influence
model (IM). In an IM, a decision-maker selects a distribution over
its available actions at a decision (a decision rule) based on what it
knows (the values of its parents in the ID) to maximise its expected
utility. To demonstrate, consider the following example:

Grade Prediction: To decide who to admit, a university uses
a model to predict the grades of applicants based on information
in their application forms.

Fig. 1: A (C)ID for the Grade Prediction example.

Figure 1 shows the DAG for this example, which displays
clearly the structure of the decision situation. The decision being
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made by an agent, the model, is the grade prediction (decision
node). The agent selects a decision rule for this decision, based on
information about the applicant (chance node), in order to optimise
their prediction accuracy (utility node). The edges denote associ-
ational relationships in the case of a statistical IM, but denote
causal links in causal influence models (CIMs). This difference in
semantics [ECL+21] allows one to use CIMs to query the effect
of causal interventions and provides a setting to ask counterfactual
questions [Pea09]. (C)IMs have also been extended to multi-agent
settings by [KM03], [HFE+21], and [HFE+].

Statistical and causal IDs have shown promise for a wide
variety of applications. In business and medical decision making,
statistical IDs provide a simple yet powerful model for optimising
decisions by making assumptions explicit and revealing what
information is relevant [Góm04], [KM08]. Moreover, for the
design of safe and fair AI systems, causal IDs have been used to
help predict the behaviour of agents arising due to their incentives
in an environment [ECL+21], [CLEL20], [EHKK21], [Hol20],
[EKKL19], [LE21], and [CVH20]. Nevertheless, although Python
libraries exist for Bayesian networks, perhaps most prominently
pgmpy [AP15], these libraries lack specific support for IDs. We
found two Python wrappers of C++ influence diagram libraries:
pyAgrum [DBDSMW20] and PySMILE [Bay]. These were lim-
ited by usability (hard to install), maintainability (using multiple
languages) and versatility (they did not cover multi-agent or causal
IDs). A Python library that focuses on implementing statistical and
causal IDs is therefore needed to ensure their potential application
can be explored, probed, and fully realised.

Consequently, this paper introduces PyCID1, a Python library
built upon pgmpy [AP15] and NetworkX [HSS08], which im-
plements IDs and IMs (including their causal and multi-agent
variants) and provides researchers and practitioners with conve-
nient methods for analysing decision-making situations. PyCID
can solve single-agent (C)IMs, find Nash equilibria in multi-
agent (C)IMs, and compute the effect of causal interventions in
CIMs (e.g., fixing the prediction model in Figure 1 to always
predict a high grade regardless of the applicant’s information).
PyCID can also find which variables in an ID admit incentives.
For example, positive value of information [How66] and value of
control [Sha86] tell us when an agent can benefit from observing
or controlling a variable. Meanwhile, other incentives concepts,
recently proposed in [ECL+21], reveal which variables it can
be instrumentally useful to control and when a decision-maker
benefits from responding to a variable. Reasoning patterns are a
related concept in multi-agent IDs: they analyze why a decision-
maker would care about a decision [PG07], and these can also be
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computed in PyCID.
The first two sections of this paper provide the necessary

background on (C)IDs and describe the architecture of the Py-
CID library. We then move to showcasing some of PyCID’s
features through applications for discovering agent incentives and
analysing games. In the * Instantiating Causal Influence Dia-
grams* section, we demonstrate how to instantiate a (C)ID for the
Grade Prediction example in PyCID. In the Analysing Incentives
section, we demonstrate how to find the nodes which admit value
of information, response, value of control, or instrumental control
incentives for more complex (C)IDs. We then turn to multi-agent
(C)IDs (MA(C)IDs) and show how to use PyCID to compute Nash
equilibria. Next, we explain how PyCID can construct random
(MA)CIDs. Finally, we discuss the future of PyCID.

Background

Notation

Throughout this paper, we will use capital letters, X , for ran-
dom variables and let dom(X) denote their domain. An assign-
ment x ∈ dom(X) to X is an instantiation of X denoted by
X = x. X = {X1, . . . ,Xn} is a set of variables with instantiation
x = {x1, . . . ,xn}. We also let PaV denote the parents of a node V
in a (MA)CID and paV be the instantiation of PaV . Moreover, we
define DescV and FaV := PaV ∪{V} to be the descendants and
family of V . We use subscripts to index the elements of a set and,
in a multi-agent setting, superscripts to indicate a player i∈N; e.g.,
the set of decisions belonging to player i is Di = {Di

1, ...,D
i
n}.

Causal Influence Diagrams

A Bayesian network is a model consisting of a directed acyclic
graph (DAG) and a joint distribution that is Markov compatible
with that graph [Pea09]. The nodes in the DAG denote random
variables and the directed edges represent the associational rela-
tionships between them. To parameterise the DAG and encode the
joint distribution, each random variable, V , in the DAG is assigned
a conditional probability distribution (CPD), P(V |PaV ), dependent
on its set of graphical parents, PaV . Taken together, these CPDs
define the Bayesian network’s joint distribution.

A causal Bayesian network is a Bayesian network where the
directed edges in the DAG now represent every causal relation-
ship between the Bayesian network’s variables. This enables the
model the ability to answer questions about the effect of causal
interventions from outside of the system.

Causal Influence Diagrams (CIDs) are DAGs where the nodes
are partitioned into chance, decision, and utility nodes and the
edges adopt the same causal semantics as causal Bayesian net-
works [ECL+21]. Causal Influence models (CIMs) are parame-
terised CIDs where, at the outset, the CPDs for chance and utility
nodes are defined, but only the domains for the decision variables
are fixed.

Definition 1 [ECL+21] A Causal influence Diagram (CID)
is a directed acyclic graph (V,E) where the set of vertices (V)
connected by directed edges (E ⊆ V×V) are partitioned into
chance (X), decision (D), and utility (U) nodes. Utility nodes lack
children.

Definition 2 [ECL+21] A Causal influence Model (CIM) is
a tuple (V,E,θ) where (V,E) is a CID and θ ∈ Θ is a particular
parametrisation over the nodes in the graph specifying for each

1. This paper describes PyCID version 0.2.6.

node V ∈V a finite domain dom(V ), for each utility node U ∈U a
real-valued domain dom(U)⊆R, and for every chance and utility
node a conditional probability distribution (CPD) P(V | PaV ).

Multi-agent Causal Influence Diagrams (MACIDs) partition
decision and utility nodes further into sets associated with each
agent. In a (MA)CID, a decision rule, πD(D|PaD), is a probability
distribution over the actions available at decision node D condi-
tional on the value of its parents in the graph, PaD. A policy, π i,
assigns decision rules to all of agent i’s decision nodes, and, in a
MACIM, a policy profile, π , assigns policies to every agent. In a
(MA)CID, each agent i’s expected utility, U i

M (π), under a policy
(profile) π is the sum of the expected values of their utility nodes.

Package Architecture

In this section, we outline the structure (Figure 2) and describe the
key classes of the PyCID library2.

Fig. 2: An overview of PyCID’s file structure.

Installation

PyCID is released under the Apache License 2.0. It requires Python
3.7 or above, but only depends on Matplotlib [Hun07], NetworkX
[HSS08], NumPy [HMvdW+20], and pgmpy [AP15]. It can be
downloaded and installed in a Python virtual environment or in a
Conda environment using:
python3 -m pip install pycid

PyCID is under continual development and so one can install the
latest developmental package using a git checkout from the PyCID
repository on GitHub: https://github.com/causalincentives/pycid.

2. PyCID is under continued development, so more features will be added
over time. Any updated documentation may be found in the repository’s
README file.
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Classes Inherited from pgmpy

PyCID’s key classes inherit from pgmpy’s BayesianModel,
TabularCPD, and BeliefPropagation classes [AP15]. The
BayesianModel class represents a Bayesian network and CPDs
are assigned to each random variable in the model using instances
of the TabularCPD class. These CPDs define the Bayesian
Network’s joint distribution and the BeliefPropagation
class is then used to perform probabilistic inference on a
BayesianModel object; for instance, one can query the proba-
bility that node V takes value v given some instantiation of other
variables in the DAG (known as a context).

The pycid.core module

PyCID’s base class is CausalBayesianNetwork. This class
inherits from pgmpy’s BayesianModel and represents a causal
Bayesian network. In particular, it extends BayesianModel by
adding the ability to query the effect of causal interventions. It
also adds methods for determining the expected value of a variable
for a given context (again under an optional causal intervention)
and for plotting the DAG of the Causal Bayesian Network using
NetworkX [HSS08]. CPDs for a CausalBayesianNetwork
object can be defined using pgmpy’s TabularCPD class, but
we also allow relationships to be specified more directly with
stochastic functions (under the hood, these are implemented via a
StochasticFunctionCPD class). This can be used to specify
relationships between variables with a stochastic function, rather
than just with a probability matrix (see the Instantiating Causal
Influence Diagrams section). CausalBayesianNetwork
also has an inner class, Model, which keeps track of CPDs and
domains for all CausalBayesianNetwork objects’ variables
in the form of a dictionary.

The MACIDBase class, which inherits from
CausalBayesianNetwork, provides the underlying methods
necessary for single-agent and multi-agent causal influence
diagrams. The class includes methods for determining the
expected utility of an agent, for finding optimal decision rules and
policies, and for finding various new graphical criteria defined in
influence diagrams (e.g. r-relevance).

CID and MACID are classes, inheriting from MACIDBase,
that represent single-agent and multi-agent (C)IDs and are the
models of most concern in PyCID. They include methods for
finding the optimal policy for an agent in a (C)IM and for finding
Nash equilibria [N+50] and subgame perfect Nash equilibria
[Sel65] in a MA(C)IM. It is important to highlight here that
statistical (i.e., non-causal) single-agent and multi-agent influence
diagrams can also be defined as CID and MACID objects using
PyCID. In their case, all class methods are permitted except those
that involve causal interventions.

The pycid.core module also contains functions that exploit
relationships between the (MA)(C)ID’s variables such as finding
all (active) (directed) paths between variables and classes that
find the relevance graphs [KM03] associated with MACIDBase
objects.

PyCID’s other modules

The pycid.analyse module includes functions for determining
incentives in (C)IDs [ECL+21], reasoning patterns in MA(C)IDs
[PG07], and a function for computing the total effect of interven-
ing on a variable with different values. pycid.examples contains
pre-implemented (C)IDs and MA(C)IDs, whilst pycid.random

contains functions for generating random (C)IDs and MA(C)IDs.
pycid.notebooks contains jupyter notebooks with demonstrations
of how to use the codebase; these can also be run directly as Colab
notebooks. Finally, pycid.tests houses unit tests for all functions
and public class methods.

Instantiating Causal Influence Diagrams

Having covered PyCID’s basic library structure, the remaining
sections will demonstrate some use cases. We begin, in this
section, by instantiating the structure of the simple (C)ID given in
the introduction (Figure 1). For many purposes, including finding
incentives, the graph is enough for analysis.

A (C)ID for the Grade Prediction example is created as an
instance of our CID class. Its initializer takes a list of edges as
its first argument and then two more lists specifying the (C)ID’s
decision and utility nodes. All other nodes introduced in the edge
pairs, which are not decision or utility nodes, are chance nodes.
For conciseness, we abbreviate and use P to denote the prediction
model’s decision node, A for the applicant’s information, and Ac
to denote the accuracy of the predictions:
import pycid
cid = pycid.CID(

[("A", "P"), ("A", "Ac"), ("P", "Ac")],
decisions=["P"],
utilities=["Ac"],

)
cid.draw()

The CID class method, draw, plots this (C)ID (Figure 3) with a
node colour and shape convention that matches what is given in
Figure 1’s legend.

Fig. 3: A simple (C)ID (Left) and corresponding CIM (Right) plotted
using PyCID.

To then parameterise this (C)ID as a (C)IM by adding a domain
for P and CPDs for A and Ac, we pass keyword arguments to the
add_cpds method:
1 cid.add_cpds(
2 A=pycid.discrete_uniform([0, 1]),
3 P=[0, 1],
4 Ac=lambda a, p: int(a == p),
5 )

CPDs in PyCID can be instantiated directly as TabularCPD
objects, but more often PyCID’s StochasticFunctionCPD
subclass is used. This provides multiple ways to easily specify
how a chance or utility variable’s CPD depends on its parents or
follows some distribution; it then converts that expression into
a TabularCPD object under the hood. On line 2 above, we
assign variable A a discrete uniform distribution over its domain,
dom(A) = {0,1}; on line 3, we specify dom(P) = {0,1}; and on
the final line, we specify how the value of Ac depends on the
values of its parents, A and P. Within the lambda function, other
variables are referred to by their lower case form to denote that
variable’s instantiation. Using a CID class method, solve, we can
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now solve this (C)IM by finding the agent’s optimal decision rule
for P. This returns the following output, saying that the optimal
decision rule for P is to choose action 0 (low grade prediction)
when the value of A is 0 (the quality of the application is poor),
and action 1 (high grade prediction) when the value of A is 1 (the
quality of the application is high):
{'P': StochasticFunctionCPD<D>

{'a': 0} -> 0
{'a': 1} -> 1}

If the agent behaves according to this optimal decision rule, we
find that their expected utility is 1 using the code below; ex-
pected_utility accepts optional dictionaries for specifying contexts
and causal interventions:
solution = cid.solve()
optimal_d_cpd = solution['P']
cid.add_cpds(optimal_d_cpd)
cid.expected_utility(context={}, intervention={})

There are several other ways to specify CPDs for variables. For
example, on line 1 below, the CPD for A is updated to now follow
a Bernoulli(0.8) distribution and line 2 specifies that now Ac just
copies the value of P with probability 0.7:
1 cid.add_cpds(A=pycid.bernoulli(0.8))
2 cid.add_cpds(Ac=lambda a, p: pycid.noisy_copy(p,
3 probability=0.7, domain=[0, 1]))

Analysing Incentives

In this section, we demonstrate how to use PyCID to find which
nodes in a single-decision CID admit different types of incentives
using their graphical criterion [ECL+21]. In general, a graphical
criterion tells you what properties influence models can have
based on the influence diagram (i.e, the graph) alone. A graphical
criterion takes a graph and several nodes as arguments and returns
whether or not the property (in this case the incentive) can occur
for those nodes. Incentives are helpful for applications in safety
and fairness ([ECL+21], [Hol20]), understanding the behaviour of
RL algorithms ([LE21], [EHKK21]), and comparing the promise
of different AGI safety frameworks [EKKL19]. We believe that
PyCID can further mature these enquiries.

PyCID currently finds the following incentives in single-
decision CIDs using their graphical criteria:

• Value of Information (VoI)
• Response Incentives (RI)
• Value of Control (VoC)3

• Instrumental Control Incentives (ICI)

Value of Information (VoI)

Intuitively, a variable has positive value of information (VoI) if a
decision-maker would benefit (get more utility) from observing its
value before making a decision:

VoI Definition: For a CIM4 M , and a node X ∈ V \DescD,
let MX 6→D and MX→D be M modified by respectively removing
and adding the edge X → D. The value of information for X is
then max

π
U i

MX→D
(π)−max

π
U i

MX 6→D
(π).

VoI has been applied to a wide array of problems in eco-
nomics and computer science [BP16]. Although PyCID’s function

3. Nodes can be specified further as admitting indirect or direct Value of
Control.

4. This definition is also valid in (non-causal) statistical influence models.

quantitatative_voi returns the quantitative VoI of a variable in
a CIM, for the remainder of this section we shall focus on its
graphical criterion, which depends upon which nodes are requisite
observations in the CID.

Requisite Observation Graphical Criterion: Let UD ∈ U∩
DescD be the utility nodes downstream of D. An observation X ∈
PaD in a single-decision CID is requisite if X 6⊥G UD|(PaD ∪
{D}\{X})5.

VoI Graphical Criterion: A single decision CID, G , admits
VoI for X ∈ V \DescD if and only if X is a requisite observation
in GX→D, the graph obtained by adding X → D to G .

To demonstrate how to find nodes that admit VoI using
PyCID, we extend the Grade Prediction example given in the
introduction:

Extended Grade Prediction: [ECL+21] The university wants
to admit the brightest students using their grade prediction model,
but doesn’t want to treat students differently based on their gender
(Ge) or race (R). The model uses the gender of the student and the
high school (HS) they attended to make its grade prediction. We
make the following assumptions:

• Performance at university is evaluated by a student’s
grades (Gr) and this depends on the quality of education
(E) the student received before university (which depends
on the high school they attended).

• A student’s high school is assumed to be impacted by their
race, but not by their gender.

We want to know whether the predictor is incentivised to
behave in a discriminatory manner with respect to the students’
gender or race. A CID for this example is defined below:
cid = pycid.CID(

[
("R", "HS"),
("HS", "E"),
("HS", "P"),
("E", "Gr"),
("Gr", "Ac"),
("Ge", "P"),
("P", "Ac"),

],
decisions=["P"],
utilities=["Ac"],

)

PyCID finds that HS, E, and Gr can all have positive VoI for
the predictor model (line 1). We can also display this visually
(Figure 4) by passing, as an argument, a lambda function into
CID’s draw_property method (line 2):
1 pycid.admits_voi_list(cid, 'P')
2 cid.draw_property(lambda node:
3 pycid.admits_voi(cid, 'P', node))

Our implementation of this example in PyCID has revealed that
there exists a parameterisation of this setup (i.e., a CIM with the
given CID) where the model would benefit from knowing the value
of one or more of ’High School’, ’Education’, or the student’s true
’Grade’ before making a grade prediction.

Response Incentives (RI)

Response incentives (RI) are a related type of incentive and we
explain how implementing them in PyCID can help improve the

5. X 6⊥G Y |W denotes that X is d-connected to Y conditional on the set
of nodes in W and X ⊥G Y |W would denote that X is d-separated from Y
conditional on W [Pea09].
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Fig. 4: A CID for the Extended Grade Prediction example with the
variables that admit VoI in a darker colour, red (plotted using PyCID).

fairness of AI systems. A variable admits an (RI) if a decision-
maker benefits from making its decision causally responsive to
the variable [ECL+21]6.

RI Graphical Criterion: A single decision CID, G , admits
a response incentive on X ∈ X if and only if there is a directed
path X 99K D in the requisite graph7 Greq where Greq is the result
of removing from G all information links from non-requisite
observations.

To demonstrate how to find the nodes which admit RIs, we
will again consider the Extended Grade Prediction example. As
we did with VoI, we can list all of the nodes that admit RIs in the
CID (line 1) or we can display the result visually (line 2) with the
result shown in Figure 5 (Left):
1 pycid.admits_ri_list(cid, 'P')
2 cid.draw_property(lambda node:
3 pycid.admits_ri(cid, 'P', node))

Implementing CIDs in PyCID can help suggest how to improve
the fairness of AI systems because [ECL+21] argue that an RI on a
sensitive attribute can be interpreted as problematic from a fairness
perspective. A decision is considered counterfactually unfair if
a change to a sensitive attribute, such as race or gender, would
change the decision [KLRS17]. Therefore, an RI on a sensitive
attribute indicates that counterfactual unfairness is incentivised;
specifically, it implies that all optimal policies are counterfactually
unfair. To mitigate this, [ECL+21] propose redesigning the grade-
predictor. By removing the predictor’s access to knowledge about
the student’s high school (i.e., the edge HS→ P ), there will no
longer be an RI on a sensitive attribute. The following code trims
the edge and shows that now no node admits an RI in the modified
CID (Figure 5 (Right)):
cid.remove_edge('HS', 'P')
cid.draw_property(lambda node: \

pycid.admits_ri(cid, 'P', node))

Value of Control (VoC) and Instrumental Control Incentives (ICI)

We now turn to Value of Control (VoC) and Instrumental Control
Incentives (ICI) and show that implementing the latter in PyCID
can help design safer AI systems. Intuitively, a variable has
positive value of control (VoC) if a decision-maker could benefit
from choosing that variable’s value.

VoC Definition: For a CIM M , the value of control for a
non-decision node X ∈ V\D is max

π
max

gX
U i

MgX
(π)−max

π
U i

M (π).

MgX denotes the CIM M after intervening on X with any CPD,
gX , that respects the graph.

6. For a formal definition, we refer the reader to [ECL+21].
7. A requisite graph is also known as a minimal reduction, trimmed_graph,

or d-reduction.

Fig. 5: (Left) The original CID for the Extended Grade Prediction
example with the variables that admit an RI in a darker colour, red,
and (Right) the modified CID in which now no node admits an RI
(plotted using PyCID).

VoC Graphical Criterion: A single decision CID, G , admits
positive value of control for a node X ∈ V \ {D} if and only if
there is a directed path X 99KU in the requisite graph Greq.

Although VoC is a useful concept, it does not consider whether
it is actually possible for an agent to control that variable. There-
fore, [ECL+21] introduce Instrumental Control Incentives, which
can be intuitively understood as follows: if the agent got to choose
D to influence X independently of how D influences other aspects
of the environment, would that choice matter? In other words, is
controlling X instrumentally useful for maximising utility? The
graphical criteria for ICI in a single-decision CID is:

ICI Graphical Criterion: A single decision CID, G , admits
an instrumental control incentive on X ∈ V if and only if G has
a directed path from the decision D to a utility node U ∈ U that
passes through X .

To demonstrate how to find these incentives in PyCID, we
introduce another example from [ECL+21].

Content recommendation: An AI algorithm has the task of
choosing posts (P) to show a user, to maximise the user’s click
rate (C). The designers want the algorithm to present content
adapted to each user’s original opinions (O) to optimize clicks;
the algorithm does not know the user’s true original opinions,
so it instead relies on an approximate model (M). However,
the designers are worried that the algorithm will use polarising
content to influence user opinions (I) so that the user clicks more
predictably:
cid = pycid.CID(

[
("O", "M"),
("O", "I"),
("M", "P"),
("P", "I"),
("I", "C"),
("P", "C"),

],
decisions=["P"],
utilities=["C"],

)

cid.draw_property(lambda node: \
pycid.admits_ici(cid, 'P', node))

With RI, we showed that implementing CIDs in PyCID can
aid the design of fairer systems; with ICI, we demonstrate how
PyCID can be used to help design safer AI systems. First, we
can use analogous functions to what we used for VoI and RI -
pycid.admits_voc_list(cid) and pycid.admits_ici_list(cid, ’P’) - to
find that O, M, I, and C can have positive VoC whilst I, P, and C
admit ICI. From this, because I (influenced user opinions) admits
an instrumental control incentive, we discover that the content
recommender may seek to influence that variable to attain utility.
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[ECL+21] offer an alternative content recommender design that
avoids this undesirable behaviour. Instead of being rewarded for
the true click-through rate, the content recommender is rewarded
for the clicks it would be predicted to have, based on a separately
trained model of the user’s preferences. The modified CID for this
changed model is shown in Figure 6 c) where the old utility node
C (actual clicks) has become PC (predicted clicks):
cid = pycid.CID(

[
("O", "M"),
("O", "I"),
("M", "P"),
("M", "PC"),
("P", "I"),
("P", "PC"),

],
decisions=["P"],
utilities=["PC"],

)

cid.draw_property(lambda node: \
pycid.admits_ici(cid, 'P', node))

Fig. 6: The original CID for the Content recommendation example
in (a) with (b) the variables that admit ICI in a darker colour, red,
and (c) the modified content recommender’s CID in which (d) I no
longer admits an ICI (plotted using PyCID).

Multi-agent (Causal) Influence Diagrams

In this section, we will show how to instantiate
MA(C)IDs/MA(C)IMs in PyCID and demonstrate a selection
of methods for analysing games (strategic interactions between
self-interested players) including strategic relevance [KM03] and
finding Nash equilibria (NE) [N+50].

Recall from the Background section that a Multi-agent Causal
Influence Diagram/Model (MACID/MACIM) is a simple multi-
agent extension of a CID/CIM [HFE+]. For our purpose, all
that’s important is that there is now a set of N agents and so
the decision and utility nodes are partitioned into {Di}i∈N and
{Ui}i∈N to correspond to their association with a particular agent
i∈N. We also again underline that the only difference between sta-
tistical multi-agent influence diagrams/models (MAIDs/MAIMs)
and MACIDs/MACIMs is that the edges represent every causal
relationship between the random variables chosen to be endoge-
nous variables in the model, as opposed to just associational
relationships. Nevertheless, because MACIDs subsume MAIDs (in
the sense of Pearl’s causal hierarchy [Pea09]), everything we can

do in a MAID, we can also do in a MACID. Therefore, for the two
examples we present here, MAIDs and MACIDs can be viewed as
the same.

To serve as our example, we shall use the Prisoner’s Dilemma,
which is probably the best known simultaneous and symmetric
two-player game:

Prisoner’s Dilemma: Two prisoners, suspected of committing
a robbery together, are isolated and urged to confess. Each is
concerned only with getting the shortest possible prison sentence
for himself and must decide whether to confess without knowing
his partner’s decision. Both prisoners, however, know the con-
sequences of their decisions. Each year spent in prison can be
represented as -1 utility and so the payoff matrix for this game (or
Normal form) is given in Figure 7.

Fig. 7: Normal form game giving the payoffs for each player in the
Prisoner’s Dilemma. Player 1 (2) is the row (column) player.

MA(C)IDs and MA(C)IMs are instantiated as MACID objects
with identical syntax to CID objects except for there being
multiple agents and so we can draw them in the same way. Figure 8
(Left) shows that in PyCID, consistent with (C)IDs, decision nodes
are drawn as rectangles and utility nodes are drawn as diamonds;
however, because we now have more than one player, we reserve
colouring to denote agent membership: each agent is assigned a
unique colour. Chance nodes remain as grey circle (Figure 11):
macid = pycid.MACID(

[
("D1", "U1"),
("D1", "U2"),
("D2", "U1"),
("D2", "U2"),

],
# specifies each agent's decision and utility nodes.
agent_decisions={1: ['D1'], 2: ['D2']},
agent_utilities={1: ['U1'], 2: ['U2']},

)

d1_dom = ['c', 'd']
d2_dom = ['c', 'd']

agent1_payoff = np.array([[-1, -3], [0, -2]])
agent2_payoff = np.transpose(agent1_payoff)

macid.add_cpds(
D1=d1_dom,
D2=d2_dom,
U1=lambda d1, d2: agent1_payoff[d1_dom.index(d1),

d2_dom.index(d2)],
U2=lambda d1, d2: agent2_payoff[d1_dom.index(d1),

d2_dom.index(d2)]
)
macid.draw()

The following command tells us that the second player (agent)
receives expected utility = -3 (i.e., they will spend 3 years in
prison) given that player 1 decides to defect and player 2 decides
to cooperate. This agrees with the payoff matrix in Figure 7:
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Fig. 8: A MACID for the Prisoner’s Dilemma (Left) and its corre-
sponding relevance graph (Right) (plotted using PyCID).

macid.expected_utility(context={'D1':'d', 'D2': 'c'},
agent=2)

Strategic relevance is a useful concept for analysing decisions
made in games; it asks which other decisions’ decision rules need
to be already be known before we can optimise a particular deci-
sion rule. [KM03] introduced the graphical criterion s-reachability
for determining this from the graph:

S-reachability Graphical Criterion: Another decision node
D′ is s-reachable from a decision D ∈ Di in a MA(C)ID, M =
(N,V,E), if a newly added parent D̂′ of D′ satisfies D̂′ 6⊥G Ui ∩
DescD | FaD.

Using PyCID, lines 1 and 2 below evaluate to True, which
tells us that each decision strategically relies on the other; each
prisoner would be better off knowing the other prisoner’s policy
before deciding on their own action. To show this visually, line 3
plots the MACID’s relevance graph [KM03] (Figure 8 Right):

1 macid.is_r_reachable('D1', 'D2')
2 macid.is_r_reachable('D2', 'D1')
3 pycid.RelevanceGraph(macid).draw()

We now turn to finding NE in games. We use πA to denote player
i’s set of decision rules for decisions A⊆Di, given a partial policy
profile π−A over all of the other decision nodes in a MA(C)ID, M .
We write U i

M (πA,π-A) to denote the expected utility for player i
under the policy profile π = (πA,π-A).

Definition: [KM03] A full policy profile π is a Nash equi-
librium (NE) in a MA(C)IM M if, for every player i ∈ N,
U i

M (π i,π−i)≥U i
M (π̂ i,π−i) for all π̂ i ∈Πi.

To find all pure NE in the MA(C)IM corresponding to the
Prisoner’s Dilemma:

macid.get_all_pure_ne()

This method returns a list of all pure NE in the MA(C)ID. Each
NE comes as a list of StochasticFunctionCPD objects, one
for each decision node in the MA(C)ID:

[[StochasticFunctionCPD<D1>
{} -> d,

StochasticFunctionCPD<D2>
{} -> d]]

In the Prisoner’s Dilemma, there is only one NE and this involves
both players defecting. We can then find that the expected utility
for each agent is -2 under this NE joint policy profile:

all_pure_ne = macid.get_all_pure_ne()
macid.add_cpds(*all_pure_ne[0])
macid.expected_utility({}, agent=1)
macid.expected_utility({}, agent=2)

PyCID can also be used to find subgame perfect equilibria (SPE)
[Sel65]. A SPE is a NE where no player makes a non-credible
threat - an action that, if the player is rational, they would never
actually carry out.

Definition: [HFE+21] A full policy profile π is a subgame
perfect equilibrium (SPE) in a MA(C)IM M if π is an NE in
every MAIM subgame8 of M .

The Prisoner’s Dilemma MAIM has no proper MAIM sub-
games and so the NE we found above is (trivially) also a SPE.
Therefore, to demonstrate how PyCID distinguishes between NE
and SPE, we use the following example:

Taxi Competition: Two autonomous taxis, operated by differ-
ent companies, are driving along a road with two hotels located
next to one another - one expensive and one cheap. Each taxi must
decide (one first, then the other) which hotel to stop in front of,
knowing that it will likely receive a higher tip from guests of the
expensive hotel. However, if both taxis choose the same location,
this will reduce each taxi’s chance of being chosen by that hotel’s
guests. The payoffs for each player are shown in Figure 9 and the
MACIM for this example is instantiated in PyCID below

Fig. 9: Payoff matrices for taxi 1 (left) and taxi 2 (right) for the Taxi
Competition.

macid = MACID(
[("D1", "D2"), ("D1", "U1"), ("D1", "U2"),
("D2", "U2"), ("D2", "U1")],
agent_decisions={1: ["D1"], 2: ["D2"]},
agent_utilities={1: ["U1"], 2: ["U2"]},

)

d1_dom = ["e", "c"]
d2_dom = ["e", "c"]
agent1_payoff = np.array([[2, 5], [3, 1]])
agent2_payoff = agent1_payoff.T

macid.add_cpds(
D1=d1_dom,
D2=d2_dom,
U1=lambda d1, d2: agent1_payoff[d1_dom.index(d1),

d2_dom.index(d2)],
U2=lambda d1, d2: agent2_payoff[d1_dom.index(d1),

d2_dom.index(d2)],
)

Fig. 10: A MA(C)ID for the Taxi Competition and its corresponding
relevance graph (plotted using PyCID).

This MA(C)IM has three pure NE, which are found using
macid.get_all_pure_ne(). We can also find the decision nodes in

8. We refer the interested reader to [HFE+21] for a definition of a MAIM
subgame.
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each MAID subgame (see [HFE+21]), the decision nodes that can
be optimised independently from the rest:
macid.decs_in_each_maid_subgame()
[{'D2'}, {'D1', 'D2'}]

We can find the NE in the only proper subgame:
macid.get_all_pure_ne_in_sg(decisions_in_sg=['D2'])

and finally all SPE in the MA(C)IM. The Taxi Competition’s
MACIM has only one pure SPE:
macid.get_all_pure_spe()

[[StochasticFunctionCPD<D2>
{'d1': 'c'} -> e
{'d1': 'e'} -> c,

StochasticFunctionCPD<D1>
{} -> e]]

Random (C)IDs and MA(C)IDs

PyCID has other features that can be useful for researchers. In
particular, the library contains functions for instantiating random
(MA)(C)IDs. This is useful for estimating the average properties
of graphs, or for finding a counterexample to some conjecture.
The first example below finds and plots a random 10-node, single-
agent (C)ID with two decision nodes and three utility nodes. The
second example finds and plots a random 12-node MA(C)ID with
two agents. The first agent has one decision and two utility nodes,
the second agent has three decisions and two utility nodes. In
both these examples, we set the add_cpds flag to False to create
non-parameterised (MA)(C)IDs. If one sets this flag to True, each
chance and utility node is assigned a random CPD, and each
decision node a domain to instantiate a (MA)CIM. One can also
force every agent in the (MA)(C)ID to have sufficient recall;
an agent has sufficient recall if the relevance graph restricted to
include just that agent’s decision nodes is acyclic. This can be
useful for certain incentives analyses [vMCE]. The edge_density
and max_in_degree parameters set the density of edges in the
(MA)(C)ID’s DAG as a proportion of the maximum possible num-
ber (n× (n− 1)/2) and the maximum number of edges incident
to a node in the DAG. To find a (MA)(C)ID that meets all of
the specified constraints, PyCID uses rejection sampling and so
max_resampling_attempts specifies the number of samples to try
before timing out:
cid = pycid.random_cid(

number_of_nodes=10,
number_of_decisions=2,
number_of_utilities=3,
add_cpds=False,
sufficient_recall=False,
edge_density=0.4,
max_in_degree=5,
max_resampling_attempts=100,

)
cid.draw()

macid = pycid.random_macid(
number_of_nodes=12,
agent_decisions_num=(1, 3),
agent_utilities_num=(2, 2),
add_cpds=False,
sufficient_recall=False,
edge_density=0.4,
max_in_degree=5,
max_resampling_attempts=500,

)
macid.draw()

Fig. 11: A random (C)ID and MA(C)ID created in PyCID.

Conclusions and Future Directions

PyCID is a Python library for solving and analysing single-agent
and multi-agent (causal) influence diagrams. Several key classes
- CausalBayesianNetwork, CID, and MACID - enable deci-
sion problems to be solved and the effects of causal interventions
to be studied whilst PyCID’s analysis functions can find graphical
properties such as incentives in CIDs and reasoning patterns in
MACIDs. This makes PyCID a customizable, but powerful library
for testing research ideas and exploring applications. Moreover,
implementing examples programmatically can substantiate the
claims made by ID researchers about the benefit of their work;
one can assess how different quantities vary over the parameter
space or empirically verify complexity results [HFE+]. Single-
agent and multi-agent (causal) influence diagrams are an area of
active research, so as theory develops, the PyCID library will also
grow. Extensions will likely include:

• Support for finding incentives in multi-decision CIDs
[vMCE].

• Support for Structural Causal Models [Pea09] and there-
fore also quantitative RI and ICI.

• More game-theoretic concepts (e.g. more equilibrium con-
cepts).

• Support for multi-agent incentives.

In this paper, we have demonstrated the usefulness of PyCID
by focusing on causal influence diagrams; however, this library is
also well suited for working with statistical influence diagrams.
The development team would like to invite researchers from any
domain to use PyCID to test the package for diverse applications,
to contribute new methods and functions, and to join our Causal
Incentives Working Group: https://causalincentives.com/. The Py-
CID repository is available on GitHub under our working group’s
organization: https://github.com/causalincentives/pycid.
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Social Media Analysis using Natural Language
Processing Techniques
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Abstract—Social media is very popularly used every day with daily content
viewing and/or posting that in turn influences people around this world in a
variety of ways. Social media platforms, such as YouTube, have a lot of activity
that goes on every day in terms of video posting, watching and commenting.
While we can open the YouTube app on our phones and look at videos and
what people are commenting, it only gives us a limited view as to kind of things
others around us care about and what is trending amongst other consumers
of our favorite topics or videos. Crawling some of this raw data and performing
analysis on it using Natural Language Processing (NLP) can be tricky given
the different styles of language usage by people in today’s world. This effort
highlights the YouTube’s open Data API and how to use it in python to get the
raw data, data cleaning using NLP tricks and Machine Learning in python for
social media interactions, and extraction of trends and key influential factors
from this data in an automated fashion. All these steps towards trend analysis
are discussed and demonstrated with examples that use different open-source
python tools.

Index Terms—nlp, natural language processing, social media data, youtube,
named entitity recognition, ner, keyphrase extraction

Introduction

Social media has large amounts of activity every second across the
globe. Analyzing text similar to text coming from a social media
data source can be tricky due to the absence of writing style rules
and norms. Since this kind of data entails user written text from
a diverse set of locations, writing styles, languages and topics,
it is difficult to normalize data cleaning, extraction, and Natural
Language Processing (NLP) methods.

Social media data can be extracted using some official and
open APIs. Examples of such APIs include YouTube Data API and
Twitter API. One important thing to note would be to ensure one’s
use case fits within compliance of API guidelines. In this effort, the
YouTube Data API will be discussed along with common gotchas
and useful tools that can be leveraged to access data.

One can perform NLP if the text data type is available for
analysis. The nature of noise seen in text from social media
sources will be discussed and presented. Cleaning of the noisy
text using python techniques and open-source packages will be
further analyzed. Social media data additionally entails statistics of
content popularity, likes, dislikes and more. Analysis on statistical
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and text extracted from YouTube API will be discussed and
evaluated.

Finally, trend analysis will be performed using open-source
python tools, social media data, statistics, NLP techniques for data
cleaning and named entity recognition (NER) for a story-telling
analytics piece.

Natural Language Processing

Natural language processing (NLP) is the computer manipulation
of natural language. Natural language refers to language coming
from a human, either written or spoken. [Wik21] defined NLP
as follows: NLP is a subfield of linguistics, computer science,
and artificial intelligence concerned with the interactions between
computers and human language, in particular how to program
computers to process and analyze large amounts of natural lan-
guage data. The result is a computer capable of "understanding"
the contents of documents, including the contextual nuances of
the language within them. At one extreme, it could be as simple
as counting word frequencies to compare different writing styles.
[BKL09] mentions, "At the other extreme, NLP involves “under-
standing” complete human utterances, at least to the extent of
being able to give useful responses to them. NLP is challenging
because Natural language is messy. There are few rules and human
language is ever evolving.".

Some of the common NLP tasks on text data include the
following.

1) Named entity recognition

Named-entity recognition (NER) (also known as
(named) entity identification, entity chunking, and entity
extraction) is a subtask of information extraction that
seeks to locate and classify named entities mentioned
in unstructured text into predefined categories such as
person names, organizations, locations, medical codes,
time expressions, quantities, monetary values, percent-
ages, etc. Some popular Python libraries that can be
leveraged to perform named entity recognition for a
variety of different entities include SpaCy [HMVLB20]
and NLTK [BKL09].

2) Keyphrase extraction

Keyphrase extraction is the task of automatically
selecting a small set of phrases that best describe a
given free text document. [BSMH+18] Some popular
tools that can be used for keyphrase extraction as
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mentioned in this article1 include Gensim [RS11] and
RAKE-NLTK[#]_. Another way keyphrase extraction
can be performed is using NLTK [BKL09] methods.
This implementation is included in the pyYouTubeAnal-
ysis [Sin21] library.

3) Unigrams/Bigrams/Trigrams analysis

Breaking down text into single words, a pair of
consecutive written words or three consecutively written
words and analyzing occurrence patterns.

4) Custom classifier building (public dataset -> features ->
ML models)

If out-of-box solutions do not exist for one’s NLP
task, building custom models to help solve for the
problem is an option with the help of available data,
NLP libraries (such as NLTK2, SpaCy3, and gensim4),
and Machine Learning libraries (scikit-learn5).

5) Others

Tokenization, Part-of-speech tagging, Lemmatiza-
tion & Stemming, Word Sense Disambiguation, Topic
modeling, Sentiment Analysis and Text summarization
are some other popularly used NLP tasks. This list is not
all inclusive.

A human can only see N number of text samples a day to learn,
whereas a machine can analyze a lot greater than N. Leveraging
machines for NLP tasks along with several processing solutions
available with Python, such as multiprocessing6, can help analyze
large amounts of data in a reasonable time-frame.

Potential use cases include the following.

1) Analytics, intelligence and trends

Analyzing patterns in text based on word oc-
currences, language, combining text occurrences with
other available data, topics, sentiment information, NLP
method outputs, or combinations thereof.

2) Story telling

Analyzing text using the various NLP techniques
along with other statistical and other available data aids
in converting raw data to an informative story piece
that helps uncover and understand the patterns that exist
within the data. Depending on the data available, a time-
window analysis can help study patterns as they change
with respect to time in terms of word usages, topics, text
lengths, or combinations thereof.

1. https://towardsdatascience.com/extracting-keyphrases-from-text-rake-
and-gensim-in-python-eefd0fad582f

2. https://pypi.org/project/rake-nltk/
3. https://scikit-learn.org/
4. https://www.nltk.org/
5. https://spacy.io/
6. https://radimrehurek.com/gensim/
7. https://scikit-learn.org/
8. https://docs.python.org/3/library/multiprocessing.html

Social Media APIs

There are several social media platforms that let you programmat-
ically collect publicly available data and/or your own published
data via APIs. Whatever you intend to do with this data, it is
important to ensure that you use the data in compliance with the
API’s guidelines and terms and services.

Some types of available requests on YouTube include search,
video, channel and comments.

YouTube Data API documentation7 is a great resource to
learn more and get started. At a high level, the getting started8

steps include registering a project, enabling the project and using
the API key generated. With this key, the user can start making
requests to the API to crawl data.

Gotchas

There are a few items to keep in mind when using the YouTube
Data API. Some of the gotchas while using the api include the
following.

1) Rate limits

The API key registered to you comes with a daily
quota. The quota-spend depends on the kind of requests
you make. API does not warn you in API request
response if you are about to finish your daily quota but
does throw that error once you have exceeded the daily
quota. It is important to know how your application will
behave if you hit the quota to avoid unexpected behavior
and premature script termination.

2) Error handling

If trying to query for a video, comment or channel
that is set to private by the owner, the API throws
an error. Your code could end prematurely if you are
querying in a loop and one or a few of the requests have
that issue. Error handling could help automate one’s
process better on such expected errors.

Interacting with the YouTube Data API

There are several ways to interact with the YouTube Data API.
Some of them are as follows.

1) Use the API web explorer’s "Try this API" section9

2) Build your own code using API documentation
examples10

3) Open-source tools

1. Wrappers of YouTube Data API11 : Libraries that
act as wrappers and provide a way to use YouTube Data
API V3.

2. pyYouTubeAnalysis :cite pyYouTubeAnalysis12

: This library allows the user to run searches, col-
lect videos and comments, and define search params
(search keywords, timeframe, and type). Furthermore,
the project includes error handling that allows code
execution to continue and not stop due to unforeseen
errors while interacting with YouTube data API. Addi-
tional features included in pyYouTubeAnalysis are NLP
methods for social media text pre-processing mentioned
in a later section Data Cleaning Techniques, NLTK

9. https://developers.google.com/youtube/v3/docs
10. https://developers.google.com/youtube/v3/getting-started
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based keyphrase extraction and SpaCy based Named
Entity Recognition (NER) that runs entity extraction on
text.

Social Media / YouTube Data Noise

Text fields are available within several places on YouTube, in-
cluding video title, description, tags, comments, channel title and
channel description. Video title, description, tags, and channel title
and description are filled by the content/channel owner. Comments
on the other hand are made by individuals reacting to a video using
words and language.

The challenges in such a data source arise due to writing style
diversity, language diversity and topic diversity. Figure 1 shows
a few examples of language diversity. On social media, people
use abbreviations, and sometimes these abbreviations may not be
the most popular ones. Other than the non-traditional abbreviation
usage, different languages, different text lengths, and emojis used
by commenters are observed.

Data Cleaning Techniques

Based on some noise seen on YouTube and other social media
platforms, the following data cleaning techniques have been found
to be helpful cleaning methods.

1) Removing URLs

Social media text data comes with a lot of URLs.
Depending on the task at hand, removing the urls
have been observed to come in handy for cleaning the
text. Remove the URLs prior to passing text through
keyphrase or NER extractions has been found to return
cleaner results. This implementation is also contained in
pyYouTubeAnalysis.

import re

URL_PATTERN = re.compile(
r"https?://\S+|www\.\S+",
re.X

)

def remove_urls(txt):
"""
Remove urls from input text
"""
clean_txt = URL_PATTERN.sub(" ", txt)
return clean_txt

2) Removing emojis

Emojis are widely used across social media by users
to express emotions. Emoijis provide benefit in some
NLP tasks, such as certain sentiment analysis imple-
mentations that rely on emoji based detections. On the
contrary, for many other NLP tasks, removing emojis
from text can be a useful cleaning method that improves
the quality of the processed outcome. For named-entity
recognition and keyphrase extraction, certain emojis are
observed getting falsely detected as locations or nouns

11. https://developers.google.com/youtube/v3/docs/search/list
12. https://developers.google.com/youtube/v3/quickstart/python
13. https://github.com/rohitkhatri/youtube-python, https://github.com/sns-

sdks/python-youtube
14. https://github.com/jsingh811/pyYouTubeAnalysis

of the type NN or NNP. This impacts the quality of
the NLP methods. Removing the emojis prior to passing
such text through named-entity recognition or keyphrase
extractions has been found to return cleaner results. This
implementation is also contained in pyYouTubeAnaly-
sis.

import re

EMOJI_PATTERN = re.compile(
"[\U00010000-\U0010ffff]",
flags=re.UNICODE

)

def remove_emojis(txt):
"""
Remove emojis from input text
"""
clean_txt = EMOJI_PATTERN.sub(" ", txt)
return clean_txt

3) Spelling / typo corrections

Some NLP models tend to do very well for a
particular style of language and word usage. On social
media, the language seen can be accompanied with
various incorrectly spelled words, also known as typos.
PySpellChecker [LT16]13, Autocorrect14 and Textblob
[Lor18] are examples of open-source tools that can be
used for spelling corrections.

4) Language detection and translations

Developing NLP methods on different languages
is a challenging and popular problem. Often when
one has developed NLP methods for english language
text, detection of a foreign language and translation
to english serves as a good solution and allows one
to keep their NLP methods fixed. Such tasks intro-
duce other challenges such as the quality of language
detection and translation. Nonetheless, detection and
translation is a popular technique while dealing with
multiple different languages. Some examples of Python
libraries that can be used for language detection include
langdetect [Shu10], Pycld215, Textblob [Lor18], and
Googletrans16. Translate17 and Googletrans can be used
for language translations.

Trend Analysis Case Study

In the year 2020, COVID hit us all hard. The world went through
a lot of changes in the matter of no time to reduce the spread
of the virus. One such impact was observed massively in the
travel and hospitality industry. Figure 218 shows the flight search
trends between February and November 2020 for domestic and
international flight searches from the US using Kayak. Right
before lockdown and restrictions were enforced starting in March
across different places across the globe, a big spike can be seen
in flight searches, correlating with the activity of people trying to
fly back home if they were elsewhere before restrictions disabled
them to do so.

15. https://pypi.org/project/pyspellchecker/
16. https://pypi.org/project/autocorrect/
17. https://pypi.org/project/pycld2/
18. https://pypi.org/project/googletrans/
19. https://pypi.org/project/translate/
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Fig. 1: Random sample of YouTube comments representing writing style diversity.

Fig. 2: Domestic and international flight search patterns in 2020.

Fig. 3: Global flight search patterns in 2020.
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A massive reduction in flight searches can further be seen in
figure 319 showing the impact at a global level. Timeline beyond
January of 2020 for China, and beyond March of 2020 for most
other locations, faced the most impact as travel was reduced due
to COVID imposed events and restrictions.

Aligning with reduced flight searches, reduced hotel search
were also reported from March onwards as can be seen in figure
420.

Let’s try to correlate these findings and understand content
consumption within those time periods on YouTube.

First, a search was performed to gather videos about “travel
vlogs” using the pyYouTubeAnalysis library. Travel vlogs are a
popular content genre on YouTube where a lot of people are able
to find reviews, advice and sneak peaks of different destinations
that wows them and inspires travel plans. Such videos typically
consist of people traveling to different locations and recording
themselves at different spots.

Statistically, it can be seen from figures 5, 6 and 7 that travel
vlog has been a growing topic of interest and has been growing
along with online content consumption over the years up till 2019.
A downward trend was seen in average views, comments, and
likes on travel vlog videos in 2020, where the views went down
by 50% compared to the year before.

To understand the differences between the travel vlog content
consumed in 2019 versus 2020 in further detail, a monthly data
crawl was performed. Figures 8, 9 and 10 show a month over
month comparison between 2019 and 2020 to analyze average
audience engagement patterns. The viewership trends reflect the
reduction from March onwards when COVID hit most locations
across the globe. Figure 11 further shows engagement shift be-
tween 2019 and 2020. The trend slopes upwards until March hits,
which is when a lot of locations imposed stay at home orders and
lockdowns. The trend slopes downwards, picks up a little July
onwards, which correlates with the time Europe lifted a lot of
the travel restrictions. The chart representing "travel vlog" content
engagement largely correlates with the flight search trend as shown
in figure 2. It can be seen however, people were still creating
travel vlogs and commenting on such videos. Between June and
September 2020, amidst a much-reduced travel, what were these
videos, what content was getting created, who was creating it, and
what were the commenters talking about?

Figure 12 shows a word cloud representation of what these
videos talked about generated using keyphrase extraction imple-
mentation in pyYouTubeAnalysis, where the text passes through
data cleaning techniques prior to keyphrase extraction that is
inbuilt within the implementation. Application of these techniques
prior to extracting keyphrases eliminated the noisy samples and
improved the overall results quality. Additionally, wordcloud
[OMIB11]21 was used for creating the visualization. Word cloud
is a form of term occurrence visualization where the size of the
appearance of a term in the word cloud is directly proportional
to its occurrence count. Travel that would entail easier implemen-
tation of social distance was seen popping up in 2020, such as
hiking, beach trips and road traveling. Location names such as
Italy, France and Spain were also seen showing up in the videos.

20. https://www.kayak.com/news/category/travel-trends/
21. https://www.sojern.com/blog/covid-19-insights-on-travel-impact-hotel-

agency/
22. https://www.sojern.com/blog/covid-19-insights-on-travel-impact-hotel-

agency/
23. https://pypi.org/project/wordcloud/, https://www.wordclouds.com/

While we have seen what content gained the most engagement,
let’s look into who the creators of such content were that drove
the most comments and engagement. With the help of engagement
statistics and videos read for the 2020 time frame, the YouTube
influencer channels that drove high engagement during summer
and fall of 2020 include the following.

1) 4K Walk22 – YouTube channel creating videos about
walking tours all over Europe and America.

2) BeachTuber23 – YouTube channel creating vlogs from
different beaches all over Europe.

3) Beach Walk24 – YouTube channel posting about different
beaches all over Europe and America.

4) DesiGirl Traveller25 – YouTube channel creating videos
about India travel.

5) Euro Trotter26 – YouTube channel creating videos about
Europe travel.

A few examples of comments that were being left by audiences
of such videos are as follows.

"i’m going to sorrento in 10 days and i’m so excited.
i’ve been watching tonnes of sorrento and italy vlogs and
yours are so lush X) <3"

"Did they require you to have a prior covid test?"
"I loved the tour looked like you guys had fun. im

going there next week, how long ago were you there and
were there lots of restrictions and closing due to covid"

"Great video man, this place looks amazing. I have
never been to Iceland, would love to visit some day.
Honestly can’t wait for the lockdown to be lifted so
I can start travelling again. Thanks for sharing your
experience. :)"

It was seen that people expressed interest in inquiring about
the lifting of the travel ban due to COVID, pre-travel COVID
test requirements, along with the sentiments around being able to
travel again. People were seen mentioning a lot of location names
in their comments. With the help of named-entity recognition
implementation in pyYouTubeAnalysis, location extractions were
performed. The underlying process passed the comments through
URLs and emojis removal prior to location extraction, which
led to cleaner results and reduced manual filtering. Figure 13
shows the location popularly mentioned by commenters in a word
cloud representation. One can see European locations, along with
some Asian and American locations which correlate with travel
restriction reductions in some of the places.

This analysis, including data collection from social media,
keyphrase extraction, and NER, was performed using pyYouTube-
Analysis library [Sin21]27. Similar analysis for content other than
"travel vlogs" can be performed for custom time windows using
similar tools and the other NLP libraries mentioned in this effort.

Conclusion

User content creations and interactions via text on social media
platforms contain mixed writing styles, topics, languages, typing

24. https://youtube.com/c/4KWALK
25. https://youtube.com/c/BeachTuber
26. https://youtube.com/c/BeachWalk
27. https://youtube.com/c/DesiGirlTraveller
28. https://youtube.com/c/EuroTrotter
29. https://github.com/jsingh811/pyYouTubeAnalysis
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Fig. 4: Hotel booking search patterns in 2020.

Fig. 5: Yearly video views.

Fig. 6: Yearly video likes.

Fig. 7: Yearly video comments.

Fig. 8: Monthly video views for 2019 and 2020.

Fig. 9: Monthly video likes for 2019 and 2020.

errors, freeform emojis and abbreviations. This diversity of content
and language makes it harder to perform NLP tasks on data
coming from social media. Described cleaning techniques such as
emoji removal, hyperlink removal, language detection and trans-
lations, and typo corrections have been found useful in priming
and pre-processing language of such nature. Subjecting the text
through these methods prior to other Natural Language Processing
(NLP) methods such as keyphrase extraction and named-entity
recognition result in cleaner output.

Social media data contain statistics in addition to text data



80 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

Fig. 10: Monthly video comments for 2019 and 2020.

Fig. 11: Difference in video engagements between 2019 and 2020.

Fig. 12: Word cloud of video topics.

Fig. 13: Word cloud of location names used in comments.

that measures human engagement and interest in different types
of content. Combining these statistics with inferences from NLP
techniques such as named-entity recognition (NER) and keyphrase
extraction are found to be helpful in trend analysis, analytics,
and observing correlations and affinities of user engagement with
social media.
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Abstract—The Biological Magnetic Resonance Data Bank (BioMagResBank
or BMRB https://bmrb.io), founded in 1988, is the international, open archive
for data generated by Nuclear Magnetic Resonance (NMR) spectroscopy of
biological systems. NMR spectroscopy is unique among biophysical approaches
in its ability to provide a broad range of atomic and higher-level informa-
tion relevant to the structural, dynamic, and chemical properties of biological
macromolecules, as well as report on metabolite and natural product con-
centrations in complex mixtures and their chemical structures. NMR-STAR is
the official data format of BMRB and BMRB provides python parser (PyN-
MRSTAR https://github.com/uwbmrb/PyNMRSTAR), a data visualization tool
(PyBMRB https://github.com/uwbmrb/PyBMRB) and an Application Program
Interface (API)(BMRB-API https://github.com/uwbmrb/BMRB-API) to access the
BMRB archive. PyBMRB displays the chemical shifts data in each entry as a
simulated NMR spectrum and to generates database-wide chemical shift his-
tograms of different atom types in proteins and nucleic acids. PyBMRB provides
access to BMRB data through the API and generates portable and interactive
visualizations as a single html file. It also supports data visualization workflows
using Jupyter Notebooks, which can be both easily created and shared.

Index Terms—NMR Spectroscopy, chemical shifts, proteins, Biological Mag-
netic Resonance data Bank(BMRB),NMR-STAR, chemical shift histogram,
HSQC

Nuclear Magnetic Resonance (NMR) spectroscopy provides
atom-level information relevant to the structural, dynamic, and
chemical properties of molecules. The BioMagResBank (BMRB)
[UAD+07] provides high-quality, curated NMR spectroscopic data
collected from biologically important molecules such as proteins,
nucleic acids, carbohydrates, and metabolites and other small
compounds. BMRB, which was founded in 1988, became a core
member of World Wide Protein Data Bank (wwPDB) [BBK+17]
in 2007, and the BMRB Archive became a Core Archive of the
wwPDB in 2018. BMRB uses the NMR-STAR [UBD+19] data
format to represent experiments, spectral and derived data, and
supporting metadata. NMR-STAR is constructed via an object-
relational data model using a subset of the Self-defining Text
Archival and Retrieval (STAR) specification [HC95]. Following
validation and annotation via BMRB’s biocuration pipeline (Fig-
ure 1), user-deposited data are stored as flat files in NMR-STAR
format as well as in a relational database.

To achieve the full power of the BMRB database it is im-
portant to be able to retrieve and visualize the data in different
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Fig. 1: BMRB data processing workflow.

scientifically relevant ways. For example, it is much more useful to
compare multidimensional NMR data from the same or different
BMRB entries in graphical (spectral) format rather than as lists
of numerical values in text format. In addition, to understand
how chemical shifts of different types of atoms are affected by
structural and environmental factors, it is useful to display them
as histograms. When browser vendor security policies changed to
stop allowing Java Web Applets, BMRB’s original visualization
tool (DEVise) [LRB+97] written in Java and C++ ceased to
function. BMRB originally addressed this by updating DEVise
to run as a Java Web Start application. However, in mid-2015
most web browsers stopped supporting Java Web Start and some
operating system made it impossible to use without changing
operating system security settings.

In response to the demise of DEVise, BMRB developed
graphic libraries in Python (PyBMRB) that utilize more modern
interactive visualization tools, such as the Plotly visualization tool
kit [Inc15] , to reproduce the most commonly used features of
DEVise with interactive visualizations. PyBMRB features single-
entry (peak position simulation for NMR spectrum) and database-
wide visualizations (histograms).

The main motivation behind the project is to provide user
friendly access to BMRB data for biologists and biochemists,
who find it difficult to understand or utilize the NMR-STAR data
model. NMR-STAR is a metadata rich format, which includes
all necessary metadata about the NMR sample, sample condition,
instrument details, author details and experimental details in
addition to the measured chemical shift values. Chemical shifts
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Fig. 2: Comparison of 1H−15 N HSQC spectra of arsenate reductase
data from user with arsenate reductase entries in the BMRB

are measured using several multidimensional NMR experiments
and expressed one-dimensional assigned chemical shift lists in
NMR-STAR data format. Biologists and biochemists prefer to
view the chemical shift data graphical spectra rather than as a
list of numerical values.

One of the most common and widely used NMR experiments
for proteins is the 1H −15 N Heteronuclear Single Quantum Co-
herence( 1H −15 N HSQC) [BR80] experiment. This 2D NMR
experiment gives cross peaks between nitrogen and hydrogen
for each amino acid in the sequence, whose locations strongly
depend on the protein three dimensional structure. In spectro-
scopic perspective the 1H −15 N HSQC spectrum is considered
as the signature or "fingerprint" of the protein. It helps to identify
whether the protein sample is in good shape or aggregated and to
detect structural changes during ligand biding studies. PyBMRB
library generates 2D chemical shift lists by combining the relevant
chemical shift values from the given one-dimensional chemical
shift list in NMR-STAR format.

The single-entry visualization method can be used, for exam-
ple, to simulate 1H −15 N HSQC peak positions from an NMR-
STAR file (from one or more specified BMRB entries or from
the user’s own data) (Figures 2 and 3). It is much easier to
detect the chemical shift changes by overlaying multiple 1H−15 N
HSQC rather than by scanning lists of chemical shifts. The most
useful feature is that the user may easily compare their NMR
measurements with any of the protein of interest in the BMRB
database. The Figures 2 and 3 show the comparison of user data
with two similar entries from BMRB database. This comparison
can be done with the following code

from pybmrb import csviz
s=csviz.Spectra()
s.n15hsqc(bmrbid=[17074,17076],

filename='my_data.str')

The chemical shift changes can be traced for each residue by using
groupbyres option. (Figures 3)

s.n15hsqc(bmrbid=[17074,17076],
filename='my_data.str',
groupbyres=True)

BMRB provides rich chemical shift statistics, which are widely
used by NMR spectroscopists and NMR software developers in
various ways. The chemical shift histogram of a given atom type
help us to understand how strongly it’s position depends on the
secondary structure elements like alpha helices and beta sheets.

Fig. 3: The cross peaks in the 1H−15 N HSQC spectra are connected
based on matching sequence order.

Fig. 4: Chemical shift distribution of CB atoms in different amino
acids.

These histograms can be easily generated using a simple code
using PyBMRB library

from pybmrb import csviz
h=csviz.Histogram()
h.hist(atom='CB')

Figure 4 shows the comparison of CB chemical shifts for the
twenty common amino acids. The chemical shift histogram of a
single atom in a given amino acid or list of atoms from different
amino acids can be easily generated using PyBMRB.

PyBMRB provides options for filtering data, for example,
according to chemical shift ambiguity code(used to describe
different types of ambiguous chemical shift assignments https:
//bmrb.io/software/ambi/) or cutoff values based on standard de-
viation to exclude outliers. Bond correlation experiments are very
common in NMR spectroscopy, and this library can be used to
visualize patterns of chemical shift correlations between specified
atom types in NMR spectra of proteins or nucleic acids as 2D
histograms. For example the chemical shift correlation between
Cysteine CB and N is shown in Figure 5.

h.hist2d(residue='CYS',atom1='CB',atom2='N')

The conditional histogram is another feature, useful during the
resonance assignment process to estimate the prior probability
for assigning a specific atom number to a peak. The process of
labeling each cross peak in the multidimensional NMR spectra
by relevant atoms is the most important step in the structure
determination process. If the chemical shift values of one or more
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Fig. 5: Chemical shift correlation of CYS-CB and CYS-N

Fig. 6: Conditional histogram of CYS-CB for CYS-CA=64.5ppm

atoms for a given amino acid in a protein sequence are known
then one can generate the distribution of the chemical shifts of the
other atoms in the amino acid using the known chemical shifts as
a filter. For example if the chemical shift of CA of Cysteine is
known then the distribution of CB chemical shift at the BMRB
database can be calculated using the following code
h.conditional_hist(residue='CYS',

atom='CB',
atomlist=['CA'],
cslist=[64.5])

The overall and the filtered distribution of CYS-CB is shown
in Figure 6. The overall bimodal distribution of Cysteine CB
indicates that its chemical shifts are strongly depend on secondary
structures and for the given value of CA (64.5 ppm) it falls into
one of secondary structure element like alpha helix or beta sheet.

The visualizations generated using PyBMRB library are in-
teractive and portable. They can be opened in any modern web
browser and zoomed in and out using the mouse. The tooltip
will show the peak label and some additional information when
hovering over the peak. These visualizations work as a standalone
web page, which can be shared via email or website. Since the
visualization tools obtain data directly from the BMRB API each
time they are generated, there is no need to download or parse
the data, and all underlying data are fully up to date. High quality
static images can be extracted from the interactive visualizations
with a single click and saved or printed.

As a final note, the Jupyter Notebook [KRKP+16] [Com20]
is becoming more and more popular among scientists [Per18].
Jupyter is a free, open-source, interactive web tool, known as

a computational notebook, that researchers can use to combine
software code, computational output, explanatory text and multi-
media resources into a single document. PyBMRB can be used
in a Jupyter Notebook environment, which enables one to design
and document a BMRB data analysis workflow and share it with
others. BMRB provides easy access to the PyBMRB library in a
Jupyter Notebook environment from its homepage (https://bmrb.
io/). This live BMRB Jupyter Notebook was created by using a
third party software tool called Binder [PJMBJF+18], which puts
PyBMRB and Jupyter Notebook together in a docker container.
Examples of BMRB Jupyter Notebooks with access to PyBMRB
are available for trial without the need for any installation at
https://github.com/uwbmrb/PyBMRB/blob/master/jupyter.md.

BMRB is constantly working to improve the PyBMRB visual-
ization tool. The next update aims to include simulation of more
NMR experiment types and include visualization options for other
data types such as distance and dihedral-angle restraints that are
present in the BMRB database.

BMRB is supported by grant R01GM109046 from
NIH/NIGMS.
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Conformal Mappings with SymPy: Towards
Python-driven Analytical Modeling in Physics

Zoufiné Lauer-Baré‡∗, Erich Gaertig‡

F

Abstract—This contribution shows how the symbolic computing Python library
SymPy can be used to improve flow force modeling due to a Couette-type flow,
i.e. a flow of viscous fluid in the region between two bodies, where one body is
in tangential motion relative to the other. This motion imposes shear stresses
on the fluid and leads to a corresponding fluid flow. The flow forces exerted
on the moving component are of interest in many applications, for example in
system simulations of electrohydraulic valves. There, an eccentrically mounted
cylindrical core (the armature) moves within an oil-filled tube (the polecap),
experiencing fluid forces due to the viscous oil. SymPy can help to understand
the range of validity as well as the limitations of analytical relations that are
commonly used as standard approximations for these type of forces in many
leading system simulation tools. In order to motivate these approaches, this
contribution elucidates how the velocity of the flow is determined analytically by
solving the Stokes equation in an eccentric annulus with a conformal mapping-
approach. Afterwards analytical postprocessing leads to the corresponding flow
force. The results obtained with SymPy are then checked against full 3D
computational fluid dynamics (CFD) simulations. This work concludes with the
combination of new Couette flow force approximations and similar results for the
known Poiseuille flow (i.e. fluid flow induced by a pressure difference) to derive
new relations for a combined Couette-Poiseuille flow force. This article is ad-
dressed to natural scientists and engineers that are interested in the application
of conformal mappings and Taylor-expansions with the help of SymPy when
solving partial differential equations analytically.

Index Terms—Physical modeling, Stokes equation, Eccentric annulus, Flow
force, Conformal mapping, SymPy

Introduction

In times of digitization and wide use of numerical methods in
physics, the question emerges whether analytical tools, such as
Taylor-expansions or conformal mappings, are still of interest and
how they can be utilized in industrial and academic research.

Computational power has increased significantly in the last
years and many physical problems, ranging from electromag-
netism to fluid dynamics and structural mechanics, can be
solved directly by numerically integrating the corresponding three-
dimensional PDEs, i.e. the Maxwell, Navier-Stokes or elasticity
equations. However, when modeling physical systems such as
hydraulic valves, transmission systems, engines, cars or planes,
a direct 3D-approach for all relevant physical effects is still too
difficult. In these situations, look-up tables containing a limited set
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of 3D-results are often included into 1D-system models for later
interpolation. Alternatively, analytical approximations are used
which are already included in the corresponding system simulation
tools (e.g. Simcenter Amesim, [K19], [LGK21]).

Figure 1 schematically shows such a valve system with input
data from look-up tables and 1D-component symbols.

Fig. 1: Valve system model with input data from look-up tables and
1D-component symbols as used in standard system simulation tools

Hence, in modern system modeling there are currently two
main applications of analytical approximations:

• Analytical approximations are included in the system sim-
ulation software components themselves, or

• The user includes look-up tables for interpolation, entirely
or partially generated with analytical approximations.

In this work we will focus on analytical approximations of
flow forces that act upon the inner cylinder in an eccentric annular
flow domain. Such forces are of interest in, for example, hydraulic
valves that are electromagnetically actuated; see Figure 2. When
the armature moves within the oil-filled interior of the polecap,
that movement causes a Couette-type annular flow, i.e. a viscous
flow due to motion of a solid body, between both components.

For an analytical treatment, this geometry has to be simplified
considerably. Both armature and polecap are therefore modeled
as solid and hollow cylinders respectively. Since in realistic
scenarios, perfect concentricity between these two parts is rarely
obtained, the armature can be supported eccentrically within the
poletube. A cross-sectional cut perpendicular to the symmetry axes
of both cylinders then leads to Figure 3.
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Fig. 2: Armature and polecap in an electromagnetic actuator; the
interior of the polecap is filled with oil (not shown here)

Fig. 3: Cross-section of the simplified geometry of Figure 2, leading
to an eccentric annular flow domain

It shows the general case where an inner cylinder of radius
R1 is vertically displaced by a distance b from the center of an
outer cylinder with radius R2. The eccentric annular flow domain
is contained in the region between these two cylinders.

In leading system simulation tools, the flow force that acts
upon the inner cylinder in Figure 3 is typically approximated by
the relation

Fsystem =−2π
R1lµuR

δ
. (1)

Here µ denotes the viscosity of the fluid, l the common length of
both cylinders, uR the velocity and δ = R2−R1 the annular gap,
i.e. the difference between outer and inner radius. Utilizing the
capabilities of the open-source Computer Algebra System SymPy
(as done e.g. in [MSP17]), we answer the following two questions:

1) How is Equation (1) related to the corresponding Stokes
equation?

2) Does eccentricity ε = b/δ change this dependency and,
if so, how exactly?

Furthermore, the velocities and forces obtained by solving
the Stokes problem (i.e. the linear part of the Navier-Stokes
system) with SymPy are compared to corresponding numerical
solutions of the full, nonlinear Navier-Stokes equations, obtained
from the commercially available Finite Volume tool ANSYS-CFX.
Finally this article concludes with a note on the eccentric annular

Poiseuille flow (that is a flow due to a pressure difference) and
finishes with a comment on combined Couette-Poiseuille flow
velocities and forces.

Material and methods

In order to solve the Stokes problem

−µ∆u =
d p
l

for R1 <
√

x2 +(y+b)2 and
√

x2 + y2 < R2

u = 0 for
√

x2 + y2 = R2

u = uR for
√

x2 +(y+b)2 = R1 , (2)

the following SymPy functions and libraries were used: im, re,
subs, simplify and lambdify. For the postprocessing the
SymPy functions diff and series were particularly useful.
Additionally, the latex function allowed to use the latex code
of the formulae. For the interactive development with SymPy the
Jupyter Notebook is used as GUI; there the latex math
rendering proved to be very useful. The visualization is done with
NumPy [HMW20] and Matplotlib [H07]. Code snippets are
provided within the text in the subsequent sections. In addition,
supplemental Python examples are available at this public GitHub
repository1.

The theoretical methods used here are conformal mappings
(inspired by [PHW33] and [BC09]) and Taylor-expansions, fol-
lowing [LGK21]. Equations (2) describe Couette flow when
d p = 0 and uR 6= 0 and Poiseuille flow, when d p 6= 0 and uR = 0.
Furthermore, Equations (2) describe Couette-Poiseuille flow when
d p 6= 0 and uR 6= 0.

Solution of the Stokes problem within a concentric annulus for
Couette-type flow

The solution of the Stokes problem within a concentric annulus
for a Couette-type flow is well known, e.g. [LL87], and given by

u(r) = uR
ln(r/R2)

ln(R1/R2)
, (3)

where r =
√

x2 + y2. This can easily be checked by using the
diff function of SymPy. Keep in mind, that the natural logarithm
in Equation (3) is denoted by log there.

import sympy as sym
u_R, R1, R2, x, y = sym.symbols('u_r, R1, R2, x,

y', real=True)
u = u_R * sym.log(sym.sqrt(x**2 + y**2)/R2)

/ sym.log(R1/R2)
laplacian = sym.diff(u, x, 2) + sym.diff(u, y, 2)

It then follows that

>>> sym.simplify(laplacian)

0

as expected. Further analytical solutions to the Laplace problem
for other simple domains such as circles or rectangles can be found
in e.g. [G13], [CB81] or [PP12].

1. https://github.com/zolabar/ConformalMappingSympy
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Transformation of the eccentric annulus to a simple domain
with conformal mappings

In the following two Sections we will show with SymPy how
the Couette flow problem within an eccentric annular domain
can be transformed into a problem within a concentric annular
region or within a rectangle. In these simple geometries analytical
solutions to this problem are well-known. In order to transform the
domains we make use of complex analysis, inspired by the French
mathematician Jacques Hadamard (1865-1963):

The shortest path between two truths in the real
domain passes through the complex domain.

The ideas and strategies of conformal mappings using SymPy
are mostly described in the following Section, where a Möbius
transform is used.

Transformation to a concentric annulus with Möbius transforms

Using a Möbius transform (also called a bilinear transformation)
in the form of

w(z) = ξ + iη =
z+ ia
az+ i

(with z = x+ iy) , (4)

an eccentric annulus in the complex z-plane can be mapped onto
a concentric annulus in the corresponding w-plane. The Möbius
transform used here is a slightly adapted version of the one
presented in [BC09]; a is a constant (given in [BC09]) and will be
defined further down in this Section.

First of all, we will need some additional symbols for working
with complex numbers and for the constant a.

z, a = sym.symbols('z, a', real=True)

Scaling the geometry in such a way that the outer circle ends up
having a radius of 1

w = (z + sym.I * a)/(a * z + sym.I)
w = w.subs(z, x/R2 + sym.I * y/R2)

and separating real and imaginary part with SymPy functions

xi_ = sym.simplify(re(w))
eta_ = sym.simplify(im(w))

one arrives at

ξ =
ax2 +(R2 +ay)(R2a+ y)

a2x2 +(R2 +ay)2 (5)

η =
x(−R2−ay+a(R2a+ y))

a2x2 +(R2 +ay)2 . (6)

The latex rendering in the Jupyter Notebook shows di-
rectly the result of code in proper mathematical symbols, for
instance

>>> sym.simplify(im(w))

x(−R2−ay+a(R2a+ y))

a2x2 +(R2 +ay)2

After the scaling, the Möbius transform constant a reads as

a =

R2

(√(
1−
(
−R1

R2
+ b

R2

)2
)(

1−
(

R1
R2

+ b
R2

)2
)
+ cM

)

2b
(7)

with cM given by

cM =

(
−R1

R2
+

b
R2

)(
R1

R2
+

b
R2

)
+1 . (8)

Applying the Möbius transformation (4) to the boundaries leads to
a concentric annular flow domain in the w-plane with inner radius
1 and outer radius R, given by

R =

R2

(√(
1−
(
−R1

R2
+ b

R2

)2
)(

1−
(

R1
R2

+ b
R2

)2
)
− cM

)

2R1
.

(9)
This new flow domain is depicted in Figure 4.

Fig. 4: Concentric annular flow domain after Möbius transformation;
keep in mind that armature and polecap are swapped in the w-plane

Conformal mappings preserve harmonic functions, so the
Stokes equation in the w-plane is of the same form as in the z-
plane. However, Equation (4) interchanges inner and outer bound-
aries. This will affect the corresponding boundary conditions one
needs to specify there so that the Stokes-problem in the w-plane is
given by

−∆u = 0 for 1 < ρ < R

u = 0 for ρ = 1

u = uR for ρ = R . (10)

Using the structure of Equation (3), the velocity in the w-plane is
given by

u(ρ) = uR
ln(ρ)
ln(R)

, (11)

where ρ =
√

ξ 2 +η2.
With the parameters specified in Table 1, the velocity in

the w-plane (i.e. Equation (11)) can be used as an example for
visualization and further evaluation.

The very convenient SymPy function lambdify is used
to compute numerical values that are postprocessed by
Matplotlib and depicted in Figure 5. The term R_ in the
following code block denotes the numerical expression of the outer
radius in the w-plane (see Equation (9)).

xi, eta = sym.symbols(xi, eta, u_R, real=True)
u_w = u_R * sym.log(sym.sqrt(xi**2 + eta**2))

/ sym.log(R)
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Parameter Value Unit

R1 5 mm
R2 7.6 mm
b 1.3 mm
uR 0.4 m/s

TABLE 1: Geometry parametrization and imposed velocity for the
simulations presented in this Section

u_w = u_w.subs(u_R, 0.4).subs(R, R_)
u_w = sym.lambdify((xi, eta), u)

Fig. 5: Flow velocity in concentric annulus (w-plane); the boundary
condition (uR = 0.4 m/s) is applied to the outer cylinder, see Equation
(10)

At this stage it is pointed out that when working symbolically
with SymPy one has to separate consistently between expressions
and symbols. For instance xi and eta are symbols whereas
xi_ and eta_ are expressions. The user can replace symbols
by corresponding expressions when it best suits him/her. To avoid
confusion, in this work the associated expression to a symbol s is
tagged with an underline s_.

Now simply expressing ξ ,η in (11) in terms of x and y (see
Equation (5)), one easily obtains the fluid velocity in the eccentric
annulus.

u = u_w.subs(xi, xi_).subs(eta, eta_)
u = sym.lambdify((x, y), u)

Figure 6 depicts the velocity distribution in the original z-plane. As
one can see, the fluid gets dragged along the inner cylinder with
the prescribed speed of 0.4 m/s. The velocity distribution then
continuously drops down when moving radially outwards until it
reaches zero along the outer cylinder.

Mapping rectangles onto eccentric annuli by bipolar coordinate
transformations

Another way of solving this problem utilizes conformal mappings
related to bipolar coordinates. These coordinates are described
in [PHW33] and are commonly used in elasticity theory (e.g.
[L13] and [TG10]). For this contribution, we slighty adapted this

Fig. 6: Flow velocity in eccentric annulus (z-plane); here the fluid
moves with uR = 0.4 m/s along the inner cylinder, as required by
Equation (2)

transformation in such a way that it can be applied to the eccentric
annulus of Figure 3. The mapping is given by

z = c · tan
(w

2

)
− iγ (with w = ξ + iη) , (12)

where γ, c are constants from [PHW33] which are explicitly given
in [W06] and [SL78]; the term iγ is added by the authors. Using
this transformation, a properly chosen rectangular domain gets
mapped onto an eccentric annulus; see Figure 7 for the domain in
the w-plane. The boundaries are color-coded in order to visualize
how the mapped borders are traversed in the z-plane. In addition
the vertices are labelled and some coordinate lines are highlighted
as well.

Fig. 7: Rectangular domain in w-plane with color-coded boundaries,
labelled vertices and some coordinate lines

This domain gets transformed as shown in Figure 8. The
vertices A and C (as well as D and F) are mapped onto the same
respective points, i.e. A′=C′ and D′=F ′. The color-coding shows
that inner and outer cylinder are traversed counter-clockwise when
moving in positive ξ -direction in the w-plane.

Furthermore the left and right vertical boundaries in the w-
plane are identified in the z-plane, so periodic boundary conditions
need to be applied to any PDE one wants to solve on the simple
rectangle.
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Fig. 8: Mapped boundaries and coordinate lines in z-plane; the color-
coding visualizes how the mapped borders are traversed here

Please note that for demonstrational purposes the radius of the
inner circle in Figure 8 is reduced in order to indicate how the
coordinate lines are distorted. For conformal mappings however,
although distances between corresponding points and lengths of
curves are changing, the intersecting angle between any two curves
is preserved.

Further details on the relation between conformal mappings
and bipolar coordinates can be found in e.g. [CTL09]. Inverting
Equation (12) and separating real and imaginary parts as in the
previous Section one gets

ξ = −arctan2

(
2cx,c2− x2− (γ + y)2

)
(13)

η =
1
2

ln
(

x2 +(y+ γ + c)2

x2 +(y+ γ− c)2

)
. (14)

Here, arctan2(y,x) is the 2-argument arctangent which returns the
polar angle of a point with Cartesian coordinates (x,y).

The constants from [W06] and [SL78] read as

F =
1

2b

(
R2

2−R1
2 +b2) (15)

c =
√

F2−R2
2 (16)

α =
1
2

ln
(

F + c
F− c

)
(17)

β =
1
2

ln
(

F−b+ c
F−b− c

)
(18)

γ = c coth(α) . (19)

In the w-plane the corresponding Stokes-problem within the rect-
angular domain of Figure 7 is then prescribed by

−µ∆u = 0 for ξ ,η ∈ [−π,π]× [α,β ]
u = 0 for η = α
u = uR for η = β

u(−π,η) = u(π,η)

∂u(−π,η)

∂ξ
=

∂u(π,η)

∂ξ
. (20)

The last two equations specify the periodic boundary conditions
one has to supply additionally. The solution to the system of
equations (20) is easily obtained and given by the simple relation

u(ξ ,η) =
uR (η−α)

β −α
. (21)

Figure 9 shows a Matplotlib-visualization of the velocity
distribution in the w-plane which is constant along ξ and increases
linearly with η .

Fig. 9: Flow velocity in rectangular domain (w-plane); here the
proper boundary condition uR = 0.4 m/s is applied to the upper
boundary

By again expressing η in terms of x and y, one obtains the very
same velocity distribution in the eccentric annulus (in the z-plane)
as already depicted in Figure 6.

It is interesting to remark, that Equations (11) and (21) look
somehow related to each other due to the logarithm in both
relations. However it is not immediately evident that they are
actually identical. Nevertheless, due to existence and uniqueness
theorems for the Stokes equation from [L14], one knows that
relations (11) and (21) are in fact the same.

Figure 10 compares these two analytically obtained velocities
with results from a 3D computational fluid dynamics simulation
(using ANSYS CFX) solving the full Navier-Stokes system. For
these computations a velocity of uR =−0.4 m/s is prescribed onto
the inner cylinder as boundary condition. All obtained velocities
are evaluated along the symmetry axis of the annulus across the
larger gap. The inner boundary is then reached on the left side, the
outer boundary is hit on the right side of this Figure.

As one can see, the two analytical approaches lead to the same
velocity distribution across the larger gap and both boundary con-
ditions are met exactly. On the other hand, due to the finite mesh
size particularly at the outer radius R2, the boundary condition
there is only approximately satisfied.

In the next Section, the corresponding flow force is obtained
with SymPy-driven postprocessing and then compared again to
the forces obtained by 3D-CFD and numerical evaluation.

Postprocessing

Force calculation and comparison with 3D-CFD

The relation for the annular flow force that acts upon the armature
in Figure 4 is well known ([PHW33] or a more recent work
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Fig. 10: Flow velocity across the large gap within an eccentric
annulus (eccentricity ε = 0.5); armature on the left, polecap on the
right

[LGK21]) and is given by

Fe =−
l∫

0

2π∫

0

(
µ ρ

d
dρ

u(ρ)
)

ρ=R
dϕ dz . (22)

This equation can be implemented in SymPy using the velocity
distribution from Equation (11).

>>> u_w = u_R * sym.log(rho)/sym.log(R)
>>> u_w

uR
ln(ρ)
ln(R)

Using the diff, subs and integrate functions from SymPy
then leads to

>>> Fe = mu * sym.diff(u_w, rho)
>>> Fe = (rho * Fe).subs(rho, R)
>>> Fe = sym.integrate(Fe, (z, 0, l))
>>> Fe = -sym.integrate(Fe, (phi, 0, 2 * pi))
>>> Fe

−2π
lµuR

ln(R)

Substituting the relation for R into Fe, the flow force of the
eccentric annular Couette flow is obtained. It can be manually
adapated to the esthetic preferences of the authors, e.g.

FCouette = −2π
lµuR

ln[(c f R2)/R1]
(23)

c f = −1
2

(
c1c2 +

√(
1− c2

1

)(
1− c2

2

)
+1
)

c1 =
R1

R2
+

b
R2

c2 = −R1

R2
+

b
R2

.

Equation (23) therefore answers the second question posed in
the Introduction: The flow force is decisively influenced by the
eccentricity.

Alternatively, the Couette flow force can be derived from
Equation (21), which is obtained from solving the equivalent
Stokes-problem in bipolar coordinates and for this case it is given
by

FCouette2 =−2π
lµuR

β −α
. (24)

Parameter Value Unit

µ 11.53 mPa · s
l 11.95 mm
ρ 807 kg/m3

TABLE 2: Additional fluid- and geometry-parameters used for the
3D-CFD simulations

With the data in Table 1 and Table 2, Figure 11 shows a compari-
son between the analytically obtained relations (23) and (24) and
results from 3D-CFD simulations of the full Navier-Stokes system
for a wide range of different eccentricities.
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Fig. 11: Flow force according to Equation (22), acting on the inner
cylinder of an annulus with varying eccentricity ε

Again, both analytical relations agree perfectly but since the
numerical CFD-results for the velocity slightly diverge from the
analytical solution especially towards the outer boundary (as seen
in Figure 10), the flow force computed from this data also shows
smaller deviations.

Taylor-expansions and small gaps

Equation (23) is even defined for the concentric case. Substituting
b = 0 into this relation and simplifying the resulting expression
leads to

Fc =−uR
2πµl

ln(R2/R1)
. (25)

In order to finally answer the first question of the Introduction, i.e.
how Equation (1) is related to the Stokes equation, the series
function of SymPy is used. With series, a Taylor-expansion of
Fc in δ = R2−R1 around δ = 0 can be performed

>>> sym.series(Fc.subs(R2, R1 + delta), delta, 0, 2)

πδ lµuR

6R1
−πlµuR−

2πR1lµuR

δ
+O

(
δ 2) (26)

The answer to the aforementioned question then is: (1) is the
leading term of a Taylor-expansion of the concentric annular
Couette flow force around δ = 0.

The contribution of this article closes with some additional
remarks on eccentric annular Poiseuille flow and new possibilities
of combining the results of the last Sections with results from
[PHW33] and [LGK21].
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Additional remarks on Poiseuille flow

Eccentric annular Poiseuille flow velocity

In various circumstances Couette flow may also induce a sec-
ondary flow driven by a pressure difference; a so-called Poiseuille
flow. This particular type is of interest in many areas and
we’ll briefly show how the corresponding solution presented
in [PHW33] is derived conceptually as well as how it can be
implemented with the help of SymPy.

As far as we know, most of the current literature either refers
to the aforementioned paper only by using its derived results
(e.g. the volume flow relation found in [W06]) or by solving the
Poiseuille problem numerically (as done in [TKM19]). The fact,
that in the current context blood coagulation and hemodynamics
are omnipresent in the media, eccentric annular blood flow in
arteries is extensively studied ([TKM19]) and flow forces that act
upon the arteries are of great medical interest (e.g. [S11]), makes it
even more interesting to retrace the existing formulae of [PHW33],
which are tedious to use when implemented by hand.

In the case of Poiseuille flow, the righthand-side of the corre-
sponding Stokes equation is non-homogeneous (d p 6= 0;uR = 0);
see also Equation (2). Hence, we need to deal with a different
mathematical problem here compared to the previous Sections.

However, it possible to reduce the Poiseuille problem to an
equivalent Couette problem with prescribed velocities on the
boundaries (e.g. [M96]). That is the idea followed by [PHW33],
who seek a solution of the form

u = Ψ− d p
4µl

(x2 + y2) . (27)

Here, Ψ is a harmonic function in the w-plane found by solving
Laplace’s equation in ξ and η . By using the conformal mapping
of Equation (12) an appropriately chosen rectangle in the w-plane
gets mapped onto an eccentric annulus in the z-plane, thereby
preserving the harmonicity of Ψ.

It then follows that ∆u = d p/(µl) in the z-plane and the
boundary conditions for Ψ result from the task of eliminating the
auxiliary term − d p

4µl (x
2 + y2) on the boundaries associated with

inner and outer radius.
For further evaluation, Ψ is decomposed by [PHW33] into a

sum of three harmonic functions

Ψ = 4 ·Ψ1 +4 ·A ·η +4 ·B . (28)

Using this particular form of Ψ, the final relation for the
Poisseuille-flow velocity derived in [PHW33] can be symbolically
expressed via

xi, eta, b = sym.symbols('xi, eta, b', real=True)
A, B, C = sym.symbols('A, B, C', real=True)
alpha, beta, c = sym.symbols('alpha, beta, c',

real=True)
Psi_1, mu, l, dp = sym.symbols('Psi_1, mu, l, dp',

real=True)
k, m, n = sym.symbols('k m n', integer=True)

>>> u = Psi_1 + A * eta + B
>>> u = u - (sym.cosh(eta) - sym.cos(xi))

/ (4 * (sym.cosh(eta) + sym.cos(xi)))
>>> u = (dp/(mu * l)) * c**2 * u
>>> u

c2d p
(

Aη +B+Ψ1− −cos(ξ )+cosh(η)
4cos(ξ )+4cosh(η)

)

lµ
(29)

Afterwards the expressions for the three separate components A, B
and Ψ1 can finally be substituted into (29). In the following code

the SymPy function Sum is used, which simplifies the implemen-
tation of Fourier-type series in analytical formulae significantly.

s1, s2 = sym.symbols('s1, s2', real=True)
Psi_1_ = sym.cos(n * xi)

/ (sym.sinh(n * (beta - alpha))) * (s1 + s2)
Psi_1_ = sym.Sum((-1)**n * (Psi_1_), (n, 1, m))

>>> Psi_1_

m

∑
n=1

(−1)n (s1 + s2)cos(nξ )
sinh(n(β −α))

(30)

with

s1 = e−βn sinh(n(η−α))coth(β )
s2 = −e−αn sinh(n(η−β ))coth(α) .

The constants from [W06], [SL78] and [PHW33] read as

A =
coth(α)− coth(β )

2α−2β

B =
−α (1−2coth(β ))+β (1−2coth(α))

4α−4β
.

Adding the various pieces together, an example of Piercy’s
Poiseuille flow velocity (Equation (27)) in the w-plane is depicted
in Figure 12.

Fig. 12: Flow velocity for the Poiseuille problem in rectangular
domain (w-plane); it vanishes on upper and lower boundary and is
periodic in ξ

And last but not least, again expressing ξ ,η in x and y, the
velocity distribution in the eccentric annulus (i.e. in the z-plane)
together with some isocontours is shown in Figure 13.

The method described here is not only restricted to fluid dy-
namics. In elasticity theory, which inspired the work of [PHW33],
Ψ is the harmonic conjugate of the so-called warping- or St.
Venant torsion-function φ (see [L13] or [M77]), specified by

∂Ψ
∂y

=
∂φ
∂x

and
∂Ψ
∂x

=−∂φ
∂y

.

The warping function helps to describe the elongation of an elastic
cylinder that is also twisted. A practical implementation of φ can
be found in e.g. [B14] and [BPO16] where it is called ninner

1,4 and
where analytical approximations are compared to results from 3D-
simulations obtained with COMSOL.
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Fig. 13: Flow velocity and isocontours for the Poiseuille problem in
eccentric annulus (z-plane); most of the fluid flow occurs through the
large gap

Eccentric Couette-Poiseuille flow: Superposition

The velocity for eccentric Couette-Poiseuille flow can easily be
found by superposing Equation (29) with one of the two Couette
flow velocities derived in this contribution by utilizing SymPy.

The following relation

uCoue−Pois =
c2d p

(
Ψ− −cos(ξ )+cosh(η)

cos(ξ )+cosh(η)

)

4lµ
+

ud (η−α)

β −α
(31)

shows such a superposed Couette-Poiseuille flow velocity, where
both velocities where obtained by using the bipolar coordinate
transformation (12) that maps rectangles onto eccentric annuli.

Combining Equation (24) with the flow force from [PHW33],
the overall exact analytical eccentric annular Couette-Poiseuille
flow force that acts upon the inner cylinder is given by

FCoue−Pois = Fpiercy−
2πlµuR

β −α
(32)

where

FPiercy =−π∆p
(

R1
2− b · c

β −α

)
. (33)

Since the conformal mapping (12) is not defined for the concentric
case b = 0, this drawback also translates to the corresponding
forces in Equations (32) and (33). The relation above therefore is
only defined for eccentric cases.

However, the Couette flow force obtained with the Möbius
transform, i.e. Equation (23), is defined for the concentric case as
well. But since, to our knowledge, no one has ever constructed the
Poiseuille flow velocity using a Möbius transform, the equivalent
flow force (most likely defined for b = 0 too) is not available.

Therefore, the best analytical approximation for the eccentric
Couette-Poiseuille flow force, defined both for the eccentric and
concentric case, that we can present here, is a combination of
Equation (23) and a Taylor-expansion of Equation (33) in the
relative eccentricity ε = b/(R2−R1) around ε = 0.

FCoue−Pois ≈ FCouette +Fc
(
1+a(κ)ε2) . (34)

Here, Fc is the well known Poiseuille flow force that acts upon the
inner cylinder in the concentric case (e.g. [BSL07]) and a(κ) is a
function of the ratio κ = R1/R2 given by

Fc = −π∆p

(
R1

2−
(
R2

2−R1
2
)

2 ln(R2/R1)

)
(35)

a(κ) = −(1−κ)
(
1−κ2

)
+
(
1+κ2

)
lnκ

2

(
κ2 +

(
1−κ2

)

2lnκ

)
(1+κ) ln2 κ

. (36)

The particular approximation for the eccentric flow force due to a
pressure gradient, i.e. FPiercy ≈ Fc

(
1+a(κ)ε2

)
, was obtained for

the first time in [LGK21].
To conclude this Section it is remarked, that again the useful

SymPy function series can help in figuring out how a(κ) is
approximated in the relevant practical case where R1 ≈ R2.

As shown in [LGK21], a(κ) can be expanded in a Taylor-series
around κ = 1.
>>> sym.series(alpha, kappa, 1, 3)

−1
6
− 5(κ−1)2

36
+

κ
6
+O

(
(κ−1)3 ;κ → 1

)

Hence, for κ ≈ 1
a(κ)≈ κ−1

6
and (34) reduces to

FCoue−Pois ≈ FCouette +Fc

(
1+

κ−1
6

ε2
)
. (37)

Conclusion

This article showed that classical tools from mathematical physics,
such as conformal mappings and Taylor-expansions, are still
relevant and indispensable in times of digitization and wide use
of numerics.

As an example, SymPy was used as a tool for symbolic
mathematics in order to demonstrate that a popular approximation
of the eccentric annular Couette flow force in modern system
simulation tools is actually the leading-order term in a Taylor-
expansion of the corresponding concentric annular force.

This force is calculated as special case of the more general
eccentric annular Couette flow by postprocessing the resulting
velocity distribution. Here, the velocity profile is analytically
obtained by solving the equivalent Stokes problem with the help
of conformal mappings, i.e. holomorphic functions in the complex
plane.

The utilization of analytical methods is not solely restricted
to fluid dynamics. Another application of SymPy in the context
of PDEs in general could be homogenization. There, asymptotic
expansions are substituted into the PDE and limiting problems are
obtained in an algorithmical way, so SymPy might prove to be a
valuable supporting tool. A starting point could be the introductory
example from [BP89], which is worked out and compared to a
FEM-solution obtained by COMSOL in [B14]. Furthermore, due
to similar equations in axisymmetric electromagnetic problems
(e.g. [LL84]), corresponding usage of conformal mappings and
Taylor-expansions with SymPy is certainly possible there.

The authors think, that these methods may not only be appli-
cable to mathematical physics but could be helpful in other areas
as well, e.g. for understanding neural networks. Already available
work described in [H10] and [H12] points in that direction and
SymPy might be of great help in such areas, too.
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Programmatically Identifying Cognitive Biases
Present in Software Development

Amanda E. Kraft‡†, Matthew Widjaja‡†∗, Trevor M. Sands‡, Brad J. Galego‡

F

Abstract—Mitigating bias in AI-enabled systems is a topic of great concern
within the research community. While efforts are underway to increase model
interpretability and de-bias datasets, little attention has been given to identifying
biases that are introduced by developers as part of the software engineering
process. To address this, we began developing an approach to identify a subset
of cognitive biases that may be present in development artifacts: anchoring bias,
availability bias, confirmation bias, and hyperbolic discounting. We developed
multiple natural language processing (NLP) models to identify and classify the
presence of bias in text originating from software development artifacts.

Index Terms—cognitive bias, software engineering, natural language process-
ing

Introduction

Artificial intelligence (AI) and machine learning (ML) -based
systems are increasingly supporting decision-making, reasoning,
and evaluation of dynamic environments in objective manners.
As AI-enabled systems are finding increasing use across domains
and industries, there is concern that the objectivity of such sys-
tems may be negatively impacted by biases introduced by the
developers either in the design of the system or in the training
data itself. While efforts are underway to make AI/ML systems
more interpretable and debias datasets, little research is directed
at human-centric cognitive biases that developers unintentionally
introduce as a part of the software engineering (SE) process. As
a result, ensuring unbiased and transparent algorithmic decision-
making is a complex challenge and has wide-ranging implications
for the future use of AI in society.

Cognitive biases are systematic deviations from rationality in
judgment, reasoning, evaluation, or other cognitive processes. For
the myriad of cognitive biases described in literature1, approxi-
mately 40 have been investigated in the SE domain2. We selected
four of the most commonly reported cognitive biases in software
engineering:

• Anchoring Bias: Tendency to rely too heavily on pre-
existing or first information found when making a quanti-
tative judgment2.
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• Availability Bias: Tendency to overestimate the likelihood
of events based on the ease of which examples come to
mind3.

• Confirmation Bias: Tendency to search for and focus
on information that confirms one’s preconception(s) while
ignoring or rejecting sources that challenge it4.

• Hyperbolic Discounting: Tendency to prefer immediate
payoffs over larger rewards at a later point2.

These biases may be influenced by self-generated factors (e.g.,
past development experience), or externally generated factors
(e.g., system documentation)5. A tool to detect biases in software
must be capable of assessing multiple sources of information about
the system, including commit messages, comments, in-source
docstrings, external technical documentation, and diagrams. This
study takes the first steps toward this objective by identifying
cognitive biases in software commit messages and comments from
previously completed projects.

The remainder of this paper is organized into three sections:
research methods, results and discussion, and conclusions and
implications for future work in this space.

Research Methods

In this section we discuss how data was initially gathered and
curated prior to annotation, how manual annotation was performed
using Prodigy, the process for reviewing and finalizing the con-
sensus for data labels, and finally, the approach for developing
machine learning classifier models applied to the annotated data
to determine whether bias is present in a given sample.

Data Curation

To address the lack of research identifying cognitive biases in
software artifacts developed as part of a naturally occurring
development process, we collated data from two internally de-
veloped codebases. The first project (“Project A”) was selected
to represent the whole software engineering process for AI/ML-
enabled systems (i.e., data management to feature extraction to
model training and evaluation). The second project (“Project B”)
is similar in structure to the first, but the software artifacts gathered
include only the latter half of the development cycle (i.e., feature
extraction to model training and evaluation). The content from
both codebases were collated into datasets based on the source
of the development artifacts: commit messages, in-source code
comments, and documentation strings (docstrings). Given the time
limitations for this effort, we prioritized annotation of commit
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Fig. 1: Example view of a comment in reviewer mode. The reviewer
has three options: (1) accept via the green checkmark if bias is
detected, (2) reject via the red X if no bias detected, and (3) ignore
via the grey stop icon if the entry contains no intelligible content.

messages for all datasets, while comments and docstrings were
annotated for the second of the two internal projects.

Further, we identified an open-source dataset, Code Smell6, to
validate models trained on the content from the internal projects.
This dataset contains commit messages extracted from refactoring
activities across the software lifecycle for various open-source
projects.

For all datasets, python scripts were developed to program-
matically extract and format the text content from the artifacts.
Specifically, the following operations were performed: commit
message content had whitespace trimmed and artifact identifiers
removed; comments spanning multiple lines were combined into
a single entry; executable segments of code were removed; entries
with non-ASCII characters were removed; references to individ-
ual names, collaboration teams, applications, and projects were
redacted and replaced with an identifier string (e.g., “NAME1”).

Bias Annotation: Prodigy Setup

The processed text data was then annotated in Prodigy to produce
a structured JSON document. Prodigy is a commercially licensed
software tool for collaborative data annotation. A custom anno-
tation recipe was developed to define the four biases described
above as the possible labels; an additional label option, “Subjec-
tive/Other” was included to provide reviewers a chance to flag
entries containing a form of bias other than the available options.
Figure 1 provides an example of what individual reviewers see
when annotating a given dataset using this custom recipe. For
each entry, the reviewer must decide whether an entry is valid,
and if so, if the language indicates that the author may have
introduced bias into the system. When reviewers determined an
entry contains bias, they selected one or more labels and pressed
“accept”; otherwise, the reviewer pressed “reject” to indicate no
language indicating bias was present.

Bias Annotation: Manual Annotation

A total of six reviewers were engaged in this project for the
bias annotation process. All reviewers have at least two years of
programming experience and are between the ages of 18-40. Two
reviewers are female and four are male. Two reviewers are Asian,
while the other four are White. Three of the six reviewers had
some degree of involvement in developing the software for two
of the internal projects discussed in this paper. Further, one of
these reviewers was the software lead on Project B. To minimize
personal biases when reviewing the development artifacts, all
entries are anonymized and annotated in non-chronological order.

An annotation guide for classifying open-ended text entries
was developed for reviewers to remain consistent. The guide
provides examples of several biased commit messages such as:

• Anchoring Bias

– "Extended module to allow a more traditional ap-
proach to interface engineering"

– "Applying back-changes from my original fix
patch"

– "Correct the temperature unit - assumes anything
under 45 is C"

• Availability Heuristic

– "Renamed method to more sensible wording”
– "Tighter coupling of variable names with other

modules"

• Confirmation Bias

– "The use of [X] rather than [Y] allows each module
to reuse the same functionality without having to
extend a base class"

– "We’re now a bit smarter about the size of tables
that we create by default, which was the root of the
prior problems"

• Hyperbolic Discounting

– "Throwing out the Key and Value classes for now
to reduce the overall complexity"

– "Modified function to account for type errors. Will
likely have to recreate the db every time, unless
other solutions come up"

– "Module incorporated but fails"
– "Quick and dirty method to add features"

• Subjective/Other

– "I was too over-zealous with removing a module"
– "Duplicate code is my nemesis..."

The guide reminds reviewers that they are to label if the
language indicates the author may have introduced bias into the
system, not if the language indicates the author may be addressing
bias previously introduced. The guide further advises the reviewer
to flag entries as invalid if they should be excluded from the
training or testing datasets; the exclusion criteria include blank
messages, machine-generated messages (e.g., automated branch
merging messages), messages only containing an artifact or issue
identifier, and “TODO” or “FIXME” comments with no accom-
panying description. Reviewers were also encouraged to accept
samples that may be borderline cases, as a group consensus would
decide final classification labels.



96 PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

Bias Annotation: Finalizing Bias Labels

After all reviewers submitted their final annotations for a dataset,
one reviewer was selected to finalize the labels to be used for
training and testing models. For consistency, the same reviewer
was selected to finalize labels on all datasets. The review process
itself was facilitated by Prodigy, which offers a built-in review
recipe, allowing a user to specify the annotation databases to use.
With this recipe, Prodigy extracts all instances where an entry was
marked as “accepted” or “ignored” by at least one reviewer. These
are compiled and displayed similar to the initial review, noting
which review session(s) indicated which label(s).

In the final review, a “best fit” label was selected, rather than
accepting multiple labels for a single entry as allowed in the initial
review stage. This decision was implemented in order to provide
non-overlapping classification boundaries for model training and
testing. The final reviewer followed a set of guidelines for de-
termining best fit labels, such as cross-referencing the annotation
guide or identifying the word or phrase that may have triggered
the response when multiple reviewers selected different biases for
a single message.

If the final reviewer thought the best fit label was ambiguous
or if the label selected was only reported by themselves during
the initial review process, the message was logged for additional
review. These flagged messages were compiled in an Excel work-
book along with the selected answer (first-degree label), the next
best answer (second-degree label), and the labels marked by the
initial review sessions. The workbook was sent to at least two
individuals to respond to these entries, indicating their judgement
of whether the first or second degree label was the best fit or if
another label option may have been overlooked. Scoring of their
responses was automated using the following rules: (1) if both
agreed with the first degree label, it was kept; (2) if both agreed
with the second degree label, the final label was switched; (3) if the
first degree label was not “reject” and one accepted while the other
rejected, the first degree label was kept. On the rare occasion when
none of these conditions were met, the final reviewer decided the
label selection based on the feedback.

The results of the final review (i.e., entries labeled as biased)
were merged with the source dataset (i.e., non-biased entries) to
comprise the training and testing datasets for modeling.

Models

To determine whether a tool can classify software artifacts as
containing indicators of bias, we developed text classification
models using spaCy. Binary and multi-class models were con-
sidered, where binary models were concerned with identifying the
presence or absence of biased language and multi-class models
concerned with identifying the type of bias present (if one is
present at all). Anticipating that the class distributions would be
highly imbalanced towards not containing bias, we implemented
down sampling by taking the mean of the quantity of data
present across each label type to improve model training. This
method was randomized, with ten models trained on different data
distributions.

Focusing on the ability of the trained models to perform
on different codebases, we prioritized evaluating the models
independently trained on the two internal commit datasets and
applied each to the Code Smell dataset (i.e., as a test dataset).
As a secondary task, we then combined the internal commits in a
single training set and applied them to Code Smell. Additionally,
to determine if commit messages can predict bias in comments,

Fig. 2: Overview of the spaCy NLP modeling workflow, broken up
into initialization (green) and execution (blue) task phases.

we trained a model on the internal commits and tested against
comments for the same project. Finally, we evaluate the combined
internal dataset against Code Smell.

We ran each model three times, each time using a different split
of the dataset. This modeling process is illustrated in Figure 2. For
each model, we report the mean F1 score and standard deviation
across runs. We swept across three model hyperparameters during
training:

1) The maximum number of samples used to train: This
mitigates the impact of label imbalance, by limiting the
total number of entries from each category before training
the model. The considered caps included:

1. The quantity of entries from all biases.
2. The mean of the quantity of data from each

category, including data which was not biased.
3. The quantity of entries from the largest bias

category.
4. No capacity, use all data.

2) Dropout: This is the percentage of connections which
are dropped from the neural network component of the
ensemble learning and is used to prevent over-fitting.
Typical sweep values are 20%, 40%, and 60%.

3) The size of the training batches and their compound-
ing rate at each epoch: This determines how much data
is passed to the trainer at each iteration from a minimum
(batch start size) to a maximum (batch stop size) with a
given rate of growth (compounding rate). For all models,
the compounding rate was left at the spaCy recommended
value of 1.001.

Results and Discussion

In this section we discuss the results of data annotation and the
classifier models. Statistics about the annotated data including
the final label distributions and interrater reliability are presented.
Model hyperparameters are presented and discussed with respect
to their mean F1 scores and standard deviations.
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Dataset Total
Items

Duplicate
Items

Final Item
Count Reviewers

Code Smell
Commits 471 30 441 5

Project A
Commits 1536 131 1405 6

Project B
Commits 238 11 227 5

Project B
Comments 469 0 469 5

Project B
Docstrings 181 0 181 5

TABLE 1: Overview of the five datasets, including: (1) counts of
original entries, (2) duplicate entries, excluding first occurrence, (3)
final entry count with duplicates removed, and (4) number of reviewers
that annotated each dataset.

Dataset Answer Annotation Sub
Annotation Bias

Code Smell
Commits 0.85 ± 0.23 0.83 ± 0.28 0.44 ± 0.19 0.22 ± 0.35

Project A
Commits 0.86 ± 0.21 0.87 ± 0.24 0.50 ± 0.20 0.39 ± 0.40

Project B
Commits 0.78 ± 0.24 0.89 ± 0.24 0.43 ± 0.21 0.35 ± 0.38

Project B
Comments 0.91 ± 0.19 0.92 ± 0.20 0.51 ± 0.17 0.43 ± 0.48

Project B
Docstrings 0.95 ± 0.15 0.94 ± 0.16 0.51 ± 0.15 0.42 ± 0.49

TABLE 2: Interrater reliability across the annotated datasets as
percentages, with a +/- standard deviation. "Answer" refers to the
annotation response type (i.e., accept, reject, ignore). "Annotation"
considers the specific bias label, where reject/ignore are empty
strings. "Sub-Annotation" considers the subset of entries in which
at least one reviewer selected a bias label. "Bias" compares only the
bias labels selected by reviewers (i.e., reject/ignore responses are not
considered). Reviewers typically agree on whether an entry is biased,
but not on the bias type.

Annotated Datasets

An overview of the four datasets in terms of total number of items,
number of duplicate entries, final number of items after accounting
for duplicates, and number of reviewers to annotate is provided in
Table 1.

To quantify variance in interpretation of bias presentation in
software commit messages and comments, interrater reliability
was computed based on percent agreement across reviewers.
Percent agreement is computed as the number of matching pairs
over the number of total possible pairs.

For answer reliability, the number of matching answer pairs

Dataset Total
Items

Rejected
(Not Biased)

Accepted
(Biased)

Ignored
(Excluded)

Code Smell
Commits 441 389 51 1

Project A
Commits 1,405 1,154 162 89

Project B
Commits 227 140 26 61

Project B
Comments 469 430 27 12

Project B
Docstrings 181 174 7 0

TABLE 3: Overview of the finalized annotations for each dataset. En-
tries labeled as "ignore" are excluded from the datasets for subsequent
modeling.

(i.e., “accept”, “reject”, or “ignore”) is divided by the total number
of possible pairs. For label reliability, we start with the high-level
measure of all label options, including the empty label string that
results from selection of “reject” or “ignore”. We refer to this
measure as annotation reliability, as it accounts for a combination
of answer and label selection, though at the cost of instances of
“reject” and “ignore” being indistinguishable. Given the expected
imbalance of bias versus non-biased entries, we also provide an
average of the reliability scores for the subset in which at least one
bias label is selected. We refer to this measure as sub-annotation
reliability. Lastly, we compute a bias reliability measure in which
we compare only the label options available when a reviewer
“accepts” an entry as biased.

There were six reviewers for the Project A Commits dataset
and five reviewers for all other datasets. Interrater reliability was
computed across reviewer annotations and are summarized in
Table 2. The distributions of bias labels for each dataset are
represented in Figure 3. Overall, reliability measures ranged from
0.78 to 0.91 for answers, 0.83 to 0.92 for annotations, 0.43 to 0.51
for sub-annotations, and 0.22 to 0.43 for bias labels across the four
datasets. An overview of the final annotation labels is provided in
Table 3.

Given the nature of the data being annotated, we expected a
significant amount of variance in how reviewers interpret commit
messages and in-source comments, especially without additional
context about the relevant code. This was confirmed with the
interrater reliability for top-level answers averaging to 85% agree-
ment, while reliability on bias type averaged to 35%. However, we
didn’t expect the level of disagreement to be so high, especially
when reviewing the label distributions by reviewer. For example,
some reviewers used "Other" or selected multiple labels at a much
greater rate than others. This may have resulted from the reviewers
being unclear on what specific bias was present.

Further, the overall distribution of biased versus not biased
entries by dataset supports that artifact types (e.g., comment,
commit) are used differently. For example, both comments and
docstrings tend to be more technical in nature, with comments
typically reflecting procedural knowledge and docstrings describ-
ing the purpose, inputs, and outputs of a class or function. This
is reflected by all three commit message datasets having approxi-
mately 12% of messages flagged as biased, while comments and
docstrings only had 6% and 4% biased entries, respectively.

Modeling

Table 4 summarizes the results for each model, along with the
best-performing hyperparameters as determined by a parameter
sweep. The mean and standard deviation of F1 Scores are com-
puted across three randomized train/test splits within the same
dataset.

No models were trained using the dataset comprised of doc-
strings due to the extreme imbalance in labels (i.e., <5% labeled
as bias). The docstring dataset had a total of 7 (of 181) entries
labeled as biased. This may be attributed to the inherit technical
nature of docstrings, combined with the low quantity of docstrings
collected during data curation.

The multi-label model (F1 = 72.1%) did not meet expectations
because it consistently predicted that no bias was typically present.
This model was over-fit given that the biased entries were now
split among four separate bias labels, increasing the level of
imbalance. Though this finding may be due to insufficient training
data availability, it’s interesting to note that interrater reliability
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Fig. 3: Distribution of bias labels per dataset. The first five plots show
the distribution of label counts by each reviewer and the finalized
review process. The last plot shows the finalized distribution of labels
as percentages to standardize visualization across all datasets. The
final plot reflects the data used for modeling.

Dataset Model
Type

Max
Samples

Drop
Rate

Batch
Range

Mean
F1

Std.
Dev.

Project A
Commits Binary 220 40% 4-64 81.2% 2.6%

Project B
Commits Binary 28 20% 8-64 65.9% 14.0%

Project A +
B Commits Binary 247 20% 4-64 79.0% 5.1%

Project A +
B Commits

Multi
Label 188 20% 8-32 72.1% 5.8%

Project B
Commits +
Comments

Binary 104 40% 8-32 78.6% 6.8%

All Internal
Data Binary 324 40% 8-64 82.3% 3.9%

TABLE 4: Hyperparameters selected and corresponding results for
each model. Model Type refers to whether the model predicted Bias
vs. No Bias (Binary) or the particular bias types (Multi-Label). "Max
Samples" refers to the maximum number of samples allowed for each
bias category, to prevent over-fitting given data imbalance. "Drop
Rate" and "Batch Range" are hyperparameters for the NLP model.
"Mean F1" and "Std. Dev" refer to the model results across three
randomized train/test splits within the same dataset.

follows a similar pattern when defining a specific bias label. The
confusion matrices from each of the three instances of this model
is Figure 4.

All binary classification models performed in parity with one
another, with mean F1 scores ranging from 78.6% to 82.3%. These
models performed better than the multi-label models given less
data imbalance between the binary categories (i.e., bias vs. no
bias). The model trained on Project B Commits data was the
only exception, which performed at 65.9%, most likely due to
the significantly smaller size of the training dataset.

The best performing model (F1 = 82.3%) was trained using the
largest dataset (i.e., the combined commit messages and comments
for both Projects A and B) as a binary classification model. The
confusion matrices of the three instances of this model is in Figure
5.

Conclusions and Implications

Through this project, two well-curated datasets were generated:
one derived from the commit messages of Projects A and B
and the other created by labeling an existing collection of code
refactoring-related commit messages from various free and open-
source software projects6. This data is valuable not only because
it is the first of its kind, but also because it is representative
of technical artifacts generated during the software development
process.

The level of variability in bias annotations across reviewers
emphasizes the difficulty in discerning whether a statement is
biased without insight of the surrounding context. This is fur-
ther exacerbated when it comes to identifying the type of bias.
Furthermore, limiting reviewers to a single annotation per entry
may alleviate the risk of reviewers selecting multiple labels when
uncertain. Our interrater reliability inherently resulted in lower
scores for multi-label annotations. For example, [’ANCHOR-
ING,HYPERBOLIC’] and [’HYPERBOLIC’] results in bias re-
liability of zero even though both reviewers thought hyperbolic
discounting was present. The level of variation may also arise from
individual differences in writing commit messages and comments;
messages that are longer or enumerate each change made are
more likely to elicit language suggestive of bias compared to
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Fig. 4: Confusion matrices for the multi-label model on "Project A + B Commits". Each matrix is an instance of a model run on a randomized
split of the data. All three exemplify over-fitting to the "no bias", attributable to data imbalance. This pattern also mirrors the low interrater
reliability scores for specific bias labels.

Fig. 5: Confusion matrices for the binary model on "All Internal Data". Each matrix is an instance of a model run on a randomized split of the
data. This model performed the best overall, attributable to the larger dataset size and reduced data imbalance compared to the other models.

highly concise messages. Properly identifying bias in software
artifacts may require consideration for informing software teams
on message structuring for consistency and utility.

Possible follow-on efforts to this study will investigate further
ways to improve multi-label modeling of bias. The multi-label
model was over-trained due to the significant quantity of non-
biased data versus the other four categories of bias. This differs
from the binary models, which had the advantage of being able
to combine those four bias categories together, resulting in a
more balanced dataset. Obtaining more data, specifically of entries
which are biased, will likely improve model robustness for both
the binary and multi-label models.

While data quantity remains an issue, we also note some
disagreement in data labels, reflected in the interrater reliability
(Table 2). It was not surprising to see the multi-label model
struggle to select the correct bias label, as the annotators tended to
disagree on which biases were present in specific data points. We
had a process to select a single bias label for each entry from the
pool of bias labels that the annotators independently selected. It is
possible that our model actually agreed with one of the bias labels

that an annotator voted on, but was rejected or changed during
the final review label review. A follow-on effort to this study will
better measure the multi-label model’s performance against the
pool of bias labels candidates, rather than the single entry selected
during annotation review.

Future research efforts that can build on these results include
the generation of datasets and models that consider the impact of
individual words or short phrases on bias classification, application
of a bias detection tool in tracing the source of a significant failure
to the engineering process (as opposed to a particular line of code),
and investigation of the impact of cognitive bias on code quality
metrics. Additionally, larger datasets, especially ones containing
in-code comments and document strings, are necessary to quantify
the impact of cognitive biases on the quality of finished software
systems. In the future, larger projects may require the development
of post-mortem reports to identify which aspects of the research,
design, and development cycles are most impactful to overall
project success or failure. With such data available researchers
can begin to answer the central question regarding the impact of
individual biases from a holistic perspective.
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How PDFrw and fillable forms improves throughput at
a Covid-19 Vaccine Clinic

Haw-minn Lu‡∗, José Unpingco‡

F

Abstract—PDFrw was used to prepopulate Covid-19 vaccination forms to im-
prove the efficiency and integrity of the vaccination process in terms of federal
and state privacy requirements. We will describe the vaccination process from
the initial appointment, through the vaccination delivery, to the creation of sub-
sequent required documentation. Although Python modules for PDF generation
are common, they struggle with managing fillable forms where a fillable field
may appear multiple times within the same form. Additionally, field types such
as checkboxes, radio buttons, lists and combo boxes are not straightforward to
programmatically fill. Another challenge is combining multiple filled forms while
maintaining the integrity of the values of the fillable fields. Additionally, HIPAA
compliance issues are discussed.

Index Terms—acrobat documents, form filling, HIPAA compliance, COVID-19

Introduction

The coronavirus pandemic has been one of the most disruptive
nationwide events in living memory. The frail, vulnerable, and
elderly have been disproportionately affected by serious hospital-
izations and deaths. Notwithstanding the amazing pace of vaccine
development, logistical problems can still inhibit large-scale vac-
cine distribution, especially among the elderly. Vaccination centers
typically require online appointments to facilitate vaccine distri-
bution by State and Federal governments, but many elderly do not
have Internet access or know how to make online appointments,
or how to use online resources to coordinate transportation to and
from the vaccination site, as needed.

As a personal anecdote, when vaccinations were opened to
all aged 65 and older, one of the authors tried to get his parents
vaccinated and discovered that the experience documented here
[Let21] was unfortunately typical and required regularly pinging
the appointment website for a week to get an appointment.
However, beyond persistence, getting an appointment required
monitoring the website to track when batches of new appointments
were released --- all tasks that require an uncommon knowledge of
Internet infrastructure beyond most patients, not just the elderly.

To help San Diego County with the vaccine rollout, the Gary
and Mary West PACE (WestPACE) center established a pop-up
point of distribution (POD) for the COVID-19 vaccine [pre21]
specifically for the elderly with emphasis on those who are most
vulnerable. The success in the POD was reported in the local news
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media [Lit21] [Col21] and prompted the State of California to ask
WestPACE’s sister organization (the Gary and Mary West Health
Institute) to develop a playbook for the deploying a pop-up POD
[pod21].

This paper describes the logistical challenges regarding the
vaccination rollout for WestPACE and focuses on the use of
Python’s PDFrw module to address real-world sensitive data
issues with PDF documents.

This paper gives a little more background of the effort.
Next the overall infrastructure and information flow is described.
Finally, a very detailed discussion on the use of python and the
PDFrw library to address a major bottleneck and volunteer pain
point.

Background

WestPACE operates a Program of All-Inclusive Care for the
Elderly (PACE) center which provides nursing-home-level care
and wrap-around services such as transportation to the most
vulnerable elderly. To provide vaccinations to WestPACE patients
as quickly as possible, WestPACE tried to acquire suitable freezers
(some vaccines require special cold storage) instead of waiting
for San Diego County to provide them; but, due to high-demand,
acquiring a suitably-sized freezer was very problematic. As a
pivot, WestPACE opted to acquire a freezer that was available but
with excess capacity beyond what was needed for just WestPACE,
and then collaborated with the County to use this excess capacity
to establish a walk-up vaccination center for all San Diego senior
citizens, in or out of WestPACE.

WestPACE coordinated with the local 2-1-1 organization re-
sponsible for coordination of community health and disaster ser-
vices. The 2-1-1 organization provided a call center with in-person
support for vaccine appointments and transportation coordination
to and from WestPACE. This immediately eased the difficulty
of making online appointments and the burden of transportation
coordination. With these relationships in place, the vaccination
clinic went from concept to active vaccine distribution site in about
two weeks resulting in the successful vaccination of thousands of
elderly.

Although this is a technical paper, this background describes
the real impact technology can make in the lives of the vulnerable
and elderly in society in a crisis situation.

Infrastructure

The goal of the WestPACE vaccine clinic was to provide a friendly
environment to vaccinate senior citizens. Because this was a non-
profit and volunteer effort, the clinic did not have any pre-existing
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Fig. 1: Vaccination Pipeline

record management practices with corresponding IT infrastruc-
ture to handle sensitive health information according to Health
Insurance Portability and Accountability Act (HIPAA) standards.
One key obstacle is paperwork for appointments, questionnaires,
consent forms, and reminder cards (among others) that must be
processed securely and at speed, given the fierce demand for
vaccines. Putting the burden of dealing with this paperwork on the
patients would be confusing for the patient and time-consuming
and limit the overall count of vaccinations delivered. Thus, the
strategy was to use electronic systems to handle Protected Health
Information (PHI) wherever possible and comply with HIPAA
requirements [MF19] for data encryption at rest and in-transit,
including appropriate Business Associate Agreements (BAA) for
any cloud service providers [FKR+16]. For physical paper, HIPAA
requirements mean that PHI must always be kept in a locked room
or a container with restricted access.

Figure 1 shows a high level view of the user experience and
information flow. Making appointments can be challenging, espe-
cially those with limited caregiver support. Because the appoint-
ment systems were set up in a hurry, many user interfaces were
confusing and poorly designed. In the depicted pipeline, the person
(or caregiver) telephones the 2-1-1 call center and the live operator
collects demographic and health information, and coordinates
any necessary travel arrangements, as needed. The demographic
and health information is entered into the appointment system
managed by the California Department of Public Health. The
information is then downloaded to the clinic from the appointment
system the day before the scheduled vaccination. Next, a forms
packet is generated for every scheduled patient and consolidated
into a PDF file that is then printed and handed to the volunteers at
the clinic. The packet consolidates documents including consent
forms, health forms, and CDC-provided vaccination cards.

When the patient arrives at the clinic, their forms are pulled
and a volunteer reviews the questions while correcting any errors.
Once the information is validated, the patient is directed to sign
the appropriate forms. The crucially efficient part is that the
patient and volunteer only have to validate previously collected
information instead of filling out multiple forms with redundant
information. This was crucial during peak demand so that most
patients experienced less than a five minute delay between arrival
and vaccine administration. While there was consideration of
commercial services to do the electronic form filling and electronic
signatures, they were discounted because these turned out to be too
expensive and time-consuming to set up.

Different entities such as 2-1-1 and the State of California
handle certain elements of the data pipeline, but strict HIPAA
requirements are followed at each step. All clinic communications
with the State appointment system were managed through a
properly authenticated and encrypted system. The vaccine clinic

utilized pre-existing, cloud-based HIPAA-compliant system, with
corresponding BAAs. All sensitive data processing occurred on
this system. The system, which is described at [HmLAKJU20],
uses both python alone and in Jupyter notebooks.

Finally, the processed PDF forms were transferred using en-
cryption to a server at the clinic site where an authorized operator
printed them out. The paper forms were placed in the custody
of a clinic volunteer until they were delivered to a back office
for storage in a locked cabinet, pursuant to health department
regulations.

Though all aspects of the pipeline faced challenges, the pre-
population of forms turned out to be surprisingly difficult due
to the lack of programmatic PDF tools that properly work with
fillable forms. The remainder of the paper discusses the challenges
and provides instructions on how to use Python to fill PDF forms
for printing.

Programmatically Fill Forms

Programmatically filling in PDF forms can be a quick and accurate
way to disseminate forms. Bits and pieces can be found throughout
the Internet and places like Stack Overflow but no single source
provides a complete answer. The Medium blog post by Vivsvaan
Sharma [Sha20] is a good starting place. Another useful resource
is the PDF 1.7 specification [pdf08]. Since the deployment of
the vaccine clinic, the details of the form filling can be found
at WestHealth’s blog [Lu21]. The code is available on GitHub as
described below.

The following imports are used in the examples given below.
import pdfrw
from pdfrw.objects.pdfstring import PdfString
from pdfrw.objects.pdfstring import BasePdfName
from pdfrw import PdfDict, PdfObject

Finding Your Way Around PDFrw and Fillable Forms

Several examples of basic form filling code can be found on the
Internet, including the above-mentioned Medium blog post. The
following is a typical snippet which was taken largely from the
blog post.
pdf = pdfrw.PdfReader(file_path)
for page in pdf.pages:

annotations = page['/Annots']
if annotations is None:

continue

for annotation in annotations:
if annotation['/Subtype']=='/Widget':

if annotation['/T']:
key = annotation['/T'].to_unicode()
print (key)

The type of annotation['/T'] is pdfString. While some
sources use [1:-1] to extract the string from pdfString,
the to_unicode method is the proper way to extract the
string. According to the PDF 1.7 specification § 12.5.6.19,
all fillable forms use widget annotation. The check for
annotation['/SubType'] filters the annotations to only
widget annotations.

To set the value value, a PDFString needs to be created
by encoding value with the encode method. The encoded
PDFString is then used to update the annotation as shown
in the following code snippet.
annotation.update(PdfDict(V=PdfString.encode(value)))
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This converts value into a PdfString and updates the
annotation, creating a value for annotation['/V'].

In addition, at the top level of the PdfReader object pdf, the
NeedAppearances property in the interactive form dictionary,
AcroForm (See § 12.7.2) needs to be set, without this, the fields
are updated but will not necessarily display. To remedy this, the
following code snippet can be used.
pdf.Root.AcroForm.update(PdfDict(

NeedAppearances=PdfObject('true')))

Multiple Fields with Same Name

Combining the code snippets provides a simple method for filling
in text fields, except if there are multiple instances of the same
field. To refer back to the clinic example, each patient’s form
packet comprised multiple forms each with the Name field. Some
forms even had the Name appear twice such as in a demographic
section and then in a Print Name field next to a signature line.
If the code above on such a form were run, the Name field will
not show up.

Whenever the multiple fields occur with the same name, the
situation is more complicated. One way to deal with this is to
simply rename the fields to be different such as Name-1 and
Name-2, which is fine if the sole use of the form is for automated
form filling. This would require access to a form authoring tool. If
the form is also to be used for manual filling, this would require
the user to enter the Name multiple times.

When fields appear multiple times, the widget annotation does
not have the /T field but has a /Parent field. As it turns out
this /Parent contains the field name /T as well as the default
value /V. Each /Parent has one /Kids for each occurrence of
the field. To modify the code to handle repeated occurrences of a
field, the following lines can be inserted:
if not annotation['/T']:

annotation=annotation['/Parent']

These lines allow the inspection and modifications of annotations
that appear more than once. With this modification, the result of
the inspection code yields:
pdf = pdfrw.PdfReader(file_path)
for page in pdf.pages:

annotations = page['/Annots']
if annotations is None:

continue

for annotation in annotations:
if annotation['/Subtype']=='/Widget':

if not annotation['/T']:
annotation=annotation['/Parent']

if annotation['/T']:
key = annotation['/T'].to_unicode()
print (key)

With this code in the above example, Name would be printed
multiple times, once for each instance, but each instance points
to the same /Parent. With this modification, the form filler
actually fills the /Parent value multiple times, but this has no
impact since it is overwriting the default value with the same value.

Checkboxes

In accordance to §12.7.4.2.3, the checkbox state can be set as
follows:
def checkbox(annotation, value):

if value:
val_str = BasePdfName('/Yes')

else:
val_str = BasePdfName('/Off')

annotation.update(PdfDict(V=val_str))

This could work if the export value of the checkbox is Yes, which
is the default, but not when the export value is something else. The
easiest solution is to edit the form to ensure that the export value of
the checkbox is Yes and the default state of the box is unchecked.
The recommendation in the specification is that it be set to Yes.
In the event tools to make this change are not available, the /V and
/AS fields should be set to the export value not Yes. The export
value can be inspected by examining the appearance dictionary
/AP and specifically at the /N field. Each annotation has up to
three appearances in its appearance dictionary: /N, /R and /D,
standing for normal, rollover, and down (§12.5.5). The latter two
have to do with appearance in interacting with the mouse. The
normal appearance has to do with how the form is printed.

There may be circumstances where the form has checkboxes
whose default state is checked. In that case, in order to uncheck a
box, the best practice is to delete the /V as well as the /AS field
from the dictionary.

According to the PDF specification for checkboxes, the ap-
pearance stream /AS should be set to the same value as /V.
Failure to do so may mean that the checkboxes do not appear.

More Complex Forms

For the purpose of the vaccine clinic application, the filling of text
fields and checkboxes were all that were needed. However, for
completeness, other form field types were studied and solutions
are given below.

Radio Buttons

Radio buttons are by far the most complex of the form entry types.
Each widget links to /Kids which represent the other buttons in
the radio group. Each widget in a radio group will link to the same
‘kids’. Much like the ‘parents’ for the repeated forms fields with
the same name, each kid need only be updated once, but the same
update can be used multiple times if it simplifies the code.

In a nutshell, the value /V of each widget in a radio group
needs to be set to the export value of the button selected. In each
kid, the appearance stream /AS should be set to /Off except
for the kid corresponding to the export value. In order to identify
the kid with its corresponding export value, the /N field of the
appearance dictionary /AP needs to be examined just as was done
with the checkboxes.

The resulting code could look like the following:

def radio_button(annotation, value):
for each in annotation['/Kids']:

# determine the export value of each kid
keys = each['/AP']['/N'].keys()
keys.remove('/Off')
export = keys[0]

if f'/{value}' == export:
val_str = BasePdfName(f'/{value}')

else:
val_str = BasePdfName(f'/Off')

each.update(PdfDict(AS=val_str))

annotation.update(PdfDict(
V=BasePdfName(f'/{value}')))
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Combo Boxes and Lists

Both combo boxes and lists are forms of the form type choice.
The combo boxes resemble drop-down menus and lists are similar
to list pickers in HTML. Functionally, they are very similar in
form filling. The value /V and appearance stream /AS need to
be set to their exported values. The /Op field yields a list of lists
associating the exported value with the value that appears in the
widget.

To set the combo box, the value needs to be set to the export
value.
def combobox(annotation, value):

export=None
for each in annotation['/Opt']:

if each[1].to_unicode()==value:
export = each[0].to_unicode()

if export is None:
err = f"Export Value: ""{value} Not Found"
raise KeyError(err)

pdfstr = PdfString.encode(export)
annotation.update(PdfDict(V=pdfstr, AS=pdfstr))

Lists are structurally very similar. The list of exported values can
be found in the /Opt field. The main difference is that lists
based on their configuration can take multiple values. Multiple
values can be set with PDFrw by setting /V and /AS to a list of
PdfStrings. The code presented here uses two separate helpers,
but because of the similarity in structure between list boxes and
combo boxes, they could be combined into one function.
def listbox(annotation, values):

pdfstrs=[]
for value in values:

export=None
for each in annotation['/Opt']:

if each[1].to_unicode()==value:
export = each[0].to_unicode()

if export is None:
err = f"Export Value: {value} Not Found"
raise KeyError(err)

pdfstrs.append(PdfString.encode(export))
annotation.update(PdfDict(V=pdfstrs, AS=pdfstrs))

Determining Form Field Types Programmatically

While PDF authoring tools or visual inspection can identify each
form’s type, the type can be determined programmatically as well.
It is important to understand that fillable forms fall into four form
types, button (push button, checkboxes and radio buttons), text,
choice (combo box and list box), and signature. They correspond
to following values of the /FT form type field of a given anno-
tation, /Btn, /Tx, /Ch and /Sig, respectively. Since signature
filling is not supported and the push button is a widget which can
cause an action but is not fillable, those corresponding types are
omitted from consideration.

To distinguish the types of buttons and choices, the form
flags /Ff field is examined. For radio buttons, the 16th bit
is set. For combo box the 18th bit is set. Please note that
annotation['/Ff'] returns a PdfObject when returned
and must be coerced into an int for bit testing.
def field_type(annotation):

ft = annotation['/FT']
ff = annotation['/Ff']

if ft == '/Tx':
return 'text'

if ft == '/Ch':
if ff and int(ff) & 1 << 17: # test 18th bit

return 'combo'

else:
return 'list'

if ft == '/Btn':
if ff and int(ff) & 1 << 15: # test 16th bit

return 'radio'
else:

return 'checkbox'

For completeness, the following text_form filler helper is
included.
def text_form(annotation, value):

pdfstr = PdfString.encode(value)
annotation.update(PdfDict(V=pdfstr, AS=pdfstr))

This completes the building blocks to an automatic form filler.

Consolidating Multiple Filled Forms

There are two problems with consolidating multiple filled forms.
The first problem is that when two PDF files are merged, fields
with matching names are associated with each other. For instance,
if John Doe were entered in one form’s name field and Jane Doe in
the second. After combining the two forms John Doe will override
the second form’s name field and John Doe would appear in both
forms. The second problem is that most simple command line
or programmatic methods of combining two or more PDF files
lose form data. One solution is to "flatten" each PDF file. This
is equivalent to printing the file to PDF. In effect, this bakes in
the filled form values and does not permit the editing the fields.
Going even further, one could render the PDFs as images if the
only requirement is that the combined files be printable. However,
tools like ghostscript, imagemagick, and PDFUnite don’t
do a good job of preserving form data when rendering PDF files.

Form Field Name Collisions

Combining multiple filled PDF files was an issue for the vaccine
clinic because the same form was filled out for multiple patients.
The alternative of printing hundreds of individual forms was
infeasible. To combine a batch of PDF forms, all form field names
must be different. Thankfully, the solution is quite simple, in the
process of filling out the form using the code above, rename (set)
the value of /T.
def form_filler(in_path, data, out_path, suffix):

pdf = pdfrw.PdfReader(in_path)
for page in pdf.pages:

annotations = page['/Annots']
if annotations is None:

continue

for annotation in annotations:
if annotation['/SubType'] == '/Widget':

key = annotation['/T'].to_unicode()
if key in data:

pdfstr = PdfString.encode(data[key])
new_key = key + suffix
annotation.update(

PdfDict(V=pdfstr, T=new_key))
pdf.Root.AcroForm.update(PdfDict(

NeedAppearances=PdfObject('true')))
pdfrw.PdfWriter().write(out_path, pdf)

Only a unique suffix needs to be supplied to each form. The suffix
can be as simple as a sequential number.

Combining the Files

Solutions for combining PDF files with PDFrw can be found on
the Internet. The following recipe is typical:
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writer = PdfWriter()
for fname in files:

r = PdfReader(fname)
writer.addpages(r.pages)

writer.write("output.pdf")

While the form data still exists in the output file, the rendering
information is lost and won’t show when displayed or printed.
The problem comes from the fact that the written PDF does
not have an interactive form dictionary (see §12.7.2 of the PDF
1.7 specification). In particular, the interactive forms dictionary
contains the boolean NeedAppearances which needs to be
set for fields to be shown. If the forms being combined have
different interactive form dictionaries, they need to be merged.
In this application where the source forms are identical among the
various copies, any AcroForm dictionary can be used.

After obtaining the dictionary from pdf.Root.AcroForm
(assuming the PdfReader object is stored in pdf), it is not clear
how to add it to the PdfWriter object. The clue comes from a
simple recipe for copying a pdf file.
pdf = PdfReader(in_file)
PdfWriter().write(out_file, pdf)

Examination of the underlying source code shows the sec-
ond parameter pdf to be set to the attribute trailer
of the PdfWriter object. Assuming acro_form con-
tains the desired interactive form, the interactive form dic-
tionary can be added to the output document by using
writer.trailer.Root.AcroForm = acro_form.

Conclusion

A complete functional version of this PDF form filler is open
source and can be found at WestHealth’s GitHub repository https:
//github.com/WestHealth/pdf-form-filler. This process was able to
produce large quantities of pre-populated forms for senior citizens
seeking COVID-19 vaccinations relieving one of the bottlenecks
that have plagued many other vaccine clinics.
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PyRSB: Portable Performance on Multithreaded
Sparse BLAS Operations
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Abstract—This article introduces PyRSB, a Python interface to the LIBRSB
library. LIBRSB is a portable performance library offering so called Sparse BLAS
(Sparse Basic Linear Algebra Subprograms) operations for modern multicore
CPUs. It is based on the Recursive Sparse Blocks (RSB) format, which is
particularly well suited for matrices of large dimensions. PyRSB allows LIBRSB
usage with an interface styled after that of SciPy’s sparse matrix classes, and
offers the extra benefit of exploiting multicore parallelism. This article introduces
the concepts behind the RSB format and LIBRSB, and illustrates usage of
PyRSB. It concludes with a user-oriented overview of speedup advantage of
rsb_matrix over scipy.sparse.csr_matrix running general sparse
matrix-matrix multiplication on a modern shared-memory computer.

Introduction

Sparse linear systems solving is one of the most widespread prob-
lems in numerical scientific computing. The key to timely solution
of sparse linear systems by means of iterative methods resides
in fast multiplication of sparse matrices by dense matrices. More
precisely, we mean the update: C←C+αAB (at the element level,
equivalent to Ci,k ← Ci,k +αAi, jB j,k) where B and C are dense
rectangular matrices, A is a sparse rectangular matrix, and alpha a
scalar. If B and C are vectors (i.e. have one column only) we call
this operation SpMV (short for Sparse Matrix-Vector product);
otherwise SpMM (short for Sparse Matrix-Matrix product).

PyRSB [PYRSB] is a package suited for problems where: i)
much of the time is spent in SpMV or SpMM, ii) one wants to
exploit multicore hardware, and iii) sparse matrices are large (i.e.
occupy a significant fraction of a computer’s memory).

The PyRSB interface is styled after that of the sparse matrix
classes in SciPy [Virtanen20]. Unlike certain similarly scoped
projects ([Abbasi18], [PyDataSparse]), PyRSB is restricted to 2-
dimensional matrices only.

Background: LIBRSB

LIBRSB [LIBRSB] is a LGPLv3-licensed library written primar-
ily to speed up solution of large sparse linear systems using
iterative methods on shared-memory CPUs. It takes its name from
the Recursive Sparse Blocks (RSB) data layout it uses. The RSB
format is geared to execute multithreaded SpMV and SpMM as
fast as possible. LIBRSB is not a solver library, but provides
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most of the functionality required to build one. It is usable via
several languages: C, C++, Fortran, GNU Octave [SPARSERSB],
and now Python, too. Bindings for the Julia language have been
authored by D.C. Jones [RSB_JL].

LIBRSB has been reportedly used for: Plasma physics
[Stegmeir15], sub-atomic physics [Klos18], data classifica-
tion [Lee15], eigenvalue computations [Wu16], meteorology
[Browne15T], and data assimilation [Browne15M].

It is available in pre-compiled form in popular GNU/Linux
distributions like Ubuntu [UBUNTU], Debian [DEBIAN], Open-
SUSE [OPENSUSE]; this is the best way have a LIBRSB installa-
tion to familiarize with PyRSB. However, pre-compiled packages
will likely miss compile-time optimizations. For this reason,
the best performance will be obtained by bulding on the target
computer. This can be achieved using one of the several source-
based code distributions offering LIBRSB, like Spack [SPACK],
or EasyBuild [EASYBUILD], or GUIX [GUIX]. LIBRSB has
minimal dependencies, so even bulding by hand is trivial.

PyRSB [PYRSB] is a thin wrapper around LIBRSB based on
Cython [Behnel11]. It aims at bringing native LIBRSB perfor-
mance and most of its functionality at minimal overhead.

Basic Sparse Matrix Formats

The explicit (dense) way to represent any numerical matrix is to
list each of its numerical entries, whatever their value. This can be
done in Python using e.g. scipy.matrix.

>>> from scipy import matrix
>>>
>>> A = matrix([[11., 12.], [ 0., 22.]])
matrix([[11., 12.],

[ 0., 22.]])
>>> A.shape
(2, 2)

This matrix has two rows and two columns; it contains three non-
zero elements and one zero element in the second row. Many
scientific problems give rise to systems of linear equations with
many (e.g. millions) of unknowns, but relatively few coefficients
which are different than zero (e.g. <1% ) in their matrix-form
representation. It is usually the case that representing these zeroes
in memory and processing them in linear algebraic operations
does not impact the results, but takes compute time nevertheless.
In these cases the matrix is usually referred as sparse, and
appropriate sparse data structures and algorithms are sought.

The most straightforward sparse data structure for a numeric
matrix is one listing each of the non-zero elements, along with its
coordinate location, by means of three arrays. This is called COO.
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It’s one of the classes in scipy.sparse; see the following
listing, whose output also illustrates conversion to dense:

>>> from scipy.sparse import coo_matrix
>>>
>>> V = [11.0, 12.0, 22.0]
>>> I = [0, 0, 1]
>>> J = [0, 1, 1]
>>> A = coo_matrix((V, (I, J)))
<2x2 sparse matrix of type '<class 'numpy.float64'>'

with 3 stored elements in COOrdinate format>
>>> B = A.todense()
>>> B
matrix([[11., 12.],

[ 0., 22.]])
>>> A.shape
(2, 2)

Even if yielding the same results, the algorithms beneath differ
considerably. To carry out the Ci,k ← Ci,k + αAi, jB j,k updates
the scipy.coo_matrix implementation will get the matrix
coefficients from the V array, its coordinates from the I and J
arrays, and use those (notice the indirect access) to address the
operand’s elements.

In contrast to that, a dense implementation like
scipy.matrix does not use any index array: the location of
each numerical value (including zeroes) is in direct relation with
its row and column indices.

Beyond the V,I,J arrays, COO has no extra structure. COO
serves well as an exchange format, and allows expressing many
operations.

The second most straightforward format is CSR (Compressed
Sparse Rows). In CSR, non-zero matrix elements and their column
indices are laid consecutively row after row, in the respective ar-
rays V and J. Differently than in COO, the row index information
is compressed in a row pointers array P, dimensioned one plus
rows count. For each row index i, P[i] is the count of non-zero
elements (nonzeroes) on preceding rows. The count of nonzeroes
at each row i is therefore P[i+1]-P[i], with P[0]==0. SciPy
offers CSR matrices via scipy.csr_matrix:

>>> import scipy
>>> from scipy.sparse import csr_matrix
>>>
>>> V = [11.0, 12.0, 22.0]
>>> P = [0, 2, 3]
>>> J = [0, 1, 1]
>>> A = csr_matrix((V, J, P))
>>> A.todense()
matrix([[11., 12.],

[ 0., 22.]])
>>> A.shape
(2, 2)

CSR’s P array allows direct access of each sparse row. This helps
in expressing row-oriented operations. In the case of the SpMV
operation, CSR encourages accumulation of partial results on a
per-row basis.

Notice that indices’ occupation with COO is strictly propor-
tional to the non-zeroes count of a matrix; in the case of CSR, only
the J indices array. Consequently, a matrix with more nonzeroes
than rows (as usual for most problems) will use less index space
if represented by CSR. But in the case of a particularly sparse
block of such a matrix, that may not be necessarily true. These
considerations back the usage choice of COO and CSR within the
RSB layout, described in the following section.

 1/9 HCOO 2.0e+03

 2/9 HCSR 1.5e+04

 3/9 HCSR 1.3e+04  4/9 HCOO 2.0e+03

 5/9 HCOO 9.8e+02  6/9 HCSR 1.0e+04

 7/9 HCSR 8.5e+03  8/9 HCSR 7.0e+03

 9/9 HCOO 5.0e+03

Fig. 1: Rendering of an RSB instance of classical matrix bayer02
(sized 14k× 14k with 64k nonzeroes, from the SuiteSparse Matrix
Collection [SSMC]); each sparse block is labeled with its own format
(the ’H’ prefix indicating use of a shorter integer type); each block’s
effectively non-empty rectangle is shown, in colour; greener blocks
have fewer nonzoeroes than average; rosier ones have more. Blocks’
rows and columns ranges are highlighted (respectively magenta and
green) on the blocks’ sides. Note that larger blocks (like "9/9") may
have fewer nonzeroes than smaller ones (like "4/9").

From RSB to PyRSB

Recursive Sparse Blocks in a Nutshell

The Recursive Sparse Blocks (RSB) format in LIBRSB
[Martone14] represents sparse matrices by exploiting a hierarchi-
cal data structure. The matrix is recursively subdivided in halves
until the individual submatrices (also: sparse blocks or simply
blocks) occupy approximately the amount of memory contained
in the CPU caches. Each submatrix is then assigned the most
appropriate format: COO if very sparse, CSR otherwise.

Any operation on an RSB matrix is effectively a polyalgo-
rithm, i.e. each block’s contribution will use an algorithm specific
to its format, and the intermediate results will be combined. For a
more detailed description, please consult [Martone14] and further
references from there.

The above details are useful to understand, but not necessary
to use PyRSB. To create an rsb_matrix object one proceeds
just as with e.g. coo_matrix:

>>> from pyrsb import rsb_matrix
>>>
>>> V = [11.0, 12.0, 22.0]
>>> I = [0, 0, 1]
>>> J = [0, 1, 1]
>>> A = rsb_matrix((V, (I, J)))
>>> A.todense()
matrix([[11., 12.],

[ 0., 22.]])
>>> A.shape
(2, 2)

Direct conversion from scipy.sparse classes is also sup-
ported. Instancing an RSB structure is computationally more
demanding than with COO or CSR (in both memory and time).
Exploiting multiple cores and the savings from faster SpMM’s
shall make the extra construction time negligible.
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1:

+= *

2:

+= *

3:
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4:

+= *

5:

+= *

6:

+= *

7:

+= *

8:

+= *

1

Fig. 2: SpMV goes through steps leading to the following states: 1)
upper left block becomes active; 2) lower left block becomes active;
3) upper left block is done (not active anymore); 4) upper right block
becomes active; 5) upper right block is done; 6) lower left block is
done; 7) lower right block is now active; 8) lower right block is done.

Multi-threaded Sparse Matrix-Vector Multiplication with RSB

The following sequence of pictures schematizes eight states of a
two-threaded SpMV on an RSB matrix consisting of four (non-
empty sparse) blocks. At any moment, up to two blocks are being
object of concurrent SpMV (active). Here each active block has a
gray background; its rows and column ranges are highlighted. Left
of the matrix, a (out-of-horizontal-scale) result vector is depicted.
For each of the active blocks, the corresponding active range
(corresponding to the rows) is highlighted on the vector. Similarly,
right of the matrix, the (out-of-horizontal-scale) operand vector is
shown; its active ranges (corresponding to each blocks’ column
range) are highlighted.

The idea behind the algorithm is that a thread won’t write to
a portion of the result array which is currently being updated by
another thread. Beyond that, there is no further synchronization of
threads.

This algorithm applies to square as well as non-square matri-
ces. It supports transposed operation (in which case the ranges of
each block are swapped). Symmetric operation is supported, too;
in this case, an additional transposed contribution is considered
for each block.

As depicted in the first RSB illustration (Fig. 1), the order of
the sparse blocks in memory proceeds along a space-filling curve.
That order of processing the individual blocks can help to deliver
data from the memory to the cores faster. For this reason the
individual cores attempt to follow that order whenever possible.

To have enough work for each thread, RSB arranges to have

+= *

Fig. 3: A Matrix and its SpMM operands, in columns-major order.
Matrix consisting of four sparse blocks, of which one highlighted. Left
hand side and right hand side operands consist of two vectors each.
These are stored one column after the other (memory follows blue
line). Consequently, the two column portions operands pertaining a
given sparse block are not contiguous.

more blocks than threads. For this and other trade-offs involved,
as well for a formal description of the multiplication algorithm,
see [Martone14] and further literature about RSB listed there.

The SpMV algorithm sketched above is what happens under
the hood in PyRSB. In practice, rsb_matrix is used in SpMV
just as with scipy.sparse classes seen earlier:

>>> from numpy import ones
>>> B = ones([2], dtype=A.dtype)
>>> C = A * B

Multi-threaded Sparse Matrix-Matrix Multiplication with RSB

With multiple column operands (in jargon, multiple right hand
sides), the operation result is equivalent to that of performing
correspondingly many SpMVs.

In these cases it comes naturally to lay the columns one
after the other (consecutively) in memory, and have the resulting
rectangular dense matrix as operand to the SpMM. Also here
the same notation of the previous section is supported; see this
example with 2 right hand sides:

>>> from numpy import ones
>>> B = ones([2,2], dtype=A.dtype)
>>> C = A * B

Let’s look at how to deal with this when using the RSB layout.
As anticipated, the individual right hand sides may lay after each
other, as columns of a rectangular dense matrix. See Fig. 3, where
a broken line follows the two operands’ layout in memory, also by
columns.

A straightforward SpMM implementation may run two indi-
vidual SpMV over the entire matrix, one column at a time. That
would have the entire matrix (with all its blocks) being read once
per column.

A first RSB-specific optimization would be to run all the per-
column SpMVs at a block level. That is, given a block, repeat
the SpMVs over all corresponding column portions. This would
increase chance of reusing cached matrix elements as the operands
are visited. This reuse mechanism is being exploited by LIBRSB-
1.2. The by columns layout (or order) is the recommended one for
SpMM there.

The most convenient thing though, would be to read the entire
matrix only once. That is the case for LIBRSB-1.3 (scheduled
for release in summer 2021): for small column counts, block-level
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+= *

Fig. 4: A Matrix and its SpMM operands, in rows-major order.
Matrix consisting of four sparse blocks, of which one highlighted.
Left hand side and right hand side operands consist of two vectors
each, interspersed (memory follows blue line). Consequently, the
two column portions operands pertaining a given sparse blocks are
contiguous.

SpMM goes through all the columns while reading a block exactly
once.

The aforementioned SpMM algorithm is to be regarded as
LIBRSB-specific internals, with not much user-level control over
it.

But there is another factor instead, that plays a certain role in
the efficiency of SpMM, where the PyRSB user has a choice: the
layout of the SpMM operands.

SpMM with different Operands Layout

The by-columns layout described earlier and shown in Fig. 3
appears to be the most natural one if one thinks of the columns as
laid in successive multiple arrays. However, one may instead opt
to choose a by-rows layout instead, shown in figure 4.

A by-rows layout can be thought as interspersing all the
columns, one index at a time. Here in the figure, the blue line
follows their order in memory. At SpMM time, given one of
the input columns, an element at a given index is multiplied by
nonzeroes located at that column index. Similarly, given one of the
output columns, an element at a given index receives a contribution
from the nonzeroes located at that row coordinate. With a by-
rows layout of the operands, SpMM may proceed by reading a
nonzero once, read all right hand sides at that row index (they
are adjacent), and then update the corresponding left hand sides’
elements (which are also adjacent). On current cache- and register-
based CPUs, the locality induced by this layout leads often to a
slightly faster operation than with a by-columns layout.

The by-columns and by-rows layouts go by the respective
names of Fortran ('F') and C ('C') order. A user can choose
which dense layout to use when creating operands for SpMM.
Their physical layouts differ, but NumPy makes their results are
interoperable; see e.g.:
>>> import scipy, numpy, rsb
>>>
>>> size = 1000
>>> density = 0.01
>>> nrhs = 10
>>>
>>> A = scipy.sparse.random(size, size, density)
>>> A = rsb.rsb_matrix(A)
>>>
>>> B = numpy.random.rand(size, nrhs)
>>>
>>> B_c = numpy.ascontiguousarray(B)

>>> B_f = numpy.asfortranarray(B)
>>>
>>> assert B.flags.c_contiguous
>>> assert B_c.flags.c_contiguous
>>> assert B_f.flags.f_contiguous
>>>
>>> C = A * B
>>> C_c = A * B_c
>>> C_f = A * B_f

While both layouts are supported, the 'C' layout is the rec-
ommended one for SpMM operands when using PyRSB with
LIBRSB-1.3. Also notice that SpMV is a special case of SpMM
with one left-hand side and one right-hand side, so the two layouts
are equivalent here. In the following, we will often refer to right-
hand sides count as by NRHS.

Using PyRSB: Environment Setup and Autotuning

Usage of PyRSB requires no knowledge beyond its documenta-
tion. However, the underlying LIBRSB library can be configured
in a variety of ways, and this affects PyRSB. To begin using
PyRSB, a distribution-provided installation shall suffice. To expect
best performance results, a native LIBRSB build is recommended.
The next section comments some basic facts to control LIBRSB
and make the most out of PyRSB.

Environment Variables

PyRSB does not use any environment variable directly; it is
affected via underlying LIBRSB and Python. By default, LI-
BRSB it is built with shared-memory parallelism enabled via
OpenMP [OPENMP]. As a consequence, a few dozen OpenMP
environment variables (all prefixed by OMP_) apply to LIBRSB
as well. Of these, the most important is the one setting the
active threads count: OMP_NUM_THREADS. Administrators of
HPC (High Performance Computing) systems customarily set
this variable to recommended values. Even if unset, chances are
good the OpenMP runtime will guess the right value for this.
Most other OpenMP variables will be of less use to PyRSB,
except one: setting OMP_DISPLAY_ENV=TRUE will get current
defaults printed at program start (very useful when debugging a
configuration).

In addition to the above, there are environment variables
affecting specifically LIBRSB. All of those are prefixed by
RSB_, so to avoid any clash. One recommended to end users
is RSB_USER_SET_MEM_HIERARCHY_INFO, and is used to
override cache hierarchy information detected at runtime or hard-
coded at build time. Essentially, one can use it to force a finer
or coarser blocking. For its usage, and for verification of further
LIBRSB defaults, please see its documentation (accessible from
[LIBRSB]). Modifying the variables mentioned in this section will
be mostly useful on very new or not fully configured systems, or
for tuning a bit over the defaults.

RSB Autotuning Procedure for SpMM

Cores count, cache sizes, operands data layout, and matrix struc-
ture all play a role in RSB performance. The default blocks layout
chosen when assembling an RSB instance may not be the most
efficient for the particular SpMM to follow. In practice, given an
RSB instance and an SpMM context (vector and scalar operands
info, transposition parameter, run-time threads count), it may be
the case that a better-performing layout can be found by exploring
slightly coarser or finer blockings, An automated (autotuning)
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Fig. 5: Rendering of an RSB instance matrix audikw_1 (for this
and other matrices, see table) as dtype=numpy.float32 (or S)
after autotune(order='C',nrhs=1) on our setup. Autotuning
merged an initial 766 blocks guess into 295, bringing a 1.56× speedup
to rsb_matrix SpMV time. With rsb_matrix it now takes 1/34th
of (1-threaded) csr_matrix time; before autotuning, it took 1/22th.
Autotuning itself took the time of 1.5 csr_matrix SpMV iterations,
or 34 pre-autotuning rsb_matrix SpMV iterations.

procedure for this exists and is accessible via autotune. The
following example shows how to use it on matrix audikw_1
from [SSMC].
>>> import sys, rsb, numpy
>>> dtype=numpy.float32
>>>
>>> A = rsb.rsb_matrix("audikw_1.mtx",dtype=dtype)
>>> print(A) # original blocking printed out
>>> sf = A.autotune(verbose=False)
>>> print("autotune speedup for SpMV : %.2e x" %sf )
>>> print(A) # updated blocking printed out
>>>
>>> A = rsb.rsb_matrix("audikw_1.mtx",dtype=dtype)
>>> print(A) # original blocking printed out
>>> sf = A.autotune(verbose=False, transA='N',
>>> order='C', nrhs=8)
>>> print("autotune speedup for SpMM-8: %.2e x" %sf )
>>> print(A) # updated blocking printed out

In scenarios where SpMM is to be iterated many times, time
spent autotuning an instance shall amortize over the now faster
iterations. See the comments of instances of autotuning on Fig. 5,
Fig. 6. and Fig. 7 for realistic use cases.

The reader impatient to see further speedup figures achievable
by autotune can already peek at Fig. 10.

Experiments with SpMM and Autotuning

Purpose of this section is to present statistics of speedups one
may encounter by using PyRSB instead of SciPy CSR in practical
usage. In our choice of experiments, and in the exposition, we
favour breadth over depth. So differently than in a paper with
HPC in focus, we focus on the achievable speedup, and not on
performance. We also take shortcuts which we would not take
otherwise, like mixing statistics from single precision computa-
tions with double precision ones, or real-valued and complex-
valued ones. Also the very focus of the article, namely comparing
directly threaded RSB to serial CSR in SciPy would be ill-
posed, were we interested to compare the parallelism grade of
the two implementations. On the plots that will follow, samples

Fig. 6: Same matrix as Fig. 5, but autotuned with nrhs=2. Here the
initial 766 blocks have been merged into 406, with 1.14× speedup. Be-
fore autotuning, it took 1/22th of a (1-threaded) csr_matrix time;
now it’s 1/31th. Here too, it took the time of 1.5 csr_matrix SpMM
iterations, or 34 with the pre-autotuning rsb_matrix instance.

Fig. 7: Differently than with nrhs=1 or nrhs=2,
autotune(nrhs=8) did not find a better blocking than the
original 766 blocks. Still, the procedure costed the time of 11
csr_matrix SpMM’s, or 234 rsb_matrix ones. Though not
autotuned, (threaded) RSB takes merely 1/22th the time of CSR here.

are grouped by matrix; for each one, a five-number summary
(minimum and maximum, first quartile, second (median) and third
quartiles) is drawn with a boxes and whiskers representation.

Experimental Setup

We use a AMD EPYC 7742 node with 64 cores. Scaling
of memory bandwidth in STREAM-like loops here is
around 10×. Considering we are dealing with memory-
bound operations, we chose OMP_NUM_THREADS=24,
OMP_PROC_BIND=spread, and OMP_PLACES=cores.
RSB_USER_SET_MEM_HIERARCHY_INFO was set to
"L2:4/64/16000K,L1:8/64/32K". We use CSR from
csr_matrix in SciPy e171a1 from Feb 20, 2021, PyRSB
8a6d603 from Jun 08, 2021, pre-release LIBRSB-1.3. For
both, we use -Ofast -march=native -mtune=native
flags and gcc version 10.2.1 20210110 (Debian
10.2.1-6). We use matrices which were also used in
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[Martone14], available from https://sparse.tamu.edu/ ([SSMC]);
see the table below. Many of these are symmetric; differently
than rsb_matrix, csr_matrix does not support symmetric
SpMM ; therefore in both cases we expand their symmetry and
perform only unsymmetric (general) SpMM. Before starting
any measurement, we run autotune on a temporary matrix
to warm-up the OpenMP environment, once. Then we do
one non-timed warm-up SpMM before iterating for 0.2s and
taking the fastest sample. We repeat this for each of the 28
matrices, right-hand-sides (NRHS) in 1,2,4,8, order among
'C' and 'F', BLAS numerical types in C,D,S,Z. When using
rsb_matrix, we measure both non-autotuned, and autotuned
with autotune(nrhs=...,order=...,tmax=0). So the
above totals to 28 · 4 · 2 · 4 = 896 records with samples in SpMM
and tuning timing. To avoid also timing repeated allocation of
the SpMM result (C in C=A*B), we allocate it once, and then
instead of the * operator, we use the functions underneath it,
which take C as argument (this can be of interest to many
performance-conscious users).

matrix nonzeroes rows ratio
1 arabic-2005 6.40e+08 2.27e+07 28.1
2 audikw_1 7.77e+07 9.44e+05 82.3
3 bone010 7.17e+07 9.87e+05 72.6
4 channel-500x100x100-b050 8.54e+07 4.80e+06 17.8
5 Cube_Coup_dt6 1.27e+08 2.16e+06 58.8
6 delaunay_n24 1.01e+08 1.68e+07 6.0
7 dielFilterV3real 8.93e+07 1.10e+06 81.0
8 europe_osm 1.08e+08 5.09e+07 2.1
9 Flan_1565 1.17e+08 1.56e+06 75.0

10 Geo_1438 6.32e+07 1.44e+06 43.9
11 GL7d19 3.73e+07 1.91e+06 19.5
12 gsm_106857 2.18e+07 5.89e+05 36.9
13 hollywood-2009 1.14e+08 1.14e+06 99.9
14 Hook_1498 6.09e+07 1.50e+06 40.7
15 HV15R 2.83e+08 2.02e+06 140.3
16 indochina-2004 1.94e+08 7.41e+06 26.2
17 kron_g500-logn21 1.82e+08 2.10e+06 86.8
18 Long_Coup_dt6 8.71e+07 1.47e+06 59.2
19 nlpkkt160 2.30e+08 8.35e+06 27.5
20 nlpkkt200 4.48e+08 1.62e+07 27.6
21 nlpkkt240 7.74e+08 2.80e+07 27.7
22 relat9 3.90e+07 1.24e+07 3.2
23 rgg_n_2_23_s0 1.27e+08 8.39e+06 15.1
24 rgg_n_2_24_s0 2.65e+08 1.68e+07 15.8
25 RM07R 3.75e+07 3.82e+05 98.2
26 road_usa 5.77e+07 2.39e+07 2.4
27 Serena 6.45e+07 1.39e+06 46.4
28 uk-2002 2.98e+08 1.85e+07 16.1

SpMM Speedup: from csr_matrix to rsb_matrix

Figure 8 summarizes the speed ratio of non-autotuned
rsb_matrix over csr_matrix. Speedup without RSB auto-
tuning ranges from 4× to 64×, with median 15×. Half of observed
speedup cases falls between 11× and 20×. A streaming memory
access benchmark we ran on this machine scaled up to circa 10×,
which just less than the observed median speedup (remember
rsb_matrix is running with multiple cores, but csr_matrix
cannot exploit that).

For the reader who is not practical of SpMM performance: the
memory access pattern of SpMM is typically very irregular, and
largely dependent on the sparsity structure of the matrix. For this
reason, for most layouts the multicore scaling of SpMM perfor-
mance (in particular SpMV) tends to be worst than a streaming
memory access scaling. But here we are comparing speed ratios
of different algorithms, and these ratios differ as well. That reflects
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Fig. 8: Performance samples grouped by matrices. Each box rep-
resents a group of measurements on the different numerical type,
NRHS, and operands layout. The middle horizontal line is the median
speedup of RSB vs CSR, corresponding to 15×. The other lines are
the extremes, and the first and third quartiles in between (the second
quartile being the median value). Notice autotuned results in Fig. 9
improve this further.

the better or worse aptness of a given format to a given matrix.
For instance, matrix 17 has nonzeroes scattered quite regularly
over the entire matrix, not much clustered: this favours RSB and
the cache blocking induced by its structure rather than CSR (serial
or not). Conversely, matrix 9 has most of its nonzeroes adjacent to
some other, which is more CSR-friendly, and a contribution to the
lesser improvement when switching to RSB here. See [Martone14]
for more RSB-vs-CSR commentary.

The speedups shown so far and those in Fig. 8 rely on default
RSB layouts. As said earlier, the RSB format is suited best to
scenarios with large matrices and repeated SpMM applications.
These are also the scenarios where the usage of autotune,
which refines the default layout according to the operands at hand,
is most convenient.

Figure 9 shows results with autotuned instances. Here
autotune has been called for each combination of matrix,
operands layout, NRHS, and numerical type. The median speedup
over CSR here (circa 28.8×) is almost twice the one before
autotuning.

With respect to non-autotuned RSB samples, the application
of autotune brought a median improvement of 1.6×. This
includes all samples, inclusive of the lower quartile, with speedup
between 1× (no speedup) and 1.2×, which we nevertheless regard
as ineffective (see next subsection’s discussion). An overview of
which matrix benefited more, and which less from autotuning is
given by Fig. 10. There is no clear trend to see here. We observe
that most of the cases (70%) benefited from autotuning. It’s worth
mentioning that the longer the time limit chosen to run SpMM
before taking each performance sample, the less the fluctuation
we would have encountered here, and times we chose were quite
tight.

Speedups of tuned RSB vs CSR have median 29× with the
'C' layout, and 28.6× with 'F' layout; also within RSB the
'C' layout performs a few percentage points better than 'F'.

As seen in this section, autotuning can speedup RSB a further
bit, but not always. The next section quantifies the cost of autotun-
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Fig. 9: We observe speedup over CSR from a few up to 81.7×,
with median of 28.8×. Certain matrices benefit from RSB more (see
matrices 5, 9, 15, 18), while others less (6,22,..). Compare the relevant
improvement over non-autotuned results in Fig. 8, or see Fig. 10 for
the per-matrix ratios.
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Fig. 10: Per-sample autotuning effectiveness statistics: autotuned RSB
SpMM speed to non-autotuned one. Half of the cases improve by
> 1.6×, 25% of the cases by > 2.9×. Matrices 8,11,12,22,26 seem to
barely profit from it. These are the same ones that exhibit the highest
ineffective autotuning cost on Fig. 13.

ing in practical terms, for both effective and ineffective outcomes.

The Cost of RSB Autotuning

As introduced earlier, autotune adapts the structure of an RSB
matrix, seeking instances which execute a specified operation
(here, SpMM) faster. A consistent fraction of the autotuning time
is spent measuring SpMM timings of prospective RSB instances.
It’s important to remark: what one wants here is not merely faster
execution of SpMM after autotuning. What one wants is that
autotuning plus all following SpMM iterations shall take less time
than the same count of iterations with a non-autotuned matrix. In
other words, if the time savings of faster SpMM’s cannot cover
the autotuning duration, autotuning time is lost. For this reason
it is convenient to quantify the number of iterations to reach the
first SpMM bringing actual time saving (amortization); this is the
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Fig. 11: Were one to use RSB instead of CSR, and obtain an autotuned
instance via autotune, then this would amortize in few iterations.
Notice than in the intended scenarios, where thousands of SpMM are
foreseen, this is completely negligible. Note: autotuning was effective
in 70% of the cases, represented here and in Fig. 12.

duration of autotune divided by the time saved at each iteration
(that is, slow time with old RSB blocking, minus faster time with
new RSB blocking).

For the purpose of this article, we chose to declare autotuning
as effective if it brings a speedup of 20% or more. With this
threshold set, while 94.5% of the cases get some speedup, it is
70% that qualify also as effective.

What one observes among effectively autotuned cases (see Fig.
11) is that in 75% of those cases, merely 2.5 CSR iterations are
enough to amortize the autotuning time. This is thanks to the large
speedup going from (serial) CSR to (parallel) RSB.

If as cost unit we consider going from non-autotuned to
autotuned RSB instead, then the relative gain is less (because
threaded non-autotuned RSB is already much faster than serial
CSR), and consequently, it takes more to amortize it; see Fig. 12.

When autotuning was ineffective (30% of the cases with our
1.2× threshold, though only 5.5% exhibit no speedup at all), we
regard its time as lost; in our test setup this was from a few dozen
to a few hundred RSB iterations, with median 33; see Fig. 13. If
expressed in terms of serial CSR iterations, these would be < 2.8
iterations in half of the cases, < 8 in 75% of the cases.

These results shall convince users that using autotune is a
good option most of the times.

Conclusions and Future Work

Full utilization of the parallelism potential is important in achiev-
ing efficient operations on current CPUs. PyRSB does that by
giving Python users transparent access to the shared-memory
parallel performance library LIBRSB. Differently than classes
in current scipy.sparse, but with a very similar usage in-
terface, PyRSB’s rsb_matrix readily exploits shared-memory
parallelism. This article’s results section gave a wide sample
of speedup statistics with respect to SciPy’s csr_matrix, on
the SpMM operation. Observed median speedup with respect to
csr_matrix exceeded the known memory bandwidth speedup
on the machine; with autotuning, it doubled that, speaking for
the good implementation in LIBRSB. Trade-off considerations in
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Fig. 12: If one were to start autotuning from RSB (thus with less
improvement potential than with CSR), the amortization times cost
more iterations (here, median is 38.4×, 75% of the cases below 76×).
Nevertheless, for many problems, where thousands of iterations are
foreseen, this is perfectly acceptable.
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Fig. 13: There is no guarantee autotuning improves SpMM perfor-
mance. Actually, autotuning would be unnecessary, if we were able
to guess blockings optimal under all circumstances. Indeed, without
further analysis, one may even speculate that the default RSB blocking
matrices where autotuning was ineffective, was also the best. In our
experiment, ineffective autotuning searches cost 33× RSB (only 2.8×
CSR) SpMM iterations in the median case. Note that for certain
matrices (1,16,21) autotuning was always effective: this is why these
have no associated box here.

using PyRSB effectively by means of autotuning have also been
delineated.

SpMM and autotuning are the workhorses of PyRSB and we
addressed their use here. Follow-up studies may address or reflect
improvements on the LIBRSB side, special use cases, as well as
mostly usability-related aspects on the PyRSB side, especially in
striving for SciPy interoperability in the user interface. Comparing
symmetric SpMM of PyRSB to that of specific symmetric formats
in SciPy may also be of interest.
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Classification of Diffuse Subcellular Morphologies
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Abstract—Characterizing dynamic sub-cellular morphologies in response to
perturbation remains a challenging and important problem. Many organelles
are anisotropic and difficult to segment, and few methods exist for quantifying
the shape, size, and quantity of these organelles. The OrNet (Organelle Net-
works) framework models the diffuse organelle structures as social networks
using graph theoretic and probabilistic approaches. Specifically, this architec-
ture tracks the morphological changes in mitochondria because its structural
changes offer insight into the adverse effects of pathogens on the host and
aid the diagnosis and treatment of diseases; such as tuberculosis. The OrNet
framework offers a segmentation pipeline to preprocess confocal imaging videos
that display various mitochondrial morphologies into social network graphs.
Earlier methods of anomaly detection in organelle structures include manual
identification by researchers in the biology domain. Although those approaches
were successful, manual classification is time consuming, tedious, and error-
prone. Existing convolutional architectures do not have the capability to adapt
to general graphs and fail to represent diffuse organelle morphologies due
their amorphous characteristic. Thus, we propose the two different methods
to perform classification on these organelles that captures their dynamic be-
haviors and identifies the fragmentation and fusion of mitochondria. One is a
graph deep learning architecture, and the second is an approach that finds a
graph representation for each social network and uses a traditional machine
learning method for classification. Recent studies have demonstrated graph
neural network models perform well on time-series imaging tasks, and the
graph architectures are better able to represent amorphous and spatially diffuse
structures such as mitochondria. Alternatively, much research has established
traditional machine learning methods to be promising and robust models. Testing
and comparing different architectures and models will effectively improve the
robustness of categorizing distinct structural changes in subcellular organelle
structures that is very useful for identifying infection patterns, offering a new way
to understand cellular health and dynamic responses.

Introduction

Automation of cell classification remains to be a challenging but
very important problem that offers significant benefits to immunol-
ogy and biomedicine. Specifically, classification of sub cellular
perturbations can help characterize healthy cells from infected

‡ Department of Computer Science, University of Georgia, Athens, GA 30602
USA
§ Department of Cognitive Science, University of Georgia, Athens, GA 30602
USA
¶ Department of Infectious Diseases, University of Georgia, Athens, GA 30602
USA
|| Department of Computational and Systems Biology, University of Pittsburgh,
Pittsburgh, PA 15232 USA
* Corresponding author: spq@uga.edu
** Department of Cellular Biology, University of Georgia, Athens, GA 30602
USA

Copyright © 2021 Neelima Pulagam et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

cells. Morphological changes of sub cellular organelles play a vital
role in providing insight into infection patterns [RJCC19].

Tuberculosis (TB), a bacterial disease that mainly infects the
lungs, causes structural changes to the mitochondria of cells
that have been infected. [DSF13].This ancient disease, although
curable and treatable, can be fatal when not diagnosed properly
and remains to be the world’s leading infectious disease killer
having claimed 1.4 million lives in 2019 alone. Each following
year brings rising cases of drug resistant TB, with more than
10 million people falling ill with active TB each year. A deeper
understanding of the pathogenic processes associated with new
infections will allow for the development of effective drug regi-
mens. Although much research has been conducted on the disease,
there are many questions on the mechanisms of pathogenesis
that remain unanswered. Automating the process of classification
offers a faster way to study the rising number of mutations of the
Mtb pathogen which will help with the development of treatment
plans and vaccines [DSF13].

Recent advancements in fluorescence microscopy and biomed-
ical imaging have offered new ways to analyze these pathogens
and their effects on cell health [ADATLBR+18]. Previous studies
have proposed artificial intelligence based cell classifiers using
convolutional neural networks [OHL+19] , [YRS19]. These net-
works had a few shortcomings due to the diversity of cells in any
system and the studies in modeling different biological phenomena
have been disproportionate. Most segmentation tasks deal with
morphologies of cells and nuclei. These structures are much easier
to segment, model and track than spatially diffuse structures
such as mitochondria. Mitochondria act as significant signaling
platforms in the cell whose dynamics modulate in response to
pathogens to maintain their environment [RJCC19]. Infections
induce mitochondrial changes and automating the classification of
these anomalies will lead to more knowledge on the morphological
changes which can further help create targeted therapies.

We propose two methods to classify mitochondria based on
their dynamics by representing the subcellular structures as social
network graphs. Graphs offer an effective way to represent the
amorphous mitochondrial structures and capture the different
spatial morphologies. Furthermore, machine learning on graphs
is becoming a very relevant and ubiquitous task that has made
significant contributions to deep learning, helping find solutions to
several problems in the biomedicine domain.

We analyze the cells of the last frame of the video data that
portray the cells after the fusion or fission event to classify which
structural change has occurred. We explore two methods that
utilize graph machine learning and have proven to be effective
in characterizing morphological events given only the last frame
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of the video. The first involves using an aggregate statistic that
acts as a graph representaion and a traditional classifier to sort the
different frames. The next method involves a graph neural network
architecture that utilizes graph convolutional and pooling layers to
categorize the different frames. Both methods show to be effective
methods for classifying the different classes of mitochondira.

Background

Mitochondria

Mitochondria are double-membrane organelles that act as the
powerhouse of the cell because they generate a high amount
of Adenosine triphosphate (ATP), an energy-carrying molecule
that is essential for many fuctions and processes in living cells,
modulate programmed cell death pathways [RJCC19]. One of
their critical roles includes shaping the functions of immune cells
during infection. Their network structure allows for the dynamic
regulation which is necessary to maintain a functional state and
allows the mitochondria to be morphologically and functionally
independent within cells [KY03]. These morphologies ,fission
and fusion, are common events in mitochondria allowing it to
continuously change and adapt in response to changes in en-
ergy and stress status. Mitochondrial fission, characterized by
the cell dispersing and fragmenting over time, allows for dam-
aged organelles to have a quick turnover and fusion allows for
the mitochondria to continuously adapt to environmental needs.
The fusion of mitochondria is characterized by the mitochondria
fusing togheter allowign the mitochondria to merge with other
mitochondria that have different defects than itself. Additionally,
frequent fusion and fission within the dynamic network is a sign
of efficient mitochondrial DNA (mtDNA) complementation as a
result of fusing mitochondria which allows for the exchange of
genomes [KY03]. These functions are regulated by the frequency
of fusion and fusion events. Studies show that the rate of these
changes serves as the efficient means of maintaining a good cell
environment [LMJH20]. An excess of either function could lead
to mitochondrial fragmentation, a sign of cell dysfunction.

Anomalies in a cell’s dynamics are very telling of the health of
a cell and could be a result of toxic conditions. In recent studies,
it has been shown that pathogens attack the host by disturbing the
metabolic hub of the cell that is mitochondria. Evidence suggests
some pathogens interfere with the mitochondrial network to favor
their own replication. Bacteria induce rapid mitochondrial frag-
mentation by releasing listeriolysin O (LLO) into the mitochondria
which causes membrane potential loss and eventually a drop in
ATP production [RWH18]. Mitochondria and their dynamics not
only help regulate the cell environment but also play a huge role in
controlling cell functions during pathogen invasion. Studying the
disturbance in these mitochondrial dynamics could help track and
detect infections in a quicker manner. Changes in the mitochondria
network requires effective detection, and modeling them as a
social network and applying graph classification offers a viable
solution.

Cell Classification

Advancements to microscopy and deep learning has led way to
a new generation of cell and cell morphologies classification
techniques. More recently, image based analyses have advanced
past single cell classification and are able to allow morphological
profiling as seen in [MLTS19]. [MLTS19] examines the advan-
tages and challenges of different machine learning algorithms

useful for large-scale label free multi-class cell classification
tasks which would be applicable to a diverse set of biological
applications ranging from cancer screening to drug identification.
The authors propose a single cell classification network that uses
a convolutional neural network (CNN) architecture and compare
it against traditional methods such as k-nearest neighbors and
support vector machines. The CNN architecture proves to be an
effective method for human somatic cell types and their morpholo-
gies. These morphologies are easier to segment and analyze than
spatially diffuse structures like mitochondria.

Transfer learning has also given rise to novel advancements
and shows much promise in cell classification tasks [RST+19].
[RST+19] utilizes a hybrid between generative adversarial net-
works (GANs) and transfer learning dubbed transferring of per-
tained generating adversarial networks (TOP-GAN) to classify
various cancer cells. This approach tackles the main bottleneck of
deep learning, small training datasets. To cope with the problem,
[RST+19] suggests using a large number of unclassified images
from other cell types. This solution is valid only for the context
of a few problems. The problem is another label-free multi-
class classification problem trying to categorize different types
of healthy and unhealthy cancer cells. The context of the problem
allows the model to train on a variety of different cells which can
then be applied to classify several other types of cells.

Our problem, although having a relatively small data size,
does not allow to generalize between different cells. We propose
a model that uses only the spatial-temporal aspects of subcellular
organelles, in this case the last frames of videos tracking the fusion
and fission events, to classify between healthy and unhealthy cells.

Another transfer learning method that deals specifically with
classifying organelle morphology is [LPJ+21]. This approach ap-
plies CNNs and their advantages of automatic feature engineering
and invariance of learning non-linear, input-output mapping to
predict morphological abnormalities in plant cells. [LPJ+21] looks
at the morphologies of three different subcellular organelles in
plant cells, chloroplasts, mitochondria, and peroxisomes to cate-
gorize abnormal perturbations. This results in three different types
of images for each class with numerous organelles distributed
across every image. Nine variants of five different CNN-based
models were tested, Inception-v3 [SVI+16], VGG16 [SZ14],
ResNet [HZRS16], DenseNet220 [HLvdMW17], and MobileNet-
v2 [SHZ+18], all of which proved to be effective methods.

Our problem deals primarily with using mitochondria to cat-
egorize anomalies in the cell. Plant cells and their functions vary
largely compared to human cells. Most work in cell classification,
thus far, deals largely with image data as is and utilizes a CNN
or hybrid architecture due to their advantages for analyzing visual
imagery. We leverage the principles of graph theory to model the
mitochondrial patterns as a social network to study the changing
topology of the graphs. Additionally, we look to apply a super-
vised single-class classification to single frames of mitochondria
after a morphological change has occurred.

Graph Learning

Graph machine learning has been drawing increasing attention
in recent years due to its versatility and numerous applications
especially in biomedical research. Graphs offer a unique way
to represent complex systems as set of entities (vertices) and
relationships (edges) [ZCH+20]. Graphs are able to capture the
relationships between several biological entities including cells,
genes, molecules, diseases and drugs. This area of deep learning
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Fig. 1: The first, middle and last frames on a control cell with no chemical exposure.

Fig. 2: The first, middle and last frames on an cell exposed to listeriolysin O (llo). The frames show the resulting fragmentation.

Fig. 3: The first, middle and last frames on an cell exposed mitochondrial- division inhibitor 1 (mdivi). The frames show the resulting fusion.

has been showing much promise in modeling the interactions of
various cell functions. In our work, we propose classification in
a lesser known setting, categorizing the graph as a whole to cat-
egorize the different morphologies by analyzing their topologies.
Thus, we explored a couple graph neural networks (GNNs), a
class of deep learning methods designed to perform inference
on graph data [PWB18]. GNNs have proven to be very robust
models because they are able to generalize to adapt to dynamic
graphs and new unseen graphs. Following the success of word
embeddings, node embeddings rose to prominence with DeepWalk
[PARS14], an embedding method often referred to as the first
graph embedding for representation learning [ZCH+20].

One of our methods does employ a simple embedding method
based extracting graph feature information using node feature

statistics. Although [HYL17] explains these traditional methods to
be limited and sometime inflexible, the method showed favorable
results in our experiments. Several new methodologies to produce
embeddings followed after DeepWalk but the methods suffer a
few drawbacks: node embeddings are computationally inefficient
because the number of parameters increased with number of nodes
as a result of no shared parameters and the direct embeddings
lacked the ability to generalize to a new data. As a means to
solve these problems and drawing inspiration to generalize CNNs,
GNNs were proposed to aggregate information from the graph
structure and better capture the elements and dependencies of the
graphs.

There are two main operations at the core of GNNs, convo-
lution and pooling layers. Convolution layers are used to learn a
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non-linear transformation of the input graphs perform message
passing between the nodes and their neighborhoods. Pooling
layers aim to reduce the number of nodes in the graph into a
single vector representation and have a similar role to pooling in
traditional convolutional neural networks for learning hierarchical
representations [GA20].

Because of their general nature, graph neural networks are
applicable to three different tasks: node level tasks, link level tasks
and graph level tasks. The most applicable task for our problem
context is graph level because we attempt to perform classification
of graph structures, where each whole graph is assigned a label.

For the context of our problem we utilize graph convolution
operations defined by graph convolutional networks in [KW16]
and a GCS layer operations used to build graph neural networks
with convolutional auto-regressive moving average filters also
known as ARMA filters [BGLA21].

Data

Microscopy Imagery

The data consists of a series of live confocal imaging videos that
portray the various mitochondrial morphologies in HeLA cells.
Figures 1 , 2 and 3 show the raw images of the first, middle
and last frames of cells that belong to three different classes. For
visualization purposes, the cell was transfected with the DsRed2-
Mito-7 protein which gives the mitochondria a red hue. Three
different groups of cells with different dynamics were captured: a
group experiencing fragmentation from being exposed to toxin
listeriolysin O (llo) as seen in figure ref:fig23, another group
experiencing fusion as a result of being exposed to mitochondrial-
division inhibitor 1 (mdivi) as seen in figure 3 and finally a control
group that was not exposed to any chemical as seen in figure 1. All
the videos were taken using a Nikon A1R confocal microscope.
The camera captured 20,000 frames per video with dimensions
512x512 pixels, i.e one image every 10 seconds for the length of
the video. All the cells were kept at a temperature of 37 degrees C
and 5% CO2 levels for the duration of imaging.

Graph Data

From the 114 videos, we take the last frame and create node
features for each single cell video. The dataset we used to train and
test our methods contains a node feature matrix and an adjacency
matrix for last frames of 114 videos.

The existing OrNet1 frameworks utilizes Gaussian mixture
models (GMMs) to construct the social networks graphs. GMMs
were used to determine the spatial regions of the microscope im-
agery that constructed mitochondrial cluster graphs by iteratively
updating the parameters of the underlying mixture distribution
until they converged. The parameters of the mixture distributions,
post convergence, were used to construct the social network
graph [ADATLBR+18], [MHMFRM+20], [FHD+20]. The Gaus-
sian mixture components update over each frame to track the
morphologies and the last frames show the social network graph
of Gaussians after a series of events. It is for this reason, we use
the last frames as the mixture components in the last frame are
most indiative of the morphology.

The nodes in the graph correspond to the gaussian mixture
components, and the statistics that describe each mixture dis-
tribution act as the features. The Gaussian distributions are 2-

1. https://github.com/quinngroup/ornet

dimensional, because they model the spatial locations of mito-
chondrial clusters in the microscopy imagery. Intuitively, the five
node features correspond to the location of the Gaussian, the
shape of its distribution, and the density of the mitochondrial
cluster. Computationally, the location of the gaussian is repre-
sented by the pixel coordinates of the center of the distribution,
which corresponds to the means of both dimensions; the shape
is defined by the variance of each dimension; and the density of
the mitochondrial cluster is represented by the number of pixels
that are "members" of the mixture component, meaning it is more
probable that those pixel belong to the given mixture distribution
than any of the others.

After the data preprocessing, there are 114 feature matrices
of the shape [N,5] where N is the number of nodes in the
mitochondrial cluster and a fully connected adjacency matrix of
shape [N,N] that belong to one of three classes: llo which indicates
a fusion event, mdivi which indicates a fission event and control,
which indicates no abnormal morphology. Both the feature matrix
and the adjacency matrix serve as the input to the GNN and there is
a target variable associated with each input either 1 or 0 depending
on the context of the problem.

Methodology

To contextualize the empirical results, we split the problem up into
two different binary classification problems. One problem is to
differentiate between the fusion and fission events, i.e categorize
between llo and mdivi groups. And the second is to categorize
between the fusion event and no abnormal changes i.e, categorize
between llo and control and between mdivi and control.

GNN

We trained two different architectures one for each of the two
classification problems at hand. One involves a GCN and sec-
ond is a slightly altered GCN architecture with a trainable skip
connection called a GCS layer [BGLA21]. Each of the GCN and
GCS layers were followed by a MinCut Pooling layer [BGA19]
to get a more refined graph representation after each layer. The
models accept a node feature matrix, X, and an adjacency matrix,
A; each matrix individually is uninformative to the model but
combined they provide the model with enough information about
the graph structure. The GCS filter operation is similar to [KW16]
with an additional skip connection which has shown to sometimes
be more applicable to graph classification. The generally known
GCN convolution operation looks like the following,

X̄ t+1 = σ(LX (t)W (t))

where σ is the non linear activation function, W (t) is the weight
matrix at t-th neural network layer and L is the graph Laplacian
which can be computed using the normalized grpah adjacency
matrix Â and identiy matrix I. L = I− Â

The GCS operation which has an additional skip connection
looks like the following

X̄ t+1 = σ(LX (t)W (t)+XV )

where σ is the non linear activation function that can be ReLU,
sigmoid or hyperbolic tangent (tanh) functions. W and V are
trainable parameters. L is the graph Laplacian which can be
computed using the normalized grpah adjacency matrix Â and
identiy matrix I. L = I− Â Each GCS layer is localized in the
node space, and it performs a filtering operations between the local
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neighboring nodes through the skip connection and the initial node
features X [BGLA21].

The graph convolution layer of each model is followed by
the MinCut Pooling layer [BGA19]. This method is based on the
minCUT optimization problem which finds a cut of the graph
that still preserves the topology and representation of the graph.
It computes a soft clustering of the input graphs and outputs a
reduced node features and adjacency matrix. The dimensions are
reduced to the parameter k which is specified when calling the
pooling layer. Finally, the last layer of both architectures is a global
pooling architecture that pools the graph by computing the sum of
the inputs node features. Then the model is through a Dense layer,
a fully connected output layer The architectures were trained using
Adam optimizer, and L2 penalty loss with weight 1e-3 and 16
hidden units. The GCS layers used a tanh activation function. The
MinCut pooling layer is set to output N/2 nodes in the first layer
and N/4 at the second layer and N is the average order of the
graphs in the dataset. The Dense layer used a sigmoid activation
function and we used binary cross entropy for the loss. The models
ran for 3000 epochs.

Graph level features using node statistics

This approach deals with finding a good graph representation by
using a method similar to bag of nodes. Because the available
number of graphs for each class are limited, we create a graph
feature by reducing the node features to a vector of statistics. We
created four different statistics to act as the graph features: min,
max, mean and median. Meaning, for each of the node features,
one aggregate statistic (min, max, mean or median) is applied to
create a vector of size 5 that would serve as an input for the
classifiers. After all the data instances are reduced to a vector,
we apply a stratified split using an 80-20 train-test-split. Note, the
stratified split preserves the proportions of the classes. This is done
before any oversampling technique to ensure that all the samples
used for testing are from the original data. Then for the training set
we apply the synthetic minority oversampling technique (SMOTE)
to oversample the minority classes as a solution to combat the class
imbalance. A dataset with imbalanced classes such as the case in
this problem could keep a classifier from effectively learning the
decision boundary. SMOTE [CBHK02] does not simply duplicate
the elements of the minority class but rather synthesizes new
instances. This unique oversampling technique selects examples
that are close to the original elements in the feature space by
drawing a line between two random existing instances and creating
a new instance at a point along the line. This method is very
effective because the new samples that are created are realistic
instances of the minority class and it helps balance the class
distributions. We used oversampled graph features as input data
for three traditional machine learning algorithms to classify the
features into a specific class, k-nearest neighbors, decision tree
classifier and random forest classifier.

Experiments and Results

We test the performance of our methods on three different clas-
sification tasks: (i) categorize between the last frame images of
mitochondria that have been exposed to toxin listeriolysin (class
llo) and mitochondria that have been exposed to mitochondrial-
division inhibitor 1 (class mdivi), (ii)categorize between the last
frames of mitochondria that have been exposed to toxin liste-
riolysin (class llo) and mitochondria that was exposed to no

external stimuli to serve as a control group (class control) and
(iii) categorize between mitochondria that have been exposed to
mitochondrial- division inhibitor 1 (class mdivi) and mitochondria
that was exposed to no external stimuli to serve as a control group
(class control). The three classification problems help evaluate
all possible differences in the morphologies. Both classification
tasks that deal with distinguishing between class llo versus class
control and class mdivi versus class control are meant to explore
whether our methods can distinguish between anomalous and
healthy cells. The classification task that deals with llo and mdivi
data investigates whether the methods can distinguish between two
different types of anomalies (fusion and fission).

Due to the class imbalance and relatively small size of the
dataset, (llo had 54 instances, mdivi had 31 instances and control
had 29 instances) we decided to take two different approaches
for the methods. One solution was to downsample the llo class
which is the majority class to help the GNN methods. We also
used this downsampling method for the traditional classifiers to
compare the different methodologies effectively. Specifically, this
downsampling technique was chosen to keep the model from
randomly guessing the llo class for every test instance. Therefore,
19 frames of each of the three classes were used for training and 12
frames were used for testing. The sequence of frames that were in
the training and test sets for each run varied as they were randomly
subsampled for each time. We used two GNN architectures and
three different classifiers with four aggregate stattistics resulting
in twelve traditonal methods total.

Alternatively, we utilized an oversampling technique on the
input data, which consited of the graph representation vectors,
for the traditional classifiers. The input data for the traditional
classifiers was first split into training and test sets. Eigty percent
of each class was reserved for testing and the remaining twenty
perenct for testing. The frames chosen for training and test set
for each run were randomly subsampeld for each run. Then
sythetic minority oversampling technique (SMOTE) was applied
to the data reserved for training to balance the classes. After
oversampling, the training set for the Llo-Control classification
problem had 44 samples of each class and the test set had 6
control instances and 10 llo instances. The Mdivi-Llo task also
had 44 instances of each class in the training set and had a
test set consisting of 7 mdivi instances and 10 llo. Lastly, the
Mdivi-Control task had 25 instances of each class for training
and 6 instances of each respective class for testing. The train-test
split was applied prior to oversampling to ensure that only real
data points are used for testing. Oversampling was only possible
with the data for the traditonal methods as it is not possible to
apply an oversampling technique to create entire graphs and their
node features. The input data for GNNs is a graph and its node
features. Furthermore, the shape of each graph varied based on the
instance which would make oversampling difficult and ineffective
at producing new data instances.

Both the traditional classifier and GNN methods fully train
on the test set and evaluate on the testing set. We measured the
number of correctly classified instances of each model and used
the accuracy as the main metric to evaluate the performance of
our models. Additionally, we include the precision, recall and F-
1 scores for each class to show the statistical significance of the
results.

Tables 1, 2, 3 contain the results for oversampled data using
traditional classifiers. Table 1 shows the results for classifying
mdivi and llo data instances using oversampling with SMOTE.
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Accuracy Precision Recall F-1 Score
- Mdivi LLO Mdivi LLO Mdivi LLO

Median - Random Forest 0.770 0.908 0.739 0.500 0.959 0.624 0.832
Mean - Random Forest 0.743 0.871 0.718 0.452 0.948 0.574 0.814
Min - Random Forest 0.812 0.893 0.792 0.629 0.941 0.721 0.857
Max - Random Forest 0.707 0.824 0.687 0.374 0.939 0.494 0.791
Median - Decision Trees 0.764 0.890 0.737 0.495 0.952 0.613 0.828
Mean - Decision Trees 0.741 0.860 0.718 0.455 0.941 0.572 0.812
Min - Decision Trees 0.781 0.866 0.762 0.565 0.931 0.664 0.835
Max - Decision Trees 0.720 0.825 0.702 0.418 0.932 0.531 0.798
Median - kNN 0.670 0.588 0.752 0.662 0.676 0.615 0.705
Mean - kNN 0.747 0.718 0.778 0.650 0.815 0.669 0.790
Min - kNN 0.702 0.610 0.795 0.725 0.686 0.659 0.732
Max - kNN 0.579 0.479 0.646 0.464 0.659 0.462 0.647

TABLE 1: Results for Mdivi vs. LLO task using traditional classifiers and SMOTE oversampling technique

Accuracy Precision Recall F-1 Score
- Control LLO Control LLO Control LLO

Median - Random Forest 0.745 0.835 0.733 0.413 0.944 0.530 0.823
Mean - Random Forest 0.780 0.937 0.752 0.446 0.979 0.581 0.849
Min - Random Forest 0.739 0.819 0.730 0.403 0.941 0.517 0.820
Max - Random Forest 0.826 0.927 0.804 0.586 0.970 0.696 0.876
Median - Decision Trees 0.749 0.837 0.737 0.421 0.945 0.536 0.826
Mean - Decision Trees 0.763 0.875 0.746 0.439 0.958 0.559 0.836
Min - Decision Trees 0.721 0.757 0.721 0.393 0.918 0.493 0.805
Max - Decision Trees 0.814 0.923 0.791 0.555 0.969 0.671 0.869
Median - kNN 0.636 0.512 0.714 0.509 0.712 0.500 0.708
Mean - kNN 0.703 0.635 0.739 0.500 0.825 0.545 0.776
Min - kNN 0.634 0.504 0.711 0.493 0.719 0.488 0.710
Max - kNN 0.560 0.391 0.651 0.388 0.664 0.382 0.652

TABLE 2: Results for Control vs. LLO task using traditional classifiers and SMOTE oversampling technique

Accuracy Precision Recall F-1 Score
- Control Mdivi Control Mdivi Control Mdivi

Median - Random Forest 0.781 0.905 0.731 0.637 0.924 0.731 0.811
Mean - Random Forest 0.750 0.876 0.705 0.595 0.905 0.688 0.786
Min - Random Forest 0.755 0.904 0.704 0.580 0.931 0.685 0.795
Max - Random Forest 0.763 0.890 0.717 0.610 0.916 0.704 0.798
Median - Decision Trees 0.734 0.888 0.683 0.546 0.921 0.653 0.778
Mean - Decision Trees 0.731 0.865 0.686 0.562 0.900 0.659 0.772
Min - Decision Trees 0.719 0.869 0.670 0.524 0.913 0.630 0.767
Max - Decision Trees 0.737 0.870 0.692 0.566 0.908 0.664 0.778
Median - kNN 0.613 0.692 0.591 0.433 0.794 0.512 0.671
Mean - kNN 0.691 0.726 0.677 0.602 0.781 0.648 0.719
Min - kNN 0.576 0.600 0.566 0.444 0.708 0.496 0.622
Max - kNN 0.596 0.590 0.604 0.555 0.637 0.563 0.611

TABLE 3: Results for Control vs. Mdivi task using traditional classifiers and SMOTE oversampling technique

For this task, random forest classifer using the min aggregate
statistic produced the best results with an accuracy of 0.812. Table
2 shows the results for classifying llo and control data instances
using oversampling with SMOTE. Max random forest had the
performed in distinguishing control versus llo frames with an
accuracy of 0.826. Table 3 shows the results for classifying mdivi
and control data instances using oversampling with SMOTE with
Median-Random Forest having the highest accuracy at 0.781.

Tables 5, 4, 6 contain the results for of the traditional classifiers
and the graph neural network architectures with the downsampled
data. Table 5 shows the results for control-llo classification task
with Max-Random Forest and GNNs with GCS layers having best
accuracy of 0.68 and 0.686 respectively. Table 5 shows the results
for mdivi-llo classificaiton. This task had four methods that had the
best accuracy, GNN with GCS layers with an accuracy of 0.736
and Mean-Random Forest, Median-Decision trees and Max-kNN

all three of which had an accuracy of 0.73. Lastly, table 6 shows
the results for Mdivi-control classification. The highest accuracy
for this task was Min-Random Forest with an accuracy of 0.619.

Discussion

Overall, both methods have proven to be effective in classifying
anomalies in mitochondria. The methods also prove that the node
features effectively capture the properties of three different or-
ganelle morphologies and graphs are an effective way to represent
mitochondria. It is clear from the results that oversampling the data
is a good way to train the models well and make better predictions.
So, it is worth noting that especially the deep learning models,
which are known to be extremely data hungry, could benefit even
more so from having more data.

When the data is oversampled, the random forest classifier
performs well consitently but the aggregate statistic varies for
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each task. It is also interesting to note that the recall metric
is disproportionately better for one class in every task. For llo-
mdivi and llo-control tasks, this can potentially be attributed to
oversampling the minority class and the majority class, which is
llo in both cases, having more real data instances.

When the data was downsampled, there was a considerable
drop in performance as depicted by tables 5, 4, 6. In this sampling
method, the recall scores for the two classes in all three tasks
appear to be closer which can again be potentially be attributed to
training on all real data. The best metrics varied across each of the
tasks. Graph deep learning methods performed well in the control-
llo task and mdivi-llo task. Random forest continued to oupefrom
most methods except for the mdivi-llo task, in which Max-kNN
and Median-decision trees had high accuracies.

Conclusion

Healthy dynamics of subcellular organelles are vital to their
metabolic functions. Identifying anomalies in the dynamics is a
challenging but important task. In this work, we propose two
approaches to classifying different cell morphologies utilizing
only the last frames of videos capturing mitochondrial fusion and
fission. One method takes the node features and applies a general
statistic to make one graph level feature to serve as input for a tra-
ditional classifier. Another approach proposes using a graph neu-
ral network architecture to perform graph classification that take
in a node feature matrix and an adjacency matrix as inputs. We
show that both approaches are effective ways to classify between
anomalous and regular mitochondria and between two different
types of anomalous morphologies. Furthermore, we prove graph
neural networks show much promise in classifying and perhaps
even tracking the mitochondria and their morphologies.
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Accuracy Precision Recall F-1 Score
- Control LLO Control LLO Control LLO

GNN with GCS Layers 0.59 0.58 0.6 0.59 0.59 0.58 0.59
GNN with GCS Layers 0.686 0.5 0.83 0.75 0.62 0.6 0.71
Median - Random Forest 0.59 0.6 0.58 0.55 0.64 0.57 0.61
Mean - Random Forest 0.45 0.44 0.46 0.36 0.55 0.4 0.5
Min - Random Forest 0.41 0.38 0.43 0.27 0.55 0.32 0.48
Max - Random Forest 0.68 0.7 0.67 0.64 0.73 0.67 0.7
Median - Decision Trees 0.59 0.6 0.58 0.55 0.64 0.57 0.61
Mean - Decision Trees 0.55 0.54 0.56 0.64 0.45 0.58 0.5
Min - Decision Trees 0.5 0.5 0.5 0.36 0.64 0.42 0.56
Max - Decision Trees 0.64 0.71 0.6 0.45 0.82 0.56 0.69
Median - kNN 0.55 0.57 0.53 0.36 0.73 0.44 0.62
Mean - kNN 0.41 0.25 0.44 0.09 0.73 0.13 0.55
Min - kNN 0.41 0.33 0.44 0.18 0.64 0.24 0.52
Max - kNN 0.41 0.38 0.43 0.27 0.55 0.32 0.48

TABLE 4: Results for Control vs. LLO task using traditional classifiers and GNNs. The data was undersampled meaning the training set had
19 instances of each class and the test set had 11 instances of each class.

Accuracy Precision Recall F-1 Score
- Mdivi LLO Mdivi LLO Mdivi LLO

GNN with GCS Layers 0.736 0.75 0.67 0.69 0.73 0.72 0.7
GNN with GCS Layers 0.58 0.58 0.58 0.58 0.58 0.58 0.58
Median - Random Forest 0.55 0.55 0.55 0.55 0.55 0.55 0.55
Mean - Random Forest 0.73 0.73 0.73 0.73 0.73 0.73 0.73
Min - Random Forest 0.55 0.55 0.55 0.55 0.55 0.55 0.55
Max - Random Forest 0.45 0.45 0.45 0.45 0.45 0.45 0.45
Median - Decision Trees 0.73 0.78 0.69 0.64 0.82 0.7 0.75
Mean - Decision Trees 0.64 0.71 0.6 0.45 0.82 0.56 0.69
Min - Decision Trees 0.55 0.56 0.54 0.45 0.64 0.5 0.58
Max - Decision Trees 0.55 0.53 0.57 0.73 0.36 0.62 0.44
Median - kNN 0.5 0.5 0.5 0.36 0.64 0.42 0.56
Mean - kNN 0.5 0.5 0.5 0.64 0.36 0.56 0.42
Min - kNN 0.59 0.56 0.75 0.91 0.27 0.69 0.4
Max - kNN 0.73 0.73 0.73 0.73 0.73 0.73 0.73

TABLE 5: Results for Mdivi vs. LLO task using traditional classifiers and GNNs. The data was undersampled meaning the training set had 19
instances of each class and the test set had 11 instances of each class.

Accuracy Precision Recall F-1 Score
- Control Mdivi Control Mdivi Control Mdivi

GNN with GCS Layers 0.619 0.6 0.64 0.64 0.6 0.64 0.6
GNN with GCN Layers 0.57 0.6 0.55 0.55 0.6 0.57 0.57
Median - Random Forest 0.55 0.56 0.54 0.45 0.64 0.5 0.58
Mean - Random Forest 0.64 0.67 0.62 0.55 0.73 0.6 0.67
Min - Random Forest 0.69 0.69 0.68 0.80 0.56 0.73 0.62
Max - Random Forest 0.55 0.57 0.53 0.36 0.73 0.44 0.62
Median - Decision Trees 0.55 0.56 0.54 0.45 0.64 0.5 0.58
Mean - Decision Trees 0.64 0.67 0.62 0.55 0.73 0.6 0.67
Min - Decision Trees 0.55 0.55 0.55 0.55 0.55 0.55 0.55
Max - Decision Trees 0.59 0.62 0.57 0.45 0.73 0.53 0.64
Median - kNN 0.5 0.5 0.5 0.45 0.55 0.48 0.52
Mean - kNN 0.57 0.7 0.59 0.34 0.66 0.52 0.62
Min - kNN 0.64 0.67 0.62 0.55 0.73 0.6 0.67
Max - kNN 0.55 0.57 0.53 0.36 0.73 0.44 0.62

TABLE 6: Results for Mdivi vs. Control task using traditional classifiers and GNNs. The data was undersampled meaning the training set had
19 instances of each class and the test set had 11 instances of each class.
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Monitoring Scientific Python Usage on a
Supercomputer

Rollin Thomas‡∗, Laurie Stephey‡∗, Annette Greiner‡, Brandon Cook‡
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Abstract—In 2021, more than 30% of users at the National Energy Research
Scientific Computing Center (NERSC) used Python on the Cori supercomputer.
To determine this we have developed and open-sourced a simple, minimally in-
vasive monitoring framework that leverages standard Python features to capture
Python imports and other job data via a package called "Customs". To analyze
the data we collect via Customs, we have developed a Jupyter-based analysis
framework designed to be interactive, shareable, extensible, and publishable via
a dashboard. Our stack includes Papermill to execute parameterized notebooks,
Dask-cuDF for multi-GPU processing, and Voila to render our notebooks as
web-based dashboards. We report preliminary findings from Customs data col-
lection and analysis. This work demonstrates that our monitoring framework can
capture insightful and actionable data including top Python libraries, preferred
user software stacks, and correlated libraries, leading to a better understanding
of user behavior and affording us opportunity to make increasingly data-driven
decisions regarding Python at NERSC.

Index Terms—HPC, Python monitoring, GPUs, dashboards, parallel, Jupyter

Introduction

The National Energy Research Scientific Computing Center
(NERSC) is the primary scientific computing facility for the US
Department of Energy’s Office of Science. Some 8,000 scientists
use NERSC to perform basic, non-classified research in predict-
ing novel materials, modeling the Earth’s climate, understanding
the evolution of the Universe, analyzing experimental particle
physics data, investigating protein structure, and more [OA20].
NERSC procures and operates supercomputers and massive stor-
age systems under a strategy of balanced, timely introduction of
new hardware and software technologies to benefit the broadest
possible portion of this workload. While procuring new systems
or supporting users of existing ones, NERSC relies on detailed
analysis of its workload to help inform strategy.

Workload analysis is the process of collecting and marshaling
data to build a picture of how applications and users really
interact with and utilize systems. It is one part of a procurement
strategy that also includes surveys of user and application require-
ments, emerging computer science research, developer or vendor
roadmaps, and technology trends. Understanding our workload
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helps us engage in an informed way with stakeholders like funding
agencies, vendors, developers, users, standards bodies, and other
high-performance computing (HPC) centers. In particular, work-
load analysis informs non-recurring engineering contracts where
NERSC partners with external software developers to address gaps
in system programming environments. Actively monitoring the
workload also enables us to identify suboptimal or potentially
problematic user practices and address them through direct inter-
vention, improving documentation, or simply making it easier for
users to use the software better. Measuring the relative frequency
of use of different software components can help us streamline
delivery, retiring less-utilized packages, and promoting timely
migration to newer versions. Detecting and analyzing trends in
user behavior with software over time also helps us anticipate
user needs and prepare accordingly. Comprehensive, quantitative
workload analysis is a critical tool in keeping NERSC a productive
supercomputer center for science.

With Python assuming a key role in scientific computing, it
makes sense to apply workload analysis to Python in production
settings like NERSC’s Cray XC-40 supercomputer, Cori. Once
viewed in HPC circles as merely a cleaner alternative to Perl
or Shell scripting, Python has evolved into a robust platform
for orchestrating simulations, running complex data processing
pipelines, managing artificial intelligence workflows, visualizing
massive data sets, and more. Adapting workload analysis practices
to scientific Python gives its community the same data-driven
leverage that other language communities at NERSC already
enjoy.

This article documents NERSC’s Python workload analysis
efforts, part of an initiative called Monitoring of Data Services
(MODS) [MODS], and what we have learned during this process.
In the next section, we provide an overview of related work
including existing tools for workload data collection, management,
and analysis. In Methods, we describe an approach to Python-
centric workload analysis that uses built-in Python features to
capture usage data, and a Jupyter notebook-based workflow for
exploring the data set and communicating what we discover. Our
Results include high-level statements about what Python packages
are used most often and at what scale on Cori, but also some
interesting deeper dives into use of certain specific packages
along with a few surprises. In the Discussion, we examine the
implications of our results, share the strengths and weaknesses
of our workflow and our lessons learned, and outline plans for
improving the analysis to better fill out the picture of Python at
NERSC. The Conclusion suggests some areas for future work.
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Related Work

The simplest approach used to get a sense of what applications
run on a supercomputer is to scan submitted batch job scripts
for executable names. In the case of Python applications, this
is problematic since users often invoke Python scripts directly
instead of as an argument to the python executable. This method
also provides only a crude count of Python invocations and gives
little insight into deeper questions about specific Python packages.

Software environment modules [Fur91] are a common way for
HPC centers to deliver software to users. Environment modules
operate primarily by setting, modifying, or deleting environment
variables upon invocation of a module command (e.g. module
load, module swap, or module unload) This provides an
entrypoint for software usage monitoring. Staff can inject code
into a module load operation to record the name of the module
being loaded, its version, and other information about the user’s
environment. Lmod, a newer implementation of environment mod-
ules [Mcl11], provides documentation on how to configure it to
use syslog and MySQL to collect module loads through a hook
function. Counting module loads as a way to track Python usage
has the virtue of simplicity. However, users often include module
load commands in their shell resource files (e.g., .bashrc), meaning
that user login or shell invocation may trigger a detection even
if the user never actually uses the trigger module. Furthermore,
capturing information at the package level using module load
counts would also require that individual Python packages be
installed as separate environment modules. Module load counts
also miss Python usage from user-installed Python environments
or in containers.

Tools like ALTD [Fah10] and XALT [Agr14] are commonly
used in HPC contexts to track library usage in compiled appli-
cations. The approach is to introduce wrappers that intercept the
linker and batch job launcher (e.g. srun in the case of Slurm
used at NERSC). The linker wrapper can inject metadata into
the executable header, take a census of libraries being linked in,
and forward that information to a file or database for subsequent
analysis. Information stored in the header at link time is dumped
and forwarded later by the job launch wrapper. On systems where
all user applications are linked and launched with instrumented
wrappers, this approach yields a great deal of actionable informa-
tion to HPC center staff. However, popular Python distributions
such as Anaconda Python arrive on systems fully built, and can
be installed by users without assistance from center staff. Later
versions of XALT can address this through an LD_PRELOAD set-
ting. This enables XALT to identify compiled extensions that are
imported in Python programs using a non-instrumented Python,
but pure Python libraries currently are not detected. XALT is an
active project so this may be addressed in a future release.

[Mac17] describes an approach to monitoring Python pack-
age use on Blue Waters using only built-in Python features:
sitecustomize and atexit. During normal Python inter-
preter start-up, an attempt is made to import a module named
sitecustomize that is intended to perform site-specific cus-
tomizations. In this case, the injected code registers an exit handler
through the atexit standard library module. This exit handler
inspects sys.modules, a dictionary that normally describes all
packages imported in the course of execution. On Blue Waters,
sitecustomize was installed into the Python distribution
installed and maintained by staff. Collected information was stored
to plain text log files. An advantage of this approach is that

Fig. 1: NERSC infrastructure for capturing Python usage data.

sitecustomize failures are nonfatal, and placing the import
reporting step into an exit hook (as opposed to instrumenting
the import mechanism) means that it minimizes interference with
normal operation of the host application. The major limitation
of this strategy is that abnormal process terminations prevent
the Python interpreter from proceeding through its normal exit
sequence and package import data are not recorded.

Of course, much more information may be available through
tools based on the extended Berkeley Packet Filter and the BPF
compiler collection, similar to the pythoncalls utility that
summarizes method calls in a running application. While eBPF
overheads are very small, this approach requires special compi-
lation flags for Python and libraries. Effort would be needed to
make the monitoring more transparent to users and to marshal
the generated data for subsequent analysis. This could be an
interesting and fruitful approach to consider. Obviously, solutions
that can overly impact application reliability or place an undue
burden on system administrators and operations staff should be
avoided. The fullest picture we currently can obtain comes from
a combination of non-intrusive tooling and follow-up with users,
using the story we can put together from the data we gather as a
starting point for conversation.

Methods

Users have a number of options when it comes to how they
use Python at NERSC. NERSC provides a "default" Python to
its users through a software environment module, based on the
Anaconda Python distribution with modifications. Users may load
this module, initialize the Conda tool, and create their own cus-
tom Conda environments. Projects or collaborations may provide
their users with shared Python environments, often as a Conda
environment or as an independent installation altogether (e.g.
using the Miniconda installer and building up). Cray provides
a basic "Cray Python" module containing a few core scientific
Python packages linked against Cray MPICH and LibSci libraries.
Python packages are also installed by staff or users via Spack
[Gam15], an HPC package manager. NERSC also provides Shifter
[Jac16], a container runtime that enables users to run custom
Docker containers that can contain Python built however the
author desires. With a properly defined kernel-spec file, a user
is able to use a Python environment based on any of the above
options as a kernel in NERSC’s Jupyter service. The goal is to
gather data for workload analysis across all of these options.
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Monitoring all of the above can be done quite easily by
using the strategy outlined in [Mac17] with certain changes.
Fig. 1 illustrates the infrastructure we have configured. As in
[Mac17] a sitecustomize that registers the atexit han-
dler is installed in a directory included into all users’ Python
sys.path. The sitecustomize module is installed directly
on each compute node and not served over network, in order
to avoid exacerbating poor performance of Python start-up at
scale. We accomplish this by installing it and any associated
Python modules into the node system images themselves, and
configuring default user environments to include a PYTHONPATH
setting that injects sitecustomize into sys.path. Shifter
containers include the monitoring packages from the system image
via runtime volume mount. Users can opt out of monitoring simply
by unsetting or overwriting PYTHONPATH. We took the approach
of provisioning a system-wide PYTHONPATH because we cast a
much wider collection net (opt-out) than if we depend on users to
install sitecustomize (opt-in). This also gives us a centrally
managed source of truth for what is monitored at any given time.

Customs: Inspect and Report Packages

To organize sitecustomize logic we have created a Python
package we call Customs, since it is for inspecting and reporting
on Python package imports of particular interest. Customs can be
understood in terms of three simple concepts. A Check is a simple
object that represents a Python package by its name and a callable
that is used to verify that the package (or even a specific module
within a package) is present in a given dictionary. In production
this dictionary should be sys.modules but during testing it
can be a mock sys.modules dictionary. The Inspector is a
container of Check objects, and is responsible for applying each
Check to sys.modules (or mock) and returning the names of
packages that are detected. Finally, the Reporter is an abstract
class that takes some action given a list of detected package
names. The Reporter action should be to record or transmit the
list of detected packages, but exactly how this is done depends
on implementation. Customs includes a few reference Reporter
implementations and an example of a custom Customs Reporter.

Customs provides an entry point to use in sitecustomize,
the function register_exit_hook. This function takes two
arguments. The first is a list of strings or (string, callable) tuples
that are converted into Checks. The second argument is the type of
Reporter to be used. The exit hook can be registered multiple times
with different package specification lists or Reporters if desired.

The intended workflow is that a staff member creates a list
of package specifications they want to check for, selects or
implements an appropriate Reporter, and passes these two objects
to register_exit_hook within sitecustomize.py. In-
stalling sitecustomize to system images generally involves
packaging the software as an RPM to be installed into node
system images and deployed by system administrators. When a
user invokes Python, the exit hook will be registered using the
atexit standard library module, the application proceeds as
normal, and then at normal shutdown sys.modules is inspected
and detected packages of interest are reported.

Message Logging and Storage

NERSC has developed a lightweight abstraction layer for message
logging called nerscjson. It is a simple Python package that
consumes JSON messages and forwards them to an appropriate
transport layer that connects to NERSC’s Operations Monitoring

Field Description

executable Path to Python executable used by this process
is_compute True if the process ran on a compute node
is_shifter True if the process ran in a Shifter container
is_staff True if the user is a member of NERSC staff
job_id Slurm job ID
main Path to application, if any
num_nodes Number of nodes in the job
qos Batch queue of the job
repo Batch job charge account
subsystem System partition or cluster
system System name
username User handle

TABLE 1: Additional monitoring metadata

and Notification Infrastructure (OMNI) [Bau19]. Currently this is
done with Python’s standard SysLogHandler from the logging
library, modified to format time to satisfy RFC 3339. Downstream
from these transport layers, a message key is used to identify the
incoming messages, their JSON payloads are extracted, and then
forwarded to the appropriate Elasticsearch index. The Customs
Reporter used on Cori simply uses nerscjson.

On Cori compute nodes, we use the Cray Lightweight Log
Manager (LLM), configured to accept RFC 5424 protocol mes-
sages on service nodes. A random service node is chosen as
the recipient in order to balance load. On other nodes besides
compute nodes, such as login nodes or nodes running user-facing
services, rsyslog is used for message transport. This abstraction
layer allows us to maintain a stable interface for logging while
using an appropriately scalable transport layer for the system.
For instance, future systems will rely on Apache Kafka or the
Lightweight Distributed Metrics Service [Age14].

Cori has 10,000 compute nodes running jobs at very high
utilization, 24 hours a day for more than 340 days in a typical
year. The volume of messages arriving from Python processes
completing could be quite high, so we have taken a cautious
approach of monitoring a list of about 50 Python packages instead
of reporting the entire contents of each process’s sys.modules.
This introduces a potential source of bias that we return to
in the Discussion, but we note here that Python 3.10 will in-
clude sys.stdlib_module_names, a frozenset of strings
containing the names of standard library modules, that could be
used in addition to sys.builtin_module_names to remove
standard library and built-in modules from sys.modules easily.
Ultimately we plan to capture all imports excluding standard and
built-in packages, except for ones we consider particularly relevant
to scientific Python workflows like multiprocessing.

To reduce excessive duplication of messages from MPI-
parallel Python applications, we prevent reporting from processes
with nonzero MPI rank or SLURM_PROCID. Other parallel appli-
cations using e.g. multiprocessing are harder to deduplicate.
This moves deduplication downstream to the analysis phase. The
key is to carry along enough additional information to enable the
kinds of deduplication needed (e.g., by user, by job, by node, etc).
Table 1 contains a partial list of metadata captured and forwarded
along with package names and versions.

Fields that only make sense in a batch job context are set to a
default (num_nodes: 1) or left empty (repo: ""). Basic job
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quantities like node count help capture the most salient features of
jobs being monitored. Downstream joins with other OMNI indexes
or other databases containing Slurm job data (via job_id), iden-
tity (username), or banking (repo) enables broader insights.

In principle it is possible that messages may be dropped along
the way to OMNI, since we are using UDP for transport. To
control for this source of error, we submit scheduled "canary jobs"
a few dozen times a day that run a Python script that imports
libraries listed in sitecustomize and then exits normally.
Matching up those job submissions with entries in Elastic enables
us to quantify the message failure rate. Canary jobs began running
in October of 2020 and from that time until now (May 2021), per-
haps surprisingly, we actually have observed no message delivery
failures.

Prototyping, Production, and Publication

OMNI has a Kibana visualization interface that NERSC staff use
to visualize Elasticsearch-indexed data collected from NERSC
systems, including data collected for MODS. The MODS team
uses Kibana for creating plots of usage data, organizing these
into attractive dashboard displays that communicate MODS high-
level metrics. Kibana is very effective at providing a general
picture of user behavior with the NERSC data stack, but the
MODS team wanted deeper insights from the data and obtaining
these through Kibana presented some difficulty, especially due to
the complexities of deduplication we discussed in the previous
section. Given that the MODS team is fluent in Python, and that
NERSC provides users (including staff) with a productive Python
ecosystem for data analytics, using Python tools for understanding
the data was a natural choice. Using the same environment and
tools that users have access to provides us a way to test how well
those tools actually work.

Our first requirement was the ability to explore MODS Python
data interactively. However, we also wanted to be able to record
that process, document it, share it, and enable others to re-
run or re-create the results. Jupyter Notebooks specifically target
this problem, and NERSC already runs a user-facing JupyterHub
service that enables access to Cori. Members of the MODS team
can manage notebooks in a Gitlab instance run by NERSC, or
share them with one another (and from Gitlab) using an NBViewer
service running alongside NERSC’s JupyterHub.

Iterative prototyping of data analysis pipelines often starts with
testing hypotheses or algorithms against a small subset of the data
and then scaling that analysis up to the entire data set. GPU-based
tools with Python interfaces for filtering, analyzing, and distilling
data can accelerate this scale-up using generally fewer compute
nodes than with CPU-based tools. The entire MODS Python data
set is currently about 260 GB in size, and while this could fit
into one of Cori’s CPU-based large-memory nodes, the processing
power available there is insufficient to make interactive analysis
feasible. With only CPUs, the main recourse is to scale out to more
nodes and distribute the data. This is certainly possible, but being
able to interact with the entire data set using a few GPUs, far fewer
processes, and without inter-node communication is compelling.

To do interactive analysis, prototyping, or data exploration we
use Dask-cudf and cuDF, typically using 4 NVIDIA Volta V100
GPUs coordinated by a Dask-CUDA cluster. The Jupyter notebook
itself is started from NERSC’s JupyterHub using BatchSpawner
(i.e., the Hub submits a batch job to run the notebook on the
GPU cluster). The input data, in compressed Parquet format, are
read using Dask-cuDF directly into GPU memory. These data are

Fig. 2: Workflow for processing and analyzing Python usage data.

periodically gathered from OMNI using the Python Elasticsearch
API and converted to Parquet. Reduced data products are stored
in new Parquet files, again using direct GPU I/O.

As prototype analysis code in notebooks evolves into some-
thing resembling a production analysis pipeline, data scientists
face the choice of whether to convert their notebooks into scripts
or try to stretch their notebook to serve as a production tool.
The latter approach has the appeal that production notebooks can
be re-run interactively when needed with all the familiar Jupyter
notebook benefits. We decided to experiment with using Papermill
to parameterize notebook execution over months, quarters, and
years of data and submit these notebooks as batch jobs. In each
Jupyter notebook, a Dask-CUDA cluster is spun up and then
shutdown at the end for memory/worker cleanup. Processing all
data for all permutations currently takes about 2 hours on 4 V100
GPUs on the Cori GPU cluster. Fig. 2 illustrates the workflow.

Members of the MODS team can share Jupyter notebooks
with one another, but this format may not make for the best
way to present data to other stakeholders, in particular center
management, DOE program managers, vendors, or users. Voilà
is a tool that uses a Jupyter notebook to power a stand-alone,
interactive dashboard-style web application. We decided to exper-
iment with Voilà for this project to evaluate best practices for its
use at NERSC. To run our dashboards we use NERSC’s Docker
container-as-a-service platform, called Spin, where staff and users
can run persistent web services. Spin is external to NERSC’s HPC
resources and has no nodes with GPUs, but mounts the NERSC
Global Filesystem.

Creating a notebook using a GPU cluster and then using the
same notebook to power a dashboard running on a system without
GPUs presents a few challenges. We found ourselves adopting a
pattern where the first part of the notebook used a Dask cluster
and GPU-enabled tools for processing the data, and the second
part of the notebook used reduced data using CPUs to power
the dashboard visualizations. We used cell metadata tags to direct
Voilà to simply skip the first set of cells and pick up dashboard
rendering with the reduced data. This process was a little clumsy,
and we found it easy to make the mistake of adding a cell and then
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forgetting to update its metadata. Easier ways of managing cell
metadata tags would improve this process. Another side-effect of
this approach is that packages may appear to be imported multiple
times in a notebook.

We found that even reduced data sets could be large enough
to make loading a Voilà dashboard slow, but we found ways to
hide this by lazily loading the data. Using Pandas DataFrames
to prepare even reduced data sets for rendering, especially his-
tograms, resulted in substantial latency when interacting with
the dashboard. Vaex [vaex] provided for a more responsive user
experience, owing to multi-threaded CPU parallelism. We did
use some of Vaex’s native plotting functionality (in particular
viz.histogram), but we primarily used Seaborn for plotting
with Vaex objects "underneath" which we found to be a fast
and friendly way to generate appealing visualizations. Sometimes
Matplotlib was used when Seaborn could not meet our needs (to
create a stacked barplot, for example).

Finally, we note that the Python environment used for both data
exploration and reduction on the GPU cluster, and for running the
Voilà dashboard in Spin, is managed using a single Docker image
(Shifter runtime on GPU, Kubernetes in Spin).

Results

Our data collection framework yields a rich data set to exam-
ine and our workflow enables us to interactively explore the
data and translate the results of our exploration into dashboards
for monitoring Python. Results presented come from data col-
lected between January and May 2021. Unless otherwise noted,
all results exclude Python usage by members of NERSC staff
(is_staff==False) and include only results collected from
batch jobs (is_compute==True). All figures are extracted
from the Jupyter notebook/Voilà dashboard.

During the period of observation there were 2448 users run-
ning jobs that used Python on Cori, equivalent to just over 30% of
all NERSC users. 84% of jobs using Python ran on Cori’s Haswell-
based partition, 14% used Cori-KNL, and 2% used Cori’s GPU
cluster. 63% of Python users use the NERSC-provided Python
module directly (including on login nodes and Jupyter nodes) but
only 5% of jobs using Python use the module: Most use a user-
built Python environment, namely Conda environments. Anaconda
Python provides scientific Python libraries linked against the Intel
Math Kernel Library (MKL), but we observe that only about 17%
of MKL-eligible jobs (ones using NumPy, SciPy, NumExpr, or
scikit-learn) are using MKL. We consider this finding in more
detail in Discussion.

Fig. 3 displays the top 20 Python packages in use determined
from unique user imports (i.e. how many users ever use a given
package) across the system, including login nodes and Jupyter
nodes. These top libraries are similar to previous observations
reported from Blue Waters and TACC [Mcl11], [Eva15], but the
relative prominence of multiprocessing is striking. We also
note that Joblib, a package for lightweight pipelining and easy
parallelism, ranks higher than both mpi4py and Dask.

The relatively low rankings for TensorFlow and PyTorch are
probably due to the current lack of GPU resources, as Cori
provides access to only 18 GPU nodes mainly for application
readiness activities in support of Perlmutter, the next (GPU-based)
system being deployed. Additionally, some users that are training
deep learning models submit a chain of jobs that may not be
expected to finish within the requested walltime; the result is

Fig. 3: Top 20 tracked Python libraries at NERSC, deduplicated by
user, across our system.

Fig. 4: Distribution of job size for batch jobs that use Python.

that the job may end before Customs can capture data from the
atexit, resulting in under-reporting.

Fig. 4 shows the distribution of job size (node count) for jobs
that invoked Python and imported one or more of the packages we
monitor. Most of these jobs are small, but the distribution tracks
the overall distribution of job size at NERSC.

Breaking down the Python workload further, Fig. 5 contains
a 2D histogram of Python package counts as a function of job
size. Package popularity in this figure has a different meaning
than in Fig. 3: The data are deduplicated by job_id and package
name to account for jobs where users invoke the same executable
repeatedly or invoke multiple applications using the same libraries.
The marginal axes summarize the total package counts and total
job size counts as a function of job_id. Most Python libraries
we track do not appear to use more than 200 nodes. Perhaps
predictably, mpi4py and NumPy are observed at the largest node
counts. Dask jobs are observed at 500 nodes and fewer, so it
appears that Dask is not being used to scale as large as mpi4py
is. Workflow managers FireWorks [Jai15] and Parsl [Bab19] are
observed scaling to 1000 nodes. PyTorch (torch) appears at
larger scales than TensorFlow and Keras, which suggests users
may find it easier to scale PyTorch on Cori.

While it is obvious that packages that depend on or are
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Fig. 5: 2D histogram of Python package counts versus job size. The
marginal x-axis (right) shows the total package counts. The marginal
y-axis (top) shows the total job counts displayed on a log scale. Here
we measure number of unique packages used within a job rather than
number of jobs, so these data are not directly comparable to Fig. 3
nor to Fig. 4.

Fig. 6: Pearson correlation coefficients for tracked Python libraries
within the same job. Libraries were only counted once per job.
Here we display correlation coefficient values between 0.6 and 0.8
in an effort to highlight a regime in which packages have a strong
relationship but no explicit dependencies.

Fig. 7: Pearson correlation coefficient values for mpi4py (left),
multiprocessing (center), and Dask (right), with all other
Python libraries we currently track.

dependencies of other packages will be correlated within jobs, it is
still interesting to examine the co-occurrence of certain packages
within jobs. A simple way of looking at this is to determine
Pearson correlation coefficients for each tracked library with all
others, assigning a 1 to jobs in which a certain package was used
and 0 otherwise. Fig. 6 shows an example package correlation
heatmap. The heatmap includes only package correlations above
0.6 to omit less interesting relationships and less than 0.8 as a
simple way to filter out interdependencies. Notable relationships
between non-dependent packages include mpi4py and AstroPy,
Seaborn and TensorFlow, FireWorks and Plotly.

We used this correlation information as a starting point for ex-
amining package use alongside mpi4py, multiprocessing,
and Dask, all of which we are especially interested in because
they enable parallelism within batch jobs. We omit Joblib, noting
that a number of packages depend on Joblib and Joblib itself uses
multiprocessing. Fig. 7 presents the correlations of each of
these packages with all other tracked packages.

The strongest correlations observed for mpi4py (Fig. 7,
left) is the domain-specific package AstroPy and its submodule
astropy.io.fits. This suggests that users of AstroPy have
been able to scale associated applications using mpi4py and
that AstroPy developers may want to consider engaging with
mpi4py users regarding their experiences. Following up with
users generally reveals that using mpi4py for "embarrassingly
parallel" calculations is very common: "My go-to approach is
to broadcast data using mpi4py, split up input hyperparam-
eters/settings/etc. across ranks, have each rank perform some
number of computations, and then gather all the results (which
are almost always NumPy arrays) using mpi4py." Very few users
report more intricate communication patterns.

Next we consider multiprocessing. The conda tool
uses multiprocessing but even after filtering out those cases,
it remains one of the most popular Python libraries in use on
Cori. In Fig. 7 (center), we do not see any particularly strong



MONITORING SCIENTIFIC PYTHON USAGE ON A SUPERCOMPUTER 129

relationships as we did with mpi4py. The primary correlation
visible here is with SciPy, which has some built-in support for
inter-operating with multiprocessing, for instance through
scipy.optimize. To learn more we followed up with several
of the top multiprocessing users. One reported: "I’m using
and testing many bioinformatics Python-based packages, some of
them probably using Python multiprocessing. But I’m not
specifically writing myself scripts with multiprocessing."
Another reported: "The calculations are executing a workflow for
computing the binding energies of ligands in metal complexes.
Since each job is independent, multiprocessing is used to
start workflows on each available processor." As a package that
users directly interact with, and as a dependency of other packages
in scientific Python, multiprocessing is a workhorse.

Finally we consider Dask, a Python package for task-based
parallelism and analytics at scale. Users are increasingly interested
in cluster runtimes where they queue up work, submit the work
to the scheduler as a task graph, and the scheduler handles
dependencies and farms out the tasks to workers. Dask also inter-
operates with GPU analytics libraries from NVIDIA as part of
RAPIDS, so we are naturally interested in its potential for our
next system based in part on GPUs. As noted, large jobs using
Dask are generally smaller than those using mpi4py (500 nodes
versus 3000+ nodes), which may indicate a potential gap in
scalability on Cori. The correlation data shown in Fig. 7 (right)
indicate an affinity with the weather and climate community,
where netCDF4 and xarray seem particularly important. We
reached out to several Dask users to learn more. One responded:
"I don’t remember having any Python Dask-related jobs running in
the past 3 months." After some additional discussion and analysis,
we discovered the user was using xarray which we believe was
using Dask unbeknownst to the user. This kind of response from
"Dask users" was not uncommon.

Discussion

Our results demonstrate that we are able to collect useful data on
Python package use on Cori, tag it with additional metadata useful
for filtering during analysis, and conduct exploratory analysis of
the data that can easily evolve to production and publication.
The results themselves confirm many of our expectations about
Python use on Cori, but also reveal some surprises that suggest
next actions for various stakeholders. Such surprises suggest new
opportunities for engagements between NERSC, users, vendors,
and developers of scientific Python infrastructure.

We observe that Python jobs on Cori mostly come from
environments that users themselves have provisioned, and not di-
rectly from the Python software environment module that NERSC
provides. Our expectation was that the fraction of jobs running
from such environments would be high since we knew through
interacting with our users that custom Conda environments were
very popular. A major driver behind this popularity is that users
often want versions of packages that are newer than they what can
get from a centrally-managed Python environment. But rather than
take that as a cue that we should be updating the NERSC-provided
Python environment more often, finding new ways to empower
users to manage their own software better has become our priority
instead. This currently includes continuing to provide easy access
to Conda environments, locations for centralized installations (i.e.
shared by a collaboration), and improved support for containerized
environments. However we are constantly reevaluating how best
to support the needs of our users.

Other results indicate that this may need to be done carefully.
As mentioned in the Results, only about 17% of jobs that use
NumPy, SciPy, scikit-learn, or NumExpr are using versions of
those packages that rely on OpenMP-threaded, optimized Intel
MKL. Given that Cori’s CPU architectures come from Intel,
we might expect the best performance to come from libraries
optimized for that architecture. We caution that there are a
number of hypotheses to consider behind this observation, as it
is a question of how well-educated users are on the potential
benefits of such libraries. The surprising reliance of our users on
multiprocessing and the tendency of users to use mpi4py
for embarrassing parallelism suggest that users may find it easier
to manage process parallelism than OpenMP thread parallelism in
scientific Python. Another consideration is that users value ease in
software installation rather than performance. Many Conda users
rely heavily on the conda-forge channel, which does have a
much greater diversity of packages as compared to the defaults
channel, and will install libraries based on OpenBLAS. Users may
be willing or able to tolerate some performance loss in favor of
being able to easily install and update their software stack. (There
are no easy answers or quick fixes to this problem of facilitating
both easy installation and good performance, but this is a major
goal of our efforts to support Python at NERSC.) Finally, many
users install complex packages designed for use on a wide range
of systems; many of these packages such as GPAW may use
OpenBLAS rather than MKL. Having seen that MKL adoption
is low, our goal is to try to better understand the factors leading to
this and ensure that users who can benefit from MKL make good
choices about how they build their Python environments through
documentation, training, and direct recommendation.

While some discoveries suggest next actions and user engage-
ment for NERSC staff, others suggest opportunities for broader
stakeholder action. The importance of multiprocessing to
users on nodes with large core count suggests an opportunity
for developers and system vendors. Returning to the observation
that jobs using AstroPy have an tendency to also use mpi4py,
we conclude that users of AstroPy have been able to scale their
AstroPy-based applications using MPI and that AstroPy develop-
ers may want to consider engaging with our users to make that
interaction better. Examining the jobs further we find that these
users tend to be members of large cosmology experiments like
Dark Energy Survey [Abb18], Dark Energy Spectroscopic Instru-
ment [DESI], the Dark Energy Science Collaboration [DESC], and
CMB-S4 [Aba16]. The pattern appears over many users in several
experiments. We also note that the use of astropy.io.fits
in MPI-enabled Python jobs by astronomers suggests that issues
related to FITS I/O performance in AstroPy on HPC systems may
be another area of focus.

While the results are interesting, making support decisions
based on data alone has its pitfalls. There are limitations to the
data set, its analysis, and statements we can make based on the
data, some of which can be addressed easily and others not. First
and foremost, we address the limitation that we are tracking a
prescribed list of packages, an obvious source of potential bias.
The reason for prescribing a list is technical: Large bursts of
messages from jobs running on Cori at one time caused issues
for OMNI infrastructure and we were asked to find ways to limit
the rate of messages or prevent such kinds of bursts. Since then,
OMNI has evolved and may be able to handle a higher data rate,
making it possible to simply report all entries in sys.modules
excluding built-in and standard modules (but not entirely, as
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multiprocessing would go undetected). One strategy may
be to forward sys.modules to OMNI on a very small random
subset of jobs (say 1%) and use that control data set to estimate
bias in the tracked list. It also helps us control for a major concern,
that of missing out on data on emerging new packages.

Another source of bias is user opt-out. Sets of users who
opt out tend to do so in groups, in particular collaborations or
experiments who manage their own software stacks: Opting out
is not a random error source, it is another source of systematic
error. A common practice is for such collaborations to provide
scripts that help a user "activate" their environment and may
unset or rewrite PYTHONPATH. This can cause undercounts in
key packages, but we have very little enthusiasm for removing the
opt-out capability. Rather, we believe we should make a positive
case for users to remain opted in, based on the benefits it delivers
to them. Indeed, that is a major motivation for this paper.

A different systematic undercount may occur for applications
that habitually run into their allocated batch job wallclock limit. As
mentioned with TensorFlow, we confirmed with users a particular
pattern of submitting chains of dozens of training jobs that each
pick up where the previous job left off. If all these jobs hit
the wallclock limit, we will not collect any data. Counting the
importance of a package by the number of jobs that use it is
dubious; we favor understanding the impact of a package from the
breadth of the user community that uses it. This further supports
the idea that multiple approaches to understanding Python package
use are needed to build a complete picture; each has its own
shortcomings that may be complemented by others.

Part of the power of scientific Python is that it enables its
developers to build upon the work of others, so when a user
imports a package it may import several other dependencies. All of
these libraries "matter" in some sense, but we find that often users
are importing those packages without even being aware they are
being used. For instance, when we contacted users who appeared
to be running Dask jobs at a node count of 100 or greater, we
received several responses like "I’m a bit curious as to why I
got this email. I’m not aware to have used Dask in the past,
but perhaps I did it without realizing it." More generally, large-
scale jobs may use Python only incidentally for housekeeping
operations. Importing a package is not the same as actual use,
and use of a package in a job running at scale is not the same as
that package actually being used at scale.

Turning to what we learned from the process of building our
data analysis pipeline, we found that the framework gave us ways
to follow up on initial clues and then further productionize the
resulting exploratory analysis. Putting all the steps in the anal-
ysis (extraction, aggregation, indexing, selecting, plotting) into
one narrative improves communication, reasoning, iteration, and
reproducibility. One of our objectives was to manage as much of
the data analysis as we could using one notebook for exploratory
analysis with Jupyter, parameterized calculations in production
with Papermill, and shared visualization as a Voilà dashboard. Us-
ing cell metadata helped us to manage both the computationally-
intensive "upstream" part of the notebook and the less expensive
"downstream" dashboard within a single file. One disadvantage of
this approach is that it is very easy to remove or forget to apply cell
tags. This could be addressed by making cell metadata easier to
apply and manage. The Voilà JupyterLab extension helps with this
problem by providing a preview of a dashboard rendering before
it is published to the web. Another issue with the single-notebook
pattern is that some code may be repeated for different purposes.

This is not a source of error necessarily, but it can cause confusion.
All of these issues disappear if the same hardware could be used
to run the notebook in exploratory analysis, pipelined production,
and dashboard phases, but these functions are simply not available
in a single system at NERSC today.

Conclusion

We have taken our first small steps in understanding the Python
workload at NERSC in detail. Instrumenting Python to record how
frequently key scientific Python packages are being imported in
batch jobs on Cori confirmed many of our assumptions but yielded
a few surprises. The next step is acting on the information we have
gathered, and of course, monitoring the impact those actions have.

Using Python itself as a platform for analyzing the Python
workload poses a few challenges mostly related to supporting
infrastructure and tooling. With a few tricks, we find that the
same Jupyter notebooks can be used for both exploratory and
production data analysis, and also to communicate high-level
results through dashboards. We initiated this project not only to
perform Python workload analysis but to test the supposition that
users could assemble all the pieces they needed for a Python-based
data science pipeline at NERSC. Along the way, we identified
shortcomings in our ecosystem, and this motivated us to develop
tools for users that fill those gaps, and gave us direct experience
with the very same tools our users use to do real science.

In the near future, we will expand Python workload analysis
to Perlmutter, a new system with CPU+GPU and CPU-only nodes
to identify users of the CPU nodes who might be able to take
advantage of GPUs. Other future plans include examining Python
use within the context of specific science areas by linking our data
with user account and allocation data, and using natural language
processing and machine learning to proactively identify issues that
users have with Python on our systems. Another interesting avenue
to pursue is whether the monitoring data we gather may be of
use to users as an aid for reproducible computational science.
If users are able to access Python usage data we collect from
their jobs, they could use it to verify what Python packages and
package versions were used and obtain some degree of software
provenance for reproducing and verifying their results.

We anticipate that developers of scientific Python software
may find the information we gather to be informative. Readers
can view the public MODS Python dashboard at https://mods.
nersc.gov/public/
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Training machine learning models faster with Dask

Joesph Holt‡, Scott Sievert‡∗

F

Abstract—Machine learning (ML) relies on stochastic algorithms, all of which
rely on gradient approximations with "batch size" examples. Growing the batch
size as the optimization proceeds is a simple and usable method to reduce
the training time, provided that the number of workers grows with the batch
size. In this work, we provide a package that trains PyTorch models on Dask
clusters, and can grow the batch size if desired. Our simulations indicate that for
a particular model that uses GPUs for a popular image classification task, the
training time can be reduced from about 120 minutes with standard SGD to 45
minutes with a variable batch size method.

Index Terms—machine learning, model training, distributed computation

Introduction

Training deep machine learning models takes a long time. For ex-
ample, training a popular image classification model [RRSS19] to
reasonable accuracy takes "around 17 hours" on Google servers.1

Another example includes training an NLP model for 10 days on 8
high-end GPUs [RNSS18].2 Notably, the number of floating point
operations (FLOPs) required for "the largest AI training runs"
doubles every 3.4 months.3

Model training is fundamentally an optimization problem: it
tries to find a model ŵww that minimizes a loss function F :

ŵww = argmin
www

F(www) :=
1
n

n

∑
i=1

f (www;zzzi)

where there are n examples in the training set, and each example
is represented by zzzi. For classification, zzzi = (xxxi,yi) for a label yi
and feature vector xxxi. The loss function F is the mean of the loss
f over different examples. To compute this minimization for large
scale machine learning, stochastic gradient descent (SGD) or a
variant thereof is used [BCN18]. SGD is iterative, and the model
update at each step k is computed via

wwwk+1 = wwwk−
γk

Bk

Bk

∑
i=1

ggg(wwwk;zzzis)

where ggg is the gradient of the loss function f for some batch
size Bk ≥ 1, is is chosen uniformly at random and γk > 0 is
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Copyright © 2021 Joesph Holt et al. This is an open-access article distributed
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1. Specifically, a ResNet-50 model on the ImageNet
database using a Google Tensor Proceesing Unit (TPU)
(github.com/tensorflow/tpu/.../resnet/README.md).

2. See OpenAI’s blog post "Improving Language Understanding with Unsu-
pervised Learning."

3. See OpenAI’s blog post "AI and Compute."

the learning rate or step size. The objective function’s gradient
is approximated with Bk examples – the gradient approximation
1

Bk
∑Bk

i=1 ggg(wwwk;zzzis) is an unbiased estimator of the loss function
F’s gradient. This computation is common in the vast majority of
SGD variants, and is found in popular variants like Adam [KB14],
RMSprop [ZSJ+19], Adagrad [DHS11], Adadelta [Zei12], and
averaged SGD [PJ92]. Most variants make modifications to the
learning rate γk [DHS11], [Zei12], [KB14], [ZSJ+19].

Increasing the batch size Bk will reduce the number of model
updates while not requiring more FLOPs or gradient computations
– both empirically [SKYL17] and theoretically [Sie20]. Typically,
the number of FLOPs controls the training time because training
is performed with a single processor. At first, fewer model updates
seems like an internal benefit that doesn’t affect training time.

The benefit comes when training with multiple machines, aka a
distributed system. Notably, the time required to complete a single
model update is (nearly) agnostic to the batch size provided the
number of workers in a distributed system grows with the batch
size. In one experiment, the time to complete a model update
grows by 13% despite the batch size growing by a factor of
44 [GDG+17, Sec. 5.5]. This acceleration has also been observed
with an increasing batch size schedule [SKYL17, Sec. 5.4].

Contributions

We provide software to accelerate machine learning model train-
ing, at least with certain distributed systems. For acceleration, the
distributed system must be capable of assigning a different number
of workers according to a fixed schedule. Specifically, this work
provides the following:

• A Python software package to train machine learning
models. The implementation4 provides a Scikit-learn API
[BLB+13] to PyTorch models [PGM+19].

• Our software works on any cluster that is configured to
work with Dask, many of which can change the number of
workers on demand.5

• Extensive experiments to illustrate that our software can
accelerate model training in terms of wall-clock time when
an appropriate Dask cluster is used.

A key component of our software is that the number of workers
grows with the batch size. Then, the model update time is agnostic
to the batch size provided that communication is instantaneous.
This has been shown empirically: Goyal et al. grow the batch

4. https://github.com/stsievert/adadamp
5. Including the default usage (through LocalCluster), supercomputers

(through Dask Job-Queue), YARN/Hadoop clusters (through Dask Yarn) and
Kubernetes clusters (through Dask Kubernetes).
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size (and the number of workers with it) by a factor of 44 but
the time for a single model update only increases by a factor of
1.13 [GDG+17, Sec. 5.5].

Now, let’s cover related work to gain understanding of why
variable batch sizes provide a benefit in a distributed system.
Then, let’s cover the details of our software before presenting
simulations. These simulations confirm that model training can be
accelerated if the number of workers grows with the batch size.
Methods to workaround limitations on the number of workers will
be presented.

Related work

The data flow for distributed model training involves distributing
the computation of the gradient estimate, 1

B ∑B
i=1 ggg(wwwk;zzzi). Typi-

cally, each worker computes the gradients for B/P examples when
there is a batch size of B and P machines. Then, the average of
these gradients is taken and the model is updated.6

Clearly, Amdahl’s law is relevant because there are diminish-
ing returns as the number of workers P is increased [GVY+18].
This as referred to as "strong scaling" because the batch size is
fixed and the number of workers is treated as an internal detail. By
contrast, growing the amount of data with the number of workers
is known as "weak scaling." Of course, relevant experiments
show that weak scaling exhibits better scaling than strong scaling
[QST17].

Constant batch sizes

To circumvent Amdahl’s law, a common technique is to increase
the batch size [ZLN+19] alongside the learning rate [JAGG20].
Using moderately large batch sizes yields high quality results
more quickly and, in practice, requires no more computation than
small batch sizes, both empirically [GDG+17] and theoretically
[YPL+18].

There are many methods to choose the best constant batch size
(e.g., [GGS19], [KSL+20]). Some methods are data dependent
[YPL+18], and others depend on the model complexity. In particu-
lar, one method uses hardware topology (e.g., network bandwidth)
in a distributed system [PKK+19].

Large constant batch sizes present generalization chal-
lenges [GDG+17]. The generalization error is hypothesized to
come from "sharp" minima, strongly influenced by the learning
rate and noise in the gradient estimate [KMN+16]. To match
performance on the training dataset, careful thought must be
given to hyperparameter selection [GDG+17, Sec. 3 and 5.2]. In
fact, this has motivated algorithms specifically designed for large
constant batch sizes and distributed systems [JAGG20], [JSH+18],
[YGG17].

Increasing the batch size

Model quality greatly influences the amount of information in the
gradient – which influences the batch size [Sie20]. For example,
if models are poorly initialized, then using a large batch size has
no benefit: the gradient—or direction to the optimal model—for
each example will produce very similar numbers. An illustration
is given in Figure 1.

Various methods to adaptively change the batch size based
on model performance have been proposed [Sie20], [DYJG16],
[BRH17], [BCNW12]. Of course, these methods are adaptive so

6. Related but tangential methods include methods to efficiently communi-
cate the gradient estimates [AGL+17], [GTAZ18], [WSL+18].

computing the batch size requires computation (though there are
workarounds [Sie20], [BRH17]).

Convergence results have been given for adaptive batch
sizes [Sie20], [BCN18], [ZYF18]. Increasing the batch size is
a provably good measure that requires far fewer model updates
and no more computation than standard SGD for strongly convex
functions [BCN18, Ch. 5], and all function classes if the batch
size is provided by an oracle [Sie20]. Convergence proofs have
also been given for the passively increasing the batch size, both
for strongly convex functions [BCN18, Ch. 5] and for non-convex
functions [ZYF18]. Both of these methods require fewer model
updates than SGD and do not increase the number of gradient
computations.

Notably, a geometric batch size increase schedule has shown
great empirical performance in image classification [SKYL17].
Specifically, the number of model updates required to finish train-
ing decreased by a factor of 2.2 over standard SGD [SKYL17].
Smith et al. make an observation that increasing the batch size and
decreasing the learning rate both decay the optimization’s "noise
scale" (or variance of the model update), which has connections
to simulated annealing [SKYL17]. This motivates increasing the
batch size by the same factor the learning rate decays [SKYL17].

Both growing the batch size and using large constant batch
sizes should require the same number of floating point operations
as using standard SGD with small batch sizes to reach a partic-
ular training loss (respectively [Sie20], [BCN18] and [JAGG20],
[YLR+19], [YPL+18]). Some proof techniques suggest that vari-
able batch size methods mirror gradient descent [Sie20], [KNS16],
so correspondingly, the implementations do not require much
additional hyperparameter tuning [SKYL17].

Distributed training with Dask

We have written "AdaDamp," a software package to to train a
PyTorch model with a Scikit-learn API on any Dask cluster.7 It
supports the use of constant or variable batch sizes, which fits
nicely with Dask’s ability to change the number of workers.8 In
this section, we will walk through the basic architecture of our
software and an example usage. We will defer showing the primary
benefit of our software to the experimental results.

Architecture

Our software uses a centralized synchronous parameter server and
controls the data flow of the optimization with Dask (and does not
rely on PyTorch’s distributed support). Specifically, the following
happen on every model update:

1) The master node broadcasts the model to every worker.
2) The workers calculate the gradients.
3) The workers communicate the gradients back to the

master.
4) The master performs a model update with the aggregated

gradients.

We use Dask to implement this data flow, which adds some
overhead.9 AdaDamp supports static batch sizes; however, there
is little incentive to use AdaDamp with a static batch sizes: the

7. While our software works with a constant batch size, the native imple-
mentations work with constant batch sizes and very likely have less overhead
(e.g., PyTorch Distributed [LZV+20]).

8. https://github.com/stsievert/adadamp
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Fig. 1: An illustration of why the batch size should increase. Here, let’s find a model www = [wx,wy] that minimizes the function f (wx,wy) =

∑3
i=0(wx− xi)

2 +(wy− yi)
2 where xi and yi are the x and y coordinates of each datum. When closer to the optimum at model A, the gradients

are more "diverse," so the magnitude and orientation of each datum’s gradient varies more [YPL+18].

native solution has PyTorch less overhead [LZV+20], and already
has a Dask wrapper.10

The key component of AdaDamp is that the number of workers
grows with the batch size. Then, the model update time is agnostic
to the batch size (provided communication is instantaneous). This
has been shown empirically: Goyal et al. grow the batch size (and
the number of workers with it) by a factor of 44 but the time for a
single model update only increases by a factor of 1.13 [GDG+17,
Sec. 5.5].

Example usage

First, let’s create a standard PyTorch model. This is a simple
definition; a more complicated model or one that uses GPUs can
easily be substituted.

import torch.nn as nn
import torch.nn.functional as F

class HiddenLayer(nn.Module):
def __init__(self, features=4, hidden=2, out=1):

super().__init__()
self.hidden = nn.Linear(features, hidden)
self.out = nn.Linear(hidden, out)

def forward(self, x, *args, **kwargs):
return self.out(F.relu(self.hidden(x)))

Now, let’s create our optimizer:

from adadamp import DaskRegressor
import torch.optim as optim

est = DaskRegressor(
module=HiddenLayer, module__features=10,
optimizer=optim.Adadelta,
optimizer__weight_decay=1e-7,
max_epochs=10

)

So far, a PyTorch model and optimizer have been specified.
As per the Scikit-learn API, we specify parameters for the
model/optimizer with double underscores, so in our example
HiddenLayer(features=10) will be created. We can set
the batch size increase parameters at initialization if desired, or
inside set_params.

from adadamp.dampers import GeoDamp
est.set_params(

9. An opportunity for future work.
10. https://github.com/saturncloud/dask-pytorch-ddp

batch_size=GeoDamp, batch_size__delay=60,
batch_size__factor=5)

This will increase the batch size by a factor of 5 every 60 epochs,
which is used in the experiments. Now, we can train:

from sklearn.datasets import make_regression
X, y = make_regression(n_features=10)
X = torch.from_numpy(X.astype("float32"))
y = torch.from_numpy(y.astype("float32")).reshape(-1, 1)

est.fit(X, y)

Experiments

In this section, we present two sets of experiments.11 Both
experiments will use the same setup, a Wide-ResNet model in
a "16-4" architecture [ZK16] to perform image classification on
the CIFAR10 dataset [KH09]. This is a deep learning model with
about 2.75 million weights that requires a GPU to train.12 The
experiments will provide evidence for the following points:

1) Increasing the batch size reduces the number of model
updates.

2) The time required for model training is roughly propor-
tional to the number of model updates (presuming the
distributed system is configured correctly).

To provide evidence for these points, let’s run one set of
experiments that varies the batch size increase schedule. These ex-
periments will mirror the experiments by Smith et al. [SKYL17].
Additionally, let’s ensure that our software accelerates model
training as the number of GPUs increase.

We train each batch size increase schedule once, and then write
the historical performance to disk. This reduces the need for many
GPUs, and allows us to simulate different networks and highlight
the performance of Dask. That means that in our simulations,
we simulate model training by having the computer sleep for an
appropriate and realistic amount of time.

11. Full detail on these experiments can be found at https://github.com/
stsievert/adadamp-experiments

12. Specifically, we used a NVIDIA T4 GPU with an Amazon
g4dn.xlarge instance. Training consumes 2.2GB of GPU memory with
a batch size of 32, and 5.5GB with a batch size of 256.
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Batch size increase

To illustrate the primary benefit of our software, let’s perform
several trainings that require a different number of model updates.
These experiments explicitly mirror the experiments by Smith et
al. [SKYL17, Sec. 5.1], which helps reduce the parameter tuning.

Largely, the same hyperparameters are used. These experi-
ments only differ in the choice of batch size and learning rate,
as shown in Figure 2. As in the Smith et al. experiments, every
optimizer uses Nesterov momentum [Nes98] and the same mo-
mentum (0.9) and weight decay (0.5 · 10−3). They start with the
same initial learning rate (0.05),13 and either the learning rate is
decreased or the batch size increases by a specified factor (5) at
particular intervals (epochs 60, 120 and 180). This means that the
variance of the model update is reduced by a constant factor at
each update.
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Fig. 2: The learning rate and batch size decrease/increase schedules
for various optimizers. After the maximum batch size is reached, the
learning rate decays. A postfix of "(*2)" means the initial batch size
twice as large (256 instead of 128)

These different decay schedules exhibit the same performance
in terms of number of epochs, which is proportional to the number
of FLOPs, as shown in Figure 3. The number of FLOPs is
(approximately) to the cost, at least on Amazon EC2 where the
cost to rent a server tends to be proportional to the number of
GPUs.

Importantly, this work focuses on increasing the number of
workers with the batch size – the effect of which is hidden
in Figure 3. However, the fact that the performance does not
change with different schedules means that choosing a different
batch size increase schedule will not require more wall-clock
time if only a single worker is available. Combined with the
hyperparameter similarity between the different schedules, this
reduces deployment and debugging concerns.

13. These are the same as Smith et al. [SKYL17] with the exception of
learning rate (which had to be reduced by a factor of 2).
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Fig. 3: The performance of the LR/BR schedules in Figure 2, plotted
with epochs—or passes through the dataset—on the x-axis.

Maximum
batch size

Model up-
dates

Training time
(min)

Max.
workers

5.1k (*2) 14,960 69.87 40
3.2k 29,480 107.17 25
16k 29,240 107.49 125
640 34,520 116.86 5
128 78,200 200.19 1

TABLE 1: A summary of the simulations in Figures 3 and 4. All
training require approximately 200 epochs, so they all require the
same number of FLOPs.

If the number of workers grows with the batch size, then the
number of model updates is relevant to the wall-clock time. Figure
4 shows the number of model updates and wall-clock time required
to reach a model of a particular test accuracy. Of course, there is
some overhead to our current framework, which is why the number
of model updates does not exactly correlate with the wall-clock
time required to complete training. In summary, the time required
to complete training is shown in Table 1.

Future work

Architecture

Fundamentally, the model weights can be either be held on
a master node (centralized), or on every node (decentralized).
Respectively, these storage architectures typically use point-to-
point communication or an "all-reduce" communication. Both
centralized [LAP+14], [ABC+16] and decentralized [LZV+20],
[SDB18] communication architectures are common.

Future work is to avoid the overhead introduced by manually
having Dask control the model update workflow. With any syn-
chronous centralized system, the time required for any one model
update is composed of the time required for the following tasks:
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Fig. 4: The same simulations as in Figure 3, but plotted with the
number of model updates and wall-clock time plotted on the x-axis
(the loss obeys a similar behavior as illustrated in the Appendix).

1) Broadcasting the model from the master node to all
workers

2) Finishing gradient computation on all workers.
3) Communicating gradients back to master node.
4) Various overhead tasks (e.g., serialization, worker

scheduling, etc).
5) Computing the model update after all gradients are com-

puted & gathered.

Items (1), (3) and (4) are a large concern in our imple-
mentation. Decentralized communication has the advantage of
eliminating items (1) and (4), and mitigates (3) with a smarter
communication strategy (all-reduce vs. point-to-point). Item (2)
is still a concern with straggler nodes [DCM+12], but recent
work has achieved "near-linear scalability with 256 GPUs" in a
homogeneous computing environment [LZV+20]. Items (2) and
(5) can be avoided with asynchronous methods (e.g., [RRWN11],
[ZHA16]).

That is, most of the concerns in our implementation will
be resolved with a distributed communication strategy. The Py-
Torch distributed communication package uses a synchronous
decentralized strategy, so the model is communicated to each
worker and gradients are sent between workers with an all-reduce
scheme [LZV+20]. It has some machine learning specific features
to reduce the communication time, including performing both
computation and communication concurrently as layer gradients
become available [LZV+20, Sec. 3.2.3].

The software library dask-pytorch-ddp14 allows use of the
PyTorch decentralized communications [LZV+20] with Dask
clusters, and is a thin wrapper around PyTorch’s distributed
communication package. Future work will likely involve ensuring
training can efficiently use a variable number of workers.

14. https://github.com/saturncloud/dask-pytorch-ddp

Maximum
batch size

Centralized Decentralized
(moderate)

Decentralized
(high)

5.1k (*2) 69.9 45.1 43.5
3.2k 107.2 67.7 65.5
16k 107.5 67.7 65.7
640 116.9 73.6 71.8
128 200.2 121.7 121.5

TABLE 2: Simulations that indicate how the training time (in minutes)
will change under different architectures and networks. The "central-
ized" architecture is the currently implemented architecture, and has
the same numbers as "training time" in Table 4.

Simulations

We have simulated the expected gain from the work of enabling
decentralized communication with two networks that use a decen-
tralized all-reduce strategy:

• decentralized-medium It assumes an a network
with inter-worker bandwidth of 54Gb/s and a latency of
0.05µs.

• centralized uses a centralized communication strat-
egy (as implemented) and the same network as
decentralized-medium.

• decentralized-high has the same network as
decentralized-medium but has an inter-worker
bandwidth of 800Gb/s and a latency of 0.025µs.

To provide baseline performance, we also show the results
with the current implementation:

• centralized uses the same network as
decentralized-medium but with the centralized
communication scheme that is currently implemented.

decentralized-medium is most applicable for clusters
that have decent bandwidth between nodes. It’s also applicable
to for certain cases when Amazon EC2 is used with one GPU
per worker,15 or workers have a very moderate Infiniband setup.16

decentralized-high is a simulation of the network used by
the PyTorch developers to illustrate their distributed communica-
tion [LZV+20]. We have run simulations to illustrate the effects
of these networks. Of course, changing the underlying networks
does not affect the number of epochs or model updates, so Figures
3 and 4 also apply here.

A summary of how different networks affect training time
is shown in Table 2. We show the training time for a par-
ticular network (decentralized-moderate) in Figure 6;
decentralized-high shows similar performance as illus-
trated in Table 2. A visualization of 2 is shown in Figure 5.
This shows how network quality affects the performance of dif-
ferent optimization methods in Figure 6. Clearly, the optimization
method (and the maximum number of workers) is more important
than the network.

Finally, let’s show how the number of Dask workers affects
the time required to complete a single epoch with a constant

15. 50Gb/s and 25Gb/s networks can be obtained with g4dn.8xlarge
and g4dn.xlarge instances respectively. g4dn.xlarge machines have 1
GPU each and are the least expensive for a fixed number of FLOPs on the
GPU.

16. A 2011 Infiniband setup with 4 links (https://en.wikipedia.org/wiki/
InfiniBand#Performance)
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Fig. 5: A single point represents one run in Figure 6. The point with
about 80k model updates represents a single worker, so there’s no
overhead in this decentralized simulation. Different network qualities
are shown with different colors, and the "ideal" line is as if every
model update is agnostic to batch size.

batch size. This simulation will use the decentralized-high
network and has the advantage of removing any overhead. The
results in Figure 7 show that the speedups start saturating around
128 examples/worker for the model used with a batch size of
512. Larger batch sizes will likely mirror this performance –
computation is bottleneck with this model/dataset/hardware.

Fig. 6: The training time required for different optimizers under the
decentralized-moderate network.

Fig. 7: The median time to complete a pass through the training set
with a batch size of 512. As expected, the speedups diminish when
there is little computation and much communication (say with 32
examples per worker).

Conclusion

In this work, we have provided a package to train PyTorch ML
models with Dask cluster. This package reduces the amount
of time required to train a model with the current centralized
setup. However, it can be further accelerated by integration with
PyTorch’s distributed communication package as illustrated by
extensive simulations. For a particular model, only 45 minutes
is required for training – an improvement over the 120 minutes
required with standard SGD.
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APPENDIX

Fig. 8: The training time required for different optimizers under the
decentralized-moderate network.

Fig. 9: The training time required for different optimizers under the
decentralized-high network.

Fig. 10: The training time required for different optimizers under the
centralized network.
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Multithreaded parallel Python through OpenMP
support in Numba

Todd Anderson‡†, Tim Mattson‡∗

F

Abstract—A modern CPU delivers performance through parallelism. A program
that exploits the performance available from a CPU must run in parallel on
multiple cores. This is usually best done through multithreading. Threads belong
to a process and share the memory associated with that process. The most
popular approach for writing multithreaded code is to use directives to tell the
compiler how to convert code into multithreaded code. The most commonly
used directive-based API for writing multithreaded code is OpenMP. Python is
not designed for parallel programming with threads. The GlobalInterpreterLock
(GIL) prevents multiple threads from simultaneously accessing Python objects.
This effectively prevents data races and makes Python naturally thread safe.
Consequently, the GIL prevents parallel programming with multiple threads and
therefore keeps Python from accessing the full performance from a CPU. In this
paper, we describe a solution to this problem. We implement OpenMP in Python
so programmers can easily annotate their code and then let the Numba just-
in-time (JIT) compiler generate multithreaded, OpenMP code in LLVM, thereby
bypassing the GIL. We describe this new multithreading system for Python and
and show that the performance in our early tests is on par with the analogous C
code.

Index Terms—OpenMP, Python, Numba

Introduction

Python emphasizes productivity over performance. Given the
growth of Python and the fact it is by some measures the most
popular programming language in the world [PyP21] , this focus
on productivity has turned out to be the right choice at the right
time.

Performance from Python code, however, has suffered. The
recent paper about software performance ("There’s plenty of room
at the top..." [Lei20] ) used a simple triply nested loop for a matrix
multiply routine and found that the Python code delivered results
that, when rounded to the correct number of significant digits,
were zero percent of the available peak performance from the
chip.

A common attitude in the high performance computing com-
munity is that Python is for developing new algorithms or manag-
ing workflows built up from external, high performance modules
written in low level languages. If the performance is not good
enough from Python, then the code is reimplemented in a low-level
language such as C. Why sacrifice productivity for performance if

† These authors contributed equally.
‡ Intel Corp.
* Corresponding author: timothy.g.mattson@intel.com

Copyright © 2021 Todd Anderson et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

programmers who need high performance will rewrite their code
in C anyway?

In our line of research, we are developing technologies that let
programmers stay in Python. Some of our prior work in this area is
ParallelAccelerator in Numba (i.e., the parallel=True option to the
Numba JIT decorator) ( [Lam15] [And17] [NPar] ) In this work,
common patterns in code are exploited to expose concurrency in
the code which is then executed in parallel. The parallelism is
implicit in the patterns of code written by a programmer aware of
these tools. Implicit parallelism is powerful but there are too many
cases where it can not find sufficient concurrency to support the
levels of parallelism needed to fully occupy the cores on a modern
CPU.

Another approach is to embed parallelism inside the functions
from modules such as NumPy. This is an effective way to exploit
the parallel resources of a system. However, there are two well
known limitations to this approach. First, if the parallelism is
constrained to the body of a function, there is startup overhead
in launching the parallel threads and shutting them down for
each function call. This overhead may be small, but they add up
since they occur each time a function is called. This increases
the fraction of a program execution time that is not reduced as
parallel resources are added (the "serial fraction") and limits the
maximum possible speedup (which is restricted by Amdahl’s law
to one over the serial fraction). Second, limiting parallelism to
the bodies of parallelized functions misses the opportunity for
additional parallelism that comes from running those functions in
parallel. A great deal of available parallelism is missed if such
cross-function parallelism is not exploited.

Taken together, we believe these limitations to parallelism
strongly suggest that a well-rounded Python tool chain needs to
include explicit parallelism. With our focus on programming the
cores in a CPU, this translates into utilizing multiple threads in
parallel from python code. The problem is that the GlobalInter-
preterLock (GIL) prevents multiple threads from simultaneously
accessing Python objects. The GIL helps programmers write
correct code. It reduces the chances that a program would produce
different results based on how threads are scheduled (a "race
condition"). It means that loads and stores from memory are
unlikely to conflict and create a "data race". There were very good
reasons for including the GIL in Python. It has the effect, however,
of preventing parallel programming with multiple threads and
therefore keeps Python from accessing the full performance from
a CPU.

Multithreading for performance has been a foundational tech-
nology for writing applications in high performance computing
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for over four decades. Its use grew rapidly in 1997 with the
introduction of OpenMP [deS18] . This API worked with C, C++
and Fortran compilers so a programmer could direct the compiler
to generate multithreaded code through a sequence of directives.
The power of OpenMP is that a programmer can add parallelism
to a serial program incrementally, evolving a program step by step
into a parallel program.

In this paper, we introduce PyOMP: a research prototype sys-
tem with support for OpenMP directives in Python. PyOMP uses
the Python with statement to expose the directives in OpenMP.
These with statements are interpreted by our custom Numba JIT
and combined with a backend that connects these constructs to
analogous entry points in the generated LLVM code. This LLVM
code is then compiled using the Intel LLVM system, which
includes support for the full range of OpenMP constructs. For
this early research prototype, we restrict ourselves to a subset of
OpenMP known as the OpenMP Common Core [Mat19] . We
describe the subset of OpenMP supported from Python including
the most common design patterns used by OpenMP programmers.
We then discuss details of how we worked with Numba to imple-
ment this tool. Finally, we include some preliminary benchmark
numbers and then close with a description of our future plans for
PyOMP.

We want to be clear about what this paper is not. It is
not a review of alternative approaches for parallel programming
in Python. It is not a benchmarking paper where we compare
major approaches for parallel programming in Python. We hope
to write those papers in the future, but that is work-in-progress.
Furthermore, we take benchmarking very seriously. We will not
publish benchmarks that have not been fully optimized, reviewed
for correctness by the authors of the alternative systems we are
comparing against, and address patterns application developers
actually use. A good benchmarking paper is a major undertaking,
which we fully intend to do. For now, however, we just want to
introduce this new form of parallel programming in Python; to
gauge interest and find fellow-travelers to join us as we turn this
research prototype system into a robust technology for the general
Python programming community.

PyOMP: Python and OpenMP

OpenMP is a standard API that defines a set of compiler directives
that can be used with C, C++ and Fortran to help applications
programmers write multithreaded code. First released in 1997, it
continues to be the most common way programmers in the high
performance computing community write multithreaded code.

The standard has grown in size and complexity as it has
evolved from version 1.0 to the current release (version 5.1).
Important new features have been added over the years including
support for programming GPUs and detailed controls over how a
computation is mapped onto many cores in a nonuniform address
space. Most OpenMP programmers, however, restrict themselves
to a subset of the OpenMP 3.0 specification released in 2008. This
subset of the 21 most commonly used elements of OpenMP is
called the "OpenMP Common Core" [Mat19] .

PyOMP is a research prototype system implementing OpenMP
in Python. In PyOMP, we cover 90% of the common core. These
are are summarized in table I. PyOMP is tied to the Numba JIT
(Just-In-Time) compilation system. Any function using PyOMP
must be JIT’ed with Numba. The contents of PyOMP are provided
as a module included with Numba. The Numba compiler works

with NumPy arrays which must be used for any arrays inside a
PyOMP function.

The essence of OpenMP is the well-known fork-join paral-
lelism foundational to most multithreaded programming models.
A program begins as a serial thread. At some point, a compute
intensive block of work is encountered. If this can be broken down
into a set of tasks that can run at the same time AND unordered
with respect to each other (in other words, they are concurrent),
a team of threads is forked to do this work in parallel. When the
threads are done, they join together and the original serial thread
continues.

In essence, an OpenMP program is a sequence of serial and
parallel executions. The API is expressed in terms of directives to
the compiler which handles the tedious work of packaging code
into functions for the threads, managing threads, and synchroniz-
ing the threads to maintain a consistent view of memory. The
programming style is one of incremental parallelism so a program
evolves in phases from a serial program into a parallel program.

Obviously, a detailed course on OpenMP is well beyond the
scope of this paper. Instead, we present the three core design
patterns used in OpenMP. These are SPMD (Single Program
Multiple Data), Loop Level Parallelism, and Divide and Conquer
with tasks. We will describe each of these patterns in turn and
in doing so describe the key elements of PyOMP. We will apply
these patterns to a single problem; the numerical integration of
4/(1+x^2) from zero to one. If the program is correct, the result of
this definite integral should be an approximation of pi.

The SPMD Pattern

A classic use of the SPMD pattern is shown in figure
1. In an SPMD pattern, you create a team of threads
and then, using the rank of a thread (a number ranging
from zero to the number of threads minus one) and
the number of threads, explicitly control how work is
divided between the threads. Threads are created with
the parallel construct expressed in PyOMP using the
with context statement. We see this in line 14-15. The
identifier openmp indicates this is an element of PyOMP
and parallel indicates that the compiler should fork a
team of threads. These threads come into "existence"
at that point in the program and they each redundantly
execute the work in the code associated with the with
statement. This code is called a structured block in
OpenMP and is outlined into a function that will be
passed to each thread in the team. OpenMP requires that
a structured block has one point of entry at the top and
one point of exit at the bottom (the only exception being
a statement that shuts down the entire program).

As with multithreaded programming environments in general,
OpenMP is a shared memory API. The threads "belong" to a
single process and they all share the heap associated with the
process. Variables visible outside a parallel construct are by default
shared inside the construct. Variables created inside a construct
are by default private to the construct (i.e., there is a copy of
the variable for each thread in the team). It is good form in
OpenMP programming to make the status of variables explicit
in an OpenMP construct which we do with the shared and private
clauses in lines 14 and 15 in figure 1.

In an SPMD program, you need to find the rank (or thread
number) and number of threads. We do this with OpenMP runtime
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Fig. 1: A program using the SPMD pattern to numerically approxi-
mate a definite integral that should equal pi

functions in lines 16 and 18. The rank of a thread, threadID, is
private since each thread needs its own value for its ID. All threads
in a single team, however, see the same value for the number of
threads (numThrds) so this is a shared variable. In multithreaded
programming, it is a data race if multiple threads write to the
same variable; even if the value being written is the same for each
thread. So we must assure that only one thread sets the value for
the number of threads. This is done with the single construct on
line 17.

The extent of the parallel algorithm is the for-loop starting at
line 22. Each thread starts with a loop iteration (i) equal to its rank,
which is incremented by the number of threads. The result is loop
iterations dealt out as if from a deck of cards. This commonly used
technique is called a "cyclic distribution of loop iterations". This
loop is summing values of the integrand which we accumulate into
a private variable for each thread. Since we need to later combine
these local sums to get the final answer (on line 27), we store the
local sum into a shared array (partialSums) on line 25.

The parallel region ends at line 25 at which point the team of
threads join back together and the single original thread continues.
We time the block of code with calls to the OpenMP runtime
function omp_get_wtime() (lines 13 and 28) which returns the
elapsed time since a fixed point in the past. Hence, differences in
time values returned from omp_get_wtime() provides the elapsed
time for execution of a block of code. We show runtimes for this
SPMD program in figure 2 and compare to the same algorithm
implemented in C. The runtimes are comparable. This supports our
assertion that once the path for execution passes from the Python
interpreter to machine code via Numba and LLVM, performance
should match that from lower-level programming languages pass-

Fig. 2: Programs to approximate a definite integral whose value
equals pi using the SPMD, loop level, and divide-and-conquer/task
pattern. Runtimes in seconds for PyOMP and analogous C programs.
Programs were run on an Intel(R) Xeon(R) E5-2699 v3 CPU with 18
cores running at 2.30 GHz. For the C programs we used the Intel(R)
icc compiler version 19.1.3.304 as "icc -qnextgen -O3 -fiopenmp".

ing through the same LLVM/runtime infrastructure.

Loop Level Parallelism

The Loop Level Parallelism pattern is where most people start
with OpenMP. This is shown in figure 2. The code is almost
identical to the serial version of the program. Other than the import
and timing statements, parallelism is introduced through a single
with statement to express the parallel for construct. This construct
creates a team of threads and then distributes the iterations of the
loop among the threads. To accumulate the summation across loop
iterations, we include the reduction clause. This clause defines
reduction with the + operator over the variable sum. A copy of
this variable is created for each thread in the team. It is initialized
to the identity for the operator (which in this case is zero). At
the end of the loop, all the threads wait for the other threads
(a synchronization operation called a barrier). Before exiting the
barrier, the local copies of sum are combined into a single value,
that value is combined with the value of sum from before the
parallel loop construct, and the threads join so only the single,
original thread continues.

This program uses the default number of threads established
outside the code of the program. This is set using an environment
variable, OMP_NUM_THREADS; hence, we run our program
pi_loop with the command line:

OMP_NUM_THREADS=16 python pi_loop.py
The results for this pattern are shown as the second column in

figure 2. Once again, the performance is similar to that achieved
with the C version of the program.

Tasks and Divide and Conquer

Our final pattern is more complex than the other two. This
important pattern is heavily used by more advanced parallel
programmers. A wide range of problems including optimization
problems, spectral methods, and cache oblivious algorithms use
the Divide and Conquer pattern. The general idea is to define
three basic phases of the algorithm: split, compute, and merge.
The split phase recursively divides a problem into smaller sub-
problems. After enough splits, the subproblems are small enough
to directly compute in the compute phase. The final phase merges
subproblems together to produce the final answer.

A Divide and Conquer solution to our pi problem is shown in
figure 3. We start by creating a team of threads on line 37. We
use the single construct to select one thread to start the algorithm
with a call to our recursive function piComp(). With the single
construct, one thread does the computation within the construct
while the other threads wait at the end of the single construct (a
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Fig. 3: A program using the Loop Level Parallelism pattern to
numerically approximate a definite integral that should equal pi

Fig. 4: A program using the Divide and Conquer pattern with tasks
to numerically approximate a definite integral that should equal pi.

so-called implied barrier). While those threads wait at the barrier,
they are available for other computation on behalf of the program.

Inside the piComp() function, we test if the problem size is
small enough for direct computation (is it smaller than a minimum
block size) on line 13. If it is, we just compute the numerical
integration for that block of loop iterations (lines14 to 17) and
return the partial sum (line 30). If an instance of the function,
piComp(), has a block of iterations greater than MIN_BLK, we
enter the split phase of the algorithm. The split occurs in lines
19 to 25 using the task construct. This construct takes the code
associated with the construct (in this case, a single line) and
outlines it with its data environment to define a task. This task
is placed in a queue for other threads in the team to execute. In
this case, that would be the threads waiting at the barrier defined
with the single construct on line 38.

As tasks complete, we enter the merge phase of the algorithm.
This occurs at lines 27 and 28. The task that launches a pair of
tasks must wait until its "child tasks" complete. Once they do, it
takes the results (the shared variables sum1 and sum2), combines
them, and returns the result. The results are summarized in figure
2. Even though the code is more complex than for the other two
patterns, the runtimes for this simple problem are comparable to
the other patterns for both Python and C.

Numba and the implementation of PyOMP

Numba is a Just In Time (JIT) compiler that translates Python
functions into native code optimized for a particular target. The
Numba JIT compiles PyOMP to native code in 4 basic phases.

• Untyped phase: Numba converts Python bytecode into
its own intermediate representation (IR), including "with"
contexts that are OpenMP-represented in the IR as "with"
node types, and performs various optimizations on the IR.
Later, Numba removes these "with" nodes by translating
them to other node types in the IR. For our PyOmp
implementation, we added a new OpenMP node type into
the IR, and we convert OpenMP with contexts into these
new OpenMP IR nodes.

• Type inference phase: Numba performs type inference on
the IR starting from the known argument types to the
function and then performs additional optimizations. No
changes were made to the Numba typed compilation phase
to support OpenMP.

• IR conversion phase: Numba converts its own IR into
LLVM IR.

• Compilation phase: Numba uses LLVM to compile the
LLVM IR into machine code and dynamically loads the
result into the running application.

For PyOmp, we replaced the mainline LLVM normally used
by Numba with the custom LLVM used within the Intel compiler,
icx. This custom icx LLVM supports the bulk of OpenMP through
two special function calls to demarcate the beginning and end
of OpenMP regions (we will refer to these as OpenMP_start and
OpenMP_end respectively) and LLVM tags on those function calls
are used to apply the equivalent of OpenMP directives/clauses to
those regions. Our PyOMP prototype passes the equivalent of the
"-fiopenmp" icx compiler option to the icx LLVM which causes it
to convert the demarcated OpenMP regions into OpenMP runtime
function calls. The Intel OpenMP runtime is thus also needed
and loaded into the process by the PyOMP prototype OpenMP
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Fig. 5: Summary of the elements of OpenMP included in PyOMP. This includes constructs (using the Python with statement), clauses that
modify constructs, functions from the OpenMP runtime library, and a single environment variable. These elements include 19 of the elements
in the OpenMP Common core (missing only nowait and the dynamic schedule).

system. In PyOMP during the third phase, we convert the Numba
OpenMP IR nodes to these two special function calls along with
the corresponding LLVM tags. Additional details are described
later.

OpenMP includes a number of runtime functions to in-
teract with the system as a program runs. This is used to
manage the number of threads, discover thread IDs, measure
elapsed time, and other operations that can only occur as a
program executes. For these functions, our prototype using CFFI
to make those functions from the OpenMP runtime accessible
from Python. The importing of some of these functions such as
omp_get_num_threads, omp_get_thread_num, omp_get_wtime,
and omp_set_num_threads can be seen, for example, in the initial
"from numba.openmp import" ... lines at the beginning of the code
example in figure 1.

Converting PyOMP with clauses to Numba IR

When removing OpenMP with contexts and replacing them with
OpenMP IR nodes, Numba provides basic block information to
demarcate the region that the with context covers. PyOMP places
one OpenMP IR node at the beginning of this region and one at
the end with a reference from the end node back to the start node
to associate the two. To determine what to store in the OpenMP
IR node, PyOMP first parses the string passed to the OpenMP
with context to create a parse tree. Then, we perform a postorder
traversal of the parse tree, accumulating the information as we go
up the tree until we reach a node that has a direct OpenMP LLVM
tag equivalent. At this point, we convert the information from the
sub-tree into tag form and then subsequently pass that tag up the
parse tree. These tags are accumulated as lists of tags up the parse
tree until the traversal reaches a top-level OpenMP construct or
directive, which have their own tags. Some of these directives
are simple and require no additional processing whereas others,
particularly those that support data clauses, require additional
clauses to be added to the Numba OpenMP node that are not
necessarily explicitly present in the programmer’s OpenMP string.

For example, all variables used within the parallel, for and parallel
for directives must be present as an LLVM tag even if they are
not explicitly mentioned in the programmer’s OpenMP statement.
Therefore, for these directives our PyOmp prototype performs a
use-def analysis of the variables used within the OpenMP region
to determine if they are also used before or after the OpenMP
region. If they are used exclusively within the OpenMP region
then their default data clause is private. In all other cases, the
default data clause is shared but of course these defaults can be
overridden by explicit data clauses in the programmer OpenMP
string. For looping constructs, icx LLVM only supports loops in
a certain canonical form that differs from the standard Numba IR
loop form. For this purpose, our prototype transforms the Numba
IR loop structure to match the icx LLVM loop structure.

Converting PyOMP Numba IR to LLVM

When a Numba OpenMP IR node is encountered in the process of
converting Numba IR to LLVM IR, that node is converted to an
LLVM OpenMP_start (or OpenMP_end) call. Inside the Numba
OpenMP node is a list of the clauses that apply to this OpenMP
region and we perform a 1-to-1 conversion of that list of clauses
into a list of LLVM tags on the LLVM OpenMP_start call. We
emit code that captures the result of the LLVM OpenMP_start call
and we pass that result as a parameter to the OpenMP_end, which
allows LLVM to match the beginning and end of OpenMP regions.

In the process of converting Numba OpenMP IR nodes and the
intervening OpenMP regions to LLVM, we disable certain Numba
functionality. Numba unifies the handling of exceptions and return
values by adding an additional hidden parameter to functions it
compiles that indicates whether the function has returned normally
with a given return value or is propagating an exception. After a
call site, Numba inserts code into a caller to check if the callee
function is propagating an exception by inspecting the callee’s
hidden parameter. If there is an exception, the caller places that
exception in its own hidden parameter and returns. However, this
approach of using returns for exceptions breaks the icx LLVM
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requirement that OpenMP regions be single-entry and single-exit.
Likewise, exceptions generated from within the caller, such as
divide-by-zero, also fill in the exception information in the hidden
parameter and immediately return, again breaking the single-
entry/exit requirement. It is not currently possible to explicitly
catch such exceptions in PyOMP Numba regions because the
Numba exception catching mechanism also generates control flow
that violates single-exit. As such, in our PyOMP prototype, inside
OpenMP regions, exception handling is currently elided.

The Numba process of converting Numba IR to LLVM IR
introduces many temporary variables into the LLVM IR that are
not present in the Numba IR. Thus, these variables are not visible
in the untyped phase in which the data clauses for all variables
accessed in OpenMP regions are determined. Such temporaries
used solely within an OpenMP region should be classified as
private in the tags associated with the surrounding OpenMP
region’s OpenMP_start demarcation function call. In PyOMP, we
implemented a callback in the Numba function that creates these
LLVM temporary variables such that we can learn of the existence
of these new variables and to add them as private to the previously
emitted tags of the surrounding OpenMP region.

Finally, certain OpenMP directives such as single and critical,
require the use of memory fences with acquire, release, or ac-
quire/release memory orders. Our prototype knows which direc-
tives require which kind of fences and we store that information
in the Numba OpenMP IR node as those are created during the
untyped phase. During conversion of those OpenMP IR nodes
to LLVM, if the node require memory fences then we insert the
equivalent LLVM fence instructions into the LLVM IR.

Results

The key result of this paper is that PyOMP works. As we saw
in figure 2, we achieved reasonable speedups for the three key
patterns that dominate OpenMP programming where by the word
"reasonable" we mean "achieving performance similar to that from
C". The pi programs, however, are "toy programs". They are useful
pedagogically but are far removed from actual applications.

One step above a "toy program" is dense matrix multiplication.
While this is a simple program lacking in the inevitable complex-
ities faced by real applications, dense matrix multiplication uses a
familiar loop-nest and data access patterns found in real applica-
tions. It has the further advantage that dense matrix multiplication
over double precision values (DGEMM) is compiler-friendly. If a
compilation tool-chain is going to work well, DGEMM is where
this would be most apparent.

Our DGEMM code comes from the Parallel Research Kernels
(PRK) [VdW14] version 2.17. All code is available from the
PRK repository [PRK]. The PyOMP code is summarized in figure
6. The Numba JIT was done with the ’fastmath’ option. This
resulted in a 20% performance improvement. Numba and therefore
PyOMP requires that any arrays use NumPy. They are allocated
and initialized on lines 10 to 12 and then assigned values on lines
16 to 18 such that the matrix product is known and available
for testing to verify correctness. The multiplication itself occurs
on lines 21 to 25. The ikj loop order is used since it leads to
a more cache-friendly memory access pattern. The elapsed time
is found (dgemmTime) and reported as GF/s (billions of floating
point operations per second or GFLOPS).

We compare performance from PyOMP to the analogous
program written with C/OpenMP, NumPy arrays with the ikj loop-
nest, and a call to the matrix multiplication function included with

Fig. 6: A PyOMP program to multiply two matrices.

NumPy. Code fragments for these cases are shown in figure 7. The
C DGEMM program was compiled with the Intel(R) icc compiler
version 19.1.3.304. The compiler command line was:

icc -std=c11 -pthread -O3 -xHOST -qopenmp

We ran all computations on an an Intel(R) Xeon(R) E5-2699 v3
CPU CPU with 18 cores running at 2.30 GHz. For the multi-
threaded programs with OpenMP we forced the threads to map
onto specific cores with one thread per core using the following
pair of environment variables:

export OMP_PLACES="{0},{1},{2},{3},{4}"
export OMP_PROC_BIND=close

where the numbers in OMP_PLACES continued up to the number
of threads used in the computation. When combined with the
processor binding term (close) this connected the OpenMP thread
ID with the core ID (e.g., OpenMP thread ID 0 ran on core 0).
This way, we knew that the C and Python OpenMP programs
used precisely the same cores and had the same relationship to the
memory controllers on the chip.

We choose a matrix order large enough to create sufficient
work to overcome memory movement and thread overhead. These
matrices were too large for the computation to complete on
our system for matrices represented through Python lists. Using
NumPy arrays with triply nested loops in i,k,j order, the com-
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Fig. 7: We compare our PyOMP program to three other cases: C with
OpenMP, serial code using the NumPy arrays, and the ’matmul()’
built in function for matrix multiplication. All programs use the same
matrices, tests for correctness, and performance metrics (shown in
figure 6), hence that code is not reproduced here.

Fig. 8: The PyOMP and the C are comparable with the C results
consistently around 2.8 percent faster than the results from PyOMP.
We performed a Welch’s T-test for the two sets of data. The test showed
that while the difference between the PyOMP and C cases are small,
they are statistically significant to the 99% confidence level.

putation ran at 0.00199 GFLOPS. For our scalability studies, all
runs were repeated 250 times. Averages and standard deviations
in GFLOPS are reported. Results are shown in figure 8. For the
PyOMP results, we do not include the JIT times. These were only
done once per run (i.e. not once per iteration) and took on the
order of two seconds.

Parallel Research Kernel DGEMM gigaFLOPS per second
for order 1000 matrices. Results are the average and standard
deviation of 250 runs for execution on an Intel(R) Xeon(R) E5-
2699 v3 CPU with 18 cores running at 2.30 GHz. The python
results do not include the time to JIT compile the python code.
This one-time cost was observed to add around 2 seconds to the
runtime.

If we use NumPy and call the matrix multiplication func-
tion provided with NumPy (line 22 in figure 7, the order 1000
DGEMM ran at 11.29 +/- 0.58 GFLOPS with one thread (using the
matmul() function from NumPy). This high performance serves to
emphasize that while DGEMM is a useful benchmark to compare
different approaches to writing code, if you ever need to multiply
matrices in a real application, you should use code in a library
produced by performance optimization experts.

Discussion

In the paper "There’s plenty of room at the top..." [Lei20], much
was made of the low performance available from code written

in Python. They motivated their discussion using DGEMM. The
implication was that when you care about performance, rewrite
your code in C. We understand that sentiment and often use that
strategy ourselves. Our goal, however, is to meet programmers "on
their turf" and let them "stay with Python".

One of the key challenges to the "stay with Python" goal is
multithreading. Because of the GIL, if you want multithreaded
code to execute in parallel, you can’t use Python. In this paper, we
have addressed this issue by using Numba to map onto LLVM and
the OpenMP hooks contained therein. This resulted in our Python
OpenMP system called PyOMP.

The performance from PyOMP was within a few percent
of performance from OpenMP code written in C. Performance
differences were statistically significant, but we believe not large
enough to justify rewriting code in C. This holds for a subset of
OpenMP supported in PyOMP (known as the "Common Core"
[Mat19]) and for the three fundamental design patterns used by
OpenMP programmers.

PyOMP is a research prototype system. It is a proof-of-
concept system we created to validate that Numba together
with LLVM could enable multithreaded programming in Python
through OpenMP. A great deal of work is needed to move from
a research prototype to a production-ready tool for application
programmers.

• We need to develop a formal test suite. We currently have
a test suite that covers each PyOMP OpenMP construct
in isolation. In those tests, we use a very limited subset
(e.g., ints, floats, NumPy arrays, prints, assignments) of
the Python features supported by Numba [Numba]. We
need a test suite that covers the combinations of OpenMP
constructs encountered in real OpenMP applications with
the full set of data types and Python features supported
by Numba. In this process, we will note Numba features
incompatible with OpenMP (such as ParallelAccelerator
[And17]); fixing the cases we can fix and documenting
those we can’t.

• We need to work out the details for how we will distribute
this code. We used the Intel production LLVM-based
compiler which ties PyOMP to Intel proprietary tools. We
need to investigate whether the OpenMP support in the
Intel open source release of LLVM is sufficient to support
PyOMP.

• Currently, exception handling in PyOMP is disabled due
to the interaction of how Numba manages exceptions
with how LLVM manages execution of structured blocks
in OpenMP. We are investigating ways to address this
problem, but don’t have a solution at this time.

• We currently disable the Numba static single assignment
mode (SSA). In this mode, Numba creates variants of
variables. Those names are difficult to track relative to the
data environment of OpenMP. We believe we can account
for these variants in PyOMP, but we have not done so yet.

In additions to refinement to PyOMP itself, we need to conduct
a formal benchmarking effort with benchmarks that exercise the
system in the way real applications would. In this effort we also
need to compare to the performance of other systems for parallel
programming for a CPU with Python. In particular, we want
to understand the performance tradeoffs between PyOMP, Dask,
MPI4Py, and implicit parallelism through Numba’s ParallelAccel-
erator.
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Abstract—In this paper a Time of Flight (ToF) camera specific data processing
pipeline is presented, followed by real life applications using artificial intelligence.
These applications include use cases such as gesture recognition, movement
direction estimation or physical exercises monitoring. The whole pipeline for
the body pose estimation is described in details, starting from generating and
training phases to the pose estimation and deployment. The final deployment
targets were Nvidia Xavier NX and AGX platforms receiving data from an Analog
Devices ToF camera.

Index Terms—transfer learning, ToF, python

Introduction

In recent years the evolution of deep neural networks has affected
the way in which Time of Flight (ToF) images are processed.
Images from ToF cameras are usually obtained as synchronized
depth and infrared (IR) image pairs. The customization of the
existing deep nets to the IR and depth images allows us to reuse
the existing models and techniques from this emerging domain.
The applications targeted are ranging from person detection,
counting, activity analysis to volumetric measurements, mapping
and navigation with mobile agents. In the following parts the
introduction to the specific ToF imaging, custom data processing
and CNN based solutions are presented [TC21]. Although for the
2D data a bunch of CNN based solutions exists, for the 3D data
[GZWY20] only some base architectures were widespread such as
Pointnet [QSMG17], while for the calibration between different
sensing modalities can be done in an efficient way according to
[FTK19].

ToF specific imaging

The 2D image processing part is a customized IR image module
based on transfer learning for bounding box estimation, skeleton
extraction and hardware specific model translation. The latter is
relevant in order to have a light-weight embedded solution running
on limited floating-point precision hardware platforms such as
Jetson Nvidia Family. As the existing CNN models are mainly
with the focus on colour images, thus ones has to adopt transfer
learning as a method to finetune the existing CNN models such as
VGG, MobileNet for the infrared or depth images specific to ToF
cameras. This solution seemed to be effective in terms of precision
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Fig. 1: Exemplification of ToF camera

and runtime on embedded devices (e.g Jetson NX or AGX). For
the skeleton detection part we relied on the real-time Tensorflow
optimized module for the Jetson product family, however for the
generic GPU enabled devices we had to tailor our models since
these are custom solutions.

Custom pipeline for ToF data

The main role of the depth image preprocessing part is the filtering
and bounding box estimation for the 3D ROI. The filtering is
essential for the embedded device in order to reduce the com-
putational overload. For the filtering pipeline we considered three
interconnected filters: voxel, pass-through and outlier filter as this
is visible in Figure 2. All these implementations are open source
library based variants. The details of the filtering were reported in
[TC21].

Low level ToF image pre-processing - ToFNest

In ToFNest we are approximating surface normals from depth
images, recorded with Time-of-Flight cameras. The approximation
is done using a neural network. The base of our neural network is
the PyTorch library, since the whole process is done using Python
3.6 as our programming language. Using PyTorch we have created
a Feature Pyramid Network type model ([LDG+17]).

The main pipeline of the data was the following: first we read
the depth images with OpenCV (alongside the depth information
we could also use the infrared information or the rgb information
from the camera as well, thus adding more information to work
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Fig. 2: Processing pipeline for ToF camera

Fig. 3: Exemplification of ToF normal estimation

with), then we prepare them with numpy. From a numpy array
it is easy to convert it to a torch tensor on the GPU, which then
creates the predictions about the surface normals. An example of
the prediction can be seen in Figure 3, where the direction of the
normal vectors are decoded with RGB images.

The following code represents the loss:
pred=pred*2-1
gt=gt*2-1
inner_product = (pred * gt).sum(dim=1).unsqueeze(1)
cos = inner_product / 2
angle = torch.acos(cos)
if not args.orient_normals:

angle[angle>1.57]=3.14-angle[angle>1.57]
loss = torch.mean(angle)
return loss

The results were accurate relative to other techniques, but the time
was much less. The time being less means that at least 100 times
faster. This can be due to the fact, that this method works with
images, instead of point clouds as other methods do. This makes
it much faster, as this was reported in [MKT21].

Our method was evaluated by verifying only the angles be-
tween the lines, not the exact directions of the vectors (this was
the case in the other methods as well), but we can train that,
although the results are going to get worse.

Furthermore, in order to get a real-time visualization about the
predictions, we used rospy to read the images from ROS topics,
and also to publish the normal estimation values to another ROS
topic, that we could visualize using Rviz. This can be seen in the
demo video.

Low level ToF image pre-processing - ToFSmooth

This whole pipeline and network, with some minor modifications
can be also used to smoothen the depth image, thus making the
point cloud smoother as well.

For the dataset we added gaussian noise of 5 and 10 cm
to the original data, while we smoothed the original data with
PointCloudDenoising ([PFVM20]) method.

Our method got pretty close to the ground truth value, in most
of the cases. Although, in the case of the original (originally

Fig. 4: The average error for the original data

Fig. 5: The average error for data with 5 cm gaussian noise

fairly smooth) data resulted slightly worse results, then some
other methods (for instance the PointCloud Library [RC11]), when
we tested the smoothing for much more noisy data, our results
barely changed, while other methods were highly compromised.
A comparison between these cases can be seen in the next image
3 images:

Here we can see that our method kept very much the same

Fig. 6: The average error for data with 10 cm gaussian noise
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Fig. 7: DetectNet structure for training

throughout all the cases same as DeepDepthDenoising method
([SSC+19]), which is the only other method that we have found,
that works with depth images as well, making it about the same as
ours, but a little bit more polished. Also this method performs at
the same speed as ours.

The jump in the error at the end of the scale is due to some
denormalization bias that we need to fine-tune.

CNN based solutions

In this part we describe in details the person detection, action
recognition and volumetric estimation applications.

Person detection from IR imaging

DetectNet is a detection algorithm based on the jetson-inference
repository with people detection focus presented in [LLW+16]
or [XLCH16]. This repository uses NVIDIA TensorRT for effi-
cient implementation of neural networks on the Jetson platform,
improving performance and energy efficiency through graphical
optimizations, kernel fusion and FP16/INT8 accuracy.

Object detection requires a lot of information for training.
DetectNet uses a large dataset, and each image contains multiple
objects. For each object in the image, the trained model must
detect both the object and the corner coordinates of the bounding
box. Since the number of objects can vary in the training image
set, it would be difficult to define the loss function if we choose the
label format with variable length and dimensionality. This problem
has been solved by introducing a 3-dimensional label format that
enables DetectNet to ingest images of any size with a variable
number of objects present.

In the Figure 7 you can see the architecture for the training
process, which is based on 3 important steps:

• data layers ingest the training images and labels
• a fully-convolutional network (FCN) performs feature ex-

traction and prediction of object classes and bounding
boxes per grid square

• loss functions simultaneously measure the error in the
two tasks of predicting the object coverage and object
bounding box corners per grid square

In the final layers of DetectNet the openCV groupRectangles
algorithm is used to cluster and filter the set of bounding boxes
generated for grid squares with predicted coverage values greater
than or equal to gridbox_cvg_threshold, which is specified in the
DetectNet model definition prototxt file.

DetectNet also uses the “Python Layers” interface to calculate
and output a simplified mean Average Precision (mAP) score
for the final set of output bounding boxes. For each predicted
bounding box and each ground truth bounding box the Intersection

Fig. 8: Exemplification of people detection on infrared images based
detection

over Union (IoU) score is computed. IoU is the ratio of the
overlapping areas of two bounding boxes to the sum of their areas.

The pre-trained model accepts 3 channel images – RGB, by
modifying the existing model, we have managed to detect and
track people on the infrared image – 1 channel. With the help of
the OpenCV library and the 3.7 Python programming language
version, we have developed a script that modifies the contrast of
the IR image; thus, we obtained a much better result than if we
had not used this approach. This result can be seen in the Figure
8, where we can see that the people are detected on the IR image
with high confidence.

To be able to run the algorithm in real-time we used the rospy
client. With the help of this API, we have developed an efficient
way to pass a ROS topic as input to our model. The algorithm
was tested on a Jetson AGX, and the camera used was from
Analog Devices (AD-96TOF1-EBZ). The result can be seen in
the attached demo video.

Action recognition from IR images

This is a small tutorial for detecting the skeleton, or rather an
approximation of the joints of a person, from an infrared image.
In our setup we used one of the Analog Devices Time-of-Flight
cameras, which provided us the infrared image, and an NVIDIA
Jetson Xavier NX board, which is a compact system-on-module
(SOM), very well suited for model inference.

As a baseline architecture model, we used the pretrained
model from one of the NVIDIA-AI-IOT’s repositories: https:
//github.com/NVIDIA-AI-IOT/trt_pose . We used the TensorRT
SDK in order to optimize our pretrained model for the Jetson
Xavier NX platform, thus achieving a better performance in our
model inference pipeline.

We also used, some of the Robot Operating System’s (ROS)
tools for retrieving the camera infrared images and by using the
rospy client library API we managed to transfer our infrared
images to the network’s model. While this would have been an
easy step using the CvBridge library, which provides an interface
between ROS and OpenCV, this time was not the case, as we had
some issues with this library. Because we are working on Jetson
Xavier NX board, which comes with the latest OpenCV version,
and CvBridge uses at its core an older version of OpenCv, we
replaced the conversion from sensor_msgs/Image message type to
the OpenCv image array made by CvBridge with a very useful
numpy functionality which allowed us to make this conversion
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Fig. 9: Exemplification of skeleton detection on infrared images

flawlessly, while still achieving the same functionality and per-
formance, because in fact, this was only a slight alteration of the
underlying Python implementation of the CvBridge package. So,
we replaced:

ir_image = CvBridge().imgmsg_to_cv2(image_msg,-1)

with:

ir_image = numpy.frombuffer(
image_msg.data,
dtype=numpy.uint8).reshape(

image_msg.height,
image_msg.width,
-1)

After making this conversion, we preprocessed the infrared image
before feeding it to the neural network, using the OpenCv library.
After this step we supply the model input with this preprocessed
image, and we obtained the results which can be seen in the Figure
9.

Furthermore, as a side quest, because we tested the TensorRT
SDK and we saw some good results in our model’s inference,
we decided to extend the infrared people detection application by
integrating it with NVIDIA’s Deepstream SDK. While this SDK
brings further optimization to our model’s inference performance
and optimize the image flow along the inference pipeline by trans-
ferring the image on GPU for any kind of preprocessing required
before it enters the model and even allowing us to serve multiple
images, from multiple cameras, without a very drastic change in
the model’s inference speed. Even though these functionalities
are important, we were interested by another functionality which
the Deepstream SDK supports, this being the fact that is able to
provide communication with a server and transmit the output of
the neural network’s model, which runs on the Jetson platform,
to the server, for further data processing. This can be very useful
in applications where we want to gather some sort of statistics
or when our application has to make some decisions based on
the output of our trained model, but we don’t want to affect
the Jetson’s inference performance by overwhelming it with other
processes. In the Figure 10, can be seen the result of the people
detection algorithm made by using the Deepstream SDK, and
below is the network’s output received on our custom configured
server when a person is detected:

{
"object" : {
"id" : "-1",
"speed" : 0.0,
"direction" : 0.0,

Fig. 10: People detection algorithm running with the Deepstream
SDK on the Jetson Xavier NX board

"orientation" : 0.0,
"person" : {
"age" : 45,
"gender" : "male",
"hair" : "black",
"cap" : "none",
"apparel" : "formal",
"confidence" : -0.10000000149011612

},
"bbox" : {
"topleftx" : 147,
"toplefty" : 16,
"bottomrightx" : 305,
"bottomrighty" : 343

},
"location" : {
"lat" : 0.0,
"lon" : 0.0,
"alt" : 0.0

},
"coordinate" : {
"x" : 0.0,
"y" : 0.0,
"z" : 0.0

}
}

Volumetric estimates for depth images

The goal of this research is to estimate the volume of objects using
only depth images recorded with Time-of-Flight cameras. As a
simplifying feature, we consider only box shaped objects, with
clearly definable perpendicular planes. Two methods have been
determined.The first method uses RANSAC algorithm to detect
planes while the other one uses the ideas from [SSG+20].

The first algorithm iteratively finds the largest plane using
RANSAC and uses euclidean extraction to remove it from the
point cloud. Once the planes are determined and checked to see
if they are perpendicular, the intersection lines of the planes
are determined by projecting between them. The projections
approximate a line and the points with the largest component
difference determine the length of the line. This way iteratively
the 3 intersecting line lengths can be determined once the planes
are determined and checked for orthogonality.

An important observation is that it can compute the volume
using 2 planes instead of 3. This is due to the fact that if 2 planes
are orthogonal, the common line between them will be determined
by 2 points that are also corner points for the object. By selecting
a corner point and the two perpendicular planes, a third plane can
be determined that is perpendicular to the other two and it contains
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Fig. 11: Planar detection

the chosen point. Once the virtual third plane has been computed,
the algorithm resumes as in the case with 3 determined planes.

An advantage of this method is that it uses readily available
and studied functions for processing pointclouds. For a simple
case of a box and floor plane, the algorithm accuracy depends on
the level of noise the pointcloud has. The following code snip-
pets ilustrate the functionality of the Planar Segmenting Volume
computation method using 2 planes.
1 def volume_main(perp_thresh,min_nr_points,input_pcd)
2 floor=pcl_Planar_Ransac(input_pcd)
3 input_pcd=Euclidean_extraction(input_pcd)
4 if (pcl_Planar_Ransac(input_pcd)>min_nr_points)
5 plane_1=Planar_Ransac(input_pcd)
6 input_pcd=Euclidean_extraction(input_pcd)
7 if(pcl_Planar_Ransac(input_pcd)>min_nr_points)
8 plane_2=pcl_Planar_Ransac(input_pcd)
9 if(cos(plane_1 * plane_2)<perpendicular_threshold>)

10 Volume=compute_volume_2_planes(plane1_plane2)
11 else
12 (p_A, p_B)=line_points(plane_1,plane_2)
13 plane_3=com_perp_plane_point(plane_1,plane_2,p_A)
14 if(cos(plane_1*plane_3)<perpendicular_threshold>)
15 Volume=compute_volume_2_planes(plane_2,plane_3)

1 def compute_volume_2_planes(plane_A,plane_B):
2 (p_AB_1, p_AB_2)=line_points(plane_A,plane_B)
3 plane_C=com_perp_plane_point(plane_A,plane_B,p_AB_1)
4 (p_AC_1,p_AC_2)=line_points(plane_A,plane_C)
5 (p_BC_1,p_BC_2)=line_points(plane_B,plane_C)
6 L1=distance(p_AB_1, p_AB_2)
7 L2=distance(p_AC_1, p_AC_2)
8 L3=distance(p_BC_1, p_BC_2)
9 Volume=L1*L2*L3

1 def line_points(plane_A,plane_B):
2 line_AB_pcd=pcl_project_inliers(plane_A,plane_B)
3 line_BA_pcd=pcl_project_inliers(plane_B,plane_A)
4 line_pcd=concat(line_AB_pcd,line_BA_pcd)
5 (abs_diff_x,p_AB_1_x,p_AB_2_x)=max_diff_x(line_pcd)
6 (abs_diff_y,p_AB_1_y,p_AB_2_y)=max_diff_y(line_pcd)
7 (abs_diff_x,p_AB_1_z,p_AB_2_z)=max_diff_z(line_pcd)
8 diff=max_diff(abs_diff_x,abs_diff_y,abs_diff_z)
9 (pointA, pointB)=points_max_diff(diff)

The downside of this method is that it can compute the volume
only for one box. Noise and other objects in the scene can totally
disrupt the volumetric estimate.

Due to these shortcomings, a new method for measuring the
volume is studied, based on the work by [SSG+20]. Their paper,
details an algorithm that uses pointclouds with normals computed
in each point in order to determine collections of point pairs
for which their normals satisfy the orthogonality constraint. The
point pair collections will approximate the orthogonal planes.
By determining the points contained by each orthogonal plane,

Fig. 12: Limitations of planar segmentation

Fig. 13: Corner detection

projections can be made that approximate the intersecting lines of
the orthogonal planes. By selecting the 3 lines that have the edge
points closest to each other, volume of a box can be computed.
The advantage of this method is that it allows the computation
of the volume for multiple box shaped objects. The following
code snippets show the usage of the Sommer’s plane determination
method to compute the volume.

1 def comp_vol_ortho(pcd,dmin,dman,votes,seg,thresh):
2 all_lines=sommer_planes(pcd,dmin,dman,votes,seg)
3 all_triplets=find_line_triplet(thresh,all_lines)
4 for i in all_triplets:
5 line_1=distance(all_triplets[i][0])
6 line_2=distance(all_triplets[i][1])
7 line_3=distance(all_triplets[i][2])
8 Volume[i]=line_1*line_2*line_3

1 def find_line_triplet(thresh):
2 for i in range(0,size(all_lines-3)):
3 for j in range(i+1,size(all_lines-2)):
4 for k in range(j+1,size(all_lines-1)):
5 avr_p=(all_lines[i]+all_lines[j]+all_lines[k])/3
6 if dist_each_to_avr(avr_p)<threshold:
7 add_triplet(all_triplets)

Volume estimation using enhanced planar/corner detections was
done using the training from [SSG+20]. The largest benefit of this
method is that it does not rely on RANSAC and it can compute
the volume for multiple objects.

This permits in further research to consider the idea of moving
the camera in such a way to improve the volumetric measurement
of multiple objects. This problem statement becomes equivalent
to a Next Best View problem in which the view must optimize
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the accuracy or availability of a volumetric measurement. This
translates to the question "In which of the available positions
does the camera need to be placed next in order to improve the
volumetric measurement". A starting point for such an idea would
be to use the neural network architecture used in [ZZL20], but
change the loss function’s objective from reconstruction to volu-
metric accuracy. By creating a scoring function for the volumetric
accuracy, candidate new positions might be evaluated and chosen
based on the input pointcloud.

Conclusion

In this paper we provided some guidelines for the ToF specific im-
age processing using Python libraries. The demos are ranging from
basic pointcloud processing to people detection and enhanced
volume estimation.
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Cell Tracking in 3D using deep learning
segmentations

Varun Kapoor‡∗, Claudia Carabaña‡
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Abstract—Live-cell imaging is a highly used technique to study cell migra-
tion and dynamics over time. Although many computational tools have been
developed during the past years to automatically detect and track cells, they
are optimized to detect cell nuclei with similar shapes and/or cells not cluster-
ing together. These existing tools are challenged when tracking fluorescently
labelled membranes of cells due to cell’s irregular shape, variability in size
and dynamic movement across Z planes making it difficult to detect and track
them. Here we introduce a detailed analysis pipeline to perform segmentation
with accurate shape information, combined with BTrackmate, a customized
codebase of popular ImageJ/Fiji software Trackmate, to perform cell tracking
inside the tissue of interest. We developed VollSeg, a new segmentation method
able to detect membrane-labelled cells with low signal-to-noise ratio and dense
packing. Finally, we also created an interface in Napari, an Euler angle based
viewer, to visualize the tracks along a chosen view making it possible to follow
a cell along the plane of motion. Importantly, we provide a detailed protocol
to implement this pipeline in a new dataset, together with the required Jupyter
notebooks. Our codes are open source available at [Git].

Index Terms—3D segmentation, cell tracking, deep learning, irregular shaped
cells, fluorescent microscopy.

Introduction

Live-cell imaging is a highly used technique to study cell mi-
gration and dynamics over time. The image analysis workflow
of volumetric (3D) imaging of cells via fluorescence microscopy
starts with an accurate detection and segmentation of cells fol-
lowed by cell tracking and track analysis. Broadly speaking the
task of segmentation can be separated into semantic segmentation
(classifying pixels as background or pixels belonging to the cell) or
instance segmentation (classifying pixels belonging to individual
cells by assigning a unique label to each cell). Segmentation is
complicated due to presence of multiple objects in the image,
overlapping object pixels and non-homogeneous intensity distri-
bution. Several methods have been proposed for such automated
detection and segmentation tasks such as the traditional intensity
based thresholding, watershed transform [BM18] and of recent
machine learning methods based on random-forest classifiers and
support vector machines [BKK+19]. It was shown in [RHH20]
that conventional computer vision and machine learning based
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techniques alone will almost always lead to sub-optimal segmen-
tation and that methods based on deep learning have improved
the accuracy of segmentation for natural and biomedical images
alike. For the purpose of semantic segmentation U-Net [RFB15]
has emerged as the most widely used network for biological
applications. This network also forms the backbone of another
successful network to do cell nuclei segmentation in 3D, Stardist
[SWBM18] [WSH+20]. Stardist directly predicts a shape repre-
sentation as star-convex polygons for cell nuclei in 2D and 3D.
However, cell membrane segmentation is especially challenging
as opposed to nuclei segmentation due to fewer boundary pixels
and the need to separate touching cells. To predict cell contours
together with cell centroids, Eschweiler et al. proposed a 3D U-
Net network using centroids as seeds for watershed in 3D confocal
microscopy images [ESC+18]. The drawback of this approach is
misclassification due to sub-optimal seeding. Another approach
proposed by Wolny et al., is to directly predict the cell boundaries
using a 3D U-Net followed by a volume partitioning algorithm to
segment each cell based on the boundary prediction [WCV+20].
This approach requires well defined cell boundaries, which may
create segmentation errors in low signal-to-noise imaging condi-
tions.

To address the issues with existing segmentation algorithms
just described, we developed Vollseg. In brief we use Stardist in
3D to obtain a star convex shape approximation for the cells and
extract the cell centroids from these polygons. We also train a 3D
U-Net model to obtain a semantic segmentation map of the cells.
We then perform a marker controlled watershed on the probability
map of Stardist using the U-Net segmentation as a mask image to
prevent the overflow of segmentation regions. To avoid the error of
sub-optimal seeding we developed a seed pooling approach taking
advantage of strength of both the Stardist and U-Net networks.
We benchmark our segmentation result on a challenging dataset
comprised of epithelial cells of mouse embryonic mammary
glands with membrane labelling. These cells are highly irregular
in shape and have a low signal-to-noise ratio to obtain an accurate
segmentation only based on the boundary information. Using this
dataset, we obtain different metrics showing that our approach
is able to obtain shape approximation for the overlapping cells
that go beyond the star convex shape. The complete segmentation
pipeline is illustrated in Figure 1.

For analysis of the cell migration behavior we need to reliably
track the cells and obtain certain attributes such as signal intensity
or changes over time of the distance between the cells and tissue
boundary. Cell tracking is challenging due to erratic volumetric
motion, occlusion and cell divisions. Tracking using only the
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Fig. 1: Schematic representation showing the segmentation approach
used in VollSeg. First, we input the raw fluorescent image in 3D (A)
and pre-process it to remove noise. Next, we obtain the star convex
approximation to the cells using Stardist (B) and the U-Net prediction
labelled via connected components (C). We then obtain seeds from the
centroids of labelled image in B, for each labelled region of C in order
to create bounding boxes and centroids. If there is no seed from B in
the bounding box region from U-Net, we add the new centroid (shown
in yellow) to the seed pool (D). Finally, we do a marker controlled
watershed in 3D using skimage implementation on the probability
map shown in (E) to obtain the final cell segmentation result (F). All
images are displayed in Napari viewer with 3D display view.

centroid information may lead to wrong cell assigmements, hence
we need to include other cell attributes such as the shape and
intensity information while making the links between the cells
in successive time frames. Trackmate is a popular tracking soft-
ware that uses customizable cost matrix for solving the linear
assignment problem and uses Jaqman linker as a second step to
link segments of dividing and merging cells [TPS+17]. In this
paper, we introduce BTrackmate, a Fiji/ImageJ plugin to track the
previously segmented cells. The major advantage of BTrackmate
is the ability to track the cells inside a tissue. It allows the input of
the cell and tissue segmentation image files and/or a csv file of the
cell attributes. Furthermore, we also add some biological context
in the tracking process where after segment linking is done a track
inspector removes segments that are shorter than a user defined
time length. Such short segments are unlikely to be true division
events if they are too short and manually removing them can be
tedious when many tracks are present. The users can choose this
parameter in time units and can set it to 0 if removing such short
segments is not required.

Finally, the tracking results obtained with BTrackmate are
saved as an xml file that can be re-opened in an Euler angle based
viewer in python called Napari, allowing volumetric viewing of
the tracked cells using the track layer feature [UVCL20]. We made
a python package called napatrackmater to export the track xml
file as tracks layer in Napari for dividing and non-dividing tracks.
We provide a customized Napari widget to view selected tracks
and obtain their cell migration attributes.

Material and Methods

Preparation of the dataset

We used fluorescent microscopy images of mouse embryonic
mammary glands stabilized in an ex vivo culture previously
collected in the laboratory of Dr. S. Fre at Institut Curie. All
images were acquired with an inverted confocal laser scanning
microscope (e.g. Zeiss LSM780/880) equipped with long-working
distance objectives to acquire high-resolution 3D image stacks. We
acquired images of pixel size (22, 512, 512) with calibration of (3,
0.52, 0.52) micrometer. The quality at which these images are
acquired is determined by the spatial resolution of the used optical
device, desired temporal resolution, duration of the experiment and
depth of the acquired Z-stacks. We perform unsupervised image
denoising [KBJ19] on our dataset, an algorithm we chose based
on its performance compared to other methods [Ric72], [Luc74].
Post-restoration of the 3D images, we developed a method to per-
form the segmentation of the cells using deep learning techniques.
We created a training dataset with hand drawn segmentation of
14 Z-stacks. We performed data augmentation on the microscopy
images by denoising, adding Poisson and Gaussian noise, random
rotations and flips to create 700 Z-stacks. We chose a patch size
of (16, 128, 128) and created 11,264 patches for training Stardist
and U-Net network. For the Stardist network we chose 192 rays
to have a better shape resolution for the irregular shaped cells.

Parameter Setting

Stardist predicts object instances based on probability threshold
and non maximal suppression threshold to merge overlapping
predictions. These parameters can be automatically determined
using the optimize threshold program that we provide with the
segmentation package. Higher values of the probability threshold
yield fewer object instances, but avoids false positives. Higher
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values of the overlap threshold would lead to oversegmentation.
We used 32 Z-stacks to determine the optimal parameters of prob-
ability threshold of 0.76 and non maximal suppression threshold
of 0.3.

Segmentation

As illustrated in Figure 1, we first obtain the centroids of the star
convex approximated cell shapes and create a seed pool with these
centroid locations. Even with the optimized threshold values we
find that the seeds can be sub-optimal as many cells instances with
low signal are missed. In order to make the seed pool optimal we
use the U-Net prediction to obtain a binary image of semantic
segmentation, perform connected component analysis to label the
image and obtain bounding boxes (computed using scikit-image
[vdWSN+14], version 0.18.x) for each label in 3D. For each
bounding box we search for a seed from the Stardist predicted
seed pool. If a Stardist seed is found inside the bounding box,
the centroid of the U-Net predicted bounding box is rejected else
the centroid is added to the seed pool to make a complete set of
seeds that we use to start a watershed process in 3D. We use the
probability map of Stardist to start the watershed process to obtain
a better shape approximation for the irregular shaped cells that
goes beyond the star convex shape.

The code for the merging of U-Net and Stardist seeds is the
following:
def iou3D(box_unet, centroid_star):

ndim = len(centroid_star)
inside = False

Condition = [Conditioncheck(centroid_star, box_unet,
p, ndim)
for p in range(0,ndim)]

inside = all(Condition)

return inside

def Conditioncheck(centroid_centroid, box_unet,
p, ndim):

condition = False

if centroid_star[p] >= box_unet[p]
and centroid_star[p] <= box_unet[p + ndim]:

condition = True

return condition

The code for doing watershed in 3D using the complete set of
seeds on the probability map of Stardist is the following:
def WatershedwithMask3D(Image, Label, mask, grid):
#Image = ProbabilityMap of Stardist
#Label = Label segmentation image of Stardist
#Mask = U-Net predicted image post binarization
properties = measure.regionprops(Label, Image)
binaryproperties =
measure.regionprops(label(mask), Image)
Coordinates = [prop.centroid for prop in properties]
BinaryCoordinates = [prop.centroid for
prop in binaryproperties]
Binarybbox =
[prop.bbox for prop in binaryproperties]
Coordinates = sorted(Coordinates ,
key=lambda k: [k[0], k[1], k[2]])

if len(Binarybbox) > 0:
for i in range(0, len(Binarybbox)):

box = Binarybbox[i]
inside = [iou3D(box, star)
for star in Coordinates]

if not any(inside) :
Coordinates.append(BinaryCoordinates[i])

Coordinates.append((0,0,0))
Coordinates = np.asarray(Coordinates)
coordinates_int = np.round(Coordinates).astype(int)

markers_raw = np.zeros_like(Image)
markers_raw[tuple(coordinates_int.T)] = 1
+ np.arange(len(Coordinates))
markers = morphology.dilation(
markers_raw.astype('uint16'), morphology.ball(2))

watershedImage = watershed(-Image, markers,
mask = mask.copy())
return watershedImage, markers

Performance Metrics

Accuracy of segmentation results is assesed by comparing the ob-
tained labels to the ground truth (GT) labels. The most commonly
used metric is to compute intersection over union (IOU) score
between the predicted and the GT label image. We define GT,
labels and IOU score as:

GT = {gt}, SEG = {seg} are two sets of segmented objects.
IOU(a,b) is the value of the IOU operation between two

segmented objects a and b.
A threshold score value τ ∈ [0,1] is used to determine the true

positive (TP), false positives (FP) and false negatives (FN) defined
as:

T P = {seg ∈ SEG,∃ gt ∈ GT, IOU(gt,seg)> τ}

FP = {seg ∈ SEG,∀ gt ∈ GT, IOU(gt,set)< τ}

FN = {gt ∈ GT,∀ seg ∈ SEG, IOU(gt,seg)< τ}

We use the Stardist implementation to compute accuracy
scores which uses the hungarian method (scipy implementation)
[Kuh55] to compute an optimal matching to do a one to one
assingement of predicted label to GT labels. This implementation
avoids finding multiple TP for a given instance of GT. We also
compute precision (TP/(TP + FP)), recall (TP / (TP + FN)), F1
score (geometric mean of precision and recall) and accuracy score
APτ = T Pτ

T Pτ+FPτ+FNτ
. To evaluate the accuracy of our method in

resolving the shape of the cells we compute the mean squared error
(MSE) and structural similarity index measurment (SSIM) be-
tween the GT and obtained segmentation images post-binarization
operation on the obtained instance segmentation maps. MSE
shows a low score if the image is structurally closer to GT. SSIM
score is higher if the two images are structurally more similar to
each other.

Detailed Procedure

The software package we provide comes with training and predic-
tion notebooks for training the base U-Net and Stardist networks
on your own dataset. We provide jupyter notebooks to do so on
local GPU servers and also on Google Colab.
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Network Training: In the first Jupyter notebook we create
the dataset for U-Net and Stardist training. In the first cell of the
notebook the required parameters are the path to your data that
contains the folder of Raw and Segmentation images to create
training pairs. Also to be specified is the name of the generated
npz file along with the model directory to store the h5 files of the
trained model and the model name.
Data_dir = '/data/'
NPZ_filename = 'VollSeg'
Model_dir = '/data/'
Model_Name = 'VollSeg'

The model parameters are specified in the next notebook cell.
These parameters are described as follows:

1) NetworkDepth = Depth of the network, with each increas-
ing depth the image is downsampled by 2 hence the XYZ
dimension of the data / 2^depth has to be greater than 1.

2) Epochs: training for longer epochs ensures a well con-
verged network and requires longer GPU runtimes.

3) Learning rate is the parameter which controls the step
size used in the optimization process and it should not be
greater than 0.001 at the start of the training.

4) Batch size controls the number of images used for doing
stochastic gradient descent and is a parameter limited by
the GPU memory available, batch size < 10 should be
optimal.

5) Patch X, Y, Z is the size used for making patches out of
the image data. The original image is broken down into
patches for training. Patch size is chosen based on having
enough context for the network to learn the details at
different scales.

6) Kernel is the receptive field of the neural network, usual
choices are 3, 5 or 7. This is the size of the convolutional
kernel used in the network.

7) n_patches_per_image is the number of patches sampled
for each image to create the npz file, choose an optimal
value so that the file fits in the RAM memory.

8) Rays stand for the number of rays used to learn the
distance map, low rays decreases the spatial resolution
and high rays are able to resolve the shape better.

9) use_gpu_opencl is a boolean parameter that is set true if
you want to do some opencl computations on the GPU,
this requires GPU tools python package.

10) Before starting the U-Net training an npz file containing
the paried Raw and Binary segmentation images needs to
be created, by setting GenerateNPZ = True such a file is
created.

11) If there are multiple GPU’s available, the training of U-
Net and Stardist can be split between the GPU’s. Set
TrainUNET = True for training a U-Net network, create
a copy of the notebook and only set TrainSTAR = True
for training a Stardist network. If there are no multiple
GPU’s available, set all of these parameters in 10) and
11) to be True to create and train both the networks in a
single notebook run.

The code to set the parameters is the following:
#Network training parameters
NetworkDepth = 3
Epochs = 100
LearningRate = 1.0E-4
batch_size = 5
PatchX = 128

PatchY = 128
PatchZ = 16
Kernel = 3
n_patches_per_image = 16
Rays = 192
startfilter = 48
use_gpu_opencl = True
GenerateNPZ = True
TrainUNET = False
TrainSTAR = False

After the network has been trained it will save the configuration
files of the training for both the networks along with the weight
vector file as h5 files that will be used by the prediction notebook.
For running the network prediction on XYZ shape images use the
prediction notebook either locally or on Colab. In this notebook
you only have to specify the path to the image and the model
directory. The only two parameters to be set here are the number
of tiles (for creating image patches to fit in the GPU memory)
and min_size in pixel units to discard segmented objects below
that size. We perform the watershed operation on the probability
map as a default. However, this operation can also be changed to
use the distance map coming out of Stardist prediction instead by
setting ’UseProbability’ variable to false. The code below operates
on a directory of XYZ shape images:
ImageDir = 'data/tiffiles/'
Model_Dir = 'data/'
SaveDir = ImageDir + 'Results/'
UNETModelName = 'UNETVollSeg'
StarModelName = 'VollSeg'
NoiseModelName = 'NoiseVoid'

UnetModel = CARE(config = None,
name = UNETModelName,
basedir = Model_Dir)
StarModel = StarDist3D(config = None,
name = StarModelName,
basedir = Model_Dir)
NoiseModel = N2V(config=None,
name=NoiseModelName,
basedir=Model_Dir)

Raw_path =
os.path.join(ImageDir, '*.tif')
filesRaw =
glob.glob(Raw_path)
filesRaw.sort
min_size = 50
n_tiles = (1,1,1)
for fname in filesRaw:

SmartSeedPrediction3D(ImageDir,
SaveDir, fname,
UnetModel, StarModel, NoiseModel,
min_size = min_size,
n_tiles = n_tiles,
UseProbability = False)

Tracking

After we obtain the segmentation using VollSeg, we create a csv
file of the cell attributes that include their location, size and volume
inside a region of interest. For large datasets memory usage could
be of concern while loading the images into memory, hence inputs
via csv could prove helpful. Tracking is performed in ImageJ/Fiji,
an image processing package. We developed our code over the
existing tracking solution called Trackmate [TPS+17]. Trackmate
uses linear assignment problem (LAP) algorithm to do linking
of the cells and uses Jaqman linker for linking the segments for
dividing and merging trajectories. It also provides other trackers
such as the Kalman filter to do tracking of non-dividing cells.
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Fig. 2: Trackscheme display for the C. elegans dataset.

Trackmate comes with a fully interactive track editing interface
with graph listener to show the selected cell in the trackscheme
and vice versa, to click on the graph and have the selected cell
being highlighted in the image, making the process of track editing
interactive. Post-editing the tracks are saved as an xml file which
can then be loaded back into the program to do more track editing
if needed. When a cell divides, the track is splitted up in two
tracklets. In order to aid in track editing, we introduced a new
parameter of minimum tracklet length to remove tracklets in a
track that are short in the time dimension. This introduces a
biological context of not having very short trajectories, reducing
the track editing effort to correct for the linking mistakes made by
the program. For testing our tracking program we used a freely
available dataset from the cell tracking challenge of a developing
C. elegans embryo [Cel] [MBB+08]. Using our software we can
remove cells from tracking which do not fit certain criteria such
as being too small (hence most likely a segmentation mistake) or
being low in intensity or outside the region of interest such as
when we want to track cells only inside a tissue. For this dataset
we kept 12,000 cells and after filtering short tracks kept about 50
tracks with and without division events.

For this dataset the track scheme along with overlayed tracks is
shown in Figure 2. Selected node in the trackscheme is highlighted
in green and vice versa. Extensive manual for using the track
editing is available on ImageJ/Fiji wiki [Tin].

Results

Quantitative Comparisons between Segmentation Methods

We compare our proposed VollSeg segmentation approach to two
commonly used methods for cell segmentation of fluorescent mi-
croscopy images, 3D Stardist [SWBM18] [WSH+20] and 3D U-
Net [RFB15]. A 3D cell rendering using all analyzed segmentation
methods is shown in the Figure 3. Stardist in 3D was previously
compared to other classical method, the IFT watershed, and it was
shown to perform better than the classical method, hence we use
Stardist as a baseline for comparison. To assess the performance of
our segmentation, we compute the metrics described in material
and methods section. VollSeg and Stardist methods perform at
comparable accuracy, but higher than U-Net, as shown in Figure
4 A. This is expected, as U-Net can not perform instance seg-
mentation of overlapping cells. In addition, when quantifying the
F1-score in Figure 4 B, U-Net obtains the lowest score because it
detects less TP segmented pixels in comparision to VollSeg and
Stardist as shown in Figure 4 C. However, Stardist has the highest

Fig. 3: Visual 3D segmentation comparison between the Ground
truth (GT) image, Stardist, U-Net and VollSeg results. The images
are displayed in Napari viewer with 3D display view.

mean squared error as it is unable to detect the irregular shape
while U-Net and Vollseg have similar performance, as shown in
Figure 5 A. This result can also be seen from structural similarity
index measurement, shown in Figure 5 B. In conclusion, VollSeg
is able to strength the shape accuracy from U-Net and the ability
to separate the overlapping instances from Stardist.

Track Analysis

After obtaining the tracks from BTrackmate, we save them as
Trackmate xml file, which contains the information about all the
cells in a track. Since the cells can be highly erratic in their
volumetric motions, we use Napari, an Euler angle based viewer,
to visualize such tracks from different reference positions. We
made a python package to export the xml files previously saved
in ImageJ/Fiji and convert them into the tracks layer of Napari.
We made a customised widget based graphic user interface (GUI)
to view selected tracks, display the track information and save the
cell track along user selected view, as shown in Figure 6 A. On the
top left panel, the image and tracks layer properties are displayed
and can be changed (1). In the bottom left, there is a dropdown
menu enlisting all the tracks (2). Users can select the track to be
displayed in the central window and it can be switched between
the hyperstack and the 3D view (3). The user can also choose to
view all the tracks at once and then toggle the visibilty of the
tracks using the eye icon next to the image and tracks layer (4).
On the top right panel, we show two plots displaying the track
information (5). The 3D central view can be rotated and translated
to view the tracks along the plane of motion of the cells and the
selected view can be saved as an animation using the bottom right
animation panel (6). For the cells that divide we show the intensity
variation and associated fast fourier transform for each tracklet.

We provide two example jupyter notebooks with the package.
In the first one we compute the cell distance from the tissue bound-
ary change over time for dividing and non-dividing trajectories.
The user selects a track of interest and it displays two plots next
to the track view that show the distance change over time for
the whole track (non-dividing trajectory) and the starting and end
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Fig. 4: Segmentation comparision metrics between VollSeg (in blue),
Stardist (in orange) and U-Net (in green). We plot (A) accuracy (as
percentage), (B) F1 score (as percentage) and (C) true positive rates
(as number of pixels) for all the networks.

Fig. 5: We plot Mean Squared error (MSE) (A) and Structural
similarity index measurement (SSIM) (B) comparing between VollSeg
(in blue), Stardist (in orange) and U-Net (in green).

location of the cells, as shown in Figure 7. For the tracks with
multiple events of cell division we show the distance change over
time of each tracklet. In the localization plot the parent tracklet
start and end location is shown in green while all the daughter cells
start and end locations are shown in red. In the second example
notebook, the plots show intensity change in the track over time
along with the associated frequency of intensity oscillation present
in each tracklet. The frequency associated with each tracklet is
computed using the scipy implementation of fast fourier transform.
The results of track analysis can be saved as plots, mp4 files of
the track animation or csv files.

Conclusions

We have presented a workflow to do segmentation, tracking and
track analysis of cells in 3D with irregular shape and intensity
distribution. For performing segmentation we developed VollSeg,
a jupyter notebook based python package that combines the
strengths of semantic and instance deep learning segmentation
methods. Post-segmentation we create a csv file containing the
information about the cells inside a region of interest which serves
as an input to Btrackmate, the ImageJ/Fiji plugin we created
for doing the tracking. The tracking software uses existing track
editing interface of Trackmate and saves the track information as
an xml file. To view and analyze such volumetric tracks we created
napatrackmater, a python package to export such trajectories as
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Fig. 6: Napari widget to view tracks and plot track information in
non-dividing trajectories (A) and dividing trajecrtories (B). For the
selected track we see the intensity change over time and its associated
fast Fourier transform.

Fig. 7: Napari widget to analyze the distance of the cell to the
boundary. The left plot displays the distance of the daughter cells
to the boundary, while the right plot shows the start and end distance
localization of the mother cell (in green) and daughter cells (in red).

track layer of Napari and we provide jupyter notebook based
enviornment for track analysis with two example notebooks.

The tools that we present here can also be useful for segmen-
tation of cells coming from other organisms or imaging modalities
(transmitted light and light sheet imaging) as our method can be
applied to segment cells that go beyond the star convex polyhedra.
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