
Proceedings of the 19th

Python in Science Conference

July 6 - July 12 • Austin, Texas

PROCEEDINGS OF THE 19TH PYTHON IN SCIENCE CONFERENCE

Edited by Meghann Agarwal, Chris Calloway, Dillon Niederhut, and David Shupe.

SciPy 2020
Austin, Texas
July 6 - July 12, 2020

Copyright c© 2020. The articles in the Proceedings of the Python in Science Conference are copyrighted and owned by their
original authors

This is an open-access publication and is distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are
credited.

For more information, please see: http://creativecommons.org/licenses/by/3.0/

ISSN:2575-9752
https://doi.org/10.25080/Majora-342d178e-02b

ORGANIZATION

Conference Chairs
JONATHAN GUYER, NIST
CORRAN WEBSTER, Enthought, Inc.

Program Chairs
GIL FORSYTH, CapitalOne
MATT HABERLAND, Cal Poly
NICOLAS HUG, Columbia University
PAUL IVANOV, Bloomberg
MADICKEN MUNK, University of Illinois

Communications
TANIA ALLARD, Microsoft
MATT DAVIS, Populus

Birds of a Feather
MATTHIAS BUSSONNIER, University of California, Merced
JULIE HOLLEK, Mozilla

Proceedings
MEGHANN AGARWAL, Oracle
CHRIS CALLOWAY, University of North Carolina
DILLON NIEDERHUT, Novi Labs
DAVID SHUPE, Caltech’s IPAC Astronomy Data Center

Financial Aid
SCOTT COLLIS, Argonne National Laboratory
ERIC MA, Novartis Institutes for Biomedical Research
NADIA TAHIRI, Université de Montréal

Tutorials
ALEXANDRE CHABOT-LECLERC, Enthought, Inc.
MIKE HEARNE, USGS
SERAH RONO, The Carpentries

Sprints
RYAN MAY, University Corporation for Atmospheric Research
JUAN NUNEZ-IGLESIAS, Monash University
DHARHAS POTHINA, US Army Engineer Research and Development Center

Diversity
CELIA CINTAS, IBM Research Africa
MELISSA WEBER MENDONCA, Federal University of Santa Catarina

Activities
PAUL ANZEL, HEB
KYLE NEIMEYER, Oregon State University
INESSA PAWSON, Albus Code

Sponsors
JILL COWAN, Enthought, Inc.
KRISTEN LEISER, Enthought, Inc.

Financial
CHRIS CHAN, Enthought, Inc.
BILL COWAN, Enthought, Inc.
JODI HAVRANEK, Enthought, Inc.

Logistics
JILL COWAN, Enthought, Inc.
KRISTEN LEISER, Enthought, Inc.

Proceedings Reviewers
ADRIAN HEILBUT
ALBERTO ANTONIETTI
ALEJANDRO WEINSTEIN
AMIR KHALIGHI
ANDREW REID
ANGELOS KRYPOTOS
ANIRUDH ACHARYA
BARGAVA SUBRAMANIAN
CALVIN MCCARTER
CHRIS CALLOWAY
CYRUS HARRISON
DANIEL CHEN
DAVID NICHOLSON
DAVID SHUPE
DHAVIDE ARULIAH
DILLON NIEDERHUT
FILIPE FERNANDES
GAJENDRA DESHPANDE
HIMEL MALLICK
HOMIN LEE
HONGSUP SHIN
HORACIO VARGAS GUZMAN
ISHA CHATURVEDI
IVAN MARROQUIN
JAIME ARIAS
KAY SUN
KELVIN LEE
KIRTAN DAVE
MARKUS ERWEE
MARTIN DURANT
MATT CRAIG
MATTHEW BENEDICT
MEGHANN AGARWAL
MICHAEL JOSEPH
MICHAEL SARAHAN
MIKE MCCARTY
NADIA TAHIRI
OLAV VAHTRAS
SAKET CHOUDHARY
SANDHYA PRABHAKARAN
SARVESH NIKUMBH
SCOTT SIEVERT
SERGE GUELTON
TZU-CHI YEN
YINGWEI YU
YU FENG

ACCEPTED TALK SLIDES

TREATING GRIDDED GEOSPATIAL DATA AS POINT DATA TO SIMPLIFY ANALYTICS, Christine Smit, and Hailiang Zhang,
and Mahabaleshwara Hegde, and Faith Giguere, and Long Pham
doi.org/10.25080/Majora-342d178e-019
ARKOUDA: TERASCALE DATA SCIENCE AT INTERACTIVE RATES, Benjamin Albrecht, and Michael Merrill, and William
Reus, and Brad Chamberlain
doi.org/10.25080/Majora-342d178e-01a
BOOST-HISTOGRAM: HIGH-PERFORMANCE HISTOGRAMS AS OBJECTS, Henry Schreiner, and Hans Dembinski, and Jim
Pivarski, and Shuo Liu
doi.org/10.25080/Majora-342d178e-01b
OPEN-SOURCE BIOIMAGE ANALYSIS SOFTWARE TO ACCELERATE DRUG DISCOVERY, Anne Carpenter
doi.org/10.25080/Majora-342d178e-01c
CUSIGNAL - GPU ACCELERATING SCIPY SIGNAL WITH NUMBA AND CUPY, Adam Thompson, and Matt Nicely, and
Graham Markall, and Brad Rees
doi.org/10.25080/Majora-342d178e-01d
FRICTIONLESS DATA FOR REPRODUCIBLE BIOLOGY, Lilly Winfree
doi.org/10.25080/Majora-342d178e-01e
INTERACTIVE SUPERCOMPUTING WITH JUPYTER AT THE NATIONAL ENERGY RESEARCH SCIENTIFIC COMPUTING
CENTER, Rollin Thomas, and Shane Canon, and Shreyas Cholia, and Matt Henderson, and Kelly Rowland, and Jon Hays,
and William Krinsman, and Justin Ley, and Labanya Mukhopadhyay, and Trevor Slaton
doi.org/10.25080/Majora-342d178e-01f
PROJECT MJOLNIR: A MODULAR, OPEN-SOURCE PLATFORM FOR DEVELOPING SCIENTIFIC IOT SENSOR NETWORKS,
C.A.M. Gerlach
doi.org/10.25080/Majora-342d178e-020
PANDERA: STATISTICAL DATA VALIDATION OF PANDAS DATAFRAMES, Niels Bantilan
doi.org/10.25080/Majora-342d178e-021
MOLECULAR INFRASTRUCTURE FOR MODELING VIRUSES WITH PYTHONIC-MEDIATED PACKAGES: PYF4ALL, Horacio
V. Guzman
doi.org/10.25080/Majora-342d178e-022
PYHF: A PURE PYTHON STATISTICAL FITTING LIBRARY WITH TENSORS AND AUTOGRAD, Matthew Feickert
doi.org/10.25080/Majora-342d178e-023
BRINGING GPU SUPPORT TO DATASHADER: A RAPIDS CASE STUDY, Jon Mease
doi.org/10.25080/Majora-342d178e-024
LEARNING FROM EVOLVING DATA STREAMS, Jacob Montiel
doi.org/10.25080/Majora-342d178e-025
SPATIAL ALGORITHMS AT SCALE WITH SPATIALPANDAS, Dharhas Pothina, and Kim Pevey, and Adam Lewis
doi.org/10.25080/Majora-342d178e-026

ACCEPTED POSTERS

DECENTRALIZED, DETERMINISTIC ROBOT SWARM CONTROL USING BLOB METHODS FOR PDES, Matt Haberland,
and Katy Craig, and Karthik Elamvazhuthi, and Olga Turanova
doi.org/10.25080/Majora-342d178e-018

SCIPY TOOLS PLENARIES

HOLOVIZ: WHAT’S NEW AND WHAT’S NEXT, James A. Bednar
doi.org/10.25080/Majora-342d178e-028
SCIPY TOOLS PLENARY ON MATPLOTLIB, Elliott Sales de Andrade
doi.org/10.25080/Majora-342d178e-029
SCIPY TOOLS PLENARY ON NUMBA, Siu Kwan Lam
doi.org/10.25080/Majora-342d178e-02a

LIGHTNING TALKS

BUILDING AN AUTOML SYSTEM FOR FUN AND NON-PROFIT, Niels Bantilan
doi.org/10.25080/Majora-342d178e-027

SCHOLARSHIP RECIPIENTS

OPETUNDE ADEPOJU, Venture Garden Group
DANIEL ALTHVIZ MORÉ, Spyder
ROHIT ARORA, University of Texas at Austin
SHREYAS BAPAT, Indian Institute of Technology Mandi
WAMBA TCHINDA CLAUDIN, UNIVERSITY OF YAOUNDE 1
CHRISTOPHER CURRIN, IBRO-Simons Computational Neuroscience Imbizo
SAYANTAN DAS, None
GAJENDRA DESHPANDE, KLS Gogte Institute of Technology, Belagavi
KADAMBARI DEVARAJAN, University of Massachusetts at Amherst
DIANA DIAZ, Wayne State University
ATANAS DOMMO, University of Yaounde 1
GEZEHAGN GUTEMA EGGI, Arsi University
SAM FRIEDMAN, Texas A&M University
JAMIL GAFUR, Los Alamos National Lab
BYRON GEOFFREY, Nova Southeastern University
JUANITA GOMEZ, Spyder IDE
MAXWELL GROVER, University of Illinois at Urbana-Champaign
STEPHANNIE JIMENEZ GACHA, Spyder IDE
ESHIN JOLLY, Dartmouth College
SALOMON KABONGO KABENAMUALU, African Master in Machine Intelligence, University of Ghana
JOSHUA KALOGNIA, Council for scientific and Industrial Research-Institute for Scientific and Technological Information
TETSUO KOYAMA, GetFEM++
GUILHERME LEOBAS, Quansight - Numba
EDGAR ANDRÉS MARGFFOY TUAY, Spyder IDE
KRYSTAL MAUGHAN, University of Vermont
ABIGAIL MCGOVERN, Monash University
JESSICA MEJIA, University of South Florida
AMBER NADEEM, Zilltech.net
EMILIAN NGATUNGA, University of Dodoma
SOLOMON NSUMBA, Makerere University AI and Data Science lab, Uganda
ESTHER ODUNTAN, African Institute of Mathematical Sciences
OLAIDE OJOMO, University of Texas at Austin
AKSHAY PAROPKARI, University of California, Merced
WAISWA PHILIP, Uganda Technology and Management University
MRIDUL SETH, econ-ark
SHUBHAM SHARMA, Geospoc
SCOTT SIEVERT, University of Wisconsin–Madison
HORACIO VARGAS GUZMAN, Institute Josef Stefan, Slovenian Research Council
YUE WU, University of Georgia
SUBHADITYA MUKHERJEE, None
ERMIYAS BIRHANU BELACHEW, None
TCHAMBOU TCHOUONGSI LANDRY, None
ZAC HATFIELD DODDS, Australian National University
LAUREN BIERMANN, Plymouth Marine Laboratory

CONTENTS

Preface 1
Meghann Agarwal, Julie Hollek, Dillon Niederhut

Securing Your Collaborative Jupyter Notebooks in the Cloud using Container and Load Balancing Services 2
Haw-minn Lu, Adrian Kwong, José Unpingco

Quasi-orthonormal Encoding for Machine Learning Applications 11
Haw-minn Lu

Fluctuation X-ray Scattering real-time app 18
Antoine Dujardin, Elliott Slaugther, Jeffrey Donatelli, Peter Zwart, Amedeo Perazzo, Chun Hong Yoon

HOOMD-blue version 3.0 A Modern, Extensible, Flexible, Object-Oriented API for Molecular Simulations 24
Brandon L. Butler, Vyas Ramasubramani, Joshua A. Anderson, Sharon C. Glotzer

Compyle: a Python package for parallel computing 32
Aditya Bhosale, Prabhu Ramachandran

Netlist Analysis and Transformations Using SpyDrNet 40
Dallin Skouson, Andrew Keller, Michael Wirthlin

Introduction to Geometric Learning in Python with Geomstats 48
Nina Miolane, Nicolas Guigui, Hadi Zaatiti, Christian Shewmake, Hatem Hajri, Daniel Brooks, Alice Le Brigant, Johan
Mathe, Benjamin Hou, Yann Thanwerdas, Stefan Heyder, Olivier Peltre, Niklas Koep, Yann Cabanes, Thomas Gerald,
Paul Chauchat, Bernhard Kainz, Claire Donnat, Susan Holmes, Xavier Pennec
Network visualizations with Pyvis and VisJS 58
Giancarlo Perrone, Jose Unpingco, Haw-minn Lu

Boost-histogram: High-Performance Histograms as Objects 63
Henry Schreiner, Hans Dembinski, Shuo Liu, Jim Pivarski

Learning from evolving data streams 70
Jacob Montiel

Awkward Array: JSON-like data, NumPy-like idioms 78
Jim Pivarski, Ianna Osborne, Pratyush Das, Anish Biswas, Peter Elmer

High-performance operator evaluations with ease of use: libCEED’s Python interface 85
Valeria Barra, Jed Brown, Jeremy Thompson, Yohann Dudouit

Spectral Analysis of Mitochondrial Dynamics: A Graph-Theoretic Approach to Understanding Subcellular Pathology 91
Marcus Hill, Mojtaba Fazli, Rachel Mattson, Meekail Zain, Andrew Durden, Allyson T Loy, Barbara Reaves, Abigail
Courtney, Frederick D Quinn, S Chakra Chennubhotla, Shannon P Quinn

Matched Filter Mismatch Losses in MPSK and MQAM Using Semi-Analytic BEP Modeling 98
Mark Wickert, David Peckham

Having your cake and eating it: Exploiting Python for programmer productivity and performance on micro-core architectures
using ePython 107
Maurice Jamieson, Nick Brown, Sihang Liu

pandera: Statistical Data Validation of Pandas Dataframes 116
Niels Bantilan

Combining Physics-Based and Data-Driven Modeling for Pressure Prediction in Well Construction 125
Oney Erge, Eric van Oort

Pydra - a flexible and lightweight dataflow engine for scientific analyses 132
Dorota Jarecka, Mathias Goncalves, Christopher J. Markiewicz, Oscar Esteban, Nicole Lo, Jakub Kaczmarzyk, Satrajit
Ghosh

Leading magnetic fusion energy science into the big-and-fast data lane 140
Ralph Kube, R Michael Churchill, Jong Youl Choi, Ruonan Wang, Scott Klasky, CS Chang, Minjun J. Choi, Jinseop
Park

SHADOW: A workflow scheduling algorithm reference and testing framework 148
Ryan W. Bunney, Andreas Wicenec, Mark Reynolds

Software Engineering as Research Method: Aligning Roles in Econ-ARK 156
Sebastian Benthall, Mridul Seth

Falsify your Software: validating scientific code with property-based testing 162
Zac Hatfield-Dodds

Towards an Unsupervised Spatiotemporal Representation of Cilia Video Using A Modular Generative Pipeline 166
Meekail Zain, Sonia Rao, Nathan Safir, Quinn Wyner, Isabella Humphrey, Alex Eldridge, Chenxiao Li, BahaaEddin
AlAila, Shannon Quinn

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020) 1

Preface
Meghann Agarwal¶, Julie Hollek§, Dillon Niederhut‡∗

F

SciPy 2020, the 19th annual Python in Science Conference,
was held July 6-12, virtually via the conference platform Crowd-
cast. Due to the COVID-19 pandemic, the SciPy conference was
held online. The SciPy Conference brings together a community
of researchers, engineers, and programmers dedicated to the ad-
vancement of scientific computing through open source Python
software.

The two main conference themes for 2020 were high
performance computing; and, machine learning and data sci-
ence. Discipline-specific symposia included astronomy and as-
trophysics; biology and bioinformatics; materials science; earth,
ocean, geology, and atmospheric science; and a new symposium
dedicated to fostering conversations among maintainers of the
open source infrastructure that help power the worlds of scientific
discovery and engineering. As was the case in 2019, there were
plenary sessions for updates about key scientific software libraries,
and three sessions of the ever-popular lightning talks, which this
year included SciPy’s youngest speaker, Artash Nath, discussing
machine learning approaches in exoplanet research.

The first conference keynote lecture was delivered by Anne
Carpenter, who discussed the history of CellProfiler in the context
of developing academic software, current application of the scien-
tific software stack to problems in biology, and future directions
for tasks like drug discovery, powered by machine learning.
Andrew Chael delivered the second keynote, about the large, inter-
organizational effort to take the first photograph of black hole
M87, and the role of scientific software in that project. This year’s
diversity plenary was given by Bonny McClain, who delivered
an interactive lecture about bias in data, and how to think about
measuring what people haven’t thought about measuring before.

The online format permitted a larger-than-usual number of
participants, ultimately attracting 1412 participants from a record-
breaking 57 countries, making this the largest SciPy Conference
yet. Participants reported that they enjoyed the broader access to
beginner tutorials for popular libraries like PyTorch and xarray --
something that would not be possible without having the confer-
ence at least partially online. Birds of a Feather (BoF) sessions
were organized around the topics of packaging, diversity, Python
in education, hardware, and SciPy 2021 with great attendance due
to the online format. Sprints that usually gather around tables in
conference rooms took the conversation to virtual tables using a

¶ Oracle
§ Mozilla
* Corresponding author: dillon.niederhut@gmail.com
‡ Novi Labs

Copyright © 2020 Meghann Agarwal et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

variety of technologies for text and voice chat. The online format
did come with its own set of challenges, in particular, promoting
serendipitous conversations that are typical in the “hallway track”
at the event along with the typical audience interaction seen in BoF
sessions and groups of participants trekking in the Austin heat to
enjoy tacos or other fine Austin fare and each others’ company.

Of this year’s conference attendees, 22% identify as women,
continuing SciPy’s trend in increasing participation of people
from minoritized communities. The organizers identified LGBTQ,
African American, Native American, Middle Eastern, and His-
panic/Latinx scientists as still underrepresented at the conference,
and targets for future equity and inclusion efforts. With this in
mind, SciPy announced a new initiative to provide additional
scholarship funding for Black, Indigenous, and People of Color
(BIPOC) to attend the conference, starting in 2021.1

While the global circumstances have been disruptive to all
facets of life, their effect on the conference was greatly mitigated,
largely due to the superhuman efforts of Jill Cowan and Kristen
Leiser. In particular, Jill started organizing for SciPy in 2014,
and over time has become the heart of the conference. Atten-
dees regularly remark that SciPy is the most open and friendly
conference that they attend, and typically add that they recall that
the first moment they felt this way was upon meeting Jill at the
registration desk. To add an editorial note, the SciPy Conference
would not be where it is today without Jill’s leadership over the
last six years; and, our own efforts as committee chairs have been
made significantly lighter due to her hard work. Jill is leaving the
conference this year for a well-deserved retirement, but she will
always be remembered in the community that she helped build.

We dedicate this work, the 19th Python in Science Conference
Proceedings, to Jill Cowan.

On behalf of the SciPy 2020 organizers,

Meghann Agarwal
Julie Hollek
Dillon Niederhut

1. The full statement is available at https://www.scipy2020.scipy.org/
support-of-black-communities

2 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Securing Your Collaborative Jupyter Notebooks in the
Cloud using Container and Load Balancing Services

Haw-minn Lu‡∗, Adrian Kwong‡, José Unpingco‡

F

Abstract—Jupyter has become the go-to platform for developing data applica-
tions but data and security concerns, especially when dealing with healthcare,
have become paramount for many institutions and applications dealing with
sensitive information. How then can we continue to enjoy the data analysis and
machine learning opportunities provided by Jupyter and the Python ecosystem
while guaranteeing auditable compliance with security and privacy concerns?
We will describe the architecture and implementation of a cloud based plat-
form based on Jupyter that integrates with Amazon Web Services (AWS) and
uses containerized services without exposing the platform to the vulnerabilities
present in Kubernetes and JupyterHub. This architecture addresses the HIPAA
requirements to ensure both security and privacy of data. The architecture uses
an AWS service to provide JSON Web Tokens (JWT) for authentication as well
as network control. Furthermore, our architecture enables secure collaboration
and sharing of Jupyter notebooks. Even though our platform is focused on
Jupyter notebooks and JupyterLab, it also supports R-Studio and bespoke ap-
plications that share the same authentication mechanisms. Further, the platform
can be extended to other cloud services other than AWS.

Index Terms—data science, infrastructure, jupyter, rstudio

Introduction

This paper focuses on secure implementation of Jupyter Note-
books and Jupyter Labs in a cloud based platform and more
specifically on Amazon Web Services (AWS) though many archi-
tectures and methods described here are applicable to other cloud
platforms. As Jupyter is the mainstay of scientific programming in
python, the ability to analyze data in a secure environment enables
the researcher to access data that is either sensitive or encumbered
by compliance to regulations such as Health Insurance Portability
and Accountability Act (HIPAA) which might otherwise not be
available.

Security is paramount for applications that process sensitive
data in areas such as defense, finance, and healthcare. Broadly
speaking, security regulations can be characterized in terms of
authentication (verifying the credentials of users and their access
to resources), encryption (data is encrypted at rest and in transit),
auditing (providing surveillance of key resources) and vulnerabil-
ity mitigation (antivirus and security updates).

In the architecture section, we describe how our architecture
using AWS Elastic Container Service (ECS) facilitates encryption

* Corresponding author: hlu@westhealth.org
‡ Gary and Mary West Health Institute

Copyright © 2020 Haw-minn Lu et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

at-rest and in-transit and integrates an application load balancer
(ALB) for authentication.

In the Applications and Authentication section, we dive into
the details of the ALB and how JSON Web Tokens (JWT) facilitate
integration with Jupyter and RStudio.

In the Security and Compliance section, we address the en-
cryption of the underlying cloud architecture, auditing capabilities,
and mitigation of vulnerabilities.

Our specific implementation satisfies privacy and security
concerns and can serve as a starting point to develop customized
solutions for related use cases.

Background

To implement a cloud based Jupyter compute platform is not
difficult. Project Jupyter includes Jupyter Hub, which provides a
proxy and container management. In particular the Zero to Jupyter
Hub with Kubernetes project, [Pro20] provides a framework to
implement Jupyter Hub on a Kubernetes platform. It is intended
as a quick method to deploy a cluster of Jupyter notebooks or
Jupyter labs easily. However, it has many significant drawbacks.

First, Kubernetes is notoriously difficult to secure and has
many vulnerabilities that are not addressed by default as evidenced
by these recommendations for securing a Kubernetes cluster
[Mar18]. One of the primary reasons is Kubernetes is immensely
complex.

Second, Zero to Jupyter Hub with Kubernetes to date does
not have a simple solution to the problem of encryption in transit
(encryption of all data over a network). All proposed solutions
(e.g., istio or weave) rely on yet another overlay in Kubernetes
making the solution even more complicated.

Literature on securing Jupyter in the cloud is scant but so-
lutions to individual issues can sometimes be found searching
through blogs, github issues and help sites. In this paper, the
reader is given a solution that can meet most security concerns in
one place, while not placing an undue burden on the end user or the
system administrator. The mantra of security through simplicity is
adopted.

Architecture

There are two distinct levels of architecture described. The cloud
architecture comprises the various cloud services which is the
lower layer of virtualization. The container architecture is the top
layer virtualization built on top of the cloud architecture.

SECURING YOUR COLLABORATIVE JUPYTER NOTEBOOKS IN THE CLOUD USING CONTAINER AND LOAD BALANCING SERVICES 3

ECS

EC2 Instances

Persistent
Storage

(ObjectiveFS)

ALB

Private Subnet

VPC

AWS

IDP

Fig. 1: Cloud Architecture.

Cloud Architecture

The basic cloud architecture is shown in Fig. 2. It consists of an
identity provider (IDP) used to authenticate a user, an application
load balancer (ALB) to regulate user access through authentica-
tion, and a fleet of elastic cloud computer compute (EC2) instances
to instantiate the containers. Finally, ECS manages the containers
deployed on the EC2 cluster.

Elastic Container Service: ECS is a container orches-
tration service. A container is instantiated as an ECS task. ECS
provides a resource called a task definition that allow for the
configuration of the container image, the environment variables,
command override and container port.

Taking the most naive approach, ECS can be instructed to start
a task based on a task definition. After the task has fully started,
the host among the EC2 instances and the mapped port (the port
on the EC2 node which is mapped to the container port) is known.
At this point, one could write a monitoring function to detect when
a task has started, retrieve the specific host and mapped port and
create a listener rule for the application load balancer.

Instead of this cumbersome procedure, ECS provides another
resource called a service. A service can manage many aspects
of tasks within ECS including the number of tasks and a target
group associated with the service. For our purposes managing the
number means selecting a desired count of 1 or 0 depending on
whether the container is running or has been automatically culled
due to inactivity. A target group is a collection of host ports or
serverless AWS Lambda functions, to which a listener rule can
direct network traffic. In short by specifying a target group to a
service, the host and mapped port are automatically assigned to
the target group when a task has fully started.

Application Load Balancer: AWS’s ALB can comprise
multiple listeners to support multiple protocols. To maintain secu-
rity, enforcement of HTTPS should be maintained either by not
including a listener for HTTP or providing an HTTP listener that
redirects all requests to HTTPS.

AWS’s ALB, through a listener, is able to direct exter-
nal HTTPS requests to various components. Based on lis-
tener rules, a request can be directed on the basis of
both the hostname and the path. As an example, we
use a path to specify a user and a service such as
Jupyter (for example, domain.com/user_id/Jupyter or

domain.com/user_id/rstudio), this allows us to give
each user their own container.

Each listener rule maps a path, hostname or both to a particular
target group. Since we use an ECS service, we can assign a
particular service to a target group. The service then manages
which ports and EC2 instances are part of the target group.

While the ALB can enforce encryption from the end user to
the ALB, the container application (e.g., Jupyter) should also
be configured to listen only for HTTPS. In this manner, the
communication from the end user to the ALB is encrypted as
is the communication from the ALB to the container application,
ensuring end to end encryption.

Furthermore the application load balancer is also configured
to perform authentication from an OpenID Connect (OIDC) com-
pliant IDP. This eliminates the need for multiple messages to be
passed when using either SAML or OAuth. Upon authentication,
the ALB attaches three fields to the header of the http request
x-amzn-oidc-accesstoken, x-amzn-oidc-identity
and x-amzn-oidc-data which can be used by the end applica-
tion to confirm the user’s identity and validate the authentication.
An example of this process as implemented in a Jupyter notebook
is described below.

For our IDP, we use Okta since it allows us to federate identity
services to additional sign on services. This allows us to onboard
collaborators and allow the collaborators to manage their users.

Shared Storage: In order to facilitate persistence across
containers and also collaboration, ECS orchestrates containers on
EC2 instances instead of AWS’s Fargate product (Fargate facili-
tates containers in a serverless fashion but does not provide a host
to mount an ObjectiveFS file system). Persistent storage can be
mounted on the underlying EC2 instances. Individual containers
can access the persistent storage by bind mounting the persistent
storage. To meet security compliance of encryption at rest, the
persistent storage should be encrypted. We elected to use the third
party ObjectiveFS for cost reasons though native AWS resources
such as elastic file system (EFS) can be used provided that both
the file system and the network communications to the file system
are encrypted. [Ser20c] ObjectiveFS is a secure file system backed
by AWS simple storage service (S3). It should be noted to meet
encryption in transit compliance requirements that any network
attached storage must have network communications encrypted.
For example, the base network file system (nfs) protocol is not.

As a specific example with Jupyter notebooks we mount per-
sistent storage as /media/home/. For a given user say user_a
we bind mount /home/jovyan to /media/home/user_a
so that while in the container the user sees /home/jovyan the
home directory the users files are actually stored in the persistent
storage in a user_a subdirectory. This configuration has two
advantages. Only one persistent volume is needed to support all
users’ home directories minimizing costs and within the container
all users see /home/jovyan thus eliminating the need to build a
separate Jupyter container image for each user.

With this configuration, multiple services can use the same
home directory. For example, in our R Studio deployment
/home/rstudio is also mapped to /media/home/user_a.
Furthermore, we also can provide a persistent volume for
shared directories. For example, for all users on project_a
we bind mount /home/jovyan/projects/project_a to
/media/projects/project_a where the persistent volume
is mounted to /media/projects.

4 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

jupyter

RStudio

vnc

custom

hub

jupyter

/h
ub

/

/user_a/jupyter

provisioner

/user_a/rstudio

/user_a/vnc
/user_a/custom

/user_b/jupyter

user_a

user_b

ALB

Fig. 2: Cloud Architecture.

Resource Summary: To securely implement the above
cloud architecture, each container instance for each user has a
set of resources associated with it. First, a task definition is
created for each user, this enables customized bind mounts as
described above. Additionally, custom environment variables or
task commands can also be supplied through the task definition.
The task definition can also direct logging the the appropriate
AWS CloudWatch stream.

Each user also has a ECS service, ALB listener rule and target
group associated with it. This allows the seamless management of
connecting a user to the desired container instance.

Finally each service has an AWS IAM role associated with
it, this ensures the user has only the access rights to our AWS
cloud that are need by the user. Beyond the rights to operate the
container task, additional rights might include access to certain S3
storage or certain AWS Secrets Manager. As an example, we use
the AWS Secrets Manager to manage user’s credentials to various
databases and public/private keys.

To simplify management of the per user resources, an AWS
CloudFormation template is used to ensure consistency and uni-
formity among cloud resources whenever a new container in-
stance/user combination is spun up. As an example, our Cloud-
Formation template contains an IAM role, listener rule, target
group, task definition, and an ECS service. Each template is then
customized to spin up a CloudFormation stack for each user and
application combination.

Container Architecture

The architecture in terms of container comprises a persistent
hub container, an optional ephemeral provisioner container, and
an assortment of semi-persistent application containers such as
Jupyter notebook. In an alternative deployment, AWS Lambda
functions can be functionally substituted for the hub container,
but for the sake of simplicity only the container version of the hub
is described.

The application containers are described as semi-persistent as
they can be started on demand and culled when one or more
inactivity criteria has been reached. This can be achieved by
updating the associated service to have a desired count of 1 to
start or a desired count of 0 to cull.

We adopted a url path routing convention to access each
application such as domain.com/user_id/application

Container Management: The heart of the system is the
hub container. To facilitate ALB authentication, two listener rules
are provided. One rule allows anyone to connect, so that the hub
can present a login page (with single sign on and IDP this looks
like a single login button). The login action redirects the browser
to a url which forces authentication via the ALB. Though this step
is not necessary, it provides a cue that makes for a smoother user
experience.

Since the hub container may be given privileges to set IAM
roles for the application services, the role under which the hub
service runs can have a boundary policy attached to it [Ser20d].
This ensures that any role created by the hub service is constrained
to include the boundary policy. This prevents the hub from being
able to create an arbitrary role should the container become
compromised.

The provisioner container is an ephemeral task which is run
with the persistent storage mounted. The provisioner can create
a home directory for a user the first time the user logs in
and provision the directory with any necessary files. While the
functionality of the provisioner container could be incorporated in
the hub container. Separation allows the provisioner to run with
minimal cloud privileges (IAM role) and allows the hub to have
no access to the shared home directory, so in the event the hub
container is compromised the user’s file system is not exposed.
Also, with separation the hub does not have to have access to
the file system so it can be refactored and deployed as a Lambda
function. Furthermore the provisioner container runs very briefly
further limiting the vulnerability window.

Once authenticated, the user can elect to connect to an appli-
cation container. This can occur under three circumstances: the
user’s application container is still running, the user’s application
container has been culled, or the user has never started the
application before. If the container is still running, the user is
immediately redirected to the container. If the container has been
culled, the service is updated to a desired count of 1. If the
application has never been started by the user, resources to spin
up the service are created such as by creating a CloudFormation
stack.

Additionally, an option to "decommission" an application can
be presented where the CloudFormation stack can be deleted.

Culling: The best practice for culling an application is to
have the application upon exiting, set the desired count to 0 of its
corresponding service.

For the example of Jupyter, the start up scripts for both Jupyter
notebook and Jupyter lab contains the following snippet with
main imported from different places:
if __name__ == '__main__':

sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$',
'', sys.argv[0])

sys.exit(main())

Rather than just exiting after main completes, a modified start up
script updates the desired count of the corresponding service to
0. Since boto3 essentially wraps API calls to AWS, a delay
before termination is needed to ensure the update API call is
received before terminating the task. Failure to change the desired
count will only result in the service restarting the container upon
termination.
if __name__ == '__main__':

sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$',
'', sys.argv[0])

main()
session = boto3.Session()

SECURING YOUR COLLABORATIVE JUPYTER NOTEBOOKS IN THE CLOUD USING CONTAINER AND LOAD BALANCING SERVICES 5

ecs = session.client("ecs", region_name)
ecs.update_service(cluster=cluster_name,

service=service_name,
desiredCount=0)

Sleep for 2 minutes give service time to update
time.sleep(120)

Code to retrieve the region_name, cluster_name, and
service_name, are omitted for clarity, but they can be retrieved
from environment variables (set in task definition), passed via
sys.argv or even by calls to boto3. Though the first two
options are simpler.

The above modification to the start up scripts
ensures that when Jupyter exits the task count is
zero. However, in order for this to be meaningful
culling parameters in the Jupyter configuration such as
c.NotebookApp.shutdown_no_activity_timeout
c.MappingKernelManager.cull_connected,
c.MappingKernelManager.cull_idle_timeout
and c.MappingKernelManager.cull_interval, as
well as setting a shell timeout (e.g., TMOUT environment variable
are set) in the event a terminal is open.

Authentication and Applications

As mentioned above, the bulk of the authentication is performed
by the ALB. However, it is important for the individual application
to validate a request forwarded by the ALB, for two reasons.
Validation prevents potential security vulnerabilities due to a
misconfiguration in the system or exposes security vulnerabili-
ties during the initial system debugging. Additionally, validation
ensures that the identity of the user is what is expected. The ALB
ensures that the user has validly authenticated, but it is up to the
application to ensure that the correct user has connected.

Validation is achieved through the JWT token presented in the
x-amzn-oidc-data header by the ALB. These JWT tokens
are signed by a public key retrievable from AWS ensuring that
only the ALB could have signed them. Within the JWT token, the
kid field represents the key ID for the public key. To validate, the
key ID should be extracted and corresponding public key should
be retrieved from AWS. With the public key, the JWT token can
then be validated. We use the python-jose module available on
PyPi. The sub field in the JWT token is the same as the OIDC ID
which is also presented in the x-amzn-oidc-identity field.
The application should then verify this is OIDC ID associated with
the expected user.

To deploy an application securely in our infrastructure, in
addition to validating the authentication, the application container
should meet four more requirements. It should have a configurable
base url as the ALB will forward requests to the application with
the base url prefix. It should communicate to the ALB over HTTPS
to ensure end to end encryption. It should provide a url to respond
to pings sent by the ALB for health checks. It should validate that
the mounted home container belongs to the user.

The solution to the last requirement is for our provisioner
to write an .id file in the user’s home directory containing the
user’s ID. This file is written by root and is only readable. The
application upon startup or authenticaation can verify that the user
has the correct home directory mounted. This requirement is a
safeguard against misconfiguration and can be omitted if one is
confident that the system is not misconfigured.

Jupyter

Implementing authentication for Jupyter notebook/lab is par-
ticularly challenging as they do not combe with a pluggable
authentication module, unlike JupyterHub. In order to imple-
ment validation, the source file login.py must be modi-
fied. This file is usually located in the notebook/auth/
directory in your site-packages or dist-packages di-
rectory. Since Jupyter notebook and JupyterLab are not truly
separate applications (in fact they are interchangeable using
the path /tree or /lab), the same login.py file fa-
cilitates authentication for both. If you build using a stan-
dard docker image such as jupyter/base-notebook
or any of its derivative notebooks, this directory would
be /opt/conda/lib/python3.x/site-packages direc-
tory. Please note that the specific python version may vary depen-
dent on which version of the docker container is used and whether
subsequent additional install modules might force a rollback of
python versions.

The specific modification to the login.py file in-
volves replacing two methods, the get method and the
get_user_token class method of the LoginHandler class.

Unaltered, the method get determines whether the
current_user is set indicating the user has been logged in.
If not authenticated, the function presents a login page. Our mod-
ification simply adds an additional check that if current_user
is not set, we validate the JWT token in header to determine
additionally whether the user is authenticated. It should also be
noted that the function is also decorated as a coroutine to make
the function asynchronous as the verification may require network
access to retrieve a public key.
@tornado.gen.coroutine
def get(self):

authenticated = False
if self.current_user:

authenticated = True
else:

if self.verify_jwt():
authenticated=True

if authenticated:
next_url = self.get_argument('next',

default=self.base_url)
self._redirect_safe(next_url)

else:
self._render()

The other method to be replaced is the get_user_token.
Unaltered, the method returns the authorization token used as part
of a notebook/lab minimal authentication scheme. This token is
normally supplied as a query string in the URL or through the
login page. We bypass this mechanism altogether. Instead, we
examine the request header for a JWT token supplied by AWS
and validate it. If it is successful we provide a token. As far as
the rest of the notebook code the value of the token is not used so
we supply a random string. Our version of get_user_token
uses a local cache to store retrieved public keys and previously the
previously decoded user ID.
@classmethod
def get_user_token(cls, handler):

"""Identify the user based on
Authorization header

Returns:
- uuid if authenticated
- None if not
"""

6 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

authenticated = False
if cls.verify_oidc(handler):

authenticated = True
else:

oidc_jwt = handler.request.headers\
.get('x-amzn-oidc-data')

if oidc_jwt:
try:

header = jwt.get_unverified_headers(\
oidc_jwt)

except JOSEError:
return None

kid = header.get('kid')
if kid and kid == user_cache.get('kid') \

and user_cache.get('pk'):
try:

token = jwt.decode(oidc_jwt,
user_cache['pk'])

except JOSEError:
return None

oidc_id = handler.request.headers\
.get('x-amzn-oidc-identity')

if token['sub'] == oidc_id:
authenticated = True
user_cache['jwt'] = oidc_jwt
user_cache['user_id'] = oidc_id

if authenticated:
return uuid.uuid4().hex

else:
return None

In addition to the two modified methods, we supply two
helper methods verify_jwt for get and verify_oidc for
get_user_token. They perform the token validation and cache
management. Additional code which can read identifiers in persis-
tent volumes and verify they match the user who is authenticated
can also be added to ensure two authenticated users don’t have
access to the other’s containers.
def verify_jwt(self):

global user_cache
oidc_id = self.request.headers\

.get('x-amzn-oidc-identity')
oidc_jwt = self.request.headers\

.get('x-amzn-oidc-data')

if not oidc_jwt:
self.log.warning("No JWT Token in Header")
return False

if (user_cache.get('user_id') == oidc_id and \
user_cache.get('jwt') == oidc_jwt):
return True

try:
header = jwt.get_unverified_headers(oidc_jwt)

except JOSEError as e:
self.log.error("JWT failed to decode: {}"\

.format(e))
return False

kid = header.get('kid')
if not kid:

self.log.error("No Key ID in JWT token")
return False

if kid != user_cache.get('kid'):
if 'pk' in user_cache:

del user_cache['pk']

if not 'pk' in user_cache:
try:

r = requests.get(PK_SERVER + kid)
TODO treat return code
user_cache['pk'] = r.text
user_cache['kid'] = kid

except requests.RequestException as e:

proxy

RStudio
server

app/ping

/user_id/rstudio/auth-sign-in

/user_id/rstudio

Fig. 3: Inside the RStudio Container

self.log.error("Requests Error: {}"\
.format(e))

return False

try:
token = jwt.decode(oidc_jwt,

user_cache['pk'])
except JOSEError as e:

self.log.info("JWT failed to validate: {}"\
.format(e))

return False

if token['sub'] != oidc_id:
self.log.error("User ID in token doesn't "

"match user ID in header")
return False

user_cache['user_id'] = oidc_id
user_cache['jwt'] = oidc_jwt

@classmethod
def verify_oidc(cls, handler):

global user_cache
oidc_id = handler.request.headers\

.get('x-amzn-oidc-identity')
oidc_jwt = handler.request.headers\

.get('x-amzn-oidc-data')

if not oidc_id or not oidc_jwt:
return False

if oidc_id != user_cache.get('user_id'):
return False

if oidc_jwt != user_cache.get('jwt'):
return False

try:
header = jwt.get_unverified_headers(oidc_jwt)

except JOSEError:
return False

kid = header.get('kid')
if kid != user_cache.get('kid'):

return False

return True

To meet the other requirements for Jupyter, the base_url
configuration needs to be set to ensure that the route is properly
interpreted. Furthermore, we use this base_url as the health
check url which responds with a 302 code. A self-signed certifi-
cate is automatically generated when the container starts and that
certificate is then used to configure Jupyter to run over HTTPS.

SECURING YOUR COLLABORATIVE JUPYTER NOTEBOOKS IN THE CLOUD USING CONTAINER AND LOAD BALANCING SERVICES 7

RStudio

Our implementation of RStudio Server on the same cloud platform
is non-invasive to the code base, but more complicated architec-
turally. Since RStudio does not have a way to set the base URL of
the application, a proxy is required to rewrite the HTTPS request
paths. We use an nginx proxy to rewrite requests to RStudio
Server using the proxy_redirect directive.

Figure shows the application structure within the RStudio
container. A proxy communicates with the ALB and routes some
requests to a custom app used for authentication and handling the
health checks and others to the RStudio server. Since communi-
cations between the proxy, app and RStudio server are all within
the container and not exposed, they do not require encryption to
satisfy compliance. A self-signed certificate is created upon con-
tainer startup that enables nginx to communicate over HTTPS to
the ALB.

For authentication, RStudio Server maintains authentication
session information in a cookie. So with nginx we capture, the
auth-sign-in URL and redirect it to an lightweight webapp
whose sole function is to authenticate the user, set the cookie and
redirect the browser to RStudio Server. Since the app is necessary
in this configuration, we also configure the app to respond to a
/ping request issued by the ALB target group’s health check.

The authentication code is nearly identical to the
verify_jwt function written above for Jupyter. The cookie
consists of three pieces, a user ID (which we retain as
the default rstudio as we retained jovyan for the
Jupyter notebook, to prevent the need to build a separate
docker image for each user), the expiry and an HMAC
256 signature, signed with a secret typically stored at
/var/lib/rstudio-server/secure-cookie-key in-
side the container. The following snippet of code implements this.
from urllib.parse import quote
from Crypto.Hash import HMAC
from Crypto.Hash import SHA256
import base64
import datetime

utc = datetime.datetime.utcnow()
expiry = utc + datetime.timedelta(days)
now = expiry.strftime('%a, %d %b %Y %H:%M:%S GMT')
dig = base64.b64encode(\

HMAC.new(secret,
"{0}{1}".format(username, now),
digestmod=SHA256).digest())

cookie = quote("{0}|{1}|{2}".format(username,
now,
dig.decode()),

'|')
response.set_cookie('user-id', cookie)

The days is the number of days til the cookie expires, and
username is the user name (i.e. rstudio). In the above snippet,
the cookie is attacked to a Flask response.

Virtual Network Computing (VNC) Containers

There are many desktop apps for Linux which may also be useful
to deploy via a web application on a cloud cluster such as pre-
sented here. The following implementation allows the deployment
of such applications such as Orange and Falcon through the use of
a web VNC client to a VNC server running in a container.

This is based on the Docker Headless VNC Container project
[Con19] as a blueprint using the xfce4 window manager. Since it
appears that the project has been inactive for over a year we adopt

novnc

OS

vnc
server

6901

5901

Fig. 4: Inside a VNC Container

its Dockerfile as a starting point but do not use the docker
images as a building block.

Figure 4 shows the application structure within a headless
VNC container. NoVNC [noV20] is used as a web to vnc
proxy which connects via VNC to a local vnc server which in
accordance to the Docker Headless VNC Container project is
tigerVNC [Tig20]. Through the VNC server graphically oriented
operating system commands and applications can be executed.
In our container tigerVNC is unchanged and is installed just
as it is in the headerless project’s Dockerfile. The noVNC
project comprises a novnc and websockify component. No
changes were made to the novnc component except to alter the
parameters use to start websockify. Therefore the focus of the
customization is on the websockify component.

Fortunately, websockify permits authentication plugins.
The plugin is a simple class with an authenticate
method which accepts the headers, target_host and
target_port as parameters. Upon success it returns and on
failure it raises an AuthenticationError exception. Since
the body of the code is essentially the same as the verify_jwt
method descirbed for Jupyter, the code is not repeated here.

It should be noted that in the container by default the VNC
server listens on port 5901 and the novnc client listens on port
6901. It is recommended that only port 6901 be exposed so that
only the novnc client can directly communicate with the VNC
server as the VNC password in this environment is not well
protected. By only exposing port 6901, knowledge of the VNC
password can not be exploited to bypass the authentication.

Furthermore, the web server within the websockify project
is located in websockifyserver.py and is based on
SimpleHTTPServer. It may be desirable to create a custom
handler or custom do_GET method to handle issues such as pro-
viding a base URL, health check URL for the ALB’s target group,
or to implement templating if desired. A self-signed certificate is
generated in a launch.sh as self.pem which the webserver will
automatically detect and run using HTTPS.

Once this base container image is built with those customiza-
tions. Applications such as Orange or Falcon can be added, thus
not limiting the cloud system to web applications.

Custom Applications

In developing your own bespoke applications, a layer of authenti-
cation can be employed. In consideration of developing or adapt-

8 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

ing your own application, you should provide an unauthenticated
URL for the ALB’s health check and be equipped to configure the
base URL. Authentication can be easily plugged into most web
server frameworks.

As a simple example, using flask authentication can be in-
corporated into a custom login_required decorator, so that
for any protected URL the request is authenticated before being
processed. Once again the decorator could be implemented with
code similar to that of jwt_verify described above.

Security and Compliance

In our cloud architecture, the bulk of the security and compliance
is built into the EC2 instances serving as nodes behind the ALB
and built into features of the ALB. By keeping most of the
security external to the containers, container images need less
customization for security purposes making it easier to support
a wide variety of container images and container apps.

The preferred method to implement security, compliance, and
even maintenance services on an EC2 instance is to install the
appropriate software in an Amazon machine image (AMI). By
building a customized AMI based off an optimized Amazon
ECS reference AMI [Ser20b] but including the desired additional
services installed, an fully equipped EC2 instance can be spun up
quickly and features such as autoscaling can easily be applied.

Specifics to security and compliance implementations are
described in the following subsections including encryption at rest,
access controls, auditing and other agents.

Encryption at Rest

As previoiusly mentioned, persistent storage and associated file
system protocol are encrypted give both encryption in transit and
encryption at rest for the persistent storage. However, it is also
important that the base file system of the EC2 instances are also
encrypted to fully ensure encryption at rest. There are two impor-
tant aspects of ensuring encryption at rest for the base file system.
First the attached file system such as elastic block storage (EBS)
must be encrypted. This is accomplished by selecting encryption
when creating the EC2 instance or within a launch configuration.
Fortunately, AWS now offers an account-level option where EBS
volumes are encrypted by default for any EBS volumes created
in that given account. We highly recommend this option as it will
mitigate the chances of misconfiguration.

Furthermore, the AMI used to create EC2 instances must also
be encrypted. A common technique for doing so is to build an
machine snapshot will all the agents and services desired then
encrypt the snapshot. Regardless for what techinque is used.
the AMI’s should be encrypted to satisfy any requirements for
encryption at rest.

Access Control

Another security concern is controlling the internet access from
the container. The reason is two fold. First, controlling access
allows us to prevent users from within a container from accessing
potentially malicious websites. Second, should a container become
compromised we want to mitigate the compromised container’s
ability to escalate privileges or pivot to other services within
the organization. While AWS through the use of security groups
and access control lists provide a coarse ability to regulate what
destinations are accessible, we favor more fine grain control.

There are two aspects of this finer grain control, first we use
an on-host firewall to control outbound access from the hosted

containers. Second we funnel all traffic from each container to a
proxy.

For the firewall, we use iptables using the following
commands:

iptables --insert DOCKER-USER --in-interface docker0 \
-o eth0 -j DROP

iptables --insert DOCKER-USER \
--destination 169.254.169.254 --jump REJECT \
--reject-with icmp-port-unreachable

iptables -t nat -A PREROUTING -i docker0 \
-d 172.17.0.1 -p tcp --dport 8888 -j RETURN

iptables -t nat -A PREROUTING -i docker0 \
-d 172.17.0.1 -p tcp -j DNAT --to-destination :2

The first command blocks all internet traffic coming from the
docker0 interface (where the containers must route through) to
the eth0 interface which is the external interface. The second
command (see [Cos18]) blocks access to the node specific meta-
data service, which typical contains information about the EC2
instance and credentials for that instance.d. Blocking this prevents
a compromised container from accessing the metadata about the
EC2 instances blocking a potential escalation in privileges to that
of the EC2 node. The third and fourth commands allows the
container access to the EC2 instance (which in the docker world
is IP address 172.17.0.1) only on port 8888, where the proxy
is configured to listen. All other access is routed to port 2 which
has no active listeners.

On the container side, the environment variables
http_proxy and https_proxy must be set to forward
all http and https request to the EC2 instance at port 8888. In
addition the no_proxy environment variable should be set to
allow some traffic not to be forced into the proxy. Of course,
localhost (and corresponding IP address 127.0.0.1) do
not require proxy as the traffic doesn’t leave the container. In
addition, the metadata IP address 169.254.169.254 should
be allowed out so that the iptables rule regarding the metadata
traffic can be enforced. Finally, the IP address 169.254.169.2
is used by the ECS agent.

Two methods can be used to address the environment vari-
ables. Either we can add the environment variables to the task
definition when an application service created or it can defined in
the container’s Dockerfile with the following lines:

ENV http_proxy=http://172.17.0.1:8888/
ENV https_proxy=http://172.17.0.1:8888/
ENV no_proxy=localhost,127.0.0.1,\
169.254.169.254,169.254.170.2

Because of the iptables rules a misconfiguration that fails to
set the proper environment variables results in loss of access and
not a vulnerability.

The proxy can then determine whether to route the connection
request directly externally or through an external outbound gate-
way which could include a company firewall so that broad based
policies could be applied. For the proxy we selected tinyproxy
because it is lightweight and allows gateway credentials to be em-
bedded in the proxy configuration pushing the burden of gateway
credentials to the proxy and not the container or application of the
container.

Auditing

Beyond security reasons, many regulations such as HIPAA require
auditing for compliance. Our approach is two fold. We use the

SECURING YOUR COLLABORATIVE JUPYTER NOTEBOOKS IN THE CLOUD USING CONTAINER AND LOAD BALANCING SERVICES 9

ALB logging capabilities to track access to application containers
and authentication. We use a logging agent to track potential
privilege escalation or other security concerns on the underlying
EC2 host.

The ALB provides logging [Ser20a] which will log all access
to the application containers to an S3 bucket. Because in our
architecture all authentication is performed using the ALB all
authentication attempts both successful and more importantly
failures are also logged to the bucket. Many third party log
management tools are configurable to digest logs stored in this
manner including Loggly, Splunk, Sumo Logic.

Another good practice is to set the target S3 bucket in a
separate AWS account and only grant privileges to the logging
account to write to the bucket but not delete. This ensure that even
if a container or the EC2 instance is compromised, the logs can
not be tampered with.

To supplement the auditing and monitoring capability one or
more logging agents are installed on the EC2 instance. Essentially,
this agent transmits logs of interest such as the system log
syslog to an external log management system. Through this
mechanism behaviours such as privilege escalation (e.g. sudo)
are tracked. We use both the native AWS logging agent and a third
party logging agent.

With both mechanisms in place, the preferred log management
system can be configured to provide alarms when severe incidents
occurs and generate reports of incidents as may be required by
compliance requirements.

Other Useful Agents

Building a custom AMI image to spin up an EC2 instance to sup-
port our ECS cluster affords the opportunity to install additional
agents to meet security, compliance and maintenance needs. Our
best practices is to the include the following additional agents in
the AMI. Some of agents are provided by AWS while some are
third party.

ECS Agent: The AWS ECS agent is required in order for
the EC2 instance to serve ECS containers. However, periodically
updating the ECS agent is important in that potential vulnera-
bilities may be fixed and newer agents offer more features to
aid in maintenance. Furthermore, proper configuration of features
can aid in security as well. For example, the ECS agent can be
configure so that the maximum lifetime of an EC2 instance is set.
This is particularly useful if the AMIs for the EC2 instances are
constantly being updated with security patches etc. The limited
lifetime guarantees that the EC2 instances running will not be
based on an AMI that is too out of date.

Systems Manager Agent: Another useful AWS Agent
that can be employed is the AWS Systems Manager Agent (SSM)
[Ser20e]. The SSM agent allows the “Systems Manager to update,
manage and configure” the EC2 instances. This agent makes
it easier to maintain EC2 instances in a centralized manner.
Once again keeping an EC2 instance up to date helps reduce
vulnerabilities on the node.

Anti-virus: An antivirus or antimalware agent is also
recommended. The antivirus should be one that is container aware
and that the container awareness feature should be active. This
would facilitate pinpointing the specific container that may be
compromised. Container systems such as docker are not complete
virtualizations. Processes that run in a container run as processes
in the native host, as such an antivirus agent inside can monitor

processes that occur “inside a container”. Container aware an-
tivirus agents makes mitigation in a container environment easier.
In our particular configuration, we use Sophos as the antivirus but
you may have your own preferences.

Intrusion Detection: Another useful agent to be deployed
on the EC2 instance is an intrusion detection agent. Like this
antivirus agent, an intrusion detection agent that has container
awareness capabilities is desirable and should have the capability
activated. The intrusion detection agent looks for activities that
are anomalous and when high risk activity is detected, it will
gather as much information around the incident as it can. We use
ThreatStack for our intrusion detection.

Conclusion

Presented here is a secure, collaborative infrastructure for deploy-
ing a cloud computation resources vital to our organization for
scientific analysis of health related data on the Jupyter platform.
The primary purpose of our infrastructure is to provide Jupyter
in this environment as well as other tools such as RStudio. Our
Data Science and infrastructure team is small so building a com-
pliant infrastructure that requires little maintenance is paramount.
Equally important is to safeguard against opening vulnerabilities
due to misconfigurations. By following the suggestions presented
here, misconfigurations err on the side of loss of functionality
rather than introducing vulnerabilities.

The architecture presented here was successful in a recently
performed penetration test. We hired a third party company that
specializes in penetration testing and gave them normal user rights
to a Jupyter notebook container and challenged them to escaped
the container. The penetration testers was unable to escape the
container to other parts of the system or escalate privileges to gain
additional access to resources.

While the recommendations and architecture shown here rely
heavily on AWS resources. No doubt elements and counterparts
can be found in other cloud services such as Google Cloud and
Microsoft Azure.

Snippets of code, Dockerfile, commands and other resources
presented here and the corresponding poster are available at
West Health’s github repository at https://github.com/WestHealth/
scipy2020/tree/master/cloud_infrastructure.

REFERENCES

[Con19] ConSol Misc GmbH. Docker container images with "headless" vnc
session, 2019. URL: https://github.com/ConSol/docker-headless-
vnc-container.

[Cos18] Ciro S. Costa. Blocking ec2 metadata service from docker containers
in aws, Aug 2018. URL: https://ops.tips/blog/blocking-docker-
containers-from-ec2-metadata/.

[Mar18] Andrew Martin. 11 ways (not) to get hacked, 2018. URL: https:
//kubernetes.io/blog/2018/07/18/11-ways-not-to-get-hacked/.

[noV20] noVNC. novnc, 2020. URL: https://novnc.com/info.html.
[Pro20] Project Jupyter. Zero to jupyterhub with kubernetes, 2020. URL:

https://zero-to-jupyterhub.readthedocs.io/en/latest/.
[Ser20a] Amazon Web Services. Access logs for your application

load balancer, 2020. URL: https://docs.aws.amazon.com/
elasticloadbalancing/latest/application/load-balancer-access-
logs.html.

[Ser20b] Amazon Web Services. Amazon ecs-optimized amis, 2020. URL:
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/
ecs-optimized_AMI.html.

[Ser20c] Amazon Web Services. Data encryption in efs, 2020. URL: https:
//docs.aws.amazon.com/efs/latest/ug/encryption.html.

[Ser20d] Amazon Web Services. Permissions boundaries for iam entities,
2020. URL: https://docs.aws.amazon.com/IAM/latest/UserGuide/
access_policies_boundaries.html.

10 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

[Ser20e] Amazon Web Services. Working with ssm agent, 2020. URL:
https://docs.aws.amazon.com/systems-manager/latest/userguide/
ssm-agent.html.

[Tig20] TigerVNC. Tigervnc, 2020. URL: https://tigervnc.org/.

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020) 11

Quasi-orthonormal Encoding for Machine Learning
Applications

Haw-minn Lu‡∗

F

Abstract—Most machine learning models, especially artificial neural networks,
require numerical, not categorical data. We briefly describe the advantages and
disadvantages of common encoding schemes. For example, one-hot encoding
is commonly used for attributes with a few unrelated categories and word
embeddings for attributes with many related categories (e.g., words). Neither
is suitable for encoding attributes with many unrelated categories, such as
diagnosis codes in healthcare applications. Application of one-hot encoding for
diagnosis codes, for example, can result in extremely high dimensionality with
low sample size problems or artificially induce machine learning artifacts, not
to mention the explosion of computing resources needed. Quasi-orthonormal
encoding (QOE) fills the gap. We briefly show how QOE compares to one-hot
encoding. We provide example code of how to implement QOE using popular
ML libraries such as Tensorflow and PyTorch and a demonstration of QOE to
MNIST handwriting samples.

Index Terms—machine learning, classification, categorical encoding

Introduction

While most popular machine learning methods such as deep
learning require numerical data as input, categorical data is very
common. For example, a person’s vitals could be a combination
of both, they could include height, weight (numerical) and gender,
race (categorical). The challenge is to convert the categorical data
into a vector of some sort.

One-hot encoding which is discussed in the next section is very
commonly used in machine learning but has the drawback that it
can increase the dimensionality of the data by the cardinality of
the category. For small category, this is not a significant issue but
when categories with high cardinality are present, many problems
can arise as described below.

Quasiorthonormal encoding (QOE) is a generalization of the
one-hot encoding and exploits the fact that in high dimensional
vector spaces, two random vectors are almost always orthogonal.
The concept originated with Kůrková and Kainen [KK96]. In
many ways, QOE functions the same as one-hot encoding but
does not increase the dimensionality of the data to the same
degree as one-hot encoding. Historically, QOE was considered
for a method of encoding words but modern techniques such as
word embeddings are now considered the state of the art method
for encoding language.

* Corresponding author: hlu@westhealth.org
‡ Gary and Mary West Health Institute

Copyright © 2020 Haw-minn Lu. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Some advantages to QOE include a reduction of dimensional-
ity over that of using one-hot encoding thus limiting effects of the
“curse of dimensionality”1 or the problem of high dimension low
sample size (HDLSS). The advantage over other encodings such
as binary, hash, etc. is that it does not induce artificial geometric
relationships that can cause downstream bias in the results because
each label in a category remains mathematically near orthogonal
to the other labels.

We will briefly survey classic encoding methods, discuss
the theoretical aspects of QOE, and present a detailed example
implementation of QOE in tensorflow.

Background

Coding methods can be categorized as classic, contrast, Bayesian
and word embeddings. Classic, contrast and Bayseian encoding
are given a good overview treatment by Hale’s blog [Hal18] with
examples to be found as part of the scikit-learn category
encoding package [McG16]. Both contrast encoding and Bayesian
encoding use the statistics of the data to facilitate encoding. These
two categories may be of use when more statistical analysis is
required, however there has not been widespread adoption of these
encoding techniques for machine learning.

Word embeddings are their own special category. [GK19].
Word embeddings are used to represent words, phrases or even
entire documents as a vector so that similar meanings/concepts
are mapped to vectors that are close in the target vector space.
Additionally, it is adapted for encoding a large categorical features
(i.e., words) into a relatively lower dimensional space.

The remainder of the section will describe some common
classic categorical encodings

Ordinal Encoding

To begin our overview of fundamental encoding methods, we start
with Ordinal (Label) Encoding. Ordinal encoding is the simplest
and perhaps most naive approach encoding for a categorical
feature --- one simply assigns a number to each member of a
category. This is often how data from surveys are encoded into
spreadsheets for easy storage and calculation of basic statistics.
An associated data dictionary is used to convert the values back
and forth between a number and a category. Take for example the
case of gender, male could be encoded as 1 and female as 2, with
a data dictionary as follows: {'male': 1, 'female': 2}

1. Mukhtar [Muk19] gives a good explanation of the curse of dimensionality
as applied to data science.

12 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Make Ordinal One-Hot

Toyota 1 (1,0,0,0,0)
Honda 2 (0,1,0,0,0)
Subaru 3 (0,0,1,0,0)
Nissan 4 (0,0,0,1,0)
Mitsubishi 5 (0,0,0,0,1)

TABLE 1: Examples of Ordinal and One-Hot Encodings

Make Ordinal as Binary Binary Code

Toyota 1 001 (0,0,1)
Honda 2 010 (0,1,0)
Subaru 3 011 (0,1,1)
Nissan 4 100 (1,0,0)
Mitsubishi 5 101 (1,0,1)

TABLE 2: Example of Binary Codes

Suppose we have three categories of ethnic groups: White,
Black, and Asian. Under ordinal encoding, suppose White is
encoded as 1, Black is encoded as 2 and Asian is encoded as 3.
If a machine learning classification is somehow confused between
Asian and White and decides to split the difference and report
the in-between value (2) which encodes Black. The issue is that
arbitrary gradation between 1 and 3 introduces a natural interpo-
lation (2) that may be nonsense. Thus, the natural ordering of the
numbers imposes an ordered geometrical relationship between the
categories that does not apply.

Nonetheless there are situations where ordinal encoding makes
sense. For example, a ‘rate your satisfaction’ survey typically
encodes five levels (1) terrible, (2) acceptable (3) mediocre, (4)
good, (5) excellent.

One Hot Encoding

This is the most common encoding used in machine learning. One
hot encoding takes a category with cardinality N and encodes each
categorical value with an N-dimensional vector with a single ‘1’
and the remainder ‘0’s. Take as an example encoding five makes of
Japanese Cars: Toyota, Honda, Subaru, Nissan, Mitsubishi. Table
1 shows a comparison of coding between ordinal and one-hot
encodings.

The advantage is that one hot encoding does not induce an
implicit ordering or between categories. The primary disadvantage
is that the dimensionality of the problem has increased with corre-
sponding increases in complexity, computation and “the curse of
high dimensionality”. This easily leads to the high dimensionality
low sample size (HDLSS) situation, which is a problem for most
machine learning methods.

Binary Encoding, Hash Encoding, BaseN Encoding

Somewhere in between these two are binary encoding, hash
encoding, and baseN encoding. Binary encoding simply labels
each category with a unique binary code and converts the binary
code to a vector. Using the previous example of the Japanese car
makes, table 2 shows an example of binary encoding.

Hash encoding assigns each category an ordinal value that
is then converted into a binary hash value that is encoded as
an n-tuple in the same fashion as the binary encoding. You can

as Ternary Balanced
Make Ordinal Ternary Code Ternary Code

Toyota 1 01 (0,1) (0,1)
Honda 2 02 (0,2) (0,-1)
Subaru 3 10 (1,0) (1,0)
Nissan 4 11 (1,1) (1,1)
Mitsubishi 5 12 (1,2) (1,-1)

TABLE 3: Example of Ternary Codes

view hash encoding as binary encoding applied to the hashed
ordinal value. Hash encoding has several advantages. First, it
is open ended so new categories can be added later. Second,
the resultant dimensionality can be much lower than one-hot
encoding. The chief disadvantage is that categories can collide
if two categories accidentally map into the same hash value. This
is a hash collision and must be fixed separately using a resolution
mechanism. Bernardi’s blog [Ber18] provides a good treatment of
hash coding.

Finally, baseN encoding is a generalization of binary encoding
that uses a number base other than 2 (binary). Table 3 is an
example of the Japanese car makes using base 3.

A disadvantage of all three of these techniques is that while it
does reduce the dimension of the encoded feature, artificial geo-
metric relationships may creep in between unrelated categories.
For example, (0.7,0.7) may be confusion between Toyota
and Honda or a weak Subaru result, although the effect is not
as pronounced as ordinal encoding.

Decoding

Of course, with categorical encoding, the ability to decode an
encoded vector back to a category can be very important. If the
categorical variable is only an input to a machine learning system,
retrieving a category may not be very important. For example, one
may have a product rating model which delivers a rating based on
a number of variables, some numeric like price, but others might
be categorical like color, but since the output does not require
category decoding, it is not important.

In an application such as categorization or imputation [GW18],
retrieving the category from a vector is crucial. In training a
modern classification model, a categorical output is often subject
to an activation function which converts a vector into a probability
of each category such as a softmax function. Essentially, the
softmax is a continuous and differentiable version of a “hard
max” function which would assign a 1 to the vector representing
the most likely category and a 0 to all the other categories. The
conversion to a probability distribution allows the use of a negative
log likelihood loss function rather than the standard root mean
squared error.

Typically, other classic encoding methods use thresholds to
rectify a vector first into a binary or n-ary value then decode the
vector back to a label in accordance to the encoding. This makes
these values difficult to use as outputs of machine learning systems
such as neural networks that rely on gradients due to lack of
differentiability. Also, the decoding process is difficult to convert
to a probability distribution, making negative log-likelihood or
crossentropy loss functions more difficult to use.

QUASI-ORTHONORMAL ENCODING FOR MACHINE LEARNING APPLICATIONS 13

Theory

In this section, we will briefly define and discuss quasiorthogonal-
ity, show how it relates to one-hot encoding and describe how this
relationship can be used to develop a categorical encoding with
lower cardinality.

Quasiorthogonality

In a suitably high dimensional space, two randomly selected
vectors are very likely to be nearly orthogonal or quasiorthogonal.
In such an n-dimensional vector space, there are sets of K vectors
which are mutually quasiorthogonal where K� n. A more formal
definition can be stated as follows. Given an ε , two vectors x and
y are said to be quasiorthogonal if |x·y|

‖x‖‖y‖ < ε . This extends the or-
thogonality principle by allowing the inner product to not exactly
equal zero. As an extension, we can define a quasiorthonormal
basis by a set of normal vectors {qi} for i = 1, . . . ,K such that
|qi · q j| < ε and ||qi|| = 1, for all i, j ∈ {1, . . . ,K}, where in
principle for large enough n, K� n.

The question of how large a quasiorthonormal basis can be
found for a given n-dimensional vector space and ε is answered in
part by the mathematical literature. [KK20] derived a lower bound
for K as a function of ε and n. Namely,

K ≥ enε2
.

This means that given an ε , the size of potential quasiorthonormal
basis grows at least exponentially as n grows.

One Hot Encoding Revisited

Exploiting quasiorthogonality in categorical encoding is analysis
to using orthonormal basis in one-hot encoding. In a typical
machine learning scenario, one hot encoding maps a variable with
n categories into a set of unit vectors in a n-dimensional space:
L = {li} for i = 1 . . .n, then the one hot encoding EL : L 7→ Rn

given by li 7→ ui where ui is an orthonormal basis in Rn. The
simplest basis used is ui = (0,0, . . . ,1,0, . . . ,0) where the 1 is in
the ith position which is know as the standard basis for Rn.

Mapping of a vector back to the original category uses the
argmax function, so for a vector z, argmax(z) = i where zi > z j
for all j 6= i and the vector z decodes to largmax(z). Of course,
the argmax function is not easily differentiable which presents
problems in ML learning algorithms that require derivatives. To
fix this, a softer version is used called the softargmax or now as
simply softmax and is defined as follows:

softmax(z)i =
ezi

∑n
j=1 ez j

(1)

for i = 1,2, . . . ,n and z = (z1,z2, . . . ,zn) ∈ Rn where z is the
vector being decoded. The softmax function decodes a one-hot
encoded vector into a probability density function which enables
application of negative log likelihood loss functions or cross
entropy losses.

Though one-hot encoding uses unit vectors with one 1 in the
vector hence a hot component. The formalization of the one hot
encoding above allows any orthonormal basis to be used. So to
use a generalized one-hot encoding with orthonormal basis ui,
one would map the label j to u j for encoding where the ui no
longer have to take the standard basis form. To decode an encoded
value in this framework, we would take

i = argmax(z ·u1,z ·u2, . . . ,z ·un). (2)

Make Ordinal One-Hot QOE

Toyota 1 u1 q1

Honda 2 u2 q2

Subaru 3 u3 q3

Nissan 4 u4 q4

Mitsubishi 5 u5 q5

TABLE 4: Example of Quasiorthonormal Encoding

This reduces to argmax(z) for the standard basis. Thus, the
softmax function can be expressed as the following,

softmax(z)i =
ez·ui

∑n
j=1 ez·u j

. (3)

Encoding

The principle behind QOE is simple. A quasiorthonormal basis
{qi} is substituted for the orthonormal basis {ui} described above.
So given a quasiorthonormal basis, we can define a QOE for a set
L = {li} by li 7→ qi.

Decoding z under QOE would use a qargmax function anal-
ogous to the argmax function for one-hot encoding as shown in
equation 4, which is nearly identical to equation 2.

i = argmax(z ·q1,z ·q2, . . . ,z ·qn) (4)

Analogous to the softmax function shown of equation 3, is a
qsoftmax function which can be expressed as

qsoftmax(z)i =
ez·qi

∑K
j=1 ez·q j

(5)

The only real difference in the formulation is that while still
operating in Rn we are encoding K > n labels.

Returning to our example of Japanese car makes, table 4 shows
one-hot encoding and QOE of the five manufacturers. In the table,
encodings are represented simply as vectors where ui are unit
vectors in R5 and qi are a set of quasiorthonormal vectors in R3.
It can be shown that such a quasiorthonormal can be found in
[SHS20] with the minimum mutual angle of 66◦. In short, the
difference between one-hot encoding and QOE is that the one-hot
requires 5 dimensions and in this case QOE requires only 3.

Implementation

Mathematical

While equations 4 and 5 describe precisely mathematically how to
implement decoding and activation functions. A literal implemen-
tation would not exploit the modern vectorized and accelerated
computation available in such packages as numpy, tensorflow
[AAB+15] and pytorch.

To better exploit built-in functions of these packages, we define
the following n×K change of coordinates matrix

Q =

∣∣∣∣
∣∣∣∣

∣∣∣∣
q1 q2 · · · qK∣∣∣∣

∣∣∣∣
∣∣∣∣

.

This transformation makes it easier to convert a set of parallel
operations into matrix operations for which these aforementioned

14 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

computational packages are well suited. Mathematically, the trans-
formation maps the representation of a category encoded by QOE
to a vector representing one hot encoding. Understanding this
transformation makes it simple to express argmax or softmax
function’s quasiorthoromal variant by equations 6 and 7, respec-
tively.

qargmax(z) = argmax(Qz) (6)

and
qsoftmax(z) = softmax(Qz). (7)

The tensorflow and pytorch packages both supply opti-
mized softmax functions as does scipy when using numpy ar-
rays, making implementation of QOE not only easy, but efficient.
Not only will using native functions accelerated performance, it
can exploit features such as auto differentiation built into the native
functions --- a useful property when using the qsoftmax function
as an activation function.

Since the matrix manipulation operations and input/output
shape definitions differ from package to package, we provide a
qsoftmax implementation in several popular packages. In order to
facilitate the most general format possible, in our examples, we
will express the quasiorthogonal basis as a list of list, but the input
and the output is expressed in the appropriate native class (e.g.
numpy.ndarray in numpy).

Numpy

For numpy, the implementation is straight-forward and follows
equation 7 almost literally and is given below.
def qsoftmax(x, basis):

qx = np.matmul(np.asarray(basis),x)
return softmax(qx)

Since qsoftmax given above requires the basis as a parameter as
well as the input vector, it is a parameterized activation function. In
many packages, only unparameterized functions can be used. The
following function factory or metafunction can be used to return
a qsoftmax function for a given basis, rather than encoding the
function above in a lambda expression.
def qsoftmax(basis):

def func(x):
qx = np.matmul(np.asarray(basis),x)
return softmax(qx)

return func

The softmax function used above can be found in
scipy.special.softmax or can easily be written as
def softmax(x):

ex=np.exp(x)
return ex/np.sum(ex)

Tensorflow

For tensorflow, the following segment of code is an im-
plementation of the qsoftmax functions. By using native
tensorflow functions, the resultant qsoftmax function will
be automatically differentiated in a backwards neural network
pass. It is also worth noting that quite often due to the way
tensorflow performs batch processing, the input to the activa-
tion function is not a vector but an array of vectors as a Tensor
class.
def qsoftmax(x, basis):

qx = tf.matmul(tf.constant(basis), x,
transpose_b=True)

return tf.nn.softmax(tf.transpose(qx))

A metafunction version of qsoftmax is also presented as this is
used below in our example of MNIST handwriting classification
employing QOE.
def qsoftmax(basis):

def func(x):
qx = tf.matmul(tf.constant(basis), x,

transpose_b=True)
return tf.nn.softmax(tf.transpose(qx))

return func

Pytorch

Presented below is a version of the qsoftmax function imple-
mented using pytorch primitives. The use of the squeeze and
unsqueeze operations convert between a 1-dimensional vector
and a 2-dimension matrix having one column. This function is
only designed to accept vector inputs. In some models, especially
image related models, outputs of some layers may be multidimen-
sional arrays. If your use case requires a multidimensional input
to the qsoftmax function the code may need alteration.
def qsoftmax(x, basis):

qx = torch.mm(torch.tensor(basis),
x.unsqueeze(0).t()).t().squeeze()

return torch.nn.functional.softmax(qx,dim=0)

Construction of an Quasiorthonormal set

It is difficult to find explicit constructions of quasiorthonormal
sets in the literature. Several methods are mentioned by Kainen
[Kai92], but these constructions are theoretical and hard to follow.
There are a number of combinatorial problems related to such as
spherical codes [Eri20] and Steiner Triple Systems [LR17], which
strive to find optimal solutions. These are extremely complicated
mathematical constructions and not every optimal solution has
been found.

Since in a high dimensional space, two random vectors are
likely to be quasiorthogonal, it is tempting to take a brute force
approach and simply randomly select k vectors at random and
test the set. This approach is reasonable for small dimensions or
small k. However, the set must have every vector be mutually
quasiorthogonal and combinatoric complications quickly set in.

Suppose, the probability of any two vectors being quasiorthog-
onal to a given ε is p. Since there are

(k
2

)
pairs of vectors, the

probability that you have a quasiorthogonal set is p(
k
2). To put in

concrete terms, if two random vectors have a 99% chance of being
quasiorthogonal. Picking a set of 20 is only 14% and 30 is around
1%. Other factors conspire to make this difficult including the in-
creasing computational complexity and the geometric differences
between a cube and sphere become more pronounced as k and N
grow.

As a practical matter, optimal solutions are not necessary as
long as the desired characteristics of the quasiorthonormal basis
are obtained. As an example, while an optimal solution finds 28
quasiorthonormal vectors with dot products of 0.5 or under are
possible in seven dimensions, you may only need 10 vectors.
In other words, a suboptimal solution may yield fewer vectors
that are possible for a given dimension, or a larger dimension
may be required to obtain the desired number of vectors that is
theoretically needed.

One practical way to construct a quasiorthonormal basis is
to use spherical codes which has been studied in greater detail.
Spherical codes try to find a set of points on the n-dimensional
hypersphere such that the minimum distance between two points

QUASI-ORTHONORMAL ENCODING FOR MACHINE LEARNING APPLICATIONS 15

is maximized. In most constructions of spherical codes, a given
point’s antipodal point is also in that code set. So in order to get
a quasiorthogonal set, for each pair of antipodal points, only one
element of the pair is selected. Perhaps to better understand the
relationship, between quasiorthonormal basis and spherical codes
is that a set of spherical codes can be constructed by taking every
vector in a quasiorthonormal basis and add its antipodal point.

The area of algorithmically finding a quasiorthonormal basis is
scant as is finding suboptimal spherical codes. However, one such
method was investigated by Gautam and Vaintrob [GV12]. Per-
haps the easiest way to obtain a quasiorthonormal basis is to use
spherical codes as described above but obtain the spherical code
from the vast compliation of sphere codes by Sloane [SHS20].

Simple Example and Comparison

To demonstrate how QOE can be used in machine learning, we
provide a simple experiment/demonstration. This demonstration
in addition to showing how to construct a classification system
using QOE gives an sense of the effect of QOE on accuracy.
As an initial experiment, we applied QOE to classification of
the Modified National Institute of Standards and Technology
(MNIST) handwriting dataset [LC10], using the 60000 training
examples with 10000 test examples. As there are 10 categories,
we needed sets of quasiorthonormal bases with 10 elements. We
took the spherical code for 24 points in 4-dimensions, giving us 12
quasi-orthogonal vectors. The maximum pairwise dot product was
0.5 leading to an angle of 60◦. We also took the spherical code
for 56 points in 7-dimensions, giving 28 quasi-orthogonal vectors.
The maximum pairwise dot product was .33 leading to an angle
of a little over 70◦.

We used a hidden layer with 64 units with a ReLU activation
function. Next there is a 20% dropout layer to mitigate overtrain-
ing, then an output layer whose width depends on the encoding
used. We selected for this demonstration to use one of the simplest
models hence there are no convolutional or pooling layers used
as often seen in other sample MNIST handwriting classifiers.
The following example is implemented using tensorflow and
keras.

Validating the QSoftmax Function

We begin by validating the qsoftmax function as provided
above. This is done by first constructing a reference model built
on tensorflow and keras in the standard way. In fact this
example is nearly identical to the presented in the Quickstart for
Beginners guide [Ten19] for tensorflow with the exception
that we employ a separate Activation for clarity.
normal_model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(64, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10)
tf.keras.layers.Activation(tf.nn.softmax)

])

To validate that the qsoftmax function and the use of a Lambda
layer is properly used, the qsoftmax metafunction is used with
the identity matrix to represent the basis. Mathematically, the
resultant qsoftmax function in the Lambda layer is exactly the
softmax function. The code is shown below:
sanity_model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(64, activation=tf.nn.relu),

Number of One Hot 7-Dimensional 4-Dimensional
Epochs Encoding QOE QOE

10 97.53% (97.30%) 97.24% (96.94%) 95.65% (95.15%)
20 97.68% (98.02%) 97.49% (97.75%) 95.94% (96.15%)

TABLE 5: Results of MNIST QOE Experiment

tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10)
tf.keras.layers.Lambda(qsoftmax(numpy.identity(10,

dtype=numpy.float32)))
])

This should function identically as the reference model because
it tests that the qsoftmax function operates as expected (which it
does in this case). This is useful for troubleshooting if you have
difficulty.

Examples on Quasiorthonormal Basis

To recap, for the two QOE experiments we take a set of 10
mutually quasiorthonormal vectors from a four dimensional space,
and from a seven dimensional space all derived from spherical
codes from tables mentioned above, and only took 10 vectors.
For the code, the basis for each experiment are labeled basis4
and basis7, respectively. This leads to the following models,
basis4_model and basis7_model.
basis4_model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(64, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(4),
tf.keras.layers.Lambda(qsoftmax(basis4))

])
basis7_model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(64, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(7),
tf.keras.layers.Lambda(qsoftmax(basis7))

])

Table 5 shows the mean of the accuracy over three training runs
of the validation data with training data in parentheses.

From these results, it is clear that there is some degradation in
performance as the number of dimensions is reduced, but clearly
QOE can be used leading to a tradeoff between accuracy and
resource reduction from the reduction of dimensionality.

Extending to Spherical Encodings

A Deeper Look at Softmax

In principle, to recover a category from a potentially noisy encoded
vector, the dot product of the encoded vector against each basis
vector in accordance with equation 2 whether the basis is orthonor-
mal or quasiorthonormal. If one takes a deeper dive into equations
3 and 5, it is interesting to see what these functions are doing.
Figure 1 shows on the left, randomly selected values in a circle of
radius 6. On the right shows the vectors after the softmax function
is applied. Clearly with a few stragglers, most points either move
very close to either of the basis vectors (0,1) or (1,0). Upon
a cursory sampling of the output of the last Dense layer prior
to application of the softmax function, shows that each vector
component averages about 5.5 so a radius of 6 approximates the
what a softmax function might encounter.

16 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

6 4 2 0 2 4 6
6

4

2

0

2

4

6

Random Points
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Softmax Applied to Random Points

Fig. 1: Softmax on an orthonormal basis

6 4 2 0 2 4 6
6

4

2

0

2

4

6

Random Points
0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Softmax Applied to Random Points

Fig. 2: Softmax on a quasiorthogonal basis

Similarly, figure 2 shows the same type of distribution of
randomly selected values and the right shows the effect after
a quasiorthonormal softmax is applied with three basis vectors.
Since the qsoftmax function maps the two dimensional input
into a three-dimensional space, the three-dimensional vectors are
mapped back down to two dimensions using the quasiorthonormal
basis. Again with the exception of a few stragglers, most points
move very close to one of the three basis vectors.

Because the expectation on one-hot encoding is that the value
of a given vector component be either 0 or 1 and that negative val-
ues are not expected even in a noisy environment. This is evident
in figure 1, where the results are all in the first quadrant (i.e. no
negative values). This raises the question could the negative values
be exploited with minimal detrimental effects?

While equation 5 is intended to accept a quasiorthonormal
basis, functionally there is no reason why this equation need
be limited to a quasiorthonormal basis. The equation still make
sense if {qi} were replaced by any collection of normal vectors.
However, the question remains as to how well that would work.
So to exploit the negative regions of the coordinate system, we
can see graphically what would happen if we add the antipodal
vectors (−1,0) and (0,−1) to our standard orthonormal basis,
{(1,0),(0,1)}. Applying the same type of random vector analysis
to the qsoftmax function we get figure 3.

4 2 0 2 4 6
6

4

2

0

2

4

Random Points
1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Softmax Applied to Random Points

Fig. 3: Softmax on encoded values using an orthonormal basis and
antipodal points

Make One-Hot Spherical
Code

Toyota (1,0,0,0,0) (1,0,0)
Honda (0,1,0,0,0) (-1,0,0)
Subaru (0,0,1,0,0) (0,1,0)
Nissan (0,0,0,1,0) (0,-1,0)
Mitsubishi (0,0,0,0,1) (0,0,1)

TABLE 6: Examples of Spherical Codes

Number of One Hot 5-Dimensional 3-Dimensional
Epochs Encoding Spherical Code Spherical Code

10 97.53% (97.30%) 96.51% (96.26%) 95.37% (94.83%)
20 97.68% (98.02%) 96.82% (97.11%) 95.74% (95.83%)

TABLE 7: Results of MNIST Spherical Coding Experiment

So why not just use a random set of normal vectors? Despite
the intuition a truly random selection will have some clustering.
Geometrically, the set of normal vectors should be as evenly
distributed as possible which is precisely what spherical codes
are.

While it is likely that spherical codes for encoding work fine as
an output such as in classification, there is an implicit relationship
imposed by antipodal vector pairs especially when used as an
input to a system. If you consider the spherical encoding offered
in Table 6, the vector for Toyota is the negative of the vector for
Honda. This is essentially telling any number system that Honda
is the negative of Toyota, which may not be desirable.

With this risk in mind, we can further extend the idea to a
quasiorthogonal basis by adding the antipodal vectors for each
vector in the basis. The result not only doubles the number of
vectors that can be used for encoding, it reduces the problem of
finding a basis to that of finding spherical codes.

Spherical Codes

Spherical codes can be used in place of quasiorthonormal codes
simply by allowing the qi to be a collection of spherical codes
not necessarily quasiorthonormal basis. Table 6 shows how the
example of the five Japanese car makes could be encoded with a
simple spherical code.

Since spherical codes can substitute directly into the equations
for QOE, it is a simple matter to implement spherical codes {si}
instead of quasiorthonormal basis, {qi}. As such it is a simple
matter to run the same experiment on the MNIST handwriting
samples as we did for QOE. First, a set of codes are defined in
an ndarray called code5 and code3. The variable code5
consists of the standard orthonormal basis in 5 dimensions along
with their antipodal unit vector to produce a set of 10 vectors in 5
dimensions. The variable code3 is taken from [SHS20] for the 3
dimensional spherical codes with 10 vectors. Once these codes are
defined, they can be substituted for basis4 and basis7 in the
sample code above. Table 7 shows the results of the experiment
with training accuracy shown in parentheses.

In this case, the 5-dimensional spherical codes performed close
to the one-hot encoding by not as closely as the 7-dimension QOE
codes. The 3-dimensional spherical codes performed on par with
the 4-dimensional QOE codes.

QUASI-ORTHONORMAL ENCODING FOR MACHINE LEARNING APPLICATIONS 17

While the extreme dimensionality reduction from 10 to 4 or 10
to 3 did not yield comparable performance to one-hot encoding,
more modest reductions such as 10 to 7 and 10 to 5 did. It is
worth considering that quasiorthogonal or spherical codes are
much harder to find in low dimensions. One should note that,
though we went from 10 to 7 dimensions, we did not fully exploit
the space spanned by the quasiorthogonal vector set. Otherwise,
we would likely have had the similar results if the categorical
labels had a cardinality of 28 rather than 10.

Conclusion

These reduced dimensionality codes are not expected to improve
accuracy when the training data is plentiful, but to save com-
putation and representation by reducing the dimensionality of
the coded category. As an example, in applications such as au-
toencoders and specifically the imputation architectures presented
by [GW18] and [mLPU19], where the dimensionality not only
dictates the number of outputs and inputs but also the number
of hidden layers, a reduction in dimensionality has a profound
impact on the size of the model used. Beyond that, the reduced di-
mensionality codes such as QOE and spherical codes can address
problems such as the curse of dimensionality and HDLSS where
for small sample sizes it may improve accuracy.

Though for the exercises presented here, the reduction of
dimensionality is modest and may not seem worth the trouble.
The real benefit of these codes is in extremely high cardinality
situations on the order of hundreds, thousands and beyond, such
as zip codes, area codes, or medical diagnostic codes.

Practically speaking, while algorithms to generate spherical
codes and quasiorthonormal sets are few, [SHS20] has a vast
complication of spherical codes. At the extreme end, a spherical
code with 196,560 vectors is available in 24 dimensions, enough to
encode nearly 100,000 labels using QOE or 200,000 labels using
spherical codes, in just 24 dimensions!

In sum, the advantages of QOE and spherical codes are that
they can reduce the dimensionality of the vector representation
as compared to one-hot encoding, while not inducing artificial
geometric relationships as ordinal or binary codes can. The dis-
advantage is that the accuracy of decoding an encoded vector
in a noisy environment (such as classification output) is slightly
less than one-hot encoding. This tradeoff ability makes QOE and
spherical codes useful tools to be included in a data scientists
toolbox alongside other established categorical coding techniques.

Experiments and code samples are made available at https://
github.com/WestHealth/scipy2020/tree/master/quasiorthonormal.

REFERENCES

[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, An-
drew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Mar-
tin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org. URL:
https://www.tensorflow.org/.

[Ber18] Lucas Bernardi. Don’t be tricked by the hashing trick, Jan
2018. URL: https://booking.ai/dont-be-tricked-by-the-hashing-
trick-192a6aae3087.

[Eri20] Eric W. Weisstein. Spherical code, 2020. [Online; ac-
cessed 18-May-2020]. URL: https://mathworld.wolfram.com/
SphericalCode.html.

[GK19] Luis Gutiérrez and Brian Keith. A systematic literature review
on word embeddings. In Jezreel Mejia, Mirna Muñoz, Álvaro
Rocha, Adriana Peña, and Marco Pérez-Cisneros, editors, Trends
and Applications in Software Engineering, pages 132–141, Cham,
2019. Springer International Publishing. doi:10.1007/978-
3-030-01171-0_12.

[GV12] Simanta Gautam and Dmitry Vaintrob. A novel approach to the
spherical codes problem. Technical report, Massachusetts Institute
of Technology, 2012.

[GW18] Lovedeep Gondara and Ke Wang. Mida: Multiple imputation
using denoising autoencoders. In Dinh Phung, Vincent S. Tseng,
Geoffrey I. Webb, Bao Ho, Mohadeseh Ganji, and Lida Rashidi,
editors, Advances in Knowledge Discovery and Data Mining,
pages 260–272, Cham, 2018. Springer International Publishing.
doi:10.1007/978-3-319-93040-4_21.

[Hal18] Jeff Hale. Smarter ways to encode categorical data for machine
learning: Exploring category encoders, Sep 2018. URL: https:
//towardsdatascience.com/smarter-ways-to-encode-categorical-
data-for-machine-learning-part-1-of-3-6dca2f71b159.

[Kai92] Paul Kainen. Orthogonal dimension and tolerance. Unpublished
report, Washington DC: Industrial Math, 1992.

[KK96] V. Kůrková and P. C. Kainen. A geometric method to obtain error-
correcting classification by neural networks with fewer hidden
units. In Proceedings of International Conference on Neural
Networks (ICNN’96), volume 2, pages 1227–1232 vol.2, 1996.
doi:10.1109/ICNN.1996.549073.

[KK20] Paul C. Kainen and Věra Kůrková. Quasiorthogonal Dimension,
pages 615–629. Springer International Publishing, Cham, 2020.
doi:10.1007/978-3-030-31041-7_35.

[LC10] Yann LeCun and Corinna Cortes. MNIST handwritten digit
database. 2010. URL: http://yann.lecun.com/exdb/mnist/.

[LR17] Charles C Lindner and Christopher A Rodger. Design theory.
CRC press, 2017. doi:10.1201/9781315107233.

[McG16] Will McGinnis. Category encoders, 2016. URL: http://contrib.
scikit-learn.org/category_encoders/.

[mLPU19] Haw minn Lu, Giancarlo Perrone, and José Unpingco. Multiple
imputation with denoising autoencoder using metamorphic truth
and imputation feedback. In Petra Perner, editor, Machine Learn-
ing and Data Mining in Pattern Recognition, 16th International
Conference on Machine Learning and Data Mining, MLDM 2020,
Amsterdam, The Netherlands, July 20-21, 2020, Proceedings,
pages 197–208. ibai publishing, 2019. URL: http://www.ibai-
publishing.org/html/proceeding2020.php.

[Muk19] Tooba Mukhtar. High dimensional data: Breaking the curse
of dimensionality with python, Apr 2019. URL: https://blog.
datasciencedojo.com/curse-of-dimensionality-python/.

[SHS20] N. J. A. Sloane, R. H. Hardin, and W. D. Smith. Spherical codes:
Nice arrangements of points on a sphere in various dimensions,
2020. [Online; accessed 15-May-2020]. URL: http://neilsloane.
com/packings/.

[Ten19] Tensorflow. Tensorflow 2 quickstart for beginners, 2019. URL:
https://www.tensorflow.org/tutorials/quickstart/beginner/.

18 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Fluctuation X-ray Scattering real-time app

Antoine Dujardin¶, Elliott Slaugther¶, Jeffrey Donatelli‡§, Peter Zwart‖§, Amedeo Perazzo¶, Chun Hong Yoon¶∗

https://youtu.be/IYADjGOiJhA

F

Abstract—The Linac Coherent Light Source (LCLS) at the SLAC National
Accelerator Laboratory is an X-ray Free Electron Laser (X-FEL) facility enabling
scientists to take snapshots of single macromolecules to study their structure
and dynamics. A major LCLS upgrade, LCLS-II, will bring the repetition rate of
the X-ray source from 120 to 1 million pulses per second and exascale High
Performance Computing (HPC) capabilities will be required for the data analysis
to keep up with the future data taking rates.

We present here a Python application for Fluctuation X-ray Scattering
(FXS), an emerging technique for analyzing biomolecular structure from the
angular correlations of FEL diffraction snapshots with one or more particles
in the beam. This FXS application for experimental data analysis is being
developed to run on supercomputers in near real-time while an experiment is
taking place.

We discuss how we accelerated the most compute intensive parts of the
application and how we used Pygion, a Python interface for the Legion task-
based programming model, to parallelize and scale the application.

Index Terms—fluctuation x-ray scattering, free electron laser, real-time analy-
sis, coherent diffractive imaging

Introduction

LCLS-II, an LCLS upgrade

The Linac Coherent Light Source (LCLS) at the SLAC National
Accelerator Laboratory is an X-ray Free Electron Laser facility
providing femtosecond pulses with an ultrabright beam approx-
imately one billion times brighter than synchrotrons [WRD15].
Such a brightness allows it to work with much smaller sample
sizes while the shortness allows imaging below the rotational
diffusion time of the molecules and also outrunning radiation dam-
age. With pulses of such an unprecedented brightness and short-
ness, scientists are able to take snapshots of single macromolecules
without the need for crystallization at ambient temperature.

To push the boundaries of the science available at the light-
source, LCLS is currently being upgraded after 10 years of
operation. The LCLS-II upgrade will progressively increase the
sampling rate from 120 pulses per second to 1 million. At these

¶ SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park,
CA 94025, USA
‡ Department of Applied Mathematics, Lawrence Berkeley National Labora-
tory, Berkeley, CA USA 94720-8142
§ Center for Advanced Mathematics for Energy Research Applications,
Lawrence Berkeley National Laboratory, Berkeley, CA USA 94720-8142
|| Molecular Biophysics and Integrated Bio-Imaging Division, Lawrence Berke-
ley National Laboratory, Berkeley, CA USA 94720-8142
* Corresponding author: yoon82@slac.stanford.edu

Copyright © 2020 Antoine Dujardin et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

rates, the LCLS instruments will generate multiple terabytes per
second of scientific data and it will therefore be critical to know
what data is worth saving, requiring on-the-fly processing of the
data. Earlier, users could classify and preprocess their data after
the experiment, but this approach will become either prohibitive or
plainly impossible. This leads us to the requirement of performing
some parts of the analysis in real time during the experiment.

Quasi real time analysis of the LCLS-II datasets will require
High Performance Computing, potentially at the Exascale, which
cannot be offered in-house. Therefore, a pipeline to a supercom-
puting center is required. The Pipeline itself starts with a Data
Reduction step to reduce the data size, using vetoing, feature
extraction, and compression in real time. We then pass the data
over the Energy Sciences Network (ESnet) to the National Energy
Research Scientific Computing Center (NERSC). Currently, the
ESNet connection between SLAC and NERSC is 200 Gbps
capable; the plan is to upgrade this link to 400 Gbps by 2026 and to
1 Tbps by 2028. At the end of the pipeline, the actual analysis can
take place on NERSC’s supercomputers. This makes the whole
process, from the sample to the analysis, quite challenging to
change and adapt.

Moreover, LCLS experiments are typically high-risk / high-
reward and involve novel setups, varying levels of requirements,
and durations of only a few days. The novelty in the science can
require adaptations in the algorithms, requiring the data analysis
itself to be highly flexible. Furthermore, we want to give users
as much freedom as possible in the way they analyze their data
without expecting them to have a deep knowledge of large-scale
computer programming.

Therefore, we require real time analysis, high performance
computing capabilities and a complex pipeline, while requiring
enough flexibility to adapt to novel experimental setups and
analysis algorithms. We believe Python helps us achieve this goal
given the tradeoffs involved.

FXS: an example analysis requiring HPC

While a variety of experiments can be performed at LCLS, we
focus here on one specific example: Fluctuation X-ray Scattering
(FXS).

X-ray scattering of particles in a solution is a common
technique in the study of the structure and dynamics of macro-
molecules in biologically-relevant conditions and gives an under-
standing of their function. However, traditional methods currently
used at synchrotrons suffer from the fact that the exposure time is
longer than the rotation time of the particle, leading to the capture
of angularly-averaged patterns. FXS techniques fully utilize the
femtosecond pulses to measure diffraction patterns from multiple

FLUCTUATION X-RAY SCATTERING REAL-TIME APP 19

Fig. 1: Fluctuation X-ray Scattering experiment setup.
In an FXS experiment, femtosecond pulses from an X-ray Free
Electron Laser are shot at a stream of particles in solution. The
scattered light forms a diffraction pattern on the detector, aggregating
the contributions of the different particles.1

identical macromolecules below the sample rotational diffusion
times (Fig. 1). The patterns are then collected to reconstruct a 3D
structure of the macromolecule or measure some of its properties.
This technique was described in the late 1970s [Kam77], [KKB81]
and has been widely used at LCLS [PDM+18], [KDY+17],
[MLS+14], [MWQ+16].

While a few hundreds of diffraction patterns might be suffi-
cient to reconstruct a low resolution 3-dimensional structure under
ideal conditions [KDY+17], the number of snapshots required
can be dramatically increased when working with low signal-to-
noise ratios (e.g. small proteins) or when studying low-probability
events. More interestingly, the addition of a fourth dimension,
time, to study dynamical processes expands again the amount
of data required. At these points, hundreds of millions or more
snapshots could be required.

We present here a Python application for FXS data analysis
that is being developed to run on supercomputing facilities at
US Department of Energy national laboratories in near real-time
while an experiment is taking place. As soon as data is produced,
it is passed through a Data Reduction Pipeline on-site and sent
to a supercomputer via ESNet, where reconstructions can be
performed. It is critical to complete this analysis in near real-time
to guide experimental decisions.

In FXS, each diffraction pattern contains several identical
particles in random orientations. Information about the structure
of the individual particle can be recovered by studying the two-
point angular correlation of the data. To do so, the 2D images
are expanded in a 3D, orientation-invariant space, where they are
aggregated using the following formula:

C2(q,q′,∆φ) =
1

2πN

N

∑
j=1

∫ 2π

0
I j(q,φ)I j(q′,φ +∆φ)dφ (1)

where I j(q,φ) represents the intensity of the j-th image, in polar
coordinates. This correlator can then be used as a basis for the
actual 3D reconstruction of the data (Fig. 3), using an algorithm
described elsewhere [DZS15], [PDM+18].

Acceleration: getting the best out of NumPy

The expansion/aggregation step presented in Equation (1) was
originally the most computation intensive part of the application,
representing the vast majority of the computation time. The

1. Copyright © P. Zwart, under the CC BY-SA 4.0 license.

original implementation was processing each I j(q,φ) image one
after the other and aggregating the results. This resulted in taking
424 milliseconds per image using NumPy [Oli06], [vdWCV11]
functions and a slightly better performance using Numba [LPS15].
As we illustrate in this section, rewriting this critical step allowed
us to gain a factor of 40 in speed, without any other libraries or
tools. The tests were performed on a node of Cori Haswell.

Let us start by simplifying Equation (1). The integral corre-
sponds to the correlation over I j(q,φ) and I j(q′,φ). Thanks to the
convolution theorem [Arf85], we have

C2(q,q′,∆φ) =
1

2πN

N

∑
j=1

F−1[F [I j(q,φ)]F [I j(q′,φ)]], (2)

where F represents the Fourier transform over φ . The inverse
Fourier transform being linear, we can get it outside the sum, and
on the left side. For the simplicity of the argument, we also neglect
all coefficients.

Using ψ as the equivalent of φ in the Fourier transform and
A j(q,ψ) as a shorthand for F [I j(q,φ)], we have:

C2(q,q′,∆φ) =
1

2πN

N

∑
j=1

A j(q,ψ)A j(q′,ψ). (3)

We end up with the naive implementation below:

C2 = np.zeros(C2_SHAPE, np.complex128)
for i in range(N_IMGS):

A = np.fft.fft(images[i], axis=-1)
for j in range(N_RAD_BINS):

for k in range(N_RAD_BINS):
C2[j, k, :] += A[j] * A[k].conj()

taking 42.4 seconds (for 100 images), using the following param-
eters:

N_IMGS = 100
N_RAD_BINS = 300
N_PHI_BINS = 256
IMGS_SHAPE = (N_IMGS, N_RAD_BINS, N_PHI_BINS)
C2_SHAPE = (N_RAD_BINS, N_RAD_BINS, N_PHI_BINS)

where N_RAD_BINS and N_PHI_BINS represent the image
dimensions over the q- and φ -axes, as well as the dataset:

images = np.random.random(IMGS_SHAPE)

We note that a typical application would be processing millions of
images, but let us use 100 for the example.

This naive version can be slightly accelerated using the fact
that our matrix is conjugate-symmetric:

C2 = np.zeros(C2_SHAPE, np.complex128)
for i in range(N_IMGS):

A = np.fft.fft(images[i], axis=-1)
for j in range(N_RAD_BINS):

C2[j, j, :] += A[j] * A[j].conj()
for k in range(j+1, N_RAD_BINS):

tmp = A[j] * A[k].conj()
C2[j, k, :] += tmp
C2[k, j, :] += tmp.conj()

which takes 36.0 seconds. Note that this is only 18% faster, far
from a 2x speed-up.

This naive implementation should not be confused with a pure
Python implementation, which is expected to be slow, since we
already operate on NumPy arrays along the angular axis. Such an
implementation could be approximated by:

A = np.fft.fft(images[i], axis=-1)
for j in range(N_RAD_BINS):

for k in range(N_RAD_BINS):

20 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

for l in range(N_PHI_BINS):
C2[j, k, l] += A[j, l] * A[k, l].conj()

which takes 49.1 seconds per image, i.e. about 100 times slower
than the naive implementation, in accordance with the stereotype
of Python being much slower than other languages for numerical
computing.

A common acceleration strategy is to use Numba:

@numba.jit
def A_to_C2(A):

C2 = np.zeros(C2_SHAPE, np.complex128)
for j in range(N_RAD_BINS):

C2[j, j, :] += A[j] * A[j].conj()
for k in range(j+1, N_RAD_BINS):

tmp = A[j] * A[k].conj()
C2[j, k, :] += tmp
C2[k, j, :] += tmp.conj()

return C2

C2 = np.zeros(C2_SHAPE, np.complex128)
for i in range(N_IMGS):

A = np.fft.fft(images[i], axis=-1)
C2 += A_to_C2(A)

which takes 38.5 seconds, i.e. 10% faster than the naive imple-
mentation.

When considering our problem size of up to millions of
images, processing images one at a time makes sense. However,
focusing on a small batch as we have been doing in these
examples, a strategy can be to have NumPy and/or Numba work
on arrays of images, rather than the individual images. We then
have the following:

@numba.jit
def As_to_C2(As):

C2 = np.zeros(C2_SHAPE, np.complex128)
for i in range(N_IMGS):

A = As[i]
for j in range(N_RAD_BINS):

C2[j, j, :] += A[j] * A[j].conj()
for k in range(j+1, N_RAD_BINS):

tmp = A[j] * A[k].conj()
C2[j, k, :] += tmp
C2[k, j, :] += tmp.conj()

return C2

As = np.fft.fft(images, axis=-1)
C2 = As_to_C2(As)

which takes 11.9 seconds, i.e. 3.56 times faster. We note also here
the batching of the Fast Fourier Transform.

However, such an implementation does not sound trivial using
NumPy, although one can recognize a nice (generalized) Einstein
sum in Equation (3), leading to:

As = np.fft.fft(images, axis=-1)
C2 = np.einsum('hik,hjk->ijk', As, As.conj())

which corresponds to expressing C2[i, j, k] as the sum over
h of As[h, i, k] * As.conj()[h, j, k].

This takes 17.9 seconds, which is slower than the version using
Numba per batch. However, we can realize that, at this batch
level, the last axis is independent from the others and that the
underlying alignment of the arrays matters. Thanks to NumPy’s
asfortranarray function, however, that is not an issue. We
then use the F-ordered dataset.

images_F = np.asfortranarray(images)

We observe, for the Einstein sum:

As = np.fft.fft(images_F, axis=-1)
C2 = np.einsum('hik,hjk->ijk', As, As.conj())

Implementation Time (/100) Speedup

Naive 42.4 s 1
Numba 38.5 s 10%
Numba, batched 11.9 s 3.56×
Einsum, F-order 4.05 s 10.5×
Dot, F-order 1.06 s 40.0×

TABLE 1: Summary of the major time improvements.

taking 4.05 seconds, i.e. 4.42 times faster than the C-ordered
Einstein sum and 10.5 times faster than the naive implementation.

Additionally, it turns out that in our precise case, we can
actually express it as a more optimized dot product:
As = np.fft.fft(images, axis=-1)
C2 = np.zeros(C2_SHAPE, np.complex128)
for k in range(N_PHI_BINS):

C2[..., k] += np.dot(As[..., k].T,
As[..., k].conj())

which now brings us down to 1.37 seconds, i.e. 30.9 times faster
than the naive version.

For the F-ordered case, we have:
As = np.fft.fft(images_F, axis=-1)
C2 = np.zeros(C2_SHAPE, np.complex128, order='F')
for k in range(N_PHI_BINS):

C2[..., k] += np.dot(As[..., k].T,
As[..., k].conj())

taking 1.06 seconds, i.e. 29% faster than the C-ordered case and
40.0 times faster than the naive implementation. We could note
that, at that speed, the main computation gets close to the time
required to perform the Fast Fourier Transform, which is, in our
case at least, faster on C-ordered (107 ms) than F-ordered (230
ms) data. Removing the FFT computation would yield an even
starker contrast (977 ms vs. 499 ms), but would neglect the cost
of the re-alignment.

In conclusion, and as summarized in Table 1, implementing
this algorithm using NumPy or Numba naively gives significant
improvement in computational speed compared to pure Python,
but there is still a lot of room for improvement. On the other hand,
such improvement does not necessarily require using fancier tools.
We showed that batching our computation helped in the Numba
case. From there, a batched NumPy expression looked interesting.
However, it required optimizing the mathematical formulation of
the problem to come up with a canonical expression, which could
then be handed over to NumPy. Finally, the memory layout can
have a sizable impact on the computation, while being easy to
tweak in NumPy.

Parallelization: effortless scaling with Pygion

To parallelize and scale the application we use Pygion, a Python
interface for the Legion task-based programming system [SA19].
In Pygion, the user decorates functions as tasks, and annotates
task parameters with privileges (read, write, reduce), but otherwise
need not be concerned with how tasks execute on the underlying
machine. Pygion infers the dependencies between tasks based on
their privileges and the values of arguments passed to tasks, and
ensures that the program executes correctly, even when running
on a parallel and distributed supercomputer.

To enable the distributed execution, it is necessary to separate
the question of what data is needed in a given task from the

FLUCTUATION X-RAY SCATTERING REAL-TIME APP 21

Fig. 2: Weak scaling behavior on Cori Haswell with Lustre filesystem
(top) and Burst Buffer (bottom).
The application was run on 100,000 images per node, for up to 64
nodes on Cori Haswell. The Lustre filesystem is a high performance
system running on HDDs attached to the supercomputer. The Burst
Buffer corresponds to SSDs placed within the supercomputer itself
used for per-job storage.

allocation of the data in a given memory or memories. This
reification of the flow of data between tasks is achieved by
declaring regions, similar to multi-dimensional Pandas dataframes
[McK10]. Regions contain fields, each of which is similar to
and exposed as a NumPy array. Regions can be partitioned into
subregions, which can be processed by different tasks, allowing
the parallelism. Note that regions are allocated only when needed,
so it is possible (and idiomatic) to allocate a region which is
larger than any single machine’s memory, and then to partition
into pieces that will be used by individual tasks.

We scale up to 64 Haswell nodes on NERSC’s Cori su-
percomputer using Pygion, with 10 to 30 processes per node,
to reach a throughput of more than 15,000 images per second,
as illustrated in Figure 2. Compared to an equivalent MPI im-
plementation, Pygion is easier to scale out of the box as it
manages load-balancing of tasks across cores, shared memory
(between distinct Python processes on a node) and provides high-
level parallelization constructs. These constructs make it easy to
rapidly explore different partitioning strategies, without writing or
rewriting any communication code. This enabled us to quickly find
a strategy that scales better than the straightforward but ultimately
suboptimal strategy that we initially developed.

As an example, the most computationally intensive part of
our problem is the C2(q,q′,∆φ) computation discussed in detail

in the section above, which can trivially be parallelized over the
last (angular) axis. However, the image preprocessing and the
Fast Fourier Transform can only be parallelized over the first
(image) axis. Given the size of the data, parallelizing between
nodes would involve a lot of data movement. Parallelizing within
a node, however, could help. In the MPI case, we use MPI to
parallelize between nodes and within a node (MPI+MPI). If we
were to introduce this optimization into such a code, one would
have to create a 2-level structure such as:

In each node:
Define node-level communicator
In each rank:
Receive and pre-process some stacks of images

All-to-all exchange from stacks of images
to angular sections

In each rank:
Process the received angular section

where all the data exchange has to be coded by hand.
In the Pygion case, the ability to partition the data allows us to

create tasks that are unaware of the extent of the regions on which
they operate. We can therefore partition these regions both over
the image axis and the angular one. We end up with:

@task(privileges=[...])
def node_level_task(...):

for i, batch in enumerate(data_batches):
preprocess(input_=batch,

output=A_image_partition[i])
for i in range(NUMBER_OF_PROCESSES):

process(input_=A_angular_partition[i],
output=C2_angular_partition[i])

where the data exchange is implied by the image-axis par-
tition A_image_partition and the angular-axis partition
A_angular_partition of the same region A.

Results

To test our framework, a dataset of 100,000 single-particle diffrac-
tion images was simulated from a lidless chaperone (mm-cpn) in
its open state, using Protein Data Bank entry 3IYF [ZBS+10].
These images were processed by the algorithm described above
to get the 2-point correlation function, C2(q,q′,∆φ), described
in Equation (1). This correlation function was first filtered and
reduced using the methods described in [PDM+18], and then the
reconstruction algorithm in [DZS15] was applied to reconstruct
the electron density of the chaperone from the reduced correla-
tions, yielding the reconstruction shown in Figure 3.

To obtain this result, the correlation function was filtered
and reduced using the Multi-Tiered Iterative Filtering (M-TIF)
algorithm [PDM+18]. In particular, M-TIF uses several itera-
tions of Tikhonov regularization, linear pseudo inversion, and
principal component analysis to fit three tiers of expansions to
the data: a Legendre polynomial expansion in theta, a Hankel-
transformed Fourier-Bessel expansion in q and q′, and a low-
rank eigenvalue decomposition on the matrices of Fourier-Bessel
coefficients. The number of terms needed in each expansion step
is limited and determined by an upper-bound diameter estimate
of the protein sample. Once these coefficients are determined,
their corresponding series expansions are computed to produce a
filtered correlation function, along with a reduced set of Legendre
polynomial expansion coefficients on a coarse q-grid, which is
used in the reconstruction (See [PDM+18] for more details on the
filtering).

22 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Fig. 3: Reconstruction of a lidless chaperone (mm-cpn) in its open
state from simulated diffraction patterns.
The 2-point correlation function was computed on the simulated
dataset as described in the present document. It was then filtered,
reduced, and fed to a reconstruction algorithm described elsewhere
[PDM+18], [DZS15] to yield the reconstruction above.

These Legendre expansion coefficients can be directly related
to the protein sample. In particular, the coefficients are equal to
the inner products of spherical harmonic coefficients of the 3D
intensity function, which is defined as the squared magnitude of
the Fourier transform of the sample’s electron density [Kam77].
This relation can be expressed as two tiers of phase problems
that need to be solved to reconstruct the underlying density: a
hyperphase problem to recover the intensity function from the
Legendre coefficients, and a classical scalar phase problem to
recover the density from the intensity. In order to reconstruct
the sample, we apply the Multi-Tiered Iterative Phasing (M-
TIP) algorithm [DZS15] to the Legendre coefficients computed
from the M-TIF filtering/reduction procedure. M-TIP works by
using a set of computationally efficient projection operators in
a self-consistent iteration to simultaneously solve both tiers of
phase problems and reconstruct the sample from the Legendre
coefficients.

After acceleration and parallelization, we now reach a through-
put of about 230 images per second on a single node of Cori
Haswell. This would allow us to process in real time the output
of an FXS experiment at LCLS-I, which produces 120 images
per second. Such a rapid processing would make possible to
give scientists immediate feedback on the quality of their data.
After scaling to up to 64 nodes, the throughput of about 15,000
images per second would be sufficient to follow up with the early
abilities of LCLS-II, although further acceleration and scaling will
be required to match the data being produced as LCLS-II increases
its pulse rate dramatically over the following years.

Interestingly, one might note from Equations 1, 2, or 3 that
computing the correlation function involves a sum over all the
images. The output of that computation, however, no longer
depends on the number of images in the dataset. The size of the
correlation function C2(q,q′,∆φ) is, therefore, only dependent on
the resolution over the q, q′, and ∆φ axes. As a consequence, the
computational complexity of the post-processing of the correlation
function and the reconstruction algorithm does not scale with the
amount of data being processed.

Conclusion

The Linac Coherent Light Source provides scientists with the
ability of X-ray diffraction patterns with much higher brightness

and much shorter timescales, allowing experiments not possible
elsewhere. With its upgrades LCLS-II in 2021 and LCLS-II-HE
(High Energy) in 2025, LCLS experiments will produce up to
millions of X-ray pulses per second and generate commensurate
amounts of data. In some cases, such as the FXS technique
described in this paper, the processing of the dataset will require
High Performance Computing at a scale that can no longer be
provided in-house.

We showed that Python gives us and our users the flexi-
bility to adapt the analysis pipeline to new experiments. The
main drawback of Python is that implementing new algorithms
without relying on specialized libraries can be problematically
slow. However, we illustrate with our example that spending some
time optimizing the math of the problem (rather than the code)
and being aware of the strengths and weaknesses of NumPy and
Numba can allow us to achieve drastically better performances,
without the need to develop or use external libraries.

Finally, we used Pygion to manage the parallelization of the
problem, which allows us to design applications that scale much
more naturally than MPI at a given level of coding effort, and
in particular has allowed us to explore different parallelization
strategies more rapidly, leading ultimately to a more scalable
solution than what we otherwise might have been able to find.

Acknowledgement

This research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security
Administration. Use of the Linac Coherent Light Source (LCLS),
SLAC National Accelerator Laboratory, is supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences under Contract No. DE-AC02-76SF00515.

REFERENCES

[Arf85] G Arfken. Convolution theorem. In Mathematical Methods
for Physicists, chapter 15.5, pages 810–814. Academic Press,
Orlando, FL, 3 edition, 1985.

[DZS15] Jeffrey J Donatelli, Peter H Zwart, and James A Sethian. It-
erative phasing for fluctuation X-ray scattering. Proceedings
of the National Academy of Sciences of the United States of
America, 112(33):10286–91, 2015. doi:10.1073/pnas.
1513738112.

[Kam77] Zvi Kam. Determination of Macromolecular Structure in
Solution by Spatial Correlation of Scattering Fluctuations.
Macromolecules, 10(5):927–934, 1977. doi:10.1021/
ma60059a009.

[KDY+17] Ruslan P. Kurta, Jeffrey J. Donatelli, Chun Hong Yoon, Peter
Berntsen, Johan Bielecki, Benedikt J. Daurer, Hasan Demirci,
Petra Fromme, Max Felix Hantke, Filipe R.N.C. Maia, Anna
Munke, Carl Nettelblad, Kanupriya Pande, Hemanth K.N.
Reddy, Jonas A. Sellberg, Raymond G. Sierra, Martin Svenda,
Gijs Van Der Schot, Ivan A. Vartanyants, Garth J. Williams,
P. Lourdu Xavier, Andrew Aquila, Peter H. Zwart, and Adrian P.
Mancuso. Correlations in Scattered X-Ray Laser Pulses Reveal
Nanoscale Structural Features of Viruses. Physical Review Let-
ters, 119(15), 2017. doi:10.1103/PhysRevLett.119.
158102.

[KKB81] Z Kam, M. H.J. Koch, and J. Bordas. Fluctuation x-ray scattering
from biological particles in frozen solution by using synchrotron
radiation. Proceedings of the National Academy of Sciences of
the United States of America, 78(6 I):3559–3562, 1981. doi:
10.1073/pnas.78.6.3559.

[LPS15] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A
llvm-based python jit compiler. In Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC, LLVM
’15, New York, NY, USA, 2015. Association for Computing
Machinery. doi:10.1145/2833157.2833162.

FLUCTUATION X-RAY SCATTERING REAL-TIME APP 23

[McK10] Wes McKinney. Data Structures for Statistical Computing in
Python. In Stefan van der Walt and Jarrod Millman, editors,
Proceedings of the 9th Python in Science Conference, pages 56–
61, 2010. doi:10.25080/Majora-92bf1922-00a.

[MLS+14] Derek Mendez, Thomas J. Lane, Jongmin Sung, Jonas Sellberg,
Clément Levard, Herschel Watkins, Aina E. Cohen, Michael
Soltis, Shirley Sutton, James Spudich, Vijay Pande, Daniel
Ratner, and Sebastian Doniach. Observation of correlated X-ray
scattering at atomic resolution. Philosophical Transactions of
the Royal Society B: Biological Sciences, 369(1647):20130315,
2014. doi:10.1098/rstb.2013.0315.

[MWQ+16] Derek Mendez, Herschel Watkins, Shenglan Qiao, Kevin S.
Raines, Thomas J. Lane, Gundolf Schenk, Garrett Nelson,
Ganesh Subramanian, Kensuke Tono, Yasumasa Joti, Makina
Yabashi, Daniel Ratner, and Sebastian Doniach. Angular cor-
relations of photons from solution diffraction at a free-electron
laser encode molecular structure. IUCrJ, 3(6):420–429, 2016.
doi:10.1107/S2052252516013956.

[Oli06] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol
Publishing USA, 2006.

[PDM+18] Kanupriya Pande, Jeffrey J Donatelli, Erik Malmerberg, Lutz
Foucar, Christoph Bostedt, Ilme Schlichting, and Petrus H Zwart.
Ab initio structure determination from experimental fluctuation
X-ray scattering data. Proceedings of the National Academy of
Sciences of the United States of America, 115(46):11772–11777,
2018. doi:10.1073/pnas.1812064115.

[SA19] Elliott Slaughter and Alex Aiken. Pygion: Flexible, Scalable
Task-Based Parallelism with Python. In Proceedings of PAW-
ATM 2019: Parallel Applications Workshop, Alternatives to
MPI+X, Held in conjunction with SC 2019: The International
Conference for High Performance Computing, Networking, Stor-
age and Analysis, pages 58–72. Institute of Electrical and
Electronics Engineers (IEEE), 2019. doi:10.1109/PAW-
ATM49560.2019.00011.

[vdWCV11] Stéfan van der Walt, Chris Colbert, and Gaël Varoquaux. The
numpy array: A structure for efficient numerical computation.
Computing in Science & Engineering, 13:22–30, 2011. doi:
10.1109/MCSE.2011.37.

[WRD15] William E. White, Aymeric Robert, and Mike Dunne. The linac
coherent light source. Journal of Synchrotron Radiation, 22:472–
476, 2015. doi:10.1107/S1600577515005196.

[ZBS+10] Junjie Zhang, Matthew L. Baker, Gunnar F. Schröder,
Nicholai R. Douglas, Stefanie Reissmann, Joanita Jakana,
Matthew Dougherty, Caroline J. Fu, Michael Levitt, Steven J.
Ludtke, Judith Frydman, and Wah Chiu. Mechanism of
folding chamber closure in a group II chaperonin. Nature,
463(7279):379–383, 2010. doi:10.1038/nature08701.

24 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

HOOMD-blue version 3.0 A Modern, Extensible,
Flexible, Object-Oriented API for Molecular

Simulations
Brandon L. Butler‡∗, Vyas Ramasubramani‡, Joshua A. Anderson‡, Sharon C. Glotzer‡§¶‖

https://youtu.be/fIFPYZsOVqI

F

Abstract—HOOMD-blue is a library for running molecular dynamics and hard
particle Monte Carlo simulations that uses pybind11 to provide a Python in-
terface to fast C++ internals. The package is designed to scale from a single
CPU core to thousands of NVIDIA or AMD GPUs. In developing HOOMD-blue
version 3.0, we significantly improve the application protocol interface (API)
by making it more flexible, extensible, and Pythonic. We have also striven to
provide simpler and more performant entry points to the internal C++ classes
and data structures. With these updates, we show how HOOMD-blue users will
be able to write completely custom Python classes which integrate directly into
the simulation run loop and analyze previously inaccessible data. Throughout
this paper, we focus on how these goals have been achieved and explain design
decisions through examples of the newly developed API.

Index Terms—molecular dynamics, molecular simulations, Monte Carlo simu-
lations, object-oriented

Introduction

Molecular simulation has been an important technique for study-
ing the equilibrium properties of molecular systems since the
1950s. The two most common methods for this purpose are
molecular dynamics and Monte Carlo simulations [MRR+], [AW].
Molecular dynamics (MD) is the application of Newton’s laws of
motion to molecular system, while Monte Carlo (MC) methods
employ a Markov chain to sample from equilibrium configura-
tions. Since their inception these tools have been used to study
numerous systems, examples include colloids [DEG], metallic
glasses [FIE], and proteins [DZK+], among others.

Today many software packages exist for these purposes.
LAMMPS [Pli], GROMACS [BvdSvD], [AMS+], OpenMM
[ESC+], ESPResSo [WWS+], [GTK+] and Amber [SCW],
[CCD+] are a few examples of popular MD packages, while
Cassandra [SMM+] and MCCCS Towhee [Mar] provide MC
simulation capabilities. Implementations on high performance
GPUs [SMAG], parallel architectures [NBB+], and the greater
accessibility of computational power have tremendously improved

* Corresponding author: butlerbr@umich.edu
‡ University of Michigan, Department of Chemical Engineering
§ University of Michigan, Department of Material Science and Engineering
¶ University of Michigan, Department of Physics
|| University of Michigan, Biointerfaces Institute

Copyright © 2020 Brandon L. Butler et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

the length [BCR+] and time [SDS+] scales of simulations from
those conducted in the mid 1900s. The flexibility and generality
of such tools has dramatically increased the usage of molecular
simulations, which has in turn led to demands for even more
customizable software packages that can be tailored to very spe-
cific simulation requirements. Different tools have taken different
approaches to enabling this, such as the text-file scripting in
LAMMPS, the command line interface provided by GROMACS,
and the Python, C++, C, and Fortran bindings of OpenMM.
Recently, programs that have used other interfaces have also added
Python bindings such as LAMMPS and GROMACS.

In the development of these tools, the requirements for the
software to enable good science became more obvious. Having
computational research that is Transferable, Reproducible, Usable
(by others), and Extensible (TRUE) [TGM+] is necessary for
fully realizing the potential of computational molecular science.
HOOMD-blue is part of the MoSDeF project which seeks to
bring these traits to the wider computational molecular science
community through packages like mbuild [KSJ+] and foyer
[KST+] which are Python packages that generalize generating
initial particle configurations and force fields respectively across
a variety of simulation back ends [CG], [TGM+]. This effort
in increased TRUEness is one of many motivating factors for
HOOMD-blue version 3.0.

HOOMD-blue [ALT], [GNA+], [AGG], an MD and MC
simulations engine with a C++ back end, provides to use a Python
API facilitated through pybind11 [JRM]. The package is open-
source under the 3-clause BSD license, and the code is hosted
on GitHub (https://github.com/glotzerlab/hoomd-blue). HOOMD-
blue was initially released in 2008 as the first fully GPU-enabled
MD simulation engine using NVIDIA GPUs through CUDA.
Since its initial release, HOOMD-blue has remained under active
development, adding numerous features over the years that have
increased its range of applicability, including adding support for
domain decomposition (dividing the simulation box among MPI
ranks) in 2014 and recent developments that enable support for
AMD in addition to NVIDIA GPUs.

Despite its great flexibility, the package’s API still has certain
key limitations. In particular, since its inception HOOMD-blue
has been designed around some maintenance of global state.
The original releases of HOOMD-blue provided Python scripting
capabilities based on an imperative programming model, but it
required that these scripts be run through HOOMD-blue’s mod-

HOOMD-BLUE VERSION 3.0 A MODERN, EXTENSIBLE, FLEXIBLE, OBJECT-ORIENTED API FOR MOLECULAR SIMULATIONS 25

ified interpreter that was responsible for managing this global
state. Version 2.0 relaxed this restriction, allowing the use of
HOOMD-blue within ordinary Python scripts and introducing the
SimulationContext object to encapsulate the global state
to some degree, thereby allowing multiple largely independent
simulations to coexist in a single script. However, this object
remained largely opaque to the user, in many ways still behav-
ing like a pseudo-global state, and version 2.0 otherwise made
minimal modifications to the HOOMD-blue Python API, which
was largely inspired by and reminiscent of the structure of other
simulation software, particularly LAMMPS.

In this paper, we describe the upcoming 3.0 release of
HOOMD-blue, which is a complete redesign of the API from the
ground up to present a more transparent and Pythonic interface
for users. Version 3.0 aspires to match the intuitive APIs provided
by other Python packages like SciPy [VGO+], NumPy [vdWCV],
scikit-learn [PVG+], and matplotlib [Hun], while simultaneously
adding seamless interfaces by which such packages may be in-
tegrated into simulation scripts using HOOMD-blue. Global state
has been completely removed, instead replaced by a highly object-
oriented model that gives users explicit and complete control
over all aspects of simulation configuration. Where possible, the
new version also provides performant, Pythonic interfaces to data
stored by the C++ back end. Over the next few sections, we will
use examples of HOOMD-blue’s version 3.0 API (which is still
in development at the time of writing) to highlight the improved
extensibility, flexibility, and ease of use of the new HOOMD-blue
API.

General API Design

Rather than beginning with abstract descriptions, we will introduce
the new API by example. The script below illustrates a standard
MD simulation of a Lennard-Jones fluid using the version 3.0
API. Each of the elements of this script is introduced throughout
the rest of this section. We also show a rendering of the particle
configuration in Figure (1).
import hoomd
import hoomd.md
import numpy as np

device = hoomd.device.Auto()
sim = hoomd.Simulation(device)

Place particles on simple cubic lattice.
N_per_side = 14
N = N_per_side ** 3
L = 20
xs = np.linspace(0, 0.9, N_per_side)
x, y, z = np.meshgrid(xs, xs, xs)
coords = np.array(

(x.ravel(), y.ravel(), z.ravel())).T

One way to define an initial system state is
by defining a snapshot and using it to
initialize the system state.
snap = hoomd.Snapshot()
snap.particles.N = N
snap.configuration.box = hoomd.Box.cube(L)
snap.particles.position[:] = (coords - 0.5) * L
snap.particles.types = ['A']

sim.create_state_from_snapshot(snap)

Create integrator and forces
integrator = hoomd.md.Integrator(dt=0.005)
langevin = hoomd.md.methods.Langevin(

hoomd.filter.All(), kT=1., seed=42)

Fig. 1: A rendering of the Lennard-Jones fluid simulation script
output. Particles are colored by the Lennard-Jones potential energy
that is logged using the HOOMD-blue Logger and GSD class
objects. Figure is rendered in OVITO [Stu] using the Tachyon [Sto]
renderer.

integrator.methods.append(langevin)

nlist = hoomd.md.nlist.Cell()
lj = hoomd.md.pair.LJ(nlist, r_cut=2.5)
lj.params[('A', 'A')] = dict(

sigma=1., epsilon=1.)
integrator.forces.append(lj)

Set up output
gsd = hoomd.output.GSD('trajectory.gsd', trigger=100)
log = hoomd.logging.Logger()
log += lj
gsd.log = log

sim.operations.integrator = integrator
sim.operations.analyzers.append(gsd)
sim.run(100000)

Simulation, Device, State, Operations

Each simulation in HOOMD-blue is now controlled through three
main objects which are joined together by the Simulation
class: the Device, State, and Operations classes. Figure (2)
shows this relationship with some core attributes/methods for each
class. Each Simulation object holds the requisite information
to run a full molecular dynamics or Monte Carlo simulation,
thereby circumventing any need for global state information. The
Device class denotes whether a simulation should be run on
CPUs or GPUs and the number of cores/GPUs it should run on. In
addition, the device manages custom memory tracebacks, profiler
configurations, and the MPI communicator among other things.

The State class stores the system data (e.g. particle positions,
orientations, velocities, the system box). As shown in our example,
the state can be initialized from a snapshot, after which the data
can be accessed and modified in two ways. One option is for
users to operate on a new Snapshot object, which exposes
NumPy arrays that store a copy of the system data. To construct
a snapshot, all system data distributed across MPI ranks must be
gathered and combined by the root rank. Setting the state using the
snapshot API requires assigning a modified snapshot to the system
state (i.e. all system data is reset upon setting). The advantages
to this approach come from the ease of use of working with a

26 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Simulation

State Operations Device

run()
timestep

snapshot
cpu_local_snapshot
gpu_local_snapshot
particle_types
bond_types

integrator
updaters
analyzers
tuners
computes

communicator
num_ranks
mode
notice_level

Fig. 2: Diagram of core objects with some attributes and methods.
Classes are in bold and orange; attributes and methods are blue.
Figure is made using Graphviz [EGK+], [GKNV].

single object containing the complete description of the state. The
following snippet showcases how this approach can be used to set
the z position of all particles to zero.
snap = sim.state.snapshot
snapshot only stores data on rank 0
if snap.exists:

set all z positions to 0
snap.particles.position[:, 2] = 0

sim.state.snapshot = snap

The other API for accessing State data is via a zero-copy,
rank-local access to the state’s data on either the GPU or CPU.
On the CPU, we expose the buffers as numpy.ndarray-like
objects through provided hooks such as __array_ufunc__
and __array_interface__. Similarly, on the GPU we mock
much of the CuPy [zot] ndarray class if it is installed; however,
at present the CuPy package provides fewer hooks, so our inte-
gration is more limited. Whether or not CuPy is installed, we use
version 2 of the __cuda_array_interface__ protocol for
GPU access (compatibility with our GPU buffers in Python there-
fore depends on the support of version 2 of this protocol). This
provides support for libraries such as Numba’s [LPS] GPU just-in-
time compiler and PyTorch [PGM+]. We chose to mock NumPy-
like interfaces rather than expose ndarray objects directly out
of consideration for memory safety. To ensure data integrity, we
restrict the data to only be accessible within a specific context
manager. This approach is much faster than using the snapshot
API because it uses HOOMD-blue’s data buffers directly, but
the nature of providing zero-copy access requires that users deal
directly with the domain decomposition since only data for a MPI
rank’s local simulation box is stored by a given rank. The example
below modifies the previous example to instead use the zero-copy
API.
with sim.state.cpu_local_snapshot as data:

data.particles.position[:, 2] = 0

assumes CuPy is installed
with sim.state.gpu_local_snapshot as data:

data.particles.position[:, 2] = 0

The last of the three classes, Operations, holds the different
operations that will act on the simulation state. Broadly, these
consist of 3 categories: updaters, which modify simulation state;
analyzers, which observe system state; and tuners, which tune the
hyperparameters of other operations for performance. Although

updaters and analyzers existed in version 2.x (tuners are a version
3.0 split from updaters), these operations have undergone a sig-
nificant API overhaul for version 3.0 to support one of the more
far-reaching changes to HOOMD-blue: the deferred initialization
model.

Operations in HOOMD-blue are generally implemented as
two classes, a user-facing Python object and an internal C++
object which we denote as the action of the operation. On creation,
these C++ objects typically require a Device and a C++ State
in order to, for instance, initialize appropriately sized arrays.
Unfortunately this requirement restricts the order in which objects
may be created since devices and states must exist first. This
restriction could create potential confusion for users who forget
this ordering and would also limit the composability of modular
simulation components by preventing, for instance, the creation
of a simple force field without the prior existence of a Device
and a State. To circumvent these difficulties, the new API has
moved to a deferred initialization model in which C++ objects are
not created until the corresponding Python objects are attached to
a Simulation, a model we discuss in greater detail below.

Deferred C++ Initialization

The core logic for the deferred initialization model is imple-
mented in the _Operation class, which is the base class for
all operations in Python. This class contains the machinery for
attaching/detaching operations to/from their C++ counterparts, and
it defines the user interface for setting and modifying operation-
specific parameters while guaranteeing that such parameters are
synchronized with attached C++ objects as appropriate. Rather
than handling these concerns directly, the _Operation class
manages parameters using specially defined classes that handle
the synchronization of attributes between Python and C++: the
ParameterDict and TypeParameterDict classes. In addi-
tion to providing transparent dict-like APIs for the automatically
synchronized setting of parameters, these classes also provide
strict validation of input types, ensuring that user inputs are
validated regardless of whether or not operations are attached to a
simulation.

Each class supports validation of their keys, and they can be
used to define the structure and validation of arbitrarily nested
dictionaries, lists, and tuples. Likewise, both support default
values, but to a varying degree due to their differing purposes.
ParameterDict acts as a dictionary with additional validation
logic. However, the TypeParameterDict represents a dictio-
nary in which each entry is validated by the entire defined schema.
This distinction occurs often in simulation contexts as simulations
with multiple types of particles, bonds, angles, etc. must specify
certain parameters for each type. In practice this distinction means
that the TypeParameterDict class supports default specifi-
cation with arbitrary nesting, while the ParameterDict has
defaults but these are equivalent to object attribute defaults. An
example TypeParameterDict initialization and use of both
classes can be seen below.

Specification of Sphere's shape TypeParameterDict
TypeParameterDict(

diameter=float,
ignore_statistics=False,
orientable=False,
len_keys=1)

from hoomd.hpmc.integrate import Sphere

HOOMD-BLUE VERSION 3.0 A MODERN, EXTENSIBLE, FLEXIBLE, OBJECT-ORIENTED API FOR MOLECULAR SIMULATIONS 27

sphere = Sphere(seed=42)
Set nselect parameter using ParameterDict
sphere.nselect = 2
Set shape for type 'A' using TypeParameterDict
sphere.shape['A'] = {'diameter': 1.}
Set shape for types 'B', 'C', and 'D'
sphere.shape[['B', 'C', 'D']] = {'diameter': 0.5}

The specification defined above sets defaults for
ignore_statistics and orientable (the purpose
of these is outside the scope of the paper), but requires the setting
of the diameter for each type.

To store lists of operations that must be attached to a simu-
lation, the analogous SyncedList class transparently handles
attaching of operations.
import hoomd

ops = hoomd.Operations()
gsd = hoomd.output.GSD('example.gsd')
Append to the SyncedList ops.analyzers
ops.analyzers.append(gsd)

These classes also have the ancillary benefit of improving error
messaging and handling. An example error message for trying to
set sigma for A-A interactions in the Lennard-Jones pair potential
to a string (i.e. lj.params[('A', 'A')] = {'sigma':
'foo', 'epsilon': 1.} would provide the error message,

TypeConversionError: For types [(’A’, ’A’)], error
In key sigma: Value foo of type <class ’str’> cannot be
converted using OnlyType(float). Raised error: value foo
not convertible into type <class ’float’>.

Previously, the equivalent error would be "TypeError: must be
real number, not str", the error would not be raised until running
the simulation, and the line setting sigma would not be in the stack
trace given.

Logging and Accessing Data

Logging simulation data for analysis is a critical feature of molec-
ular simulation software packages. Up to now, HOOMD-blue
has supported logging through an analyzer interface that simply
accepted a list of quantities to log, where the set of valid quantities
was based on what objects had been created at any point and
stored to the global state. The creation of the base _Operation
class has allowed us to simultaneously simplify and increase the
flexibility of our logging infrastructure. The Loggable metaclass
of _Operation allows all subclasses to expose their loggable
quantities by marking Python properties or methods to query.

The actual task of logging data is accomplished by the
Logger class, which provides an interface for logging most
HOOMD-blue objects and custom user quantities. In the example
script from the General API Design section above, we show that
the Logger can add an operation’s loggable quantities using
the += operator. The utility of this class lies in its intermediate
representation of the data. Using the HOOMD-blue namespace as
the basis for distinguishing between quantities, the Logger maps
logged quantities into a nested dictionary. For example, logging
the Lennard-Jones pair potentials total energy would produce this
dictionary by a Logger object {'md': {'pair': {'LJ':
{'energy': (-1.4, 'scalar')}}}} where 'scalar'
is a flag to make processing the logged output easier. In real
use cases, the dictionary would likely be filled with many other
quantities.

Version 3.0 of HOOMD-blue uses properties extensively to
expose object data such as the total potential energy of all pair

potentials, the trial move acceptance rate in MC integrators, and
thermodynamic variables like temperature or pressure, all of which
can be used directly or stored through the logging interface. To
support storing these properties, the logging is quite general and
supports scalars, strings, arrays, and even generic Python objects.
By separating the data collection from the writing to files, and by
providing such a flexible intermediate representation, HOOMD-
blue can now support a range of back ends for logging; moreover,
it offers users the flexibility to define their own. For instance,
while logging data to text files or standard out is supported out
of the box, other back ends like MongoDB, Pandas [McK], and
Python pickles can now be implemented on top of the existing
logging infrastructure. Consistent with the new approach to log-
ging, HOOMD-blue version 3.0 makes simulation output an opt-in
feature even for common outputs like performance and thermody-
namic quantities. In addition to this improved flexibility in storage
possibilities, for HOOMD-blue version 3.0 we have exposed more
of an object’s data than had previously been available through
adding new properties to objects. For example, pair potentials now
expose per-particle potential energies at any given time (this data
is used to color Figure (1)).

In conjunction with the deferred initialization model, the new
logging infrastructure also allows us to more easily export an
object’s state (not to be confused with the simulation state). Due to
the switch to deferred initialization, all operation state information
is now stored directly in Python, so we have made object state a
loggable quantity. All operations also provide a from_state
factory method that can reconstruct the object from the state,
dramatically increasing the restartability of simulations since the
state of each object can be saved at the end of a given run and read
at the start of the next.

from hoomd.hpmc.integrate import Sphere

sphere = Sphere.from_state('example.gsd', frame=-1)

This code block would create a Sphere object with the parame-
ters stored from the last frame of the gsd file example.gsd.

User Customization

A major improvement in HOOMD-blue version 3 is the ease with
which users can customize their simulations in previously impos-
sible ways. The changes that enable this improvement generally
come in two flavors, the generalization of existing concepts in
HOOMD-blue and the introduction of a completely new Action
class that enables the user to inject arbitrary actions into the
simulation loop. In this section, we first discuss how concepts like
periods and groups have been generalized from previous iterations
of HOOMD-blue and then show how users can inject completely
novel routines to actually modify the behavior of simulations.

Triggers

In HOOMD-blue version 2.x, everything that was not run on
every timestep had a period and phase associated with it. The
timesteps the operation was run on could then be determined by
the expression, timestep % period - phase == 0. In
our refactoring and development, we recognized that this concept
could be made much more general and consequently more flexible.
Objects do not have to be run on a periodic timescale; they just
need some indication of when to run. In other words, the opera-
tions needed to be triggered. The Trigger class encapsulates this

28 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

concept, providing a uniform way of specifying when an object
should run without limiting options. Trigger objects return a
Boolean value when called with a timestep (i.e. they are functors).
Each operation that requires triggering is now associated with a
corresponding Trigger instance which informs the simulation
when the operation should run. The previous behavior is now
available through the Periodic class in the hoomd.trigger
module. However, this approach enables much more sophisticated
logic through composition of multiple triggers such as Before
and After which return True before or after a given timestep
with the And, Or, and Not subclasses that function as logical
operators on the return value of the composed Triggers.

In addition to the flexibility the Trigger class provides by
abstracting out the concept of triggering an operation, we use
pybind11 to easily allow subclasses of the Trigger class in
Python. This allows users to create their own triggers in pure
Python that will execute in HOOMD-blue’s C++ back end. An
example of such a subclass that reimplements the functionality of
HOOMD-blue version 2.x can be seen below.

from hoomd.trigger import Trigger

class CustomTrigger(Trigger):
def __init__(self, period, phase=0):

super().__init__()
self.period = period
self.phase = phase

def __call__(self, timestep):
v = timestep % self.period - self.phase == 0
return v

User-defined subclasses of Trigger are not restricted to simple
algorithms or even stateless ones; they can implement arbitrarily
complex Python code as demonstrated in the Large Examples
section’s first code snippet.

Variants

Variant objects are used in HOOMD-blue to specify
quantities like temperature, pressure, and box size which
can vary over time. Similar to Trigger, we generalized
our ability to linearly interpolate values across timesteps
(hoomd.variant.linear_interp in HOOMD-blue ver-
sion 2.x) to a base class Variant which generalizes the concept
of functions in the semi-infinite domain of timesteps t ∈ Z+

0 .
This allows sinusoidal cycling, non-uniform ramps, and other
behaviors. Like Trigger, Variant can be a direct subclass
of the C++ class. An example of a sinusoidal cycling variant is
shown below.

from math import sin
from hoomd.variant import Variant

class SinVariant(Variant):
def __init__(self, frequency, amplitude,

phase=0, center=0):
super().__init__()
self.frequency = frequency
self.amplitude = amplitude
self.phase = phase
self.center = center

def __call__(self, timestep):
tmp = self.frequency * timestep
tmp = sin(tmp + self.phase)
return self.amplitude * tmp + self.center

def _min(self):

return self.center - self.amplitude

def _max(self):
return self.center + self.amplitude

ParticleFilters

Unlike Trigger or Variant, ParticleFilter is not a gen-
eralization of an existing concept but the splitting of one class into
two. However, this split is also targeted at increasing flexibility and
extensibility. In HOOMD-blue version 2.x, the ParticleGroup
class and subclasses served to provide a subset of particles within
a simulation for file output, application of thermodynamic integra-
tors, and other purposes. The class hosted both the logic for storing
the subset of particles and filtering them out from the system.
After the refactoring, ParticleGroup is only responsible for
the logic to store and perform some basic operations on a set
of particle tags (a means of identifying individual particles), while
the new class ParticleFilter implements the selection logic.
This choice makes ParticleFilter objects lightweight and
provides a means of implementing a State instance-specific
cache of ParticleGroup objects. The latter ensures that we
do not create multiples of the same ParticleGroup which can
occupy large amounts of memory. The caching also allows the
creation of many of the same ParticleFilter object without
needing to worry about memory constraints.

ParticleFilter can be subclassed (like Trigger and
Variant), but only through the CustomParticleFilter
class. This is necessary to prevent some internal details from
leaking to the user. An example of a CustomParticleFilter
that selects only particles with positive charge is given below.

from hoomd.filter import CustomParticleFilter

class PositiveCharge(CustomParticleFilter):
def __init__(self, state):

super().__init__(state)

def __hash__(self):
return hash(self.__class__.__name__)

def __eq__(self, other):
return type(self) == type(other)

def find_tags(self, state):
with state.cpu_local_snapshot as data:

mask = data.particles.charge > 0
return data.particles.tag[mask]

Custom Actions

In HOOMD-blue, we distinguish between the objects that perform
an action on the simulation state (called Actions) and their con-
taining objects that deal with setting state and the user interface
(called Operations). Through composition, HOOMD-blue offers
the ability to create custom actions in Python and wrap them
in our _CustomOperation subclasses (divided on the type
of action performed) allowing the execution of the action in the
Simulation run loop. The feature makes user created actions
behave indistinguishably from native C++ actions. Through cus-
tom actions, users can modify state, tune hyperparameters for
performance, or observe parts of the simulation. In addition,
we are adding a signal for Actions to send that would stop a
Simulation.run call. This would allow actions to stop the
simulation when they complete, which could be useful for tasks
like tuning MC trial move sizes. With respect to performance,

HOOMD-BLUE VERSION 3.0 A MODERN, EXTENSIBLE, FLEXIBLE, OBJECT-ORIENTED API FOR MOLECULAR SIMULATIONS 29

with zero copy access to the data on the CPU or GPU, custom
actions can also achieve high performance using standard Python
libraries like NumPy, SciPy, Numba, CuPy and others. Below we
show an example of an Action that switches particles of type
initial_type to type final_type with a specified rate
each time it is run. This action could be refined to implement
a reactive MC move reminiscent of [GSJ] or to have a variable
switch rate. These exercises are left to the reader.

import hoomd
from hoomd.filter import (

Intersection, All, Type)
from hoomd.custom import Action

class SwapType(Action):
def __init__(self, initial_type,

final_type, rate, filter=All()):
self.final_type = final_type
self.rate = rate
self.filter = Intersection(

[Type(initial_type), filter])

def act(self, timestep):
state = self._state
final_type_id = state.particle_types.index(

self.final_type)
tags = self.filter(state)
with state.cpu_local_snapshot as snap:

tags = np.intersect1d(
tags, snap.particles.tag, True)

part = data.particles
filtered_index = part.rtags[tags]
N_swaps = int(len(tags) * self.rate)
mask = np.random.choice(filtered_index,

N_swaps,
replace=False)

part.typeid[mask] = final_type_id

Conclusion

With modern simulation analysis packages such as freud [RDH+],
MDTraj [MBH+], and MDAnalysis [GLB+], [MDWB], initial-
ization tools such as mbuild and foyer, and visualization packages
like OVITO and plato [SD] using Python APIs, HOOMD-blue,
built from the ground up with Python in mind, fits in seamlessly.
Version 3.0 improves upon this and presents a Pythonic API that
encourages customization. Through enabling Python subclassing
of C++ classes, introducing custom actions, and exposing data in
zero-copy arrays/buffers, we allow HOOMD-blue users to utilize
the full potential of Python and the scientific Python community.

Acknowledgements

This research was supported by the National Science Founda-
tion, Division of Materials Research Award # DMR 1808342
(HOOMD-blue algorithm and performance development) and by
the National Science Foundation, Office of Advanced Cyberin-
frastructure Award # OAC 1835612 (Pythonic architecture for
MoSDeF). Hardware provided by NVIDIA Corp. is gratefully ac-
knowledged. This research was supported in part through compu-
tational resources and services supported by Advanced Research
Computing at the University of Michigan, Ann Arbor.

Appendix

In the appendix, we will provide more substantial applications of
features new to HOOMD-blue.

Trigger that detects nucleation

This example demonstrates a Trigger that returns true when
a threshold Q6 Steinhardt order parameter [SNR] (as calculated
by freud) is reached. Such a Trigger could be used for BCC
nucleation detection which could trigger a decrease in cooling
rate, a more frequent output of simulation trajectories, or any other
desired action. Also, in this example we showcase the use of the
zero-copy rank-local data access. This example also requires the
use of ghost particles, which are a subset of particles bordering a
MPI rank’s local box. Ghost particles are known by a rank, but
the rank is not responsible for updating them. In this case, ghost
particles are required for computing the Q6 value for particles near
the edges of the current rank’s local simulation box.

import numpy as np
import freud
from mpi4py import MPI
from hoomd.trigger import Trigger

class Q6Trigger(Trigger):
def __init__(self, simulation, threshold,

mpi_comm=None):
super().__init__()
self.threshold = threshold
self.state = simulation.state
nr = simulation.device.num_ranks
if nr > 1 and mpi_comm is None:

raise RuntimeError()
elif nr > 1:

self.comm = mpi_comm
else:

self.comm = None
self.q6 = freud.order.Steinhardt(l=6)

def __call__(self, timestep):
with self.state.cpu_local_snapshot as data:

part = data.particles
box = data.box
aabb_box = freud.locality.AABBQuery(

box, part.positions_with_ghosts)
nlist = aabb_box.query(

part.position,
{'num_neighbors': 12,
'exclude_ii': True})

Q6 = np.nanmean(self.q6.compute(
(box, part.positions_with_ghosts),
nlist).particle_order)

if self.comm:
return self.comm.allreduce(

Q6 >= self.threshold,
op=MPI.LOR)

else:
return Q6 >= self.threshold

Pandas Logger Back-end

Here we highlight the ability to use the Logger class to create a
Pandas back end for simulation data. It will store the scalar and
string quantities in a single pandas.DataFrame object while
each array-like object is stored in a separate DataFrame object.
All DataFrame objects are stored in a single dictionary.

import pandas as pd
from hoomd.custom import Action
from hoomd.util import (

dict_flatten, dict_filter, dict_map)

def is_flag(flags):
def func(v):

return v[1] in flags
return func

30 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

def not_none(v):
return v[0] is not None

def hnd_2D_arrays(v):
if v[1] in ['scalar', 'string', 'state']:

return v
elif len(v[0].shape) == 2:

return {
str(i): col
for i, col in enumerate(v[0].T)}

class DataFrameBackEnd(Action):
def __init__(self, logger):

self.logger = logger

def act(self, timestep):
log_dict = self.logger.log()
is_scalar = is_flag(['scalar', 'string'])
sc = dict_flatten(dict_map(dict_filter(

log_dict,
lambda x: not_none(x) and is_scalar(x)),
lambda x: x[0]))

rem = dict_flatten(dict_map(dict_filter(
log_dict,
lambda x: not_none(x) \

and not is_scalar(x)),
hnd_2D_arrays))

if not hasattr(self, 'data'):
self.data = {

'scalar': pd.DataFrame(
columns=[

'.'.join(k) for k in sc]),
'array': {

'.'.join(k): pd.DataFrame()
for k in rem}}

sdf = pd.DataFrame(
{'.'.join(k): v for k, v in sc.items()},
index=[timestep])

rdf = {'.'.join(k): pd.DataFrame(
v, columns=[timestep]).T

for k,v in rem.items()}
data = self.data
data['scalar'] = data['scalar'].append(sdf)
data['array'] = {

k: v.append(rdf[k])
for k, v in data['array'].items()}

REFERENCES

[AGG] Joshua A. Anderson, Jens Glaser, and Sharon C. Glotzer.
HOOMD-blue: A Python package for high-performance
molecular dynamics and hard particle Monte Carlo sim-
ulations. 173:109363. URL: http://www.sciencedirect.
com/science/article/pii/S0927025619306627, doi:10.1016/j.
commatsci.2019.109363.

[ALT] Joshua A. Anderson, Chris D. Lorenz, and A. Travesset. General
purpose molecular dynamics simulations fully implemented on
graphics processing units. 227(10):5342–5359. URL: http://www.
sciencedirect.com/science/article/pii/S0021999108000818, doi:
10.1016/j.jcp.2008.01.047.

[AMS+] Mark James Abraham, Teemu Murtola, Roland Schulz,
Szilárd Páll, Jeremy C. Smith, Berk Hess, and Erik Lin-
dahl. GROMACS: High performance molecular simula-
tions through multi-level parallelism from laptops to su-
percomputers. 1-2:19–25. URL: http://www.sciencedirect.
com/science/article/pii/S2352711015000059, doi:10.1016/j.
softx.2015.06.001.

[AW] B. J. Alder and T. E. Wainwright. Studies in Molecular Dynamics.
I. General Method. 31(2):459–466. URL: https://aip.scitation.org/
doi/abs/10.1063/1.1730376, doi:10.1063/1.1730376.

[BCR+] Surendra Byna, Jerry Chou, Oliver Rubel, Prabhat, Homa
Karimabadi, William S. Daughter, Vadim Roytershteyn, E. Wes
Bethel, Mark Howison, Ke-Jou Hsu, Kuan-Wu Lin, Arie Shoshani,

Andrew Uselton, and Kesheng Wu. Parallel I/O, analysis, and
visualization of a trillion particle simulation. In SC ’12: Pro-
ceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, pages 1–12. doi:
10.1109/SC.2012.92.

[BvdSvD] H. J. C. Berendsen, D. van der Spoel, and R. van Drunen.
GROMACS: A message-passing parallel molecular dynamics im-
plementation. 91(1):43–56. URL: http://www.sciencedirect.com/
science/article/pii/001046559500042E, doi:10.1016/0010-
4655(95)00042-E.

[CCD+] David A. Case, Thomas E. Cheatham, Tom Darden, Holger
Gohlke, Ray Luo, Kenneth M. Merz, Alexey Onufriev, Car-
los Simmerling, Bing Wang, and Robert J. Woods. The
Amber biomolecular simulation programs. 26(16):1668–
1688. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.
20290, doi:10.1002/jcc.20290.

[CG] Peter T Cummings and Justin B Gilmer. Open-source molecular
modeling software in chemical engineering. 23:99–105. URL: http:
//www.sciencedirect.com/science/article/pii/S2211339819300073,
doi:10.1016/j.coche.2019.03.008.

[DEG] Pablo F. Damasceno, Michael Engel, and Sharon C. Glotzer.
Predictive Self-Assembly of Polyhedra into Complex Struc-
tures. 337(6093):453–457. URL: https://science.sciencemag.org/
content/337/6093/453, arXiv:22837525, doi:10.1126/
science.1220869.

[DZK+] Gregory L. Dignon, Wenwei Zheng, Young C. Kim, Robert B.
Best, and Jeetain Mittal. Sequence determinants of protein phase
behavior from a coarse-grained model. 14(1):e1005941. URL:
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.
pcbi.1005941, doi:10.1371/journal.pcbi.1005941.

[EGK+] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C.
North, and Gordon Woodhull. Graphviz and dynagraph – static and
dynamic graph drawing tools. In Graph Drawing Software, pages
127–148. Springer-Verlag.

[ESC+] Peter Eastman, Jason Swails, John D. Chodera, Robert T. McGib-
bon, Yutong Zhao, Kyle A. Beauchamp, Lee-Ping Wang, An-
drew C. Simmonett, Matthew P. Harrigan, Chaya D. Stern, Rafal P.
Wiewiora, Bernard R. Brooks, and Vijay S. Pande. OpenMM 7:
Rapid development of high performance algorithms for molec-
ular dynamics. 13(7):e1005659. URL: https://journals.plos.org/
ploscompbiol/article?id=10.1371/journal.pcbi.1005659, doi:10.
1371/journal.pcbi.1005659.

[FIE] Yue Fan, Takuya Iwashita, and Takeshi Egami. How ther-
mally activated deformation starts in metallic glass. 5(1):1–
7. URL: https://www.nature.com/articles/ncomms6083, doi:10.
1038/ncomms6083.

[GKNV] Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and
Kiem-phong Vo. A Technique for Drawing Directed Graphs.
19(3):214–230.

[GLB+] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E.
Reddy, Manuel N. Melo, Sean L. Seyler, Jan Domański, David L.
Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein.
MDAnalysis: A Python Package for the Rapid Analysis of Molecu-
lar Dynamics Simulations. pages 98–105. URL: https://conference.
scipy.org/proceedings/scipy2016/oliver_beckstein.html, doi:10.
25080/Majora-629e541a-00e.

[GNA+] Jens Glaser, Trung Dac Nguyen, Joshua A. Anderson, Pak Lui,
Filippo Spiga, Jaime A. Millan, David C. Morse, and Sharon C.
Glotzer. Strong scaling of general-purpose molecular dynam-
ics simulations on GPUs. 192:97–107. URL: http://www.
sciencedirect.com/science/article/pii/S0010465515000867, doi:
10.1016/j.cpc.2015.02.028.

[GSJ] Sharon C. Glotzer, Dietrich Stauffer, and Naeem Jan. Monte
Carlo simulations of phase separation in chemically reac-
tive binary mixtures. 72(26):4109–4112. URL: https://
link.aps.org/doi/10.1103/PhysRevLett.72.4109, doi:10.1103/
PhysRevLett.72.4109.

[GTK+] Horacio V. Guzman, Nikita Tretyakov, Hideki Kobayashi, Aoife C.
Fogarty, Karsten Kreis, Jakub Krajniak, Christoph Junghans, Kurt
Kremer, and Torsten Stuehn. ESPResSo++ 2.0: Advanced methods
for multiscale molecular simulation. 238:66–76. URL: http://www.
sciencedirect.com/science/article/pii/S0010465518304399, doi:
10.1016/j.cpc.2018.12.017.

[Hun] John D. Hunter. Matplotlib: A 2D Graphics Environment. 9(3):90–
95. doi:10.1109/MCSE.2007.55.

[JRM] Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. Pybind11

HOOMD-BLUE VERSION 3.0 A MODERN, EXTENSIBLE, FLEXIBLE, OBJECT-ORIENTED API FOR MOLECULAR SIMULATIONS 31

– Seamless operability between C++11 and Python. URL: https:
//github.com/pybind/pybind11.

[KSJ+] Christoph Klein, János Sallai, Trevor J. Jones, Christopher R.
Iacovella, Clare McCabe, and Peter T. Cummings. A Hierarchical,
Component Based Approach to Screening Properties of Soft Mat-
ter. In Randall Q Snurr, Claire S. Adjiman, and David A. Kofke,
editors, Foundations of Molecular Modeling and Simulation: Select
Papers from FOMMS 2015, Molecular Modeling and Simulation,
pages 79–92. Springer. URL: https://doi.org/10.1007/978-981-10-
1128-3_5, doi:10.1007/978-981-10-1128-3_5.

[KST+] Christoph Klein, Andrew Z. Summers, Matthew W. Thompson,
Justin B. Gilmer, Clare McCabe, Peter T. Cummings, Janos
Sallai, and Christopher R. Iacovella. Formalizing atom-typing
and the dissemination of force fields with foyer. 167:215–
227. URL: http://www.sciencedirect.com/science/article/pii/
S0927025619303040, doi:10.1016/j.commatsci.2019.
05.026.

[LPS] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba:
A LLVM-based Python JIT compiler. In Proceedings of the
Second Workshop on the LLVM Compiler Infrastructure in HPC,
LLVM ’15, pages 1–6. Association for Computing Machin-
ery. URL: https://doi.org/10.1145/2833157.2833162, doi:10.
1145/2833157.2833162.

[Mar] Marcus G. Martin. MCCCS Towhee: A tool for Monte
Carlo molecular simulation. 39(14-15):1212–1222. URL:
https://doi.org/10.1080/08927022.2013.828208, doi:10.1080/
08927022.2013.828208.

[MBH+] Robert T. McGibbon, Kyle A. Beauchamp, Matthew P. Harri-
gan, Christoph Klein, Jason M. Swails, Carlos X. Hernández,
Christian R. Schwantes, Lee-Ping Wang, Thomas J. Lane, and
Vijay S. Pande. MDTraj: A Modern Open Library for the
Analysis of Molecular Dynamics Trajectories. 109(8):1528–
1532. URL: http://www.sciencedirect.com/science/article/pii/
S0006349515008267, doi:10.1016/j.bpj.2015.08.015.

[McK] Wes McKinney. Data Structures for Statistical
Computing in Python. pages 56–61. URL: https:
//conference.scipy.org/proceedings/scipy2010/mckinney.html,
doi:10.25080/Majora-92bf1922-00a.

[MDWB] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B.
Woolf, and Oliver Beckstein. MDAnalysis: A toolkit for
the analysis of molecular dynamics simulations. 32(10):2319–
2327. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.
21787, doi:10.1002/jcc.21787.

[MRR+] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosen-
bluth, Augusta H. Teller, and Edward Teller. Equation of
State Calculations by Fast Computing Machines. 21(6):1087–
1092. URL: https://aip.scitation.org/doi/abs/10.1063/1.1699114,
doi:10.1063/1.1699114.

[NBB+] Christoph Niethammer, Stefan Becker, Martin Bernreuther, Mar-
tin Buchholz, Wolfgang Eckhardt, Alexander Heinecke, Stephan
Werth, Hans-Joachim Bungartz, Colin W. Glass, Hans Hasse, Jad-
ran Vrabec, and Martin Horsch. Ls1 mardyn: The Massively Par-
allel Molecular Dynamics Code for Large Systems. 10(10):4455–
4464. URL: https://doi.org/10.1021/ct500169q, doi:10.1021/
ct500169q.

[PGM+] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Na-
talia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d\ textquotesingle Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8026–8037. Curran Asso-
ciates, Inc. URL: http://papers.nips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf.

[Pli] S. Plimpton. Fast parallel algorithms for short-range molecular
dynamics. URL: https://www.osti.gov/biblio/10176421, doi:10.
2172/10176421.

[PVG+] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Pe-
ter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu
Perrot, and Édouard Duchesnay. Scikit-learn: Machine Learning
in Python. 12(85):2825–2830. URL: http://jmlr.org/papers/v12/
pedregosa11a.html.

[RDH+] Vyas Ramasubramani, Bradley D. Dice, Eric S. Harper, Matthew P.
Spellings, Joshua A. Anderson, and Sharon C. Glotzer. Freud:
A software suite for high throughput analysis of particle sim-
ulation data. page 107275. URL: http://www.sciencedirect.
com/science/article/pii/S0010465520300916, doi:10.1016/j.
cpc.2020.107275.

[SCW] Romelia Salomon-Ferrer, David A. Case, and Ross C. Walker.
An overview of the Amber biomolecular simulation package.
3(2):198–210. URL: https://onlinelibrary.wiley.com/doi/abs/10.
1002/wcms.1121, doi:10.1002/wcms.1121.

[SD] Matthew Spellings and Bradley D. Dice. Plato. URL: https://
github.com/glotzerlab/plato.

[SDS+] David E. Shaw, Ron O. Dror, John K. Salmon, J. P. Grossman,
Kenneth M. Mackenzie, Joseph A. Bank, Cliff Young, Martin M.
Deneroff, Brannon Batson, Kevin J. Bowers, Edmond Chow,
Michael P. Eastwood, Douglas J. Ierardi, John L. Klepeis, Jef-
frey S. Kuskin, Richard H. Larson, Kresten Lindorff-Larsen, Paul
Maragakis, Mark A. Moraes, Stefano Piana, Yibing Shan, and
Brian Towles. Millisecond-scale molecular dynamics simulations
on Anton. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC ’09, pages 1–11.
Association for Computing Machinery. URL: https://doi.org/10.
1145/1654059.1654126, doi:10.1145/1654059.1654126.

[SMAG] Matthew Spellings, Ryan L. Marson, Joshua A. Anderson, and
Sharon C. Glotzer. GPU accelerated Discrete Element Method
(DEM) molecular dynamics for conservative, faceted particle
simulations. 334:460–467. URL: http://www.sciencedirect.
com/science/article/pii/S0021999117300244, doi:10.1016/j.
jcp.2017.01.014.

[SMM+] Jindal K. Shah, Eliseo Marin-Rimoldi, Ryan Gotchy Mullen,
Brian P. Keene, Sandip Khan, Andrew S. Paluch, Neeraj
Rai, Lucienne L. Romanielo, Thomas W. Rosch, Brian
Yoo, and Edward J. Maginn. Cassandra: An open source
Monte Carlo package for molecular simulation. 38(19):1727–
1739. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.
24807, doi:10.1002/jcc.24807.

[SNR] Paul J. Steinhardt, David R. Nelson, and Marco Ronchetti.
Bond-orientational order in liquids and glasses. 28(2):784–
805. URL: https://link.aps.org/doi/10.1103/PhysRevB.28.784,
doi:10.1103/PhysRevB.28.784.

[Sto] John Edward Stone. An effiicient library for parallel ray trac-
ing and animation. URL: http://jedi.ks.uiuc.edu/~johns/tachyon/
papers/thesis.pdf.

[Stu] Alexander Stukowski. Visualization and analysis of atom-
istic simulation data with OVITO–the Open Visualization Tool.
18(1):015012. URL: https://doi.org/10.1088%2F0965-0393%
2F18%2F1%2F015012, doi:10.1088/0965-0393/18/1/
015012.

[TGM+] Matthew W. Thompson, Justin B. Gilmer, Ray A. Matsumoto,
Co D. Quach, Parashara Shamaprasad, Alexander H. Yang,
Christopher R. Iacovella, Clare McCabe, and Peter T. Cummings.
Towards molecular simulations that are transparent, reproducible,
usable by others, and extensible (TRUE). 118(9-10):e1742938.
URL: https://doi.org/10.1080/00268976.2020.1742938, doi:10.
1080/00268976.2020.1742938.

[vdWCV] Stefan van der Walt, S. Chris Colbert, and Gael Varoquaux. The
NumPy Array: A Structure for Efficient Numerical Computation.
13(2):22–30. doi:10.1109/MCSE.2011.37.

[VGO+] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haber-
land, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu
Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay
Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric
Larson, C. J. Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake
VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian
Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, and Paul van Mulbregt.
SciPy 1.0: Fundamental algorithms for scientific computing in
Python. 17(3):261–272. URL: https://www.nature.com/articles/
s41592-019-0686-2, doi:10.1038/s41592-019-0686-2.

[WWS+] Florian Weik, Rudolf Weeber, Kai Szuttor, Konrad Breitsprecher,
Joost de Graaf, Michael Kuron, Jonas Landsgesell, Henri Menke,
David Sean, and Christian Holm. ESPResSo 4.0 – an ex-
tensible software package for simulating soft matter systems.
227(14):1789–1816. URL: https://doi.org/10.1140/epjst/e2019-
800186-9, doi:10.1140/epjst/e2019-800186-9.

[zot] CuPy. URL: https://cupy.chainer.org/.

32 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Compyle: a Python package for parallel computing

Aditya Bhosale‡§, Prabhu Ramachandran‡§∗

F

Abstract—Compyle allows users to execute a restricted subset of Python on a
variety of HPC platforms. It is an embedded domain-specific language (eDSL)
for parallel computing. It currently supports multi-core execution using Cython,
and OpenCL and CUDA for GPU devices. Users write code in a restricted
subset of Python that is automatically transpiled to high-performance Cython
or C. Compyle also provides a few very general purpose and useful parallel
algorithms that allow users to write code once and have them run on a variety
of HPC platforms.

In this article, we show how to implement a simple two-dimensional molec-
ular dynamics (MD) simulation package in pure Python using Compyle. The
result is a fully parallel program that is relatively easy to implement and solves
a non-trivial problem. The code transparently executes on multi-core CPUs
and GPGPUs allowing simulations with millions of particles. A 3D MD code is
also provided and compares very favorably with a well known, open source,
molecular dynamics package.

Index Terms—High-performance computing, multi-core CPUs, GPGPU accel-
erators, parallel algorithms, transpilation

Motivation and background

In this brief article we provide an overview of Compyle (https:
//compyle.rtfd.io). Compyle is a BSD licensed, Python package
that allows users to write code once in pure Python and have it
execute transparently on both multi-core CPUs or GPGPUs via
CUDA or OpenCL. Compyle is available on PyPI and hosted on
github at https://github.com/pypr/compyle

Users often write their code in one language (sometimes a
high-performance language), only to find out later that the same
performance is not possible on newer hardware without making
significant changes. For example, many scientists do not make
use of GPGPU hardware despite their excellent performance and
availability. One of the problems is that it is often hard to reuse
code developed in one language and expect it to work on all of the
platforms. Moreover, GPUs are parallel machines and extracting
performance from them requires the use of parallel algorithms.
Unless the initial development is done with this in mind, one
cannot easily convert a serial code into a parallel one.

There are many powerful tools available in the Python ecosys-
tem today that facilitate high-performance computing. PyPy is a
Python implementation in Python that features a JIT that allows
one to execute pure Python code at close to C-speeds. Numba uses
the LLVM compiler infrastructure to generate machine code that

‡ Department of Aerospace Engineering
§ IIT Bombay, Mumbai, India
* Corresponding author: prabhu@aero.iitb.ac.in

Copyright © 2020 Aditya Bhosale et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

can rival native C code. Numba also supports execution on GPUs.
There are also compilers like Pythran that transpile a subset of
Python to C++ and support multi-core execution using OpenMP.
Cython is a much used and mature compiler that makes it possible
to write code in a mixture of Python and C. Cython also provides
loop parallelism using OpenMP. Packages like cppimport and
pybind11 make it a breeze to integrate Python with C++ code.
In addition, there are powerful interfaces to GPUs via packages
like PyOpenCL or PyCUDA. Furthermore, packages like Reikna
provide an abstraction and higher level API using PyOpenCL and
PyCUDA. Of these, Numba has matured a great deal and is both
easy to use and versatile.

Given this context, one may wonder why Compyle exists at
all. While Compyle grew out of a project that pre-dates Numba,
the real reason that Compyle exists is that solves a different
problem from most of the existing tools. Understanding this
requires a bit of a context. As a prototypical example, we look at a
simple molecular dynamics simulation where N particles interact
with each other via a Lennard-Jones potential. This problem is
discussed at length in [Sch15].

In order to implement this, the typical workflow for a Python
programmer would be to prototype the molecular dynamics sim-
ulation code in pure Python and obtain a proof of concept. One
would then optimize this code so as to run larger problems in
a smaller amount of time. Very often this would mean changing
some data structures, writing vectorized code using NumPy arrays,
and then resorting to tools like Numba to extract even more per-
formance (sometimes this requires that the code be devectorized
to make the looping explicit). Numba is an impressive tool and
one could say almost works magically well. In fact, for some
problems it will even do a good job of parallelizing the code to
run on multiple cores. However, one cannot execute this same
code on a GPU without making significant modifications, to the
point of practically rewriting it. While Numba offers some help
here with the CUDA and ROCm support, one would still have to
change quite a lot of code to have it work on these architectures.
As such, the issue is that it is difficult to have the same Python
code execute well on CPUs and GPUs.

The reason for this difficulty is that GPUs are inherently
parallel with many thousands of cores. Writing code to effectively
use such hardware requires a significant re-think of the algorithms
used. In particular the algorithm has to be fully parallelized. While
this is easy to do for simple problems, most useful computational
codes involve non-trivial algorithms, which are not always easy to
parallelize.

What Compyle attempts to do is to allow one to write code
once in a highly restrictive subset of pure Python and have this
run in parallel on both CPUs and GPUs. This is a significant

COMPYLE: A PYTHON PACKAGE FOR PARALLEL COMPUTING 33

difference from all the tools that we have mentioned above.
The difficulty in doing this is that it does require a change in

approach and also a loss of the typical conveniences with high-
level Python. While Compyle does not allow arbitrary Python
code, since the code is still written in Python and not another
language, it makes it much easier for users to write and manage
the code.

Compyle provides important parallel programming algorithms
that one typically requires when writing parallel programs. These
are the element-wise operations (or maps), reductions, and parallel
prefix scans. These primitives are written such that the same
program can be executed on both multi-core CPUs and GPUs
with minimal or no changes to the code.

This is currently not possible with any of the other tools. In
addition, Compyle has the following features:

• Generates either Cython or ANSI C code depending on
the backend and this code is quite readable (to a user
familiar with Cython or C). This makes it much easier
to understand and debug.

• Designed to be relatively easy to use as a code generator.
• Support for templated code generation to minimize repeti-

tive code.
• Highly restrictive language that facilitates cross-platform

execution.

Compyle is in principle very similar to the copperhead pack-
age described in [CGK11]. The design of copperhead is very
elegant. However, it appears that copperhead is no longer under
development, the package has no commits after 2013 and is not
available on PyPI (another unrelated package with the same name
is available). While it does support execution via C++ and CUDA,
it does not support OpenCL. We were not aware of copperhead
until very recently and are likely to try and incorporate ideas from
it into Compyle.

Compyle is actively used by a non-trivial, open source, SPH
framework called PySPH and discussed in some detail in [RP+19]
and [Ram16]. Compyle makes it possible for users to write their
SPH codes in high-level Python and have it executed on multi-
core and GPU accelerators with negligible changes to their code.
Unfortunately, Compyle is not used much outside of this context,
so while it does solve many problems, it is still under heavy
development.

In this paper we write a simple two-dimensional molecular
dynamics system that is described and discussed in the article by
[Sch15]. Our goal is to implement this system in pure Python
using Compyle. Through this we demonstrate the ease of use and
power of Compyle. We write programs that execute efficiently in
parallel on CPUs and GPUs without any modifications. We use
this as a way to illustrate the three important parallel algorithms
and show how they allow us to solve non-trivial problems. A
three-dimensional version is also implemented and compared with
HooMD. The results show that our code can be almost two-
times faster for the problem considered. A Google Colaboratory
notebook is provided to make it easy to explore Compyle and these
examples.

High-level overview

We now provide a high-level overview of Compyle and its basic
approach. This is helpful when using Compyle.

It is important to keep in mind that Compyle does not
provide a greater abstraction of the hardware but allows a user

to write code in pure Python and have that same code execute
on multiple different platforms. We currently support multi-core
execution using OpenMP and Cython, and also transparently
support OpenCL and CUDA so the same could could potentially
be reused on a GPGPU. Compyle makes this possible by providing
three important parallel algorithms, an elementwise operation (a
parallel map), a parallel scan (also known as a prefix sum), and a
parallel reduction. The Cython backend provides a native imple-
mentation whereas the OpenCL and CUDA backend simply wrap
up the implementation provided by PyOpenCL and PyCUDA.
These three algorithms make it possible to write a variety of
non-trivial parallel algorithms for high performance computing.
Compyle also provides the ability to write custom kernels with
support for local/shared memory specifically for OpenCL and
CUDA backends. Compyle provides simple facilities to annotate
arguments and types and can optionally make use of Python
3’s type annotation feature as well. Compyle also features JIT
compilation and automatic type inference.

Compyle does not provide support for any high level Python
and only works with a highly restricted Python syntax. While this
is not very user-friendly, we find that in practice this is vitally
important as it ensures that the code users write will run efficiently
and seamlessly execute on both a CPU and a GPU with minimum
or ideally no modifications. In addition, Compyle allows users
to generate code using mako templates in order to maximize
code reuse. Since Compyle performs source transpilation, it is
also possible to use Compyle as a code-generation engine and
put together code from pure Python to build fairly sophisticated
computational engines.

The functionality that Compyle provides falls broadly in two
categories,

• Common parallel algorithms that will work across back-
ends. This includes, elementwise operations, reductions,
and prefix-sums/scans.

• Specific support to run code on a particular backend.
This is for code that will only work on one backend by
definition. This is necessary in order to best use different
hardware and also use differences in the particular back-
end implementations. For example, the notion of local
(or shared) memory only has meaning on a GPGPU. In
this category we provide support to compile and execute
Cython code, and also create and execute a GPU kernel.
These features are not discussed in this article.

In general the subset of Python that Compyle supports are:

• Functions with a C-syntax, this means no default or key-
word arguments.

• Function arguments may be declared using either type
annotation or using a decorator or with default arguments
(which are only used to suggest the type).

• No Python data structures, i.e. no lists, tuples, sets, or
dictionaries.

• Contiguous Numpy arrays are supported but must be one
dimensional and must be a numerical data type.

• No memory allocation is allowed inside these functions.
• On OpenCL no recursion is supported but this will work

with Cython or CUDA.
• Currently, all function calls must not use dotted names,

i.e. don’t use math.sin, instead just use sin. This is
because we do not perform any kind of name mangling of
the generated code to make it easier to read.

34 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

• Compyle does support JIT compilation. If the type anno-
tation is not explicitly supplied, the types can be automat-
ically inferred when the functions are called.

• No support for classes and structs although this may
change in a future release.

In what follows we provide a high-level introduction to the
basic parallel algorithms in the context of the prototypical molec-
ular dynamics problem. By the end of the article we show how
easy it is to write the code with Compyle and have it execute on
multi-core CPUs and GPGPUs. The programs we document here
are also available as part of the Compyle examples. We provide
a convenient Google Colaboratory notebook where users can run
the simple examples on a GPU as well.

Installation

Installation of Compyle is by itself straightforward and this can be
done with pip using:

pip install compyle

For execution on a CPU, Compyle depends on Cython and a
C++ compiler on the local machine. Multi-core execution requires
OpenMP to be available. Detailed instructions for installation are
available at the compyle installation documentation. For execution
on a GPU Compyle requires that either PyOpenCL or PyCUDA be
installed. It is possible to install the required dependencies using
the extras argument as follows:

pip install compyle[opencl]

Compyle is still under heavy development and one can install the
package using a git checkout from the repository on github at
https://github.com/pypr/compyle

Parallel algorithms

We will work through a molecular dynamics simulation of N
particles using the Lennard-Jones potential energy for interaction.
Each particle interacts with every other particle and together the
system of particles evolves in time. The Lennard-Jones potential
energy is given by,

u(r) = 4ε
((σ

r

)12
−
(σ

r

)6
)

Each particle introduces an energy potential and if another particle
is at a distance of r from it, then the potential experienced by
the particle is given by the above equation. The gradient of
this potential energy function produces the force on the particle.
Therefore if we are given two particles at positions, ~ri and ~r j
respectively then the force on the particle j is dependent on the
value of |~r j−~ri| and the gradient is:

~Fi← j =
24ε
r2

i j

(
2
(

σ
ri j

)12

−
(

σ
ri j

)6
)
~ri j

Where ri j = |~ri j| and ~ri j =~ri−~r j. The left hand side is the force
on particle i due to particle at j. Here, we use σ = ε = m = 1 for
our implementation. We use the velocity Verlet algorithm in order
to integrate the system in time. We use a timestep of ∆t and as
outlined in [Sch15], the position and velocity of the particles are
updated in the following sequence:

1) Positions of all particles are updated using the current
velocities as xi = xi + vi∆t + 1

2 ai∆t2. The velocities are
then updated by half a step as vi = vi +

1
2 ai∆t.

2) The new acceleration of all particles are calculated using
the updated positions.

3) The velocities are then updated by another half a step.

In the simplest implementation of this, all particles influence
all other particles. This can be implemented very easily in Python
and Compyle. Our implementation will be parallel from the get-go
and will work on both CPUs and GPUs.

Once we complete the simple implementation we consider a
very important performance improvement where particles that are
beyond 3 natural units, i.e. ri j > 3 do not influence each other
(beyond this distance the force is negligible). This can be used
to reduce the complexity of the computation of the mutual forces
from an O(N2) to an O(N) computation. However, implementing
this easily in parallel is not so straightforward.

Due to the simplicity of the initial implementation, all of these
steps can be implemented using what are called "elementwise" op-
erations. This is the simplest building block for parallel computing
and is also known as the "parallel map" operation.

Elementwise

An elementwise operation can be thought of as a parallel for
loop. It can be used to map every element of an input array to
a corresponding output. Here is a simple elementwise function
implemented using Compyle to execute step 1 of the above
algorithm.

@annotate(float='m, dt',
gfloatp='x, y, vx, vy, fx, fy')

def integrate_step1(i, m, dt, x, y, vx, vy, fx, fy):
axi, ayi = declare('float', 2)
axi = fx[i] / m
ayi = fy[i] / m
x[i] += vx[i] * dt + 0.5 * axi * dt * dt
y[i] += vy[i] * dt + 0.5 * ayi * dt * dt
vx[i] += 0.5 * axi * dt
vy[i] += 0.5 * ayi * dt

The annotate decorator is used to specify types of arguments
and the declare function is used to specify types of variables
declared in the function. In this case, gfloatp indicates a global
double pointer data type. Compyle also supports Python3 style
type annotations using the types defined in compyle.types.

Specifying types can be avoided by using the JIT compilation
feature which infers the types of arguments and variables based
on the types of arguments passed to the function at runtime.
Following is the implementation of steps 2 and 3 without the type
declarations.

@annotate
def calculate_force(i, x, y, fx, fy, pe,

num_particles):
force_cutoff = 3.
force_cutoff2 = force_cutoff * force_cutoff
for j in range(num_particles):

if i == j:
continue

xij = x[i] - x[j]
yij = y[i] - y[j]
rij2 = xij * xij + yij * yij
if rij2 > force_cutoff2:

continue
irij2 = 1.0 / rij2
irij6 = irij2 * irij2 * irij2
irij12 = irij6 * irij6
pe[i] += (2 * (irij12 - irij6))
f_base = 24 * irij2 * (2 * irij12 - irij6)

fx[i] += f_base * xij

COMPYLE: A PYTHON PACKAGE FOR PARALLEL COMPUTING 35

fy[i] += f_base * yij

@annotate
def integrate_step2(i, m, dt, x, y, vx, vy, fx, fy):

vx[i] += 0.5 * fx[i] * dt / m
vy[i] += 0.5 * fy[i] * dt / m

Finally, these components can be brought together to write the
step functions for our simulation,

@annotate
def step_method1(i, x, y, vx, vy, fx, fy, pe, xmin,

xmax, ymin, ymax, m, dt,
num_particles):

integrate_step1(i, m, dt, x, y, vx, vy, fx, fy)

@annotate
def step_method2(i, x, y, vx, vy, fx, fy, pe, xmin,

xmax, ymin, ymax, m, dt,
num_particles):

calculate_force(i, x, y, fx, fy, pe,
num_particles)

integrate_step2(i, m, dt, x, y, vx, vy, fx, fy)

These can then be wrapped using the Elementwise class and
called as normal python functions.

step1 = Elementwise(step_method1,
backend=self.backend)

step2 = Elementwise(step_method2,
backend=self.backend)

One can also use the @elementwise decorator on the step
functions and those can then be directly called without having
to wrap them using Elementwise.

Note that in the above, step_method1, step_method2
are the ones that are wrapped into an elementwise operation. The
integrate_step methods are merely called by these. For an
elementwise kernel, the first argument is always the index of the
particular element being processed, in this case i. One can think
of the function as the block of code being executed by a for loop.
The number of elements iterated over is always implicitly based
on the first array argument passed to the function, in this case, x.

The simulation can then be executed simply as follows,

Initialize x, y
Initialize vx, vy, fx, fy, pe to zeros

num_steps = int(t // dt)
for i in range(num_steps):

step1(x, y, vx, vy, fx, fy, pe, xmin, xmax,
ymin, ymax, m, dt, self.num_particles)

step2(x, y, vx, vy, fx, fy, pe, xmin, xmax,
ymin, ymax, m, dt, self.num_particles)

We have used a fixed wall non-periodic boundary condition for
our implementation. The details on the implementation of the
boundary condition can be found in the example section of
Compyle’s github repository here.

The backend used can be changed using the following code:

from compyle.api import get_config
On OpenMP
get_config().use_openmp = True

Run with OpenCL
get_config().use_opencl = True

No other code changes are needed.

Fig. 1: Snapshot of simulation with 500 particles.

Reduction

To check the accuracy of the simulation, the total energy of the
system can be monitored. The total energy for each particle can
be calculated as the sum of its potential and kinetic energy. The
total energy of the system can then be calculated by summing the
total energy over all particles.

The reduction operator reduces an array to a single value.
Given an input array (a0,a1,a2, · · · ,an−1) and an associative
binary operator ⊕, the reduction operation returns the value
a0⊕a1⊕·· ·⊕an−1.

Compyle also allows users to give a map expression to map the
input before applying the reduction operator. The total energy of
our system can thus be found as follows using reduction operator
in Compyle.

@annotate
def calculate_energy(i, vx, vy, pe, num_particles):

ke = 0.5 * (vx[i] * vx[i] + vy[i] * vy[i])
return pe[i] + ke

energy_calc = Reduction('a+b',
map_func=calculate_energy,
backend=backend)

total_energy = energy_calc(vx, vy, pe, num_particles)

Here, in the expression 'a+b' a represents ai and b represents
the reduction result till i− 1, i.e. ∑i−1

0 ak. For the maximum for
example one would write 'max(a, b)'. Common reductions
like sum, max and min are also available but we show the general
form above where we can also map the values using the function
given before the reduction is applied.

Initial Results

Figure 1 shows a snapshot of simulation using 500 particles and
bounding box size 50 with a non-periodic boundary condition.

For evaluating our performance, we ran our implementation
on a 2.9 Ghz quad-core Intel Core i7 processor and an NVIDIA
Tesla P100 GPU. We used dt = 0.02 and ran the simulation for 25
timesteps. Figures 2 and 3 show the speedup achieved over serial
execution using Cython by using OpenMP, OpenCL and CUDA.
As you can see on the CPUs we get more than a 5x speedup (de-
spite having only 4 cores). However, on the GPU we get around a
200x speedup. This is compared to very fast execution on a single

36 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Fig. 2: Speed up over serial Cython using OpenMP.

Fig. 3: Speed up over serial Cython using CUDA and OpenCL.

Intel Xeon 2.3GHz CPU. The fact that we can use both OpenCL
and CUDA is also very important as on some operating systems,
there is no CUDA support even though OpenCL is supported
(like the GPUs on MacOS). Note that by default Compyle uses
floating point precision on the GPUs as most GPUs perform much
better with floating point precision. We can use double precision
on the GPU using get_config().use_double = True if
we require it. Again, we do not need to change the solver to do
this. Our implementation is about 2x slower when using double
precision on an NVIDIA Tesla P100 GPU which is typically
expected.

This is in itself remarkable given that all we do to run on the
GPU or CPU is to simply set the appropriate backend. In most
of the Compyle examples, we use a command line argument to
switch the backend. So with exactly the same code we are able to
immediately run our program fully in parallel and have it run on
both multi-core CPUs as well as GPUs.

Many problems can be solved using the map-reduce approach
above. However, almost all non-trivial applications require a bit
more than that and this is where the parallel scan becomes very
important.

Scans

Up to now we have found the influence of all particles on each
other. Since the force on two particles is negligible when they
are more than 3 units apart, we do not have to loop over all the
particles, we can therefore reduce the computation to an O(N)
computation and increase performance significantly. One way of
doing this is to bin the particles into small boxes and given
a particle in a box, only interact with the box and its nearest
neighbor boxes.

Implementing this in serial is fairly easy, but if we want this
to work fast and scale on a GPU we must implement a parallel
algorithm. This is where the parallel scan comes in and why
this parallel algorithm is so important. The parallel prefix scan
is described in detail in the excellent article by Blelloch [Ble90].
Compyle provides an implementation of the scan algorithm on the
CPU and the GPU.

Since the scan algorithm is a bit more complex and most
folks are unfamiliar with it, we first provide a simpler example
application that we solve and then move back to our molecular
dynamics application.

Scans are generalizations of prefix sums / cumulative sums
and can be used as building blocks to construct a number of
parallel algorithms. These include but not are limited to sorting,
polynomial evaluation, and tree operations.

Given an input array a = (a0,a1,a2, · · · ,an−1) and an asso-
ciative binary operator ⊕, a prefix sum operation returns the
following array

y = (a0,(a0⊕a1), · · · ,(a0⊕a1⊕·· ·⊕an−1))

The scan semantics in Compyle are similar to those of the
GenericScanKernel in PyOpenCL. This allows us to con-
struct generic scans by having an input expression, an output
expression and a scan operator. The input function takes the input
array and the array index as arguments and can be used to map
the input array before running the scan. The output expression can
then be used to map and write the scan result as required. The
output function also operates on the input array and an index but
also has the scan result, the previous item and the last item in the
scan result available as arguments.

Below is an example of implementing a parallel "where". This
returns elements of an array where a given condition is satisfied.
The following example returns elements of the array that are
smaller than 50.

@annotate
def input_expr(i, ary):

return 1 if ary[i] < 50 else 0

@annotate
def output_expr(i, prev_item, item, N, ary, result,

result_count):
if item != prev_item:

result[item - 1] = ary[i]
if i == N - 1:

result_count[0] = item

ary = np.random.randint(0, 100, 1000, dtype=np.int32)
res = np.zeros(len(ary.data), dtype=np.int32)
count = np.zeros(1, dtype=np.int32)

res, count, ary = wrap(res, count, ary, backend=backend)
scan = Scan(input_expr, output_expr, 'a+b',

dtype=np.int32, backend=backend)
scan(ary=ary, result=res, result_count=count)
res.pull()

COMPYLE: A PYTHON PACKAGE FOR PARALLEL COMPUTING 37

count.pull()
count = count.data[0]
res = res.data[:count]

The argument i, similar to that seen in elementwise kernels is
the current index, the argument item is the result of the scan
including the input at index i. The prev_item is the result
of the array at index i-1. item and prev_item are reserved
variables and users should not use them when writing the input
and output functions.

In the above example, the input expression returns 1 only when
the value at index i is less than 50. So as long as the array elements
are greater than 50, the value of item will remain the same and
will only increase when an element less than 50 is found at the
index. Thus, the condition item != prev_item will only be
satisifed for indices at which the value of ary[i] is less than 50.

The input_expr could also be used as the map function for
reduction and the required size of result could be found before
running the scan and the result array can be allocated accordingly.

Back to the MD problem

To reduce the complexity of the problem from O(N2) to O(N),
we use a binning strategy as mentioned in the previous section.
We partition our domain into square bins of size 3 units. Then
for each particle, all the particles within a radius of 3 units from it
will lie inside of the 9 neighboring bins. For a bin with coordinates
c = (m,n), these 9 bins will be,

N(c) = {c+d | d ∈ {−1,0,1}×{−1,0,1}}
The idea is that for each particle we will iterate over all particles
in these 9 bins and check if the distance between the particle and
the query particle is less than 3. The inter-particle force will be
computed only then between the two particles. This algorithm is
often called a nearest-neighbor particle search (NNPS) algorithm.
To implement this, we first find the bin to which each particle
belongs. This is done as follows,

c =
(⌊ x

h

⌋
,
⌊ y

h

⌋)

where x and y are the coordinates of the particle and h is the
required radius which in our case is 3. Note that our problem is
setup such that the left bottom corner is at the origin. We then
flatten these bin coordinates to map each bin to a unique integer
we call the ’key’. We sort these keys and an array of indices of the
particles such that the sorted indices have all particles in the same
cell as contiguous elements. Compyle provides a sort function
which uses the PyOpenCL radix sort for OpenCL backend, thrust
sort for the CUDA backend and simple numpy sort for the cython
backend.

To find the particles belonging to the 9 neighboring bins, we
now need to find the index in the sorted indices array at which each
key starts. This can be found in parallel using a scan as follows,

@annotate
def input_scan_keys(i, keys):

return 1 if i == 0 or keys[i] != keys[i - 1] \
else 0

@annotate
def output_scan_keys(i, item, prev_item, keys,

start_indices):
key = keys[i]
if item != prev_item:

start_indices[key] = i

Once we have the start indices array, we can also find the number
of particles in each bin using a simple elementwise operation as
follows,

@annotate
def fill_bin_counts(i, keys, start_indices,

bin_counts, num_particles):
if i == num_particles - 1:

last_key = keys[num_particles - 1]
bin_counts[last_key] = num_particles - \

start_indices[last_key]
if i == 0 or keys[i] == keys[i - 1]:

return
key = keys[i]
prev_key = keys[i - 1]
bin_counts[prev_key] = start_indices[key] - \

start_indices[prev_key]

Now we can iterate over all neighboring 9 bins, find the key
corresponding to each of them, then lookup the start index for that
key in the start_indices array and the number of particles in
the cell by looking up in the bin_counts array. Then lookup the
sorted indices array to find the indices of the particles belonging
to these bins and find the particles within a distance of 3 units.

However, note that we still have a challenge in storing these
neighboring particles as we do not know the number of neigh-
boring particles beforehand and so cannot allocate an array of
that size. Moreover, since each particle can have different number
of neighbors, it is also not straightforward to know where in
the neighbors array we need to look to find the neighbors of a
particular particle.

We use a two pass approach to solve this problem. In the first
pass we find the number of neighbors for each particle. We then
run a scan over this array to find the start indices for neighbors of
each particle in the neighbors array as follows,

@annotate
def input_start_indices(i, counts):

return 0 if i == 0 else counts[i - 1]

@annotate
def output_start_indices(i, item, indices):

indices[i] = item

We then allocate the neighbors array of size equal to sum of all
neighbor lengths. The second pass is then another elementwise
operation where each particle writes its neighbors starting from
the start index calculated from the scan.

More details on this implementation can be found in the exam-
ples section of our repository here. We have also implemented a
more efficient version of the nearest neighbor searching algorithm
using a counting sort instead of the radix sort which is 30% faster
that can be found here.

Performance comparison

Figure 4 shows the speedup achieved by the OpenCL and CUDA
backends running on a GPU relative to serial code running using
Cython (on a single CPU core) for the linear version of the
algorithm. Figure 5 shows the time taken for these simulations. It
can be seen that the algorithm is linear for large values of number
of particles. We again get more than a 100x speedup using the
GPU over a single CPU core. Note that on the NVIDIA P100 GPU
we are able to run a simulation with 25 timesteps for 5 million
particles in less than a second, showing the excellent performance
attained.

38 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Fig. 4: Speed up over serial cython using CUDA and OpenCL using
the NNPS.

Fig. 5: Time taken for simulation using serial cython, CUDA and
OpenCL.

Fig. 6: Time taken for simulation using O(N) (Linear) and O(N2)
(Simple) approach.

Fig. 7: Speed up using O(N) over O(N2) approach.

Fig. 8: Time taken for HooMD and our implementation using CUDA
backend.

Figure 6 shows the time taken for simulation using O(N) and
O(N2) approach. Figure 7 shows the speed up acheived by using
the O(N) algorithm as compared to the O(N2) algorithm using the
serial cython backend. We have about a 100 fold speed up with
the improved algorithm for only 32,000 particles.

The performance of the algorithm can be further improved
by aligning the x and y coordinate arrays according to the sorted
indices. This will improve the global memory access pattern on
the GPU giving a better performance. This can be done easily in
Compyle using compyle.array.align which uses a single
elementwise operation to align multiple arrays in a given order.
We have not explored this in this paper.

We have also implemented a 3D version of the simulation with
both periodic and non-periodic boundary conditions. We compared
our implementation with HooMD for a 3D periodic simulation on
an NVIDIA Tesla P100 GPU. Figure 8 shows the results of this
comparison. We found our implementation to be about 2x faster
than HooMD. To check the correctness of our implementation,
we have also provided a script to generate plots of potential and
kinetic energy of the system at every 100 timesteps using HooMD
and our implementation.

COMPYLE: A PYTHON PACKAGE FOR PARALLEL COMPUTING 39

All of the code discussed above is available in the examples
directory of the Compyle repository here. All of the code, with
two different NNPS implementations, and featuring a command
line interface, comes to around 500 lines of code. This is quite
exciting as this code can be executed on either a multi-core CPU
or a GPU with no code changes.

Limitations

While Compyle is really powerful and convenient, it does use a
rather verbose and low-level syntax. In practice we have found
that this is not a major problem. The more serious issue is the fact
that we cannot directly use external libraries in a platform neutral
way. For example, there are ways to use an external OpenCL or
CUDA library but this will not be usable on a CPU. Obviously
one cannot use normal Python code and use basic Python data
structures. This is because the Python data structures would need
to be implemented in the target language. Furthermore, one cannot
use well established libraries like scipy from within the parallel
constructs. The reason for this is that scipy and other libraries are
not necessarily available for use on a GPU or even on multi-core
CPUs. These are limitations that are beyond the scope of Compyle
at this point.

The low-level API that Compyle provides turns out to be quite
an advantage as Compyle code is usually very fast the first time it
runs. This is because it will refuse to run any code that uses Python
objects. By forcing the user to write the algorithms conforming to
the constraints makes the code efficient. It also forces the user
to think along the lines of parallel algorithms. This is a major
factor. We have used Compyle in the context of a larger scientific
computing project and have found that while the limitations are
annoying, the benefits are generally worth it.

Compyle has also only been used in the context of the PySPH
project and as such has not seen a lot of community adoption.
This has meant that there are many rough edges. We are hoping
to improve the package and are also hopeful for community
contributions eventually.

Future work

There are several improvements that are planned for Compyle.

• Some internal cleanup is necessary. This is especially true
of the Cython backend which has grown organically and
requires a reimplementation.

• Many of the CPU related algorithms, like sorting, and
many of the reductions are still serial. These are relatively
easy to fix.

• The Cython backend may be eventually replaced using
pybind11 if possible.

• The API requires some cleanup in many places. We also
hope to look at the copperhead package to improve our
API.

• While Compyle does support simple structs, this API is
still not clean enough to be used in general.

• We also hope to add support for simple "objects" that
would allow users to compose their libraries in a more
object oriented manner. This would open up the possibility
of implementing more high-level data structures in an easy
way.

There are many other improvements, and features we are
considering and hope to implement as time permits. Despite its
many warts, we already find Compyle to be remarkably useful.

Conclusions

In this article we have shown how one can implement a two-
dimensional molecular dynamics solver using Compyle. The code
is parallel from the beginning and runs effortlessly on multi-core
CPUs and GPUs without any changes. We have used the example
to illustrate the main parallel algorithms that Compyle provides,
i.e. elementwise, reduction, and scans. We show how a non-trivial
optimization of the example problem is possible using a scan.
The results clearly show that we are able to write the code once
and have it run on massively parallel architectures. This is very
convenient and this is possible because of our approach to the
problem which puts parallel algorithms first and forces the user to
write code with a hard set of restrictions.

We believe that Compyle allows computational scientists to
quickly develop new methods that could benefit from effective
parallelization. For molecular dynamics there are many challenges
[LGM+15] where this could be useful. While the article used an
MD example, and we have ourselves used it in the context of the
SPH method [RP+19], Compyle is potentially useful in a variety
of other areas. We hope that others are able to use and benefit from
using Compyle.

Acknowledgments

We gratefully acknowledge the many open source packages with-
out which this work would never be possible. In particular we
thank Andreas Klöckner for many of the parallel algorithms
implemented as part of PyOpenCL and PyCUDA that are an
inspiration for Compyle. Our thanks to the reviewers for their
feedback that has significantly improved the manuscript.

REFERENCES

[Ble90] Guy E. Blelloch. Prefix sums and their applications. Technical
Report CMU-CS-90-190, School of Computer Science, Carnegie
Mellon University, November 1990.

[CGK11] Bryan Catanzaro, Michael Garland, and Kurt Keutzer. Cop-
perhead: compiling an embedded data parallel language. ACM
SIGPLAN Notices, 46(8):47–56, February 2011. URL: https://
doi.org/10.1145/2038037.1941562, doi:10.1145/2038037.
1941562.

[LGM+15] Andrea J. Liu, Gary S. Grest, M. Cristina Marchetti, Gre-
gory M. Grason, Mark O. Robbins, Glenn H. Fredrickson,
Michael Rubinstein, and Monica Olvera de la Cruz. Op-
portunities in theoretical and computational polymeric ma-
terials and soft matter. Soft Matter, 11(12):2326–2332,
March 2015. Publisher: The Royal Society of Chem-
istry. URL: https://pubs.rsc.org/en/content/articlelanding/2015/
sm/c4sm02344g, doi:10.1039/C4SM02344G.

[Ram16] Prabhu Ramachandran. PySPH: a reproducible and high-
performance framework for smoothed particle hydrodynamics.
In Sebastian Benthall and Scott Rostrup, editors, Proceedings of
the 15th Python in Science Conference, pages 127 – 135, 2016.
doi:10.25080/Majora-629e541a-011.

[RP+19] Prabhu Ramachandran, , Kunal Puri, Aditya Bhosale, Dinesh
Adepu, Abhinav Muta, Pawan Negi, Rahul Govind, Suraj Sanka,
Pankaj Pandey, Chandrashekhar Kaushik, Anshuman Kumar,
Ananyo Sen, Rohan Kaushik, Mrinalgouda Patil, Deep Tavker,
Dileep Menon, Vikas Kurapati, Amal S Sebastian, Arkopal
Dutt, and Arpit Agarwal. PySPH: a Python-based frame-
work for smoothed particle hydrodynamics. arXiv preprint
arXiv:1909.04504, 2019. URL: https://arxiv.org/abs/1909.04504.

[Sch15] Daniel V. Schroeder. Interactive molecular dynamics. American
Journal of Physics, 83(3):210–218, February 2015. Publisher:
American Association of Physics Teachers. doi:10.1119/1.
4901185.

40 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Netlist Analysis and Transformations Using SpyDrNet

Dallin Skouson‡§∗, Andrew Keller‡§, Michael Wirthlin‡§

F

Abstract—Digital hardware circuits (i.e., for application specific integrated cir-
cuits or field programmable gate array circuits) can contain a large number of
discrete components and connections. These connections are defined by a data
structure called a "netlist". Important information can be gained by analyzing
the structure of the circuit netlist and relationships between components. Many
specific circuit manipulations require component reorganization in hierarchy and
various circuit transformations. SpyDrNet is an open-source netlist analysis and
transformation tool written in Python that performs many of these functions.
SpyDrNet provides a framework for netlist representation, querying, and modifi-
cation that is netlist format independent and generalized for use in a wide variety
of applications. This tool is actively used to enhance circuit reliability and error
detection for circuits operating in harsh radiation environments.

Index Terms—Hardware Design, Netlists, EDA, CAD

Introduction

Digital hardware circuits can contain a large number of discrete
components and connections. These components work together
through their connections to implement a digital hardware design.
Digital hardware circuits are commonly implemented on applica-
tion specific integrated circuits (ASICs) or on field programmable
gate arrays (FPGAs). Discrete components and connections in
a digital hardware circuit can be associated with a number of
specific attributes. All of this information can be stored inside
a graph-like data structure called a "netlist" which details each
component and connection along with their respective attributes.

Netlists come in many different formats and organizational
structures, but common constructs abound (within EDIF, structural
Verliog, and structural VHDL, etc.) [LS89], [JB94]. Most netlist
formats have a notion of primitive or basic circuit components that
form a basis from which any design can be created. If the contents
of a circuit component is unknown, it is treated as a blackbox.
Primitive or basic components and blackboxes are viewed as
leaf cells. Cells are also referred to as modules, or definitions.
Leaf definitions can then be instanced individually inside a larger
non-leaf definitions. Definitions and instances contain connection
points called pins, which are sometimes grouped together into
ports. Nets connect pins together. Nets are also referred to as wires
and can be grouped into a collection of nets called a bus or cable.

* Corresponding author: dallinskouson@byu.edu
‡ NSF Center for Space, High-Performance, and Resilient Computing
(SHREC)
§ Department of Electrical and Computer Engineering, Brigham Young Uni-
versity

Copyright © 2020 Dallin Skouson et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

SpyDrNet provides a common framework for representing,
querying, and modifying netlists from which application specific
analysis and transformation functions can be built. The data
structure used to represent netlists is designed to provide quick
pointer access to neighboring elements and it is designed to be
extensible so that format specific constructs can be stored along
with the netlist for preservation when the netlist is exported. This
ability supports the representation of a wide variety of netlist
formats.

SpyDrNet is currently implemented in Python and provides a
Python interface so that it can easily integrate with other Python
packages such as NetworkX [HSS08] and PyEDA [CD15]. These
library packages have been used in tandem with SpyDrNet to
rapidly develop new analysis techniques for better understanding
the connectivity and relationships between circuit components as
part of reliability research. The Python platform also makes this
tool readily available to anyone interested in the community and
easily extensible.

This paper presents the SpyDrNet framework, a few use cases,
and highlights its use in the development of advanced reliability
enhancement techniques. This tool originates from a long line
of reliability research focused on improving the reliability of
computer circuits implemented on static random access memory
based (SRAM-based) FPGAs [JHW+08], [PCC+08], [JW10].

Related Work

The predecessor to SpyDrNet, BYU EDIF Tools [Bri20]. The
BYU EDIF tools provide two benefits. First, it provides an API
for working with electronic design interchange format (EDIF)
netlists. Second, the BYU EDIF Tools includes the Brigham
Young University and Los Alamos National Laboratory Triple
Modular Redundancy (BL-TMR) Tool. The BL-TMR tool pro-
vides a rich set of features for the automated insertion of circuit
redundancy for the application of fault-tolerance techniques on
digital hardware circuits. These tools have been used extensively
in FPGA reliability research [JHW+08], [PCC+08], [JW10].

The BYU EDIF Tools have limitations that motivate the
development of SpyDrNet. First, the framework of the BYU EDIF
Tools is closely tied to the EDIF netlist format, which makes it
challenging to use with alternate netlist formats. Second, the BYU
EDIF Tools are primarily intended for use with netlists targeting
specific FPGAs. Finally, though not a limitation per se, the BYU
EDIF Tools are written in Java and migrating to Python is a
motivating factor.

SpyDrNet aims to provide a framework that is netlist for-
mat independent and generalized for use in a wide variety of
applications. Tools with functionality similar to SpyDrNet exist,

NETLIST ANALYSIS AND TRANSFORMATIONS USING SPYDRNET 41

HDL Synthesis Netlist SpyDrNet Transformed Netlist
Generate Hardware

Files

Fig. 1: The path of a design using SpyDrNet.

but they tend to be tied to a specific device, architecture, netlist
format, or vendor. Some tools with similar functionality such
as Vivado [Xil20] or Verific [Ver20] are proprietary. Other tools
such as RapidWright [LK18] and Tincr [WN14] are intended for
customizing the low-level physical implementation of a netlist on
a vendor specific hardware platform. LiveHD [liv] is open-source
tool that provides rapid synthesis and simulation updates to small
changes in hardware description languages (HDLs). Its framework
and language support focuses on the whole design cycle (from
logic synthesis, to simulation, to place and route, and tapeout)
whereas SpyDrNet focuses specifically on working with structural
netlists (i.e., netlists that do not change based on netlist inputs).

SpyDrNet Tool Flow

Electronic designs may flow through a number of steps before they
are built, packaged, or programmed into their target device. For
example, these designs may be created in a hardware description
language, synthesized into a netlist, then placed, routed, and
packaged into a target file which will be used to fabricate the
device. A CAD tool can modify the functionality of the final
design at any of these stages. The earlier stages in the design
flow are slightly less static. Constructs may be optimized out of
the design, and the actual hardware implementation of a construct
may be unknown. Later in the design process constructs are more
stable, but the design is also generally harder to work with (binary
files, complex device specific information, etc). By working at the
netlist level, SpyDrNet is able to avoid many of the pitfalls of both
aspects of the design process.

Figure 1 represents how a design can be prepared and pro-
cessed prior to and after using SpyDrNet. Many designs start
as a hand written hardware description language and are then
converted into a netlist using a synthesizer. Netlists are then passed
through additional tools to create a design file to be physically
implemented.

SpyDrNet currently includes a parser and composer that
imports and exports netlists written in EDIF. Figure 2 shows
how the SpyDrNet framework can be used to parse, analyze,
transform, and compose netlists in many different formats. Parsers
populate an intermediate representation of the netlist in memory
using information provided by the input file. With the netlist in
intermediate representation, analysis and transformation of the
netlist can take place. Once the design is in a state where the user
is satisfied, a composer exports the netlist into a desired format.
Using the SpyDrNet framework, additional parsers and composers
can be written for additional netlist formats.

The Intermediate Representation

The intermediate representation is a generic structural netlist
representation employed by SpyDrNet. Structural netlists refer
to a class of netlists that represent the interconnection of prima-
tive circuit components. These netlists are useful because when
modifying netlists for reliability we are less concerned with the

Intermediate
Representation

Original
Netlist

Parser Composer

Modified
Netlist

Analysis
• Connectivity
• Clock Domains
• Utilization, etc.

Transformation
• Triple Modular Redundancy
• Duplication With Compare
• Partial variants, etc.

EDIF
VHDL

Verilog
Other

EDIF
VHDL

Verilog
Other

Fig. 2: Processing a netlist in SpyDrNet. Note that Verilog and VHDL
refer to the structural subset of these languages.

general purpose of the circuit and more concerned with how that
circuit is implemented. Users can manipulate the structure while in
memory and write out a supported format using one of the export
modules or composers that is included with SpyDrNet. Built into
the intermediate representation is an API for manipulating the
datastructure.

The data structure was built with a focus on simplifying access
to adjacent points in the netlist. In some cases where simple
accessors could be added at additional memory cost, the accessors
were added. One example of this is the bidirectional references
implemented throughout the netlist. This ideology resulted in a
slightly longer running time in some cases (and shorter in others),
but speed was taken into account as these decisions were made.
If a feature significantly increased the run time of the tests, it was
examined and optimized.

Primary Data Structures

A short description of some of the data structure components is
provided. The constructs behind a structural Netlist are Libraries,
Definitions, Instances, Ports, and Cables. Figure 3 shows the
connectivity between these components.

Netlist Library Definition Cable

Port

Instance

InnerPin

OuterPin

Wire

Fig. 3: Highlights the connectivity between components in the inter-
mediate representation.

Element: This is the base class for all components of
a netlist. Some components are further classified as first class
elements. First class elements have a name field as well as a
properties field.

Definition: These first class elements are sometimes called
cells or modules in other representations. They hold all of the
information about what their instances contain.

42 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Instance: This first class element is a place holder to be
replaced with the sub-elements of the corresponding definition
upon build. It is contained in a different definition to its own. In
the case of the top level instance it is the place holder that will be
replaced by the entire netlist when it is implemented

Port: The Port element can be thought of as containing
the information on how a Definition connects the outside world to
the elements (instances and cables) it contains.

Cable: Cables are bundles of wires that connect compo-
nents within a definition. They connect ports to their destination
pins.

Pin: These objects represent points of connection between
instances or ports and wires. Pins can be divided into inner and
outer pin categories. The need for these distinctions lies in the
fact that definitions may have more than one instance of itself.
Thus components connected on the inside of a definition need to
connect to pins related to the definition will connect to inner pins
on the definition. Each of these inner pins will correspond to one
or more outer pins on instances of the corresponding definition. In
this way instances can be connected togehter while still allowing
components within a definition to connect to the ports of that
definition.

Wire: Wires are grouped inside cables and are elements
that help hold connection information between single pins on
instances within a definition and within it’s ports.

Fig. 4: Structure of the Intermediate Representation. An asterisk
references a definition.

Support for Multiple Netlist Formats

In addition to holding a generic netlist data structure, the universal
netlist representation can hold information specific to individual
formats. This is done through the inclusion of metadata dictionar-
ies in many of the SpyDrNet objects.

Parsers can take advantage of the flexibility of the metadata
dictionary to carry extra information that source formats present
through the tool. This includes information such as comments,
parameters, and properties.

In addition, the metadata dictionary can be used to contain any
desired user data. Because SpyDrNet is implemented in Python,
any data type can be used for the key value in these dictionaries.

Callback Framework

A callback framework was implemented in SpyDrNet to support
real time analysis of netlist modifications. Callbacks can assist
with applications that make incremental changes to the netlist
followed with an analysis of the netlist to determine what more
needs to changed. Alternatively users may wish to be warned
of violations of design rules such as maintaining unique names.
Without callbacks these checks could be performed over the whole
netlist data structure on user demand which would add complexity
for the end user.

SpyDrNet’s callbacks allow users to create plugins that can
keep track of the current state of the netlist as changes are made.
Currently, a namespace manager is included with SpyDrNet.
The callback framework is able to watch changes to the netlist,
including addition and removal of elements, as well as changes in
naming and structure of the netlist.

Listeners may register to hear these changes as they happen.
Each listener is called in the order in which it was registered
and may update itself as it sees the netlist change. Plugins
that implement listeners can be created and added through the
API defined register functions. In general listener functions are
expected to receive the same parameters as the function on which
they listen.

Modularity Within SpyDrNet

In order to support expansion to a wide variety of netlists, our
intermediate representation was designed to reflect a generic
netlist data structure. Care was taken to ensure that additional user
defined constructs could be easily included in the netlist.

Because of the generic nature of the netlist representation,
additional netlist parsers and composers can be built separately
and still take full advantage of the existing modification passes
available in SpyDrNet. To build a parser or composer requires no
more advanced knowledge than an end user may have from using
the API to design a custom analysis or modification pass on the
netlist.

Other functionality has been added on top of the core of
SpyDrNet, including plugin support and the ability to modifiy
the netlist at a higher level. These utility functions are used by
applications. This layered approach aims to aid in code reusability
and reliability allowing lower level functionality to be tested
before the higher level functionality is added on.

Analysis and Transformation

SpyDrNet provides a framework for the analysis and transfor-
mation of structural netlists. Structural netlists (i.e., a list of
circuit components and their connects) capture a hardware design

NETLIST ANALYSIS AND TRANSFORMATIONS USING SPYDRNET 43

that is ready for physical implementation where hardware files
can be generated (see Figure 1). Information such as component
importance or influence can be understood by examining structural
relationships between components. Modifications made to the
structural netlist are reflected in the hardware implementation.

The analysis and transformation capabilities presented in sec-
tion form a basis from which custom analysis and transformation
functions can be built for specific applications. One current appli-
cation that benefits from these capabilities is the implementation of
duplication with compare (DWC) and triple modular redundancy
(TMR) to circuit designs, which is discussed later on. Using Spy-
DrNet’s analysis and transformations allows end-users to rapidly
develop custom functions for specific needs.

Utility Functions

SpyDrNet has several high level features currently included. All
of these features have an impact on the overall netlist structure but
several are most useful when included in other applications. This
section will highlight some of the simpler high level features that
are currently implemented in SpyDrNet.

Basic Functionality

Functionality is provided through the API to allow for creation and
modification of elements in the netlist data structures. Sufficient
functionality is provided to create a netlist from the ground
up, and read all available information from a created netlist.
Netlist objects are completely mutable and allow for on demand
modification. This provides a flexible framework upon which users
can build and edit netlists data structures. The basic functionality
includes functionality to create new children elements, modify
the properties of elements, delete elements, and change the re-
lationships of elements. All references bidirectional and otherwise
are maintained behind the scenes to ensure the user can easily
complete modification passes on the netlist while maintaining a
valid representation.

The mutability of the objects in SpyDrNet is of special
mention. Many frameworks require that the object’s name be set
on creation, and disallow any changes to that name. SpyDrNet, on
the other hand, allows name changes as well as any other changes
to the connections, and properties of the objects. The callback
framework, as discussed in another section, provides hooks that
allow checks for violations of user defined rules if desired.

Examples of some of the basic functionality are highlighted in
the following code segment. Relationships, such as the reference
member of the instances and the children of these references are
members of the SpyDrNet objects. Additional key data can be
accessed as members of the classes. Other format specific data
can be accessed through dictionary lookups. Since the name is
also key data but, is not required it can be looked up through
either access method as noted in one of the single line comment.
import spydrnet as sdn

netlist = sdn.load_example_netlist_by_name(
'fourBitCounter')

top_instance = netlist.top_instance

def recurse(instance, depth):
'''print something like this:
top

child1
child1.child

child2

child2.child'''
s = depth * "\t"

#instance.name could also be instance["NAME"]
print(

s, instance.name,
"(", instance.reference.name, ")")

for c in instance.reference.children:
recurse(c, depth + 1)

recurse(top_instance, 0)

Hierarchy

Netlists can be hierarchical or they can be flat (see Figure 5).
Hierarchical netlists contain non-leaf instances, which instance a
definition that contains additional instances. Flat netlists contain
only leaf instances, which instance a definition that is void of
additional instances. SpyDrNet supports hierarchy and perform-
ing analysis and transformations across hierarchical boundaries.
SpyDrNet focuses on structural netlists that are static (i.e., netlists
that do not change based on inputs to the netlist).

Top_Inst (Top_Def)
Mid_Inst_A (Mid_Def)

Leaf_Inst_A (Leaf_Def)
Leaf_Inst_B (Leaf_Def)
Leaf_Inst_C (Leaf_Def)

Mid_Inst_B (Mid_Def)
Leaf_Inst_A (Leaf_Def)
Leaf_Inst_B (Leaf_Def)
Leaf_Inst_C (Leaf_Def)

Mid_Inst_C (Mid_Def)
Leaf_Inst_A (Leaf_Def)
Leaf_Inst_B (Leaf_Def)
Leaf_Inst_C (Leaf_Def)

Top_Inst (Top_Def)
Mid_Inst_A/Leaf_Inst_A (Leaf_Def)
Mid_Inst_A/Leaf_Inst_B (Leaf_Def)
Mid_Inst_A/Leaf_Inst_C (Leaf_Def)
Mid_Inst_B/Leaf_Inst_A (Leaf_Def)
Mid_Inst_B/Leaf_Inst_B (Leaf_Def)
Mid_Inst_B/Leaf_Inst_C (Leaf_Def)
Mid_Inst_C/Leaf_Inst_A (Leaf_Def)
Mid_Inst_C/Leaf_Inst_B (Leaf_Def)
Mid_Inst_C/Leaf_Inst_C (Leaf_Def)

Fig. 5: A hierarchical netlist (left) versus a flat netlist (right).

Hierarchy is by default a component of many netlist formats.
One of the main advantages to including hierarchy in a design
is the ability to abstract away some of the finer details on a
level based system, while still including all of the information
needed to build the design. The design’s hierarchical information
is maintained in SpyDrNet by having definitions instanced within
other definitions.

SpyDrNet allows the user to work with the structure of a
netlist directly, having only one of each instance per hierarchical
level, but it also allows the user view the netlist instances in a
hierarchical context through the use of hierarchical references as
outlined below. Some other tools only provide the hierarchical
representation of the design.

There are drawbacks and advantages to each view on the
netlist, but the inclusion of a hierarchical view helps allow users
to make the fewest possible unneeded changes to the design.
Additionally there are several advantages to maintaining hierarchy,
smaller file sizes are possible in some cases, as sub components
do not need to be replicated. Simulators may have an easier time
predicting how the design will act once implemented [DIR+04].
Further research could be done to analyze the impact of hierarchy
on later compilation steps.

Flattening

SpyDrNet has the ability to flatten hierarchical designs. One
method to remove hierarchy from a design is to move all of the sub
components to the top level of the netlist repeatedly until each sub
component at the top level is a terminal instance, where no more
structural information is included below that instance’s level.

44 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Flattening was added to SpyDrNet because there are some
algorithms which can be applied more simply on a flat design.
Algorithms in which a flat design may be simpler to work with
are graph analysis, and other algorithms where the connections
between low level components are of interest.

Included is an example of how one might flatten a netlist in
SpyDrNet.
import spydrnet as sdn
from sdn.flatten import flatten

netlist = sdn.load_example_netlist_by_name(
'fourBitCounter')

#flattens in place. netlist will now be flat.
flatten(netlist)

Uniquify

Uniquify ensures that each non-terminal instance is unique, mean-
ing that it and it’s definition have a one to one relationship. Non-
unique definitions and instances may exist in most netlist formats.
One such example could be a four bit adder that is composed
of four single bit adders. Assuming that each single bit adder is
composed of more than just a single component on the target
device, and that the single bit adders are all identical, the design
may just define a single single bit adder which it uses in four
places. To uniquify this design, new matching definitions for single
bit adders would be created for each of the instances of the original
single bit adder and the instances that correspond would be pointed
to the new copied definitions. Thus each of the definitions would
be left with a single instance.

The uniquify algorithm is very useful when modifications are
desired on a specific part of the netlist but not to all instances
of the particular component. For example in the four bit adder,
highlighted in the previous paragraph of this section, if we assume
that the highest bit does not need a carry out, the single bit adder
there could be simplified. However, if we make modifications to
the single bit adder before uniquifying the modifications will apply
to all four adders. If we instead uniquify first then we can easily
modify only the adder of interest.

Currently Uniquify is implemented to ensure that the entire
netlist contains only unique definitions. This is one approach to
uniquify, however an interesting area for future exploration is that
of uniquify on demand. Or some other approach to only ensure
and correct uniquification of modified components only. This is
left for future work.

The following code example shows uniquify being used in
SpyDrNet.
import spydrnet as sdn
from sdn.uniquify import uniquify

netlist = sdn.load_example_netlist_by_name(
'fourBitCounter')

uniquify(netlist)

Clone

Cloning is another useful algorithm currently implemented in
SpyDrNet. Currently all of the components in a netlist can be
cloned from pins and wires to whole netlist objects. Upon initial
inspection clone seems simple. However, there is some complexity
when it comes to the connections between individual components.
Some explanation is provided here.

Clone could be implemented a number of ways. We attempted
to find the logical method for our clone algorithm at each level
of the data structure. Our overall guiding principles were that at
each level, lower level objects should maintain their connections,
the cloned object should not belong to any other object, and
the cloned object should not maintain its horizontal connections.
There are of course some exceptions to these rules which seemed
judicious. One such example is that when cloning an instance,
That instance will maintain its original corresponding definition,
unless the corresponding definition is also being cloned as in the
case of cloning a whole library or netlist (in which case the new
cloned definition will be used).

Additionally connection modification was done at a level
lower than the API in order to maintain consistency as different
components were cloned. This promoted code reuse in the clone
implementation and helped minimize the number of dictionaries
used.

The clone algorithm is very useful while implementing some
of the higher level algorithms such as TMR and DWC with
compare that we use for reliability research. In these algorithms
cloning is essential, and having it built into the tool helps simplify
their implementation.

The example code included in this section will clone an
element and then add that element back into the netlist which
it originally belonged to. Comments are included for most lines in
this example to illuminate why each step must be taken.
import spydrnet as sdn

netlist = sdn.load_example_netlist_by_name(
'hierarchical_luts')

#index found by printing children's names
sub = netlist.top_instance.reference.children[2]
sub_clone =

sub.clone()

#renamed needed to be added back into the netlist
sub_clone.name = "sub_clone"

#this line adds the cloned instance into the netlist
netlist.top_instance.reference.add_child(sub_clone)

Hierarchical References

SpyDrNet includes the ability to create a hierarchical reference
graph of all of the instances, ports, cables, and other objects which
may be instantiated. The goal behind hierarchical references is to
create a graph on which other tools, such as NetworkX can more
easily build a graph. each hierarchical reference will be unique,
even if the underlying component is not unique. These components
are also very light weight to minimize memory impact since there
can be many of these in flight at one time.

The code below shows how one can get and print hierarchical
references. The hierarchical references can represent any spydrnet
object that may be instantiated in a hierarchical manner.
top = netlist.top_instance
child_instances = top.reference.children

for h in sdn.get_hinstances(child_instances):
print(h, type(h.item).__name__)

Getter Functions

SpyDrNet includes getter functions which are helpful in the anal-
ysis and transformation of netlists. These functions were created

NETLIST ANALYSIS AND TRANSFORMATIONS USING SPYDRNET 45

to help a user more quickly traverse the netlist. These functions
provide the user with quick access to adjacent components. A
call to a getter function can get any other related elements from
the existing element that the user has a handle to (see Figure
6). Similar to clone there are multiple methods which could be
used to implement a correct getter function. We again strove to
apply the most logical and consistent rules for the getter functions.
There are some places in which the object returned may not be
the only possible object to be returned. In these cases generators
are returned. In cases in which there are two possible classes of
relationships upon which to return objects, the user may specify
whether they would like to get the more inward related or outward
related objects. For example, a port may have outer pins on
instances or inner pins within the port in the definition. Both of
these pins can be obtained separately by passing a flag.

Definition

Port

InnerPin

Library

Netlist

Definition

Port

InnerPin

Library

Netlist

Cable Cable

Wire

Instance

OuterPin

Wire

Instance

OuterPin

HRef HRef

Fig. 6: Getter functions are able to get sets of any element related to
any other element.

In the example only a few of the possible getter functions are
shown. The same pattern can be used to get any type of object
from another however. Each call to a getter function returns a
generator.

Example Applications

SpyDrNet may be used for a wide variety of applications. SpyDr-
Net grew out of a lab that is focused primarily on improving circuit
reliability and security. An application that has had strong influ-
ence over its development is that of enhancing circuit reliability
in harsh radiation environments through partial circuit replication
[PCC+08]. When a particle of ionizing radiation passes through
an integrated circuit, it can deposit enough energy to invert values
stored in memory cells [JED06]. An FPGA is a computer chip that
can be used to implement custom circuits. SRAM-based FPGA
stores a circuits configuration in a large array of memory. When

radiation corrupts an FPGA configuration memory, it can corrupt
the underlying circuit and cause failure.

One of our areas of research involves finding ways to design
more reliable circuits to be programmed onto existing, non spe-
cialized, FPGAs. These modifications are useful for designers that
deploy many FPGAs as well as designers that plan on deploying
circuits in high radiation environments where single event upsets
can disrupt the normal operation of devices. These reliability
focused modifications require some analysis of netlist structure
as well as modifications in the netlist.

SpyDrNet was created to help automate this process and
allow our researchers to spend more time studying the resulting
improved circuitry and less time modifying the circuit itself.
It is important to note that some care needs to be taken to
ensure that redundancy modifications are not removed by down
stream optimizations in implementation. Reliability modifications
to netlists are often optimized away. One common adjustment
to a netlist for reliability purposes, is a replication of various
components. Often when tools see the same functionality with
a theoretical identical result they will attempt to remove the
duplicated portion and provide two outputs on a single instance.
This defeats the purpose of the reliability modifications. Using
and modifying netlists allows us to bypass those optimizations
and gives more control over how our design is built. Below are
some details on using SpyDrNet for higher level transformation
and analysis techniques applicable to reliability applications.

Triple Modular Redundancy

TMR is one method by which circuits can be made more reliable.
TMR triplicates portions of the circuit to allow the circuit to
continue to provide the correct result even under some cases of
error. Voters are inserted between triplicated circuit components
to pass the most common result on to the next stage of the circuit
[PCC+08]. Figure 7 shows two typical layouts for TMR. The top
half of the image shows a triplicated circuit with a single voter that
feeds into the next stage of the circuit. The bottom of the figure
shows a triplicated voter layout such that even a single voter failure
may be tolerated.

Fig. 7: Triple modular redundancy with a single voter and triplicated
voters. [tmr]

46 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

TMR has been applied using SpyDrNet. The current imple-
mentation selects subsets of the circuit to replicate. Then a voter
insertion algorithm creates and inserts the voter logic between
triplicated layers. Later, reduction voting is added to the output,
connecting the triplicated logic in place of the original implemen-
tation. The ability of SpyDrNet to carry hierarchy through the
tool was taken advantage of by the TMR implementation. This
allows the triplicated design to take advantage of the benefits of
hierarchy including, improved place and route steps on the target
FPGA. Previous work with the BYU EDIF Tools [Bri20] required
a flattened design to accomplish TMR on a netlist. The triplicated
design was programmed to an FPGA after being processed using
SpyDrNet.

Duplication With Compare

Circuit

Circuit

Compare

Compare

Fig. 8: Duplication with compare showing the duplicated circuitry
and duplicated violation flags.

DWC is a reliability algorithm in which the user will duplicate
components of the design and include comparators on the output
to try present a flag that will be raised when one of the circuits
goes down [JHW+08]. Like TMR’s voters, the comparators can
be duplicated as well to ensure that if a comparator goes down at
least one of the comparators will flag an issue.

DWC was again implemented on SpyDrNet. Once again this
was able to take advantage of SpyDrNet’s hierarchy and maintain
that through the build. Comparators were created and inserted and
the selected portion of the design was duplicated. The resulting
circuits were programmed to an FPGA after being read into
SpyDrNet, modified and written back out. As with TMR the
existing implementation on the BYU EDIF Tools [Bri20] required
that the design be flattened before being processed.

Clock Domain Analysis

In hardware various clocks are often used in different portions
of the circuit. Sometimes inputs and outputs will come in on a
different clock before they reach the main pipeline of the circuit.
At the junctions between clock domains circutry should not be
triplicated in TMR. If it is triplicated it may result in steady state
error on the output because the signals from the three inputs may
reach the crossing at different times and be registered improperly
[LNW10]. This can make the overall reliability of the system
lower than it otherwise would be.

In order to find these locations. Clock domains have been
examined using SpyDrNet. The basic methodology for doing this
was to find the clock ports on the various components in the design
which have them and trace those clocks through the netlist. The
resulting connected components form a clock domain. When a
triplication pass encountered the boundry between domains the
triplicated circuit could be reduced to a single signal to cross the
boundry.

Graph Analysis and Feedback

While triplictaing a design users must determine the best location
to insert voters in the design. Voters could be inserted liberally
at the cost of the timing of the critical path. Alternatively sparse
voter insertion can yield a lower reliability. One consideration to
take into account is that voters inserted on feedback loops in the
directional graph represented by the netlist can help correct the
circuit’s state more readily. One study concluded that inserting
voters after high fanout flip flops in a design yielded good
results. [JW10] This voter insertion algorithm was implemented
on SpyDrNet after doing analysis using NetworkX [HSS08] to
find the feedback loops.

Future Direction

As SpyDrNet matures, several new features are planned to benefit
SpyDrNet’s users. Several of the upcoming features are discussed
here but a more complete roadmap is maintained with the project’s
repository.

Additional netlist format parsers and composers are planned.
Supplying additional parser and composers will open the door
for users to more easily use SpyDrNet with a wider variety
of technologies and device vendor tools. This work will enable
conversion between formats as well, which will provide greater
flexibility for end users. Some vendor tools only accept specific
netlist formats. Converting netlist formats would provide further
possibilities.

Plans to integrate more closely with other open source tools
in analysis and hardware design have been made. These plans
include further work to ensure NetworkX and other SciPy utilities
can be easily leveraged by SpyDrNet. Integrating with additional
open source electionic design tools is also of interest, which could
help make SpyDrNet a useful part of an open source design flow.

SpyDrNet was designed to be generic and modular to allow
for support of a wide variety of netlist formats. Device specific
information is not included in SpyDrNet. Future work may include
providing a framwork to maintain and make use of device specific
data. Such a framework could simplify a number of different
applications that require device specific information. Device data
of interest may include device resource constraints, clock prop-
agation behavior, and limitations on how components can be
implemented on a specific technology. Providing users a simpler
way of maintaining and utilizing this data will help improve the
flexibility of the tool.

Several portions of SpyDrNet could be sped up by accelerating
them in C/C++. Parseing netlists can take several minutes for very
large designs using the current implementation. An accelerated
verion of the current parser would be of use in the future as
more users with increasingly complex designs become interested
in SpyDrNet.

Conclusion

SpyDrNet is a framework created to be as flexible as possible
while still meeting the needs of reliability related research. We
have worked to ensure that this tool is capable of a wide variety
of netlist modifications.

Although this tool is new, a few reliability applications have
been built on SpyDrNet. Because of these applications we feel
confident that this tool can be helpful to others. SpyDrNet is
released on github under an open source licence. New users are
welcome to use and contribute to the SpyDrNet tools.

NETLIST ANALYSIS AND TRANSFORMATIONS USING SPYDRNET 47

Acknowledgment

This work was supported by the Utah NASA Space Grant Con-
sortium and by the I/UCRC Program of the National Science
Foundation under Grant No. 1738550.

REFERENCES

[Bri20] Brigham Young University. BYU EDIF Tools [online]. 2020.
URL: https://sourceforge.net/projects/byuediftools/.

[CD15] Chris Drake. PyEDA: Data Structures and Algorithms for Elec-
tronic Design Automation. In Kathryn Huff and James Bergstra,
editors, Proceedings of the 14th Python in Science Conference,
pages 25 – 30, 2015. doi:10.25080/Majora-7b98e3ed-
004.

[DIR+04] P. Daglio, D. Iezzi, D. Rimondi, C. Roma, and S. Santapa.
Building the hierarchy from a flat netlist for a fast and accurate
post-layout simulation with parasitic components. In Proceed-
ings Design, Automation and Test in Europe Conference and
Exhibition, volume 3, pages 336–337 Vol.3, Feb 2004. doi:
10.1109/DATE.2004.1269268.

[HSS08] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring
network structure, dynamics, and function using networkx. In
Gaël Varoquaux, Travis Vaught, and Jarrod Millman, editors,
Proceedings of the 7th Python in Science Conference, pages 11
– 15, Pasadena, CA USA, 2008.

[JB94] Jen-Jen Lung and J. Bhasker. Verilog netlist as an exchange
language. In International Verilog HDL Conference, pages 10–
14, March 1994. doi:10.1109/IVC.1994.323754.

[JED06] Measurement and reporting of alpha particle and terrestrial cosmic
ray-induced soft errors in semiconductor devices, 2006. URL:
https://www.jedec.org/sites/default/files/docs/JESD89A.pdf.

[JHW+08] J. Johnson, W. Howes, M. Wirthlin, D. L. McMurtrey, M. Caffrey,
P. Graham, and K. Morgan. Using duplication with compare
for on-line error detection in fpga-based designs. In 2008
IEEE Aerospace Conference, pages 1–11, March 2008. doi:
10.1109/AERO.2008.4526470.

[JW10] Jonathan M Johnson and Michael Wirthlin. Voter Insertion
Algorithms for {FPGA} Designs Using Triple Modular Re-
dundancy. In Proceedings of the 18th Annual ACM/SIGDA
International Symposium on Field Programmable Gate Arrays,
FPGA ’10, pages 249–258, New York, NY, USA, 2010. ACM.
doi:10.1145/1723112.1723154.

[liv] LiveHD: Live hardware development. https://github.com/masc-
ucsc/livehd.

[LK18] C. Lavin and A. Kaviani. Rapidwright: Enabling custom crafted
implementations for fpgas. In 2018 IEEE 26th Annual Inter-
national Symposium on Field-Programmable Custom Computing
Machines (FCCM), pages 133–140, April 2018. doi:10.1109/
FCCM.2018.00030.

[LNW10] Y. Li, B. Nelson, and M. Wirthlin. Synchronization techniques for
crossing multiple clock domains in fpga-based tmr circuits. IEEE
Transactions on Nuclear Science, 57(6):3506–3514, Dec 2010.
doi:10.1109/TNS.2010.2086075.

[LS89] W. Li and H. Switzer. A unified data exchnage environment
based on edif. In Proceedings of the 26th ACM/IEEE Design
Automation Conference, DAC ’89, page 803–806, New York,
NY, USA, 1989. Association for Computing Machinery. doi:
10.1145/74382.74534.

[PCC+08] Brian Pratt, Michael Caffrey, James F Carroll, Paul Graham,
Keith Morgan, and Michael Wirthlin. Fine-grain SEU mitigation
for FPGAs using partial TMR. IEEE Transactions on Nuclear
Science, 55(4):2274–2280, aug 2008. doi:10.1109/TNS.
2008.2000852.

[tmr] Graphical Representation of TMR. Mewtow / CC BY-
SA (https://creativecommons.org/licenses/by-sa/4.0). URL:
https://commons.wikimedia.org/wiki/File:Triple_Modular_
Redundancy_et_sa_variante_am%C3%A9lior%C3%A9e.png.

[Ver20] Verific Design Automation, Inc. Verific Design Automation
[online]. 2020. URL: https://www.verific.com/.

[WN14] B. White and B. Nelson. Tincr — a custom cad tool framework
for vivado. In 2014 International Conference on ReConFigurable
Computing and FPGAs (ReConFig14), pages 1–6, Dec 2014.
doi:10.1109/ReConFig.2014.7032560.

[Xil20] Xilinx, Inc. Vivado Design Suite [online]. 2020. URL: https:
//www.xilinx.com/products/design-tools/vivado.html.

48 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Introduction to Geometric Learning in Python with
Geomstats

Nina Miolane‡∗, Nicolas Guigui§, Hadi Zaatiti, Christian Shewmake, Hatem Hajri, Daniel Brooks, Alice Le Brigant,
Johan Mathe, Benjamin Hou, Yann Thanwerdas, Stefan Heyder, Olivier Peltre, Niklas Koep, Yann Cabanes, Thomas

Gerald, Paul Chauchat, Bernhard Kainz, Claire Donnat, Susan Holmes, Xavier Pennec

https://youtu.be/Ju-Wsd84uG0

F

Abstract—There is a growing interest in leveraging differential geometry in the
machine learning community. Yet, the adoption of the associated geometric
computations has been inhibited by the lack of a reference implementation.
Such an implementation should typically allow its users: (i) to get intuition on
concepts from differential geometry through a hands-on approach, often not
provided by traditional textbooks; and (ii) to run geometric machine learning
algorithms seamlessly, without delving into the mathematical details. To address
this gap, we present the open-source Python package geomstats and intro-
duce hands-on tutorials for differential geometry and geometric machine learn-
ing algorithms - Geometric Learning - that rely on it. Code and documentation:
github.com/geomstats/geomstats and geomstats.ai.

Index Terms—differential geometry, statistics, manifold, machine learning

Introduction

Data on manifolds arise naturally in different fields. Hyperspheres
model directional data in molecular and protein biology [KH05]
and some aspects of 3D shapes [JDM12], [HVS+16]. Density esti-
mation on hyperbolic spaces arises to model electrical impedances
[HKKM10], networks [AS14], or reflection coefficients extracted
from a radar signal [CBA15]. Symmetric Positive Definite (SPD)
matrices are used to characterize data from Diffusion Tensor
Imaging (DTI) [PFA06], [YZLM12] and functional Magnetic
Resonance Imaging (fMRI) [STK05]. These manifolds are curved,
differentiable generalizations of vector spaces. Learning from data
on manifolds thus requires techniques from the mathematical
discipline of differential geometry. As a result, there is a growing
interest in leveraging differential geometry in the machine learning
community, supported by the fields of Geometric Learning and
Geometric Deep Learning [BBL+17].

Despite this need, the adoption of differential geometric
computations has been inhibited by the lack of a reference
implementation. Projects implementing code for geometric tools
are often custom-built for specific problems and are not easily
reused. Some Python packages do exist, but they mainly focus
on optimization (Pymanopt [TKW16], Geoopt [BG18], [Koc19],

* Corresponding author: nmiolane@stanford.edu
‡ Stanford University
§ Université Côte d’Azur, Inria

Copyright © 2020 Nina Miolane et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

McTorch [MJK+18]), are dedicated to a single manifold (PyRie-
mann [Bar15], PyQuaternion [Wyn14], PyGeometry [Cen12]),
or lack unit-tests and continuous integration (TheanoGeometry
[KS17]). An open-source, low-level implementation of differential
geometry and associated learning algorithms for manifold-valued
data is thus thoroughly welcome.

Geomstats is an open-source Python package built for
machine learning with data on non-linear manifolds [MGLB+]:
a field called Geometric Learning. The library provides object-
oriented and extensively unit-tested implementations of essential
manifolds, operations, and learning methods with support for
different execution backends - namely NumPy, PyTorch, and
TensorFlow. This paper illustrates the use of geomstats through
hands-on introductory tutorials of Geometric Learning. These tu-
torials enable users: (i) to build intuition for differential geometry
through a hands-on approach, often not provided by traditional
textbooks; and (ii) to run geometric machine learning algorithms
seamlessly without delving into the lower-level computational
or mathematical details. We emphasize that the tutorials are not
meant to replace theoretical expositions of differential geometry
and geometric learning [Pos01], [PSF19]. Rather, they will com-
plement them with an intuitive, didactic, and engineering-oriented
approach.

Presentation of Geomstats

The package geomstats is organized into two main modules:
geometry and learning. The module geometry implements low-
level differential geometry with an object-oriented paradigm and
two main parent classes: Manifold and RiemannianMetric.
Standard manifolds like the Hypersphere or the Hyperbolic
space are classes that inherit from Manifold. At the time of
writing, there are over 15 manifolds implemented in geomstats.
The class RiemannianMetric provides computations related
to Riemannian geometry on such manifolds such as the inner
product of two tangent vectors at a base point, the geodesic
distance between two points, the Exponential and Logarithm maps
at a base point, and many others.

The module learning implements statistics and machine
learning algorithms for data on manifolds. The code is object-
oriented and classes inherit from scikit-learn base classes
and mixins such as BaseEstimator, ClassifierMixin,
or RegressorMixin. This module provides implementations

INTRODUCTION TO GEOMETRIC LEARNING IN PYTHON WITH GEOMSTATS 49

of Fréchet mean estimators, K-means, and principal component
analysis (PCA) designed for manifold data. The algorithms can be
applied seamlessly to the different manifolds implemented in the
library.

The code follows international standards for readability and
ease of collaboration, is vectorized for batch computations, un-
dergoes unit-testing with continuous integration, and incorporates
both TensorFlow and PyTorch backends to allow for GPU ac-
celeration. The package comes with a visualization module that
enables users to visualize and further develop an intuition for
differential geometry. In addition, the datasets module provides
instructive toy datasets on manifolds. The repositories examples
and notebooks provide convenient starting points to get familiar
with geomstats.

First Steps

To begin, we need to install geomstats. We follow the in-
stallation procedure described in the first steps of the online
documentation. Next, in the command line, we choose the backend
of interest: NumPy, PyTorch or TensorFlow. Then, we open
the iPython notebook and import the backend together with the
visualization module. In the command line:

export GEOMSTATS_BACKEND=numpy

then, in the notebook:

import geomstats.backend as gs
import geomstats.visualization as visualization

visualization.tutorial_matplotlib()

INFO: Using numpy backend

Modules related to matplotlib and logging should be im-
ported during setup too. More details on setup can be found on the
documentation website: geomstats.ai. All standard NumPy
functions should be called using the gs. prefix - e.g. gs.exp,
gs.log - in order to automatically use the backend of interest.

Tutorial: Statistics and Geometric Statistics

This tutorial illustrates how Geometric Statistics and Learning dif-
fer from traditional Statistics. Statistical theory is usually defined
for data belonging to vector spaces, which are linear spaces. For
example, we know how to compute the mean of a set of numbers
or of multidimensional arrays.

Now consider a non-linear space: a manifold. A manifold M of
dimension m is a space that is possibly curved but that looks like
an m-dimensional vector space in a small neighborhood of every
point. A sphere, like the earth, is a good example of a manifold.
What happens when we apply statistical theory defined for linear
vector spaces to data that does not naturally belong to a linear
space? For example, what happens if we want to perform statistics
on the coordinates of world cities lying on the earth’s surface: a
sphere? Let us compute the mean of two data points on the sphere
using the traditional definition of the mean.

from geomstats.geometry.hypersphere import \
Hypersphere

n_samples = 2
sphere = Hypersphere(dim=2)
points_in_manifold = sphere.random_uniform(

n_samples=n_samples)

Points
Linear mean

Points
Fréchet mean

Fig. 1: Left: Linear mean of two points on the sphere. Right: Fréchet
mean of two points on the sphere. The linear mean does not belong to
the sphere, while the Fréchet mean does. This illustrates how linear
statistics can be generalized to data on manifolds, such as points on
the sphere.

linear_mean = gs.sum(
points_in_manifold, axis=0) / n_samples

The result is shown in Figure 1 (left). What happened? The mean
of two points on a manifold (the sphere) is not on the manifold.
In our example, the mean of these cities is not on the earth’s
surface. This leads to errors in statistical computations. The line
sphere.belongs(linear_mean) returns False. For this
reason, researchers aim to build a theory of statistics that is - by
construction - compatible with any structure with which we equip
the manifold. This theory is called Geometric Statistics, and the
associated learning algorithms: Geometric Learning.

In this specific example of mean computation, Geometric
Statistics provides a generalization of the definition of “mean”
to manifolds: the Fréchet mean.

from geomstats.learning.frechet_mean import \
FrechetMean

estimator = FrechetMean(metric=sphere.metric)
estimator.fit(points_in_manifold)
frechet_mean = estimator.estimate_

Notice in this code snippet that geomstats provides classes
and methods whose API will be instantly familiar to users of the
widely-adopted scikit-learn. We plot the result in Figure 1
(right). Observe that the Fréchet mean now belongs to the surface
of the sphere!

Beyond the computation of the mean, geomstats provides
statistics and learning algorithms on manifolds that leverage their
specific geometric structure. Such algorithms rely on elementary
operations that are introduced in the next tutorial.

Tutorial: Elementary Operations for Data on Manifolds

The previous tutorial showed why we need to generalize tradi-
tional statistics for data on manifolds. This tutorial shows how
to perform the elementary operations that allow us to “translate”
learning algorithms from linear spaces to manifolds.

We import data that lie on a manifold: the world cities dataset,
that contains coordinates of cities on the earth’s surface. We
visualize it in Figure 2.

import geomstats.datasets.utils as data_utils

data, names = data_utils.load_cities()

50 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Moscow
Paris

Beijing

Manilla

Istanbul

Fig. 2: Subset of the world cities dataset, available in
geomstats with the function load_cities from the module
datasets.utils. Cities’ coordinates are data on the sphere,
which is an example of a manifold.

How can we compute with data that lie on such a manifold?
The elementary operations on a vector space are addition and
subtraction. In a vector space (in fact seen as an affine space),
we can add a vector to a point and subtract two points to get a
vector. Can we generalize these operations in order to compute on
manifolds?

For points on a manifold, such as the sphere, the same
operations are not permitted. Indeed, adding a vector to a point
will not give a point that belongs to the manifold: in Figure 3,
adding the black tangent vector to the blue point gives a point that
is outside the surface of the sphere. So, we need to generalize to
manifolds the operations of addition and subtraction.

On manifolds, the exponential map is the operation that
generalizes the addition of a vector to a point. The exponential
map takes the following inputs: a point and a tangent vector to the
manifold at that point. These are shown in Figure 3 using the blue
point and its tangent vector, respectively. The exponential map re-
turns the point on the manifold that is reached by “shooting” with
the tangent vector from the point. “Shooting” means following a
“geodesic” on the manifold, which is the dotted path in Figure 3.
A geodesic, roughly, is the analog of a straight line for general
manifolds - the path whose, length, or energy, is minimal between
two points, where the notions of length and energy are defined by
the Riemannian metric. This code snippet shows how to compute
the exponential map and the geodesic with geomstats.

from geomstats.geometry.hypersphere import \
Hypersphere

sphere = Hypersphere(dim=2)

initial_point = paris = data[19]
vector = gs.array([1, 0, 0.8])
tangent_vector = sphere.to_tangent(

vector, base_point=initial_point)

end_point = sphere.metric.exp(
tangent_vector, base_point=initial_point)

geodesic = sphere.metric.geodesic(
initial_point=initial_point,
initial_tangent_vec=tangent_vector)

Similarly, on manifolds, the logarithm map is the operation that
generalizes the subtraction of two points on vector spaces. The
logarithm map takes two points on the manifold as inputs and
returns the tangent vector required to “shoot” from one point to

Initial point
End point
Geodesic

Fig. 3: Elementary operations on manifolds illustrated on the sphere.
The exponential map at the initial point (blue point) shoots the black
tangent vector along the geodesic, and gives the end point (orange
point). Conversely, the logarithm map at the initial point (blue point)
takes the end point (orange point) as input, and outputs the black
tangent vector. The geodesic between the blue point and the orange
point represents the path of shortest length between the two points.

the other. At any point, it is the inverse of the exponential map.
In Figure 3, the logarithm of the orange point at the blue point
returns the tangent vector in black. This code snippet shows how
to compute the logarithm map with geomstats.

log = sphere.metric.log(
point=end_point, base_point=initial_point)

We emphasize that the exponential and logarithm maps depend
on the “Riemannian metric” chosen for a given manifold: observe
in the code snippets that they are not methods of the sphere
object, but rather of its metric attribute. The Riemannian metric
defines the notion of exponential, logarithm, geodesic and distance
between points on the manifold. We could have chosen a different
metric on the sphere that would have changed the distance between
the points: with a different metric, the “sphere” could, for example,
look like an ellipsoid.

Using the exponential and logarithm maps instead of linear
addition and subtraction, many learning algorithms can be gen-
eralized to manifolds. We illustrated the use of the exponential
and logarithm maps on the sphere only; yet, geomstats pro-
vides their implementation for over 15 different manifolds in its
geometry module with support for a variety of Riemannian
metrics. Consequently, geomstats also implements learning
algorithms on manifolds, taking into account their specific geo-
metric structure by relying on the operations we just introduced.
The next tutorials show more involved examples of such geometric
learning algorithms.

Tutorial: Classification of SPD Matrices

Tutorial context and description

We demonstrate that any standard machine learning algorithm can
be applied to data on manifolds while respecting their geometry. In
the previous tutorials, we saw that linear operations (mean, linear
weighting, addition and subtraction) are not defined on manifolds.
However, each point on a manifold has an associated tangent
space which is a vector space. As such, in the tangent space, these
operations are well defined! Therefore, we can use the logarithm
map (see Figure 3 from the previous tutorial) to go from points on

INTRODUCTION TO GEOMETRIC LEARNING IN PYTHON WITH GEOMSTATS 51

manifolds to vectors in the tangent space at a reference point. This
first strategy enables the use of traditional learning algorithms on
manifolds.

A second strategy can be designed for learning algorithms,
such as K-Nearest Neighbors classification, that rely only on
distances or dissimilarity metrics. In this case, we can compute
the pairwise distances between the data points on the manifold,
using the method metric.dist, and feed them to the chosen
algorithm.

Both strategies can be applied to any manifold-valued data. In
this tutorial, we consider symmetric positive definite (SPD) matri-
ces from brain connectomics data and perform logistic regression
and K-Nearest Neighbors classification.

SPD matrices in the literature

Before diving into the tutorial, let us recall a few applications of
SPD matrices in the machine learning literature. SPD matrices are
ubiquitous across many fields [CS16], either as input of or output
to a given problem. In DTI for instance, voxels are represented
by "diffusion tensors" which are 3x3 SPD matrices representing
ellipsoids in their structure. These ellipsoids spatially characterize
the diffusion of water molecules in various tissues. Each DTI thus
consists of a field of SPD matrices, where each point in space
corresponds to an SPD matrix. These matrices then serve as inputs
to regression models. In [YZLM12] for example, the authors use
an intrinsic local polynomial regression to compare fiber tracts
between HIV subjects and a control group. Similarly, in fMRI, it is
possible to extract connectivity graphs from time series of patients’
resting-state images [WZD+13]. The regularized graph Laplacians
of these graphs form a dataset of SPD matrices. This provides a
compact summary of brain connectivity patterns which is useful
for assessing neurological responses to a variety of stimuli, such
as drugs or patient’s activities.

More generally speaking, covariance matrices are also SPD
matrices which appear in many settings. Covariance clustering
can be used for various applications such as sound compression in
acoustic models of automatic speech recognition (ASR) systems
[SMA10] or for material classification [FHP15], among others.
Covariance descriptors are also popular image or video descriptors
[HHLS16].

Lastly, SPD matrices have found applications in deep learning.
The authors of [GWB+19] show that an aggregation of learned
deep convolutional features into an SPD matrix creates a robust
representation of images which outperforms state-of-the-art meth-
ods for visual classification.

Manifold of SPD matrices

Let us recall the mathematical definition of the manifold of
SPD matrices. The manifold of SPD matrices in n dimensions
is embedded in the General Linear group of invertible matrices
and defined as:

SPD =
{

S ∈ Rn×n : ST = S,∀z ∈ Rn,z 6= 0,zT Sz > 0
}
.

The class SPDMatricesSpace inherits from the class
EmbeddedManifold and has an embedding_manifold
attribute which stores an object of the class GeneralLinear.
SPD matrices in 2 dimensions can be visualized as ellipses
with principal axes given by the eigenvectors of the SPD ma-
trix, and the length of each axis proportional to the square-
root of the corresponding eigenvalue. This is implemented in the

Class 1
Class 2
Class 3

Fig. 4: Simulated dataset of SPD matrices in 2 dimensions. We
observe 3 classes of SPD matrices, illustrated with the colors red,
green, and blue. The centroid of each class is represented by an ellipse
of larger width.

visualization module of geomstats. We generate a toy
data-set and plot it in Figure 4 with the following code snippet.

import geomstats.datasets.sample_sdp_2d as sampler

n_samples = 100
dataset_generator = sampler.DatasetSPD2D(

n_samples, n_features=2, n_classes=3)

ellipsis = visualization.Ellipsis2D()
for i,x in enumerate(data):

y = sampler.get_label_at_index(i, labels)
ellipsis.draw(

x, color=ellipsis.colors[y], alpha=.1)

Figure 4 shows a dataset of SPD matrices in 2 dimensions
organized into 3 classes. This visualization helps in developing an
intuition on the connectomes dataset that is used in the upcoming
tutorial, where we will classify SPD matrices in 28 dimensions
into 2 classes.

Classifying brain connectomes in Geomstats

We now delve into the tutorial in order to illustrate the use of
traditional learning algorithms on the tangent spaces of manifolds
implemented in geomstats. We use brain connectome data from
the MSLP 2014 Schizophrenia Challenge. The connectomes are
correlation matrices extracted from the time-series of resting-state
fMRIs of 86 patients at 28 brain regions of interest: they are
points on the manifold of SPD matrices in n = 28 dimensions.
Our goal is to use the connectomes to classify patients into two
classes: schizophrenic and control. First we load the connectomes
and display two of them as heatmaps in Figure 5.

import geomstats.datasets.utils as data_utils

data, patient_ids, labels = \
data_utils.load_connectomes()

Multiple metrics can be used to compute on the manifold of SPD
matrices [DKZ09]. As mentionned in the previous tutorial, differ-
ent metrics define different geodesics, exponential and logarithm
maps and therefore different algorithms on a given manifold. Here,
we import two of the most commonly used metrics on the SPD
matrices, the log-Euclidean metric and the affine-invariant metric
[PFA06], but we highlight that geomstats contains many more.
We also check that our connectome data indeed belongs to the
manifold of SPD matrices:

52 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Schizophrenic Healthy

1.-0.5

Correlations

Fig. 5: Subset of the connectomes dataset, available in
geomstats with the function load_connectomes from the mod-
ule datasets.utils. Connectomes are correlation matrices of
28 time-series extracted from fMRI data: they are elements of the
manifold of SPD matrices in 28 dimensions. Left: connectome of a
schizophrenic subject. Right: connectome of a healthy control.

import geomstats.geometry.spd_matrices as spd

manifold = spd.SPDMatrices(n=28)
le_metric = spd.SPDMetricLogEuclidean(n=28)
ai_metric = spd.SPDMetricAffine(n=28)
logging.info(gs.all(manifold.belongs(data)))

INFO: True

Great! Now, although the sum of two SPD matrices is an SPD
matrix, their difference or their linear combination with non-
positive weights are not necessarily. Therefore we need to work in
a tangent space of the SPD manifold to perform simple machine
learning that relies on linear operations. The preprocessing
module with its ToTangentSpace class allows to do exactly
this.

from geomstats.learning.preprocessing import \
ToTangentSpace

ToTangentSpace has a simple purpose: it computes the
Fréchet Mean of the data set, and takes the logarithm map of
each data point from the mean. This results in a data set of
tangent vectors at the mean. In the case of the SPD mani-
fold, these are simply symmetric matrices. ToTangentSpace
then squeezes each symmetric matrix into a 1d-vector of size
dim = 28 * (28 + 1) / 2, and outputs an array of shape
[n_connectomes, dim], which can be fed to your favorite
scikit-learn algorithm.

We emphasize that ToTangentSpace computes the mean
of the input data, and thus should be used in a pipeline (as
e.g. scikit-learn’s StandardScaler) to avoid leaking
information from the test set at train time.

from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_validate

pipeline = make_pipeline(
ToTangentSpace(le_metric), LogisticRegression(C=2))

We use a logistic regression on the tangent space at the Fréchet
mean to classify connectomes, and evaluate the model with cross-
validation. With the log-Euclidean metric we obtain:

result = cross_validate(pipeline, data, labels)
logging.info(result['test_score'].mean())

INFO: 0.67

And with the affine-invariant metric, replacing le_metric by
ai_metric in the above snippet:

INFO: 0.71

We observe that the result depends on the metric. The Riemannian
metric indeed defines the notion of the logarithm map, which
is used to compute the Fréchet Mean and the tangent vectors
corresponding to the input data points. Thus, changing the metric
changes the result. Furthermore, some metrics may be more
suitable than others for different applications. Indeed, we find
published results that show how useful geometry can be with data
on the SPD manifold (e.g [WAZF18], [NDV+14]).

We saw how to use the representation of points on the manifold
as tangent vectors at a reference point to fit any machine learning
algorithm, and we compared the effect of different metrics on the
manifold of SPD matrices. Another class of machine learning al-
gorithms can be used very easily on manifolds with geomstats:
those relying on dissimilarity matrices. We can compute the
matrix of pairwise Riemannian distances, using the dist method
of the Riemannian metric object. In the following code-snippet,
we use ai_metric.dist and pass the corresponding matrix
pairwise_dist of pairwise distances to scikit-learn’s
K-Nearest-Neighbors (KNN) classification algorithm:

from sklearn.neighbors import KNeighborsClassifier

classifier = KNeighborsClassifier(
metric='precomputed')

result = cross_validate(
classifier, pairwise_dist, labels)

logging.info(result['test_score'].mean())

INFO: 0.72

This tutorial showed how to leverage geomstats to use standard
learning algorithms for data on a manifold. In the next tutorial, we
see a more complicated situation: the data points are not provided
by default as elements of a manifold. We will need to use the low-
level geomstats operations to design a method that embeds
the dataset in the manifold of interest. Only then, we can use a
learning algorithm.

Tutorial: Learning Graph Representations with Hyperbolic
Spaces

Tutorial context and description

This tutorial demonstrates how to make use of the low-level
geometric operations in geomstats to implement a method that
embeds graph data into the hyperbolic space. Thanks to the dis-
covery of hyperbolic embeddings, learning on Graph-Structured
Data (GSD) has seen major achievements in recent years. It had
been speculated for years that hyperbolic spaces may better rep-
resent GSD than Euclidean spaces [Gro87] [KPK+10] [BPK10]
[ASM13]. These speculations have recently been shown effec-
tive through concrete studies and applications [NK17] [CCD17]
[SDSGR18] [GZH+19]. As outlined by [NK17], Euclidean em-
beddings require large dimensions to capture certain complex
relations such as the Wordnet noun hierarchy. On the other
hand, this complexity can be captured by a lower-dimensional
model of hyperbolic geometry such as the hyperbolic space of
two dimensions [SDSGR18], also called the hyperbolic plane.
Additionally, hyperbolic embeddings provide better visualizations
of clusters on graphs than their Euclidean counterparts [CCD17].

INTRODUCTION TO GEOMETRIC LEARNING IN PYTHON WITH GEOMSTATS 53

This tutorial illustrates how to learn hyperbolic embeddings
in geomstats. Specifically, we will embed the Karate Club
graph dataset, representing the social interactions of the members
of a university Karate club, into the Poincaré ball. Note that we
will omit implementation details but an unabridged example and
detailed notebook can be found on GitHub in the examples and
notebooks directories of geomstats.

Hyperbolic spaces and machine learning applications

Before going into this tutorial, we review a few applications of
hyperbolic spaces in the machine learning literature. First, Hy-
perbolic spaces arise in information and learning theory. Indeed,
the space of univariate Gaussians endowed with the Fisher metric
densities is a hyperbolic space [CSS05]. This characterization is
used in various fields, for example in image processing, where
each image pixel can be represented by a Gaussian distribution
[AVF14], or in radar signal processing where the corresponding
echo is represented by a stationary Gaussian process [ABY13].
Hyperbolic spaces can also be seen as continuous versions of
trees and are therefore interesting when learning representations
of hierarchical data [NK17]. Hyperbolic Geometric Graphs (HGG)
have also been suggested as a promising model for social networks
- where the hyperbolicity appears through a competition between
similarity and popularity of an individual [PKS+12] and in learn-
ing communities on large graphs [GZH+19].

Hyperbolic space

Let us recall the mathematical definition of the hyperbolic space.
The n-dimensional hyperbolic space Hn is defined by its embed-
ding in the (n+1)-dimensional Minkowski space as:

Hn =
{

x ∈ Rn+1 :−x2
1 + ...+ x2

n+1 =−1
}
. (1)

In geomstats, the hyperbolic space is implemented in the
class Hyperboloid and PoincareBall, which use dif-
ferent coordinate systems to represent points. These classes
inherit from the class EmbeddedManifold and have an
embedding_manifold attribute which stores an object of the
class Minkowski. The 2-dimensional hyperbolic space is called
the hyperbolic plane or Poincaré disk.

Learning graph representations with hyperbolic spaces in
geomstats

Parameters and Initialization: We now proceed with the
tutorial embedding the Karate club graph in a hyperbolic space.
In the Karate club graph, each node represents a member of the
club, and each edge represents an undirected relation between two
members. We first load the Karate club dataset, display it in Figure
6 and print information regarding its nodes and vertices to provide
insights into the graph’s complexity.

karate_graph = data_utils.load_karate_graph()
nb_vertices_by_edges = (

[len(e_2) for _, e_2 in
karate_graph.edges.items()])

logging.info(
'Number of vertices: %s', len(karate_graph.edges))

logging.info(
'Mean edge-vertex ratio: %s',
(sum(nb_vertices_by_edges, 0) /

len(karate_graph.edges)))

INFO: Number of vertices: 34
INFO: Mean edge-vertex ratio: 4.588235294117647

01

2

3 4

5
6

78

9

10

11

12

1314
15

16

17

18

19

20

21

22

23

2425

26
27

28

29

30

31

3233

Fig. 6: Karate club dataset, available in geomstats with the func-
tion load_karate_graph from the module datasets.utils.
This dataset is a graph, where each node represents a member of the
club and each edge represents a tie between two members of the club.

Parameter Description Value

dim Dimension of the hyperbolic space 2
max_epochs Number of embedding iterations 15
lr Learning rate 0.05
n_negative Number of negative samples 2
context_size Size of the context for each node 1
karate_graph Instance of the Graph class returned by the function

load_karate_graph in datasets.utils

TABLE 1: Hyperparameters used to embed the Karate Club Graph
into a hyperbolic space.

Table 1 defines the parameters needed to embed this graph into
a hyperbolic space. The number of hyperbolic dimensions should
be high (n > 10) only for graph datasets with a large number
of nodes and edges. In this tutorial we consider a dataset with
only 34 nodes, which are the 34 members of the Karate club. The
Poincaré ball of two dimensions is therefore sufficient to capture
the complexity of the graph. We instantiate an object of the class
PoincareBall in geomstats.

from geomstats.geometry.poincare_ball
import PoincareBall

hyperbolic_manifold = PoincareBall(dim=2)

Other parameters such as max_epochs and lr will be tuned
specifically for each dataset, either manually leveraging visu-
alization functions or through a grid/random search that looks
for parameter values maximizing some performance function (a
measure for cluster separability, normalized mutual information
(NMI), or others). Similarly, the number of negative samples and
context size are hyperparameters and will be further discussed
below.

Learning the embedding by optimizing a loss function:
Denote V as the set of nodes and E ⊂V ×V the set of edges of the
graph. The goal of hyperbolic embedding is to provide a faithful
and exploitable representation of the graph. This goal is mainly
achieved by preserving first-order proximity that encourages nodes
sharing edges to be close to each other. We can additionally pre-

54 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

2

Gradient direction for context samples
Gradient direction for negative samples

Fig. 7: Embedding of the graph’s nodes {vi}i as points {φi}i of the
hyperbolic plane H2, also called the Poincaré ball of 2 dimensions.
The blue and red arrows represent the direction of the gradient of the
loss function L from Equation 2. This brings context samples closer
and separates negative samples.

serve second-order proximity by encouraging two nodes sharing
the “same context”, i.e. not necessarily directly connected but
sharing a neighbor, to be close. We define a context size (here
equal to 1) and call two nodes “context samples” if they share a
neighbor, and “negative samples” otherwise. To preserve first and
second-order proximities, we adopt the following loss function
similar to [NK17] and consider the “negative sampling” approach
from [MSC+13]:

L =− ∑
vi∈V

∑
v j∈Ci

[
log(σ(−d2(φi,φ ′j)))+ ∑

vk∼Pn

log(σ(d2(φi,φ ′k)))
]

(2)
where σ(x) = (1+ e−x)−1 is the sigmoid function and φi ∈ H2 is
the embedding of the i-th node of V , Ci the nodes in the context
of the i-th node, φ ′j ∈ H2 the embedding of v j ∈ Ci. Negatively
sampled nodes vk are chosen according to the distribution Pn
such that Pn(v) = (deg(v)3/4).(∑vi∈V deg(vi)

3/4)−1.
Intuitively one can see in Figure 7 that minimizing L makes

the distance between φi and φ j smaller, and the distance between
φi and φk larger. Therefore by minimizing L , one obtains repre-
sentative embeddings.

Riemannian optimization: Following the literature on op-
timization on manifolds [GBH18], we use the following gradient
updates to optimize L :

φ t+1 = Expφ t

(
−lr

∂L

∂φ

)

where φ is a parameter of L , t ∈ {1,2, · · ·} is the iteration
number, and lr is the learning rate. The formula consists of
first computing the usual gradient of the loss function for the
direction in which the parameter should move. The Riemannian
exponential map Exp is the operation introduced in the second
tutorial: it takes a base point φ t and a tangent vector T and returns
the point φ t+1. The Riemannian exponential map is a method of
the PoincareBallMetric class in the geometry module
of geomstats. It allows us to implement a straightforward
generalization of standard gradient update in the Euclidean case.
To compute the gradient of L , we need to compute the gradients
of: (i) the squared distance d2(x,y) on the hyperbolic space, (ii)

the log sigmoid log(σ(x)), and (iii) the composition of (i) with
(ii).

For (i), we use the formula proposed by [ABY13] which
uses the Riemannian logarithmic map. Like the exponen-
tial Exp, the logarithmic map is implemented under the
PoincareBallMetric.

def grad_squared_distance(point_a, point_b, manifold):
log = manifold.metric.log(point_b, point_a)
return -2 * log

For (ii), we compute the well-known gradient of the logarithm of
the sigmoid function as: (logσ)′(x) = (1+ exp(x))−1. For (iii),
we apply the composition rule to obtain the gradient of L . The
following function computes L and its gradient on the context
samples, while ignoring the part dealing with the negative samples
for simplicity of exposition. The code implementing the whole
loss function is available on GitHub.

def loss(example, context_embedding, manifold):

context_distance = manifold.metric.squared_dist(
example, context_embedding)

context_loss = log_sigmoid(-context_distance)
context_log_sigmoid_grad = -grad_log_sigmoid(

-context_distance)

context_distance_grad = grad_squared_distance(
example, context_embedding, manifold)

context_grad = (context_log_sigmoid_grad
* context_distance_grad)

return context_loss, -context_grad

Capturing the graph structure: We perform initialization
computations that capture the graph structure. We compute ran-
dom walks initialized from each vi up to some length (five by
default). The context nodes v j will be later picked from the random
walk of vi.

random_walks = karate_graph.random_walk()

Negatively sampled nodes vk are chosen according to the pre-
viously defined probability distribution function Pn(vk) imple-
mented as

negative_table_parameter = 5
negative_sampling_table = []

for i, nb_v in enumerate(nb_vertices_by_edges):
negative_sampling_table += (

[i] * int((nb_v**(3. / 4.)))
* negative_table_parameter)

Numerically optimizing the loss function: We can now em-
bed the Karate club graph into the Poincaré disk. The details of the
initialization are provided on GitHub. The array embeddings
contains the embeddings φi’s of the nodes v_i’s of the current
iteration. At each iteration, we compute the gradient of L . The
graph nodes are then moved in the direction pointed by the
gradient. The movement of the nodes is performed by following
geodesics in the Poincaré disk in the gradient direction. In practice,
the key to obtaining a representative embedding is to carefully tune
the learning rate so that all of the nodes make small movements at
each iteration.

A first level loop iterates over the epochs while the table
total_loss records the value of L at each iteration. A second

INTRODUCTION TO GEOMETRIC LEARNING IN PYTHON WITH GEOMSTATS 55

level nested loop iterates over each path in the previously com-
puted random walks. Observing these walks, note that nodes hav-
ing many edges appear more often. Such nodes can be considered
as important crossroads and will therefore be subject to a greater
number of embedding updates. This is one of the main reasons
why random walks have proven to be effective in capturing the
structure of graphs. The context of each vi will be the set of nodes
v j belonging to the random walk from vi. The context_size
specified earlier will limit the length of the walk to be considered.
Similarly, we use the same context_size to limit the number
of negative samples. We find φi from the embeddings array.

A third and fourth level nested loops will iterate on each v j
and vk. From within, we find φ ′j and φ ′k and call the loss function
to compute the gradient. Then the Riemannian exponential map is
applied to find the new value of φi as we mentioned before.

for epoch in range(max_epochs):
total_loss = []
for path in random_walks:

for example_index,
one_path in enumerate(path):

context_index = path[max(
0, example_index - context_size):
min(example_index + context_size,
len(path))]

negative_index = gs.random.randint(
negative_sampling_table.shape[0],
size=(len(context_index), n_negative))

negative_index = (
negative_sampling_table[negative_index])

example_embedding = embeddings[one_path]
for one_context_i, one_negative_i in \

zip(context_index, negative_index):
context_embedding = (

embeddings[one_context_i])
negative_embedding = (

embeddings[one_negative_i])
l, g_ex = loss(

example_embedding,
context_embedding,
negative_embedding,
hyperbolic_manifold)

total_loss.append(l)

example_to_update = (
embeddings[one_path])

embeddings[one_path] = (
hyperbolic_metric.exp(
-lr * g_ex, example_to_update))

logging.info(
'iteration %d loss_value %f',
epoch, sum(total_loss, 0) / len(total_loss))

INFO: iteration 0 loss_value 1.819844
INFO: iteration 14 loss_value 1.363593

Figure 8 shows the graph embedding at different iterations with
the true labels of each node represented with color. Notice how the
embedding at convergence separates well the two clusters. Thus,
it seems that we have found a useful representation of the graph.

To demonstrate the usefulness of the embedding learned, we
show how to apply a K-means algorithm in the hyperbolic plane
to predict the label of each node in an unsupervised approach.
We use the learning module of geomstats and instantiate
an object of the class RiemannianKMeans. Observe again how
geomstats classes follow scikit-learn’s API. We set the
number of clusters and plot the results.

from geomstats.learning.kmeans import RiemannianKMeans

kmeans = RiemannianKMeans(

Label 1
Label 2

Iteration 0 Iteration 8

Iteration 15 Iteration 99

Fig. 8: Embedding of the Karate club graph into the hyperbolic plane
at different iterations. The colors represent the true label of each node.

Label 1
Label 2

True labels Predicted labels

Label 1
Label 2
Centroids

Fig. 9: Results of the Riemannian K-means algorithm on the Karate
graph dataset embedded in the hyperbolic plane. Left: True labels as-
sociated to the club members. Right: Predicted labels via Riemannian
K-means on the hyperbolic plane. The centroids of the clusters are
shown with a star marker.

hyperbolic_manifold.metric, n_clusters=2,
mean_method='frechet-poincare-ball')

centroids = kmeans.fit(X=embeddings, max_iter=100)
labels = kmeans.predict(X=embeddings)

Figure 9 shows the true labels versus the predicted ones: the two
groups of the karate club members have been well separated!

Conclusion

This paper demonstrates the use of geomstats in performing
geometric learning on data belonging to manifolds. These tu-
torials, as well as many other learning examples on a variety
of manifolds, can be found at geomstats.ai. We hope that
this hands-on presentation of Geometric Learning will help to
further democratize the use of differential geometry in the machine
learning community.

Acknowledgements

This work is partially supported by the National Science Founda-
tion, grant NSF DMS RTG 1501767, the Inria-Stanford associated
team GeomStats, and the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation
program (grant agreement G-Statistics No. 786854).

56 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

REFERENCES

[ABY13] Marc Arnaudon, Frédéric Barbaresco, and Le Yang. Riemannian
medians and means with applications to radar signal processing.
IEEE Journal of Selected Topics in Signal Processing, 7(4):595–
604, 2013. URL: https://ieeexplore.ieee.org/document/6514112,
doi:10.1109/JSTSP.2013.2261798.

[AS14] Dena Asta and Cosma Rohilla Shalizi. Geometric Net-
work Comparison. Journal of Machine Learning Research,
2014. URL: http://arxiv.org/abs/1411.1350, doi:10.1109/
PES.2006.1709566.

[ASM13] Aaron B Adcock, Blair D Sullivan, and Michael W Mahoney.
Tree-like structure in large social and information networks. In
2013 IEEE 13th International Conference on Data Mining, pages
1–10. IEEE, 2013. URL: https://ieeexplore.ieee.org/document/
6729484, doi:10.1109/ICDM.2013.77.

[AVF14] Jesus Angulo and Santiago Velasco-Forero. Morphological pro-
cessing of univariate Gaussian distribution-valued images based
on Poincaré upper-half plane representation. In Frank Nielsen,
editor, Geometric Theory of Information, Signals and Com-
munication Technology, pages 331–366. Springer International
Publishing, 5 2014. URL: https://hal.archives-ouvertes.fr/hal-
00795012, doi:10.1007/978-3-319-05317-2_12.

[Bar15] Alexandre Barachant. PyRiemann: Python package for covari-
ance matrices manipulation and Biosignal classification with
application in Brain Computer interface, 2015. URL: https:
//github.com/alexandrebarachant/pyRiemann, doi:10.5281/
zenodo.3715511.

[BBL+17] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam,
and Pierre Vandergheynst. Geometric deep learning: Going
beyond euclidean data. IEEE Signal Processing Magazine,
34(4):18–42, 2017. URL: https://ieeexplore.ieee.org/document/
7974879, doi:10.1109/MSP.2017.2693418.

[BG18] Gary Bécigneul and Octavian-Eugen Ganea. Riemannian Adap-
tive Optimization Methods. In Proc. of ICLR 2019, pages 1–16,
2018. URL: http://arxiv.org/abs/1810.00760.

[BPK10] Marián Boguná, Fragkiskos Papadopoulos, and Dmitri Krioukov.
Sustaining the internet with hyperbolic mapping. Nature com-
munications, 1(1):1–8, Oct 2010. URL: https://www.nature.com/
articles/ncomms1063, doi:10.1038/ncomms1063.

[CBA15] Emmanuel Chevallier, Frédéric Barbaresco, and Jesus Angulo.
Probability density estimation on the hyperbolic space ap-
plied to radar processing. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), 9389:753–761,
2015. URL: https://link.springer.com/chapter/10.1007/978-3-
319-25040-3_80, doi:10.1007/978-3-319-25040-3_
80.

[CCD17] Benjamin Paul Chamberlain, James Clough, and Marc Peter
Deisenroth. Neural embeddings of graphs in hyperbolic space.
13th International Workshop on Mining and Learning with
Graphs, 2017. URL: https://arxiv.org/abs/1705.10359.

[Cen12] Andrea Censi. PyGeometry: Library for handling vari-
ous differentiable manifolds., 2012. URL: https://github.com/
AndreaCensi/geometry.

[CS16] Anoop Cherian and Suvrit Sra. Positive Definite
Matrices: Data Representation and Applications to
Computer Vision. In Algorithmic Advances in Riemannian
Geometry and Applications. Springer, 2016. URL:
https://www.springerprofessional.de/en/positive-definite-
matrices-symmetric-positive-definite-spd-matri/10816206,
doi:10.1007/978-3-319-45026-1.

[CSS05] Sueli IR Costa, Sandra A Santos, and João E Strapasson. Fisher
information matrix and hyperbolic geometry. In IEEE Infor-
mation Theory Workshop, 2005., pages 3–pp. IEEE, 2005. URL:
https://ieeexplore.ieee.org/document/1531851, doi:10.1109/
ITW.2005.1531851.

[DKZ09] Ian L. Dryden, Alexey Koloydenko, and Diwei Zhou. Non-
Euclidean statistics for covariance matrices, with applications
to diffusion tensor imaging. Annals of Applied Statistics,
3(3):1102–1123, September 2009. Publisher: Institute of Math-
ematical Statistics. URL: https://projecteuclid.org/euclid.aoas/
1254773280, doi:10.1214/09-AOAS249.

[FHP15] Masoud Faraki, Mehrtash T Harandi, and Fatih Porikli. Material
Classification on Symmetric Positive Definite Manifolds. In
2015 IEEE Winter Conference on Applications of Computer
Vision, pages 749–756, 1 2015. URL: https://ieeexplore.ieee.
org/document/7045959, doi:10.1109/WACV.2015.105.

[GBH18] Octavian Ganea, Gary Becigneul, and Thomas Hofmann. Hyper-
bolic neural networks. In Advances in Neural Information Pro-
cessing Systems 31 (NIPS), pages 5345–5355. Curran Associates,
Inc., 2018. URL: http://papers.nips.cc/paper/7780-hyperbolic-
neural-networks.pdf.

[Gro87] Mikhail Gromov. Hyperbolic Groups, pages 75–263. Springer
New York, New York, NY, 1987. URL: https://link.springer.com/
chapter/10.1007/978-1-4613-9586-7_3, doi:10.1007/978-
1-4613-9586-7_3.

[GWB+19] Zhi Gao, Yuwei Wu, Xingyuan Bu, Tan Yu, Junsong Yuan,
and Yunde Jia. Learning a robust representation via a
deep network on symmetric positive definite manifolds. Pat-
tern Recognition, 92:1–12, August 2019. URL: https://
linkinghub.elsevier.com/retrieve/pii/S0031320319301062, doi:
10.1016/j.patcog.2019.03.007.

[GZH+19] Thomas Gerald, Hadi Zaatiti, Hatem Hajri, Nicolas Baskiotis,
and Olivier Schwander. From node embedding to community
embedding : A hyperbolic approach, 2019. URL: https://arxiv.
org/abs/1907.01662, arXiv:1907.01662.

[HHLS16] M. T. Harandi, R. Hartley, B. Lovell, and C. Sanderson. Sparse
coding on symmetric positive definite manifolds using bregman
divergences. IEEE Transactions on Neural Networks and Learn-
ing Systems, 27(6):1294–1306, 2016. doi:10.1109/TNNLS.
2014.2387383.

[HKKM10] Stephan Huckemann, Peter Kim, Ja Yong Koo, and Axel Munk.
Möbius deconvolution on the hyperbolic plane with applica-
tion to impedance density estimation. Annals of Statistics,
38(4):2465–2498, 2010. URL: https://projecteuclid.org/euclid.
aos/1278861254, doi:10.1214/09-AOS783.

[HVS+16] Junpyo Hong, Jared Vicory, Jörn Schulz, Martin Styner, J S Mar-
ron, and StephenM Pizer. Non-Euclidean Classification of Med-
ically Imaged Objects via s-reps. Med Image Anal, 31:37–45,
2016. URL: https://www.sciencedirect.com/science/article/abs/
pii/S1361841516000141, doi:10.1016/j.media.2016.
01.007.

[JDM12] Sungkyu Jung, Ian L. Dryden, and J. S. Marron. Analysis
of principal nested spheres. Biometrika, 99(3):551–568, 2012.
URL: http://www.statistics.pitt.edu/sungkyu/papers/Biometrika-
2012-Jung-551-68.pdf, doi:10.1093/biomet/ass022.

[KH05] John T Kent and Thomas Hamelryck. Using the Fisher-Bingham
distribution in stochastic models for protein structure. Quan-
titative Biology, Shape Analysis, and Wavelets, 24(1):57–60,
2005. URL: http://www.amsta.leeds.ac.uk/statistics/workshop/
lasr2005/Proceedings/kent.pdf.

[Koc19] Maxim Kochurov. Geoopt: Riemannian Adaptive Optimization
Methods with pytorch optim, 2019. URL: https://arxiv.org/abs/
2005.02819.

[KPK+10] Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak,
Amin Vahdat, and Marián Boguñá. Hyperbolic geome-
try of complex networks. Physical Review E, 82:036106,
Sep 2010. URL: https://journals.aps.org/pre/abstract/10.
1103/PhysRevE.82.036106, doi:10.1103/PhysRevE.82.
036106.

[KS17] Line Kühnel and Stefan Sommer. Computational Anatomy in
Theano. CoRR, 2017. URL: https://link.springer.com/chapter/10.
1007/978-3-319-67675-3_15, doi:10.1007/978-3-319-
67675-3_15.

[MGLB+] Nina Miolane, Nicolas Guigui, Alice Le Brigant, Johan Mathe,
Benjamin Hou, Yann Thanwerdas, Stefan Heyder, Olivier Peltre,
Nicolas Koep, Hadi Zaatiti, Hatem Hajri, Yann Cabanes, Thomas
Gerald, Paul Chauchat, Daniel Brooks, Christian Shewmake,
Bernhard Kainz, Claire Donnat, Susan Holmes, and Xavier
Pennec. Geomstats : a Python Package for Riemannian Geometry
in Machine Learning. URL: https://arxiv.org/abs/2004.04667.

[MJK+18] Mayank Meghwanshi, Pratik Jawanpuria, Anoop Kunchukuttan,
Hiroyuki Kasai, and Bamdev Mishra. McTorch, a manifold
optimization library for deep learning, 2018. URL: http://arxiv.
org/abs/1810.01811.

[MSC+13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,
and Jeff Dean. Distributed representations of words
and phrases and their compositionality. In Advances
in Neural Information Processing Systems 26 (NIPS),
pages 3111–3119. Curran Associates, Inc., 2013. URL:
https://papers.nips.cc/paper/5021-distributed-representations-of-
words-and-phrases-and-their-compositionality, doi:https:
//dl.acm.org/doi/10.5555/2999792.2999959.

INTRODUCTION TO GEOMETRIC LEARNING IN PYTHON WITH GEOMSTATS 57

[NDV+14] Bernard Ng, Martin Dressler, Gaël Varoquaux, Jean Baptiste
Poline, Michael Greicius, and Bertrand Thirion. Transport on
Riemannian manifold for functional connectivity-based classi-
fication. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 8674 LNCS, pages 405–412,
Cham, 2014. Springer International Publishing. URL: http://
link.springer.com/10.1007/978-3-319-10470-6{_}51, doi:10.
1007/978-3-319-10470-6_51.

[NK17] Maximillian Nickel and Douwe Kiela. Poincaré Embeddings
for Learning Hierarchical Representations. In I Guyon, U V
Luxburg, S Bengio, H Wallach, R Fergus, S Vishwanathan,
and R Garnett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 6338–6347. Curran Associates,
Inc., 2017. URL: http://papers.nips.cc/paper/7213-poincare-
embeddings-for-learning-hierarchical-representations.pdf.

[PFA06] Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A
Riemannian Framework for Tensor Computing. In-
ternational Journal of Computer Vision, 66(1):41–66, 1
2006. URL: https://link.springer.com/article/10.1007/s11263-
005-3222-z, doi:10.1007/s11263-005-3222-z.

[PKS+12] Fragkiskos Papadopoulos, Maksim Kitsak, M Ángeles Ser-
rano, Marián Boguná, and Dmitri Krioukov. Popularity ver-
sus similarity in growing networks. Nature, 489(7417):537–
540, 2012. URL: https://www.nature.com/articles/nature11459,
doi:10.1038/nature11459.

[Pos01] Mikhail Postnikov. Riemannian Geometry. Encyclopae-
dia of Mathem. Sciences. Springer, 2001. URL: https://
encyclopediaofmath.org/wiki/Riemannian_geometry, doi:10.
1007/978-3-662-04433-9.

[PSF19] Xavier Pennec, Stefan Sommer, and Tom Fletcher.
Riemannian Geometric Statistics in Medical Image Analysis.
Elsevier Ltd, first edit edition, 2019. URL: https:
//www.elsevier.com/books/riemannian-geometric-statistics-
in-medical-image-analysis/pennec/978-0-12-814725-2,
doi:10.1016/C2017-0-01561-6.

[SDSGR18] Frederic Sala, Chris De Sa, Albert Gu, and Christopher Re.
Representation tradeoffs for hyperbolic embeddings. In Jen-
nifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 4460–4469,
Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.
URL: http://proceedings.mlr.press/v80/sala18a.html.

[SMA10] Yusuke Shinohara, Takashi Masuko, and Masami Akamine.
Covariance clustering on Riemannian manifolds for acoustic
model compression. In 2010 IEEE International Conference
on Acoustics, Speech and Signal Processing, pages 4326–4329,
3 2010. URL: https://ieeexplore.ieee.org/document/5495661,
doi:10.1109/ICASSP.2010.5495661.

[STK05] Olaf Sporns, Giulio Tononi, and Rolf Kötter. The human
connectome: A structural description of the human brain. PLOS
Computational Biology, 1(4):0245–0251, 09 2005. URL: https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC1239902/, doi:10.
1371/journal.pcbi.0010042.

[TKW16] James Townsend, Niklas Koep, and Sebastian Weichwald.
Pymanopt: A python toolbox for optimization on mani-
folds using automatic differentiation. Journal of Machine
Learning Research, 17(137):1–5, 2016. URL: http://jmlr.
org/papers/v17/16-177.html, doi:https://dl.acm.org/
doi/10.5555/2946645.3007090.

[WAZF18] Eleanor Wong, Jeffrey S. Anderson, Brandon A. Zielinski, and
P. Thomas Fletcher. Riemannian Regression and Classification
Models of Brain Networks Applied to Autism. In Lecture Notes
in Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics), volume
11083 LNCS of Lecture Notes in Computer Science, pages
78–87. Springer International Publishing, 2018. URL: https://
link.springer.com/chapter/10.1007/978-3-030-00755-3_9, doi:
10.1007/978-3-030-00755-3_9.

[Wyn14] Kieran Wynn. PyQuaternions: A fully featured, pythonic li-
brary for representing and using quaternions, 2014. URL:
https://github.com/KieranWynn/pyquaternion.

[WZD+13] Jinhui Wang, Xinian Zuo, Zhengjia Dai, Mingrui Xia, Zhilian
Zhao, Xiaoling Zhao, Jianping Jia, Ying Han, and Yong He.
Disrupted functional brain connectome in individuals at risk
for Alzheimer’s disease. Biological Psychiatry, 73(5):472–481,

2013. URL: http://dx.doi.org/10.1016/j.biopsych.2012.03.026,
doi:10.1016/j.biopsych.2012.03.026.

[YZLM12] Ying Yuan, Hongtu Zhu, Weili Lin, and J S Marron. Local
polynomial regression for symmetric positive definite matrices.
Journal of the Royal Statistical Society Series B, 74(4):697–
719, 2012. URL: https://econpapers.repec.org/RePEc:bla:jorssb:
v:74:y:2012:i:4:p:697-719, doi:10.1111/j.1467-9868.
2011.01022.x.

58 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Network visualizations with Pyvis and VisJS

Giancarlo Perrone‡∗, Jose Unpingco‡, Haw-minn Lu‡

F

Abstract—Pyvis is a Python module that enables visualizing and interactively
manipulating network graphs in the Jupyter notebook, or as a standalone web
application. Pyvis is built on top of the powerful and mature VisJS JavaScript
library, which allows for fast and responsive interactions while also abstracting
away the low-level JavaScript and HTML. This means that elements of the ren-
dered graph visualization, such as node/edge attributes can be specified within
Python and shipped to the JavaScript layer for VisJS to render. This declarative
approach makes it easy to quickly explore graph visualizations and investigate
data relationships. In addition, Pyvis is highly customizable so that colors, sizes,
and hover tooltips can be assigned to the rendered graph. The network graph
layout is controlled by a front-end physics engine that is configurable from a
Python interface, allowing for the detailed placement of the graph elements. In
this paper, we outline use cases for Pyvis with specific examples to highlight key
features for any analysis workflow. A brief overview of Pyvis’ implementation
describes how the Python front-end binding uses simple Pyvis calls.

Index Terms—networks, graphs, relationship

Introduction

Successful Data Science is about discovering meaningful rela-
tionships in data. Visually representing these relationships using
a network graph helps to accelerate understanding and make
data driven decisions. Many research areas take advantage of
the insight that network analysis techniques can offer. Fields
in social networking, cognitive studies, telecommunications, and
biological systems all leverage the applications of network the-
ory and computation. Representing these relationships using a
network graph is fundamental to all approaches, but generating
an interactive and fluid graph visualization can be challenging,
especially for large datasets. We introduce Pyvis, based upon the
mature VisJS [vis20b] JavaScript library which enables fluid and
interactive visualizations of complex network graphs. Pyvis seeks
to simplify the interactive process by implementing an existing
JavaScript graphics library to abstract away the low-level front
end components, leaving the construction of these network data
structures to Python.

The Pyvis network data structure matches the JavaScript
VisJS object. This makes it easy to interpret and implement the
underlying data structures from the Python layer, since the actual
front end component is generated by the JavaScript library. A
resulting static HTML document shows the network graph, with
interactions such as dragging, zooming, hovering, and clicking.

* Corresponding author: gperrone@westhealth.org
‡ Gary and Mary West Health Institute

Copyright © 2020 Giancarlo Perrone et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

These interactions help visualize dense complex networks that are
hard to explore using static graphics.

Before open-sourcing Pyvis, we used it successfully to un-
derstand relationships among hundreds of variables in a complex
survey. Although we maintained an efficient data structure to
represent the trends in the survey responses, we still needed a way
to visualize and interact with additional metadata. Pyvis made it
easy to abstract our existing data structure into nodes and edges
with our desired metadata and then render the visualization with
VisJS to easily identify the interrelationships. In this paper, we
describe the design of Pyvis with examples showing the data
structures which are rendered by VisJS.

In the following section, we demonstrate how to get up and
running with Pyvis in a smaller scope by showing off the common
methods of creating a network. This will also include some
exposure to the customizability options that makes Pyvis so useful.

In the Layout section, we will see exactly how nodes and
edges can be spatially specified by interacting with various physics
parameters interpreted by the front end engine.

Integrations with Jupyter and NetworkX will be presented to
establish Pyvis compatibility with popular data science workflows.

Finally, a thought out example will include the interpretation
of a practical Game of Thrones relationship dataset to demonstrate
a Pyvis use case from the ground up. This minimal example will
be a base case for the features that Pyvis supports.

Pyvis Usage

Installing Pyvis is straight-forward with details at the project
documentation website [Gia18]. All of the following examples
will utilize familiar Python data structures with some connections
to the popular and powerful NetworkX package [HSS08]. The
basic Network class is the container for graph and front end
properties. All networks must be instantiated as a Network class
instance:
from pyvis.network import Network
g = Network()

Nodes can be added by providing an integer or string id and an
optional label.
g.add_node(1)
g.add_node(2)
print(g)

{
"Nodes": [

1,
2

],
"Edges": [],
"Height": "500px",

NETWORK VISUALIZATIONS WITH PYVIS AND VISJS 59

Fig. 1: Multiple nodes and attributes added at once

Fig. 2: Edges with a custom weight

"Width": "500px"
}

The add_nodes method consumes a list of nodes (Fig 1):

nodes = ["a", "b", "c", "d"]
g.add_nodes(nodes)
g.add_nodes("hello")

Keyword arguments can be used to add properties to the nodes in
Network:

g = Network()
g.add_nodes(

[1,2,3],
value=[10, 100, 400], # values adjust node size
x=[21.4, 154.2, 11.2],
y=[100.2, 23.54, 32.1],
label=["NODE 1", "NODE 2", "NODE 3"],
color=["#00ff1e", "#162347", "#dd4b39"]

)
g.show("example.html")

The following node properties influence the resulting
visualization:

• size - The raw circumference of a single node
• value - Circumference of node but scaled according to all

values
• title - The title displays over each node while mousing over

it
• x - X coordinate of node for custom layouts
• y - Y coordinate of node for custom layouts
• label - A label appearing under each node
• color - The color of the node

Nodes must exist in the network instance in order to add edges

g.add_edge(1, 2)
will adjust edge thickness
g.add_edge(2, 3, weight=5)

Edges can be added all at once by supplying a list of tuples to a
call to add_edges(). The following is an equivalent result (Fig 2):

g.add_edges([(1, 2), (2, 3, 5)])
g.show("example.html")

Notice how an optional element is included in the 3-tuple above
(2, 3, 5) representing the weight of the edge. This additional edge
data allows for expressing weighted networks and is clearly
noticeable in the visualization.

Layout

In situations where your network involves complex connections,
Pyvis allows you to manually explore these relationships with
intuitive mouse interactions. Nodes can be dragged into more
visible positions if the view is obstructed.
All of this is made possible by the front end engine provided by
VisJS. Their extensive documentation defines several options for
supplying layout and physics configurations to instances of a
network. These physics options are fundamental to VisJS, so
tweaking the physics of the rendered simulation is as simple as
providing the parameters to the specific solver.

The physics options dictates how a user can interact with the
objects in the graph. The intent of the physic options is to
make manipulating graph objects feel more intuitive when moving
nodes around. As an example, the user can manipulate a portion
of a graph that is densely populated to view a graph segment
of the interest more clearly. VisJS implements several physical
simulations such as Barnes Hut [BH86]. Others are mentioned in
the VisJS documentation [vis20a].
We can configure the physics engine from within Pyvis:

g = Network()
physics solvers supported:
barnesHut, forceAtlas2Based, repulsion,
hierarchicalRepulsion
g.barnes_hut(
gravity=-80000,
central_gravity=0.3,
spring_length=250,
spring_strength=0.001,
damping=0.09,
overlap=0,
)
print(g.options.physics)
{'enabled': True,
'stabilization':
<pyvis.physics.Physics.Stabilization
object at 0x7f99e6a03f90>,
'barnesHut': <pyvis.physics.Physics.barnesHut
object at 0x7f99e6de3710>}

In order to avoid the scenario of "guessing" parameter values for
an optimal network physics configuration, VisJS offers a useful
interaction for experimenting with theses values.
These interactions are enabled via Pyvis (Fig 3):

choose to only show the physics options
g.show_buttons(filter_=["physics"])

Here, we choose to display the options for the physics component
of the network. Omitting a filter in the call will display the
configuration of the entire network including nodes, edges,
layout, and interaction. The JSON options displayed in the
visualization represent the current configuration depending on the
displayed sliders. You can copy/paste those options to supply
your network with custom settings:

60 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Fig. 3: Live layout GUI with physics filter

g.set_options(
"""
var options = {

"physics": {
"repulsion": {

"centralGravity": 1.3,
"springConstant": 0.08,
"nodeDistance": 90,
"damping": 0.19

},
"maxVelocity": 45,
"minVelocity": 0.19,
"solver": "repulsion",
"timestep": 0.34

}
}
"""

)
print(g.options)

{'physics': {'repulsion': {'centralGravity': 1.3,
'springConstant': 0.08,
'nodeDistance': 90,
'damping': 0.19},
'maxVelocity': 45,
'minVelocity': 0.19,
'solver': 'repulsion',
'timestep': 0.34}}

The methods of a Network instance construct an internal
structure compatible with VisJS, demonstrated by the consistent
pattern of JSON outputs seen above.

NetworkX Support

Although Pyvis supports its own methods for constructing a
network data structure, you might feel more comfortable using the
more established and dedicated NetworkX package. Pyvis allows
you to define a NetworkX graph instance to then supply it to Pyvis
(Fig 4).
import networkx as nx
from pyvis.network import Network

nxg = nx.random_tree(20)
g=Network(directed=True)
g.from_nx(nxg)
g.show("networkx.html")

Pyvis current behavior recognizes the basic topology of a
NetworkX graph, not accounting for any custom attributes

Fig. 4: NetworkX graph rendered with Pyvis

Fig. 5: Network rendered in Jupyter Notebook cell

provided. Any other attributes like node color, size, and layout
would need to be manually added to the resulting Pyvis graph.
Future plans are to fully integrate NetworkX graphs to fully
interpret them, preserving attributes in the resulting Pyvis
visualizations.

Jupyter Support

For efficient prototyping of visualized graphs, Pyvis aims to
utilize Jupyter’s front-end IFrame features to embed the graph
in a notebook output cell. With that in mind, embedding a Pyvis
visualization into a Jupyter notebook is essentially the same as
described above. The only difference is that one should pass
in a notebook argument during instantiation. The result of the
visualization is shown in the output cell below the show()
invocation. Pyvis upon the call to show() writes the HTML that
serves an IFrame, which displays the result in the output cell (Fig
5).
One thing to keep in mind is that an HTML file is always
generated due to the dependence on the VisJS JavaScript
bindings.

Example

To get a better understanding of the flow of a typical Pyvis
network visualization, we can take a look at the following code
snippet to show off a typical application of the features. I have
taken a Game of Thrones dataset ([Bev] Storm of Swords
Dataset) defining the relationships between characters and the
frequencies between them to create a network to naturally

NETWORK VISUALIZATIONS WITH PYVIS AND VISJS 61

Fig. 6: Game of Thrones network dictates relationships between
characters

express this. Specifically, it is a csv file containing pairs of
characters and a weight between them. The final visualization
contains 107 nodes. (Fig 6)

from pyvis.network import Network
import pandas as pd

got_net = Network(
height="750px",
width="100%",
bgcolor="#222222",
font_color="white"

)

set the physics layout of the network
got_net.barnes_hut()
got_data = pd.read_csv("stormofswords.csv")

sources = got_data['Source']
targets = got_data['Target']
weights = got_data['Weight']

edge_data = zip(sources, targets, weights)

for e in edge_data:
src = e[0]
dst = e[1]
w = e[2]

got_net.add_node(src, src, title=src)
got_net.add_node(dst, dst, title=dst)
got_net.add_edge(src, dst, value=w)

neighbor_map = got_net.get_adj_list()

add neighbor data to node hover data
for node in got_net.nodes:

node["title"] += " Neighbors:
" + \
"
".join(neighbor_map[node["id"]])

node["value"] = len(neighbor_map[node["id"]])

got_net.show("gameofthrones.html")

In the network, the size of a node correlates to the number of
relationships it contains. This calculation benefits from the use of
an adjacency list to easily record the information pertaining to
each node’s neighbors. To see this, the character "Tyrion"

Fig. 7: Zooming into Game of Thrones network offers concise view

contains many connections, resulting in a larger node.
Furthermore, Tyrion’s strongest connections are easily noticed by
the thick edges, and it is easy to see that Tyrion and Sansa are a
strong relationship in the network.
At a glance, the resulting relationship network looks too
intertwined to make any practical conclusions. However, the
beauty of Pyvis is that each and every component of the network
can be focused. For example, zooming in to a dense portion of
the network, we can hover over a particular node to get a glimpse
of the scenario. (Fig 7)

This hover tooltip offers the context behind a particular node. We
can see the immediate neighbors for each and every node since
we provided a title attribute during the network construction.
This simple example can be expanded upon to create more
custom interactions tailored to specific needs of a dataset.
The network also uses weights. By providing a value attribute to
each node we can see these values being represented by a node’s
size. In the code I used the amount of neighbors to dictate the
node weight. This is a strong visual cue which makes it easy to
see which nodes have the most connections.
The edge weights are assigned in a similar manner, although the
dataset already provided the connection strength between nodes.
These edge weights are distinguishable in the final visualization,
once again proving the usefulness of Pyvis’ front-end features.

Under the Hood

VisJS reduces the definition of a network to a declarative set of
objects. Nodes, Edges, and an Options JSON object are given to
the VisJS Network constructor. The following basic example from
their documentation proves this:
// create an array with nodes
var nodes = new vis.DataSet([

{id: 1, label: 'Node 1'},
{id: 2, label: 'Node 2'},

]);

// create an array with edges
var edges = new vis.DataSet([

{from: 1, to: 2},
]);

62 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

// create a network
var container = document.getElementById('mynetwork');

// provide the data in the vis format
var data = {

nodes: nodes,
edges: edges

};
var options = {};

// initialize your network!
var network = new vis.Network(container, data, options);

This pattern makes Jinja [Pro] templating an obvious candidate
for generalizing a set of JavaScript declarations. VisJS
documentation provides a complete set of supported attributes for
each data structure, so incorporating them into the Python layer
involves representing each object as Python objects which are
then serialized and sent to Jinja to handle the templating.
A simple example of this process in action is outlined below:

self.html = template.render(nodes=nodes, edges=edges)

In this case, a template HTML file is rendered with node and
edge data matching a format compatible with a VisJS Network
instance.

Conclusion

Pyvis is a powerful python module for visualizing and interac-
tively manipulating network graphs in a standalone web applica-
tion or a Jupyter notebook. Pyvis brings the power of VisJS to
Python, thus enabling data scientists who use Jupyter to interac-
tively visualize network graphs with all the fluid interactions of
a pure-JavaScript application. Future directions for Pyvis include
supporting the front end interactivity with more JavaScript enabled
features, and optimization/caching of node positions for larger
networks. Those with JavaScript and VisJS knowledge would be
able to provide insight towards prospective front end features,
since these will leverage actual VisJS references. As Pyvis use
case grows in scope, additional features and suggestions will be
requested, paving the path for a robust version of Pyvis meeting
user experience expectations.

Code samples presented here, and with the correspond-
ing poster presentation, as well as other supplemental ma-
terial are available at West Health’s github repository at
https://github.com/WestHealth/scipy2020/tree/master/pyvis.

REFERENCES

[Bev] Andrew Beveridge. Network of thrones. URL: https://www.
macalester.edu/~abeverid/thrones.html.

[BH86] J K Barnes and Piet Hut. A hierarchical o(n log n) force-
calculation algorithm. Nature, 324:446–449, 1986. doi:10.
1038/324446a0.

[Gia18] Giancarlo Perrone. Pyvis interactive network visualizations, 2018.
URL: https://pyvis.readthedocs.io/en/latest/.

[HSS08] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring
network structure, dynamics, and function using networkx. In Gaël
Varoquaux, Travis Vaught, and Jarrod Millman, editors, Proceedings
of the 7th Python in Science Conference, pages 11 – 15, Pasadena,
CA USA, 2008. doi:10.25080/issn.2575-9752.

[Pro] The Pallets Projects. jinja. URL: https://jinja.palletsprojects.com/.
[vis20a] vis.js community. Network - physics, 2020. URL: https://visjs.

github.io/vis-network/docs/network/physics.html.
[vis20b] vis.js community. vis.js, 2020. URL: https://visjs.org.

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020) 63

Boost-histogram: High-Performance Histograms as
Objects

Henry Schreiner‡∗, Hans Dembinski§, Shuo Liu¶, Jim Pivarski‡

https://youtu.be/ERraTfHkPd0

F

Abstract—Unlike arrays and tables, histograms in Python have usually been
denied their own object, and have been represented as a single operation
producing several arrays. Boost-histogram is a new Python library that provides
histograms that can be filled, manipulated, sliced, and projected as objects.
Building on top of the Boost libraries’ Histogram in C++14 provided interesting
distribution and design challenges with useful solutions. This is meant to be
a foundation that others can build on; in the Scikit-HEP project1, a physicist
friendly front-end "Hist" and a conversion package "Aghast" are already being
designed around boost-histogram.

Index Terms—Histogram, Analysis, Data processing, Data reduction, NumPy,
Aggregation

Motivation

As an example of a problem that becomes much easier with
histograms as objects, let’s look at the Python 3 adoption of several
libraries using PyPI download statistics. There are three columns
of interest: The package name, the date of the download, and
the Python version used when downloading the package. In order
to look at trends, you will want to answer questions about the
download behavior over time ranges, such as what is the fraction
of Python 2 downloads out of all downloads for each month.
Let’s look at what a solution to this would entail using traditional
histogramming methods [NumPy]:

• Date: You could make a histogram over datetime ob-
jects, but then you will be responsible for finding the
bin range (dates are just large numbers), probably using
np.searchsorted on the edges array, and then making
slices in the binned array yourself.

• Python version: You would have to force some sort of
artificial binning scheme, such as one with edges [2,
3.0, 3.59, 3.69, 3.79, 4], in order to collect
information for each Python version of interest. You would
have to use a 2D array, and keep the selections/edges
straight yourself; in practice, you would probably just

* Corresponding author: henryfs@princeton.edu
‡ Princeton University
§ TU Dortmund
¶ Sun Yat-sen University

Copyright © 2020 Henry Schreiner et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

1. https://scikit-hep.org

create a Python dict of 1D histograms for each major
version.

• Package names: This would require making a dict and
storing each 2D (or set of 1D) histograms manually.
NumPy does not support category axes or strings.

If your data doesn’t fit into memory, you will have to build in
the batching and combining yourself. For each piece.

Now look at this with an object-based Histogram library, such
as boost-histogram:

• Package names: This can be string categories.
• Python version: You could simply multiply by 10 and

make these int categories, or just use string categories.
• Date: Use a regular spaced binning from start to stop in

the resolution you are interested, such as months. Use the
loc indexer to convert when slicing. No manual tracking
or searching. Use rebinning to convert months into years
in one step.

In the object-based version, you fill once. If your data doesn’t
fit into memory, just fill in batches. The API for ND histograms
is identical to 1D histograms, so you don’t have to use different
functions or change significant portions of code even if you add a
new axes later.

Now let’s look at using the object to make a series of plots,
with one shown in Figure 12. The code required to make the plot
is shown below, with minor formatting details removed.

for name in hist.axes[0]:
fig, ax = plt.subplots()
ax.set_title(name)
for vers in hist.axes[1]:

dhist = hist[bh.loc(name), bh.loc(vers), :]
(dt,) = d.axes.centers
xs = mpl.dates.date2num(pd.to_datetime(dt))
ax.plot_date(xs, dhist, label=f"{vers/10}")

Note how all the computation, and the version information is
stored in a single histogram object. The datetime centers are
accessible after the package and version number are selected.
Looping over the categories is trivial. Since the histogram is
already filled, there are no other loops over the data to slow down
manipulation. We could rebin or set limints or sum over axes
cleanly as well.

2. Code available at https://github.com/scikit-hep/scikit-hep-orgstats

64 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

2018-01 2018-04 2018-07 2018-10 2019-01 2019-04 2019-07 2019-10 2020-01 2020-04
0

1000

2000

3000

4000

5000

iminuit
2.7
3.5
3.6
3.7
3.8

Fig. 1: A downloads vs. time histogram plot for iMinuit [iMinuit] by Python version, made with Matplotlib [Matplotlib].

Introduction

In the High Energy Physics (HEP) community, histogramming is
vital to most of our analysis. As part of building tools in Python
to provide a friendly and powerful alternative to the ROOT C++
analysis stack [ROOT], histogramming was targeted as an area in
the Python ecosystem that needed significant improvement. The
"histograms are objects" mindset is a general, powerful way of
interacting with histograms that can be utilized across disciplines.
We have built boost-histogram in cooperation with the Boost C++
community [Boost] for general use, and also have separate more
specialized tools built on top of boost-histogram that customize it
for HEP analysis (which will be discussed briefly at the end of this
paper).

At the start of the project, there were many existing histogram
libraries for Python (at least 24 were identified by the authors),
but none of them fulfilled the requirements and expectations of
users coming from custom C++ analysis tools. Four key areas
were identified as key to a good library for creating histograms:
Design, Flexibility, Performance, and Distribution.

Before we continue, a brief description of a histogram should
suffice to set the stage until we describe boost-histogram’s ap-
proach in more detail. A histogram reduces an arbitrarily large
dataset into a finite set of bins. A histogram consists of one or more
axes (sometimes called "binnings") that describe a conversion
from data coordinates to bin coordinates. The data coordinates
may be continuous or discrete (often called categories); the bin
coordinates are always discrete. In NumPy [NumPy], this con-
version is internally derived from a combination of the bin and
range arguments. Each bin in the histogram stores some sort of
aggregate information for each value that falls into it via the axes
conversion. This is a simple sum in NumPy. When something
besides a sum is used, this is a "generalized histogram", which is
called a binned_statistic in scipy.stats [SciPy]; for
our purposes, we will avoid this distinction for the sake of brevity,
but our histogram definition does include generalized histograms.
Histograms often have an extra "weight" value that is available to
this aggregate (a weighted sum in NumPy).

Almost as important as defining what a histogram is limiting
what a histogram is not. Notice the missing item above: a his-
togram, in this definition, is not a plot or a visual aid. It is not
a plot any more than a NumPy array is a plot. You can plot a
Histogram, certainly, and customisations for plotting are useful
(much as Pandas has custom plotting for Series [Pandas]), but that
should not part of a core histogram library, and is not part of
boost-histogram (though most tutorials include how to plot using
Matplotlib [Matplotlib]).

The first area identified was Design; here many popular li-
braries fell short. Histograms need to be represented as an object,

rather than a collection of NumPy arrays, in order to naturally
manipulate histograms after filling. You should be able to continue
to fill a histogram after creating it as well; filling in one pass
is not always possible due to memory limits or live data taking
conditions. Once a histogram is filled, it should be possible to
perform common operations on it, such as rebinning to a courser
binning scheme, projecting on a subset of axes, selecting a subset
of bins then working with or summing over just that piece, and
more. You should be able easily sum histograms, such as from
different threads. You also should be able to easily access the
transform between data coordinates and bin coordinates for each
axes. Axis should be able to store extra information, such as a title
or label of some sort, to assist the user and external plotting tools.

The second area identified was Flexibility; there are a wide
range of things a histogram should be able to do; these tradi-
tionally are split into different functions and objects, but as we
show, a clear, consistent design makes it possible to unify around a
single object. Axes should support several forms of binning: vari-
able width binnings, regularly spaced binnings (a performance-
optimized subset of variable binning), and categorical binning.
Out-of-range bins (called flow bins, discussed later) are also key
for enabling lossless sums over a partial collection of axes. Axes
should also be able to optionally grow when a fill is out of range
instead. The bins themselves should support simple sums, like
NumPy, but should also support means (sometimes called profile
histograms). High-precision weighted summing is also useful.
Finally, if you add a sample parameter to the fill, you can also
keep track of the variance for each bin.

The third area identified was Performance; when dealing
with very large datasets that will not fit in memory, the filling
performance becomes critical. High performance filling is also
useful in real-time applications. A highly performance histogram
library should support fast filling with a compiled loop, it should
avoid reverting to a slower O(n) lookup when filling a regularly
spaced axes, and it should be able to take advantage of multiple
cores when filling from a large dataset. NumPy, for example, does
do well for a single regularly spaced axes, but it still does not
optimize for two regularly spaced axes (an image is an example of
a common regularly spaced 2D histogram).

The fourth and final area identified was Distribution. A great
library is not useful if no one can install it; it is especially
important that students and inexperienced users be able to install
the histogramming package. This is one of Python’s strengths
compared to something like C++, but the above requirements
necessitate compiled components, so this is important to get right.
It also needed to work flawlessly in virtual environments and in
the Conda package manager. It also needed to be available on as
many platforms and for as many Python versions as possible to

BOOST-HISTOGRAM: HIGH-PERFORMANCE HISTOGRAMS AS OBJECTS 65

4 2 0 2 4
0

5000

10000

15000

20000

25000

30000

35000

40000

Fig. 2: An example of a 1D-histogram.

support both old and new data acquisition and analysis systems.
About a year ago, a new C++14 library was proposed to the

Boost C++ libraries called Boost.Histogram; it was unanimously
accepted and released as part of the Boost C++ libraries version
1.70 after the review process. It was a well designed header-only
package that fulfilled exactly what we wanted, but in C++14 rather
than Python. A proposal was made to get a full-featured Python
binding developed as part of an institute for sustainable software
for HEP [IRIS-HEP], as one of the foundations for a Python
based software stack being designed to be part of the Scikit-
HEP community [SkHEP]. We built boost-histogram for Python in
close collaboration with the original Histogram for Boost author,
Hans Dembinski, who had always intended Boost.Histogram to be
accessible from Python. Due to this close collaboration, concepts
and design closely mimic the spirit of the Boost counterpart.

An example of the boost-histogram library approach, creating
a 1D-histogram and adding values, is shown below, with results
plotted in Figure 2:

import boost_histogram as bh
import numpy as np
import matplotlib.pyplot as plt

ax = bh.axes.Regular(100, start=-5, stop=5)
hist = bh.Histogram(ax)

hist.fill(np.random.randn(1_000_000))

plt.bar(hist.axes[0].centers,
hist.view(),
width=hist.axes[0].widths)

For future code snippets, the imports used above will be assumed.
Using .view() is optional, but is included to make these
explicit. You can access ax as hist.axes[0]. Note that boost-
histogram is not plotting; this is simply accessing histogram prop-
erties and leveraging existing Matplotlib functionality. A similar
example, but this time in 2D, is shown in Figure 3, illustrating the
identical API regardless of the number of dimensions:

hist_2d = bh.Histogram(bh.axis.Regular(100, -3, 3),
bh.axis.Regular(100, -3, 3))

hist_2d.fill(np.random.randn(1_000_000),
np.random.randn(1_000_000))

X, Y = hist_2d.axes.centers
plt.pcolormesh(X.T, Y.T, hist_2d.view().T)

2 1 0 1 2

2

1

0

1

2

Fig. 3: An example of a 2D-histogram.

StorageRegular axis

Regular axis with
log transformaxes

Optional overflowOptional underflow

Accumulator
int, double,
unlimited, ...

Fig. 4: The components of a histogram, shown for a 2D histogram.

Boost-histogram is available on PyPI and conda-forge, and the
source is BSD licensed and available on GitHub3. Extensive
documentation is available on ReadTheDocs4.

The Design of a Histogram

Let’s revisit our description of a histogram, this time mapping
boost-histogram components to each piece. See Figure 4 for
an example of how these visually fit together to create an 2D
histogram.

The components in a bin are the smallest atomic piece
of boost-histogram, and are called Accumulators. Four such
accumulators are available. Sum just provides a high-accuracy
floating point sum using the Neumaier algorithm [Neu74], and is
automatically used for floating point histograms. WeightedSum
provides an extra term to allow sample sizes to be given. Mean
stores a mean instead of a sum, created what is sometimes called
a "profile histogram". And WeightedMean adds an extra term
allowing the user to provide samples. Accumulators are like a 0D
or scalar histogram, much like dtypes are like 0D scalar arrays in
NumPy.

The above accumulators are then provided in a container
called a Storage, of which boost-histogram provides several. The
available storages include choices for the four accumulators listed

3. https://github.com/scikit-hep/boost-histogram
4. https://boost-histogram.readthedocs.io

66 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

above (the storage using Sum is just called Double(), and is the
default; unlike the other accumulator-based storages it provides a
simple NumPy array rather than a specialized record array when
viewed). Other storages include Int64(), which stores integers
directly, AtomicInt64, which stores atomic integers, so can be
filled from different threads concurrently, and Unlimited().
which is a special growing storage that offers a no-overflow
guarantee and automatically uses the least possible amount of
memory for a dense uniform array of counters, which is very
helpful for high-dimensional histograms. It also automatically
converts to doubles if filled with a weighted fill or scaled by a
float.

The next piece of a histogram is an Axis. A Regular axis
describes an evenly spaced binning with start and end points,
and takes advantage of the simplicity of the transform to pro-
vide O(1) computational complexity. You can also provide a
Transform for a Regular axes; this is a pair of C function
pointers (possibly generated by a JIT compiler [Numba]) that
can apply a function to the transform, allowing for things like
log-scale axes to be supported at the same sort of complexity
as a Regular axis. Several common transforms are supplied,
including log and power spacings. You can also supply a list of
bin edges with a Variable axis. If you want discrete axes,
Integer provides a slightly simpler version of a Regular
axes, and IntCategory/StrCategory provide true non-
continuous categorical axes for arbitrary integers or strings, re-
spectively. Most axes have configurable end behaviors for when a
value is encountered by a fill that is outside the range described
by the axis, allowing underflow/overflow bins to be turned off, or
replaced with growing bins. All axes also have a metadata slot
that can store arbitrary Python objects for each axis; no special
meaning is applied by boost-histogram, but these can be used for
titles, units, or other information.

An example of a custom transform applied to a Regular
axis is shown below using Numba to create C pointers; any ctypes
pointer is accepted.
import numba

@numba.cfunc(numba.float64(numba.float64))
def exp(x):

return math.exp(x)

@numba.cfunc(numba.float64(numba.float64))
def log(x):

return math.log(x)

transform_log = bh.axis.transform.Function(log, exp)

bh.axis.Regular(10, 1, 4, transform=transform_log)

You need to provide both directions in the transform, so
that boost-histogram can add values to bins and find bin
edges. Note: don’t actually use exactly this code; there is a
bh.axis.transform.log already compiled in the library.

A Histogram is the combination of a storage and one or more
axes. Histograms always manage their own memory, though they
provide a view of that storage to Python via the buffer protocol and
NumPy. Histograms have the same API regardless of whether they
have one axes or thirty-two, and they have a rich set of interactions
defined, which will be the topic of the next section. This is an
incredibly flexible design; you can orthogonally combine any
mixture of axes and storages with associated accumulators, and
in the future, new axes types or accumulators and storages can be
added.

Interactions with a Histogram

A Histogram supports a variety of operations, many of which
use Python’s syntax to be expressed naturally and succinctly.
Histograms can be added, copied, pickled (special attention was
paid to ensure even accumulator storages are pickled quickly and
efficiently), and used most places a NumPy array is accepted.
Scaling a histogram can be done simply by using Python’s
multiplication and division operators.

Conversion to a NumPy array was carefully designed to
provide a comfortable interface for Python users. The "flow" bins,
which are the bins that are used when an event is encountered
outside the range of the current axis, are an essential feature
for partial summations. These extra bins are not as common in
NumPy based analyses (though you can create flow bins manually
in NumPy by using ±∞), so these generally are not needed or
expected when converting to an array. The array interface and all
external methods do not include flow bins by default, but they
can be activated by passing flow=True to any of the methods
that could be affected by flow bins. You can directly access a
view of the data without flow bins with .view(), and you can
include flow bins with .view(flow=True). The stride system
is descriptive enough to avoid needing to copy memory in either
case. Views of accumulator storages are NumPy record arrays,
enhanced with property-based access for the fields as well as
common computed properties, like the variance. Finally, there is
an explicit .to_numpy() method that returns the same tuple
you would get if you used one of the np.histogram functions.

Axes are presented as a property returning an enhanced tuple.
You can use access any method or property on all axes at once
directly from the AxesTuple. Array properties (like edges) are
returned in a shape that is ready for broadcasting, allowing natural
manipulations directly on the returned values. For example, the
following snippet computes the density of a histogram, regardless
of the number of dimensions:

Compute the "volume" of each bin (useful for 2D+)
volumes = np.prod(hist.axes.widths, axis=0)

Compute the density of each bin
density = hist.view() / hist.sum() / volumes

Unified Histogram Indexing

Indexing in boost-histogram, based on a proposal called Unified
Histogram Indexing (UHI)5, allows NumPy-like slicing and is
based on tags that can be used cross-library. They can be used to
select items from axes, sum over axes, and slice as well, in either
data or bin coordinates. One of the benefits of the axes based
design is that selections that traditionally would have required
multiple histograms now can simply be represented as an axes in
a single histogram and then UHI is used to select the subset of
interest.

The key design is that any indexing expression valid in both
NumPy and boost-histogram should return the same thing regard-
less of whether you have converted the histogram into an array via
.view() or np.asarray or not. Freedom to access the unique
parts of boost-histogram are only granted through syntax that is
not valid on a NumPy array. This is done through special tags that
are not valid in NumPy indexing. These tags do not depend on
the internals of boost-histogram, however, and could be written

5. https://boost-histogram.readthedocs.io/en/latest/usage/indexing.html

BOOST-HISTOGRAM: HIGH-PERFORMANCE HISTOGRAMS AS OBJECTS 67

by a user or come from a different library; the are mostly simple
callables, with minor additions to make their repr’s look nicer.

There are several tags provided: bh.loc(float) con-
verts a data-coordinate into bin coordinates, and supports ad-
dition/subtraction. For example, hist[bh.loc(2.0) + 2]
would find the bin number containing 2.0, then add two to it. There
are also bh.underflow and bh.overflow tags for accessing
the flow bins.

Slicing is supported, and works much like NumPy, though
it does return a new Histogram object. You can use tags when
slicing. A single value, when mixed with a slice, will select out
a single value from the axes and remove it, just like it would in
NumPy (you will see later why this is very useful). Most interest-
ing, though, is the third parameter of a slice - normally called the
step. Stepping in histograms is not supported, as that would be a
set of non-continuous but non-discrete bins; but you can pass two
different types of tags in. The first is a "rebinning" tag, which can
modify the axis -- bh.rebin(2) would double the size of the
bins. The second is a reduction, of which bh.sum is provided;
this reduces the bins along an axes to a scalar and removes the
axes; builtins.sum will trigger this behavior as well. User
provided functions will eventually work here, as well. Endpoints
on these special operations are important; leaving off the endpoints
will include the flow bins, including the endpoints will remove the
flow bins. So hist[::sum] will sum over the entire histogram,
including the flow bins, and hist[0:len:sum] will sum over
the contents of the histogram, not including the flow bin. Note that
Python’s len is a perfectly valid in this system - start and stop tags
are simply callables that accept an axis and return an index from
-1 (underflow bin) to len(axis)+1 (overflow bin), and axes
support len().

Setting is also supported, and comes with one more nice
feature. When you set a histogram with an array and one or more
endpoints are empty and include a flow bin, you have two options;
you can either match the inner size, which will leave the flow
bin(s) alone, or you can match the total size, which will fill the
flow bins too. For example, in the following snippet the array can
be either size 10 or size 12:
hist = bh.Histogram(bh.axis.Regular(10, 0, 1))
hist[:] = np.arange(10) # Fills regular bins
hist[:] = np.arange(12) # Fills flow bins too

You can force the flow bins to be explicitly excluded if you want
to by adding endpoints to the slice:
hist[0:len] = np.arange(10)

Finally, for advanced indexing, dictionaries are supported, where
the key is the axis number. This allows easy access into a
large number of axes, or simple programmatic access. With
dictionary-based indexing, Ellipsis are not required. There is also
a .project(*axes) method, which allows you to sum over all
axes except the ones listed, which is the inverse to listing ::sum
operations on the axes you want to remove.

Performance when Filling

A histogram can be viewed as a lossy data compression tool;
you lose the exact details of each data point, but you have a
have a representation that does not depend on the number of data
points and has several very useful properties for computation. One
common use beyond plotting is distribution fitting; you can fit an
arbitrarily large number of data points to a distribution as long as
you choose a binning dense enough to capture the details of your

Setup Single threaded X Multithreaded X

NumPy 1D 74.5 ± 2.4 ms 1
BH 1D 41.6 ± 0.7 ms 1.8 13.3 ± 0.2 ms 5.5
BHNP 1D 43.1 ± 0.8 ms 1.7 13.8 ± 0.2 ms 5.4
NumPy 2D 874 ± 22 ms 1
BH 2D 77.6 ± 0.6 ms 11 28.7 ± 0.7 ms 30
BHNP 2D 85 ± 3 ms 10 29.6 ± 0.5 ms 29

TABLE 1: Comparison of several filling methods and NumPy. BH
stands for boost-histogram object mode (as seen above). BHNP
stands for boost-histogram NumPy clone, which provides the same
interface as NumPy but powered by Boost.Histogram calculations.
Multithreaded was obtained by passing threads=8 while filling.
The X column is a comparison against NumPy. Measurements done
on an 8 core 16 MBP, 2.4 GHz, Regular binning, 10M values, 32-bit
floats.

distribution function. The performance of the fit is based on the
number of bins, rather than the number of measurements made.
Many distribution fitting packages available outside of HEP, such
as lmfit [LMFIT], are designed to work with binned data, and
binned fits are common in HEP as well.

Filling performance was a key design goal for boost-
histogram. In Table 1 you can see a comparison of filling methods
with NumPy. The first comparison, a 1D histogram, shows a
nearly 2x speedup compared to NumPy on a single core. For a
1D Regular axes, NumPy has a custom fill routine that takes
advantage of the regular binning to avoid an edge lookup. If you
use multiple cores, you can get an extra 2x-4x speedup. Note
that histogramming is not trivial to parallelize. Internally, boost-
histogram is just using simple Python threading and relying on
releasing the GIL while it fills multiple histograms; the histograms
are then added into your current histogram. The overhead of doing
the copy must be small compared to the fill being done.

If we move down the table to the 2D case, you will see Boost-
histogram pull away from NumPy’s 2D regular bin edge lookup
with an over 10x speedup. This can be further improved to about
30x using threads. In both cases, boost-histogram is not actually
providing specialized code for the 1D or 2D cases; it is the same
variadic vector that it would use for any number and any mixture
of axes. So you can expect excellent performance that scales well
with the complexity of your problem.

The rows labeled "BHNP" deserve special mention. A spe-
cial module is provided, bh.numpy, that contains functions that
exactly mimic the functions in NumPy. They even use a spe-
cial, internal axes type that mimics NumPy’s special handling
of the final upper edge, including it in the final bin. You can
use it as a drop-in replacement for the histogram functions in
NumPy, and take advantage of the performance boost avail-
able. You can also add the threads= keyword. You can pass
histogram=bh.Histogram to return a Histogram object, and
you can select the storage with storage=, as well. Combined
with the ability to convert Histograms via .to_numpy(), this
should enable smooth transitions between boost-histogram and
NumPy for Histogram filling.

One further performance benefit comes from the flexibility
of combining axes. In a traditional, NumPy based analysis, you
may have a collection of related histograms with different cuts or
criteria for filling. We have already seen that it is possible to use
axis and then access the portion you want later with indexing; but

68 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

if you have categories or boolean selectors, you can still combine
multiple histograms into one. Then you no longer loop over the
input multiple times, but just once, filling the histogram, and then
make your selections later. Here is an example:
value_ax = bh.axis.Regular(100, -5, 5)
valid_ax = bh.axis.Integer(0, 2,

underflow=False,
overflow=False)

label_ax = bh.axis.StrCategory([], growth=True)

hist = bh.Histogram(value_ax, valid_ax, label_ax)

hist.fill([-2, 2, 4, 3],
[True, False, True, True],
["a", "b", "a", "b"])

all_valid = hist[:, bh.loc(True), ::sum]
a_only = hist[..., bh.loc("a")]

Above, we create three axes. The second axis is a boolean axes,
which hold a valid/invalid bool flag. The third axis holds some
sort of string-based category, which could label datasets, for
example. We then fill this in one shot. Then, we can select the
histograms that we might have originally filled separately, like the
all_valid histogram, which is a 1D histogram that contains all
labels and all events where valid=True. In the second selection,
a_only, a 2D histogram is returned that consists of all the events
labeled with "a".

This way of thinking can radically change how you design for
a problem. Instead of running a series of histograms over a piece
of data every time you want a new selection, you can build a large
histogram that contains all the information you want, prebinned
and ready to select. This combination of multiple histograms and
later selecting or summing along axes is a close parallel to the way
Pandas combines multiple NumPy arrays in a single DataFrame
using columns, allowing you to group and select from the full set.

Distributing

Building a Python library designed to work absolutely anywhere
on a C++14 code base provided several challenges. Binding for
boost-histogram is accomplished with PyBind11 [PyBind], and all
Boost dependencies are included via git submodules and header-
only, so a compatible compiler is the only requirement for building
if a binary is not available. Serialization, which optionally depends
on the non-header only Boost.Serialization, was redesigned to
work on top of Python tuple picking in PyBind11 reusing the same
interface internally in Boost.Histogram (one of the many benefits
of a close collaboration with the original author).

The first phase of wheel building was a custom set of shareable
YAML template files for Azure DevOps. This tool, azure-wheel-
helpers6, became the basis for building several other projects in
Scikit-HEP, including the iMinuit fitter7 and the new Awkward
1.0 [Awkward]. Building a custom wheel production from scratch
is somewhat involved; and since boost-histogram is expected to
support Python 2.7 until after the first LTS release, it had to
include Python 2.7 builds, which make the process even more
convoluted. To get C++14 support in manylinux1, a custom docker
repository (skhep/manylinuxgcc8) was developed with GCC
9. The azure-wheel-helpers repository is a good place to look for
anyone wishing to learn about wheel building, but recently boost-
histogram moved to a better solution.

6. https://github.com/scikit-hep/azure-wheel-helpers
7. https://github.com/scikit-hep/iminuit
8. https://github.com/scikit-hep/manylinuxgcc

As the cibuildwheel [CIBW] project matured, boost-histogram
became the first Scikit-HEP azure-wheel-helpers project to mi-
grate over. Several of the special cases that were originally
supported in boost-histogram are now supported by cibuildwheel,
and it allows a custom docker image, so the modified manylinux1
image is available as well. This has freed us from lock-in to a
particular CI provider; boost-histogram now uses GitHub Actions
for everything except ARM and Power PC builds, which are done
on Travis CI. This greatly simplified the release process. The
scikit-hep.org developer pages now have extensive tutorials for
new developers, including setting up wheels; much of that work
was inspired by boost-histogram.

An extremely important resource for HEP is Conda; many of
our projects (such as CERN’s ROOT toolkit) cannot reasonably
(at least yet) be distributed by pip. Scikit-HEP has a large number
of packages in conda-forge; and boost-histogram is also available
there, including ARM and PowerPC builds. Only Python 2.7 on
Windows is excluded due to conda-forge policies on using extra
SDKs with Python.

Conclusion and Plans

The future for histogramming in Python is bright. At least
three more projects are being developed on top or using boost-
histogram. Hist9 is a histogram front-end for analysts, much like
Pandas is to NumPy, it is intended to make plotting, statistics,
file IO, and more simple and easy; a Google Summer of Code
student is working on that. One feature of note is named axes;
you can assign names to axes and then fill and index by name.
Conversions between histogram libraries, such as the HEP-specific
ROOT toolkit and file format are being developed in Aghast10.
The mplhep11 library is making common plot styles and types for
HEP easy to make, including plots with histograms. The scikit-
hep-tutorials12 project is beginning to show how the different
pieces of Scikit-HEP packages work together, and one of the first
tutorials shows boost-histogram and Aghast. And a new library,
histoprint13, is being reviewed for including in Scikit-HEP to
print up to five histograms at a time on the command line, either
from ROOT or boost-histogram.

An example of mplhep and boost-histogram interaction is
shown in Figure 5:

import mplhelp
mplhep.histplot(hist)

We hope that more libraries will be interested in building on top
of boost-histogram. It was designed to be a powerful back-end
for any front-end, with Hist planned as the reference front-end
implementation. The high performance, excellent flexibility, and
universal availability make an ideal choice for any toolkit.

In conclusion, boost-histogram provides a powerful abstraction
for histograms as a collection of axes with an accumulator-backed
storage. Filling and manipulating histograms is simple and natural,
while being highly performant. In the future, Scikit-HEP is rapidly
building on this foundation and we expect other libraries may want
to build on this as well. At the same time, Boost.Histogram in
C++ is continuously improved and expanded with new features,

9. https://github.com/scikit-hep/hist
10. https://github.com/scikit-hep/aghast
11. https://github.com/scikit-hep/mplhep
12. https://github.com/scikit-hep/scikit-hep-tutorials
13. https://github.com/scikit-hep/histoprint

BOOST-HISTOGRAM: HIGH-PERFORMANCE HISTOGRAMS AS OBJECTS 69

4 2 0 2 4
0

10000

20000

30000

40000

Fig. 5: An example of a 1D plot with mplhep. It is not completely
trivial to get a proper "skyline" histogram plot from Matplotlib with
prebinned data, while here it is simple.

from which boost-histogram benefits nearly automatically. The
shared code-base with C++ allows Python to profit, while boost-
histogram in C++ is profiting from ideas feed back from Python,
creating a win-win situation for all parties.

Acknowledgements

Support for this work was provided by the National Science
Foundation cooperative agreement OAC-1836650 (IRIS-HEP) and
OAC-1450377 (DIANA/HEP).

REFERENCES

[Pandas] Wes McKinney. Data Structures for Statistical Computing in
Python, Proceedings of the 9th Python in Science Conference,
51-56 (2010), DOI:10.25080/Majora-92bf1922-00a

[NumPy] Stéfan van der Walt, S. Chris Colbert and Gaël Varoquaux. The
NumPy Array: A Structure for Efficient Numerical Computation,
Computing in Science & Engineering, vol. 13, 22-30 (2011),
DOI:10.1109/MCSE.2011.37

[iMinuit] iminuit — A Python interface to Minuit, https://github.com/scikit-
hep/iminuit

[Matplotlib] J. D. Hunter. Matplotlib: A 2D graphics environment, Com-
puting in Science & Engineering, vol. 9, no. 3, 90-95 (2007),
DOI:10.1109/MCSE.2007.55

[ROOT] Rene Brun and Fons Rademakers ROOT — An Object Oriented
Data Analysis Framework Nucl. Inst. & Meth. A, vol. 386, no.
1, 81-86 (1997), DOI:10.1016/S0168-9002(97)00048-X

[Boost] The Boost Software Libraries, https://www.boost.org
[SciPy] Pauli Virtanen et al. SciPy 1.0: Fundamental Algorithms for

Scientific Computing in Python, Nature Methods, in press.
DOI:10.1038/s41592-019-0686-2

[IRIS-HEP] Institute for Research and Innovation in Software for High
Energy Physics, https://iris-hep.org

[SkHEP] Eduardo Rodrigues. The Scikit-HEP Project, EPJ Web Conf. 214
06005 (2019), DOI:10.1051/epjconf/201921406005

[Neu74] A. Neumaier. Rundungsfehleranalyse einiger Verfahren zur Sum-
mation endlicher Summen, Zeitschrift für Angewandte Mathe-
matik und Mechanik (1974), DOI:10.1002/zamm.19740540106

[Numba] Siu Kwan Lam, Antoine Pitrou, Stanley Seibert. Numba: a
LLVM-based Python JIT compiler, LLVM ’15: Proceedings of
the Second Workshop on the LLVM Compiler Infrastructure in
HPC, 7, 1-6 (2015), DOI:10.1145/2833157.2833162

[LMFIT] Matthew Newville et al. LMFIT: Non-Linear Least-Square
Minimization and Curve-Fitting for Python, Zenodo (2020),
DOI:10.5281/zenodo.3814709

[PyBind] Wenzel Jakob, Jason Rhinelander, Dean Moldovan. pybind11 --
Seamless operability between C++11 and Python, https://github.
com/pybind/pybind11

[Awkward] Jim Pivarski, Peter Elmer, David Lange. Awkward Arrays in
Python, C++, and Numba Preprint arXiv:2001.06307

[CIBW] Joe Rickerby et al. cibuildwheel, https://github.com/joerick/
cibuildwheel

70 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Learning from evolving data streams

Jacob Montiel‡∗

https://youtu.be/sw85SCv847Y

F

Abstract—Ubiquitous data poses challenges on current machine learning sys-
tems to store, handle and analyze data at scale. Traditionally, this task is tackled
by dividing the data into (large) batches. Models are trained on a data batch and
then used to obtain predictions. As new data becomes available, new models
are created which may contain previous data or not. This training-testing cycle
is repeated continuously. Stream learning is an active field where the goal is
to learn from infinite data streams. This gives rise to additional challenges to
those found in the traditional batch setting: First, data is not stored (it is infinite),
thus models are exposed only once to single samples of the data, and once
processed those samples are not seen again. Models shall be ready to provide
predictions at any time. Compute resources such as memory and time are
limited, consequently, they shall be carefully managed. The data can drift over
time and models shall be able to adapt accordingly. This is a key difference with
respect to batch learning, where data is assumed static and models will fail in
the presence of change. Model degradation is a side-effect of batch learning
in many real-world applications requiring additional efforts to address it. This
papers provides a brief overview of the core concepts of machine learning
for data streams and describes scikit-multiflow, an open-source Python library
specifically created for machine learning on data streams. scikit-multiflow is built
to serve two main purposes: easy to design and run experiments, easy to extend
and modify existing methods.

Index Terms—machine learning, data streams, concept drift, scikit, open-
source

Introduction

The minimum pipeline in machine learning is composed of: (1)
data collection and processing, (2) model training, and (3) model
deployment. Conventionally, data is collected and processed in
batches. Although this approach is state-of-the-art in multiple ap-
plications, it is not suitable in the context of evolving data streams.
The batch learning approach assumes that data is sufficiently large
and accessible. This is not the case in streaming data where data
is available one sample at a time, and storing it is impractical
given its (theoretically) infinite nature. In addition, non-stationary
environments require to run the pipeline multiple times in order
to minimize model degradation, in other words maintain optimal
performance. This is especially challenging in fast-changing envi-
ronments where efficient and effective adaptation is vital.

As a matter of fact, multiple real-world machine learning
applications exhibit the characteristics of evolving data streams,
in particular we can mention:

* Corresponding author: jacob.montiel@waikato.ac.nz
‡ Department of Computer Science, University of Waikato

Copyright © 2020 Jacob Montiel. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

• Financial markets generate huge volumes of data daily.
For instance, the New York Stock Exchange captures 1
terabyte of information each day1. Depending on the state
of such markets and multiple external factors data can
become obsolete quickly rendering it useless for creating
accurate models. Predictive models must be able to adapt
fast to be useful in this dynamic environment.

• Predictive maintenance. The contribution of IoT to the
digital universe is substantial. Data only from embedded
systems accounted for 2% of the world’s data in 2013,
and is expected to hit 10% by 20202. IoT sensors are
used to monitor the health of multiple systems, from
complex systems such as airplanes to simpler ones such
as household appliances. Predictive systems are required
to react fast to prevent disruptions from malfunctioning
elements.

• Online fraud detection. The speed of reaction of an au-
tomatic system is also an important factor in multiple
applications. As a case in point, VisaNet has a capacity (as
of June 2019) to handle more than 65,000 transactions per
second3. Fraud detection in online banking involves ad-
ditional challenges beside data collection and processing.
Fraud detection systems must adapt quickly to changes
such as consumer behavior (for example during holidays),
the stability of the financial markets, as well as the fact that
attackers constantly change their behavior to beat these
systems.

• Supply chain. Several sectors use automatic systems in
their supply chain to cope with the demand for products
efficiently. However, the COVID-19 pandemic brought to
attention the fragility of these systems to sudden changes,
e.g., in less than 1 week, products related to the pandemic
such as face masks filled the top 10 searched terms in
Amazon4. Many automatic systems failed to cope with
change resulting in the disruption in the supply chain.

• Climate change. Environmental science data is a
quintessential example of the five v’s of big data: volume,
velocity, variety, veracity, and value. In particular, NASA’s
Earth Science Data and Information System project, holds
24 petabytes of data in its archive and distributed 1.3 bil-
lion files in 20175. Understanding environmental data has
many implications in our daily lives, e.g., food production
can be severally impacted by climate change, disruption
of the water cycle has resulted in a rise of heavy rains
with the associated risk of floodings. IoT sensors are now
making environmental data available at a faster rate and

LEARNING FROM EVOLVING DATA STREAMS 71

Fig. 1: Batch learning systems are characterized by the investment
in resources like memory and training time as the volume of data
increases. Once a reasonable investment threshold is reached, data
becomes unusable turning into a missed opportunity. On the other
hand, efficient management of resources makes stream learning an
interesting alternative for big data applications.

machine learning systems must adapt to this new norm.

As shown in the previous examples, dynamic environments
pose an additional set of challenges to batch learning systems.
Model degradation is a predominant problem in multiple real-
world applications. As enough data has been generated and col-
lected, proactive users might decide to train their models to make
sure that they agree with the current data. This is complicated for
two reasons: First, batch models (in general) are not able to use
new data into account, so the machine learning pipeline must be
run multiples times as data is collected over time. Second, the
decision for such an action is not trivial and involves multiple
aspects. For example, should a new model be trained only on
new data? This depends on the amount of variation in the data.
Small variations might not be enough to justify retraining and
re-deploying a model. This is why a reactive approach is predom-
inantly employed in the industry. Model degradation is monitored
and corrective measures are enforced if a user-defined threshold is
exceeded (accuracy, type I, and type II errors, etc.). Fig. 1 depicts
another important aspect to consider, the tradeoff between the
investment in resources such as memory and time (and associated
cost) and the pay-off in predictive performance. In stream learning,
resource-wise efficiency is fundamental, predictive models not
only must be accurate but also must be able to handle theoretically
infinite data streams. Models must fit in memory no matter the
amount of data seen (constant memory). Additionally, training
time is expected to grow sub-linearly with respect to the volume
of data processed. New samples must be processed as soon as they
become available so it is vital to process them as fast as possible
to be ready for the next sample in the stream.

Machine learning for streaming data

Formally, the task of supervised learning from evolving data
streams is defined as follows. Consider a stream of data S =
{(~xt ,yt)}|t = 1, . . . ,T where T → ∞. Input ~xt is a feature vector
and yt the corresponding target where y is continuous in the case
of regression and discrete for classification. The objective is to

1. How Big Data Has Changed Finance, Trevir Nath, Investopedia, June
2019.

2. The Digital Universe of Opportunities: Rich Data and the Increasing
Value of the Internet of Things, IDC, April 2014.

3. Visa fact sheet, July 2019.
4. Our weird behavior during the pandemic is messing with AI models. Will

Douglas Heaven. MIT Technology Review. May 11, 2020.
5. Big data goes green, Neil Savage, Nature Index 2018 Earth and Environ-

mental Sciences, June 2018

predict the target ŷ for an unknown sample ~x. For illustrative
purposes, this paper focuses on the classification task.

In stream learning, models are trained incrementally, one
sample at a time, as new samples (~xt ,yt) become available. Since
streams are theoretically infinite, the training phase is non-stop and
predictive models are continuously updating their internal state in
agreement with incoming data. This is fundamentally different
from the batch learning approach, where models have access to all
(available) data during training. As previously mentioned, in the
stream learning paradigm, predictive models must be resource-
wise efficient. For this purpose, a set of requirements [BHKP11]
must be fulfilled by streaming methods:

• Process one sample at a time, and inspect it only once.
The assumption is that there is not enough time nor space
to store multiple samples, failing to meet this requirement
implies the risk of missing incoming data.

• Use a limited amount of memory. Data streams are
assumed infinite, thus storing data for further processing
is impractical.

• Work in a limited amount of time. In other words, avoid
bottlenecks generated by time-consuming tasks which in
the long run could make the algorithm fail.

• Be ready to predict at any point. Stream models are con-
tinuously updated and must be able to provide predictions
at any point in time.

Concept drift

A challenging element of dynamic environments is the chances
that the underlying relationship between features X and target(s)
~y can evolve (change) over time. This phenomenon is known as
Concept Drift. Real concept drift is defined as changes in the
posterior distribution of the data p(~y|X). Real concept drift means
that the unlabeled data distribution does not change, whereas data
evolution refers to the unconditional data distribution p(X). In
batch learning, the joint distribution of data p(X ,~y) is, in general,
assumed to remain stationary. In the context of evolving data
streams, concept drift is defined between two points in time to, t1
as

pt0(X ,~y) 6= pt1(X ,~y)

Concept drift is known to harm learning [GZB+14]. The following
patterns, shown in Fig. 2, are usually considered:

• Abrupt. When a new concept is immediately introduced.
The transition between concepts is minimal. In this case,
adaptation time is vital since the old concept becomes is
no longer valid.

• Incremental. It can be interpreted as the transition from
an old concept into a new concept where intermediate
concepts appear during the transition.

• Gradual. When old and new concepts concur within the
transition period. It can be challenging since both concepts
are somewhat valid during the transition.

• Recurring. If an old concept is seen again as the stream
progresses. For example, when the data corresponds to a
periodic phenomenon such as the circadian rhythm.

• Outliers. Not to be confused with true drift. A drift
detection method must be robust to noise, in other words,
minimize the number of false positives in the presence of
outliers or noise.

72 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Fig. 2: Drift patterns depicted as the change of mean data values over time. Note that an outlier is not a change but noise in the data. This
figure is based on [GZB+14].

Although the continuous learning nature of stream methods
provides some robustness to concept drift, specialized methods
have been proposed to detect drift. Multiple methods have been
proposed in the literature, [GZB+14] provides a thorough survey
of this topic. In general, the goal of drift detection methods is to
accurately detect changes in the data distribution while showing
robustness to noise and being resources-wise efficient. Drift-aware
methods use specialized detection mechanisms to react faster and
efficiently to drift. For example, the Hoeffding Tree algorithm
[DH00], a kind of decision tree for data streams, does not handle
concept drift explicitly, whereas the Hoeffding Adaptive Tree
[BG09] uses ADaptive WINdowing (ADWIN) [BG07] to detect
drifts. If a drift is detected at a given branch, an alternate branch
is created and eventually replaces the original branch if it shows
better performance on new data.

ADWIN, a popular drift detection method with mathematical
guarantees, keeps a variable-length window of recent items; guar-
anteeing that there has been no change in the data distribution
within the window. Internally, two sub-windows (W0,W1) are used
to determine if a change has happened. With each new item
observed, the average values of items in W0 and W1 are compared
to confirm that they correspond to the same distribution. If the
distribution equality no longer holds, then an alarm signal is raised
indicating that drift has occurred. Upon detecting a drift, W0 is
replaced by W1 and a new W1 is initialized.

Performance evaluation

Predictive performance P of a given model h is usually measured
using some loss function ` that evaluates the difference between
expected (true) class labels y and the predicted class labels ŷ.

P(h) = `(y, ŷ)

A popular and straightforward loss function for classification is the
zero-one loss function which corresponds to the notion of whether
the model made a mistake or not when predicting.

`(y, ŷ) =

{
0, y = ŷ
1, y 6= ŷ

Due to the incremental nature of stream leaning methods, special
considerations are used to evaluate their performance. Two preva-
lent methods in the literature are holdout [Koh95] and prequential
[Daw84] evaluation. Holdout evaluation is a popular method in
both batch and stream learning where testing is performed on an
independent set of samples. On the other hand, prequential eval-
uation, is specific to the stream setting. In prequential evaluation,
tests are performed on new data samples before they are used to
train (update) the model. The benefit of this approach is that all
samples are used for both test and training.

This is just a brief overview of machine learning for streaming
data. However, it is important to mention that the field of machine
learning for streaming data covers other tasks such as regression,
clustering, anomaly detection, to name a few. We direct the reader

to [GRB+19] for an extensive and deeper description of this field,
the state-of-the-art, and its active challenges.

The scikit-multiflow package

scikit-mutliflow [MRBA18] is a machine learning library for
multi-output/multi-label and stream data written in Python. Devel-
oped as free and open-source software and distributed under the
BSD 3-Clause License. Following the SciKits philosophy, scikit-
multiflow extends the existing set of tools for scientific purposes.
It features a collection of state-of-the-art methods for classifica-
tion, regression, concept drift detection and anomaly detection,
alongside a set of data generators and evaluators. scikit-multiflow
is designed to seamlessly interact with NumPy [vCV11] and SciPy
[VGO+20]. Additionally, it contributes to the democratization
of stream learning by leveraging the popularity of the Python
language. scikit-multiflow is mainly written in Python, and some
core elements are written in Cython [BBC+11] for performance.

scikit-multiflow is intended for users with different levels
of expertise. Its conception and development follow two main
objectives:

1) Easy to design and run experiments. This follows the
need for a platform that allows fast prototyping and
experimentation. Complex experiments can be easily per-
formed using evaluation classes. Different data streams
and models can be analyzed and benchmarked under
multiple conditions, and the amount of code required
from the user is kept to the minimum.

2) Easy to extend existing methods. Advanced users can cre-
ate new capabilities by extending or modifying existing
methods. This way users can focus on the details of their
work rather than on the overhead when working from
scratch

scikit-multiflow is not intended as a stand-alone solution for
machine learning. It integrates with other Python libraries such as
Matplotlib [Hun07] for plotting, scikit-learn [PVG+11] for incre-
mental learning6 compatible with the streaming setting, Pandas
[pdt20] for data manipulation, Numpy and SciPy for numerical
and scientific computations. However, it is important to note that
scikit-multiflow does not extend scikit-learn, whose main focus
in on batch learning. A key difference is that estimators in scikit-
multiflow are incremental by design and training is performed by
calling multiple times the partial_fit() method. The ma-
jority of estimators implemented in scikit-multiflow are instance-
incremental, meaning single instances are used to update their
internal state. A small number of estimators are batch-incremental,
where mini-batches of data are used. On the other hand, calling
fit() multiple times on a scikit-learn estimator will result in it
overwriting its internal state on each call.

As of version 0.5.0, the following sub-packages are available:

6. Only a small number of methods in scikit-learn are incremental.

LEARNING FROM EVOLVING DATA STREAMS 73

• anomaly_detection: anomaly detection methods.
• data: data stream methods including methods for batch-

to-stream conversion and generators.
• drift_detection: methods for concept drift detec-

tion.
• evaluation: evaluation methods for stream learning.
• lazy: methods in which generalization of the training

data is delayed until a query is received, e.g., neighbors-
based methods such as kNN.

• meta: meta learning (also known as ensemble) methods.
• neural_networks: methods based on neural networks.
• prototype: prototype-based learning methods.
• rules: rule-based learning methods.
• transform: perform data transformations.
• trees: tree-based methods,

In a nutshell

In this section, we provide a quick overview of different elements
of scikit-multiflow and show how to easily define and run exper-
iments in scikit-multiflow. Specifically, we provide examples of
classification and drift detection.

Architecture

Here we describe the basic components of scikit-multiflow. The
BaseSKMObject class is the base class. All estimators in
scikit-multiflow are created by extending the base class and the
corresponding task-specific mixin(s): ClassifierMixin,
RegressorMixin, MetaEstimatorMixin and
MultiOutputMixin.

The ClassifierMixin defines the following methods:

• partial_fit -- Incrementally train the estimator with
the provided labeled data.

• fit -- Interface used for passing training data as batches.
Internally calls partial_fit.

• predict -- Predict the class-value for the passed unla-
beled data.

• predict_proba -- Calculates the probability of a sam-
ple pertaining to a given class.

During a learning task, three main tasks are performed: data is
provided by the stream, the estimator is trained on incoming data,
the estimator performance is evaluated. In scikit-multiflow, data is
represented by the Stream class, where the next_sample()
method is used to request new data. The StreamEvaluator
class provides an easy way to set-up experiments. Implementations
for holdout and prequential evaluation methods are available. A
stream and one or more estimators can be passed to an evaluator.

Classification task

In this example, we will use the SEA generator. A stream gen-
erator does not store any data but generates it on demand. The
SEAGenerator class creates data corresponding to a binary
classification problem. The data contains 3 numerical features,
from which only 2 are relevant for learning7. We will use the data
from the generator to train a Naive Bayes classifier. For compact-
ness, the following examples do not include import statements,
and external libraries are referenced by standard aliases.

As previously mentioned, a popular method to monitor the
performance of stream learning methods is the prequential eval-
uation. When a new data sample (X, y) arrives: 1. Predictions

are obtained for the new data sample (X) to evaluate how well the
model performs. 2. Then the new data sample (X, y) is used
to train the model so it updates its internal state. The prequential
evaluation can be easily implemented as a loop:

stream = SEAGenerator(random_state=1)
classifier = NaiveBayes()

n_samples = 0
correct_cnt = 0
max_samples = 2000

Prequential evaluation loop
while n_samples < max_samples and \
stream.has_more_samples():

X, y = stream.next_sample()
Predict class for new data
y_pred = classifier.predict(X)
if y[0] == y_pred[0]:

correct_cnt += 1
Partially fit (train) model with new data
classifier.partial_fit(X, y)
n_samples += 1

print('{} samples analyzed.'.format(n_samples))
print('Accuracy: {}'.format(correct_cnt / n_samples))

> 2000 samples analyzed.
> NaiveBayes classifier accuracy: 0.9395

The previous example shows that the Naive Bayes classifier
achieves an accuracy of 93.95% after processing all the samples.
However, learning from data streams is a continuous task and a
best-practice is to monitor the performance of the model at differ-
ent points of the stream. In this example, we use an instance of
the Stream class as it provides the next_sample() method to
request data and the returned data is a tuple of numpy.ndarray.
Thus, the above loop can be easily modified to read from other data
structures such as numpy.ndarray or pandas.DataFrame.
For real-time applications where data is actually represented as a
stream (e.g. Google’s protocol buffers), the Stream class can be
extended to wrap the necessary code to interact with the stream.

The prequential evaluation method is implemented in the
EvaluatePrequential class. This class provides extra func-
tionalities including:

• Easy setup of different evaluation configurations
• Selection of different performance metrics
• Visualization of performance over time
• Ability to benchmark multiple models concurrently
• Saving evaluation results to a csv file

We can run the same experiment on the SEA data.
This time we compare two classifiers: NaiveBayes and
SGDClassifier (linear SVM with SGD training). We use the
SGDClassifier in order to demonstrate the compatibility with
incremental methods from scikit-learn.

stream = SEAGenerator(random_state=1)
nb = NaiveBayes()
svm = SGDClassifier()
Setup the evaluation
metrics = ['accuracy', 'kappa',

'running_time', 'model_size']
eval = EvaluatePrequential(show_plot=True,

max_samples=20000,
metrics=metrics)

Run the evaluation

7. Some data generators and estimators use random numbers generators.
When set, the random_state parameter enforces reproducible results.

74 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Fig. 3: Performance comparison between NaiveBayes and SGDClassifier using the EvaluatePrequential class.

eval.evaluate(stream=stream, model=[nb, svm],
model_names=['NB', 'SVM']);

We set two metrics to measure predictive performance: accuracy
and kappa statistics [Coh60] (for benchmarking classification
accuracy under class imbalance, compares the models accuracy
against that of a random classifier). During the evaluation, a
dynamic plot displays the performance of both estimators over
the stream, Fig. 3. Once the evaluation is completed, a summary
is displayed in the terminal. For this example and considering the
evaluation configuration:

Processed samples: 20000
Mean performance:
NB - Accuracy : 0.9430
NB - Kappa : 0.8621
NB - Training time (s) : 0.56
NB - Testing time (s) : 1.31
NB - Total time (s) : 1.87
NB - Size (kB) : 6.8076
SVM - Accuracy : 0.9560
SVM - Kappa : 0.8984
SVM - Training time (s) : 4.70
SVM - Testing time (s) : 1.73
SVM - Total time (s) : 6.43
SVM - Size (kB) : 3.4531

In Fig. 3, we observe the evolution of both estimators as they are
trained on data from the stream. Although NaiveBayes
has better performance at the beginning of the stream,
SGDClassifier eventually outperforms it. In the plot
we show performance at multiple points, measured by the given
metric (accuracy, kappa, etc.) in two ways: Mean corresponds to
the average performance on all data seen previously, resulting
in a smooth line. Current indicates the performance over a
sliding window with the latest data from the stream, The

size of the sliding window can be defined by the user and is
useful to analyze the ’current’ performance of an estimator. In
this experiment, we also measure resources in terms of time
(training + testing) and memory. NaiveBayes``is faster
and uses slightly more memory. On the other
hand, ``SGDClassifier is slower and has a smaller
memory footprint.

Concept drift detection

For this example, we will generate a synthetic data stream. The
first 1000 samples of the stream contain a sequence from a normal
distribution with µa = 0.8, σa = 0.05, followed by 1000 samples
from a normal distribution with µb = 0.4, σb = 0.2, and the last
1000 samples from a normal distribution with µc = 0.6, σc = 0.1.
The distribution of data in the described synthetic stream is shown
in Fig. 4.

Fig. 4: Synthetic data simulating a drift. The stream is composed by
two distributions of 500 samples.

random_state = np.random.RandomState(12345)
dist_a = random_state.normal(0.8, 0.05, 1000)

LEARNING FROM EVOLVING DATA STREAMS 75

Fig. 5: Benchmarking the Hoeffding Tree vs the Hoeffding Adaptive Tree on presence of drift.

dist_b = random_state.normal(0.4, 0.02, 1000)
dist_c = random_state.normal(0.6, 0.1, 1000)
stream = np.concatenate((dist_a, dist_b, dist_c))

We will use the ADaptive WINdowing (ADWIN) drift detection
method. The goal is to detect that drift has occurred after samples
1000 and 2000 in the synthetic data stream.

drift_detector = ADWIN()

for i, val in enumerate(stream_int):
drift_detector.add_element(val)
if drift_detector.detected_change():

print('Change detected at index {}'.format(i))

drift_detector.reset()

> Change detected at index 1055
> Change detected at index 2079

Impact of drift on learning

Concept drift can have a significant impact on predictive perfor-
mance if not handled properly. Most batch models will fail in the
presence of drift as they are essentially trained on different data.
On the other hand, stream learning methods continuously update
themselves and can adapt to new concepts. Furthermore, drift-
aware methods use change detection methods to trigger mitigation
mechanisms if a change in performance is detected.

In this example, we compare two popular stream models: the
HoeffdingTreeClassifier, and its drift-aware version, the
HoeffdingAdaptiveTreeClassifier.

For this example, we will load the data from a csv file using
the FileStream class. The data corresponds to the output of the
AGRAWALGenerator with 3 gradual drifts at the 5k, 10k, and

15k marks. A gradual drift means that the old concept is gradually
replaced by a new one, in other words, there exists a transition
period in which the two concepts are present.

stream = FileStream("agr_a_20k.csv")
ht = HoeffdingTreeClassifier(),
hat = HoeffdingAdaptiveTreeClassifier()
Setup the evaluation
metrics = ['accuracy', 'kappa', 'model_size']
eval = EvaluatePrequential(show_plot=True,

metrics=metrics,
n_wait=100)

Run the evaluation
eval.evaluate(stream=stream, model=[hy, hat],

model_names=['HT', 'HAT']);

The summary of the evaluation is:

Processed samples: 20000
Mean performance:
HT - Accuracy : 0.7279
HT - Kappa : 0.4530
HT - Size (kB) : 175.8711
HAT - Accuracy : 0.8070
HAT - Kappa : 0.6122
HAT - Size (kB) : 122.0986

The result of this experiment is shown in Fig. 5. Dur-
ing the first 5K samples, we see that both methods be-
have in a very similar way, which is expected as the
HoeffdingAdaptiveTreeClassifier essentially works
as the HoeffdingTreeClassifier when there is no drift.
At the 5K mark, the first drift is observable by the sudden
drop in the performance of both estimators. However, notice that
the HoeffdingAdaptiveTreeClassifier has the edge
and recovers faster. The same behavior is observed after the
drift in the 15K mark. Interestingly, after the drift at 10K,

76 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

the HoeffdingTreeClassifier is better for a small pe-
riod but is quickly overtaken. In this experiment, we can also
see that the current performance evaluation provides richer in-
sights on the performance of each estimator. It is worth not-
ing the difference in memory between these estimators. The
HoeffdingAdaptiveTreeClassifier achieves better per-
formance while requiring less space in memory. This indicates that
the branch replacement mechanism triggered by ADWIN has been
applied, resulting in a less complex tree structure representing the
data.

Real-time applications

We recognize that previous examples use static synthetic data for
illustrative purposes. However, the goal is to work on real-world
streaming applications where data is continuously generated and
must be processed in real-time. In this context, scikit-multiflow
is designed to interact with specialized streaming tools, providing
flexibility to the users to deploy streaming models and tools in
different environments. For instance, an IoT architecture on an
edge/fog/cloud computing environment is proposed in [CW19].
This architecture is designed to capture, manage, process, ana-
lyze, and visualize IoT data streams. In this architecture, scikit-
multiflow is the stream machine learning library inside the pro-
cessing and analytics block.

In the following example, we show how we can leverage
existing Python tools to interact with dynamic data. We use
Streamz8 to get data from Apache Kafka. The data from the
stream is used to incrementally train, one sample at a time,
a HoeffdingTreeClassifier model. The output on each
iteration is a boolean value indicating if the model correctly
classified the last sample from the stream.

from streamz import Stream
from skmultiflow.trees import HoeffdingTreeClassifier

@Stream.register_api()
class extended(Stream):

def __init__(self, upstream, model, **kwargs):
self.model = model
super().__init__(upstream, **kwargs)

def update(self, x, who=None):
Tuple x represents one data sample
x[0] is the features array and
x[1] is the target label
y_pred = self.model.predict(x[0])
incrementally learn the current sample
self.model.partial_fit(x[0], x[1])
output indicating if the model
correctly classified the sample
self._emit(y_pred == x[1])

s_in = Stream.from_kafka(**config)
ht = HoeffdingTreeClassifier()

s_learn = s.map(read).extended(model=ht)
out = s_learn.sink_to_list()

s_in.start()

Alternatively, we could define two nodes, one for training and one
for predicting. In this case, we just need to make sure that we
maintain the test-then-train order.

8. https://github.com/python-streamz/streamz

Get scikit-multiflow

scikit-multiflow work with Python 3.5+ and can be used on
Linux, macOS, and Windows. The source code is publicly
available in GitHub. The stable release version is available via
conda-forge (recommended) and pip:

$ conda install -c conda-forge scikit-multiflow

$ pip install -U scikit-multiflow

The latest development version is available in the project’s repos-
itory: https://github.com/scikit-multiflow/scikit-multiflow. Stable
and development versions are also available as docker images.

Conclusions and final remarks

In this paper, we provide a brief overview of machine learning for
data streams. Stream learning is an alternative to standard batch
learning in dynamic environments where data is continuously gen-
erated (potentially infinite) and data is non-stationary but evolves
(concept drift). We present examples of applications and describe
the challenges and requirements of machine learning techniques
to be used on streaming data effectively and efficiently.

We describe scikit-multiflow, an open-source machine learning
library for data streams in Python. The design of scikit-multiflow
is based on two principles: to be easy to design and run experi-
ments, and to be easy to extend and modify existing methods. We
provide a quick overview of the core elements of scikit-multiflow
and show how it can be used for the tasks of classification and
drift detection.

Acknowledgments

The author is particularly grateful to Prof. Albert Bifet from the
Department of Computer Science at the University of Waikato for
his continuous support. We also thank Saulo Martiello Mastelini
from the Institute of Mathematics and Computer Sciences at the
University of São Paulo, for his active collaboration on scikit-
multiflow and his valuable work as one of the maintainers of the
project. We thank interns who have helped in the development of
scikit-multiflow and the open-source community which motivates
and contributes in the continuous improvement of this project.
We gratefully acknowledge the reviewers from the SciPy 2020
conference for their constructive comments.

REFERENCES

[BBC+11] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn,
and K. Smith. Cython: The best of both worlds. Computing
in Science Engineering, 13(2):31 –39, 2011. doi:10.1109/
MCSE.2010.118.

[BG07] Albert Bifet and Ricard Gavalda. Learning from Time-Changing
Data with Adaptive Windowing. In Proceedings of the 2007 SIAM
International Conference on Data Mining, pages 443–448, 2007.
doi:10.1137/1.9781611972771.42.

[BG09] Albert Bifet and Ricard Gavalda. Adaptive Learning from Evolv-
ing Data Streams. In 8th International Symposium on Intelligent
Data Analysis, pages 249–260, 2009. doi:10.1007/978-3-
642-03915-7_22.

[BHKP11] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard
Pfahringer. Data stream mining a practical approach, 2011.

[Coh60] Jacob Cohen. A coefficient of agreement for nominal scales.
Educational and psychological measurement, 20(1):37–46, 1960.
doi:10.1177/001316446002000104.

[CW19] Hung Cao and Monica Wachowicz. Analytics everywhere for
streaming iot data. In 2019 Sixth International Conference on
Internet of Things: Systems, Management and Security (IOTSMS),
pages 18–25, 2019. doi:10.1109/IOTSMS48152.2019.
8939171.

LEARNING FROM EVOLVING DATA STREAMS 77

[Daw84] A Philip Dawid. Present position and potential developments:
Some personal views: Statistical theory: The prequential ap-
proach. Journal of the Royal Statistical Society. Series A (Gen-
eral), pages 278–292, 1984.

[DH00] Pedro Domingos and Geoff Hulten. Mining high-speed data
streams. In Proceedings of the Sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’00,
pages 71–80. ACM, 2000.

[GRB+19] Heitor Murilo Gomes, Jesse Read, Albert Bifet, Jean Paul Bard-
dal, and João Gama. Machine learning for streaming data: State
of the art, challenges, and opportunities. SIGKDD Explor. Newsl.,
21(2):6–22, 2019. doi:10.1145/3373464.3373470.

[GZB+14] João Gama, Indre Zliobaite, Albert Bifet, Mykola Pechenizkiy,
and Abdelhamid Bouchachia. A survey on concept drift adap-
tation. ACM Computing Surveys, 46(4):1–37, 2014. doi:
10.1145/2523813.

[Hun07] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing
in Science & Engineering, 9(3):90–95, 2007. doi:10.1109/
MCSE.2007.55.

[Koh95] Ron Kohavi. A study of cross-validation and bootstrap for
accuracy estimation and model selection. In Proceedings of the
Fourteenth International Joint Conference on Artificial Intelli-
gence, volume 14, pages 1137–1145, 1995.

[MRBA18] Jacob Montiel, Jesse Read, Albert Bifet, and Talel Abdessalem.
Scikit-Multiflow: A Multi-output Streaming Framework. Journal
of Machine Learning Research, 19(72):1–5, 2018. URL: http:
//jmlr.org/papers/v19/18-251.html.

[pdt20] The pandas development team. pandas-dev/pandas: Pandas,
February 2020. doi:10.5281/zenodo.3509134.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[vCV11] S. van der Walt, S. C. Colbert, and G. Varoquaux. The numpy
array: A structure for efficient numerical computation. Computing
in Science Engineering, 13(2):22–30, 2011. doi:10.1109/
MCSE.2011.37.

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haber-
land, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu
Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay
Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric
Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake
Vand erPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian
Henriksen, E. A. Quintero, Charles R Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and
SciPy 1. 0 Contributors. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17:261–272,
2020. doi:https://doi.org/10.1038/s41592-019-
0686-2.

78 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Awkward Array: JSON-like data, NumPy-like idioms

Jim Pivarski‡∗, Ianna Osborne‡, Pratyush Das¶, Anish Biswas§, Peter Elmer‡

https://youtu.be/WlnUF3LRBj4

F

Abstract—NumPy simplifies and accelerates mathematical calculations in
Python, but only for rectilinear arrays of numbers. Awkward Array provides a
similar interface for JSON-like data: slicing, masking, broadcasting, and per-
forming vectorized math on the attributes of objects, unequal-length nested lists
(i.e. ragged/jagged arrays), and heterogeneous data types.

Awkward Arrays are columnar data structures, like (and convertible to/from)
Apache Arrow, with a focus on manipulation, rather than serialization/transport.
These arrays can be passed between C++ and Python, and they can be used in
functions that are JIT-compiled by Numba.

Development of a GPU backend is in progress, which would allow data anal-
yses written in array-programming style to run on GPUs without modification.

Index Terms—NumPy, Numba, Pandas, C++, Apache Arrow, Columnar data,
AOS-to-SOA, Ragged array, Jagged array, JSON

Introduction

NumPy [np] is a powerful tool for data processing, at the center of
a large ecosystem of scientific software. Its built-in functions are
general enough for many scientific domains, particularly those that
analyze time series, images, or voxel grids. However, it is difficult
to apply NumPy to tasks that require data structures beyond N-
dimensional arrays of numbers.

More general data structures can be expressed as JSON and
processed in pure Python, but at the expense of performance and
often conciseness. NumPy is faster and more memory efficient
than pure Python because its routines are precompiled and its
arrays of numbers are packed in a regular way in contiguous mem-
ory. Some expressions are more concise in NumPy’s "vectorized"
notation, which describe actions to perform on whole arrays, rather
than scalar values.

In this paper, we describe Awkward Array [ak1], [ak2], a
generalization of NumPy’s core functions to the nested records,
variable-length lists, missing values, and heterogeneity of JSON-
like data. The internal representation of these data structures is
columnar, very similar to (and compatible with) Apache Arrow
[arrow]. But unlike Arrow, the focus of Awkward Array is to
provide a suite of data manipulation routines, just as NumPy’s
role is focused on transforming arrays, rather than standardizing a
serialization format.

* Corresponding author: pivarski@princeton.edu
‡ Princeton University
¶ Institute of Engineering and Management
§ Manipal Institute of Technology

Copyright © 2020 Jim Pivarski et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Our goal in developing Awkward Array is not to replace
NumPy, but to extend the set of problems to which it can be
applied. We use NumPy’s extension mechanisms to generalize its
interface in a way that returns identical output where the appli-
cability of the two libraries overlap (i.e. rectilinear arrays), and
the implementation of non-structure-changing, numerical math is
deferred to NumPy itself. Thus, all the universal functions (ufuncs)
in the SciPy project [scipy] and its ecosystem can already be
applied to Awkward structures because they inherit NumPy and
SciPy’s own implementations.

Origin and development

Awkward Array was intended as a way to enable particle physics
analyses to take advantage of scientific Python tools. Particle
physics problems are inherently structured, frequently needing
nested loops over variable-length lists. They also involve big data,
typically tens to hundreds of terabytes per analysis. Traditionally,
this required physicists to do data analysis in Fortran (with
custom libraries for data structures [hydra] before Fortran 90) and
C++, but many physicists are now moving to Python for end-
stage analysis [phypy]. Awkward Array provides the link between
scalable, interactive, NumPy-based tools and the nested, variable-
length data structures that physicists need.

Since its release in September 2018, Awkward Array has
become one of the most popular Python libraries for particle
physics, as shown in Figure 1. The Awkward 0.x branch was
written using NumPy only, which limited its development because
every operation must be vectorized for performance. We (the
developers) also made some mistakes in interface design and
learned from the physicists’ feedback.

Spurred by these shortcomings and the popularity of the
general concept, we redesigned the library as Awkward 1.x in
a half-year project starting in August 2019. The new library is
compiled as an extension module to allow us to write custom
precompiled loops, and its Python interface is improved: it is
now a strict generalization of NumPy, is compatible with Pandas
[pandas] (Awkward Arrays can be DataFrame columns), and is
implemented as a Numba [numba] extension (Awkward Arrays
can be used in Numba’s just-in-time compiled functions).

Although the Awkward 1.x branch is feature-complete, serial-
ization to and from a popular physics file format (ROOT [root],
which represents over an exabyte of physics data [root-EB]) is
not. Adoption among physicists is ongoing, but the usefulness of
JSON-like structures in data analysis is not domain-specific and
should be made known to the broader community.

AWKWARD ARRAY: JSON-LIKE DATA, NUMPY-LIKE IDIOMS 79

Sep 2015

Jan 2016

May 2016

Sep 2016

Jan 2017

May 2017

Sep 2017

Jan 2018

May 2018

Sep 2018

Jan 2019

May 2019

Sep 2019
10 2

10 1

100

101

102

103

104

105

p
ip

-i
n
st

a
lls

/d
a
y
,
6

0
-d

a
y
 m

o
v
in

g
 a

v
e
ra

g
e

pip-installs on MacOS and Windows (not batch jobs)

numpy

scipy

pandas

matplotlib

root-numpy

iminuit

rootpy

uproot awkward coffea

Fig. 1: Adoption of Awkward 0.x, measured by PyPI statistics,
compared to other popular particle physics packages (root-numpy,
iminuit, rootpy) and popular data science packages.

Demonstration using a GeoJSON dataset

To show how Awkward Arrays can be applied beyond particle
physics, this section presents a short exploratory analysis of
Chicago bike routes [bikes] in GeoJSON format. GeoJSON has
a complex structure with multiple levels of nested records and
variable-length arrays of numbers, as well as strings and missing
data. These structures could not be represented as a NumPy array
(without dtype=object, which are Python objects wrapped in
an array), but there are reasons to want to perform NumPy-like
math on the numerical longitude, latitude coordinates.

To begin, we load the publicly available GeoJSON file,
import urllib.request
import json

url = "https://raw.githubusercontent.com/Chicago/" \
"osd-bike-routes/master/data/Bikeroutes.geojson"

bikeroutes_json = urllib.request.urlopen(url).read()
bikeroutes_pyobj = json.loads(bikeroutes_json)

and convert it to an Awkward Array. The two main data types
are ak.Array (a sequence of items, which may contain records)
and ak.Record (a single object with named, typed fields, which
may contain arrays). Since the dataset is a single JSON object, we
pass it to the ak.Record constructor.
import awkward1 as ak
bikeroutes = ak.Record(bikeroutes_pyobj)

The record-oriented structure of the JSON object, in which fields
of the same object are serialized next to each other, has now been
transformed into a columnar structure, in which data from a single
field across all objects are contiguous in memory. This requires
more than one buffer in memory, as heterogeneous data must be
split into separate buffers by type.

The structure of this particular file (expressed as a Datashape,
obtained by calling ak.type(bikeroutes)) is
{"type": string,
"crs": {

"type": string,
"properties": {"name": string}},

"features": var * {
"type": string,
"properties": {

"STREET": string,
"TYPE": string,
"BIKEROUTE": string,
"F_STREET": string,

"T_STREET": option[string]},
"geometry": {

"type": string,
"coordinates":

var * var * var * float64}}}

We are interested in the longitude, latitude coordinates, which
are in the "coordinates" field of the "geometry" of the
"features", at the end of several levels of variable-length lists
(var). At the deepest level, longitude values are in coordinate 0
and latitude values are in coordinate 1.

We can access each of these, eliminating all other fields, with
a NumPy-like multidimensional slice. Strings in the slice select
fields of records and ellipsis (...) skips dimensions as it does in
NumPy.
longitude = bikeroutes["features", "geometry",

"coordinates", ..., 0]
latitude = bikeroutes["features", "geometry",

"coordinates", ..., 1]

The longitude and latitude arrays both have type 1061 *
var * var * float64; that is, 1061 routes with a variable
number of variable-length polylines.

At this point, we might want to compute the length of each
route, and we can use NumPy ufuncs to do that, despite the
irregular shape of the longitude and latitude arrays. First,
we subtract off the mean and convert degrees into a unit of distance
(82.7 and 111.1 are conversion factors at Chicago’s latitude).
km_east = (longitude - np.mean(longitude)) * 82.7
km_north = (latitude - np.mean(latitude)) * 111.1

Subtraction and multiplication defer to np.subtract and
np.multiply, respectively, and these are ufuncs, overrid-
den using NumPy’s __array_ufunc__ protocol [nep13]. The
np.mean function is not a ufunc, but it, too, can be overridden
using the __array_function__ protocol [nep18]. All ufuncs
and a handful of more generic functions can be applied to
Awkward Arrays.

To compute distances between points in an array a in NumPy,
we would use an expression like the following,
differences = a[1:] - a[:-1]

which views the same array without the first element (a[1:])
and without the last element (a[:-1]) to subtract "between the
fenceposts." We can do so in the nested lists with
differences = km_east[:, :, 1:] - km_east[:, :, :-1]

even though the first two dimensions have variable lengths.
They’re derived from the same array (km_east), so they have
the same lengths and every element in the first term can be paired
with an element in the second term.

Two-dimensional distances are the square root of the sum of
squares of these differences,
segment_length = np.sqrt(

(km_east[:, :, 1:] - km_east[:, :, :-1])**2 +
(km_north[:, :, 1:] - km_north[:, :, :-1])**2)

and we can sum up the lengths of each segment in each polyline
in each route by calling np.sum on the deepest axis.
polyline_length = np.sum(segment_length, axis=-1)
route_length = np.sum(polyline_length, axis=-1)

The same could be performed with the following pure Python
code, though the vectorized form is shorter, more exploratory, and
8× faster (Intel 2.6 GHz i7-9750H processor with 12 MB cache
on a single thread); see Figure 2.

80 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000

0.2

0.4

0.6

0.8

1.0

1.2

1.4

number of bike routes

ti
m

e
 t

o
 c

o
m

p
u

te
 (

se
co

n
d
s)

time to compute
versus size of problem

(lower is better)

Python fo
r lo

ops

Awkward Arrays

1.6

original
problem

0

Fig. 2: Scaling of Awkward Arrays and pure Python loops for the bike
routes calculation shown in the text.

route_length = []
for route in bikeroutes_pyobj["features"]:

polyline_length = []
for polyline in route["geometry"]["coordinates"]:

segment_length = []
last = None
for lng, lat in polyline:

km_east = lng * 82.7
km_north = lat * 111.1
if last is not None:

dx2 = (km_east - last[0])**2
dy2 = (km_north - last[1])**2
segment_length.append(

np.sqrt(dx2 + dy2))
last = (km_east, km_north)

polyline_length.append(sum(segment_length))
route_length.append(sum(polyline_length))

The performance advantage is due to Awkward Array’s precom-
piled loops, though this is mitigated by the creation of intermediate
arrays and many passes over the same data (once per user-
visible operation). When the single-pass Python code is just-in-
time compiled by Numba and evaluated over Awkward Arrays,
the runtime is 250× faster than pure Python (same architecture).

Scope: data types and common operations

Awkward Array supports the same suite of abstract data types and
features as "typed JSON" serialization formats—Arrow, Parquet,
Protobuf, Thrift, Avro, etc. Namely, there are

• primitive types: numbers and booleans,
• variable-length lists,
• regular-length lists as a distinct type (i.e. tensors),
• records/structs/objects (named, typed fields),
• fixed-width tuples (unnamed, typed fields),
• missing/nullable data,
• mixed, yet specified, types (i.e. union/sum types),
• virtual arrays (functions generate arrays on demand),
• partitioned arrays (for off-core and parallel analysis).

Like Arrow and Parquet, arrays with these features are laid out
as columns in memory (more on that below).

Like NumPy, the Awkward Array library consists of a primary
Python class, ak.Array, and a collection of generic operations.
Most of these operations change the structure of the data in the
array, since NumPy, SciPy, and others already provide numerical
math as ufuncs.

Awkward functions include

• basic and advanced slices (__getitem__) including
variable-length and missing data as advanced slices,

• masking, an alternative to slices that maintains length but
introduces missing values instead of dropping elements,

• broadcasting of universal functions into structures,
• reducers of and across variable-length lists,
• zip/unzip/projecting free arrays into and out of records,
• flattening and padding to make rectilinear data,
• Cartesian products (cross join) and combinations (self

join) at axis >= 1 (per element of one or more arrays).

Conversions to other formats, such as Arrow, and interoper-
ability with common Python libraries, such as Pandas and Numba,
are also in the library’s scope.

Columnar representation, columnar implementation

Awkward Arrays are columnar, not record-oriented, data struc-
tures. Instead of concentrating all data for one array element in
nearby memory (as an "array of structs"), all data for a given
field are contiguous, and all data for another field are elsewhere
contiguous (as a "struct of arrays"). This favors a pattern of data
access in which only a few fields are needed at a time, such as the
longitude, latitude coordinates in the bike routes example.

Additionally, Awkward operations are performed on columnar
data without returning to the record-oriented format. To illustrate,
consider an array of variable-length lists, such as the following toy
example:
[[1.1, 2.2, 3.3], [4.4], [5.5, 6.6], [7.7, 8.8, 9.9]]

Instead of creating four C++ objects to represent the four lists, we
can put all of the numerical data in one buffer and indicate where
the lists start and stop with two integer arrays:
starts: 0, 3, 4, 6
stops: 3, 4, 6, 9
content: 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9

For an array of lists of lists, we could introduce two levels
of starts and stops arrays, one to specify where the outer
square brackets start and stop, another to specify the inner square
brackets. Any tree-like data structure can be built in this way;
the hierarchy of nested array groups mirrors the hierarchy of the
nested data, except that the number of these nodes scales with
the complexity of the data type, not the number of elements in
the array. Particle physics use-cases require thousands of nodes
to describe complex collision events, but billions of events in
memory at a time. Figure 3 shows a small example.

In the bike routes example, we computed distances using slices
like km_east[:, :, 1:], which dropped the first element
from each list. In the implementation, list objects are not created
for the sake of removing one element before translating back into
a columnar format; the operation is performed directly on the
columnar data.

For instance, to drop the first element from each list in an array
of lists a, we only need to add 1 to the starts:
starts: 1, 4, 5, 7
stops: 3, 4, 6, 9
content: 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9

Without modifying the content, this new array represents
[[2.2, 3.3], [], [6.6], [8.8, 9.9]]

because the first list starts at index 1 and stops at 3, the second
starts at 4 and ends at 4, etc. The "removed" elements are still
present in the content array, but they are now unreachable,
much like the stride tricks used for slicing in NumPy.

AWKWARD ARRAY: JSON-LIKE DATA, NUMPY-LIKE IDIOMS 81

ak.Array (high-level wrapper)

ListArray RecordArray

ListArray

NumpyArray

NumpyArray

content

contents["x"]

contents["y"]
starts

content

starts
stops

stops

Fig. 3: Hierarchy for an example data structure: an array of lists of records, in which field "x" of the records are numbers and field "y" of
the records are lists of numbers. This might, for example, represent [[], [{"x": 1, "y": [1]}, {"x": 2, "y": [2, 2]}]],
but it also might represent an array with billions of elements (of the same type). The number of nodes scales with complexity, not data volume.

Leaving the content untouched means that the precompiled
slice operation does not depend on the content type, not even
whether the content is a numeric array or a tree structure, as in
Figure 3. It also means that this operation does not cascade down
such a tree structure, if it exists. Most operations leave nested
structure untouched and return views, rather than copies, of most
of the input buffers.

Architecture of Awkward 1.x

In August 2019, we began a half-year project to rewrite the
library in C++ (Awkward 1.x), which is now complete. Whereas
Awkward 0.x consists of Python classes that call NumPy on
internal arrays to produce effects like the slice operation described
in the previous section, Awkward 1.x consists of C++ classes that
perform loops in custom compiled code, wrapped in a Python
interface through pybind11.

However, the distinction between slow, bookkeeping code and
fast math enforced by Python and NumPy is a useful one: we
maintained that distinction by building Awkward 1.x in layers that
separate the (relatively slow) polymorphic C++ classes, whose job
is to organize and track the ownership of data buffers, from the
optimized loops in C that manipulate data in those buffers.

These layers are fully broken down below and in Figure 4:

• The high-level interface is in Python.
• The array nodes (managing node hierarchy and owner-

ship/lifetime) are in C++, accessed through pybind11.
• An alternate implementation of array navigation was writ-

ten for Python functions that are compiled by Numba.
• Array manipulation algorithms (without memory manage-

ment) are independently implemented as "cpu-kernels" and
"cuda-kernels" plugins. The kernels’ interface is pure C,
allowing for reuse in other languages.

The separation of "kernels" from "navigation" has two advan-
tages: (1) optimization efforts can focus on the kernels, since these
are the only loops that scale with data volume, and (2) CPU-based
kernels can, in principle, be swapped for GPU-based kernels. The
latter is an ongoing project.

Numba for just-in-time compilation

Some expressions are simpler in "vectorized" form, such as the
Awkward Array solution to the bike routes calculation. Others are
simpler to express as imperative code. This issue arose repeatedly
as physicists used Awkward Array 0.x in real problems, both

overrides NumPy's ufuncs
has a column dtype in Pandas
registered as a type in Numba

ak.Array in Python

operate on CPU pointers

cpu-kernels

operate on GPU pointers

cuda-kernels

C++ classes Numba models

extern "C" interface

pybind11

user interface

data navigation
and/or ownership

array manipulation

Fig. 4: Components of Awkward Array, as described in the text. All
components have been implemented except for the "cuda-kernels."

because they were more familiar with imperative code (in C++)
and because the problems truly favored non-vectorized solutions.
For instance, walking up a tree, looking for nodes of a particular
type (such as a tree of particle decays) is hard to express in
vectorized form because some elements of a test array reach the
stopping condition before others; preventing them from continuing
to walk the tree adds complexity to a data analysis. Any problem
that must "iterate until converged" is also of this form.

These problems are readily solved by Numba, a just-in-time
compiler for Python, but Numba cannot compile code involving
arrays from Awkward 0.x. To solve physics problems, we had to
break the array abstraction described above. Ensuring that Numba
would recognize Awkward 1.x arrays was therefore a high priority,
and it is a major component of the final system.

Numba has an extension mechanism for registering new types
and overloading operators for new types. We added Numba ex-
tensions for the ak.Array and ak.Record types, overloading
__getitem__ (square bracket) and __getattr__ (dot) oper-
ators and iterators, so that users can walk over the data structures
with conventional loops.

Returning to the bike routes example, the following performs
the same calculation with Numba:
import numba as nb

@nb.jit
def compute_lengths(bikeroutes):

allocate output array
route_length = np.zeros(len(bikeroutes["features"]))

loop over routes
for i in range(len(bikeroutes["features"])):

route = bikeroutes["features"][i]

82 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

loop over polylines
for polyline in route["geometry"]["coordinates"]:

first = True
last_east = 0.0
last_north = 0.0

for lng_lat in polyline:
km_east = lng_lat[0] * 82.7
km_north = lng_lat[1] * 111.1

compute distances between points
if not first:

dx2 = (km_east - last_east)**2
dy2 = (km_north - last_north)**2
distance = np.sqrt(dx2 + dy2)
route_length[i] += distance

keep track of previous value
first = False
last_east = km_east
last_north = km_north

return route_length

This expression is not concise, but it is 250× faster than the pure
Python solution and 30× faster than even the Awkward Array
(precompiled) solution. It makes a single pass over all buffers,
maximizing CPU cache efficiency, and it does not allocate or
fill any intermediate arrays. This is possible because nb.jit
compiles specialized machine code for this particular problem.

Combining Awkward Array with Numba has benefits that
neither has alone. Ordinarily, complex data structures would have
to be passed into Numba as Python objects, which means a
second copy of the data that must be "unboxed" (converted into
a compiler-friendly form) and "boxed" (converted back). If the
datasets are large, this consumes memory and time. Awkward
Arrays use less memory than the equivalent Python objects (5.2×
smaller for the bike routes) and they use the same internal
representation (columnar arrays) inside and outside functions just-
in-time compiled by Numba.

The disadvantage of Numba and Awkward Arrays in Numba is
that neither support the whole language: Numba can only compile
a subset of Python and the NumPy library and Awkward Arrays
are limited to imperative-style access (no array-at-a-time func-
tions) and homogeneous data (no union type). Any code that works
in a just-in-time compiled function works without compilation, but
not vice-versa. Thus, there is a user cost to preparing a function
for compilation, which can be seen in a comparison of the code
listing above with the pure Python example in the original bike
routes section. However, this finagling is considerably less time-
consuming than translating a Python function to a language like
C or C++ and converting the data structures. It favors gradual
transition of an analysis from no just-in-time compilation to a
judicious use of it in the parts of the workflow where performance
is critical.

ArrayBuilder: creating columnar data in-place

Awkward Arrays are immutable; NumPy’s ability to assign ele-
ments in place is not supported or generalized by the Awkward
Array library. (As an exception, users can assign fields to records
using __setitem__ syntax, but this replaces the inner tree with
one having the new field.) Restricting Awkward Arrays to read-
only access allows whole subtrees of nodes to be shared among
different versions of an array.

To create new arrays, we introduced ak.ArrayBuilder,
an append-only structure that accumulates data and creates
ak.Arrays by taking a "snapshot" of the current state. The
ak.ArrayBuilder is also implemented for Numba, so just-
in-time compiled Python can build arbitrary data structures.

The ak.ArrayBuilder is a dynamically typed object,
inferring its type from the types and order of data appended to
it. As elements are added, the ak.ArrayBuilder builds a tree
of columns and their types to refine the inferred type.

type of b.snapshot()
b # 0 * unknown
b.begin_record() # 0 * {}
b.field("x") # 0 * {"x": unknown}
b.integer(1) # 0 * {"x": int64}
b.end_record() # 1 * {"x": int64}
b.begin_record() # 1 * {"x": int64}
b.field("x") # 1 * {"x": int64}
b.real(2.2) # 1 * {"x": float64}
b.field("y") # 1 * {"x": float64, "y": ?unknown}
b.integer(2) # 1 * {"x": float64, "y": ?int64}
b.end_record() # 2 * {"x": float64, "y": ?int64}
b.null() # 3 * ?{"x": float64, "y": ?int64}
b.string("hello") # 4 * ?union[{"x": float64,

"y": ?int64}, string]

In the above example, an initially empty ak.ArrayBuilder
named b has unknown type and zero length. With
begin_record, its type becomes a record with no fields. Call-
ing field adds a field of unknown type, and following that with
integer sets the field type to an integer. The length of the array
is only increased when the record is closed by end_record.

In the next record, field "x" is filled with a floating point
number, which retroactively updates previous integers to floats.
Calling b.field("y") introduces a field "y" to all records,
though it has option type because this field is missing for all
previous records. The third record is missing (b.null()), which
refines its type as optional, and in place of a fourth record, we
append a string, so the type becomes a union.

Internally, ak.ArrayBuilder maintains a similar tree of
array buffers as an ak.Array, except that all buffers can grow
(when the preallocated space is used up, the buffer is reallocated
and copied into a buffer 1.5× larger), and content nodes can be
replaced from specialized types to more general types. Taking a
snapshot shares buffers with the new array, so it is a lightweight
operation.

Although ak.ArrayBuilder is compiled code and calls
into it are specialized by Numba, its dynamic typing has a
runtime cost: filling NumPy arrays is faster. ak.ArrayBuilder
trades runtime performance for convenience; faster array-building
methods would have to be specialized by type.

High-level behaviors

One of the surprisingly popular uses of Awkward 0.x has been to
add domain-specific methods to records and arrays by subclassing
their hierarchical node types. These can act on scalar records
returning scalars, like a C++ or Python object,
distance between points1[0] and points2[0]
points1[0].distance(points2[0])

or they may be "vectorized," like a ufunc,
distance between all points1[i] and points2[i]
points1.distance(points2)

This capability has been ported to Awkward 1.x and expanded
upon. In Awkward 1.x, records can be named (as part of more

AWKWARD ARRAY: JSON-LIKE DATA, NUMPY-LIKE IDIOMS 83

general "properties" metadata in C++) and record names are linked
to Python classes through an ak.behavior dict.
class Point:

def distance(self, other):
return np.sqrt((self.x - other.x)**2 +

(self.y - other.y)**2)

class PointRecord(Point, ak.Record):
pass

class PointArray(Point, ak.Array):
pass

ak.behavior["point"] = PointRecord
ak.behavior["*", "point"] = PointArray

points1 = ak.Array([{"x": 1.1, "y": 1},
{"x": 2.2, "y": 2},
{"x": 3.3, "y": 3}],

with_name="point")

points2 = ak.Array([{"x": 1, "y": 1.1},
{"x": 2, "y": 2.2},
{"x": 3, "y": 3.3}],

with_name="point")

points1[0].distance(points2[0])
0.14142135623730964

points1.distance(points2)
<Array [0.141, 0.283, 0.424] type='3 * float64'>

points1.distance(points2[0]) # broadcasting
<Array [0.141, 1.5, 2.98] type='3 * float64'>

When an operation on array nodes completes and the result is
wrapped in a high-level ak.Array or ak.Record class for
the user, the ak.behavior is checked for signatures that link
records and arrays of records to user-defined subclasses. Only the
name "point" is stored with the data; methods are all added at
runtime, which allows schemas to evolve.

Other kinds of behaviors can be assigned through different
signatures in the ak.behavior dict, such as overriding ufuncs,
link np.absolute("point") to a custom function
def magnitude(point):

return np.sqrt(point.x**2 + point.y**2)

ak.behavior[np.absolute, "point"] = magnitude

np.absolute(points1)
<Array [1.49, 2.97, 4.46] type='3 * float64'>

as well as custom broadcasting rules, and Numba extensions
(typing and lowering functions).

As a special case, strings are not defined as an array type,
but as a parameter label on variable-length lists. Behaviors that
present these lists as strings (overriding __repr__) and define
per-string equality (overriding np.equal) are preloaded in the
default ak.behavior.

Awkward Arrays and Pandas

Awkward Arrays are registered as a Pandas extension, so they
can be losslessly embedded within a Series or a DataFrame
as a column. Some Pandas operations can be performed on
them—particularly, NumPy ufuncs and any high-level behaviors
that override ufuncs—but best practices for using Awkward Arrays
within Pandas are largely unexplored. Most Pandas functions were
written without deeply nested structures in mind.

It is also possible (and perhaps more useful) to translate
Awkward Arrays into Pandas’s own ways of representing nested

structures. Pandas’s MultiIndex is particularly useful: variable-
length lists translate naturally into MultiIndex rows:
ak.pandas.df(ak.Array([[[1.1, 2.2], [], [3.3]],

[],
[[4.4], [5.5, 6.6]],
[[7.7]],
[[8.8]]]))

values
entry subentry subsubentry
0 0 0 1.1
1 2.2
2 0 3.3
2 0 0 4.4
1 0 5.5
1 6.6
3 0 0 7.7
4 0 0 8.8

and nested records translate into MultiIndex column names:
ak.pandas.df(ak.Array([{"I":

{"a": _, "b": {"c": _}},
"II":
{"x": {"y": {"z": _}}}}

for _ in range(0, 50, 10)]))
I II
a b x
c y
z
entry
0 0 0 0
1 10 10 10
2 20 20 20
3 30 30 30
4 40 40 40

In the first of these two examples, empty lists in the Awkward
Array do not appear in the Pandas output, though their existence
may be inferred from gaps between entry and subentry indexes.
When analyzing both lists and non-list data, or lists of different
lengths, it is more convenient to translate an Awkward Array into
multiple DataFrames and JOIN those DataFrames as relational
data than to try to express it all in one DataFrame.

This example highlights a difference in applicability between
Pandas and Awkward Array: Pandas is better at solving problems
with long-range relationships, joining on relational keys, but the
structures that a single DataFrame can represent (without resorting
to Python objects) is limited. Awkward Array allows general data
structures with different length lists in the same structure, but most
calculations are elementwise, as in NumPy.

GPU backend

One of the advantages of a vectorized user interface is that it is
already optimal for calculations on a GPU. Imperative loops have
to be redesigned when porting algorithms to GPUs, but CuPy,
Torch, TensorFlow, and JAX demonstrate that an interface con-
sisting of array-at-a-time functions hides the distinction between
CPU calculations and GPU calculations, making the hardware
transparent to users.

Partly for the sake of adding a GPU backend, all instances
of reading or writing to an array’s buffers were restricted to the
"array manipulation" layer of the project (see Figure 4). The first
implementation of this layer, "cpu-kernels," performs all opera-
tions that actually access the array buffers, and it is compiled into
a physically separate file: libawkward-cpu-kernels.so,
as opposed to the main libawkward.so, Python extension
module, and Python code.

In May 2020, we began developing the "cuda-kernels" li-
brary, provisionally named libawkward-cuda-kernels.so

84 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

embarrassingly
parallel (74)

dynamic memory (1)

loop-carried
dependency (7)

counting
index (26)

Fig. 5: CPU kernels by algorithmic complexity, as of February 2020.

(to allow for future non-CUDA versions). Since the main code-
base (libawkward.so) never dereferences any pointers to its
buffers, main memory pointers can be transparently swapped for
GPU pointers with additional metadata to identify which kernel
to call for a given set of pointers. Thus, the main library does
not need to be recompiled to support GPUs and it can manage
arrays in main memory and on GPUs in the same process, which
could be important, given the limited size of GPU memory. The
"cuda-kernels" will be deployed as a separate package in PyPI
and Conda so that users can choose to install it separately as an
"extras" package.

The kernels library contains many functions (428 in the
"extern C" interface with 124 independent implementations,
as of May 2020) because it defines all array manipulations. All of
these must be ported to CUDA for the first GPU implementation.
Fortunately, the majority are easy to translate: Figure 5 shows that
almost 70% are simple, embarrassingly parallel loops, 25% use a
counting index that could be implemented with a parallel prefix
sum, and the remainder have loop-carried dependencies or worse
(one used dynamic memory, but it has since been rewritten). The
kernels were written in a simple style that may be sufficiently
analyzable for machine-translation, a prospect we are currently
investigating with pycparser.

Transition from Awkward 0.x

Awkward 0.x is popular among physicists, and some data analyses
have come to depend on it and its interface. User feedback, how-
ever, has taught us that the Awkward 0.x interface has some incon-
sistencies, confusing names, and incompatibilities with NumPy
that would always be a pain point for beginners if maintained,
yet ongoing analyses must be supported. (Data analyses, unlike
software stacks, have a finite lifetime and can’t be required to
"upgrade or perish," especially when a student’s graduation is at
stake.)

To support both new and ongoing analyses, we gave the
Awkward 1.x project a different Python package name and PyPI
package name from the original Awkward Array: awkward1
versus awkward. This makes it possible to install both and
load both in the same process (unlike Python 2 and Python
3). Conversion functions have also been provided to aid in the
transition.

We are already recommending Awkward 1.x for new physics
analyses, even though serialization to and from the popular ROOT
file format is not yet complete. Nevertheless, the conversion
functions introduce an extra step and we don’t expect widespread
adoption until the Uproot library natively converts ROOT data to
and from Awkward 1.x arrays.

Eventually, however, it will be time to give Awkward 1.x
"official" status by naming it awkward in Python and PyPI. At
that time, Awkward 0.x will be renamed awkward0, so that a
single
import awkward0 as awkward

would be required to maintain old analysis scripts.
As an incentive for adopting Awkward 1.x in new projects,

it has been heavily documented, with complete docstring and
doxygen coverage (already exceeding Awkward 0.x).

Summary

By providing NumPy-like idioms on JSON-like data, Awkward
Array satisfies a need required by the particle physics community.
The inclusion of data structures in array types and operations was
an enabling factor in this community’s adoption of other scientific
Python tools. However, the Awkward Array library itself is not
domain-specific and is open to use in other domains. We are
very interested in applications and feedback from the wider data
analysis community.

Acknowledgements

Support for this work was provided by NSF cooperative agreement
OAC-1836650 (IRIS-HEP), grant OAC-1450377 (DIANA/HEP)
and PHY-1520942 (US-CMS LHC Ops).

REFERENCES

[np] Stéfan van der Walt, S. Chris Colbert and Gaël Varoquaux.
The NumPy Array: A Structure for Efficient Numerical Compu-
tation, Computing in Science & Engineering, 13, 22-30 (2011),
DOI:10.1109/MCSE.2011.37

[ak1] Jim Pivarski, Jaydeep Nandi, David Lange, Peter Elmer. Columnar
data processing for HEP analysis, Proceedings of the 23rd Inter-
national Conference on Computing in High Energy and Nuclear
Physics (CHEP 2018). DOI:10.1051/epjconf/201921406026

[ak2] Jim Pivarski, Peter Elmer, David Lange. Awkward Arrays in Python,
C++, and Numba, CHEP 2019 proceedings, EPJ Web of Confer-
ences (CHEP 2019). arxiv:2001.06307

[arrow] Apache Software Foundation. Arrow: a cross-language develop-
ment platform for in-memory data, https://arrow.apache.org

[scipy] Pauli Virtanen et al. SciPy 1.0: Fundamental Algorithms for Sci-
entific Computing in Python, SciPy 1.0: Fundamental Algorithms
for Scientific Computing in Python. Nature Methods, in press.
DOI:10.1038/s41592-019-0686-2

[hydra] R. K. Böck. Initiation to Hydra, https://cds.cern.ch/record/864527
(1974), DOI:10.5170/CERN-1974-023.402

[phypy] Jim Pivarski. Programming languages and particle physics, https:
//events.fnal.gov/colloquium/events/event/pivarski-colloq-2019
(2019).

[pandas] Wes McKinney. Data Structures for Statistical Computing in
Python, Proceedings of the 9th Python in Science Conference, 51-
56 (2010), DOI:10.25080/Majora-92bf1922-00a

[numba] Siu Kwan Lam, Antoine Pitrou, Stanley Seibert. Numba: a LLVM-
based Python JIT compiler, LLVM ’15: Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC, 7, 1-6
(2015), DOI:10.1145/2833157.2833162

[root] Rene Brun and Fons Rademakers, ROOT: an object oriented
data analysis framework, Proceedings AIHENP’96 Workshop, Lau-
sanne, (1996), Nucl. Inst. & Meth. in Phys. Res. A 389 (1997)
81-86.

[root-EB] Axel Naumann. ROOT as a framework and analysis tool in
run 3 and the HL-LHC era, https://indico.cern.ch/event/913205/
contributions/3840338 (2020).

[bikes] City of Chicago Data Portal, https://data.cityofchicago.org
[nep13] Pauli Virtanen, Nathaniel Smith, Marten van Kerkwijk, Stephan

Hoyer. NEP 13 — A Mechanism for Overriding Ufuncs, https://
numpy.org/neps/nep-0013-ufunc-overrides.html

[nep18] Stephan Hoyer, Matthew Rocklin, Marten van Kerkwijk, Hameer
Abbasi, Eric Wieser. NEP 18 — A dispatch mechanism for NumPy’s
high level array functions, https://numpy.org/neps/nep-0018-array-
function-protocol.html

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020) 85

High-performance operator evaluations with ease of
use: libCEED’s Python interface

Valeria Barra§∗, Jed Brown§, Jeremy Thompson§, Yohann Dudouit‡

F

Abstract—libCEED is a new lightweight, open-source library for high-
performance matrix-free Finite Element computations. libCEED offers a portable
interface to high-performance implementations, selectable at runtime, tuned for
a variety of current and emerging computational architectures, including CPUs
and GPUs. libCEED’s interface is purely algebraic, facilitating co-design with
vendors and enabling unintrusive integration in new and legacy software. In this
work, we present libCEED’s newly-available Python interface, which opens up
new strategies for parallelism and scaling in high-performance Python, without
compromising ease of use.

Index Terms—High-performance Python, performance portability, scalability,
parallelism, high-order finite elements

Introduction

Historically, high-order Finite Element Methods (FEM) have seen
very limited use for industrial problems because the matrix de-
scribing the action of the operator loses sparsity as the order
is increased [Ors80], leading to unaffordable solve times and
memory requirements [Bro10]. Consequently, most industrial ap-
plications have used at most quadratic polynomial bases, for which
assembled matrices appear to be a good choice, at least when
one seeks to minimize the number of floating point operations
(FLOPs) per degree of freedom (DOF); see the right panel of Fig.
1. Nowadays, high-order numerical methods, such as the spectral
element method (SEM)—a special case of nodal p-Finite Element
Method that can reuse the interpolation nodes for quadrature—are
employed (e.g., in scientific computing packages such as MFEM
[MFE20] and Nek5000 [Nek20]), especially with applications for
which implicit solves are limited to linear constant-coefficient
separable equations on (nearly) affine elements, which can be
efficiently solved with sum factorization and multigrid [LF05].

In Fig. 1, we analyze and compare the asymptotic costs of
applying the action of a finite element matrix using different
configurations: assembling the sparse matrix representing the
action of the operator (labeled as assembled), applying the action
without assembly while using a tensor-product decomposition of
the basis and metric terms computed on the fly with a compact rep-
resentation of the linearization stored at quadrature points (labeled
as tensor), and similarly, but with a precomputed pull-back of the

* Corresponding author: valeria.barra@colorado.edu
§ University of Colorado Boulder
‡ Lawrence Livermore National Laboratory

Copyright © 2020 Valeria Barra et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Fig. 1: Comparison of asymptotic memory transfer and floating point
operations per degree of freedom for different representations of
a linear operator for a PDE (on a 3D hexahedral mesh) with b
components and variable coefficients arising due to Newton lineariza-
tion of a material nonlinearity. The representation labeled as tensor
computes metric terms on the fly and stores a compact representation
of the linearization at quadrature points. The representation labeled
as tensor-qstore pulls the metric terms into the stored representation.
The assembled representation uses a (block) CSR format.

linearization to reference elements (labeled as tensor-qstore). In
the right panel, we show the cost in terms of FLOPs/DOF. This
metric for computational efficiency made sense historically, when
performance was primarily limited by floating point arithmetic.
Memory bandwidth is the overwhelming bottleneck on today’s
machines, which can perform 40-100 FLOPs per floating point
load from memory, and thus the left panel of Fig. 1 becomes a
more accurate performance model for modern architectures. We
can see that well-implemented high-order methods require low
memory motion that decreases with polynomial order and FLOPs
that are relatively insensitive to polynomial order for operator
evaluation. Thus, high-order methods in matrix-free representation
not only possess favorable properties, such as higher accuracy and
faster convergence to solution, but also manifest an efficiency gain
compared to their corresponding assembled representations.

For the reasons mentioned above, in recent years, high-order
numerical methods have been widely used in Partial Differential
Equation (PDE) solvers, but software packages that provide high-
performance implementations have often been special-purpose and
intrusive. In contrast, libCEED [lib20b], the Code for Efficient
Extensible Discretizations is light-weight, minimally intrusive,
and very versatile. In fact, libCEED offers a purely algebraic
interface for matrix-free operator representation and supports run-

86 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Fig. 2: The role of libCEED as a lightweight, portable library that
provides a low-level API for efficient, specialized implementations.
libCEED allows different applications to share highly optimized
discretization kernels.

time selection of implementations tuned for a variety of com-
putational device types, including CPUs and GPUs. libCEED’s
algebraic interface can unobtrusively be integrated in new and
legacy software to provide performance portable interfaces. While
libCEED’s focus is on high-order finite elements, the approach is
algebraic and thus applicable to other discretizations in factored
form (e.g., spectral difference). libCEED’s role, as a low-level
library that allows a wide variety of applications to share highly
optimized discretization kernels, is illustrated in Fig. 2, where a
non-exhaustive list of specialized implementations (backends) is
provided. libCEED provides a low-level Application Programming
Interface (API) for user codes so that applications with their
own discretization infrastructure (e.g., those in PETSc [BAA+20],
MFEM and Nek5000) can evaluate and use the core operations
provided by libCEED. GPU implementations are available via
pure CUDA [CUD20] as well as the OCCA [OCC20] and
MAGMA [MAG20] libraries. CPU implementations are available
via pure C and AVX intrinsics as well as the LIBXSMM [LIB20c]
library. libCEED provides a unified interface, so that users only
need to write a single source code and can select the desired
specialized implementation at run time. Moreover, each process
or thread can instantiate an arbitrary number of backends.

In this work, we first introduce libCEED’s conceptual model
and interface, then illustrate its new Python interface, which was
developed using the C Foreign Function Interface (CFFI) for
Python. CFFI allows reuse of most of the C declarations and
requires only a minimal adaptation of some of them. The C and
Python APIs are mapped in a nearly 1:1 correspondence. For in-
stance, a CeedVector object is exposed as libceed.Vector
in Python, and may reference memory that is also accessed via
Python arrays from the NumPy [vCV11] or Numba [LPS15]
packages, for handling host or device memory (when interested
in GPU computations with CUDA). Flexible pointer handling in
libCEED makes it easy to provide zero-copy host and (GPU)
device support for any desired Python array container.

libCEED’s API

As illustrated in the Introduction, it is favorable to minimize
memory motion, especially when computations are performed in
parallel computing environments. In Finite Element codes that
exploit data parallelism, the action of the operator can be described
as global, when the operator is applied to data distributed across

different nodes or compute devices, or local, when operating on
a single portion of the data partition. libCEED’s API provides the
local action of an operator (linear or nonlinear) without assembling
its sparse representation. The purely algebraic nature of libCEED
allows efficient operator evaluations (selectable at runtime) and
offers matrix-free preconditioning ingredients. While libCEED’s
focus is on high-order finite elements, the approach with which it
is designed is algebraic and thus applicable to other discretizations
in factored form. This algebraic decomposition also presents the
benefit that it can equally represent linear or non-linear finite
element operators.

Let us define the global operator as

A = PT GT BT DBG︸ ︷︷ ︸
libCEED’s scope

P , (1)

where P is the parallel process decomposition operator (external
to libCEED, which needs to be managed by the user via external
packages, such as petsc4py [BAA+20], [DPKC11]) in which
the degrees of freedom (DOFs) are scattered to and gathered
from the different compute devices. The operator denoted by
AL = GT BT DBG gives the local action on a compute node or
process, where G is a local element restriction operation that
localizes DOFs based on the elements, B defines the action of
the basis functions (or their gradients) on the nodes, and D
is the user-defined pointwise function describing the physics of
the problem at the quadrature points, also called the QFunction
(see Fig. 3). Instead of forming a single operator using a sparse
matrix representation, libCEED composes the different parts of
the operator described in equation (1) to apply the action of the
operator AL =GT BT DBG in a fashion that is tuned for the different
compute devices, according to the backend selected at run time.

In libCEED’s terminology, the global or total vector is called
a T-vector (cf. Fig. 3). This stores the true degrees of freedom of
the problem. In a T-vector, each unknown has exactly one copy,
on exactly one processor, or rank. The process decomposition,
denoted by P in equation (1), is a non-overlapping partitioning.
The application of the operator P to a T-vector results in an
L-vector, or local vector. This stores the data owned by each
rank. In an L-vector, each unknown has exactly one copy on
each processor that owns an element containing it. This is an
overlapping vector decomposition with overlaps only across differ-
ent processors—there is no duplication of unknowns on a single
processor. The nodes adjacent to different elements (at element
corners or edges) will be the one that have more than one copy,
on different processors. Applying an element restriction operator,
denoted by G in equation (1), to an L-vector creates an E-vector.
This stores the nodes grouped by the elements they belong to.
In fact, in an E-vector each unknown has as many copies as the
number of elements that contain it. The application of a basis
operator B to an E-vector returns a Q-vector. This has the same
layout of an E-vector, but instead of holding the different unknown
values, a Q-vector stores the values at quadrature points, grouped
by element.

The mathematical formulation of QFunctions, described in
weak form, is fully separated from the parallelization and meshing
concerns. In fact, QFunctions, which can either be defined by the
user or selected from a gallery of available built-in functions in
the library, are pointwise functions that do not depend on element
resolution, topology, or basis degree (selectable at run time).
This easily allows hp-refinement studies (where h commonly
denotes the average element size and p the polynomial degree

HIGH-PERFORMANCE OPERATOR EVALUATIONS WITH EASE OF USE: LIBCEED’S PYTHON INTERFACE 87

Fig. 3: Operator decomposition.

of the basis functions in 1D) and p-multigrid solvers. libCEED
also supports composition of different operators for multiphysics
problems and mixed-element meshes (see Fig. 4). Currently, user-
defined QFunctions are written in C and must be precompiled as
a foreign function library and loaded via ctypes. The single-
source C QFunctions allow users to equally compute on CPU
or GPU devices, all supported by libCEED. The ultimate goal
is for users to write only Python code. This will be achieved
in the near future by using the Numba high-performance Python
compiler or Google’s extensible system for composable function
transformations, JAX [BFH+18], which can use just-in-time (JIT)
compilation to compile for coprocessors and speed-up executions
when sequences of operations are performed.

G2

G1

B2

B1

D
︷ ︸︸ ︷
∇ · (∇u)︸ ︷︷ ︸

D

Fig. 4: A schematic of element restriction and basis applicator
operators for elements with different topology. This sketch shows the
independence of QFunctions (in this case representing a Laplacian)
element resolution, topology, or basis degree.

Source Code Examples

LibCEED for Python is distributed through PyPI [PyP20] and can
be easily installed via
$ pip install libceed

or
$ python -m pip install libceed

The package can then be simply imported via
>>> import libceed

The simple declaration of a libceed.Ceed instance, with
default resource (/cpu/self) can be obtained as
>>> ceed = libceed.Ceed()

If libCEED is built with GPU support, the user can specify a GPU
backend, e.g., /gpu/occa or /gpu/cuda/gen, with
>>> ceed = libceed.Ceed('/gpu/cuda/gen')

Next, we show the creation of a libceed.Vector of a specified
size
>>> n = 10
>>> x = ceed.Vector(n)

Similarly, this could have been achieved by running
>>> x = ceed.Vector(size=10)

In the following example, we associate the data stored in a
libceed.Vector with a numpy.array and use it to set and
read the libceed.Vector’s data
>>> import numpy as np

>>> x = ceed.Vector(size=3)

>>> a = np.arange(1, 4, dtype="float64")
>>> x.set_array(a, cmode=libceed.USE_POINTER)

>>> with x.array_read() as b:
... print(b)
...
[1. 2. 3.]

Similarly, we can set all entries of a libceed.Vector to the
same value (e.g., 10) via
>>> x.set_value(10)

If the user has installed libCEED with CUDA support and
Numba, they can use device memory for libceed.Vectors.
In the following example, we create a libceed.Vector with
a libCEED context that supports CUDA, associate the data stored
in a CeedVector with a numpy.array, and get a Numba
DeviceNDArray containing the data on the device.
>>> ceed_gpu = libceed.Ceed('/gpu/cuda')

>>> n = 4
>>> x = ceed_gpu.Vector(n)

>>> a = np.arange(1, n + 1, dtype="float64")
>>> x.set_array(a, cmode=libceed.USE_POINTER)

>>> with x.array_read(memtype=libceed.MEM_DEVICE) as
device_array:

... print(device_array)

...
[1. 2. 3. 4.]

Among the Finite Elements objects needed to compose an opera-
tor, in the following example we illustrate the creation and apply
action of an element restriction, denoted by G in equation (1)
>>> ne = 3

>>> x = ceed.Vector(ne+1)
>>> a = np.arange(10, 10 + ne+1, dtype="float64")
>>> x.set_array(a, cmode=libceed.USE_POINTER)

>>> ind = np.zeros(2*ne, dtype="int32")
>>> for i in range(ne):
... ind[2*i+0] = i
... ind[2*i+1] = i+1
...
>>> r = ceed.ElemRestriction(ne, 2, 1, 1, ne+1, ind,
... cmode=libceed.USE_POINTER)

>>> y = ceed.Vector(2*ne)
>>> y.set_value(0)

>>> r.apply(x, y)

88 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

>>> with y.array_read() as y_array:
... print('y =', y_array)
...
y = [10. 11. 11. 12. 12. 13.]

An H1 Lagrange basis in d dimensions can be defined with the
following code snippet
>>> d = 1
>>> b = ceed.BasisTensorH1Lagrange(
... dim=d, # topological dimension
... ncomp=1, # number of components
... P=2, # number of basis functions (nodes)
... # per dimension
... Q=2, # number of quadrature points
... # per dimension
... qmode=libceed.GAUSS_LOBATTO)
>>> print(b)
CeedBasis: dim=1 P=2 Q=2

qref1d: -1.00000000 1.00000000
qweight1d: 1.00000000 1.00000000
interp1d[0]: 1.00000000 0.00000000
interp1d[1]: 0.00000000 1.00000000
grad1d[0]: -0.50000000 0.50000000
grad1d[1]: -0.50000000 0.50000000

In the following example, we show how to apply a 1D basis
operator, denoted by B in equation (1), from an E-vector named
Ev, to a Q-vector named Qv, and vice-versa, its transpose operator
BT

>>> Q = 4
>>> dim = 1
>>> Xdim = 2**dim
>>> Qdim = Q**dim
>>> x = np.empty(Xdim*dim, dtype="float64")
>>> for d in range(dim):
... for i in range(Xdim):
... x[d*Xdim + i] = 1 if (i % (2**(dim-d)))
... // (2**(dim-d-1)) else -1
...
>>> Ev = ceed.Vector(Xdim*dim)
>>> Ev.set_array(x, cmode=libceed.USE_POINTER)
>>> Qv = ceed.Vector(Qdim*dim)
>>> Qv.set_value(0)
>>> bx = ceed.BasisTensorH1Lagrange(dim, dim, 2, Q,
... libceed.GAUSS_LOBATTO)
>>> bx.apply(1, libceed.EVAL_INTERP, Ev, Qv)
>>> print(Qv)
CeedVector length 4
-1.000000
-0.447214
0.447214
1.000000

>>> bx.T.apply(1, libceed.EVAL_INTERP, Qv, Ev)
>>> print(Ev)
CeedVector length 2
-1.200000
1.200000

In the following example, we create two QFunctions (for the setup
and apply, respectively, of the mass operator in 1D) from the
gallery of available built-in QFunctions in libCEED
>>> qf_setup = ceed.QFunctionByName("Mass1DBuild")
>>> print(qf_setup)
Gallery CeedQFunction Mass1DBuild
2 Input Fields:
Input Field [0]:
Name: "dx"
Size: 1
EvalMode: "gradient"

Input Field [1]:
Name: "weights"
Size: 1
EvalMode: "quadrature weights"

1 Output Field:

Output Field [0]:
Name: "qdata"
Size: 1
EvalMode: "none"

>>> qf_mass = ceed.QFunctionByName("MassApply")
>>> print(qf_mass)
Gallery CeedQFunction MassApply
2 Input Fields:
Input Field [0]:
Name: "u"
Size: 1
EvalMode: "interpolation"

Input Field [1]:
Name: "qdata"
Size: 1
EvalMode: "none"

1 Output Field:
Output Field [0]:
Name: "v"
Size: 1
EvalMode: "interpolation"

The setup QFunction, named qf_setup in the previous example,
is the one that defines the formulation of the geometric factors
given by the correspondence between deformed finite element
coordinates and reference ones. The apply QFunction, named
qf_mass in the previous example, is the one that defines the
action of the physics (in terms of the spatial discretization of the
weak form of the PDE) the user wants to solve for. In this simple
example, this represented the action of the mass matrix.

Finally, once all ingredients for a libceed.Operator are
defined (i.e., element restriction, basis, and QFunction), one can
create and apply a local operator as
>>> nelem = 15
>>> P = 5
>>> Q = 8
>>> nx = nelem + 1
>>> nu = nelem*(P-1) + 1

>>> # Vectors
>>> x = ceed.Vector(nx)
>>> x_array = np.zeros(nx)
>>> for i in range(nx):
... x_array[i] = i / (nx - 1.0)
...
>>> x.set_array(x_array, cmode=libceed.USE_POINTER)
>>> qdata = ceed.Vector(nelem*Q)
>>> u = ceed.Vector(nu)
>>> v = ceed.Vector(nu)

>>> # Restrictions
>>> indx = np.zeros(nx*2, dtype="int32")
>>> for i in range(nx):
... indx[2*i+0] = i
... indx[2*i+1] = i+1
...
>>> rx = ceed.ElemRestriction(nelem, 2, 1, 1, nx, indx,
... cmode=libceed.USE_POINTER)
>>> indu = np.zeros(nelem*P, dtype="int32")
>>> for i in range(nelem):
... for j in range(P):
... indu[P*i+j] = i*(P-1) + j
...
>>> ru = ceed.ElemRestriction(nelem, P, 1, 1, nu, indu,
... cmode=libceed.USE_POINTER)
>>> strides = np.array([1, Q, Q], dtype="int32")
>>> rui = ceed.StridedElemRestriction(nelem, Q, 1,
... Q*nelem, strides)

>>> # Bases
>>> bx = ceed.BasisTensorH1Lagrange(1, 1, 2, Q,
... libceed.GAUSS)
>>> bu = ceed.BasisTensorH1Lagrange(1, 1, P, Q,
... libceed.GAUSS)

HIGH-PERFORMANCE OPERATOR EVALUATIONS WITH EASE OF USE: LIBCEED’S PYTHON INTERFACE 89

>>> # QFunctions
>>> qf_setup = ceed.QFunctionByName("Mass1DBuild")
>>> qf_mass = ceed.QFunctionByName("MassApply")

>>> # Setup operator
>>> op_setup = ceed.Operator(qf_setup)
>>> op_setup.set_field("dx", rx, bx,
... libceed.VECTOR_ACTIVE)
>>> op_setup.set_field("weights",
... libceed.ELEMRESTRICTION_NONE, bx,
... libceed.VECTOR_NONE)
>>> op_setup.set_field("qdata", rui,
... libceed.BASIS_COLLOCATED,
... libceed.VECTOR_ACTIVE)
>>> print('Setup operator: ', op_setup)
Setup operator: CeedOperator
3 Fields
2 Input Fields:
Input Field [0]:
Name: "dx"
Active vector

Input Field [1]:
Name: "weights"
No vector

1 Output Field:
Output Field [0]:
Name: "dx"
Collocated basis
Active vector

>>> # Apply Setup operator
>>> op_setup.apply(x, qdata)

For all of the illustrated classes of objects, libceed.Ceed,
libceed.Vector, libceed.ElemRestriction,
libceed.Basis, libceed.QFunction, and
libceed.Operator, libCEED’s Python interface provides
a representation method so that they can be viewed/printed by
simply typing

>>> print(x)

These and other examples can be found in the suite of Project
Jupyter [KRKP+16] tutorials provided with libCEED in a Binder
[lib20a] interactive environment, accessible on libCEED’s devel-
opment site [lib20b]. Finally, examples of integration of libCEED
with other packages in the co-design Center for Efficient Exascale
Discretizations (CEED), such as PETSc, MFEM, and Nek5000,
can be found in the CEED distribution, which provides the full
CEED software ecosystem [BAB+19], [KFA+20].

Conclusions

We have presented libCEED, a new lightweight, open-
source, matrix-free Finite Element library, its conceptual
framework, and new Python interface. libCEED’s purely
algebraic framework can unobtrusively be integrated in
new and legacy software to provide performance portable
applications. In this work, we have demonstrated the usage
of libCEED’s Python interface by providing examples
of the creation and application of the main classes in
libCEED’s API: libceed.Ceed, libceed.Vector,
libceed.ElemRestriction, libceed.Basis,
libceed.QFunction, and libceed.Operator. We
have showed how libCEED’s simple interface allows for easy
and composable library reuse and can open up new strategies for
parallelism and scaling in high-performance Python.

Acknowledgments

The libCEED library is distributed under a BSD 2-Clause License
with Copyright (c) 2017 of the Lawrence Livermore National
Security, LLC. The work presented in this paper is supported by
the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of two U. S. Department of Energy Organizations (the Office
of Science and the National Nuclear Security Administration)
responsible for the planning and preparation of a capable exascale
ecosystem, including software, applications, hardware, advanced
system engineering and early testbed platforms, in support of the
nation’s exascale computing imperative.

REFERENCES

[BAA+20] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown,
Peter Brune, Kris Buschelman, Lisandro Dalcin, Alp Dener,
Victor Eijkhout, William D. Gropp, Dmitry Karpeyev, Dinesh
Kaushik, Matthew G. Knepley, Dave A. May, Lois Curfman
McInnes, Richard Tran Mills, Todd Munson, Karl Rupp, Patrick
Sanan, Barry F. Smith, Stefano Zampini, Hong Zhang, and Hong
Zhang. PETSc users manual. Technical Report ANL-95/11 -
Revision 3.13, Argonne National Laboratory, 2020.

[BAB+19] Jed Brown, Ahmad Abdelfattah, Valeria Barra, Veselin Dobrev,
Yohann Dudouit, Paul Fischer, Tzanio Kolev, David Medina,
Misun Min, Thilina Ratnayaka, Cameron Smith, Jeremy Thomp-
son, Stanimire Tomov, Vladimir Tomov, and Tim Warburton.
CEED ECP Milestone Report: Public release of CEED 2.0, 2019.
doi:10.5281/zenodo.2641316.

[BFH+18] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James
Johnson, Chris Leary, Dougal Maclaurin, and Skye Wanderman-
Milne. JAX: composable transformations of Python+NumPy
programs, 2018. URL: http://github.com/google/jax.

[Bro10] Jed Brown. Efficient Nonlinear Solvers for Nodal High-Order
Finite Elements in 3D. Journal of Scientific Computing, 45,
October 2010. doi:10.1007/s10915-010-9396-8.

[CUD20] https://developer.nvidia.com/about-cuda, 2020. URL: https://
developer.nvidia.com/about-cuda.

[DPKC11] Lisandro D. Dalcin, Rodrigo R. Paz, Pablo A. Kler, and Ale-
jandro Cosimo. Parallel distributed computing using python.
Advances in Water Resources, 34:1124 – 1139, 2011. New
Computational Methods and Software Tools. doi:https:
//doi.org/10.1016/j.advwatres.2011.04.013.

[KFA+20] Tzanio Kolev, Paul Fischer, Ahmad Abdelfattah, Shreyas Anan-
than, Valeria Barra, Natalie Beams, Ryan Bleile, Jed Brown,
Robert Carson, Jean-Sylvain Camier, Matthew Churchfield,
Veselin Dobrev, Jack Dongarra, Yohann Dudouit, Ali Karakus,
Stefan Kerkemeier, YuHsiang Lan, David Medina, Elia Merzari,
Misun Min, Scott Parker, Thilina Ratnayaka, Cameron Smith,
Michael Sprague, Thomas Stitt, Jeremy Thompson, Ananias
Tomboulides, Stanimire Tomov, Vladimir Tomov, Arturo Vargas,
Tim Warburton, and Kenneth Weiss. CEED ECP Milestone
Report: Improve performance and capabilities of CEED-enabled
ECP applications on Summit/Sierra, 2020. doi:10.5281/
zenodo.3860804.

[KRKP+16] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez,
Brian Granger, Matthias Bussonnier, Jonathan Frederic, Kyle
Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul
Ivanov, Damián Avila, Safia Abdalla, Carol Willing, and
Jupyter Development Team. Jupyter Notebooks – a publishing
format for reproducible computational workflows. Positioning
and Power in Academic Publishing, pages 87 – 90, 2016.
doi:10.3233/978-1-61499-649-1-87.

[LF05] James W. Lottes and Paul F. Fischer. Hybrid multigrid/schwarz
algorithms for the spectral element method. Journal of Scientific
Computing, 24, 2005. doi:10.1007/s10915-004-4787-
3.

[lib20a] libCEED Binder, 2020. URL: https://mybinder.org/v2/gh/CEED/
libCEED/master?urlpath=lab/tree/examples/tutorials/tutorial-0-
ceed.ipynb.

[lib20b] libCEED development site, 2020. URL: https://github.com/ceed/
libceed.

[LIB20c] LIBXSMM development site, 2020. URL: http://github.com/hfp/
libxsmm.

90 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

[LPS15] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba:
A LLVM-Based Python JIT Compiler. In Proceedings of the
Second Workshop on the LLVM Compiler Infrastructure in HPC,
New York, NY, USA, 2015. Association for Computing Machin-
ery. doi:10.1145/2833157.2833162.

[MAG20] MAGMA development site, 2020. URL: https://bitbucket.org/
icl/magma.

[MFE20] MFEM: Modular Finite Element Methods Library, 2020. URL:
https://mfem.org/, doi:10.11578/dc.20171025.1248.

[Nek20] Nek5000, 2020. URL: https://nek5000.mcs.anl.gov/.
[OCC20] OCCA development site, 2020. URL: http://github.com/libocca/

occa.
[Ors80] Steven A Orszag. Spectral methods for problems in com-

plex geometries. Journal of Computational Physics, 37:70
– 92, 1980. doi:https://doi.org/10.1016/0021-
9991(80)90005-4.

[PyP20] The Python Package Index (PyPI), 2020. URL: https://pypi.org/.
[vCV11] S. van der Walt, S. C. Colbert, and G. Varoquaux. The

NumPy Array: A Structure for Efficient Numerical Computa-
tion. Computing in Science Engineering, 13:22 – 30, 2011.
doi:10.1109/MCSE.2011.37.

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020) 91

Spectral Analysis of Mitochondrial Dynamics: A
Graph-Theoretic Approach to Understanding

Subcellular Pathology

Marcus Hill‡, Mojtaba Fazli‡, Rachel Mattson‡‡, Meekail Zain‡‖, Andrew Durden‡, Allyson T Loy¶, Barbara Reaves∗∗,
Abigail Courtney¶, Frederick D Quinn∗∗, S Chakra Chennubhotla††, Shannon P Quinn‡§∗

F

Abstract—Perturbations of organellar structures within a cell are useful indica-
tors of the cell’s response to viral or bacterial invaders. Of the various organelles,
mitochondria are meaningful to model because they show distinct migration
patterns in the presence of potentially fatal infections, such as tuberculosis.
Properly modeling and assessing mitochondria could provide new information
about infections that can be leveraged to develop tests, treatments, and vac-
cines. Traditionally, mitochondrial structures have been assessed via manual
inspection of fluorescent microscopy imagery. However, manual microscopy
studies are labor-intensive and fail to provide a high-throughput for screenings.
Thus, demonstrating the need for techniques that are more automated and
utilize quantitative metrics for analysis. Yet, modeling mitochondria is no trivial
task; mitochondria are amorphous, spatially diffuse structures that render tradi-
tional shape-based, parametric modeling techniques ineffective. We address the
modeling task by using OrNet (Organellar Networks), a Python framework that
utilizes probabilistic, graph-theoretic techniques to cast mitochondrial dynamics
in the mold of dynamic social networks. We propose quantitative temporal and
spatial anomaly detection techniques that leverage the graph connectivity infor-
mation of the social networks to reveal time points of anomalous behavior and
spatial regions where organellar structures undergo significant morphological
changes related to a relevant change in environment or stimulus. We demon-
strate the advantages of these techniques with the results of exhaustive graph-
theoretic analyses over time in three different mitochondrial conditions. This
methodology provides the quantification, visualization, and analysis techniques
necessary for rigorous spatiotemporal modeling of diffuse organelles.

Introduction

Morphological perturbations of organellar structures inside cells
are useful for characterizing infection patterns and, ultimately,

‡ Department of Computer Science, University of Georgia, Athens, GA 30602
USA
‡‡ Department of Cognitive Science, University of Georgia, Athens, GA 30602
USA
|| Department of Mathematics, University of Georgia, Athens, GA 30602 USA
¶ Department of Microbiology, University of Georgia, Athens, GA 30602 USA
** Department of Infectious Diseases, University of Georgia, Athens, GA
30602 USA
†† Department of Computational and Systems Biology, University of Pitts-
burgh, Pittsburgh, PA 15232 USA
* Corresponding author: spq@uga.edu
§ Department of Cellular Biology, University of Georgia, Athens, GA 30602
USA

Copyright © 2020 Marcus Hill et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

developing therapies. In particular, tuberculosis, an infectious
disease caused by Mycobacterium tuberculosis (Mtb), induces
distinct structural changes of the mitochondria in invaded cells
[FCGQR15]. This is significant because tuberculosis is respon-
sible for approximately 1.5 million human fatalities annually,
with growing resistance to current antibacterial treatment regi-
mens [FCGQR15]. Studying the permanent changes in subcellular
structures pre- versus post-infection will set the stage for genetic
screens, whereby these changes can be studied under different
mutations of the Mtb pathogen; with enough such studies and
a subsequent understanding of how the Mtb pathogen affects its
host, we can leverage that knowledge to develop tests, treatments,
and vaccines.

Prior works have shown that the Mtb pathogen alters the shape
of mitochondrial structures to disrupt vital functions provided by
the organelle so that it can successfully invade a host [Dub16],
[CAA18]. Modeling these perturbed subcellular structures for
analysis is difficult because mitochondria are amorphous, spatially
diffuse structures whose morphology exists within a dynamic
continuum, ranging from fragmented individual mitochondrion
to complex interconnected networks [FS12]. The morphology of
mitochondria transitions between many states along its spectrum,
as a result of fission and fusion events [SBM+08], [SNY08] and
the observation of these morphological changes is referred to as
mitochondrial dynamics [FS12]. Thus, understanding mitochon-
drial dynamics is useful for gaining insight regarding a host’s
response to infections and cellular invasions. Figure 1 depicts
the morphological changes of mitochondria in two different cells
that underwent either fission or fusion to illustrate mitochondrial
dynamics.

Early approaches to assessing mitochondrial dynamics in-
volved manually observing fission and fusion events in live
microscopy imagery. A notable early study tagged two distinct
groups of mitochondria with red and green fluorescent proteins
before introducing the two groups together in the presence of
polyethylene glycol (PEG) to induce fusion, then manually ob-
served the resultant heterogeneous fluorescent structures to un-
derstand mitochondrial dynamics [LLFR02]. However, manual
microscopy studies are labor-intensive and fail to provide a high-
throughput for screenings [FS12]. These shortcomings have moti-
vated many to research methodologies that are more automated by
quantitatively modelling and assessing live microscopy imagery

92 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Fig. 1: Frames from two different live microscopy videos depicting
the mitochdonria before and after morphological events.

of mitochondria [ADATLBR+18], [SBM+08], [MLS10].
Assessment of mitochondrial dynamics via live microscopy

has been studied from various scientific perspectives. Most studies
utilized confocal fluorescent microscopy to capture the morpho-
logical changes of the mitochondria [SCE+17]. One imagery-
based approach proposed a quantitative methodology that mea-
sured the lengths of all mitochondria present in a cell, both
prior to and post the occurrence of either a fission or fusion
event, to determine whether the mitochondria fused or fragmented
[SBM+08]. Limitations of that approach was that it required
manually denoting regions of interest to assess only a subset
of the mitochondria present, and it intentionally excluded any
mitochondria located in dense clusters because of the difficulty
in determining the precise shapes and dimensions of individ-
ual mitochondrion. Another quantitative approach also leveraged
confocal microscopy imagery to utilize a technique known as
FRAP, or fluorescence recovery after photobleaching, to assess
mitochondrial dynamics [MLS10]. This specific FRAP approach
involved bleaching the cell in a designated region and monitoring
the recovery of fluorescence as fluorescently tagged mitochondria
migrate from unbleached areas to the bleached zones [MLS10].
However, such an approach can be jeopardized by the motility
of mitochondria and its environment; unexpected movement from
mitochondria, or even the entire cell, can disrupt a FRAP analysis
requiring the sample being assessed to be discarded. Both of
these early approaches risk overlooking crucial morphological
information because only a subset of the mitochondria present
in the cell can be used for analysis.

In more recent literature, a novel methodology was proposed
that modeled the morphology of mitochondria by casting all
local diffuse clusters of mitochondria present in a cell as nodes
within an evolving graph, known as a dynamic social network
[ADATLBR+18]. Dynamic social networks are well-suited for
modeling mitochondria because the granularity of the clusters
being modeled can be adjusted by increasing or decreasing the

number of nodes used. These networks overcome the limitations
of prior approaches because they do not require any manual
intervention nor are they negatively affected by organellar motility.
Additionally, this approach does not seek to assess only specific
well-behaved mitochondria, but any that are visible in clusters
around the cell regardless of their morphological state (i.e. frag-
mented, fused, etc.). Our work seeks to elucidate mitochondrial
dynamics by providing quantitative methodologies to measure
spatial and temporal regions of anomalous morphological behavior
via spectral analysis of dynamic social networks.

Data Acquisition

In our efforts to demonstrate the morphological spectrum that
mitochondria undergo, we have amassed a collection of confocal
imaging videos of live HeLa cells fluorescently tagged with the
protein DsRed2-Mito-7. We maintained three distinct groups of
cells: a group that was not exposed to any external stimulant,
referred to as our control group; a group that was exposed to
listeriolysin O (llo), a pore-forming toxin, to induce mitochondrial
fragmentation; and a group that was exposed to mitochondrial-
division inhibitor 1 (mdivi) to induce mitochondrial fusion. Live
imaging videos of each cell was recorded with a Nikon A1R
confocal microscope. The imaging occurred in an environment
that maintained 37 degrees celsius and 5% CO2. Every imaging
video consists of at least 20,000 frames, of dimensions 512x512,
captured at 100 frames per second. In all of our imagery, each
red “dot” depicts a single mitochondrion within a cell. For scale,
the length of mitochondria is typically between 500 nm to 1 mm
or greater, and the average diameter is approximately 500 nm
[MLS10], [DC07].

Spectral Analysis of Social Networks

Mitochondrial structures can respond in drastic, unpredictable
ways to an environmental change or an external stimulus, and
our work seeks to characterize these responses from both the
spatial and temporal contexts. We were able to explore those
perspectives by analyzing microscopy imagery, primarily videos,
of fluorescently tagged live HeLa cells post-exposure to drug
treatments that induced either fusion or fragmentation of the
mitochondria in the cells [ADATLBR+18]. We modeled and
analyzed the mitochondria using OrNet (Organellar Networks),
an open-source Python framework built on libraries within the
scientific Python ecosystem that models subcellular organelles as
dynamic social networks [FHD+20].

OrNet utilizes a probabilistic approach, involving Gaussian
mixture models (GMMs), to construct mitochondrial cluster
graphs [ADATLBR+18], [FHD+20]. GMMs were utilized to
determine spatial regions of the microscopy imagery that cor-
responded to the mitochondrial clusters by iteratively updating
the parameters of underlying mixture distributions until they
converged. This approach assumes that the spatial locations of mi-
tochondria are normally distributed with respect to their associated
clusters [ADATLBR+18]. The post-convergence parameters of the
mixture distributions, specifically the means and covariances, were
then used for constructing the social network graph. The means
corresponded to the center spatial coordinates of mitochondrial
clusters, and for this reason they were selected to be the nodes in
the graphs. The edges, which represent the relationships between
clusters, were defined by the Hellinger distance between the
respective mixture distributions. This modeling process occurred

SPECTRAL ANALYSIS OF MITOCHONDRIAL DYNAMICS: A GRAPH-THEORETIC APPROACH TO UNDERSTANDING SUBCELLULAR PATHOLOGY 93

for every frame in a microscopy video; therefore, each frame
updates the state of the network’s graph at a discrete point in
time. Traced over time, the dynamics of the social networks,
appearing as perturbations in connected nodes via changes in the
edge weights, OrNet tracks the changes of the spatial relationships
between mitochondrial clusters.

By modeling the spatiotemporal relationships of mitochondria
as a dynamic social network, the graph states could be repre-
sented as Laplacian matrices. A Laplacian matrix is a useful
representation of a graph that enables the analysis of its properties
via spectral graph theory techniques. Eigendecomposition, or the
factorization of a matrix into its eigenvalues and eigenvectors,
is a graph theoretic technique that is the cornerstone of our
proposed methodologies. Eigendecomposition of a graph Lapla-
cian yields vital information about the connectedness of that
graph [CGotMS97]. In the context of mitochondrial dynamics,
the connectedness of a graph provides a quantitative description
about the morphology at a given time. By leveraging such quanti-
tative descriptions, our techniques are able to indicate spatial and
temporal regions demonstrating anomalous behavior.

Temporal Anomaly Detection

Detecting when morphology-altering events occur is an important
aspect to understanding mitochondrial dynamics. Temporal indi-
cators of organellar activity improve qualitative assessments of
microscopy imagery by eliminating the need to manually inspect
every frame, only those that immediately precede or succeed an
anomalous event. Additionally, the effects of local events on the
global mitochondrial structure are more distinct. This process of
indicating time points when distinct organellar activity is occurring
is a temporal anomaly detection task. We addressed this task
by utilizing the graph connectivity information provided by the
eigenvalue vectors to detect anomalous behaviors.

Eigendecomposition of each mitochondrial cluster graph that
comprises the dynamic social network results in a number of
eigenvalue vectors and eigenvector matrices that correspond to
the number of graph states in the network. Because these vectors
and matrices have a natural ordering, the information is essentially
a time series dataset. We highlight anomalous time points in the
data by first computing the average of each eigenvalue vector,
then indicating time points whose averages are statistical outliers.
Outliers are determined by computing the z-score, or standard
score, for every time point based on the distance between the
average of its associated eigenvalue vector and the mean of a few
preceding averages; if the distance exceeds some threshold value,
typically two standard deviations, then it is considered an outlier.
The number of preceding averages used is predetermined by a
fixed window size. This sliding window approach enables adaptive
thresholding values to be computed for declaring anomalous
behavior that are derived from local morphological events, rather
than a fixed global constant.

In essence, this approach utilizes the eigenvalues to character-
ize the magnitude of spatial transformations experienced by the
morphology. Therefore, morphology-altering events, like fission
and fusion, are likely to be discovered by highlighting time points
where eigenvalue vectors are demonstrating anomalous behavior.

The Python code we utilized to perform temporal anomaly
detection is below: this function computes anomalous time points
and displays the subsequent eigenvalue time-series and outlier
signal plots. The parameters to the function are the time-series of

eigenvalue vectors that correspond to the dynamic social network,
a window size, and a threshold value. An example of the plots
generated by this code is shown in Figure 2.

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

def temporal_anomaly_detection(eigen_vals, window,
threshold):

'''
Generates a figure comprised of a time-series plot
of the eigenvalue vectors, and an outlier detection
signals plot.

Parameters

eigen_vals: NumPy array (NXM)

Matrix comprised of eigenvalue vectors.
N represents the number of frames in the
corresponding video, and M is the number of
mixture components.

window: int
The size of the window to be used for anomaly
detection.

threshold: float
Value used to determine whether a signal value
is anomalous.

Returns

NoneType object
'''
eigen_vals_avgs = [np.mean(x) for x in eigen_vals]
moving_avgs = np.empty(shape=(eigen_vals.shape[0],),

dtype=np.float)
moving_stds = np.empty(shape=(eigen_vals.shape[0],),

dtype=np.float)
z_scores = np.empty(shape=(eigen_vals.shape[0],),

dtype=np.float)
signals = np.empty(shape=(eigen_vals.shape[0],),

dtype=np.float)

moving_avgs[:window] = 0
moving_stds[:window] = 0
z_scores[:window] = 0
for i in range(window, moving_avgs.shape[0]):

moving_avgs[i] = \
np.mean(eigen_vals_avgs[i - window:i])

moving_stds[i] = \
np.std(eigen_vals_avgs[i - window:i])

z_scores[i] = \
eigen_vals_avgs[i] - moving_avgs[i]

z_scores[i] /= moving_stds[i]

for i, score in enumerate(z_scores):
if score > threshold:

signals[i] = 1
elif score < threshold * -1:

signals[i] = -1
else:

signals[i] = 0

sns.set()
fig = plt.figure()
ax = fig.add_subplot(211)
ax.plot(eigen_vals)
ax.set_ylabel('Magnitude')
ax = fig.add_subplot(212)
ax.plot(z_scores)
ax.set_xlabel('Frame')
ax.set_ylabel('Signal')
plt.show()
plt.close()

94 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Fig. 2: The top plot illustrates the eigenvalue time-series data of an llo cell that experienced a mitochondrial fission event, and the bottom
plot shows the corresponding outlier signal plot. Peaks in the signal plot represent time points declared anomalous by the temporal anomaly
detection technique.

Spatial Anomaly Detection

After indicating discrete times points where the morphology
experienced significant perturbations, quantitatively determining
the spatial locations of significant structural changes is crucial
for assessing mitochondrial dynamics. Mitochondria are spatially
diffuse structures that occupy a vast amount of the cell and, as
a result, many areas of the cell require detailed inspection to
identify all significant spatial changes. However, many structural
perturbations go unnoticed when evaluated with purely qualitative
metrics because of the large search space and the inherent diffi-
culty in tracking microscopic objects. Thus, we sought to provide
a quantitative technique to indicate spatial regions demonstrating
anomalous morphological behavior.

Anomalous morphological behavior can be defined as spatial
regions shifting suddenly, or major structural changes taking place
in the underlying social network: edges being dropped or formed,
nodes appearing or disappearing. The process of tracking such
regions is, in essence, an object detection task because specific
mitochondrial clusters are being monitored as the global structure
evolves over time. By treating this task as such, we utilized
bounding boxes to highlight the regions of significance. The coor-
dinates of the bounding boxes were computed based on the pixel
coordinates denoted by the GMMs that corresponded to the spatial
locations of the mitochondrial clusters. Therefore, a bounding box
can be displayed for each mitochondrial cluster determined by
the GMM. However, rendering every bounding box can obfuscate
the regions demonstrating anomalous behavior because some of
the mitochondrial cluster boundaries may overlap. As a result,
we utilized only the most significant, non-overlapping regions for
analysis.

Regions demonstrating the most significant amount of struc-
tural variance are determined via analysis of the eigenvector
matrices. The number of eigenvector matrices corresponds with
the number of graph states recorded in the social network. Each
row in an eigenvalue matrix is related to a mixture distribution,
and by extension a spatial region of the imagery. To determine
the regions demonstrating the most amount of variance, the total

Fig. 3: Image on the left shows the initial spatial location and size of
a bounding box for a mitochondrial cluster from the first frame of a
mdivi cell’s microscopy video, which depicts a mitochondrial fusion
event, and the image on the right shows the spatial location and size
of a bounding box corresponding to the same cluster on the final
frame of the video. This figure highlights the ability of our spatial
anomaly detection technique to accurately track the mitochondria as
it undergoes morphological transformations.

euclidean distance of each row vector between graph states is
computed. Ultimately, the spatial regions that corresponded to the
eigenvector rows demonstrating the highest amounts of variance
were selected as regions of interest to be highlighted by the
bounding boxes.

Below is the code utilized to perform spatial anomaly detec-
tion: this function draws bounding boxes for the mitochondrial
cluster regions in a microscopy video. The parameters for the
function are the file path to the input video; means and covariance
matrices from the GMM; the eigenvector matrices; an integer that
indicates the maximum number of boxes to display; the path to the
directory where the output video will be saved; and the number of
standard deviations away from center spatial coordinates, in both
dimensions, to construct the box boundaries. Figure 3 displays
frames of a video generated by this code.

SPECTRAL ANALYSIS OF MITOCHONDRIAL DYNAMICS: A GRAPH-THEORETIC APPROACH TO UNDERSTANDING SUBCELLULAR PATHOLOGY 95

import imageio
import numpy as np

def spatial_anomaly_detection(vid_path, means,
covars, eigen_vecs, k,
outdir_path,
std_threshold=3):

'''
Draws bounding boxes around the mixture component
regions demonstrating the most variance.

Parameters

vid_path: string

Path to the input video.
means: NumPy array (NxMx2)

Pixel coordinates corresponding to the mixture
component means. N is the number of video
frames, M the number of mixture components,
and 2 denotes the 2D pixel coordinate.

covars: NumPy array (NxMx2x2)
Covariance matrices of the guassian mixture
components. N is the number of video frames,
M is the number of mixture components, and 2x2
denotes the covariance matrix.

eigen_vecs: NumPy array (NxMxM)
Eigenvector matrix. N represents the number of
frames in the corresponding video, M is the
number of mixture components.

k: int
Number of the most significant non-overlapping
regions to display bounding boxes for. The
actual number may be less than k, if the video
does not contain that many non-overlapping
regions.

outdir_path: string
Directory path to save the bounding box video.

std_threshold: float
The number of standard deviations to use
to compute the spatial region of the bounding
box. Default is three.

'''

input_vid_title = os.path.split(vid_path)[1]
out_vid_title = \

input_vid_title.split('.')[0] + '.mp4'
out_vid_path = os.path.join(outdir_path,

out_vid_title)
with imageio.get_reader(vid_path) as reader, \

imageio.get_writer(
out_vid_path, mode='I', fps=1) as writer

fps = reader.get_meta_data()['fps']
size = reader.get_meta_data()['size']
distances = \

absolute_distance_traveled(eigen_vecs)
descending_distances_indices = \

np.flip(np.argsort(distances))
region_indices = find_initial_boxes(

means,
covars,
size,
descending_distances_indices,
k

)
num_of_boxes = len(region_indices)
box_colors = \

np.random.randint(
256,
size=(num_of_boxes),
3,

)

for i, frame in enumerate(reader):
current_frame = frame
for index, j in enumerate(region_indices):

row_bounds, col_bounds = \

compute_region_boundaries(
means, covars, size, i, j

)
row_diff = row_bounds[1] - row_bounds[0]
col_diff = col_bounds[1] - col_bounds[0]

color = box_colors[index]
current_frame[

row_bounds[0]:row_bounds[1],
col_bounds[0],
:,

] = color
current_frame[

row_bounds[0]:row_bounds[1],
col_bounds[1],
:,

] = color
current_frame[

row_bounds[0],
col_bounds[0]:col_bounds[1],
:,

] = color
current_frame[

row_bounds[1],
col_bounds[0]:col_bounds[1],
:,

] = color

writer.append_data(current_frame)

Experiments

We first evaluated the temporal anomaly detection methodology
by plotting the eigenvalue time-series and outlier signal for each
cell. For our experiments, we utilized a window size of 20 and a
threshold value of 2. An example of the plots generated is shown in
Figure 2. Next, we evaluated the video frames that corresponded
with each anomalous time point in every video. In each frame,
significant changes in the morphology are visible, especially in the
llo and mdivi videos. This is meaningful because the morphology
of mitochondria changes subtly between frames, making it a
tedious task to manually determine when any important event oc-
curred. However, the anomalous time points indicate specific video
frames where morphological changes are visible: the anomalous
llo video frames illustrate the fragmentation process by depicting
the clusters at distinct times where they are visibly smaller, and
conversely, the anomalous mdivi frames highlight times where
the clusters are noticeably larger. To illustrate the process of
temporally tracking morphological activity, Figure 4 displays all of
the frames in a llo cell’s microscopy video that correspond to time
points declared anomalous by our temporal anomaly detection
technique.

Unexpectedly, we noticed anomalous behavior was indicated
in a subset of our control videos. This was not anticipated because
the control cells were not exposed to any stimuli, and their
mitochondrial structures did not display any significant changes
during the duration of the videos. This phenomenon highlighted
the sensitivity of our approach; any significant movement of the
mitochondria, such as a sudden migration, is likely to be detected
as an anomalous event. Therefore, the temporal indicators will
denote frames where morphological events are occurring, but
they should not be relied on solely for any behavioral inference
regarding the mitochondria’s morphology.

Our spatial anomaly detection methodology was evaluated by
inspecting the regions highlighted by the bounding boxes in each
cell type. The effectiveness of this approach was demonstrated
through assessment of the llo and mdivi videos because mito-

96 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Fig. 4: Frames from an llo video that were declared anomalous by the temporal anomaly detecton technique. These frames correspond to the
same cell whose eigenvalue time-series and outlier signal plots were displayed in Figure 2.

chondrial clusters of both types were displaced as their videos
progressed. Mitochondria in the llo videos fragment and become
much smaller, and in some instances this occurs until the clusters
are no longer visible; in mdivi videos many of the smaller clusters
merge with larger ones, effectively, making some regions of the
cell no longer occupied by any mitochondrial structures. Yet, the
bounding boxes were able to adapt accordingly to these spatial
changes because the spatiotemporal relationships of clusters were
captured within the dynamic social networks. The coordinates
of the bounding boxes were computed using the parameters,
specifically the mean and covariance, of the corresponding mix-
ture distributions. As a result, the boxes were able to track the
mitochondrial clusters as they moved around the cell or shrunk
in size. In many cases, the clusters moved completely outside
the area highlighted by initial bounding boxes, so the ability to
adjust the shape and spatial locations of the boxes allows for the
regions demonstrating anomalous behavior to always remain the
areas being highlighted. Figure 3 depicts the spatial location and
size of a bounding box corresponding to a mitochondrial region
within a mdivi cell both before and after a fusion event occurs.

Discussion

Both the temporal and spatial anomaly detection methodologies
have proven effective in quantitatively characterizing mitochon-
drial dynamics, however, the extent of their effectiveness is largely
dependent on the selection of adequate parameters. For the tem-

poral methodology the free parameters are the threshold value,
window size. A threshold value too high will result in none of the
time points being declared anomalous, while too low will result
in a high number of frames being considered anomalous, even
though the morphology may have only changed slightly between
the time points. The window size is important for determining
how distinct the current time point’s eigenvalues are compared
to those of the previous frames, and it behaves similarly to the
threshold parameters: if the value is too high or low, the number of
time points declared anomalous can change drastically. The spatial
anomaly detection methodology has only one free parameter, the
threshold value used to determine size of the bounding boxes.
Due to the assumption that the spatial locations of mitochondria
within each cluster are normally distributed [ADATLBR+18], we
found that three standard deviations away from the mean, with
respect to each dimension, is sufficient for a bounding box to
encompass all the mitochondria that are members of the cluster
being highlighted. Ultimately, these approaches are sensitive to the
parameters selected, and the usage of adequate values can enhance
the anomaly detection process.

Conclusion

The morphology of mitochondria is perturbed in distinct ways
by the presence of bacterial or viral infections in the cell,
and modeling these structural changes can aid in understanding
both the infection strategies of the pathogen, and cellular re-

SPECTRAL ANALYSIS OF MITOCHONDRIAL DYNAMICS: A GRAPH-THEORETIC APPROACH TO UNDERSTANDING SUBCELLULAR PATHOLOGY 97

sponse. Modeling mitochondria poses many challenges because
it is an amorphous, diffuse subcellular structure. Yet, dynamic
social networks are well-suited for the task because they are
capable of representing the global structure of mitochondria by
flexibly modeling the many local clusters present in the cell.
This extensible modeling approach enables the spatiotemporal
relationships of the mitochondrial clusters to be explored using
theoretic graph techniques. We proposed quantitative spatial and
temporal anomaly detection methodologies that could be utilized
in conjunction with traditional qualitative metrics to elucidate
mitochondrial dynamics. We ultimately hope to use these spectral
analytics and the OrNet software package to conduct large-scale
genomic screens of Mycobacterium tuberculosis mutants, in an
effort to build a deeper understanding of how the pathogen invades
cells and induces cell death at the genetic level. This work is one
of the first steps toward that ultimate goal.

REFERENCES

[ADATLBR+18] Andrew Durden, Allyson T Loy, Barbara Reaves, Mojtaba
Fazli, Abigail Courtney, Frederick D Quinn, S Chakra
Chennubhotla, and Shannon P Quinn. Dynamic Social
Network Modeling of Diffuse Subcellular Morphologies. In
Fatih Akici, David Lippa, Dillon Niederhut, and M Pacer,
editors, Proceedings of the 17th Python in Science Con-
ference, pages 1 – 7, 2018. doi:10.25080/Majora-
4af1f417-000.

[CAA18] Bridgette M Cumming, Kelvin W Addicott, and John H
Adamson. Mycobacterium tuberculosis induces decelerated
bioenergetic metabolism in human macrophages. Biochem-
istry and Chemical Biology, Microbiology and Infectious
Disease, 2018. doi:10.7554/eLife.39169.

[CGotMS97] Fan R. K. Chung, Fan Chung Graham, and Confer-
ence Board of the Mathematical Sciences. Spectral Graph
Theory. 1997.

[DC07] Scott A. Detmer and David C. Chan. Functions and dysfunc-
tions of mitochondrial dynamics. Nature Reviews Molecular
Cell Biology, 2007. doi:10.1038/nrm2275.

[Dub16] Rikesh K. Dubey. Assuming the role of mitochondria in
mycobacterial infection. International Journal of Mycobac-
teriology, 2016. doi:10.1016/j.ijmyco.2016.06.
001.

[FCGQR15] Kari Fine-Coulson, Steeve Giguere, Frederick D. Quinn,
and Barbara J. Reaves. Infection of a549 human type ii
epithelial cells with mycobacterium tuberculosis induces
changes in mitochondrial morphology, distribution and mass
that are dependent on the early secreted antigen, esat-
6. Microbes Infect., 2015. doi:10.1016/j.micinf.
2015.06.003.

[FHD+20] Mojtaba Fazli, Marcus Hill, Andrew Durden, Rachel Matt-
son, Allyson T Loy, Barbara Reaves, Abigail Courtney,
Frederick D Quinn, Chakra Chennubhotla, and Shannon
Quinn. Ornet - a python toolkit to model the diffuse
structure of organelles as social networks. Journal of Open
Source Software, 2020. doi:10.21105/joss.01983.

[FS12] Andrew Ferree and Orian Shirihai. Mitochondrial dynamics:
The intersection of form and function. Advances in Ex-
perimental Biology and Medicine, 2012. doi:10.1007/
978-1-4614-3573-0_2.

[LLFR02] Frederic Legros, Anne Lombes, Paule Frachon, and Manuel
Rojo. Mitochondrial fusion in human cells is efficient,
requires the inner membrane potential, and is mediated
by mitofusins. Molecular Biology of the Cell, 2002.
doi:10.1091/mbc.E02-06-0330.

[MLS10] Kasturi Mitra and Jennifer Lippincott-Schwartz. Analysis
of mitochondrial dynamics and functions using imaging
approaches. Curr Protoc Cell Biol, 2010. doi:10.1002/
0471143030.cb0425s46.

[SBM+08] Wenjun Song, Blaise Bossy, Ola J Martin, Andrew Hicks,
Sarah Lubitz, Andrew B Knott, and Ella Bossy-Wetzel.
Assessing mitochondrial morphology and dynamics using

fluorescence wide-field microscopy and 3d image process-
ing. Methods, 2008. doi:10.1016/j.ymeth.2008.
10.003.

[SCE+17] Miguel Sison, Sabyasachi Chakrabortty, Jerome Extermann,
Amir Nahas, Paul James Marchand, Antonio Lopez, Tanja
Weil, and Teho Lasser. 3d time-lapse imaging and quantifi-
cation of mitochondrial dynamics. Scientific Reports, 2017.
doi:10.1038/srep43275.

[SNY08] Der-Fen Suen, Kristi L. Norris, and Richard J. Youle. Mito-
chondrial dynamics and apoptosis. Genes and Development,
2008. doi:10.1101/gad.1658508.

98 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Matched Filter Mismatch Losses in MPSK and MQAM
Using Semi-Analytic BEP Modeling

Mark Wickert‡∗, David Peckham‡

F

Abstract—The focus of this paper is the bit error probability (BEP) performance
degradation when the transmit and receive pulse shaping filters are mismatched.
The modulation schemes considered are MPSK and MQAM. In the additive
white Gaussian noise (AWGN) channel both spectral efficiency and noise mit-
igation is commonly achieved by using square-root raised cosine (SRC) pulse
shaping at both the transmitter and receiver. The novelty of this paper primarily
lies in the use semi-analytic BEP simulation for conditional error probability
calculations, with transmit and receive filter mismatch, the optional inclusion of a
small FIR equalizer. For lower order MPSK and MQAM, i.e., 8PSK and 16QAM
Eb/N0 power degradation at BEP = 10−6 is 0.1 dB when the excess bandwidth
mismatch tx/rx = 0.25/0.35 or 0.35/0.25, but quickly grows as the modulation
order increases and/or the mismatch increases.

Index Terms—digital modulation, pulse shaping, phase-shift keying, quadrature
amplitude modulation

Introduction

In the early days of satellite and space communications, dig-
ital modulation schemes focused on constant envelope wave-
forms, in particular phase-shift keying (PSK), with rectangular
pulse shaping [Lindsey]. The need for spectral efficiency is ever
present in modern communication systems [Ziemer], [Proakis],
and [Goldsmith]. The use of pulse shaping makes spectral effi-
ciency possible, at the expense of non-constant envelope wave-
forms [Ziemer]. Today m-ary PSK (MPSK) and high density m-
ary quadrature amplitude modulation (MQAM), both with pulse
shaping, are found in satellite communications as well as terrestrial
communications, e.g., WiFi, cable modems, and 4th generation
cellular via long term evolution (LTE). The term m-ary refers to
the fact that bandwidth efficient signaling is accomplished using an
M symbol alphabet of complex signal amplitudes, ck = ak+ jbk, to
encode the transmission of a serial bit stream. In an m-ary digital
modulation scheme we send log2 M bits per symbol. The objective
being to transmit more bits/s/Hz of occupied spectral bandwidth.

In certain applications the precise pulse shape used by the
transmitter is not known by the receiver. The use of an equalizer is
always an option in this case, but it adds complexity and for burst
mode systems, e.g., TDMA, the convergence time of an adaptive
equalizer is another issue to deal with.

The focus of this paper is the bit error probability (BEP)
performance degradation when the transmit and receive pulse

* Corresponding author: mwickert@uccs.edu
‡ University of Colorado Colorado Springs

Copyright © 2020 Mark Wickert et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

shaping filters are mismatched. The modulation schemes consid-
ered are MPSK and MQAM. In the additive white Gaussian noise
(AWGN) channel both spectral efficiency and noise mitigation
is commonly achieved by using square-root raised cosine (SRC)
pulse shaping at both the transmitter and receiver. The system
block diagram is shown in Figure 1. The parameters αtx and αrx
control the excess bandwidth factors of the transmit and received
filters respectively. Notice that this block diagram also shows a
symbol-spaced equalizer to allow for the exploration of potential
performance improvement, subject to how much complexity can
be afforded, and the need for rapid adaptation in the case of
burst mode transmission. We take advantage of semi-analytic
simulation techniques described in [Tranter] to allow fast and
efficient performance evaluation. All of the simulation software
is written in open-source Python using classes to encapsulate the
computations, waveform parameters, and calculation results. The
mathematical foundation is statistical decision theory, which in the
machine learning would be multiclass classification with apriori
decision boundaries.

SRC
Excess
BW α

tx

MPSK/
MQAM

Mapping

AWGN
Channel

MF (SRC)
Excess
BW α

rx

Symb Det

Symb DetEQ

LMS
Symbol Spaced EQ

_+

or
k

z k̂
s

k̂
s

i
d

k
s

log
2
(M)

bits/symb

k
s

[]
t

x n []r n
k k

a jb= +
[]w n

symb
sync

Fig. 1: System top level block diagram showing transmit and receive
pulse shaping filters with mismatch, i.e., αtx 6= αrx, and optionally the
inclusion of an adaptive equalizer.

Other authors such as, [Harris] and [Xing], have made mention
of matched filter mismatch, but not in the same context as we
consider in this paper. Harris is primarily driven by sidelobe
reduction from the transmitter perspective, while Xing wishes to
avoid the added complexity of an equalizer by using a specially
designed receiving filter. Here we are concerned with the situation
where the receiver does not always know the exact design of
the transmit pulse shape filter, in particular the excess bandwidth
factor.

The remainder of this paper is organized as follows. We

MATCHED FILTER MISMATCH LOSSES IN MPSK AND MQAM USING SEMI-ANALYTIC BEP MODELING 99

first provide a brief tutorial on digital communications at the
waveform level. Next we consider residual errors at the matched
filter output when using a simple truncated square-root raised
cosine (SRC) finite impulse response (FIR). In particular we
consider filter lengths of ±L symbols in duration. We then briefly
explain how a symbol-spaced adaptive equalizer can be inserted at
the output of the matched filter to compensate for pulse shape
mismatch. We then move on to briefly review the concept of
semi-analytic (SA)simulation and the develop conditional error
probability expressions for MPSK and MQAM. Finally, we move
into performance results.

Characterizing Digital Communications at the Waveform Level

To provide more context for the theoretical development of the
semi-analytic simulation technique used in this paper and prepare
for the system performance characterization of the results section,
we now consider three common digital communication charac-
terization techniques: IQ Diagrams, eye diagrams, and bit error
probability (BEP) versus received signal energy-to-noise power
spectral density (Eb/N0) curves.

IQ Diagrams

An IQ diagram is a representation of a signal modulated by a
digital modulation scheme such as MQAM or MPSK. It displays
the signal as a two-dimensional xy-plane scatter diagram in the
complex plane at symbol sampling instants. The angle of a point,
measured counterclockwise from the horizontal axis, represents
the phase shift of the carrier wave from a reference phase. The
distance of a point from the origin represents a measure of the
amplitude or power of the signal. The number of IQ points in
a diagram gives the size of the alphabet of symbols that can be
transmitted by each sample, and so determines the number of bits
transmitted per sample. For the purposed of this paper it will be a
power of 2. A diagram with four points, for example, represents a
modulation scheme that can separately encode all 4 combinations
of two bits: 00, 01, 10, and 11 and so can transmit two bits per
sample. Figure 2 shows an 8-PSK IQ Diagram.

I (Re)

Q (Im)

0b111

0b110

0b101

0b100

0b010

0b011

0b000

0b001

8PSK - IQ
Plot

Fig. 2: 8-PSK IQ Diagram shows information is transmitted as one
of 8 symbols, each representing 3 bits of data.

Eye Diagrams

An eye diagram is a tool for the evaluation of the combined
effects of channel noise and inter-symbol interference (ISI) on the
performance of a channel. Several system performance measures
can be derived by analyzing this display. If the signals are poorly
synchronized with the system clock, or filtered improperly, or too
noisy, this can be observed from the eye diagram. An open eye
pattern corresponds to minimal signal distortion (clear diamond

shape in the left plot). Distortion of the signal waveform due to ISI
and noise appears as closure of the eye pattern (note partial closure
on the right plot). The tight waveform bundles at the maximum
opening correspond to tight scatter points of the IQ diagram, i.e.,
similar to the opposing pair of points on the real axis of Figure 2.
Since the waveform is complex there is an eye diagram for both
the real part and the imaginary part of the signal. For the purposes
of this paper we will be looking at the closure of the eye pattern as
the mismatch of the filters increases, similar to moving from the
left to right side of Figure 3.

 18

Eye Diagrams

An Eye Diagram is a tool for the evaluation of the combined effects of channel noise and inter-

symbol interference (ISI) on the performance of a channel. Several system performance

measures can be derived by analyzing the display. If the signals are too long, too short, poorly

synchronized with the system clock, too high, too low, too noisy, or too slow to change, or have

too much undershoot or overshoot, this can be observed from the eye diagram. An open eye

pattern corresponds to minimal signal distortion. Distortion of the signal waveform due

to ISI and noise appears as closure of the eye pattern. For the purposes of this paper we will be

looking at the closure of the eye pattern as the mismatch of the filters increases. The Left Eye

Pattern of Figure 8 is an example of a good sampling instant while the right is degraded.

Figure 8:QPSK Eye Diagram, Perfect Channel (Left), Channel Distortions (Right)

Bit Error Probability (BEP) Curves

In digital transmission, the number of bit errors is the number of received bits over

a communication channel that have been altered due to noise, interference, distortion or bit

synchronization errors. The bit error probability (BEP) is the number of bit errors per unit time.

The bit error ratio is the number of bit errors divided by the total number of transferred bits

during a studied time interval. The BEP curves of a system are usually plotted and describe the

performance of a digital communication system. These BEP curves are often compared to theory

curves to measure how the channel affected the overall performance of the demodulator. Figure

9 shows the theory curves for BPSK/QPSK, 8PSK, and 16-PSK

open =

Fig. 3: 4PSK eye diagram: perfect channel (left), channel distortions
present (right), both assuming 10 samples per symbol.

Bit Error Probability (BEP) Curves

In digital transmission, the number of bit errors is the number
of received bits over a communication channel that have been
altered due to noise, interference, distortion (improper filtering),
carrier phase tracking errors, and bit synchronization errors. The
bit error probability (BEP), Pe, in a practical setting is the number
of bit errors divided by the total number of transferred bits during
a studied time interval. The BEP curves are plotted as log10 Pe
versus the received energy per bit-to-noise power spectral density
ratio in dB, i.e., 10 log10(Eb/N0). The shape of the curve is
waterfall like with a theoretical BEP curve to the left of curves
for real-world systems. A system with impairments in the end-to-
end transmission path, including the demodulator (think symbol
classifier), increase the BEP for a given operating scenario. In
a Wireless LAN or cable modem, for example, a low BEP is
required to insure reliable information exchange. A large M is
used here to indicate a large number of bits per second, per Hz of
bandwidth. To see a typical BEP curve jump forward to Figure 10.

Pulse Shaping Filter Considerations

The pulse shape used for this matched filter mismatch study is the
discrete-time version of the square-root raised-cosine pulse shape:

pSRC(t) =

1−α +4α/π, t = 0
α√

2

[(
1+ 2

π
)

sin
(π

4α
)

(
1− 2

π
)

cos
(π

4α
)]
, t =± T

4α{
sin
[
πt(1−α)/T

]
+

4αt cos
[
πt(1+α)/T

]
/T
}
/

{
πt
[
1− (4αt/T)2

]
/T
}−1

, otherwise

(1)

where T is the symbol period. The name used here is square-root
raised cosine (SRC). The transmitted signal bandwidth when using
SRC shaping is approximately (1+α)Rs, where Rs = Rb/ log2 M
is the symbol rate and Rb is the serial bit rate. Note m-ary signaling
and SRC pulse shaping together together serve to increase spectral

100 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

efficiency in all the applications mentioned in the introductory
paragraph.

The upper plot of Figure 4 shows the right half of an SRC
pulse shape for α = 0.5 and 0.25. The lower plot shows the result
of passing the transmit pulse through a matched and mismatched
receiver filter. The point of the SRC-SRC cascade is to provide
spectral efficiency and insure that the pulse zero crossing occur
at the adjacent symbol periods, i.e. zero ISI. For the mismatched
case you can see ISI has crept in.

ISI is non-zero
values at

integer symbol
times 1, 2,…

Tx SRC MF SRC ResponseImpulse

Symmetrical SRC pulse decays
slower as a approaches 0,
offering a more compact

frequency spectrum

Fig. 4: Plots of the SRC pulse shape (top) for α = 0.25 and 0.5 and
SRC-SRC cascading under a matched and mismatched receiver filter.

For realizability considerations the discrete-time transmit pulse
shaping filter and receiver matched filter are obtained by time
shifting and truncating and then sampling by letting t → nT .
Residual errors at the matched filter output are present as a
result of truncation as noted in both [Harris] and [Xing]. For
small M values ±6T is acceptable, but for the higher schemes
considered in this paper we found increasing the filter length to
±8T was required to avoid residual errors under matched pulse
shape conditions. The residual errors at the zero crossings shown
in the bottom half of Figure 4, but now for an ensemble transmit
symbols, is shown in Figure 5. Here we see that the errors increase
as α decreases.

Fig. 5: Matched SRC filters at transmit and receiver showing residual
error due to FIR filter truncation of the doubly infinite pulse response
[Rappaport], for a nominal maximum eye opening of ±1.

Semi-Analytic Bit Error Probability

Semi-analytic BEP (SA-BEP) calculation allows for fast and
efficient analysis when a linear channel exists from the AWGN
noise injection point to the receiver detector [Tranter]. A block
diagram, which applies to the matched filter mismatch scenario
of this paper, is shown in Figure 6. The variable zk is the com-
plex baseband detector decision statistic, as the receiver matched
filter is sampled at the symbol rate, Rs = 1/T , nominally at the
maximum eye opening. ISI is present in zk due to pulse shape
mismatch and other impairments such as timing error, static phase
error, and even phase jitter. This corresponds to an ensemble of
conditional Gaussian probabilities. The variance σ2

w, for each the
real/imaginary parts (inphase/quadrature), is calculated using

σ2
w = N0 ·

Ntaps−1

∑
n=0
|pr[n]|2, (2)

where the variance of the additive white Gaussian noise is denoted
N0 and pr[n] is the matched filter impulse response consisting of
Ntaps. The value of σw found in the conditional error probability of
the following subsections is a function of N0, which is set to give
the desired average received energy per symbol Es (note the energy
per bit Eb is Es/ log2(M)) to noise power spectral density ratio,
i.e., Es/N0 or Eb/N0. This allows full BEP curves to be generated
using just a single ensemble of ISI patterns. The calculation of
N0, taking into account the fact that the total noise power is
split between real/imaginary (or in digital communications theory
notation inphase/quadrature) parts is given by

N0 =
Es

2 ·10(Es/N0)dB/10 (3)

To be clear, (Es/N0)dB is the desired receiver operating point.
In the software simulation model we set (Eb/N0)dB, convert to
(Es/N0)dB, arrive at N0 for a fixed Es, then finally determine σw.
Note the 2 in the denominator of (3) serves to split the total noise
power between the in-phase and quadrature components.

Analytical
BEP/SEP

Calculation

Imp.
Train
Mod.

Trans. Filter
SRC

a[],
t tx

p n &

Matched Filt.
SRC

a[],
r rx

p n &

[]w n

AWGN

BEP
s2

w

k
z

T

Fig. 6: Block diagram describing how for a linear channel from
the noise injection point to the detector, enables the use of semi-
analytic BEP calculation over a more time consuming Monte-Carlo
simulation.

The SA-BEP method first calculates the symbol error prob-
ability by averaging over the ensemble of conditional Gaussian
probabilities

PE,symb =
1
N

N

∑
k=1

Pr{Error|zk,σw,other impairments} (4)

where N is the number of symbols simulated to create the
ensemble. For the m-ary schemes MPSK and MQAM we further
assume that Gray coding (adjacent symbols differ by only one bit)
is employed [Ziemer], and the BEP values of interest are small,

MATCHED FILTER MISMATCH LOSSES IN MPSK AND MQAM USING SEMI-ANALYTIC BEP MODELING 101

allowing the bit error probability to be directly obtained from the
symbol error probability via

BEP =
PE,symb

log2(M)
(5)

The other impairments noted in (4) refers to the fact that SA-BEP
can also be used to model carrier phase error or symbol timing
error.

For the SA-BEP analysis model what remains is to find expres-
sions for the conditional error probabilities in (4). A feature in the
analysis of both MPSK and MQAM, is that both schemes reside
in a two dimensional signal space and we can freely translate
and scale signal points to a normalized location to make the error
probability equations easier to work with.

M-ary PSK

For MPSK with M > 2 the optimum decision region for symbol
detection is a wedge shaped region having interior angle π/M, as
shown in the right side of Figure 7.

A simple upper bound, accurate for our purposes, is described
in [Ziemer] and [Craig], considers the perpendicular distance
between the nominal signal space point following the matched
filter and the wedge shaped decision boundary as shown in Figure
7.

Re

Im

(1,0)
(0,0)

(1, 0) ~
s

E
Nom. symb. pt.

Actual symb. pt.

p M

a
d

b
d

qÐ=
k k k

z z
8PSK

Pr{correct}
symb

b
L

a
L

overbound
region out
to

(0,0)

-¥

Fig. 7: Formulation of the conditional symbol error probability of
MPSK (M = 8 illustrated) given decision variable zk.

For unimpaired MPSK (no noise), we consider a normalized
MPSK signal point, zk, at angle zero to be the complex value
(1,0). Since zk is actually a complex baseband signal sample, it
can be viewed as the point zk = 1+ j0 in the complex plane. The
signal point length being one corresponds to setting zk =

√
Es =

1, where Es is the symbol energy. The symbol error probability
PE,symb is over bounded by the probability of lying above line La
or below line Lb, when circularly symmetric Gaussian noise is
now added to zk. For the special case of zk = 1 the probabilities of
being above and below the lines are equal, hence this upper bound
approximation results in

PE,symb ' 2Q
(

zk · sin(π/M)

σw

)
= 2Q

(
sin(π/M)

σw

)
, (6)

where Q(x) is the Gaussian Q function given by

Q(x) =
1√
2π

∫ ∞

x
e−t2/2 dt. (7)

Since we have assumed that zk = 1 we use σw via N0 to control
the operating point, Es/N0, and hence also Eb/N0. The over bound
region, shown in light red in Figure 7, is due to double counting
the error probability in this region.

With the bound only small differences are noted for the M = 4
case, and then only at very low Eb/N0 values. The bound becomes
tighter as M increases and as Eb/N0 increases. We conclude that

the bounding expression for PE,symb is adequate for use in semi-
analytic BEP calculations at PE values below 10−3.

When matched filter mismatch is present the complex decision
variable zk, obtained by sampling the matched filter output, no
longer sits at a normalized value of (1,0) = 1∠0. The scenario of
a perturbed zk is the real intent of Figure 7, where it shows two
perpendicular distances, da and db, for an arbitrary zk. We now
use these distances to form the conditional probability of symbol
error, and hence the Gray coded BEP. Using simple geometry to
write da and db in terms of the angle π/M and zk = |zk|e jθk we
can finally write the conditional symbol error probability as

PE,symb(zk,σw) = Q
(|zk|sin(π/M−|θk|)

σw

)
+

Q
(|zk|sin(π/M+ |θk|)

σw

)
. (8)

M-ary Quadrature Amplitude Modulation

For MQAM the noise-free received symbols are scaled and trans-
lated to lie nominally at (0,0) in the complex plane. Here we
pattern the development of the SEP expression after [Ziemer]. The
decision region for correct symbol detection detection is one of
three types: (1) interior square, (2) left/right or top/bottom channel
to infinity, (3) corners upper right/left and bottom right/left with
two infinite sides, as depicted in Figure 8.

Re

Im

16QAM (0,0) (0,0)

(3 , 3)a a

(,)a a

-a

-a

a

a

k
z

Nominal symb. pt.

Actual symb. pt.

(0,0)-a

-a

a

a

k
z

Nominal symb. pt.

Actual symb. pt.

=
-

3

2(1)
s

E
a

M

Type 1 Decision
Region (interior)

Type 2
Decision
Region
(edges)

+¥

+¥

(0,0)-a

-a

a

a

k
z

Nominal symb. pt.

Actual symb. pt.

Type 3
Decision
Region
(corners)

+¥

+¥

Pr{correct}
symb

Pr{correct}
symb

Fig. 8: Formulation of the conditional symbol error probability of
MQAM given decision variable zk.

Using simplifications similar to the MPSK case, we have the
following equations for calculating the conditional SEP for symbol
Types 1, 2, and 3. In the semi-analytic simulation software the
symbol is known a priori, so in forming the average of (4) we
choose the appropriate expression. For type 1 we have:

PE|type 1(zk,σw|type 1) =

Q
(

a−Re{zk}
σw

)
+Q

(
a+Re{zk}

σw

)

+Q
(

a− Im{zk}
σw

)
+Q

(
a+ Im{zk}

σw

) (9)

For type 2 we have:

PE|type 2(zk,σw|type 2) =

Q
(

a−Re{zk}
σw

)
+Q

(
a+Re{zk}

σw

)

+Q
(

a± Im{zk}
σw

) (10)

102 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Finally for type 3 we have:

PE|type 3(zk,σw|type 3) =

Q
(

a±Re{zk}
σw

)
+Q

(
a± Im{zk}

σw

)
(11)

In all three conditional probability of bit error expressions, (9),
(10), and (11), the variable a is defined is defined in terms of the
energy per symbol, Es and modulation order M using

a =

√
3Es

2(M−1)
. (12)

Software Tools and Reproducible Science

All of the analysis and simulation software developed for this
study is written in Python. It makes use of the scipy-stack and the
authors GitHub project scikit-dsp-comm [Wickert1]. Two classes
MPSK_sa_BEP and MQAM_sa_BEP do all of the heavy lifting.
The code base specifics for this paper can be found on GitHub
at [Wickert2]. The contents include Jupyter notebooks and code
modules. All of this is open-source and freely available.

Results

In this section we consider the impact of filter mismatch in MPSK
and MQAM. Equalization is not included in these first two studies.
Next we consider how a short length equalizer can be employed
to mitigate the mismatch performance losses, at increased system
complexity.

Effects of Mismatch Filtering on MPSK

To limit the amount of data presented to the reader the figures
shown for MPSK have a constant αtx = .25 while varying αrx = .3,
.4, and .5. Later we provide heatmaps of Eb/N0 degradation results
over a range of αtx and αrx scenarios. Figure 9 shows IQ diagrams
across orders of M while varying αrx. The IQ diagrams plot
the received symbols of the ideal matched filter system overlaid
with the received symbols of a mismatched filter system. The left
column shows that a small mismatch results in minimal error with
every symbol being clearly defined, even at 32PSK. However, on
the far right we see a more extreme case of mismatch filtering
resulting in more ISI. With less separation between symbols it is
expected that higher orders of M are more affected by mismatch
filtering.

Figure 10 shows a row of BEP curves for M = 16 while
varying αrx. The BEP Curves show how mismatch filtering affects
PE across Eb/N0 while comparing it to a theory curve. Each curve
plots the theory curve for the modulation type, a SA-BEP curve
with a perfect matched filter, and a SA-BEP Curve that varies αrx
with a constant αtx. These results correspond to the first row of
IQ diagrams presented in Figure 9. On the left we see a small
mismatch results in minimal error with all three curves tightly
together. On the right we a large degradation, denoted as the
increase in Eb/N0 to achieve the same PE with perfect matched
filter.

Figure 11 shows one row of eye diagrams across for M =
8 while varying αrx. The eye diagrams show the effects of the
added ISI introduced by mismatched filtering at the maximum
eye opening sampling instant of the symbols. The same pattern
of Figures 9 and 10 are seen here in terms of eye diagrams: a
wide eye on the left side at the sampling instance meaning less
ISI and noise. While on the right side the ISI begins to close the

eye. Not shown here, higher orders of M are more perturbed by
the introduction of mismatch filtering.

Figure 12 shows the degradation over various BEP threshold
values of {10−5,10−6,10−7,10−8,10−9}, M = 4, 8, 16, and 32,
and many combinations of αtx/αrx ∈ [1/2,2]. The degradation is
the measured shift in Eb/N0 in dB between ideal theory and a
system with filter mismatch at a particular BEP threshold. As M
increases and αtx/αrx moves above or below 1 the degradation
gets worse. With the worse degradation happening at M = 32 and
αtx/αrx reaching the extremes of 1.2 and 2. Note degradation
values of less than 0.01 dB are considered insignificant and are
entered in the heatmap as zero values.

Effects of Mismatch Filtering on MQAM

Here we show only IQ diagrams for αtx = .25 while varying
αrx = .3, .4, and .5. As in the MPSK case later we provide Eb/N0
degradation results over a range of αtx and αrx values. Figure 9
shows two rows of IQ diagrams for M = 16,256 while varying αrx.
The IQ diagrams plot the received symbols of the ideal matched
filter system overlaid with the received symbols of a mismatched
filter system. The left column shows that a small mismatch results
in minimal error with every symbol being clearly defined, even
at 256QAM. However, on the far right we see a more extreme
case of mismatch filtering resulting in serious ISI, particularly
for 256QAM. With less separation between symbols we expected
large Eb/N0 degradation will occur in the BEP plots.

Figure 14 repeats Figure 12 for MQAM. Results are similar
for low modulation M, but the degradation for 256QAM is more
serious than 32MPSK. This is not surprising when one considers
the IQ diagrams, i.e., signal points are closer in MQAM than
MPSK.

With Constrained Use of Equalization

The above results for MPSK and MQAM show that the ISI intro-
duced from mismatch filtering is the greatest at highest modulation
orders of, i.e., M, i.e., 32PSK and 256QAM, and when αtx = .25
and αrx = .5. In this subsection we briefly show how even a very
simple adaptive equalizer can mitigate filter mismatch. An 11-tap
equalizer is chosen to jointly minimize mismatch ISI yet balance
noise enhancement. The short tap design can adapt quickly and
minimize system complexity. To fit the SA-BEP analysis frame-
work the equalizer is designed for fixed operation at Eb/N0 = 20
dB, while the SA-BEP simulation is run for 20 dB ≤ (Eb/N0)dB ≤
25dB. In general an equalizer for digital communications is made
adaptive using the least mean-square (LMS) adaptation algorithm
[Ziemer] to minimize the mean-square error (MMSE) between the
filter output and hard decision symbol estimates.

Figure 15 shows the effects of mismatch filtering when paired
with a short length equalizer on 256QAM and αtx/αrx = .25/.5.
The Eb/N0 degradation is brought to about 1 dB at PE = 10−6. As
you can see from Figure 15 the equalizer drastically reduces the
ISI introduced by the filter mismatch. Even though the equalizer
is designed for an operating point of 20dB it performs well across
the entire range of Eb/N0.

Concluding Discussion and Future Work

The effects of mismatch filtering on lower orders of M in both
MPSK and MQAM, in particular M = 4, are almost negligible.
With greater than .1dB Eb/N0 degradation when the αtx/αrx ratio
reaching the extremes of 1/2 and 2. The effects of mismatch

MATCHED FILTER MISMATCH LOSSES IN MPSK AND MQAM USING SEMI-ANALYTIC BEP MODELING 103

Fig. 9: Two rows of IQ Diagrams showing the effects of mismatch filtering; The order of M increases with row number, M = 8,32; αtx = .25
is fixed across all columns, while αrx increases with column number as .3, .4, .5.

 21

system. Subfigures (a)(d)(g)(j) show that a small mismatch results in minimal error with every

symbol being clearly defined all the way to 32PSK. However, subfigures (c)(f)(i)(l) show a more

extreme case of mismatch filtering resulting in more noise and ISI. With less separation between

symbols it is expected that higher orders of M are more affected by mismatch filtering.

BEP Curves

(a)

(b)

(c)

(d)

(e)

(f) Fig. 10: One row of BEP Curves showing the effects of mismatch filtering; Here M is fixed at 16; αtx = .25 across the columns, while αrx

increases with column number as excess bandwidth factors of .3, .4, .5.

 23

Eye Diagrams

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

Figure 12: Various Eye Diagrams showing the effects of mismatch filtering; The order of M increases with row number, M=4, 8,

16, 32; !ÉG = 	 .25 across all columns, while !wG increase with column number !wG = 	 .3, .4, .5

Figure 12 shows Eye Diagrams across orders of M while varying !wG. The Eye Diagrams show

the effects of the added ISI and noise introduced by mismatched filtering at the sampling instant

Fig. 11: One row of of eye diagrams showing the effects of mismatch filtering; here M is fixed at 8; αtx = .25 across the columns, while αrx
increases with column number as excess bandwidth factors of .3, .4, .5.

104 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

α tx ���� ���� ���� ���� ���� ��� ���� ��� ���� ���
α rx ��� ���� ��� ���� ��� ���� ���� ���� ���� ����

� ��� ����� ����������� ���

4 10− 5 0* 0* 1.00e-2 2.41e-2 4.37e-2 0* 0* 0* 2.40e-2 4.43e-2
4 10− 6 0* 0* 1.26e-2 3.01e-2 5.46e-2 0* 0* 1.26e-2 3.01e-2 5.52e-2
4 10− 7 0* 0* 1.53e-2 3.62e-2 6.56e-2 0* 0* 1.53e-2 3.61e-2 6.62e-2
4 10− 8 0* 0* 1.80e-2 4.23e-2 7.66e-2 0* 0* 1.80e-2 4.22e-2 7.72e-2
4 10− 9 0* 0* 2.06e-2 4.84e-2 8.77e-2 0* 0* 2.06e-2 4.84e-2 8.83e-2
8 10− 5 0* 0* 3.47e-2 8.15e-2 1.49e-1 0* 0* 3.48e-2 8.16e-2 1.49e-1
8 10− 6 0* 1.22e-2 4.39e-2 1.02e-1 1.87e-1 0* 1.21e-2 4.39e-2 1.03e-1 1.87e-1
8 10− 7 0* 1.49e-2 5.31e-2 1.24e-1 2.25e-1 0* 1.49e-2 5.31e-2 1.24e-1 2.25e-1
8 10− 8 0* 1.77e-2 6.23e-2 1.45e-1 2.62e-1 0* 1.77e-2 6.24e-2 1.45e-1 2.62e-1
8 10− 9 0* 2.06e-2 7.16e-2 1.65e-1 3.00e-1 0* 2.05e-2 7.16e-2 1.66e-1 2.99e-1
16 10− 5 0* 3.87e-2 1.32e-1 3.06e-1 5.61e-1 0* 3.88e-2 1.32e-1 3.06e-1 5.61e-1
16 10− 6 0* 4.92e-2 1.67e-1 3.86e-1 7.05e-1 0* 4.92e-2 1.67e-1 3.86e-1 7.05e-1
16 10− 7 1.13e-2 5.97e-2 2.02e-1 4.64e-1 8.46e-1 1.14e-2 5.98e-2 2.02e-1 4.64e-1 8.46e-1
16 10− 8 1.36e-2 7.03e-2 2.36e-1 5.42e-1 9.83e-1 1.36e-2 7.04e-2 2.36e-1 5.42e-1 9.83e-1
16 10− 9 1.58e-2 8.09e-2 2.71e-1 6.18e-1 1.11e+0 1.58e-2 8.10e-2 2.71e-1 6.18e-1 1.11e+0
32 10− 5 2.89e-2 1.46e-1 5.06e-1 1.22e+0 2.38e+0 2.90e-2 1.46e-1 5.06e-1 1.22e+0 2.38E+0
32 10− 6 3.72e-2 1.86e-1 6.43e-1 1.55e+0 3.04e+0 3.73e-2 1.86e-1 6.43e-1 1.55e+0 3.04E+0
32 10− 7 4.56e-2 2.26e-1 7.80e-1 1.87e+0 3.65e+0 4.56e-2 2.26e-1 7.80e-1 1.87e+0 3.64E+0
32 10− 8 5.40e-2 2.67e-1 9.14e-1 2.18e+0 4.17e+0 5.40e-2 2.67e-1 9.14e-1 2.18e+0 4.17E+0
32 10− 9 6.24e-2 3.07e-1 1.04e+0 2.46e+0 4.61e+0 6.25e-2 3.07e-1 1.04e+0 2.46e+0 4.61E+0
* degradation less than 0.01 dB; Tx/Rx Pulse Shape Span =± 8 symbols

Fig. 12: MPSK degradation resulting from filter mismatch.

Fig. 13: Two rows of IQ Diagrams showing the effects of mismatch filtering; The order of M increases with row number, M = 16,256; αtx = .25
fixed across all columns, while αrx increases with column number as .3, .4, .5.

MATCHED FILTER MISMATCH LOSSES IN MPSK AND MQAM USING SEMI-ANALYTIC BEP MODELING 105

α tx 0.25 0.25 0.25 0.25 0.25 0.3 0.35 0.4 0.45 0.5
α rx 0.3 0.35 0.4 0.45 0.5 0.25 0.25 0.25 0.25 0.25

� ��� ����� ����������� ���

4 10− 5 0* 0* 0* 2.40e-2 4.42e-2 0* 0* 0* 2.40e-2 4.42e-2
4 10− 6 0* 0* 1.26e-2 3.00e-2 5.50e-2 0* 0* 1.26e-2 3.00e-2 5.50e-2
4 10− 7 0* 0* 1.53e-2 3.61e-2 6.59e-2 0* 0* 1.53e-2 3.60e-2 6.59e-2
4 10− 8 0* 0* 1.79e-2 4.21e-2 7.67e-2 0* 0* 1.79e-2 4.21e-2 7.67e-2
4 10− 9 0* 0* 2.06e-2 4.81e-2 8.75e-2 0* 0* 2.06e-2 4.81e-2 8.75e-2
16 10− 5 0*. 1.17e-2 4.79e-2 1.15e-1 2.11e-1 0* 1.17e-2 4.79e-2 1.15e-1 2.11e-1
16 10− 6 0*. 1.56e-2 6.08e-2 1.44e-1 2.65e-1 0* 1.56e-2 6.08e-2 1.44e-1 2.65e-1
16 10− 7 0*. 1.95e-2 7.37e-2 1.74e-1 3.18e-1 0* 1.95e-2 7.37e-2 1.74e-1 3.18e-1
16 10− 8 0*. 2.35e-2 8.67e-2 2.03e-1 3.71e-1 0* 2.35e-2 8.67e-2 2.03e-1 3.71e-1
16 10− 9 0*. 2.74e-2 9.97e-2 2.33e-1 4.23e-1 0*. 2.74e-2 9.97e-2 2.33e-1 4.23e-1
64 10− 5 3.80e-2 8.87e-2 2.40e-1 5.29e-1 9.67e-1 3.80e-2 8.87e-2 2.40e-1 5.29e-1 9.67e-1
64 10− 6 4.17e-2 1.05e-1 2.96e-1 6.60e-1 1.21e+0 4.16e-2 1.05e-1 2.96e-1 6.60e-1 1.21e+0
64 10− 7 4.53e-2 1.22e-1 3.51e-1 7.89e-1 1.46e+0 4.53e-2 1.22e-1 3.51e-1 7.89e-1 1.46e+0
64 10− 8 4.89e-2 1.39e-1 4.07e-1 9.16e-1 1.69e+0 4.89e-2 1.39e-1 4.07e-1 9.16e-1 1.69e+0
64 10− 9 5.25e-2 1.56e-1 4.61e-1 1.04e+0 1.92e+0 5.25e-2 1.56e-1 4.61e-1 1.04e+0 1.92e+0
256 10− 5 3.83e-2 2.44e-1 8.86e-1 2.27e+0 5.06e+0 3.85E-2 2.44e-1 8.86e-1 2.27e+0 5.06e+0
256 10− 6 5.23e-2 3.13e-1 1.13e+0 2.98e+0 7.24e+0 5.25E-2 3.13e-1 1.14e+0 2.98e+0 7.24e+0
256 10− 7 6.64e-2 3.83e-1 1.39e+0 3.72e+0 9.92e+0 6.66E-2 3.83e-1 1.39e+0 3.72e+0 9.96e+0
256 10− 8 8.06e-2 4.52e-1 1.64e+0 4.48e+0 1.17e+1 8.08E-2 4.53e-1 1.64e+0 4.48e+0 1.17e+1
256 10− 9 9.47e-2 5.22e-1 1.89e+0 5.18e+0 1.28e+1 9.50E-2 5.22e-1 1.89e+0 5.18e+0 1.28e+1
* degradation less than 0.01 dB; Tx/Rx Pulse Shape Span =± 8 symbols

Fig. 14: MQAM degradation resulting from filter mismatch.

 34

though this is done at the worse-case MPSK case studied the equalizer greatly reduces the ISI

and Noise introduced by the mismatched filter.

256QAM with Equalizer

(a)

(b)

Figure 19: BEP Curve and IQ Diagram showing the effects of mismatch filtering and an equalizer on 256QAM with !ÉG = .25

and !wG = .5

Figure 19 shows the effects of mismatch filtering when paired with a short length equalizer on

256QAM and !ÉG !wG = 	 . 25 . 5⁄⁄ . As expected, the equalizer does not have as much of an effect

as it did on the 32PSK case, but still greatly reduces the noise and ISI.

Discussion

As you can see from the above diagrams the equalizer drastically reduces the ISI introduced by

the matched filter in both cases. Even though the equalizer is designed for an operating point of

20dB it performs well across the entire range of =>/?@. Assuming the user had enough data for

the equalizer to get into steady state as well as knew the operating point the signal is being

received at you could use an equalizer and a non-ideal RRC filter and have an improved BEP.

Fig. 15: BEP Curve and IQ diagram showing the effects of mismatch filtering when using an 11-tap equalizer on 256QAM with αtx = .25 and
αrx = .5; 11 taps offers a lot of improvement.

filtering grow drastically as M increases and the BEP threshold
point increases.

The IQ Diagrams show that the symbol clusters with mismatch
are not circularly symmetric about the ideal symbol points. In
general these cluster clouds, which we know result from ISI,
appear biased toward the center of the IQ diagram. Characterizing
the cluster cloud probability density function could serve as an
alternative to SA-BEP technique presented in this paper.

Also observe is that the degradation values in the heatmaps are
essentially symmetric for both MPSK and MQAM, with regard
to the αtx/αrx ratio and its inverse. What this means is that the
αtx/αrx ratio and its inverse give essentially the same Eb/N0 dB
degradation values. Does this make sense? The signal path is
identical since the same two filters are connected in series (see
Figure 6) in either case. Linear processing means the filter order
can be reversed without changing the mismatch. What is different
is that the white noise enters at the second filter, which is the

receiver input. If the αtx/αrx ratio is less than one more WGN
arrives at the receiver decision stage, but more signal energy also
enters the receiver, in spite of being mismatched. If the αtx/αrx
ratio is greater than one less AWGN arrives at the receiver decision
stage, but less signal energy also enters the receiver, again in spite
of being mismatched. Although a conjecture at the start of this
research, the SA-BEP simulation results in Figures 12 and 14
support the above argument.

The use of SA-BEP modeling allowed this data to be quickly
compiled and be easily repeatable. The code could quickly be
modified to run any combination of MPSK, αtx/αrx and present
the data in any of the above formats. A purpose of this paper was
reproducible science, for not only the author to be able to run the
code but for any user to use the created code for their purposes
and produce the same results. The use of SA-BEP modeling paired
with the power and flexibility of object-oriented Python running
in Jupyter notebooks accomplishes this goal.

106 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

REFERENCES

[Lindsey] W. Lindsey and M. Simon, Telecommunications Sys-
tems Engineering, original edition Prentice Hall, 1973.
Reprint Dover Publications, 2011.

[Ziemer] R. Ziemer and W. Tranter, Principles of Communications,
seventh edition, John Wiley, 2015.

[Proakis] G.J. Proakis, Digital Communications, 4th ed., McGraw Hill,
2001.

[Goldsmith] A. Goldsmith, Wireless Communications, Cambridge Uni-
versity Press, 2005.

[Tranter] W. Tranter, K. Shanmugan, T. Rappaport, and K. Kosbar,
Principles of Communication Systems Simulation with
Wireless Applications, Prentice Hall, 2004.

[Harris] F. Harris, C. Dick, S. Seshagiri, and K. Moerder, “An
improved square-root nyquist shaping filter,” Proceed-
ing of the SDR 05 Technical Conference and Product
Exposition, 2005.

[Xing] T. Xing, Y. Zhan, and J. Lu, “A Performance Optimized
Design of Receiving Filter for Non-Ideally Shaped
Modulated Signals,” in IEEE International Conference
on Communications, p. 914-919, 2008.

[Rappaport] T. Rappaport, Wireless Communications: Principles and
Practice, Prentice Hall, 1999.

[Craig] J. Craig, “A New, Simple and Exact Result for Calculating
the Probability of Error for Two-Dimensional Signal
Constellations,” in IEEE Milcom ’91, p. 571-575, 1991.

[Wickert1] M. Wickert, “Scikit-dsp-comm: a collection of functions
and classes to support signal processing and commu-
nications theory teaching and research,” https://github.
com/mwickert/scikit-dsp-comm.

[Wickert2] M. Wickert, “Matched filter mismatch losses: a Python
sofware repository”, https://github.com/mwickert/
Matched_Filter_Mismatch_Losses.

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020) 107

Having your cake and eating it: Exploiting Python for
programmer productivity and performance on

micro-core architectures using ePython

Maurice Jamieson‡∗, Nick Brown‡, Sihang Liu‡

F

Abstract—Micro-core architectures combine many simple, low memory, low
power computing cores together in a single package. These can be used as
a co-processor or standalone but due to limited on-chip memory and eso-
teric nature of the hardware, writing efficient parallel codes for these chips is
challenging. In this paper we discuss our very low memory implementation of
Python, ePython, supporting the rapid development of parallel Python codes for
these co-processors. An offload abstraction is introduced, where programmers
decorate specific functions in their Python code, running under any Python
interpreter on the host CPU, with the underlying technology then taking care of
the low level data movement, scheduling and ePython execution on the micro-
core co-processor. A benchmark solving Laplace’s equation for diffusion via
Jacobi iteration is used to explore the performance of ePython on three different
micro-core architectures, and introduces work around native compilation for
micro-cores and the performance advantages that this can provide.

Index Terms—ePython, micro-cores, RISC-V, MicroBlaze, PicoRV32, Epiphany

Introduction

Micro-core architectures combine many simple, low power, cores
on a single processor package. These micro-core architectures,
providing significant parallelism and performance for low power
but a major limitation is programmer productivity, where typically
developers must write code in C, linked to low level libraries.
Furthermore they must possess a deep understanding of the
technology and address esoteric aspects including ensuring con-
sistency with a (sometimes very) weak memory model, aligning
data to word boundaries correctly, and the lack of basic features
such as IO. As such, even the few experts who are able to program
these chips struggle when it comes to obtaining good performance.

It was our hypothesis that Python can significantly help here
and this is the reason why we developed ePython, an implemen-
tation of Python designed specially for micro-core architectures.
Providing execution via both an interpreter (at around 24KB in
size) and native compilation of code, ePython enables Python
programmers to easily offload specific kernels in their code onto
the micro-cores. This involves the seamless transfer of code and
data to the device, as well as the copying back of results from the

* Corresponding author: maurice.jamieson@ed.ac.uk
‡ EPCC at the University of Edinburgh

Copyright © 2020 Maurice Jamieson et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

device. With very small memory spaces, of around between 32KB
to 64KB per core, in order to support usable datasets then the
underlying technology must also be capable of taking advantage
of slower by larger external memories, and abstract the low-level
details involved in moving data between these areas from the
programmer.

In this paper we describe the use of ePython to program micro-
cores from the perspective of supporting the offload of specific
functions from an existing Python application, and then exe-
cute these kernels on the micro-cores. This technology currently
supports a variety of micro-core architectures which include the
Adapteva Epiphany, Xilinx MicroBlaze, and RISC-V PicoRV32,
these three being the targets explored in this paper. The paper
is organised as follows; in the next section we explore the
background to micro-cores in more detail, some of the Python
frameworks used to program accelerators and embedded technolo-
gies, and describe ePython. The section which follows introduces
our abstractions for offloading kernels in application code which
can be running via any Python interpreter on the host, onto the
micro-cores and how these might be used most effectively. This
is then followed by a description of the lower level details of
ePython, discussing some of the architectural decisions that have
been made in order to support easy porting between architectures
and to fit into the limited memory spaces available. We then
explore the performance of ePython on our three architectures of
interest, initially focussing on the interpretation approach, which
is currently most mature, before comparing and contrasting this
against native code generation. Lastly we draw some conclusions
and discuss further work.

Background and related work

There are numerous micro-core architectures including the PEZY-
SC2 [pezy-sc] which powered the top Green 500 machine until it
was decommissioned in March 2019, the Kalray Boston [kalray]
and, the Celerity [ajayi2017celerity]. The work and experiments
described in this paper focuses on three distinct types of micro-
core; the Epiphany [epiphany], MicroBlaze [microblaze], and
PicoRV32 [picorv32]. Developed by Adapteva and packaged as
a single physical chip, the Epiphany is still arguably one of
the most ubiquitous consumer-grade micro-cores, even thought
it was developed a few years ago. On the Epiphany version
3 (Epiphany-III) each of these cores consists of a RISC-based

108 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

CPU, 32KB of high bandwidth on-core local memory (SRAM),
two DMA engines and a network interface. The Epiphany is a
physical chip, and whilst this is common place with consumer
grade CPUs, it is expensive (approx. $1 million) to tape out a
physical design. As such, soft-cores are also commonplace, where
reconfigurable logic chips (such as FPGAs) are configured to
behave like a specific CPU design. These is the case with the
other two micro-cores that we target in this paper, the MicroBlaze
and PicoRV32, and from the end programmer’s perspective this
chip looks exactly like a physical CPU. Crucially this approach is
much cheaper than fabricating physical cores, although typically
the reconfigurable nature of the fabric imposes a reduced clock
frequency compared to a physical core. Irrespective of whether
the chip is physical or soft, they contain many cores, each with
very limited amounts of memory, and the reason for picking these
specific three technologies here is both their ubiquity, and also
representation of a wider class of micro-cores. The micro-core
architecture is applicable to a wide range of problem domains,
and performance levels close to 2 GFLOPs per core have been
demonstrated [epiphany-specifications] in the field of signal pro-
cessing on the Epiphany. A major advantage to this technology is
around power efficiency, for instance even though it was designed
in 2013, the 16 core Epiphany-III, draws a maximum of 2 Watts
and delivers 16 GFLOPs/Watt which is very impressive even by
today’s standards.

In addition to the micro-core CPU, one also requires a board
to mount this chip and connect it to the outside world. Adapteva,
who developed the Epiphany, also manufactured the Parallella
[parallella] which is a single board computer (SBC). The Parallella
combines a host dual core ARM A9 CPU, with 1 GB of DRAM
and the 16 core Epiphany-III. The theoretical off-chip bandwidth
of the Epiphany is 600 MB/s, however in practice the maximum
obtainable is around 150 MB/s. For our two soft-cores we use the
same base-board, a Pynq-II SBC, and a Xilinx Zynx-7020 recon-
figurable FPGA. The Zynq-7020 chip is especially interesting, as
in a single physical package not only is there the reconfigurable
fabric which we can use to represent our micro-cores of interest,
but furthermore a dual core ARM A9 CPU which runs Linux.
Therefore in a single chip we have the combination of a dual-
core host CPU on the one-hand, and logic configured as multiple
micro-core CPUs on the other. The board also contains 512 MB
RAM with an off-chip bandwidth of 131.25 MB/s. This specific
FPGA contains 53,200 programmable Look-Up Tables (LUTs),
and around 627 KBs of block RAM (BRAM). In fact it is this
BRAM, effectively the amount of local memory per core, which
is the limiting factor here and we can fit a maximum of eight 64
KB MicroBlaze or PicoRV32 CPUs and supporting infrastructure
onto the Zynq, which is the configuration used throughout this
paper.

Whilst we have picked these micro-core technologies due to
their availability and popularity, in our opinion the MicroBlaze and
PicoRV32 are the more interesting targets. The MicroBlaze is de-
veloped by Xilinx, a large multi-national corporation who also de-
velop the underlying FPGAs and there is significant commitment
by Xilinx to the technology. On the other-hand, the PicoRV32
is an implementation of the RISC-V Instruction Set Architecture
(ISA). RISC-V is an open standard ISA and, first introduced in
2010, one of the major reasons for its popularity has been the fact
that it is provided under open source licenses that do not require
fees. This means that anyone is free to download the specification
and develop their own implementation of the ISA, which indeed

the PicoRV32 project have done. Furthermore, because all these
CPUs share the same ISA, then the software eco-system can often
be trivially ported between CPUs. This includes complex tooling
such as compilers, debuggers, and profilers, which in themselves
require significant development effort. Enabling developers of a
new RISC-V based CPU to take the existing RISC-V software eco-
system, and run this with little or no modifications on their chip,
significantly reduces the effort required in developing such new
CPUs. With a large community, who are mixture of commercial
and academic contributors, RISC-V is currently a very topical and
active area of research and commercial exploitation.

Whilst we have aimed to provide the reader some glimpse
into the richness and diversity that makes up this area of CPU
architectures, there is one specific characteristic that they all share.
Namely, irrespective of whether one’s micro-core is a physical
Epiphany or soft-core such as the MicroBlaze, the programming
of these technologies is technically challenging. Based on the
severe limitations of the hardware, it will be of no surprise to
the reader that they run bare metal (i.e. without an OS), and whilst
some approaches beyond using C with the low level hardware
specific library, such as OpenCL [opencl] and OpenMP [openmp]
have been developed, these are at different levels of maturity and
still require the programmer to explicitly program the chip using
C at a very low level. Indeed, Xilinx’s Pynq-II board has been
designed around ease of use, loading up a default configuration of
three MicroBlaze cores, and presenting a Python interface via the
Jupyter notebook. However, Python only runs on the host ARM
CPU of the Pynq-II and the programmer must still write C code,
albeit embedded within the Jupyter notebook, to execute directly
on each MicroBlaze and interface with them appropriately using
host side code.

This programmability challenge is made more severe when one
considers the tiny amount of memory per core, for instance 32KB
on the Epiphany and 64KB on the MicroBlaze and PicoRV32.
Whilst a portion of the board’s main DRAM memory is often
directly addressable by the micro-cores, there is a significant
performance penalty when going off chip and using this in com-
parison with the on-core RAM. Therefore to achieve reasonable
performance programmers have to either keep their code and data
within the limits of the on-core memory, or design their codes to
explicitly cache and pre-fetch. Regardless, this adds considerable
additional complexity to any non-trivial codes and, it is our
firm belief that this should be abstracted by the programming
technology. Potentially this is where the programmer productivity
gains of Python can be of significant benefit to micro-cores, and
it has already been seen that without an easy to use environment,
then the adoption of this technology will be necessarily narrowed.

There are some other Python-based technologies in a some-
what similar space and arguably the most ubiquitous of these
is MicroPython [micropython]. MicroPython is an implementa-
tion of Python for micro-controllers and is designed to be both
lightweight and also to enable programmers to execute Python
codes easily, as well as exploring the lower level details of the
machines. Similarly to ePython, it can run bare metal on a variety
of controllers or run on more mainstream machines such as Unix
or Windows OSes. Whilst MicroPython is very interesting, it is
fundamentally different from ePython in a number of respects.
Firstly memory size, where MicroPython requires 256KB of code
space and 16KB of RAM [micropython-website], and whilst this
is small in comparison to more mainstream Python interpreters
such as CPython, it is still significantly above the limitations of

HAVING YOUR CAKE AND EATING IT: EXPLOITING PYTHON FOR PROGRAMMER PRODUCTIVITY AND PERFORMANCE ON MICRO-CORE ARCHITECTURES USING EPYTHON109

micro-core architectures such as the Epiphany. In addition to the
RAM, embedded controllers often contain dedicated Read Only
Memory (ROM) too which can be flashed with the MicroPython
code. This is the case with the pyboard, which is the official
MicroPython microcontroller board, as it contains both 1MB of
ROM and 192KB of RAM, and as such provides plenty of space
for MicroPython. In contrast, micro-cores are CPUs and tend not
to have such ROM associated with them, and therefore ePython
has a much more limited memory space within which it can work.
The ePython interpreter and runtime code size is 24KB on the
Epiphany (compared against MicroPython’s 256KB), and because
it must fit into the very limited CPU’s RAM, was architected from
day one to achieve this by adopting specific design decisions.
The other big difference between MicroPython and ePython is
that of parallelism because, whilst there is multi-threading support
in MicroPython, parallelism is not the first class concern of this
technology and there is more limited support for writing parallel
codes to run over a multiple cores concurrently. We had to
provide this in ePython because the vast majority of micro-core
architectures contain multiple cores that must interoperate.

Numba [numba] is an annotation driven approach to acceler-
ating and offloading Python kernels, where the programmer dec-
orates specific functions in their code and these will be compiled
into native machine code for execution. For instance the @jit
decorator indicates that a specific function should be just-in-time
(JIT) compiled and the native code executed rather than the Python
code. Their approach has been extended to GPUs, where functions
can be decorated with @cuda.jit which will execute them on the
GPU and perform all data movement necessary. The management
of data on the device is also possible via in-built functions such
as cuda.to_device to copy specific data to the GPU. The machine
code for kernels that this technology generates is larger than the
memory spaces available in micro-core architectures, so it is not
applicable directly for our target architecture, however Numba’s
use of annotations is a very convenient way of marking which
functions should be offloaded. Their approach is currently tightly
coupled to GPUs, for instance when one launches a kernel they
must explicitly specify some GPU specific concerns such as the
number of GPU threads per block and number of blocks per grid,
but the general idea of annotating functions in this manner could
be applied more generally to micro-cores.

ePython

ePython, which was first introduced in [epython], is an imple-
mentation of a subset of Python for micro-core architectures and
is designed to be portable across numerous technologies. The
primary purpose of ePython was initially educational, and also as
a research vehicle for understanding how best to program these
architectures and prototyping applications upon them. ePython
was initially created with the aim of allows a novice to go from
zero to hero, i.e. with no prior experience write a simple parallel
hello world example that runs on the micro-cores, in less than a
minute. Due to the memory limitations of these architectures, the
ePython virtual machine (which is the part that actually runs on the
micro-core architectures) is around 24KB on the Epiphany, with
the remaining 8KB of on-core memory used for user byte code,
the stack, heap and communications. It is possible for byte code,
the stack and heap to overflow into shared memory transparently,
but there is a performance impact when doing so. ePython also
supports a rich set of message passing primitives such as point to
point messages, reductions and broadcasts between the cores, and

it is also possible to run virtual cores where the host CPU behaves
like micro-cores and can pass messages between themselves as
normal. The code listing below illustrates a simple example which
is executed directly on the micro-cores and launched from the
host command line such as issuing epython example.py. In this
example, each micro-core will generate a random integer between
0 and 100 and then perform a collective message passing reduction
to determine the maximum random number (due to the "max"
operator) which is then displayed by each core.
1 from parallel import reduce
2 from random import randint
3

4 a = reduce(randint(0,100), "max")
5 print "The highest random number is " + str(a)

This approach was initially developed with the objective of
running rather simple examples on the micro-cores directly and
exposing programmers to the fundamental ideas behind paral-
lelism in a convenient programming language. As such, ePython
implements a subset of Python 2.7, and was initially focussed
around the imperative aspects of the code with features such as
garbage collection, and has been extended to include other aspects
of the Python language as time has progressed, although does not
provide a complete implementation due to memory space limits.
However, going beyond the work of [epython], we realised that
there was potential for ePython to support real-world applications
on micro-cores, but to do so a more powerful approach to pro-
grammer interaction was required. This is because not all parts of
an application are necessarily suited for offloading to micro-cores,
so an approach where specific functions can be selected for offload
conveniently was required to extend the technology, which is the
focus of the next section.

Offloading application kernels

We have extended ePython to couple it with existing Python codes
running in any Python interpreter on the host CPU. As illustrated
in Figure 1, ePython is comprised of three main components:

• A module which programmers import into their applica-
tion Python code, running under any Python interpreter on
the host, which provides abstractions and underlying sup-
port for handling the offloading of select code fragments
to the micro-cores

• An ePython support host process which performs code
preparation (such as lexing and parsing) as well as some
general management functionality such as the marshalling
and control of the micro-cores

• An execution engine on each of the micro-cores. This con-
tains an architecture specific runtime, paired with either the
ePython interpreter or execution of native code which has
been generated from the programmer’s offloaded Python
kernels.

The first component is connected to the second via POSIX
shared memory, and the method by which the second component
connects to the third is architecturally specific depending upon
the micro-cores in question. The targets considered in this paper
all connect with the host via memory mapped regions, where
specific portions of the memory space are visible to both host
and micro-cores, although these tend to be mapped at different ab-
solute addresses between the host and micro-core. The underlying
mechanism for achieving this communication is abstracted as a set
of services in the host’s monitor, and the micro-core’s architecture

110 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

specific runtime. Therefore we have been able to support ePython
on other architectures which connect using different mechanisms,
such as RS232 via a daughter board, by providing alternative
implementations of the services.

In this section we explore the first of these components, and
more specifically the abstractions provided which enable Python
programmers to direct what aspects of their code should run on
the micro-cores.

Similar to the approach taken by Numba, the programmer
annotates kernel functions to be offloaded to the micro-cores
with a specific decorator, @offload. When the CPU Python code
executes a call to functions marked with this decorator it will,
behind the scenes, run that function using ePython on the micro-
cores, passing any input values and sending back return values.
The code listing below provides an illustration of this, where the
mykernel function has been marked with @offload, so the call
to mykernel at line 7 will launch this kernel on each micro-core,
passing the argument 22 to each function execution and obtain,
as a list, the return value from the kernel (in this case the integer
value 10 from each core). In this example the only modification
required to standard Python code for offloading is importing the
epython module and decorating the function. Function arguments
are pass by reference, so it is only a reference to the data
which is passed to the micro-cores upon kernel invocation, with
ePython transparently transferring data as it is requiring during the
execution of the kernel.

1 from epython import offload
2 @offload
3 def mykernel(a):
4 print "Hello with " + str(a)
5 return 10
6

7 print mykernel(22)

Behind the scenes to implement this offload functionality, upon
initialisation the epython module will parse the full Python code
and search for functions that might need to be executed on
the micro-cores, such as the kernels and functions that they
call into. These are extracted out into a separate Python file
which is passed to ePython, which itself is then executed as
a subprocess. Launched on each micro-core, low level message
passing communications pass between the micro-cores and Python
interpreter on the host via the ePython support host process.
Upon the initialisation of a user’s Python code on the CPU, the
imported epython module interrogates ePython about the byte code
location of all remotely executable functions, which is then stored.
Subsequently, to execute a specific function on the micro-cores
the host sends the stored byte code location of the function to the
target core(s) in combination with an execution token. All output
from the ePython subprocess is forwarded to standard output, so
the programmer can still perform IO and view error messages
raised by their offloaded kernels. If a programmer wishes to import
specific modules in their kernels, then they can utilise either the
import or use statements at the top of the function body.

Kernel execution options

The semantics of the offload is that, by default, the kernel will be
executed on all available micro-cores and the caller will block until
these have been executed. It is possible to override these defaults to
further control the behaviour of kernel launch and execution. This
is achieved by either providing explicit arguments to the decorator
such as @offload(async=True) which will apply the option to

all executions of the kernel, or alternatively the programmer can
provide options as a named argument to the function call. An
example of the later is mykernel(22, async=True), which will
override the arguments of the decorator for this specific kernel
invocation. There are a number of possible options which can be
used to control kernel behaviour:

Asynchronous execution
By providing the argument async=True the execu-
tion of the kernel will proceed in a non-blocking
manner where the function call will return a handler
of type KernelExecutionHandler immediately. This
object represents the state of the kernel execution
over one or more micro-cores, and provides meth-
ods for testing kernel completion, waiting on kernel
completion on all cores (and obtaining the results)
and waiting for kernel completion on any core (and
obtaining results.)

Auto
The argument auto=n, where n is an integer repre-
senting the number of cores to execute the kernel
over. This signifies that the programmer does not care
which cores are used, but instead to run the kernel on
n free micro-cores whenever these are available.

All
The argument all=True will collectively execute the
kernel on all available micro-cores.

Target
The argument target=n, where n is either an integer
core id or list of core ids, will guarantee to execute the
kernel on those specific cores only. This can be useful
if there is some distinct state or data held by core(s)
which the programmer wants to utilise in their kernel.

Device
The argument device=d, where d is the specifier of
a type of micro-core architecture or a list of these
and will execute the kernel on those types of specific
micro-cores only. This is for programming heteroge-
neous micro-core systems which contain a number
of micro-cores CPUs of different types, with device
types defined for each available micro-core.

These options, specifically the placement options of target,
auto and all can conflict if used together. Hence an order of prece-
dence is defined and this is based upon the order in which they
were introduced above. For instance if the programmer provides
both auto and target then because auto has higher precedence it
will be honoured and the target specifier ignored.

Scheduler

Using some of the options described previously can result in a
situation where kernels are scheduled for execution, but the target
cores are busy executing previous kernels. The epython module,
imported by the entire Python application, implements a scheduler
running inside a thread to handle this situation. The module keeps
track of what cores are currently idle and which are active, as
well as maintaining a list of outstanding kernel launches which
are awaiting a free micro-core. Any kernel execution that can not
be honoured is packaged up with additional information such as
where to run the code and any arguments before being stored
in a list. The scheduler will then scan through these waiting
kernels and check whether the corresponding core can be used

HAVING YOUR CAKE AND EATING IT: EXPLOITING PYTHON FOR PROGRAMMER PRODUCTIVITY AND PERFORMANCE ON MICRO-CORE ARCHITECTURES USING EPYTHON111

Fig. 1: ePython architecture, connecting the programmer’s Python code in any Python interpreter on the host, to execution on the micro-cores.

to execute this kernel yet, and if so then the kernel is launched
automatically. To ensure correctness a strict ordering, based upon
the scheduling order, is maintained for kernel launches. Therefore,
if kernel A is scheduled to run on core 0 and then kernel B is
scheduled to run on the same core, ePython guarantees that A will
execute on this core before B. Much of this is abstracted inside
the KernelExecutionHandler class, object instances of which are
returned as handlers from asynchronous kernel launches, and the
class also contains methods for obtaining the general scheduling
state such as how many kernel executions are currently running,
and how many are scheduled and waiting to be run.

Working with arbitrarily large data-sets

It might seem apparent to the reader that one of the limitations
of the approach thus described is the size of data that can be
manipulated on the micro-cores. More specifically, very small
data-sets can be copied into the micro-core local RAM which will
provide optimal performance, but the majority of data sizes will
instead need to be located in shared on-board but off-chip DRAM
memory which is significantly slower. Using the abstractions
described so far, the programmer would have to make a choice
between the placement of their data and to manually copy in
segments that they may wish to place in on-core memory for
performance. The hierarchy of memories available to the micro-
cores, and thus the Python programmer’s kernels, is illustrated in
Figure 2 for the Epiphany. From this diagram it can be seen that the
problem is even more severe, as only a fraction of the host’s 1GB
DRAM is directly addressable by the micro-cores on the Epiphany
(by default the shared segment is only 32MB in size). As such this
significantly limits the data sizes that can be processed, as any data
larger than this limit will not be able to reside in a location which
is, by default, visible to the micro-cores.

This is in fact why the semantics of kernel arguments are
pass by reference, rather than pass by value. Following a similar
approach to CUDA’s Unified Virtual Addressing (UVA) although,
due to the simplicity of the micro-cores, achieving this entirely
at the software level rather than hardware level, means that upon
kernel invocation a simple reference is passed for each argument
and it is this that the kernel works with. When the data is read
from, or written to, by the micro-core then the ePython runtime

Fig. 2: Illustration of memory hierarchy for the Epiphany.

will, based upon this reference, perform the associated data
movement operation with respect to the data’s source location.
Whilst it might appear that having to perform this data movement
each time, potentially to or from a source location held far away
in the memory hierarchy, is expensive, there are some further
abstractions which can assist. Namely pre-fetching is supported
which will utilise the micro-core’s memory like a cache and copy
in chunks ahead of time, then evicting them later on if necessary.
On the Epiphany this is especially beneficial due to the two DMA
engines per core, which can perform data transfers in a non-
blocking manner and-so the cores can continue to work with data
previously fetched whilst subsequent memory operations are in
progress.

In combination with pass by reference and possible pre-
fetching, it is also desirable for the programmer to be able to
direct where in the memory hierarchy their data resides. This is
supported via memory kinds. The code listing below illustrates a
sketch of this, where the programmer uses the memkind class of
the ePython module to allocate data. This enables them to direct
where abouts in the memory hierarchy the data belongs and also
the amount to allocate. Numerous memory kinds are provided
and in this manner the programmer can easily direct what data
belongs where, and then subsequently modify this if required
without having to worry about any of the low-level nitty gritty
details. It is still perfectly acceptable to declare variables normal
Python style, without using memory kinds, and in such cases the
variable belongs to the level of memory hierarchy that is currently
in scope.

112 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

1 from epython import offload, memkind
2 import random
3

4 nums1 = memkind.Host(types.int, 1000)
5 nums2 = memkind.Host(types.int, 1000)
6

7
8

9 @offload
10 def mykernel(a, b):
11
12

13 print mykernel(nums1, nums2)

It is this same mechanism that enables device resident data, via the
Device memory kind, to allocate the variables within the on-core
memory of the micro-cores. ePython delegates to the memory kind
the determination of the mapping between the requested index and
the actual physical data region. Therefore, the memory kind can
enable operations on memory spaces that are not directly visible
to the micro-cores and, for instance, this is how we make visible
the top level of the memory hierarchy of Figure 2 to the Epiphany
and overcome the 32MB memory limit. In fact there is no inherent
reason why the memory kinds must represent memory spaces at
all, and in future could represent other facets including files or
network connected resources.

Memory model

Python does not specify a standard memory model, with individual
implementations being free to adopt whichever memory model
they wish. In contrast to many other Python implementations,
ePython adopts a rather weak memory model, which the program-
mer should be aware of.

Whenever a micro-core attempts to access a scalar variable or
the index of an array, held elsewhere in the memory hierarchy,
preference is given to any local copy held on that micro-core
(cached). If there is no local copy, then a data transfer will be
performed from where the data is physically located, effectively
copying it to the micro-core and then caching it. The cache policy
is write-through, where the locally held copy will then be used
for all the reads, and writes are performed on both the local copy
of data and also written back to the variable’s location elsewhere
in the hierarchy. Locally held cache copies of data are evicted
automatically by the ePython runtime as required, such that the
memory space can then be reused for subsequent data. Access to
any data, whether it be a scalar or array element, held in memory
locations outside the core will always first check whether there is
a copy held locally, and if not perform the explicit data movement
required. At the time of writing, by default the runtime waits until
the data is required and then moves it, with the disadvantage of
this approach is that it stalls execution until the memory operation
completes. As such the programmer can, via decorating their
code, instruct the data movement to be done ahead of time via
non-blocking pre-fetching, thus not stalling the micro-cores on
data access, and in the future this will likely become the default
approach.

From the perspective of a single micro-core, updates to data
are in-order and atomic. However between cores the model is
weaker for performance reasons and to enable the reuse of data
held locally rather than having to explicitly fetch it each time (for
instance in situations where the same data element is used many
times over by a kernel). This provides a simple and consistent
model, and a big benefit within the context of simple micro-
cores is that it requires limited support from the hardware and

runtime software. However, the programmer should be aware of
this because, if two or more kernels are working concurrently
with the same data and both reading and writing to this, then
ePython only imposes the atomicity of these updates. There is no
guarantee around the order in which accesses from different cores
will complete, or when kernels will see the data written by kernels
on other cores. This is a somewhat different than that adopted by
many multi-core CPUs, which are typically write-back and hence
tend to only write data on cache flush, but do support a stronger
memory model, often via directory based cache coherence.

ePython - a portable engine for parallel Python code execution

As illustrated in Figure 1, in addition to the epython module,
there is also host side support code which runs as a separate
process and an execution engine running on the target micro-
cores. The later executes the programmer’s code either via an
interpreter or by natively compiling it. Both the ePython execution
engine and and host-based support code are written in C and
designed to be portable between architectures. Due to the very
limited amount of memory available on these architectures, for
the code running on the micro-cores it is not possible to link
against the standard C library, or any other libraries for that
matter. Instead, all the support functionality required, which in
many cases is also architecture specific, is located in the ePython
runtime. The idea is that the interpreter is entirely standard C99
code, and will call out to support functions in the runtime, thus
meaning that to go from one architecture to another only a new
runtime need be written. As such a version of the runtime must
be provided for each architecture, and the API calls which must
be implemented range from memory management and garbage
collection, to communication between micro-cores and the host.
The target architecture must provide at a minimum a C compiler,
which itself is very common. We adopted this design as it provides
both maximum portability and also considerable flexibility which
is important for architecture specific optimisations.

When compiled the exact size of ePython depends upon
the architecture being targeted. For instance with the Epiphany,
where the ISA has been designed to result in small binaries,
our compiled runtime is around 14KB and the interpreter 10KB.
However on the PicoRV32 the binary size is around 40KB which is
because the RISC-V ISA tends to result in more verbose machine
code than the Epiphany’s ISA. Furthermore, the Epiphany and
MicroBlaze provide a Floating Point Unit (FPU) which supports
(single precision) floating point arithmetic in hardware, whereas
the PicoRV32 does not, and as such explicit floating point software
support must also be included at the runtime level which increases
the size of ePython. As the micro-cores are running bare-metal,
ePython determines its own memory map, and whilst there is a
standard ePython memory map that we defined in [epython], the
exact location of where the separation between different memory
areas lies, and the sizes of these areas, is flexible and abstracted
by the architecture specific runtime. This is all abstracted by the
runtime, and has no impact on the other parts of the code and
therefore does not hinder portability.

The monitor of Figure 1 is directed by the micro-cores to
perform certain activities, and runs via a thread on the host, polling
for commands and data. It is through this mechanism that the
micro-cores can see the programmer’s host Python execution as an
additional core, interacting with this via the sending or receiving
of messages, which ultimately end up in the ePython module,

HAVING YOUR CAKE AND EATING IT: EXPLOITING PYTHON FOR PROGRAMMER PRODUCTIVITY AND PERFORMANCE ON MICRO-CORE ARCHITECTURES USING EPYTHON113

Description Runtime (s) Compared to Epiphany

Epiphany 18.20 N/a
MicroBlaze 129.08 7.1 times slower
PicoRV32 1014.96 55.76 times slower

TABLE 1: Runtime of Jacobi benchmark on the three micro-core
architectures using the ePython interpreter.

and are used to marshall control and communicate data. These
messages, instead of being sent to another micro-core, are sent to
the monitor on the host which forwards them via POSIX shared
memory to the host Python interpreter process. To achieve this, the
same mechanism for passing messages between micro-cores can
be used directly, without significant increases to size of ePython.
The majority of support for marshalling control on the micro-cores
is at the Python code level, where pre-written Python module code
runs on the micro-cores to interpret the messages arriving from
the host and then decoding these to determine which kernels to
run or other actions to perform. This is important because, based
upon the foundational concepts of message passing and task based
parallelism, it meant that very limited modifications were required
to the ePython execution engine on the micro-cores to support our
offload approach, which is critical because memory is at so much
of a premium.

Performance of the ePython interpreter

In this section we explore the performance of ePython on the three
micro-core architectures that have been described in this paper, the
Epiphany-III, the MicroBlaze, and PicoRV32. Due to the larger
compiled size on the MicroBlaze and PicoRV32, in comparison to
the Epiphany, these two architectures required 64KB of memory
to run the full ePython stack. As discussed previously, the main
limitation of the Zynq-7020 for hosting these soft-cores is the
amount of memory available on the FPGA, and as such the
maximum number of 64KB cores that can fit is eight. In order
to provide a fair comparison, we also limit ourselves to eight
Epiphany micro-cores in our experiments.

We chose a benchmark code for solving Laplace’s equation for
diffusion via Jacobi iteration. Jacobi iteration is a classic compu-
tational method for solving PDEs, and in this case we decompose
our domain in one dimension across the micro-cores. Effectively
in each iteration, every grid point is averaging across neighbouring
values, and after each iteration a halo-swap is performed between
pairs of micro-cores, to communicates the data on the exterior that
is required for the next iteration. Furthermore, after each iteration
the code calculates the relative residual, which is used to determine
how far from the desired level of accuracy the current solution
currently is. This involves each micro-core calculating its own
local residual and then performing a reduction across the micro-
cores to determine the overall global sum. All grid point numbers
are single precision floating point, and we consider this benchmark
interesting because it combines both floating point computation
and communications. The runs described in this section are using
the ePython interpreter, and Table 1 illustrates the runtime in
seconds of each micro-core technology when our benchmark was
executed upon it.

It can be seen in Table 1 that the Epiphany is by the far the
most performant micro-core of the three that we are benchmarking
in this section. This is potentially not surprising given the fact that

it is a physical chip, and as such can run at a much higher clock
frequency (600Mhz) compared to the two soft-cores (100Mhz).
However, clearly from the results a six times difference in clock
frequency is not the only reason for the performance gap, and
other architectural differences play a role too. If we normalise
for clock frequency, floating point operations on the PicoRV32
are still approximately 9 times slower than on the Epiphany, and
this is because the Epiphany contains a hardware FPU which
is superscalar, providing the capability of processing up to two
floating point operations concurrently. By contrast, the PicoRV32
does not contain an FPU and as such all floating point arithmetic
must be performed in software. Again normalising for clock
frequency, array accesses are around 9.5 times slower on the
PicoRV32 than on the Epiphany, and this is because on the
Epiphany and MicroBlaze the cost of a memory load in cycle
per instruction (CPI) is 1 cycle, whereas on the PicoRV32 it is 5
cycles. The Epiphany provides a variable length pipeline of up to
eight stages and the MicroBlaze a five stage pipeline, by contrast
the PicoRV32 is not pipelined and this results in an average CPI
of 4 instructions, with the next instruction not being able to begin
until the proceeding one has completed.

Cooking on gas - performance of native compilation

The performance limitations of the ePython interpreter become
apparent when we compare against a version of the benchmark
written in C and compiled on the host CPU. For instance, running
on the Parallella’s ARM Cortex-A9, a C version of the benchmark
executes in 0.23 seconds which is around 80 times faster than the
ePython version on eight cores of the Epiphany! This performance
issue was one of the major facts that motivated us to explore
native compilation of the programmers’s Python code, such that
it can execute directly on the micro-cores without the need for
an interpreter. As per the architectural diagram of Figure 1,
the natively compiled code can still take advantage of all the
ePython runtime support, but crucially as both the runtime and
the programmer’s code are executed directly on bare metal, we
believed that this would provide significant performance benefits.
The ePython native code generator uses ahead-of-time (AOT)
compilation, where the Python source code is compiled on the
host machine to a native binary for execution on the micro-
cores. Similarly to Micropython’s Viper code emitter, the ePython
native code generator uses machine word sizes (e.g. 32 bit on the
Epiphany) and this is all transparent to the Python programmer,
with their code matching the behaviour that would have been
provided by the ePython interpreter. Like Micropython, but unlike
Numba AOT compilation, the ePython code generation does not
require the programmer to add type signatures to their offloaded
kernels.

Unlike the Micropython just-in-time (JIT) and Numba com-
pilers, the native code is not generated from existing Python
bytecode, but instead from C source code generated from the
abstract syntax tree (AST) created just after parsing and lexing the
programmer’s Python code. The resultant C source code is not a
simple transliteration of Python to C, but instead the generation
of optimal source code that supports the dynamic features of
Python, whilst optimising memory access and arithmetic opera-
tions. We felt that this would be good approach because, unlike the
bytecode-based approach, the ePython model is able to leverage
the C compiler’s extensive code optimisation routines at a higher
level over a greater amount of source code, resulting in signifi-
cantly faster code. To enable portability between architectures, the

114 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Description Runtime (s)

ePython native on Epiphany 0.031
C code on Epiphany 0.029
ePython native on AMD64
CPU

0.019

C code on AMD64 CPU 0.015

TABLE 2: Runtime of natively compiled Python code via ePython,
against bespoke C code, on both the Epiphany and AMD64 x86 CPU.

generated C code is standard C99, and similarly to the interpreter
calls into the runtime for anything which is architecturally specific.

Table 2 illustrates the runtime in seconds across different
technologies when natively compiled. It can be seen that this
is significantly faster, over 500 times, than using the ePython
interpreter on the Epiphany. For comparison we have developed
a C version of the benchmark specifically for the Epiphany and
this represents the alternative of writing a bespoke implementation
for the architecture. Developing such code in C is a significant
undertaking, as the programmer must deal with numerous ar-
chitecture specific complexities and low level concerns. Whilst
it is this programming complexity that we believe Python has
significant potential to overcome for micro-cores, we nevertheless
felt it was interesting to include a C version as a comparison in
a performance study such as this. We also ran a version of this
benchmark on an AMD64 CPU (as both the ePython interpreter
and native code generation support x86), which are ubiquitous in
HPC and consumer grade computing.

This is currently the least mature part of ePython, and from
Table 2 the reader can see that there is a small performance
difference of around 10% on the Epiphany between ePython
natively compiled code, and that written in C directly. The reason
for this is the additional complexity that we have added into the
natively compiled code to address the small memory spaces. We
realised that a potential problem would be in natively compiling
large Python kernels because it is very possible that these would
result in an executable which is larger than the on-core memory or
even the shared DRAM memory space. As such, the programmer’s
Python must be compiled in such a way that codes of an arbitrarily
large size can be supported. Therefore, our approach adopts a
dynamic loading approach, where a very small (approximately
1.5KB) bootloader is placed onto the micro-cores and this then
pulls in the first function to execute. This bootloader intercepts
all function calls, and upon a call it will check to see whether
that function is currently held in on-core memory or not. If so
then it will jump to that, or otherwise it will fetch the associated
native code that comprises the function from the host, perform
any required connections, and then execute it. Currently functions
are flushed from the on-core memory upon completion of their
execution, which is likely what accounts for the performance
difference between the ePython native code and compiled C code,
and in future this will be modified to be smarter, potentially with
a garbage collection approach adopted instead.

Conclusions and further work

Micro-cores is a classification that covers a wide variety of
processor technologies, and this is a thriving area which contains a
number of vibrant communities. Whilst these are very interesting
for a number of different reasons, a major challenge is around

programmer productivity. We firmly believe that Python has a sig-
nificant role to play here, but the peculiarities of the architectures,
and more specifically the simplicity of the cores themselves and
tiny amounts of associated memory, result in numerous challenges
when looking to support a Python programming environment. As
such, we initially realised that there is an important role for an
implementation of Python which is very compact and can easily
fit within the memory with space to spare for user code and data.

In this paper we have described ePython, an implementation
of Python which is aimed to both support execution on micro-core
CPUs, but also be highly portable between technologies. We have
explored both the low-level aspects of how ePython is constructed,
and also the abstractions provided to Python programmers such
that they can easily offload specific parts of their application
code onto the micro-cores. Being able to drive this offload by
decorating functions within in existing applications is a very
simple yet powerful way of interaction with the micro-cores, and
the technology has also driven other aspects of the design, such as
pass by reference.

The reader can clearly see that the performance obtained by
ePython is very architecture specific, which is not surprising given
the diversity of the different types of micro-cores and associated
level of complexity. Whilst we expected a performance overhead
associated with the ePython interpreter, the magnitude of this
when compared to native code compilation surprised us. By con-
trast, one can see that the performance overhead of ePython can in
large be ameliorated by using native code compilation to run the
Python code directly on the micro-cores, without the need for an
interpreter to be present. Therefore our present focus is in maturing
the native code generation as we think this has demonstrated some
worthwhile early results. In addition to exploring opportunities
for further performance improvements, currently the architecture
specific runtime library is not included in this dynamic loading, so
the minimum code size is around 15KB (runtime and bootloader
together). If we were to extend the dynamic loading approach to
the runtime too, then the minimum size will be around 1.5KB plus
the size of the largest function. This will open up the possibility
of running over a number of additional micro-core architectures
which contain tiny amounts of memory per core (only around
2KB or 3KB). Furthermore, our dynamic loading approach to
native code compilation can be extended to fetch parts of third-
party libraries, such as Numpy or Sklearn. This will require some
thought, as we will need to split apart the ELF into its constituent
components, but it would be of significant benefit to the micro-
core software ecosystem if such a rich set of existing numerical
frameworks could be supported by ePython.

ePython is currently focussed around version 2.7 of the lan-
guage, and this reached end-of-life in January 2020. Therefore an
important activity will be to upgrade ePython to support version
3 of the language, and we believe that the work done around
the native code compilation is a key enabler. The reason for
this is that implementing version 3 of the Python standard will
require a number of extensions to the ePython interpreter which
will push it beyond the current 24KB size. However this size
issue is not present with the ePython native code compilation,
not least because of our dynamic loading approach, and therefore
it is our plan for the next ePython version to deprecate the
interpreter and support Python version three based around native
code compilation only.

HAVING YOUR CAKE AND EATING IT: EXPLOITING PYTHON FOR PROGRAMMER PRODUCTIVITY AND PERFORMANCE ON MICRO-CORE ARCHITECTURES USING EPYTHON115

REFERENCES

[picorv32] C. Wolf. PicoRV32 - A Size-Optimized RISC-V
CPU, On Github, https://github.com/cliffordwolf/
picorv32/, Last accessed June 2020

[pezy-sc] T. Ishii. Introduction to PEZY-SC http://accc.riken.
jp/wp-content/uploads/2015/09/ishii.pdf, Last ac-
cessed June 2020

[kalray] B.D de Dinechin. Kalray MPPA: Massively parallel
processor array: Revisiting DSP acceleration with
the Kalray MPPA Manycore processor Hot Chips
27 Symposium (HCS), 2015 IEEE, pages 1--27

[ajayi2017celerity] S. Davidson et al. Celerity: An Open-Source RISC-
V Tiered Accelerator Fabric IEEE Micro, Volume:
38, Issue: 2, March/April 2018, Pages 30 - 41

[epiphany] A. Olofsson. Kickstarting high-performance
energy-efficient manycore architectures with
epiphany 48th Asilomar Conference on Signals,
Systems and Computers, 2014

[parallella] Adapteva. Parallella-1.x Reference Manual http:
//www.parallella.org/docs/parallella_manual.pdf,
Rev 09, 2014

[microblaze] Xilinx. MicroBlaze Processor Reference Guide
https://www.xilinx.com/support/documentation/
sw_manuals/xilinx2018_2/ug984-vivado-
microblaze-ref.pdf, 2018

[epiphany-specifications] Adapteva. Epiphany Architecture Reference http:
//www.adapteva.com/docs/epiphany_arch_ref.pdf,
Rev 14, 2013

[opencl] J.E. Stone. D. Gohara. G. Shi. OpenCL: A parallel
programming standard for heterogeneous comput-
ing systems Computing in science and engineering,
Volume: 12, Issue: 3, May-June 2010, Pages 66 - 73

[openmp] OpenMP Architecture Review Board.
OpenMP Application Program Interface
Version 4.0 http://www.openmp.org/mp-
documents/OpenMP4.0.0.pdf, 2013

[micropython] D. P. George. The MicroPython language
http://docs.micropython.org/en/latest/pyboard/
reference/index.html, Last accessed June 2020

[micropython-website] MicroPython community. MicroPython https://
micropython.org/, Last accessed June 2020

[numba] S.K. Lam. A. Pitrou. S. Seibert. Numba: A LLVM-
based Python JIT Compiler Proceedings of the
Second Workshop on the LLVM Compiler Infras-
tructure in HPC, 2015

[epython] N. Brown. ePython: An Implementation of Python
for the Many-core Epiphany Coprocessor Proceed-
ings of the 6th Workshop on Python for High-
Performance and Scientific Computing, 2017

116 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

pandera: Statistical Data Validation of Pandas
Dataframes

Niels Bantilan‡§∗

https://youtu.be/PxTLD-ueNd4

F

Abstract—pandas is an essential tool in the data scientist’s toolkit for modern
data engineering, analysis, and modeling in the Python ecosystem. However,
dataframes can often be difficult to reason about in terms of their data types and
statistical properties as data is reshaped from its raw form to one that’s ready
for analysis. Here, I introduce pandera, an open source package that provides
a flexible and expressive data validation API designed to make it easy for data
wranglers to define dataframe schemas. These schemas execute logical and
statistical assertions at runtime so that analysts can spend less time worrying
about the correctness of their dataframes and more time obtaining insights and
training models.

Index Terms—data validation, data engineering

Introduction

pandas [WM10] has become an indispensible part of the data
scientist’s tool chain, providing a powerful interface for data
processing and analysis for tabular data. In recent years numerous
open source projects have emerged to enhance and complement
the core pandas API in various ways. For instance, pyjanitor
[EJMZBSZZS19] [pyj], pandas-ply [pdpa], and siuba [sba]
are projects that provide alternative data manipulation interfaces
inspired by the R ecosystem, pandas-profiling [pdpb] au-
tomatically creates data visualizations and statistics of dataframes,
and dask [Roc15] provides parallelization capabilities for a
variety of data structures, pandas dataframes among them.

This paper introduces a data validation tool called pandera,
which provides an intuitive, flexible, and expressive API for
validating pandas data structures at runtime. The problems that
this library attempts to address are two-fold. The first is that
dataframes can be difficult to reason about in terms of their
contents and properties, especially when they undergo many steps
of transformations in complex data processing pipelines. The
second is that, even though ensuring data quality is critical in
many contexts like scientific reporting, data analytics, and machine
learning, the data validation process can produce considerable
cognitive and software development overhead. Therefore, this tool
focuses on making it as easy as possible to perform data validation
in a variety of contexts and workflows in order to lower the barrier
to explicitly defining and enforcing the assumptions about data.

* Corresponding author: niels.bantilan@gmail.com
‡ Talkspace
§ pyOpenSci

Copyright © 2020 Niels Bantilan. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

In the following sections I outline the theoretical underpin-
nings and practical appications of data validation, describe in
more detail the specific architecture and implementation of the
pandera package, and compare and contrast it with similar tools
in the Python and R ecosystems.

Data Validation Definition

Data validation is the process by which the data analyst decides
whether or not a particular dataset fulfills certain properties that
should hold true in order to be useful for some purpose, like
modeling or visualization. In other words, data validation is a
falsification process by which data is deemed valid with respect
to a set of logical and statistical assumptions [VdLDJ18]. These
assumptions are typically formed by interacting with the data,
where the analyst may bring to bear some prior domain knowledge
pertaining to the dataset and data manipulation task at hand.
Notably, even with prior knowledge, exploratory data analysis is
an essential part of the workflow that is part of the data wrangling
process.

More formally, we can define data validation in its most simple
form as a function:

v(x)� {True,False} (1)

Where v is the validation function, x is the data to validate, and the
output is a boolean value. As [vdLdJ19] points out, the validation
function v must be a surjective (onto) function that covers the
function’s entire range in order to be meaningful. To see why,
consider a validation function that always returns True or always
returns False. Such a function cannot falsify any instantiation
of the dataset x and therefore fails to provide any meaningful
information about the validity of any dataset1. Although the above
formulation covers a wide variety of data structures, this paper
will focus on tabular data.

Types of Validation Rules

[vdLdJ19] distinguishes between technical validation rules and
domain-specific validation rules. Technical validation rules de-
scribe the variables, data types, and meta-properties of what
constitutes a valid or invalid data structure, such as uniqueness
and nullability. On the other hand, domain-specific validation rules

1. There are nuances around how to formulate the domain of the function
v. For a more comprehensive formal treatment of data validation, refer to
[vdLdJ19] and [VdLDJ18]

PANDERA: STATISTICAL DATA VALIDATION OF PANDAS DATAFRAMES 117

describe properties of the data that are specific to the particular
topic under study. For example, a census dataset might contain
age, income, education, and job_category columns that
are encoded in specific ways depending on the way the census was
conducted. Reasonable validation rules might be:

• The age and income variables must be positive integers.
• The age variable must be below 1222.
• Records where age is below the legal working age should

have NA values in the income field.
• education is an ordinal variable that must be a

member of the ordered set {none, high school,
undergraduate, graduate}.

• job_category is an unordered categorical
variable that must be a member of the set
{professional, manegerial, service,
clerical, agricultural, technical}.

We can also reason about validation rules in terms of the
statistical and distributional properties of the data under validation.
We can think about at least two flavors of statistical validation
rules: deterministic, and probabilistic. Probabilistic checks explic-
itly express uncertainty about the statistical property under test
and encode notions of stochasticity and randomness. Conversely,
deterministic checks express assertions about the data based on
logical rules or functional dependencies that do not explicitly
incorporate any assumptions about randomness into the validation
function.

Often times we can express statistical properties about data
using deterministic or probabilistic checks. For example, "the
mean age among the graduate sample tends to be higher
than that of the undergraduate sample in the surveyed pop-
ulation" can be verified deterministically by simply computing
the means of the two samples and applying the logical rule
mean(agegraduate) > mean(ageundergraduate). A probabilistic ver-
sion of this check would be to perform a hypothesis test, like a
t-test with a pre-defined alpha value. Most probabilistic checks
can be reduced to deterministic checks, for instance by simply
evaluating the truth/falseness of a validation rule using the test
statistic that results from the hypothesis test and ignoring the
p-value. Doing this simplifies the validation rule but trades off
simplicity for being unable to express uncertainty and statistical
significance. Other examples of such probabilistic checks might
be:

• The income variable is positively correlated with the
education variable.

• income is negatively correlated with the dummy variable
job_category_service, which is a variable derived
from the job_category column.

Data Validation in Practice

Data validation is part of a larger workflow that involves process-
ing raw data to produce of some sort of statistical artifact like
a model, visualization, or report. In principle, if one can write
perfect, bug-free code that parses, cleans, and reshapes the data
to produce these artifacts, data validation would not be necessary.
In practice, however, data validation is critical for preventing the
silent passing of an insidious class of data integrity error, which

2. The age of the oldest person: https://en.wikipedia.org/wiki/List_of_the_
verified_oldest_people

Fig. 1: Data validation as an iterative software development process.

is otherwise difficult to catch without explicitly making assertions
at runtime. These errors could lead to misleading visualizations,
incorrect statistical inferences, and unexpected behavior in ma-
chine learning models. Explicit data validation becomes even
more important when the end product artifacts inform business
decisions, support scientific findings, or generate predictions about
people or things in the real world.

Consider the process of constructing a dataset for training a
machine learning model. In this context, the act of data validation
is an iterative loop that begins with the analyst’s objective and a
mental model of what the data should "look" like. She then writes
code to produce the dataset of interest, simultaneously inspecting,
summarizing, and visualizing the data in an exploratory fashion,
which in turn enables her to build some intuition and domain
knowledge about the dataset.

She can then codify this intuition as a set of assumptions,
implemented as a validation function, which can be called against
the data to ensure that they adhere to those assumptions. If the
validation function evaluates to False against the data during
development time, the analyst must decide whether to refactor the
processing logic to fulfill the validation rules or modify the rules
themselves3.

In addition to enforcing correctness at runtime, the resulting
validation function also documents the current state of assump-
tions about the dataset for the benefit of future readers or main-
tainers of the codebase.

The role of the analyst, therefore, is to encode assumptions
about data as a validation function and maintain that function
as new datasets pass through the processing pipeline and the

3. In the latter scenario, the degenerate case is to remove the validation
function altogether, which exposes the program to the risks associated with
silently passing data integrity errors. Practically, it is up to the analyst to
determine an appropriate level of strictness that catches cases that would
produce invalid outputs.

118 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

definition of valid data evolves over time. One thing to note here
is that using version control software like git [git] would keep
track of the changes of the validation rules, enabling maintainers
or readers of the codebase to inspect the evolution of the contract
that the data must fulfill to be considered valid.

Design Principles

pandera is a flexible and expressive API for pandas data
validation, where the goal is to provide a data engineering tool that
(i) helps pandas users reason about what clean data means for their
particular data processing task and (ii) enforce those assumptions
at run-time. The following are the principles that have thus far
guided the development of this project:

• Expressing validation rules should feel familiar to
pandas users.

• Data validation should be compatible with the different
workflows and tools in the data science toolbelt without a
lot of setup or configuration.

• Defining custom validation rules should be easy.
• The validation interface should make the debugging pro-

cess easier.
• Integration with existing code should be as seamless as

possible.

These principles articulate the use cases that I had when
surveying the Python ecosystem for pandas data validation tools.

Architecture

pandera helps users define schemas as contracts that a pandas
dataframe must fulfill. This contract specifies deterministic and
statistical properties that must hold true to be considered valid
with respect to a particular analysis. Since pandera is primarily
a data engineering tool, the validation function defined in Equation
(1) needs to be slightly refactored:

s(v,x)→
{

x, if v(x) = true
error, otherwise

(2)

Where s is a schema function that takes the validation function
from Equation (1) and some data as input and returns the data
itself if it is valid and an error otherwise. In pandera, the
error is implemented as a SchemaError exception that contains
the invalid data as well as a pandas dataframe of failure cases
that contains the index and failure case values that caused the
exception.

The primary rationale for extending validation functions in
this way is that it enables users to compose schemas with data
processing functions, for example, s◦ f (x) is a composite function
that first applies a data processing function f to the dataset x
and then validates the output with the schema s. Another possible
composite function, f ◦ s(x), applies the validation function to x
before applying the f , effectively guaranteeing that inputs to f
fulfill the contract enforced by s.

This formulation of data validation facilitates the interleaving
of data processing and validation code in a flexible manner,
allowing the user to decide the critical points of failure in a
pipeline where data validation would make it more robust to
abherrant data values.

Fig. 2: High-level architecture of pandera. In the simplest case,
raw data passes through a data processor, is checked by a schema
validator, and flows through to the next stage of the analysis pipeline
if the validation checks pass, otherwise an error is raised.

Core Features

DataFrameSchemas as Contracts

The main concepts of pandera are schemas, schema compo-
nents, and checks. Schemas are callable objects that are initialized
with validation rules. When called with compatible data as an
input argument, a schema object returns the data itself if the
validation checks pass and raises a SchemaError when they
fail. Schema components behave in the same way as schemas but
are primarily used to specify validation rules for specific parts of
a pandas object, e.g. columns in a dataframe. Finally, checks
allow the users to express validation rules in relation to the type
of data that the schema or schema component are able to validate.

More specifically, the central objects in pandera are the
DataFrameSchema, Column, and Check. Together, these
objects enable users to express schemas upfront as contracts of
logically grouped sets of validation rules that operate on pandas
dataframes. For example, consider a simple dataset containing data
about people, where each row is a person and each column is an
attribute about that person:
import pandas as pd

dataframe = pd.DataFrame({
"person_id": [1, 2, 3, 4],
"height_in_feet": [6.5, 7, 6.1, 5.1],
"date_of_birth": pd.to_datetime([

"2005", "2000", "1995", "2000",
]),
"education": [

"highschool", "undergrad", "grad", "undergrad",
],

})

We can see from inspecting the column names and data values that
we can bring some domain knowledge about the world to express

PANDERA: STATISTICAL DATA VALIDATION OF PANDAS DATAFRAMES 119

our assumptions about what are considered valid data.
import pandera as pa
from pandera import Column

typed_schema = pa.DataFrameSchema(
{

"person_id": Column(pa.Int),

numpy and pandas data type string
aliases are supported
"height_in_feet": Column("float"),
"date_of_birth": Column("datetime64[ns]"),

pandas dtypes are also supported
string dtype available in pandas v1.0.0+
"education": Column(

pd.StringDtype(),
nullable=True

),
},

coerce types when dataframe is validated
coerce=True

)

typed_schema(dataframe) # returns the dataframe

Validation Checks

The typed_schema above simply expresses the columns that
are expected to be present in a valid dataframe and their associated
data types. While this is useful, users can go further by making
assertions about the data values that populate those columns:
import pandera as pa
from pandera import Column, Check

checked_schema = pa.DataFrameSchema(
{

"person_id": Column(
pa.Int,
Check.greater_than(0),
allow_duplicates=False,

),
"height_in_feet": Column(

"float",
Check.in_range(0, 10),

),
"date_of_birth": Column(

"datetime64[ns]",
Check.less_than_or_equal_to(

pd.Timestamp.now()
),

),
"education": Column(

pd.StringDtype(),
Check.isin([

"highschool",
"undergrad",
"grad",

]),
nullable=True,

),
},
coerce=True

)

The schema definition above establishes the following properties
about the data:

• the person_id column is a positive integer, which is a
common way of encoding unique identifiers in a dataset.
By setting allow_duplicates to False, the schema
indicates that this column is a unique identifier in this
dataset.

• height_in_feet is a positive float whose maximum
value is 10 feet, which is a reasonable assumption for the
maximum height of human beings.

• date_of_birth cannot be a date in the future.
• education can take on the acceptable values in the set

{"highschool", "undergrad", "grad"}. Sup-
posing that these data were collected in an online form
where the education field input was optional, it would
be appropriate to set nullable to True (this argument
is False by default).

Error Reporting and Debugging

If a dataframe passed into the schema callable object does not
pass the validation checks, pandera provides an informative
error message:
invalid_dataframe = pd.DataFrame({

"person_id": [6, 7, 8, 9],
"height_in_feet": [-10, 20, 20, 5.1],
"date_of_birth": pd.to_datetime([

"2005", "2000", "1995", "2000",
]),
"education": [

"highschool", "undergrad", "grad", "undergrad",
],

})

checked_schema(invalid_dataframe)

Exception raised:
SchemaError:
<Schema Column: 'height_in_feet' type=float>
failed element-wise validator 0:
<Check _in_range: in_range(0, 10)>
failure cases:

index count
failure_case
20.0 [1, 2] 2
-10.0 [0] 1

The causes of the SchemaError are displayed as a dataframe
where the failure_case index is the particular data value that
failed the Check.in_range validation rule, the index column
contains a list of index locations in the invalidated dataframe of
the offending data values, and the count column summarizes the
number of failure cases of that particular data value.

For finer-grained debugging, the analyst can catch the excep-
tion using the try...except pattern to access the data and
failure cases as attributes in the SchemaError object:
from pandera.errors import SchemaError

try:
checked_schema(invalid_dataframe)

except SchemaError as e:
print("Failed check:", e.check)
print("\nInvalidated dataframe:\n", e.data)
print("\nFailure cases:\n", e.failure_cases)

Output:
Failed check: <Check _in_range: in_range(0, 10)>

Invalidated dataframe:
person_id height_in_feet date_of_birth education

0 6 -10.0 2005-01-01 highschool
1 7 20.0 2000-01-01 undergrad
2 8 20.0 1995-01-01 grad
3 9 5.1 2000-01-01 none

Failure cases:
index failure_case

0 0 -10.0

120 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

1 1 20.0
2 2 20.0

In this way, users can easily access and inspect the invalid
dataframe and failure cases, which is especially useful in the
context of long method chains of data transformations:
raw_data = ... # get raw data
schema = ... # define schema

try:
clean_data = (

raw_data
.rename(...)
.assign(...)
.groupby(...)
.apply(...)
.pipe(schema)

)
except SchemaError as e:

e.data will contain the resulting dataframe
from the groupby().apply() call.
...

Pipeline Integration

There are several ways to interleave pandera validation code
with data processing code. As shown in the example above, one
can use a schema by simply using it as a callable. Users can
also sandwich data preprocessing code between two schemas;
one schema that ensures the raw data fulfills certain assumptions,
and another that ensures the processed data fulfills another set of
assumptions that arise as a consequence of the data processing.
The following code provides a toy example of this pattern:
in_schema = pa.DataFrameSchema({

"x": Column(pa.Int)
})

out_schema = pa.DataFrameSchema({
"x": Column(pa.Int),
"x_doubled": Column(pa.Int),
"x_squared": Column(pa.Int),

})

raw_data = pd.DataFrame({"x": [1, 2, 3]})
processed_data = (

raw_data
.pipe(in_schema)
.assign(

x_doubled=lambda d: d["x"] * 2,
x_squared=lambda d: d["x"] ** 2,

)
.pipe(out_schema)

)

For more complex pipelines that handle multiple steps of data
transformations with functions, pandera provides a decorator
utility for validating the inputs and outputs of functions. The above
example can be refactored into:
@pa.check_input(in_schema)
@pa.check_output(out_schema)
def process_data(raw_data):

return raw_data.assign(
x_doubled=lambda df: df["x"] * 2,
x_squared=lambda df: df["x"] ** 2,

)

processed_data = process_data(raw_data)

Custom Validation Rules

The Check class defines a suite of built-in methods for common
operations, but expressing custom validation rules are easy. In

the simplest case, a custom column check can be defined simply
by passing a function into the Check constructor. This function
needs to take as input a pandas Series and output either a
boolean or a boolean Series, like so:
Column(checks=Check(lambda s: s.between(0, 1)))

The element_wise keyword argument changes the expected
function signature to a single element in the column, for example,
a logically equivalent implementation of the above validation rule
would be:
Column(

checks=Check(
lambda x: 0 <= x <= 1, element_wise=True

)
)

Check objects can also be used in the context of a
DataFrameSchema, in which case the function argument
should take as input a pandas DataFrame and output a boolean,
a boolean Series, or a boolean DataFrame.
assert that "col1" is greater than "col2"
schema = pa.DataFrameSchema(

checks=Check(lambda df: df["col1"] > df["col2"])
)

Currently, in the case that the check function returns a boolean
Series or DataFrame, all of the elements must be True in
order for the validation check to pass.

Advanced Features

Hypothesis Testing

To provide a feature-complete data validation tool for data sci-
entists, pandera subclasses the Check class to define the
Hypothesis class for the purpose of expressing statistical
hypothesis tests. To illustrate one of the use cases for this feature,
consider a toy scientific study where a control group receives a
placebo and a treatment group receives a drug that is hypothesized
to improve physical endurance. The participants in this study then
run on a treadmill (set at the same speed) for as long as they can,
and running durations are collected for each individual.

Even before collecting the data, we can define a schema that
expresses our expectations about a positive result:
from pandera import Hypothesis

endurance_study_schema = pa.DataFrameSchema({
"subject_id": Column(pa.Int),
"arm": Column(

pa.String,
Check.isin(["treatment", "control"])

),
"duration": Column(

pa.Float, checks=[
Check.greater_than(0),
Hypothesis.two_sample_ttest(

null hypothesis: the mean duration
of the treatment group is equal
to that of the control group.
sample1="treatment",
relationship="greater_than",
sample2="control",
groupby="arm",
alpha=0.01,

)
]

)
})

Once the dataset is collected for this study, we can then pass
it through the schema to validate the hypothesis that the group

PANDERA: STATISTICAL DATA VALIDATION OF PANDAS DATAFRAMES 121

receiving the drug increases physical endurance, as measured by
running duration.

As of version 0.4.0, the suite of built-in hypotheses is lim-
ited to the two_sample_ttest and one_sample_ttest,
but creating custom hypotheses is straight-forward. To illustrate
this, another common hypothesis test might be to check if a sample
is normally distributed. Using the scipy.stats.normaltest function,
one can write:
import numpy as np
from scipy import stats

dataframe = pd.DataFrame({
"x1": np.random.normal(0, 1, size=1000),

})

schema = pa.DataFrameSchema({
"x1": Column(

checks=Hypothesis(
test=stats.normaltest,
null hypothesis:
x1 is normally distributed with
alpha value of 0.01
relationship=lambda k2, p: p > 0.01

)
),

})

schema(dataframe)

Conditional Validation Rules

If we want to validate the values of one column conditioned on
another, we can provide the other column name in the groupby
argument. This changes the expected Check function signature
to expect an input dictionary where the keys are discrete group
levels in the conditional column and values are pandas Series
objects containing subsets of the column of interest. Returning
to the endurance study example, we could simply assert that the
mean running duration of the treatment group is greater than that
of the control group without assessing statistical significance:
simple_endurance_study_schema = pa.DataFrameSchema({

"subject_id": Column(pa.Int),
"arm": Column(

pa.String,
Check.isin(["treatment", "control"])

),
"duration": Column(

pa.Float, checks=[
Check.greater_than(0),
Check(

lambda duration_by_arm: (
duration_by_arm["treatment"].mean()
> duration_by_arm["control"].mean()

),
groupby="arm"

)
]

)
})

Functional dependencies are a type of conditional validation
rule that expresses a constraint between two sets of variables
in a relational data model [Arm74] [BFG+07]. For example,
consider a dataset of biological species where each row is a
species and each column is a classification in the classic hierarchy
of kingdom -> phylum -> class -> order ... ->
species. We can assert that "if two species are in the same
phylum, then they must be in the same kingdom":
species_schema = pa.DataFrameSchema({

"phylum": Column(pa.String),

"kingdom": Column(
pa.String,
Check(

there exists only one unique kingdom
for species of the same phylum
lambda kingdoms: all(

kingdoms[phylum].nunique() == 1
for phylum in kingdoms

),
this can also be a list of columns
groupby="phylum"

)
)

})

However, in order to make the assertion "if two species are in
the same order, then they must be in the same class and
phylum", we have to use dataframe-level checks since the above
pattern can only operate on values of a single column grouped by
one or more columns.
species_schema = pa.DataFrameSchema(

checks=Check(
lambda df: (

df.groupby("order")
[["phylum", "class"]]
.nunique() == 1

)
)

)

Use Case Vignettes

This section showcases the types of use cases that pandera is
designed to address via hypothetical vignettes that nevertheless
illustrate how pandera can be beneficial with respect to the
maintainability and reproducibility of analysis/model pipeline
code. These vignettes are based on my experience using this
library in research and production contexts.

Catching Type Errors Early

Consider a dataset of records with the fields age, occupation,
and income, where we would like to predict income as a
function of the other variables. A common type error that arises,
especially when processing unnormalized data or flat files, is the
presence of values that violate our expectations based on domain
knowledge about the world:
data = """age,occupation,income
30,nurse,90000
25,data_analyst,75000
45 years,mechanic,45000
21 year,community_organizer,41000
-100,wait_staff,27000
"""

In the above example, the age variable needs to be cleaned so that
its values are positive integers, treating negative values as null.
import pandas as pd
import pandera as pa
from io import StringIO

schema = pa.DataFrameSchema(
{

"age": pa.Column(
pa.Float,
pa.Check.greater_than(0),
nullable=True,

),
"occupation": pa.Column(pa.String),
"income": pa.Column(pa.Float),

},

122 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

coerce=True
)

pd.read_csv(StringIO(data)).pipe(schema)
ValueError:
invalid literal for int() with base 10: '45 years'

Defining a data cleaning function would be standard practice, but
here we can augment this function with guard-rails that would
catch age values that cannot be cast into a float type and convert
negative values to nulls.
@pa.check_output(schema)
def clean_data(df):

return df.assign(
age=(

df.age.str.replace("years?", "")
.astype("float64").mask(lambda x: x < 0)

)
)

training_data = (
pd.read_csv(StringIO(data)).pipe(clean_data)

)

The implementation of clean_data now needs to adhere to
the schema defined above. Supposing that the data source is
refreshed periodically from some raw data feed, additional records
with age values like 22 years and 7 months would be
caught early in the data cleaning portion of the pipeline, and the
implementation within clean_data would have to be refactored
to normalize these kinds of more complicated values.

Though this may appear to be a trivial problem, validation
rules on unstructured data types like text benefit greatly from
even simple validation rules, like checking that values are non-
empty strings and contain at least a minimum number of tokens,
before sending the text through a tokenizer to produce a numerical
vector representation of the text. Without these validation checks,
these kinds of data integrity errors would pass silently through the
pipeline, only to be unearthed after a potentially expensive model
training run.

Reusable Schema Definitions

In contexts where the components of an ML pipeline are handled
by different services, we can reuse and modify schemas for the
purposes of model training and prediction. Since schemas are just
python objects, schema definition code can be placed in a module
e.g. schemas.py, which can then be imported by the model
training and prediction modules.
schemas.py
feature_schema = schema.remove_columns(["income"])
target_schema = pa.SeriesSchema(pa.Int, name="income")

model_training.py
from schemas import feature_schema, target_schema

@pa.check_input(feature_schema, "features")
@pa.check_input(target_schema, "target")
def train_model(features, target):

estimator = ...
estimator.fit(features, target)
return estimator

model_prediction.py
from schemas import feature_schema, target_schema

@pa.check_input(feature_schema, "features")
@pa.check_output(target_schema)
def predict(estimator, features):

predictions = estimator.predict(features)
return pd.Series(predictions, name="income")

Unit Testing Statistically-Typed Functions

Once functions are decorated with check_input or
check_output, we can write unit tests for them by generating
synthetic data that produces the expected results. For example,
here is a test example using pytest [pyt]:
test_clean_data.py
import pandera as pa
import pytest

def test_clean_data():
valid_data = pd.DataFrame({

"age": ["20", "52", "33"],
"occupation": ["barista", "doctor", "chef"],
"income": [28000, 150000, 41000],

})
clean_data(valid_data)

non-normalized age raises an exception
invalid_data = valid_data.copy()
invalid_data.loc[0, "age"] = "20 years and 4 months"
with pytest.raises(ValueError):

clean_data(invalid_data)

income cannot be null
invalid_null_income = valid_data.copy()
invalid_null_income.loc[-1, "income"] = None
with pytest.raises(pa.errors.SchemaError):

clean_data(invalid_null_income)

This last use case would be further enhanced by property-based
testing libraries like hypothesis [MHDC19] [MHDpb+20] that
could be used to generate synthetic data against which to test
schema-decorated functions.

Documentation

Documentation for pandera is hosted on ReadTheDocs, where
tutorials on core and experimental features are available, in addi-
tion to full API documentation.

Limitations

The most notable limitation of pandera is the computational
cost of running validation checks at runtime. This limitation
applies to any data validation code, which trades off increased
run-time for type safety and data integrity. The project currently
uses airspeed-velocity [asv] for a few basic run-time
and memory usage benchmarks, but more extensive performance
profiling is warranted to give users a better sense of this trade-off.
The other trade-off to consider is the additional development time
associated with defining robust and meaningful schemas versus
the time spent debugging silent data integrity issues, which is
particularly costly in areas like machine learning where model
debugging occurs after training a model.

A related limitation is that type-checking schemas are practical
for large datasets (e.g. datasets that do not fit onto disk in a
modern laptop), but validation checks that verify statistics on
one or more columns can become expensive. For this reason, the
default Check function signature is expected to be a Series in
order to encourage users to use the optimized pandas.Series
methods. In theory, pandera schemas can be coupled with
parallelization tools like dask [Roc15] to perform data validation
in these settings.

Two other limitations of the current state of the package are
that:

• The built-in Hypothesis methods are currently lim-
ited in scope, and implementing wrapper methods to

PANDERA: STATISTICAL DATA VALIDATION OF PANDAS DATAFRAMES 123

the scipy implementations of commonly used distribu-
tional tests (e.g. normality test, chi-squared test, and KL-
divergence) would encourage the use of hypothesis tests in
schemas.

• Expressing functional dependencies is currently inelegant
and would benefit from a higher-level abstraction to im-
prove usability.

Roadmap

The pandera project started as a naive excursion into seeing
whether pandas dataframes could be statically typed, as gradual
typing is becoming adopted by the Python community since
the typing module was introduced in Python 3.5. The project
evolved into a tool that emphasizes the verification of the statistical
properties of data, which requires run-time validation.

The direction of this project has been driven, in large part, by
its contributors, and will continue to be via feature requests on the
github repo. There are a number of experimental features that are
currently available in version 0.4.0+ that aim to speed up the
iteration loop of defining schemas at development time through
interactive analysis:

• schema inference: the pandera.infer_schema func-
tion takes as input a dataframe and outputs an automati-
cally generated draft schema that the user can iterate on.

• yaml/module serialization: this feature enables the user to
write schemas (inferred or otherwise) to a yaml file or
python script, which are editable artifacts to iterate on.

Additionally, a few feature proposals would benefit from
discussion and feedback from the wider scientific computing and
data science community:

• Synthetic data generation based on schema definitions
[issue 200].

• Domain-specific schemas, types, and checks, e.g. for the
machine learning use case, provide first-class support for
validation checks between target and feature variables
[issue 179].

• Expressing a tolerance level for the proportion of values
that fail a validation Check [issue 183].

There are several ways to contribute for interested readers:

• Improving documentation by adding examples, fixing
bugs, or clarifying the the writing.

• Feature requests: e.g. requests for additional built-in
Check and Hypotheses methods.

• Submit new issues or pull requests for existing issues.

Related Tools

This project was inspired by the schema and pandas_schema
Python packages and the validate R package [vdLdJ19]. Ini-
tially when assessing the Python landscape for pandas-centric
data validation tools, I found that they did not match my use cases
because they (a) often resulted in verbose and over-specified vali-
dation rulesets, (b) introduced many new library-specific concepts
and configuration steps, (c) lacked documentation of core func-
tionality and usage patterns, and/or (d) are no longer maintained.

Here is my assessment of data validation tools that are cur-
rently being maintained in the Python ecosystem:

• great_expectations [ge]: this is a mature, batteries-
included data validation library centered around the con-
cept of expectations. It provides a UI to manage validation
rules and supports integrations with many database sys-
tems and data manipulation tools. This framework extends
the pandas.DataFrame class to include validation
methods prefixed with expect_* and a suite of built-in
rules for common use cases. Defining custom validation
rules involves subclassing the PandasDataset class
and defining specially-decorated methods with function
signatures that adhere to library-specific standards.

• schema [sch]: a light-weight data validator for generic
Python data structures. This package and pandera share
the schema interface where the schema object returns the
data itself if valid and raises an Exception otherwise.
However, this library does not provide additional function-
ality for pandas data structures.

• pandas_schema [ps]: a pandas data validation library
with a comprehensive suite of built-in validators. This
package was the inspiration for the schema component
design where a Column object specifies properties of
a dataframe column, albeit the specific implementations
are considerably different. It provides built-in validators
and supports defining custom validation rules. Unlike
pandera which outputs the validated data, the output
of validating a dataframe with pandas_schema is an
iterable of errors that are intended to be inspected via
print statements.

The key features that differentiate pandera from similar
packages in the Python ecosystem are the following:

• check_input and check_output function decora-
tors enable seamless integration with existing data pro-
cessing/analysis code.

• Check validation rules are designed primarily for cus-
tomizability, with built-in methods as a convenience for
common validation rules.

• Hypothesis validation rules provide a tidy-first [W+14]
interface for hypothesis testing.

• Ease of debugging, as SchemaErrors contain the inval-
idated data as well as a tidy dataframe of the failure cases
with their corresponding column/index locations.

• Schema inference and serialization capabilities enable the
creation of draft schemas that users can iterate on and
refine.

• Clear and comprehensive documentation on core and ad-
vanced features.

Conclusion

This paper introduces the pandera package as a way of express-
ing assumptions about data and falsifying those assumptions at
run time. This tool is geared toward helping data engineers and
data scientists during the software development process, enabling
them to make their data proprocessing workflows more readable,
robust, and maintainable.

Acknowledgements

I would like to acknowledge the pyOpenSci community for their
support and the pandera contributors who have made significant
improvements and enhancements to the project.

124 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

REFERENCES

[Arm74] William Ward Armstrong. Dependency structures of data
base relationships. In IFIP congress, volume 74, pages
580–583. Geneva, Switzerland, 1974.

[asv] airspeed velocity. Accessed: 29 May 2020. URL: https:
//github.com/airspeed-velocity/asv.

[BFG+07] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and
Anastasios Kementsietsidis. Conditional functional depen-
dencies for data cleaning. In 2007 IEEE 23rd international
conference on data engineering, pages 746–755. IEEE,
2007.

[EJMZBSZZS19] Eric J. Ma, Zachary Barry, Sam Zuckerman, and Zachary
Sailer. pyjanitor: A Cleaner API for Cleaning Data. In
Chris Calloway, David Lippa, Dillon Niederhut, and David
Shupe, editors, Proceedings of the 18th Python in Science
Conference, pages 50 – 53, 2019. doi:10.25080/
Majora-7ddc1dd1-007.

[ge] Great expectations: Always know what to expect from your
data. Accessed: 29 May 2020. URL: https://github.com/
great-expectations/great_expectations.

[git] Git. Accessed: 29 May 2020. URL: https://git-scm.com.
[MHDC19] David MacIver, Zac Hatfield-Dodds, and Many Contrib-

utors. Hypothesis: A new approach to property-based
testing. Journal of Open Source Software, 4(43):1891, 11
2019. URL: http://dx.doi.org/10.21105/joss.01891, doi:
10.21105/joss.01891.

[MHDpb+20] David R. MacIver, Zac Hatfield-Dodds, pyup.io bot, Alex
Chan, Stuart Cook, Ryan Soklaski, David Chudzicki,
jwg4, Alex Willmer, Tyler, Kyle Reeve, Grigorios Gian-
nakopoulos, mulkieran, Emmanuel Leblond, Christopher
Armstrong, Tyler Gibbons, Jeremy Thurgood, Paul Stiver-
son, SuperStormer, Alexander Shorin, David Mascharka,
Peter C Kroon, Anne Archibald, Tom Prince, Mathieu
PATUREL, dwest netflix, Tom McDermott, rdturnermtl,
Graham Williamson, and Cory Benfield. Hypothesis-
Works/hypothesis: Hypothesis for Python - version 5.16.0,
May 2020. URL: https://doi.org/10.5281/zenodo.3859851,
doi:10.5281/zenodo.3859851.

[pdpa] pandas-ply. Accessed: 6 June 2020. URL: https://github.
com/coursera/pandas-ply.

[pdpb] pandas-profiling. Accessed: 6 June 2020. URL: https://
github.com/pandas-profiling/pandas-profiling.

[ps] Pandasschema. Accessed: 29 May 2020. URL: https://
github.com/TMiguelT/PandasSchema.

[pyj] pyjanitor. Accessed: 6 June 2020. URL: https://github.com/
ericmjl/pyjanitor.

[pyt] pytest. Accessed: 29 June 2020. URL: https://github.com/
pytest-dev/pytest.

[Roc15] Matthew Rocklin. Dask: Parallel computation with blocked
algorithms and task scheduling. In Proceedings of the 14th
python in science conference, number 130-136. Citeseer,
2015.

[sba] siuba. Accessed: 6 June 2020. URL: https://github.com/
machow/siuba.

[sch] Schema: Schema validation just got pythonic. Accessed:
29 May 2020. URL: https://github.com/keleshev/schema.

[VdLDJ18] Mark Van der Loo and Edwin De Jonge. Statistical data
cleaning with applications in R. Wiley Online Library,
2018.

[vdLdJ19] Mark PJ van der Loo and Edwin de Jonge. Data validation
infrastructure for r. arXiv preprint arXiv:1912.09759, 2019.

[W+14] Hadley Wickham et al. Tidy data. Journal of Statistical
Software, 59(10):1–23, 2014.

[WM10] Wes McKinney. Data Structures for Statistical Computing
in Python. In Stéfan van der Walt and Jarrod Millman,
editors, Proceedings of the 9th Python in Science Confer-
ence, pages 56 – 61, 2010. doi:10.25080/Majora-
92bf1922-00a.

PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020) 125

Combining Physics-Based and Data-Driven Modeling
for Pressure Prediction in Well Construction

Oney Erge‡∗, Eric van Oort‡

F

Abstract—A framework for combining physics-based and data-driven models to
improve well construction is presented in this study. Additionally, the proposed
approach provides a more robust and accurate model that mitigates the disad-
vantages of using purely physics-based or data-driven models. This approach
can provide improved model-based control of drilling rig actuators (assocated
with mud pumps, pipe handling systems, etc.).

Traditionally, models based on physics including Hagen-Poiseuille flow,
Hooke’s law, etc. are used during well construction. Physics-based models facil-
itate the design of the drilling plan and are vital to safely and successfully drilling
wellbores. There are two major shortcomings, however, to using purely physics-
based models. First, the models can be inaccurate if the physical dynamics are
not fully accounted for. Accurately capturing data to describe these processes
can be involved, complex or prohibitively expensive. Second, these models must
be maintained and calibrated during drilling, which requires a large amount
of operator input and is liable to human error. On the other hand, pure data-
driven approaches are unable to represent underlying mechanism dynamics and
often struggle to properly capture causal relationships. It is shown in this work
combining physics and data-driven modeling provides a more robust framework
for well planning and execution.

Machine learning techniques are combined with physics-based models via
a rule-based stochastic hidden Markov model, using the modeling of frictional
pressure losses during fluid circulation in the well as an example. Gaussian
processes, neural networks and a deep learning model are trained and executed
together with a physics model that is directly derived using first principles.

The results show that combination modeling can accurately predict the
pressure losses even outperforming the physics-based and purely data-driven
modeling. The proposed approach has a good potential to allow safer, optimized
well construction operations.

Index Terms—deep learning, machine learning, combining physics-based mod-
eling and data-driven modeling, hydraulics modeling, frictional pressure loss
modeling.

1.Introduction

Well construction for energy (geothermal, oil and gas) is an inher-
ently complex multi-disciplinary process. This process includes
the interplay of solid, fluid and rock systems and requires manag-
ing subsurface events that are usually not measured or observed
directly. In an attempt to digitally twin the process as much as
possible, physics-based models are used during drilling wells.
Physics-based models assist in the decision-making, especially in
the well planning and design phases. Notably, modeling the fluid

* Corresponding author: oneyerge@utexas.edu
‡ The University of Texas at Austin

Copyright © 2020 Oney Erge et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

flow and managing the pressure in the wellbore is key to the safe
and successful construction of wellbores.

In drilling, physics-based fluid flow models are derived directly
from the first principles, using mass, momentum and energy
equations. The sets of equations used to estimate the fluid be-
havior, are non-linear, lacking an analytical solution and can only
be solved numerically. However, these numerical solutions are
computationally expensive and generally fail to provide a practical
real-time solution. Additionally, physics-based models have two
major weaknesses: first, in a dynamic, complex system (i.e.
well construction), all of the physics is typically not understood,
given that the initial conditions are usually unknown. Therefore,
the physics is not modeled accurately, resulting in inaccuracies;
second, during any given process, input parameters change and the
model should be constantly maintained to obtain useful results.

The advances of computational power and exponential growth
of data have made data-driven modeling more viable and popular.
Across various domains, data-driven models are being explored
in an attempt to compare their performance to the physics-based
models. The largest shortcoming of purely data-driven models,
however, it that they are often black-box models, lacking a
connection to underlying physics and thereby complicating inter-
pretability. In other words, a specific outcome or decision by the
data-driven models may not be logically understood by the human
expert. Combining the two approaches may alleviate the crucial
shortcoming of each approach individually.

In this work, we conducted physics-based simulations and
trained data-driven models (neural networks and Gaussian pro-
cesses) using an actual drilling dataset. We developed a hidden
Markov model comprising of the process state and domain knowl-
edge. The proposed approach shows potential to attain the best
features of both approaches, and thereby allow for safer and more
optimized well construction operations.

2.Literature Review

Combining physics-based and data-driven modeling, i.e. hybrid
modeling, is a relatively new field of research [KWRK17]. The
current literature is limited and spread across various domains.
Consequently, the literature review below includes examples from
distinct domains and diverse discussions. It should be noted that
there are discrepancies in the terminology used in the literature
of hybrid modeling. Although discussing the correct terminol-
ogy/definitions is not within the scope of this paper, we do point
out several of these discrepancies in the following.

[ACK13] investigated several prognostics techniques to predict
the remaining useful life (RUL) of structural components (i.e.

126 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

steel, aluminum), analyzing fatigue crack length growth over
several loading cycles. They classified these prognostic techniques
for condition-based maintenance (CBM) under three categories:
physics-based, data-driven and hybrid models. In terms of data-
driven modeling, the authors used neural networks (NN) and
Gaussian Processes (GPs). For the physics-based and hybrid
models, the authors referred to the two correlation type models
as physics-based models and combined them with particle filters
(PF) and Bayesian method (BM). They found that physics-based
models provide significantly better accuracy at long-term RUL
prediction. In case where the physics model is not available, purely
data-driven models can be used for short term prediction.

[KWRK17] presented a framework to combine a physics-
based model with neural networks, referring to the approach
as physics guided neural networks (PGNN). They included a
physics-based loss function in the learning objective of the neural
networks, and applied this framework to model the temperature
of lakes. By combining physics-based and data-driven modeling,
better scientific consistency was achieved. They discovered the
need for calibration to be a significant disadvantage of the physics-
based models, which can be time-consuming. However, in this
study, the physics-based model was actually a function containing
a set of curve-fitted coefficients, i.e. a correlation. It is not derived
using the first principles, but uses coefficients that are estimated
using measurements taken on some physical dynamics. It is
therefore not strictly a physics-based model. Their results showed
that PGNN outperformed a purely data-driven method (NN) in
terms of accuracy and consistency.

[KSB17] evaluated several approaches in the context of robots
interacting with the physical world via analytical models, data-
driven and hybrid models. They also analyzed the advantages and
disadvantages of neural networks-based learning approaches for
planar pushing. By applying neural networks to extract the physics
model’s inputs, they used the second stage of a reduced analytical
model. In short, they used neural networks for perception and
the analytical model for prediction. Two significant advantages of
hybrid modeling were noted to be the reduction in the required
amount of training data as well as the improvement in the gener-
alization of physical interaction providing physically meaningful
results.

[RRS+18] used data-driven modeling to accelerate the com-
putational speed of a solver for incompressible flows. The compu-
tationally stiff part of the Poisson equation is solved through the
data-driven approach, while the non-stiff part is handled with the
incompressible flow solver. Orthogonal base functions are used in
the reduced-order model space to solve the Poisson equation. By
doing so, it is computationally significantly cheaper compared to
a solver using finite differencing. Through data exchange between
the full and reduced-order spaces, they achieved a significant
reduction in the computational cost.

[KWOI18] noted that physics-based models, especially for
drillstring dynamics, are not adequate for real-time operations.
First, there are a lot of unknown parameters. Second, the physics
model needs to be constantly tuned to fit the actual data. Their
hybrid modeling approach was to use a recurrent neural network
to train using the historical data of an ongoing drilling operation,
and subsequently predict the drillstring dynamics in real-time.
They recommended using the physics simulations of drillstring
dynamics in case there is not enough data to properly train the
network.

[DIX19] incorporated data-driven modeling into traditional

turbulence modeling, with the intent to quantify and reduce
uncertainties. They used statistical inference to extract model
coefficients and discrepancies to improve the overall turbulent flow
modeling accuracy. They combined physics-based and data-driven
modeling in this order: first, the model discrepancy term is ex-
tracted via statistical inference from the datasets of interest. Then
data-driven techniques are applied to calculate the discrepancies
in the variables associated with the mean flow and turbulence. Fi-
nally, these discrepancies are given as input to Reynolds averaged
Navier-Stokes (RANS) solvers as a correction to the traditional
turbulence models in order to improve the overall accuracy. They
highlighted that when using a data-driven approach, the uncer-
tainties need to be presented and the physical and mathematical
constraints need to be taken into account. Their work also showed
that machine learning models need to be combined with physics
models to produce credible results.

[GSK19] proposed a framework to combine physics-based
(domain-focused) and data-driven (domain-agnostic) models to
analyze physiological data and quantify the physiological state and
abnormalities. They included expert knowledge into the modeling
via a boosting-based ensemble learning algorithm, and presented
several applications on how to combine various data sources to
quantify neurological abnormalities. They used simulated data
(heart rates simulated using differential equations) to compliment
the accumulated measurements, and applied deep neural networks
for predictions. At one of their examples using gait data, combin-
ing the domain and data-driven modeling allowed more accurate
detection rates of abnormalities at a level of 40-50%. Overall, they
strongly emphasized the use of simulated data to properly train the
data-driven models by increasing the data quantity.

[PGAAEMH19] used a set of submodels in series to analyze
the changes in the temperature and pressure across an engine
system. They used a mix of physics-based (for charge-air inter-
cooler, engine cylinder) and empirical (for intake and exhaust
manifold) models to predict critical temperatures and pressures in
the gas exchange system to facilitate model-based control. They
also used artificial neural networks for the turbocharger submodel.
By combining this set of submodels, the results showed a fair
agreement with the measurements.

[MM19] outlined the advantages of combining physics-based
and data-driven modeling to obtain improved inductive bias,
improved scalability to larger datasets and better interpretability.
They experimented using this approach with a system of pendu-
lum, acrobat, cartpole and multibody dynamics. They proposed an
Explicit Variational Gaussian Process, where they incorporated
the domain knowledge through an explicit linear prior, which
is developed using Newtonian mechanics. They concluded that
black-box models ignore the structure of the problem and are
less explainable, and increased interpretatbility by combining
modeling approaches.

3. Modeling the Flow of Non-Newtonian Fluids in Well Con-
struction

In the circulation system of a well under construction, the drilling
fluid travels through the surface lines into the drillstring, passes
through the nozzles of the bit and returns to the surface through
the annulus. Frictional pressure losses in the circulation system are
measured at the standpipe as standpipe pressure (SPP). Several
parameters have a significant effect on the SPP, such as depth,
flow rate, rotation of the drillstring, etc. The effects need to be

COMBINING PHYSICS-BASED AND DATA-DRIVEN MODELING FOR PRESSURE PREDICTION IN WELL CONSTRUCTION 127

Fig. 1: Hole and bit depth vs. time curve of Well A.

modeled in agreement with drilling fluid behavior in the particular
well geometry. Doing so, is key to be able to accurately predict
the pressure losses such that well circulating pressures can be
managed within the constraints of the so-called drilling margin.

Well contruction fluids (drilling fluid, completion fluids, ce-
menting fluids etc.) are generally thixotropic non-Newtonian fluids
that are shear-rate, temperature- and pressure-dependent. The
rheological behavior of the drilling fluids is preferably modeled in
accordance with the three-parameter Herschel and Bulkley fluid
model ([HB26]), which is given by:

τ = τy +Kγ̇m (1)

where τ is shear stress, τy is yield stress, K is consistency index,
γ̇ is shear-rate and m is flow behavior index.

The SPP was predicted considering this rheological model and
making use of an actual drilling dataset obtained for Well “A”.
This dataset pertains to a 4200 ft. drilling section and contains
about 500K datapoints. In Fig. 1, the hole vs. bit depth curve with
the SPP of Well A is presented.

3.1. Physics-based modeling

Flow in the circulation system during drilling can be summarized
in three parts: flow in pipes (surface lines and inside the drill-
string), annuli and the bit. Pump pressure (assuming no back-
pressure applied on the annular side) is given as:

Ppump = ∆Psur f ace +∆Pdrillstring +∆Pbit +∆Pannulus (2)

where Ppump is pump pressure, ∆Psur f ace is the pressure loss in
the surface pipes, ∆Pdrillstring is the pressure loss in the drillstring,
∆Pbit pressure loss at the bit and and ∆Pannulus is the pressure loss
in the annulus. The standpipe pressure is measured at the down-
stream, high-pressure end of the pump, and can be approximated
by the pump pressure while ignoring the minor frictional pressure
loss contribution of the surface lines.

Physics-based modeling of the Herschel and Bulkley fluid
flow at each individual geometry was accomplished with the
equations presented in the literature ([BJMCYJ91], [ACM+09]).
For the flow in annuli, the equations from ([EOM+15]) were
used, which consider the effects of drillpipe eccentricity within the
wellbore and rotation of the drillpipe on frictional pressure losses.
The physics-based equations are derived from the first principles
and were coded in Python. An iterative numerical scheme was
programmed for the Herschel and Bulkley fluid flow in pipes and

Fig. 2: Physics-based model results of calculated vs. measured SPP
values.

annuli. SciPy’s scipy.optimize ([VGO+20]) was used to solve for
the turbulent flow friction factor. Numba ([LPS15]) was used to
accelerate the handling of computationally heavy functions.

At each time-step, a physics-based estimation was made for
the entire dataset. Prediction performance, calculated vs. measured
SPP of Well A is presented in Fig. 2.

The results show that the physics model underestimates the
standpipe pressure, mainly because of the transient events oc-
curring while turning the pumps on or off. An in-depth analysis
suggests steady-state models estimate a zero pressure when the
pumps are turned off. However, in reality, when the pumps are
turned off, the pressure does not immediately drop to zero. It
means that there is a delay between the flow rate and pressure,
which is not accounted for in steady-state physics models.

3.2. Data-driven modeling

Deep learning neural networks perform very well in capturing
the complex relationships of the data ([Hay94]). A PyTorch
([PGM+19]) implementation of a single and multi-layered neural
network was developed to learn from the drilling time-series
sensory data. The network was trained with flow rate, rotation rate,
bit depth and hole depth to predict the standpipe pressure. Before
training the network, the data was preprocessed and transformed
using Scikit-Learn’s preprocessing library ([PVG+11]). And, the
training and test datasets are converted into NumPy ([Oli06];
[vCV11]) arrays.

While training the networks, Adam ([KB14]) was used as the
optimizer for the model. At each epoch, a backward pass was
made and the weights of the networks were updated. The Visdom
([vis]) library was used to visualize the loss function while the
network was being trained. For most of the figures in this paper,
the matplotlib library ([Hun07]) was used for visualization.

Several analyses were conducted to assess various neural net-
work configurations to find feasible setups and good performance
on drilling time-series data. First, the data was randomly shuffled
and split using the PyTorch’s random_split function to a 4:1 train-
ing to test ratio. Then, a single hidden layer neural network was
trained. The performance results are presented in Fig. 3. Results
show that even a single hidden layer neural network shows good
performance, and that a 4:1 randomly shuffled learning provides
a significant accuracy for this particular dataset. A quantitative
analysis about the accuracy is presented in table 1.

128 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Fig. 3: Data-driven model results of calculated vs. measured SPP
values. Obtained by using neural networks, a single hidden layer,
randomly sampling, and a 4-to-1 training-to-test ratio.

Fig. 4: Data-driven model results of calculated vs. measured SPP val-
ues. Obtained by using neural networks, ten hidden layers, randomly
sampling, and a 4-to-1 training-to-test ratio.

For deep learning, the number of hidden layers were varied. It
was found that approximately ten hidden layers appear to provide
satisfactory results in terms of computational performance and
accuracy for this particular drilling dataset. The results are shown
in Fig. 4. In comparison with a single layer neural network, the
accuracy was slightly better, and the time to train the neural
network was shortened.

Additionally, a real-time system was assumed. Instead of
randomly shuffling the data, the training data was divided into
sequential intervals. The network was trained using the first
two-thirds of the data to predict the standpipe pressure for the
remaining one-third. The results are presented in Fig. 5. The
network was able to identify the correlation of drilling parameters
for the one-third progression of the drilling without the knowledge
of the deeper sections. By only training from the initial two-thirds,
the results still provided good performance for the latter one-third.
The results show that even without randomly shuffling data and
training the network, a good performance was obtained with this
intervals-in-sequences approach.

Non-paramteric regression modeling using Gaussian Processes
(GP) was also performed for this particular dataset. Scikit-Learn’s

Fig. 5: Data-driven model results of calculated vs. measured SPP
values. Obtained by using neural networks, ten hidden layers, trained
in sequential intervals. Learned first two-thirds of the dataset and
predict the subsequent one-third.

GP library was used with a Matérn kernel ([Ras]) as follows:

kMatérn =
21−ν

Γ(ν)
(

√
2νr
`

)ν Kν(

√
2νr
`

) (3)

where ν and ` (length scale) are the hyperparameters of
the kernel. . The parameter ν controls the smoothness of the
learned function. In particular, the approximated function becomes
smoother as the ν value gets larger. At ν = ∞, the kernel becomes
the Radial Basis Function (RBF) kernel.

For this particular drilling dataset, the priors and results of
various kernels were analyzed. The Matérn kernel and a mixed
kernel of RBF and WhiteKernel showed superior performance in
comparison to others. Results from the Matérn kernel with ν = 0.5
and ` = 1.0 are presented.

Using the GPs, only a subsample of the entire drilling dataset
was analyzed due to memory restrictions. The data was partitioned
into so-called drilling stands, which consist of lenghts of three
~30 ft. drillpipe sections connected together. The reason for such
stand-by-stand partitioning of the data was to get an abstract
representation of the drilling process, and to localize the GPs
training into drilling intervals.

In this example, the data from four historical stands were used
in training the GPs to predict the SPP values for one stand into the
future. The time-series results are shown in Fig. 6. Note that GPs
also provided the cone of uncertainty with their prediction. The
prediction performance is presented in Fig. 7. The results show
that the predictions using GPs based on learning from the previous
four stands show good agreement with the measurements.

3.3. Combination of the Physics-Based and Data-Driven Mod-
eling

After obtaining the results from the physics-based and data-driven
modeling, a rule-based stochastic decision-making algorithm was
developed to combine these models. A hidden Markov model was
constructed using the Pomegranate ([Sch17]) library.

Both the physics-based and data-driven models were combined
with the process state of the operation and included in the hidden
Markov model, as illustrated in Fig. 8. The process state was cal-
culated by analyzing the multitude of sensor measurements (such
as hookload, standpipe pressure, etc.) to analytically determine the

COMBINING PHYSICS-BASED AND DATA-DRIVEN MODELING FOR PRESSURE PREDICTION IN WELL CONSTRUCTION 129

Fig. 6: Data-driven model results presented in drilling time-series
data of Well A. Obtained by using Gaussian Processes with a Matérn
kernel with ν = 0.5 and ` = 1.0.

Fig. 7: Data-driven model results of calculated vs. measured SPP
values. Obtained by using Gaussian Processes with a Matérn kernel
with ν = 0.5 and ` = 1.0.

rig state ([HEC+19]). A simple pattern recognition technique, i.e.
regular expressions ([Kle56]), which can be implemented through
Python’s re library or NumPy’s ([Oli06]) numpy.where function,
proved sufficient to calculate these rig states.

The hidden Markov model combined the information from the
historical data, the process state, the physics-based and the data-
driven model, following the flow chart shown in Fig. 8.

In this implementation of the hidden Markov model, the

Fig. 8: Combination of physics-based and data-driven modeling flow
chart.

Fig. 9: Proposed combined modeling results of calculated vs. mea-
sured SPP values. Physics-based model and GPs results are combined
through a hidden Markov model.

Fig. 10: Combined modeling results presented in time-series drilling
dataset.

observable state is a string representation of the combined results
from the physics-based and data-driven models and the rig’s
state. The hidden state is the combined ideal result given the
circumstance.

Through the hidden Markov model some rules can be applied.
A rule can for instance state that the likelihood of zero SPP can
be significant for certain process state(s). For example, the SPP
should be zero if drilling is temporarily halted and the drillstring
is in slips with a zero flow rate. The Viterbi algorithm ([Vit67])
can then be used to calculate the path of the maximum likelihood.

As another example, we can identify inaccuracies of the
physics-based model by understanding the operational state and
historical SPP data. Doing so, yields an advantage to the data-
driven model. The hidden Markov model will then attribute a
higher weight and trust to the data-driven model. Comparatively,
the results from the data-driven model can be unrealistic for
various reasons (i.e. outliers, sensor errors, etc.), and the physics
model can be assigned a higher weight.

By applying such rules, as an example, the combination
modeling of physics and GPs model is achieved and the results
are presented in Fig. 9.

The results showed good performance when the physics-based
and data-driven models were combined. In Fig. 10, the results of
the combination modeling in time-series is presented.

The hidden Markov model was able to provide better results

130 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

RMSE R^2 Median
AE

Mean
AE

Physics Model 619.4 0.699 93.7 256.6
NN [randomly sam-
pled]

163.5 0.979 78.4 106.7

Deep Learning [ran-
domly sampled]

158.0 0.980 60.5 92.1

Deep Learning [se-
quential interval]

213.9 0.963 148.7 172.2

Gaussian Processes 140.3 0.987 99.0 107.4
Combination model 109.4 0.992 74.8 71.4

TABLE 1: Summary of the results from experimenting with various
modeling approaches.

through the application of relatively simple rules in comparison
with using physics-based or data-driven modeling separately. The
results show that the combined model outperformed all others.
The summary of the results and their statistical significance are
presented in the table 1.

4. Conclusions

A framework for combining physics-based and data-driven mod-
eling is proposed through a rule-based stochastic decision-making
algorithm. Physics-based modeling of standpipe pressure was per-
formed using equations derived from first principles.. In addition,
various data-driven modeling approaches were explored using a
well dataset. Then, the two approaches were combined through
the use of a hidden Markov model.

The combined model clearly outperforming all other models.
Moreover, it managed to predict better results even while the
pumps were off, a circumstance for which the data-driven model
estimated unrealistic positive pressures.

Drilling critically relies on properly managing fluid circulat-
ing pressure in the wellbore for safety and efficiency. Through
the proposed combination modeling, circulating pressure can be
better predicted, which will lead to safer and more (cost-)efficient
operations. Note that the proposed framework is not limited to the
prediction of circulating pressure, and can be extended to other
well construction domains.

Acknowledgment

The authors thank the Rig Automation and Performance Improve-
ment in Drilling (RAPID) group at The University of Texas at
Austin and its sponsors for their guidance and support.

Nomenclature

K : consistency index,Pa sm

Kν : modi f ied Bessel f unction
m : f low behavior index
P : pressure,Pa
k : kernel f unction

Greek Letters

τ : shear stress,Pa
γ̇ : shear rate,1/s
ν : hyperparameter o f Matérn kernel
` : length scale o f Matérn kernel

Subscripts

y : yield

REFERENCES

[ACK13] Dawn An, Joo Ho Choi, and Nam Ho Kim. Options for
prognostics methods: A review of data-driven and physics-
based prognostics. In 54th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference,
page 1940, 2013. doi:10.2514/6.2013-1940.

[ACM+09] Bernt Aadnoy, Iain Cooper, Stefan Miska, Robert F Mitchell,
and Michael L Payne. Advanced drilling and well technol-
ogy. SPE Houston, TX, 2009.

[BJMCYJ91] Adam T Bourgoyne Jr, Keith K Millheim, Martin E Chen-
evert, and Farrile S Young Jr. Applied drilling engineering.
1991.

[DIX19] Karthik Duraisamy, Gianluca Iaccarino, and Heng Xiao.
Turbulence modeling in the age of data. Annual Review
of Fluid Mechanics, 51:357–377, 2019. doi:10.1146/
annurev-fluid-010518-040547.

[EOM+15] Oney Erge, Evren Mehmet Ozbayoglu, Stefan Miska,
Mengjiao Yu, Nicholas Takach, Arild Saasen, Roland May,
et al. The effects of drillstring-eccentricity,-rotation, and-
buckling configurations on annular frictional pressure losses
while circulating yield-power-law fluids. SPE Drilling &
Completion, 30(03):257–271, 2015. URL: https://doi.org/
10.2118%2F167950-pa, doi:10.2118/167950-pa.

[GSK19] Valeriy Gavrishchaka, Olga Senyukova, and Mark Koepke.
Synergy of physics-based reasoning and machine learning
in biomedical applications: towards unlimited deep learning
with limited data. Advances in Physics: X, 4(1):1582361,
2019. doi:10.1080/23746149.2019.1582361.

[Hay94] Simon Haykin. Neural networks: a comprehensive founda-
tion. Prentice Hall PTR, 1994.

[HB26] Winslow H Herschel and Ronald Bulkley. Konsistenzmes-
sungen von gummi-benzollösungen. Kolloid-Zeitschrift,
39(4):291–300, 1926. doi:https://doi.org/10.
1007/BF01432034.

[HEC+19] Mohammad Hamzah, Oney Erge, Sylvain Chambon, et al.
Automated drilling narratives: A scalable workflow to mea-
sure the effectiveness of drilling procedures. In SPE/IADC
International Drilling Conference and Exhibition. Society of
Petroleum Engineers, 2019. doi:https://doi.org/
10.2118/194129-MS.

[Hun07] John D Hunter. Matplotlib: A 2d graphics environment.
Computing in science & engineering, 9(3):90–95, 2007.
doi:10.1109/MCSE.2007.55.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. arXiv:1412.6980.

[Kle56] S. C. Kleene. Representation of Events in Nerve
Nets and Finite Automata, pages 3 – 42. Princeton
University Press, Princeton, 1956. URL: https:
//princetonup.degruyter.com/view/book/9781400882618/
10.1515/9781400882618-002.xml, doi:https:
//doi.org/10.1515/9781400882618-002.

[KSB17] Alina Kloss, Stefan Schaal, and Jeannette Bohg. Com-
bining learned and analytical models for predicting action
effects. arXiv preprint arXiv:1710.04102, 2017. arXiv:
1710.04102.

[KWOI18] Tatsuya Kaneko, Ryota Wada, Masahiko Ozaki, and Tomoya
Inoue. Combining physics-based and data-driven models for
estimation of wob during ultra-deep ocean drilling. In ASME
2018 37th International Conference on Ocean, Offshore
and Arctic Engineering. American Society of Mechanical
Engineers Digital Collection, 2018. doi:https://doi.
org/10.1115/OMAE2018-78229.

[KWRK17] Anuj Karpatne, William Watkins, Jordan Read, and Vipin
Kumar. Physics-guided neural networks (pgnn): An ap-
plication in lake temperature modeling. arXiv preprint
arXiv:1710.11431, 2017. arXiv:1710.11431.

[LPS15] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba:
A llvm-based python jit compiler. In Proceedings of the
Second Workshop on the LLVM Compiler Infrastructure in
HPC, LLVM ’15, New York, NY, USA, 2015. Association
for Computing Machinery. URL: https://doi.org/10.1145/
2833157.2833162, doi:10.1145/2833157.2833162.

COMBINING PHYSICS-BASED AND DATA-DRIVEN MODELING FOR PRESSURE PREDICTION IN WELL CONSTRUCTION 131

[MM19] Daniel L Marino and Milos Manic. Combining physics-
based domain knowledge and machine learning using vari-
ational gaussian processes with explicit linear prior. arXiv
preprint arXiv:1906.02160, 2019. arXiv:1906.02160.

[Oli06] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol
Publishing USA, 2006.

[PGAAEMH19] Jorge Pulpeiro Gonzalez, King Ankobea-Ansah, Elena
Escuder Milian, and Carrie M Hall. Modeling the gas
exchange processes of a modern diesel engine with an inte-
grated physics-based and data-driven approach. In Dynamic
Systems and Control Conference, volume 59155, page
V002T11A004. American Society of Mechanical Engineers,
2019. URL: https://doi.org/10.1115/DSCC2019-9226,
arXiv:https://asmedigitalcollection.
asme.org/DSCC/proceedings-pdf/DSCC2019/
59155/V002T11A004/6455484/v002t11a004-
dscc2019-9226.pdf, doi:10.1115/DSCC2019-
9226.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc., 2019. URL:
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf.

[PVG+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort,
Vincent Michel, Bertrand Thirion, vier Grisel, Mathieu Blon-
del, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al.
Scikit-learn: Machine learning in python. the Journal of
machine Learning research, 12:2825–2830, 2011.

[Ras] Carl Edward. Rasmussen. Gaussian processes for machine
learning. Adaptive computation and machine learning. MIT
Press, Cambridge, Mass.

[RRS+18] Sk Rahman, Adil Rasheed, Omer San, et al. A hybrid analyt-
ics paradigm combining physics-based modeling and data-
driven modeling to accelerate incompressible flow solvers.
Fluids, 3(3):50, 2018. doi:10.3390/fluids3030050.

[Sch17] Jacob Schreiber. Pomegranate: fast and flexible probabilistic
modeling in python. The Journal of Machine Learning
Research, 18(1):5992–5997, 2017.

[vCV11] S. van der Walt, S. C. Colbert, and G. Varoquaux. The
numpy array: A structure for efficient numerical computa-
tion. Computing in Science Engineering, 13(2):22–30, 2011.
doi:10.1109/MCSE.2011.37.

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson,
K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson,
Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan
Polat, Yu Feng, Eric W. Moore, Jake Vand erPlas, Denis
Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen,
E. A. Quintero, Charles R Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt,
and SciPy 1. 0 Contributors. SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272, 2020. doi:https://doi.org/
10.1038/s41592-019-0686-2.

[vis] visdom. https://github.com/facebookresearch/visdom. Ac-
cessed: 2020-05-13.

[Vit67] Andrew Viterbi. Error bounds for convolutional codes
and an asymptotically optimum decoding algorithm. IEEE
transactions on Information Theory, 13(2):260–269, 1967.
doi:10.1109/TIT.1967.1054010.

132 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Pydra - a flexible and lightweight dataflow engine for
scientific analyses

Dorota Jarecka‡∗, Mathias Goncalves¶‡, Christopher J. Markiewicz¶, Oscar Esteban¶, Nicole Lo‡, Jakub
Kaczmarzyk§‡, Satrajit Ghosh‡

F

Abstract—This paper presents a new lightweight dataflow engine written in
Python: Pydra. Pydra is developed as an open-source project in the neu-
roimaging community, but it is designed as a general-purpose dataflow engine
to support any scientific domain. The paper describes the architecture of the
software, as well as several useful features, that make Pydra a customizable
and powerful dataflow engine. Two examples are presented to demonstrate the
syntax and properties of the package.

Index Terms—dataflow engine, scientific workflows, reproducibility

Introduction

Scientific workflows often require sophisticated analyses that
encompass a large collection of algorithms. The algorithms, that
were originally not necessarily designed to work together, and
were written by different authors. Some may be written in Python,
while others might require calling external programs. It is a
common practice to create semi-manual workflows that require
the scientists to handle the files and interact with partial results
from algorithms and external tools. This approach is conceptually
simple and easy to implement, but the resulting workflow is
often time consuming, error-prone and difficult to share with oth-
ers. Consistency, reproducibility and scalability demand scientific
workflows to be organized into fully automated pipelines. This
was the motivation behind Pydra - a new dataflow engine written
in Python, that is presented in this paper.

The Pydra package is a part of the second generation of the
Nipype ecosystem ([GBM+11], [Dev]) --- an open-source frame-
work that provides a uniform interface to existing neuroimaging
software and facilitates interaction between different software
components. The Nipype project was born in the neuroimaging
community, and has been helping scientists build workflows for
a decade, providing a uniform interface to such neuroimaging
packages as FSL [WJP+09], ANTs [ATS09], AFNI [Cox96],
FreeSurfer [DFS99] and SPM [FAK+07]. This flexibility has
made it an ideal basis for popular preprocessing tools, such as
fMRIPrep [OEG19] and C-PAC [C-P]. The second generation of
Nipype ecosystem is meant to provide additional flexibility and is

* Corresponding author: djarecka@gmail.com
‡ Massachusetts Institute of Technology, Cambridge, MA, USA
¶ Stanford University, Stanford, CA, USA
§ Stony Brook University School of Medicine, Stony Brook, NY, USA

Copyright © 2020 Dorota Jarecka et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

being developed with reproducibility, ease of use, and scalability
in mind. Pydra itself is a standalone project and is designed as a
general-purpose dataflow engine to support any scientific domain.

The goal of Pydra is to provide a lightweight dataflow en-
gine for computational graph construction, manipulation, and dis-
tributed execution, as well as ensuring reproducibility of scientific
pipelines. In Pydra, a dataflow is represented as a directed acyclic
graph, where each node represents a Python function, execution
of an external tool, or another reusable dataflow. The combination
of several key features makes Pydra a customizable and powerful
dataflow engine:

• Composable dataflows: Any node of a dataflow graph can
be another dataflow, allowing for nested dataflows of arbi-
trary depths and encouraging creating reusable dataflows.

• Flexible semantics for creating nested loops over input
sets: Any Task or dataflow can be run over input parameter
sets and the outputs can be recombined (similar concept
to Map-Reduce model [DG04], but Pydra extends this to
graphs with nested dataflows).

• A content-addressable global cache: Hash values are
computed for each graph and each Task. This supports
reusing of previously computed and stored dataflows and
Tasks.

• Support for Python functions and external (shell)
commands: Pydra can decorate and use existing functions
in Python libraries alongside external command line tools,
allowing easy integration of existing code and software.

• Native container execution support: Any dataflow or
Task can be executed in an associated container (via
Docker or Singularity) enabling greater consistency for
reproducibility.

• Auditing and provenance tracking: Pydra provides a
simple JSON-LD -based message passing mechanism to
capture the dataflow execution activties as a provenance
graph. These messages track inputs and outputs of each
task in a dataflow, and the resources consumed by the task.

Pydra is a pure Python 3.7+ package with a limited set of
dependencies, which are themselves only dependent on the Python
Standard library. It leverages type annotation and AsyncIO in
its core operations. Pydra uses the attr package for extended
annotation and validation of inputs and outputs of tasks, the
cloudpickle package to pickle interactive task definitions, and the
pytest testing framework. Pydra is intended to help scientific
workflows which rely on significant file-based operations and

PYDRA - A FLEXIBLE AND LIGHTWEIGHT DATAFLOW ENGINE FOR SCIENTIFIC ANALYSES 133

which evaluate outcomes of complex dataflows over a hyper-
space of parameters. It is important to note, that Pydra is not a
framework for writing efficient scientific algorithms or for use
in applications where caching and distributed execution are not
necessary. Since Pydra relies on a filesystem cache at present, it
is also not designed for dataflows that need to operate purely in
memory.

The next section will describe the Pydra architecture --- main
package classes and interactions between them. The Key Features
section focuses on a set of features whose combination distin-
guishes Pydra from other dataflow engines. The paper concludes
with a set of applied examples demonstrating the power and utility
of Pydra, and short discussion on the future directions.

Architecture

Pydra architecture has three core components: Task, Submitter and
Worker. Tasks form the basic building blocks of the dataflow, while
Submitter orchestrates the dataflow execution model. Different
types of Workers allow Pydra to execute the task on different
compute architectures. Fig. 1 shows the Class hierarchy and
interaction between them in the present Pydra architecture. It was
designed this way to decouple Tasks and Workers. In order to
describe Pydra’s most notable features in the next section, we
briefly describe the role of each of these classes.

Key Features

● Consistent API for Task and Workflow

● Splitting & combining semantics
on Task/Workflow level

● Global cache support to reduce
recomputation

● Support for execution of Tasks
in containerized environments

Architecture

● Uses Python Standard Library
(with few exceptions)

● Uses Concurrent Futures as the main
executor (partial support for Slurm
and Dask)

● Uses AsyncIO for asynchronous
processes

Pydra - Architecture, Features and Objects

Multi location cache
- Writeable current cache: '/path/to/cache_dir'
- Readonly prior cache: ['/cache_dir1', '/cache_dir2']

Worker
- ConcurrentFutures
- SLURM
- Dask (experimental)

Resource management

Task
- Workflow
- FunctionTask
- ShellCommandTask

- ContainerTask
- DockerTask
- SingularityTask

Submitter

Nested Workflows
Workflow

Nested Splitters and Combiners

e.g. [("var1", "var2"), "var3"]

Scalar
("var1", "var2")

Outer
["var1", "var2"]

Fig. 1: A schematic presentation of principal classes in Pydra.

Dataflows Components: Task and Workflow

A Task is the basic runnable component of Pydra and is described
by the class TaskBase. A Task has named inputs and outputs,
thus allowing construction of dataflows. It can be hashed and
executes in a specific working directory. Any Pydra’s Task can
be used as a function in a script, thus allowing dual use in Pydra’s
Workflows and in standalone scripts. There are several classes that
inherit from TaskBase and each has a different application:

• FunctionTask is a Task that executes Python functions.
Most Python functions declared in an existing library,
package, or interactively in a terminal can be converted

to a FunctionTask by using Pydra’s decorator -
mark.task.
import numpy as np
from pydra import mark
fft = mark.annotate({'a': np.ndarray,

'return': float})(np.fft.fft)
fft_task = mark.task(fft)()
result = fft_task(a=np.random.rand(512))

fft_task is now a PydraTask and result will contain a
Pydra’s Result object. In addition, the user can use
Python’s function annotation or another Pydra decorator—
mark.annotate in order to specify the output. In the
following example, we decorate an arbitrary Python func-
tion to create named outputs:
@mark.task
@mark.annotate(

{"return": {"mean": float, "std": float}}
)
def mean_dev(my_data):

import statistics as st
return st.mean(my_data), st.stdev(my_data)

result = mean_dev(my_data=[...])()

When the Task is executed result.output will contain two
attributes: mean and std. Named attributes facilitate pass-
ing different outputs to different downstream nodes in a
dataflow.

• ShellCommandTask is a Task used to run shell com-
mands and executables. It can be used with a simple
command without any arguments, or with specific set of
arguments and flags, e.g.:
ShellCommandTask(executable="pwd")

ShellCommandTask(executable="ls", args="my_dir")

The Task can accommodate more complex shell com-
mands by allowing the user to customize inputs and
outputs of the commands. One can generate an input
specification to specify names of inputs, positions in the
command, types of the inputs, and other metadata. As a
specific example, FSL’s BET command (Brain Extraction
Tool) can be called on the command line as:
bet input_file output_file -m

Each of the command argument can be treated as a named
input to the ShellCommandTask, and can be included
in the input specification. As shown next, even an output is
specified by constructing the out_file field form a template:
bet_input_spec = SpecInfo(

name="Input",
fields=[
("in_file", File,
{ "help_string": "input file ...",
"position": 1,
"mandatory": True }),

("out_file", str,
{ "help_string": "name of output ...",
"position": 2,
"output_file_template":

"{in_file}_br" }),
("mask", bool,
{ "help_string": "create binary mask",
"argstr": "-m", })],

bases=(ShellSpec,))

ShellCommandTask(executable="bet",
input_spec=bet_input_spec)

134 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Outputs can also be specified separately using a similar
output specification.

• ContainerTask class is a child class of
ShellCommandTask and serves as a parent class
for DockerTask and SingularityTask. Both
Container Tasks run shell commands or executables
within containers with specific user defined environments
using Docker [doc] and Singularity [sin] software
respectively. This might be extremely useful for users
and projects that require environment encapsulation and
sharing. Using container technologies helps improve
scientific workflows reproducibility, one of the key
concept behind Pydra.
These Container Tasks can be defined by using
DockerTask and SingularityTask classes
directly, or can be created automatically from
ShellCommandTask, when an optional argument
container_info is used when creating a Shell Task.
The following two types of syntax are equivalent:
DockerTask(executable="pwd", image="busybox")

ShellCommandTask(executable="ls",
container_info=("docker", "busybox"))

• Workflow - is a subclass of Task that provides support
for creating Pydra dataflows. As a subclass, a Workflow
acts like a Task and has inputs, outputs, is hashable, and is
treated as a single unit. Unlike Tasks, workflows embed a
directed acyclic graph. Each node of the graph contains a
Task of any type, including another Workflow, and can be
added to the Workflow simply by calling the add method.
The connections between Tasks are defined by using so
called Lazy Inputs or Lazy Outputs. These are special
attributes that allow assignment of values when a Workflow
is executed rather than at the point of assignment. The
following example creates a Workflow from two Pydra
Tasks.
creating workflow with two input fields
wf = Workflow(input_spec=["x", "y"])
adding a task and connecting task's input
to the workflow input
wf.add(mult(name="mlt",

x=wf.lzin.x, y=wf.lzin.y))
adding anoter task and connecting
task's input to the "mult" task's output
wf.add(add2(name="add", x=wf.mlt.lzout.out))
setting worflow output
wf.set_output([("out", wf.add.lzout.out)])

State

All Tasks, including Workflows, can have an optional attribute
representing an instance of the State class. This attribute
controls the execution of a Task over different input parameter
sets. This class is at the heart of Pydra’s powerful Map-Reduce
over arbitrary inputs of nested dataflows feature. The State
class formalizes how users can specify arbitrary combinations. Its
functionality is used to create and track different combinations
of input parameters, and optionally allow limited or complete
recombinations. In order to specify how the inputs should be
split into parameter sets, and optionally combined after the Task
execution, the user can set splitter and combiner attributes of the
State class. These attributes can be set by calling split and

combine methods in the Task class. Here we provide a simple
Map-Reduce example:
task_with_state =

add2(x=[1, 5]).split("x").combine("x")

In this example, the State class is responsible for creating a list
of two separate inputs, [{x: 1}, {x:5}], each run of the Task should
get one element from the list. The results are grouped back when
returning the result from the Task. While this example illustrates
mapping and grouping of results over a single parameter, Pydra
extends this to arbitrary combinations of input fields and down-
stream grouping over nested dataflows. Details of how splitters
and combiners power Pydra’s scalable dataflows are described
later.

Submitter

The Submitter class is responsible for unpacking Workflows
and single Tasks with or without State into standalone stateless
jobs, runnables, that are then executed by Workers. When the
runnable is a Workflow, the Submitter is responsible for checking
if the Tasks from the graph are ready to run, i.e. if all the inputs are
available, including the inputs that are set to the Lazy Outputs from
previous Tasks. Once a Task is ready to run, the Submitter sends
it to a Worker. When the runnable has a State, then the Submitter
unpacks the State and sends multiple jobs to the Worker for the
same Task. In order to avoid memory consumption as a result of
scaling of Tasks, each job is sent as a pointer to a pickle file,
together with information about its state, so that proper input can
be retrieved just before running the Task. Submitter uses AsyncIO
to manage all job executions to work in parallel, allowing scaling
of execution as Worker resources are made available.

Workers

Workers in Pydra are responsible for the actual execution of
the Tasks and are initialized by the Submitter. Pydra supports
three types of execution managers: ConcurrentFutures, Slurm and
Dask (experimental). When ConcurrentFuturesWorker is
created, ProcessPoolExecutor is used to create a "pool" for
adding the runnables. SlurmWorker creates an‘sbatch‘ submis-
sion script in order to execute the task, and DaskWorker make
use of Dask’s Client class and its submit method. All workers
use async functions from AsyncIO in order to handle asynchronous
processes. All Workers rely on a load_and_run function to
execute each job from its pickled state.

Key Features

In this section, features of Pydra that exemplify its utility for
scientific dataflows are presented. Individually, some of these
features are present in the numerous workflow packages that exist,
but Pydra is the only software that brings them together using
a very lighweight codebase. The combination of the following
features makes Pydra a powerful tool in scientific computation.

Nested and Hashed Workflows

Scientific dataflows typically involve significant refinement and
extensions as science and instrumentation evolves. Pydra was
designed to provide an easy way of creating scientific dataflows
that range from simple linear pipelines to complex nested graphs.
It enables reproducibility and reduces cost of dataflow mainte-
nance through flexible reuse of already existing functions and
Workflows in new applications. The Workflow class inherits

PYDRA - A FLEXIBLE AND LIGHTWEIGHT DATAFLOW ENGINE FOR SCIENTIFIC ANALYSES 135

from TaskBase class and can be treated by users as any other
Task, so can itself be added as a node in another Workflow. This
provides an easy way of creating nested Workflows of arbitrary
depth, and reuse already existing Workflows. This is schematically
shown in Fig. 2. Key Features

● Consistent API for Task and Workflow

● Splitting & combining semantics
on Task/Workflow level

● Global cache support to reduce
recomputation

● Support for execution of Tasks
in containerized environments

Architecture

● Uses Python Standard Library
(with few exceptions)

● Uses Concurrent Futures as the main
executor (partial support for Slurm
and Dask)

● Uses AsyncIO for asynchronous
processes

Pydra - Architecture, Features and Objects

Multi location cache
- Writeable current cache: '/path/to/cache_dir'
- Readonly prior cache: ['/cache_dir1', '/cache_dir2']

Worker
- ConcurrentFutures
- SLURM
- Dask (experimental)

Resource management

Task
- Workflow
- FunctionTask
- ShellCommandTask

- ContainerTask
- DockerTask
- SingularityTask

Submitter

Nested Workflows
Workflow

Nested Splitters and Combiners

e.g. [("var1", "var2"), "var3"]

Scalar
("var1", "var2")

Outer
["var1", "var2"]

Fig. 2: A nested Pydra Workflow, black circles represent single Tasks,
and Workflows are represented by red rectangles.

The Pydra’s Submitter supports this nested architecture and
can dynamically extend the execution graph. Since a Workflow
works like a Task—has inputs, outputs, and is hashable, once
executed it does not need to recompute its operations if cached
(Pydra’s caching is explained later in the section).

State and Nested Loops over Input

One of the main goals of creating Pydra was to support flexible
evaluation of a Task or a Workflow over combinations of input
parameters. This is the key feature that distinguishes it from
most other dataflow engines. This is similar to the concept of
the Map-Reduce [DG04], but extends it to work over arbitrary
nested graphs. In complex dataflows, this would typically involve
significant overhead for data management and use of multiple
nested loops. In Pydra, this is controlled by setting specific State
related attributes through Task methods. In order to set input
splitting (or mapping), Pydra requires setting up a splitter. This is
done using Task’s split method. The simplest example would be
a Task that has one field x in the input, and therefore there is only
one way of splitting its input. Assuming that the user provides a
list as a value of x, Pydra splits the list, so each copy of the Task
will get one element of the list. This can be represented as follow:

S = x : x = [x1,x2, ...,xn] 7−→ x = x1,x = x2, ...,x = xn ,

where S represents the splitter, and x is the input field.
That is also represented in Fig. 3, where x=[1, 2, 3] as an

example.
Scalar and outer splitters: Whenever a Task has more

complicated inputs, i.e. multiple fields, there are two ways of
creating the mapping, each one is used for different application.
These splitters are called scalar splitter and outer splitter They
use a special, but Python-based syntax as described next.

A scalar splitter performs element-wise mapping and requires
that the lists of values for two or more fields to have the same
length. The scalar splitter uses Python tuples and its operation is
therefore represented by a parenthesis, ():

S = (x,y) : x = [x1,x2, ..,xn], y = [y1,y2, ..,yn]

7→ (x,y) = (x1,y1), ...,(x,y) = (xn,yn),

x = [1, 2, 3]

S = x

x = 1 x = 2 x = 3

out = 3 out = 4out = 5

Fig. 3: Diagram representing a Task with one input and a simple
splitter. The white node represents an original Task with x=[1,2,3] as
an input and S=x as a splitter. The coloured nodes represent stateless
copies of the original Task after splitting the input, these are the
runnables that are executed by Workers.

where S represents the splitter, x and y are the input fields.
This is also represented as a diagram in Fig. 4

x = [1, 2]

y = [10, 100]

S = (x, y)

x = 1
y = 10

x = 2
y = 100

out = 11 out = 102

Fig. 4: Diagram representing a Task with two input fields and a scalar
splitter. The symbol convention is described in 3.

The second option of mapping the input, when there are
multiple fields, is provided by the outer splitter. The outer splitter
creates all combination of the input values and does not require
the lists to have the same lengths. The outer splitter uses Python’s
list syntax and is represented by square brackets, []:

S = [x,y] : x = [x1,x2, ...,xn], y = [y1,y2, ...,ym],

7→ (x,y) = (x1,y1),(x,y) = (x1,y2)...,(x,y) = (xn,ym).

The outer splitter for a node with two input fields is schematically
represented in Fig. 5

x = [1, 2]

y = [10, 100]

S = [x, y]

x = 1
y = 10

x = 1
y = 100

x = 2
y = 100

out = 101 out = 12out = 11

x = 2
y = 10

out = 102

Fig. 5: Diagram representing a Task with two input fields and an
outer splitter. The symbol convention is described in 3.

Different types of splitters can be combined over inputs such
as [inp1, (inp2, inp3)]. In this example an outer splitter provides

136 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

all combinations of values of inp1 with pairwise combinations
of values of inp2 and inp3. This can be extended to arbitrary
complexity.

Combiners: In addition to the splitting the input, Pydra
supports grouping or combining the output resulting from the
splits. Taking as an example the simple Task represented in Fig. 3,
in some application it can be useful to group all output values of
the individual splits. In order to achieve this for a Task, a user can
specify a combiner. This can be set by calling combine method.
Note, the combiner only makes sense when a splitter is set first.
When combiner=x, all values are combined together within one
list, and each element of the list represents an output of the Task
for the specific value of the input x. Splitting and combining for
this example can be written as follows:

S = x : x = [x1,x2, ...,xn] 7→ x = x1,x = x2, ...,x = xn,

C = x : out(x1), ...,out(xn) 7→ outcomb = [out(x1), ...out(xn)],

where S represents the splitter, C represents the combiner, x is
the input field, out(xi) represents the output of the Task for xi, and
outcomb is the final output after applying the combiner.

In the situation where input has multiple fields and an outer
splitter is used, there are various ways of combining the output.
Taking as an example Task represented in Fig. 5, user might want
to combine all the outputs for one specific value of :math:x_i and
all the values of :math:y. In this situation, the combined output
would be a two dimensional list, each inner list for each value of
:math:x. This is written as follows:

C = y : out(x1,y1),out(x1,y2), ...out(xn,ym)

7−→ [[out(x1,y1), ...,out(x1,ym)],

...,

[out(xn,y1), ...,out(xn,ym)]].

And is represented in Fig. 6.

x = [1, 2]

y = [10, 100]

S = [x, y]

C = y

x = 1
y = 10

x = 1
y = 100

x = 2
y = 100

out = 101 out = 12out = 11

x = 2
y = 10

out = 102

outcomb = [11, 101] outcomb = [12, 102]

Fig. 6: Diagram representing a Task with two input fields, an outer
splitter and a combiner. The white node represents an original Task
with x=[1,2], y=[10, 100] as an input, S=[x, y] as a splitter, and C=y
as a combiner. The coloured nodes represent stateless copies of the
original Task after splitting the input, these are the runnables that
are executed by Workers. At the end outputs for all values of y are
combined together within outcomb.

However, for the diagram from 5, the user might want to
combine all values of x for specific values of y. One may also
need to combine all the values together. This can be achieved
by providing a list of fields, [x, y] to the combiner. When a full

combiner is set, i.e. all the fields from the splitter are also in the
combiner, the output is a one dimensional list:

C = [x,y] : out(x1,y1), ...out(xn,ym) 7−→ [out(x1,y1), ...,out(xn,ym)].

And is represented in Fig. 7.

x = [1, 2]

y = [10, 100]

S = [x, y]

C = [x, y]

x = 1
y = 10

x = 1
y = 100

x = 2
y = 100

out = 101 out = 12out = 11

x = 2
y = 10

out = 102

outcomb = [11, 101, 12, 102]

Fig. 7: Diagram representing a Task with two input fields, an outer
splitter and a full combiner. The Tasks are run in exactly the same
way as previously, but at the end all of the output values are combined
together. The symbol convention is described in 6.

These are the basic examples of the Pydra’s splitter-combiner
concept. It is important to note, that Pydra allows for mixing
splitters and combiners on various levels of a dataflow. They can
be set on a single Task or a Workflow. They can be passed from
one Task to following Tasks within the Workflow. Examples of this
more complex operation are presented in the next section.

Checksums and Global Cache

One of the key feature of Pydra is the support for a Global
Cache. This allows multiple people in a laboratory, or even across
laboratories to use each other’s execution outputs on the same
data without having to rerun the same computation. Each Task
and Workflow has an attribute called checksum. In order to create
the checksum, all of the input fields are collected and hash value
is calculated. If File or Directory is used as an input, than the
hash value of the content is used. For Workflows, the connections
between the Tasks are also included in the final checksum, and
hence the checksum of a Workflow changes if its underlying
graph changes. The checksum is used to create output directory
path during execution and can be reused in future executions of
the same exact Task or Workflow. To reuse, a user can specify
cache_dir and cache_locations when creating a Task or
Workflow. The cache_dir is a read-write path, where you want
your outputs to be saved, but cache_location can include
a list of paths, which allow re-using existing caches. Before
running any Task or Workflow, Pydra checks all the directories
that are either in cache_dir or cache_locations, and if the
specific checksum is found, then the results are reloaded without
running the specific Task. It is important to emphasize that without
a cache, every element of a nested Workflow would be re-executed.
Using Global Cache can significantly reduce execution time when
the same operations on the same data are repeated. This is also
true for Tasks with State. If the number of input elements is
expanded, the previously cached results can be reused without
recomputation. For scientific workflows, where many tasks take
significant computational resources, this can drastically speed up
reruns.

PYDRA - A FLEXIBLE AND LIGHTWEIGHT DATAFLOW ENGINE FOR SCIENTIFIC ANALYSES 137

Applications and Examples

In this section, we highlight Pydra through two examples. The first
example is an intuitive scientific Python example to demonstrate
the power of Pydra’s splitter and combiner. The second example
extends this demonstration with a more practical machine learning
model comparison workflow leveraging scikit-learn.

Example 1: Sine Function Approximation

This example illustrates the flexibility of the Pydra’s splitters and
combiners, but the example is not meant to convince scientist to
use Pydra to write algorithms like this. The exemplary workflow
will calculate the approximated values of Sine function for various
values of x. The Workflow uses the Taylor polynomial formula for
Sine function:

nmax

∑
n=0

(−1)n

(2n+1)!
x2n+1 = x− x3

3!
+

x5

5!
+ ...

where nmax is a degree of approximation.
Since the idea is to make the execution as embarassingly

parallel as possible, each of the term for each value of x should
be calculated separately. This is done by function term (x, n). In
addition, range_fun(n_max) is used to return a list of integers from
0 to n_max and summing(terms) will sum all the terms for the
specific value of x and n_max.
from pydra import Workflow, Submitter, mark
import math

@mark.task
def range_fun(n_max):

return list(range(n_max+1))

@mark.task
def term(x, n):

import math
fract = math.factorial(2 * n + 1)
polyn = x ** (2 * n + 1)
return (-1)**n * polyn / fract

@mark.task
def summing(terms):

return sum(terms)

The Workflow takes two inputs - a list of values of x and a
list of values of n_max. In order to calculate various degrees
of the approximation for each value of x, an outer splitter is
used [x, n_max]. All approximations for a specific values of x
is aggregated by using n_max as a combiner.
wf = Workflow(name="wf", input_spec=["x", "n_max"])
wf.split(["x", "n_max"]).combine("n_max")
wf.inputs.x = [0, 0.5 * math.pi, math.pi]
wf.inputs.n_max = [2, 4, 10]

All three Function Tasks are added to the Workflow and connected
together using lazy connections. The second task, term, has to be
additionally split over n to compute the different pieces of the
Taylor approximation and the results of each term calculation are
grouped together through the combine method.
wf.add(range_fun(name="range", n_max=wf.lzin.n_max))
wf.add(term(name="term", x=wf.lzin.x,

n=wf.range.lzout.out).
split("n").combine("n"))

wf.add(summing(name="sum", terms=wf.term.lzout.out))

Finally, the Workflow output is set as the approximation using
set_output method. Thus the Workflow reflects a parallelizable
self contained function.

wf.set_output([("sin", wf.sum.lzout.out)])
res = wf(plugin="cf")

When executed using the concurrent futures library, the result is a
two dimensional list of Results. For each value of x the Workflow
computes a list of three approximations. As an example, for x=pi/2
this returns the following list:
[...[Result(output=Output(sin=1.0045248555348174),

runtime=None, errored=False),
Result(output=Output(sin=1.0000035425842861),

runtime=None, errored=False),
Result(output=Output(sin=1.0000000000000002),

runtime=None, errored=False)],
...]

Each Result contains three elements: output reflecting the actual
computed output, runtime reflecting the information related to
resources used during execution (when a resource audit flag is
set), and errored a boolean flag which indicates whether the task
errored or not. As expected, the values of the Sine function are
getting closer to 1 with increasing degree of the approximation.

The described Workflow is schematically presented in Fig. 8.

wf.x = [0, π/2, π, 2π]

wf.nmax = [0, 5, 10]

S = [x, nmax]
C = nmax

powers

nmax = 2

wf.x = 0

wf.nmax = 2

x = 0, nmax = 2
wf.out.sin = 0

nmax = wf.lzin.nmax

n = wf.powers.lzout.out

terms

x = 0

n = [0, 1]

S = n

x = wf.lzin.x

sum

all = [0, 0]

wf.out.sin = wf.sum.lzout.out

x = 0

wf.out.sincomb = [0, 0, 0]

terms

x = 0

n = 0

terms

x = 0

n = 1

out = 0 out = 0

outcomb = [0, 0]

all = wf.terms.lzout.out

powers

nmax = 4

wf.x = 0

wf.nmax = 4

nmax = wf.lzin.nmax

n = wf.powers.lzout.out

terms

x = 0

n = [0...3]

S = n

x = wf.lzin.x

sum

all = [0, 0, 0, 0]

wf.out.sin = wf.sum.lzout.out

terms

x = 0

n = 0

terms

x = 0

n = 1

out = 0 out = 0

outcomb = [0, 0, 0, 0]

all = wf.terms.lzout.out

terms

x = 0

n = 2

terms

x = 0

n = 3

out = 0out = 0

x = 0, nmax = 10
wf.sin = 0

x = 0, nmax = 4
wf.out.sin = 0

Fig. 8: Diagram representing part of the Workflow for calculating
Sine function approximations of various degrees for values of x.
Circles represent single Tasks and rectangles represent Workflows.
The white nodes represent Task or Workflow with a State. The coloured
nodes represent stateless copies of the original Task after splitting the
input. The gray nodes represent a Task that has no State.

Example2: Machine Learning Model Comparison

The massive parameter search space of models and their param-
eters makes machine learning an ideal use case for Pydra. This
section illustrates a general-purpose machine learning Pydra’s
Workflow for model comparison using a boostrapped shuffle-split
mechanism for choosing training and test pairs from a given
dataset. The example leverages Pydra’s powerful splitters and

138 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

combiners to scale across a set of classifiers and metrics. It also
uses Pydra’s caching to not redo model training and evaluation
when new metrics are added, or when number of iterations is
increased. The complete model comparison workflow is available
as an installable package called pydra-ml [pyd], and includes
SHAP-based feature importance evaluation in addition to model
comparison.

The Workflow presented here comprises four FunctionTasks.
For the sake of clarity, we will not redisplay the task code here.
They can be found in the tasks.py file in pydra-ml [pyd]. The
first function, read_data, reads csv data as a pandas.DataFrame
and allows the user to extract specific columns as the input, X,
to a learning model, a target column, y, and an optional group
column. The second function, gen_splits, uses GroupShuffleSplit
from sklearn.model_selection to generate a set of train-test splits
given n_splits and test_size, with an option to define group and
random_state. It returns train_test_splits and split_indices. The
main function to train the classifier, train_test_kernel, takes as
input a specific train-test split pair, a target variable, a parameter
providing information about which classifier to use and whether to
generate a null model by permuting the labels. The final function
calc_metric returns the value from a scoring function given the
actual target and predicted values from the classifier.

These tasks are combined together within a Workflow exploit-
ing splitters and combiners. The Workflow itself has an outer
split for clf_info and permute, allowing evaluation of null and
non-null models for every classifier. The core model fitting and
evaluation function train_test_kernel uses an internal splitter to
iterate over all the bootstrapped iterations. Using Pydra, it is
possible to split over split_index, that comes from gensplit Task,
and run train_test_kernel for each of them without combining.
This maintains State which can be used by the calc_metric
function to evaluate different scoring methods on the classifier
outputs and combine these results back together.
wf = pydra.Workflow(name="ml_wf",

input_spec=list(inputs.keys()),
**inputs,
cache_dir=cache_dir,
cache_locations=cache_locations)

Workflow level splitting over combination
of values
wf.split(["clf_info", "permute"])
wf.add(read_file(

name="readcsv",
filename=wf.lzin.filename,
x_indices=wf.lzin.x_indices,
target_vars=wf.lzin.target_vars))

wf.add(gen_splits(
name="gensplit",
n_splits=wf.lzin.n_splits,
test_size=wf.lzin.test_size,
X=wf.readcsv.lzout.X,
Y=wf.readcsv.lzout.Y,
groups=wf.readcsv.lzout.groups))

wf.add(train_test_kernel(
name="fit_clf",
X=wf.readcsv.lzout.X,
y=wf.readcsv.lzout.Y,
train_test_split=wf.gensplit.lzout.splits,
split_index=wf.gensplit.lzout.split_indices,
clf_info=wf.lzin.clf_info,
permute=wf.lzin.permute))

Task level splitting over bootstrapped
train-test pairs
wf.fit_clf.split("split_index")
wf.add(calc_metric(

name="metric",
output=wf.fit_clf.lzout.output,

metrics=wf.lzin.metrics))
Downstream combination after calculating
a set of metrics on each train-test pair
wf.metric.combine("fit_clf.split_index")
wf.set_output(

[
("output", wf.metric.lzout.output),
("score", wf.metric.lzout.score),
("feature_names",

wf.readcsv.lzout.feature_names),
]

)

The workflow is executed by providing an input dictionary exem-
plary input dictionary and the Workflow’s submission can look as
follow:

clfs = [
('sklearn.ensemble', 'ExtraTreesClassifier',
dict(n_estimators=100)),
('sklearn.neural_network', 'MLPClassifier',
dict(alpha=1, max_iter=1000)),
('sklearn.neighbors', 'KNeighborsClassifier', dict(),
[{'n_neighbors': [3, 7, 15],
'weights': ['uniform','distance']}]),

('sklearn.ensemble', 'AdaBoostClassifier', dict())]

inputs = {"filename": 'iris.csv',
"x_indices": range(4), "target_vars": ("label"),
"n_splits": 3, "test_size": 0.2,
"metrics": ["roc_auc_score"],
"permute": [True, False], "clf_info": clfs}

n_procs = 8 # for parallel processing
cache_dir = os.path.join(os.getcwd(), 'cache')
wf_cache_dir = os.path.join(os.getcwd(), 'cache-wf')

Execute the workflow in parallel using multiple processes
with pydra.Submitter(plugin="cf", n_procs=n_procs) as sub:

sub(runnable=wf)

result = wf.result(return_inputs=True)

The result from the Workflow is a set of scores for permuted and
non-permuted models. This is a list, each element of the list is for
one value of clf_info and permute, both fields were set as input
fields to the Workflow. All Result objects have an output.score
field that is also a list. Each element of the score corresponds
to a different value of split_index, that was set both as a splitter
and combiner to the fit_cls Task. This gives an option to easily
compare various models and sets of parameters.

[({'ml_wf.clf_info':
('sklearn.ensemble','ExtraTreesClassifier',
{'n_estimators': 100}),

'ml_wf.permute': True},
Result(output=Output(score=[0.2622, 0.1733, 0.2975]),

runtime=None, errored=False)),
({'ml_wf.clf_info':

('sklearn.ensemble', 'ExtraTreesClassifier',
{'n_estimators': 100}),

'ml_wf.permute': False},
Result(output=Output(score=[1.0, 0.9333, 0.9333]),

runtime=None, errored=False)),

...

({'ml_wf.clf_info':
('sklearn.ensemble', 'AdaBoostClassifier', {}),

'ml_wf.permute': False},
Result(output=Output(score=[0.9658, 0.9333, 0.8992]),

runtime=None, errored=False))]

Usually, there is no easy way in scikit-learn to compare models
in parallel across a variety of classifiers without using loops. It is
possible to do all this natively in scikit-learn and joblib, but would

PYDRA - A FLEXIBLE AND LIGHTWEIGHT DATAFLOW ENGINE FOR SCIENTIFIC ANALYSES 139

require much more code to do the maintenance of the dataflow
and aggregation.

Summary and Future Directions

Pydra is a new lightweight dataflow engine written in Python. The
combination of several key features - including flexible option
for splitting and combining input fields, and Global Cache -
makes Pydra a customizable and powerful dataflow engine. The
Pydra’s developers are mostly from the Neuroimaging community,
which provides a plethora of use-cases for complex dataflows, but
the package is designed as a general-purpose dataflow engine to
support any scientific domain. As the next step, the developer team
would like to invite more scientist to use Pydra in order to test the
package for diverse applications. In the near future, the developer
team is also planning to work on:

• improvement of Worker classes to coordinate resource
management

• improved interaction with Dask and other resource man-
agers (e.g., SLURM) in HPC and Cloud environments.

• updates to the Nipype software to use Pydra as its engine
• improve the documentation and tutorials

We welcome scientists and developers to join the project. The
project repository is available on GitHub under Nipype organiza-
tion: https://github.com/nipype/pydra. In addition, there is also a
repository that contains Jupyter Notebooks with Pydra tutorial:
https://github.com/nipype/pydra-tutorial. The tutorial can be run
locally or using the Binder service.

Acknowledgements

This was supported by NIH grants P41EB019936, R01EB020740.
We thank the neuroimaging community for feedback during de-
velopment, and Anna Jaruga for her feedback on the paper.

REFERENCES

[ATS09] Brian B Avants, Nick Tustison, and Gang Song. Advanced
normalization tools (ants). Insight j, 2(365):1–35, 2009.

[C-P] C-PAC. http://fcp-indi.github.io/.
[Cox96] Robert W. Cox. Afni: Software for analysis and visualization

of functional magnetic resonance neuroimages. Computers and
Biomedical Research, 29(3):162 – 173, 1996. URL: http://www.
sciencedirect.com/science/article/pii/S0010480996900142, doi:
https://doi.org/10.1006/cbmr.1996.0014.

[Dev] Nipype Developers.
[DFS99] Anders M. Dale, Bruce Fischl, and Martin I. Sereno. Cortical

surface-based analysis: I. segmentation and surface reconstruc-
tion. NeuroImage, 9(2):179 – 194, 1999. URL: http://www.
sciencedirect.com/science/article/pii/S1053811998903950, doi:
https://doi.org/10.1006/nimg.1998.0395.

[DG04] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI’04: Sixth Symposium on
Operating System Design and Implementation, pages 137–150,
San Francisco, CA, 2004.

[doc] Docker. https://www.docker.com/.
[FAK+07] K.J. Friston, J. Ashburner, S.J. Kiebel, T.E. Nichols, and W.D.

Penny, editors. Statistical Parametric Mapping: The Analysis of
Functional Brain Images. Academic Press, 2007. URL: http:
//store.elsevier.com/product.jsp?isbn=9780123725608.

[GBM+11] Krzysztof Gorgolewski, Christopher Burns, Cindee Madison, Dav
Clark, Yaroslav Halchenko, Michael Waskom, and Satrajit Ghosh.
Nipype: A flexible, lightweight and extensible neuroimaging data
processing framework in python. Frontiers in Neuroinformatics,
5:13, 2011. URL: https://www.frontiersin.org/article/10.3389/
fninf.2011.00013, doi:10.3389/fninf.2011.00013.

[OEG19] Ross W. Blair Craig A. Moodie A. Ilkay Isik Asier Erra-
muzpe James D. Kent Mathias Goncalves Elizabeth DuPre
Madeleine Snyder Hiroyuki Oya Satrajit S. Ghosh Jessey Wright
Joke Durnez Russell A. Poldrack Oscar Esteban, Christopher
J. Markiewicz and Krzysztof J. Gorgolewski. fmriprep: a robust
preprocessing pipeline for functional mri. Nature Methods,
16:111 – 116, 2019. doi:doi:10.1038/s41592-018-
0235-4.

[pyd] pydra-ml. https://github.com/nipype/pydra-ml.
[sin] Singularity. https://sylabs.io/docs/.
[WJP+09] Mark W. Woolrich, Saad Jbabdi, Brian Patenaude, Michael

Chappell, Salima Makni, Timothy Behrens, Christian Beck-
mann, Mark Jenkinson, and Stephen M. Smith. Bayesian
analysis of neuroimaging data in fsl. NeuroImage, 45(1,
Supplement 1):S173 – S186, 2009. Mathematics in Brain
Imaging. URL: http://www.sciencedirect.com/science/article/pii/
S1053811908012044, doi:https://doi.org/10.1016/
j.neuroimage.2008.10.055.

140 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Leading magnetic fusion energy science into the
big-and-fast data lane

Ralph Kube¶∗, R Michael Churchill¶, Jong Youl Choi§, Ruonan Wang§, Scott Klasky§, CS Chang¶, Minjun J. Choi‡,
Jinseop Park‡

https://youtu.be/rih7Hp9nPvM

F

Abstract—We present Delta, a Python framework that connects magnetic
fusion experiments to high-performance computing (HPC) facilities in order
leverage advanced data analysis for near real-time decisions. Using the ADIOS
I/O framework, Delta streams measurement data with over 300 MByte/sec
from a remote experimental site in Korea to Cori, a Cray XC-40 supercomputer
at the National Energy Energy Research Scientific Computing Centre in Cali-
fornia. There Delta dispatches cython data analysis kernels using an mpi4py
PoolExecutor in order to perform a spectral data analysis workflow. Internally
Delta uses queues and worker threads for data communication. With this ap-
proach we perform a common spectral analysis suite on imaging measurements
more than 100 times faster than with a single-core implementation.

Index Terms—streaming analysis, mpi4py, queue, adios, HPC

Magnetic Fusion Energy research and its data analysis needs

Research on magnetic fusion energy combines physics, engineer-
ing, and even economics to deploy a virtually unlimited, clean, and
competitively priced energy source to the grid. Python is well es-
tablished in the fusion community through projects like plasmapy
[PPY] or OMFIT [Men15]. We introduce another Python library
for fusion energy reserch, Delta - the aDaptive nEar-reaL Time
Analysis framework - and show how it can be used to stream
data from an experiment to a remote high performance computing
(HPC) resource [git].

There, Delta executes a routine spectral analysis workflow
in near real-time. By making data analysis results available in
near real-time, Delta allows scientists to make more informed
decisions on follow-up experiments and could accelerate scientific
discovery. To illustrate the use-case for Delta in fusion energy
research, we start with a primer of fusion energy, introduce
tokamak devices that are used to perform fusion experiments,
describe a diagnostic that is installed in many tokamaks. With
this at hand, we describe how near real-time data analysis can be
used to accelerate experimental fusion energy workflows.

If one could harvest the energy from controlled nuclear fusion
reactions you would have a potentially unlimited, environmentally

* Corresponding author: rkube@pppl.gov
¶ Princeton Plasma Physics Laboratory
§ Oak Ridge National Laboratory
‡ National Fusion Research Institute, Daejeon 34133, Republic of Korea

Copyright © 2020 Ralph Kube et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

friendly energy source. Fusion reactions release energy when two
light nuclei merge into a heavier one. As part of the reaction,
a fraction of the reactants nuclear binding energy is converted
into kinetic energy of the products. Fission reactions on the other
hand, which power todays nuclear power plants, release binding
energy when a heavy nucleus decays into lighter products. Typical
energies involved in nuclear reactions are measured in MeV,
multiple orders of magnitude larger than the characteristic eV
energy scale for chemical reactions. Thus, the energy yield for a
nuclear reaction is much larger than for chemical reaction, which
occur when fossil fuels are burnt. Fuel for fusion reactions are
readily extracted from sea water, which is available in virtually
inexhaustible quantities. Since the energy yield of a fusion reaction
is so large, only little fusion plasma needs to be confined to power
a fusion reactor. To produce 1 GW of fusion power, enough to
power about 700,000 homes, just 2 kg of fusion plasma would
need to be burned per day [Ent18]. Thus, a catastrophic event
such as total loss of plasma confinement can cause no more than
local damage to the plasma vessel.

To fuse positively charged atoms into one heavier re-
quires enormous energy. For the most feasible fusion reactions,
Deuterium-Tritium, temperatures upwards of 100 million degrees
are required. Such a requirement unfortunately excludes any
material container to confine a fusion fuel. The most promising
approach is to confine the fusion fuel in the state of a plasma -
a hot gas where the atoms are stripped of their electrons. Such a
plasma can be confined in a strong magnetic field, shaped like a
donut. Confined like this, there is no possibility for an uncontrolled
chain reaction. If a significant amount of plasma would leak out
of the vessel, the accompanying temperature drop would stop any
fusion reactions. At the same time there are only a few grams
of plasma confined and it does not have enough stored energy to
cause damage other than to the structure of the confinement vessel.

The best performing plasma confinement devices, tokamaks,
have a toroidal shape, similar to a donut. Tokamaks (a transliter-
ation of the Russian acronym for toroidal chamber with magnetic
coils), such as KSTAR [KSTAR] have a major radius R=1-
1.5m and a minor radius a=0.2-0.7m. In experiments at these
facilities, researchers configure parameters such as the plasma
density or the shaping and strength of the magnetic field and
study the behaviour of the plasma in this setup. During a typical
experimental workflow, about 20-30 plasma discharges, so-called
shots are performed on a given day where each shot lasts for

LEADING MAGNETIC FUSION ENERGY SCIENCE INTO THE BIG-AND-FAST DATA LANE 141

Task Time-scale

real-time control millisecond
live/inter-shot analysis seconds, minutes
scientific discovery hours, days, weeks

TABLE 1: Time-scales on which analysis results of fusion data is
required for different tasks.

a couple of seconds up to minutes. Numerous measurements of
the plasma and the mechanical components of the tokamak are
performed during each discharge. After a cool-down phase of a
few minutes (tokamaks contain cryogenic components) the device
is ready for the next shot.

A common diagnostic in magnetic fusion experiments is a
so-called Electron Cyclotron Emission (ECE) diagnostic [Cos74].
They measure emission intensity by free electrons in the plasma,
which allows one to infer their temperature as a function of
radius. Physical models of the plasma describe it partially through
the temperature. This measurement allows one to interpret the
experiment in terms of such models. Modern ECE systems, such
as the one installed in the KSTAR tokamak [Yun14] have hundreds
of spatial channels and sample data on a microsecond time-scale,
producing data streams upwards of 500 MB/sec.

Analyzing large datasets, as produced by ECE diagnostics
in between shots and generating actionable information in time
for the next shot is a challenging task. The Delta framework
aims to facilitate the analysis of such large datasets in near real-
time." This use-case falls in between two other common data
analysis workflows in fusion energy research, listed in Tab. 1.
Real-time control systems for plasma control require data on
a millisecond time scale. This time scale is a hard constraint
and limits the amount of data the algorithms can ingest. Post-
shot batch analysis of measurements on the other hand serves
scientific discovery, such as extraction about the plasma from
ECE data. The data and the analysis methods are selected on
a per-case basis and are often performed manually hours, days,
weeks, months, or years after an experiment has concluded. A
goal of Delta is to facilitate scientific discovery at time-scale
faster than the experimental cadence. Providing timely analysis
results of plasma measurements to experimentalists aids them
in making informed decisions about the next plasma shot. As
an example of the workflows that we wish to facilitate with
Delta we refer to a series of experiments performed at the TAE
facility [Bal17]. There, the so-called optometrist algorithm
was used as a stochastic optimizer in conjunction with expert
judgement of domain scientists to assess the performance of a
just concluded plasma shot and optimize the machine parameters
in order to increase the performance of the following shot. By
making advanced data analysis results available in near real-time
to domain scientists, Delta will allow to improve workflows at
experimental fusion facilities.

Designing the Delta framework

We are designing the Delta framework in a bottom-up approach,
tailoring it to facilitate a specific spectral analysis workflow
that uses measurements from an ECEI diagnostic. While plasma
diagnostics operated at fusion experiments produce a heteroge-
neous set of data streams, the ECEI spectral analysis workflow
is representative for a large set of workflows used to analyze

different measurements. HPC environments also differ for exam-
ple in their local area network topologies, the speed of network
links between data-transfer nodes to compute node, compute node
interconnects, and their network security policies. Furthermore
granted allocations of compute time for research projects make
it impractical to start with a top-down approach that generalizes
well to arbitrary HPC platforms (though we endeavor to build
the framework with flexibility and extensibility in mind). In the
remainder of this section we describe the data analysis workflow
for ECEI data, the targeted network and deployment architecture
and give an overview of how Delta connects them together.

Electron Cyclotron Emission Imaging

The Electron Cyclotron Emission Imaging diagnostic installed
in KSTAR measures the electron temperature Te on a 0.15m by
0.5m grid, resolved using 8 horizontal and 24 vertical channels
[Yun10], [Yun14]. Each individual channel produces an intensity
time series Ih,v(ti) where h and v index the horizontal and vertical
channel number and ti = i∆t denotes the time where the intensity
is sampled with ∆t ≈ 1µs being the sampling time. Digitized
with a 16-bit digitizer, this diagnostic produces a data stream
of 1836 MByte/sec. The spatial view of this diagnostic covers
a significant area of the plasma cross-section which allows it to
directly visualize the large-scale structures of the plasma. Besides
analyzing the normalized intensity, several quantities calculated
off the Fourier transformed intensity X(ω), here ω denotes the
angular frequency, are used to study the plasma dynamics. The
cross-power S, the coherence C, the cross-phase P and the cross-
correlation R are defined respectively for channel pair combina-
tions of Fourier transformed intensity signals X and Y as

Sxy(ω) = E[X(ω)Y †(ω)], (1)

Cxy(ω) = |Sxy(ω)|/
√

Sxx(ω)/
√

Syy(ω), (2)

Pxy(ω) = arctan(Im(Sxy(ω))/Re(Sxy(ω)), (3)

and
Rxy(t) = IFFT (Sxy(ω)). (4)

Here E denotes an ensemble average, † denotes complex conjuga-
tion, Re and Im denote the real and imaginary part of a complex
number and IFFT denotes the inverse Fourier transform. In
practice we use a short-time Fourier transformation (STFT) which
averages the Fourier coefficients obtained from FFTs calculated
on slightly shifted time windows. Spectral quantities calculated
off local Te fluctuations, such as the cross coherence or the cross
phases, are used to identify macro-scale structures, so called
magnetic islands, as well as micro-scale instabilities in the plasma
[Cho17]. Understanding the physics resulting in magnetic islands
is important for plasma confinement, and avoiding sudden loss of
plasma control, known as a disruption.

Targeted HPC architecture

We implement Delta for streaming data from KSTAR to the
National Energy Research Scientific Computing Centre (NERSC).
NERSC operates Cori [cori], a Cray XC-40 supercomputer that is
comprised of 2,388 Intel Xeon "Haswell" processor nodes, 9,688
Intel Xeon Phi "Knight’s Landing" (KNL) nodes and ranks 16 on
the Top500 list [top500]. Figure 1 illustrates the targeted network
topology. Data transfers from KSTAR and NERSC originate
and end at their respective Data Transfer Node (DTN). DTNs

142 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Where CPU RAM NIC

KSTAR DTN Xeon E5-2640 v4 128GB 100 Gbit

NERSC DTN Xeon E5-2680 v2 128GB 2 * 100 Gbit
2 * 10 Gbit

Cori compute Xeon E5-2698 v3
32 threads

128GB Cray Aries

TABLE 2: Hardware and network interconnections of the data
transfer nodes (DTNs) and compute nodes

are servers deployed and configured specifically for transferring
data over networks [dtn]. As such, they feature large-bandwidth
network interfaces, both for internal and external connections.
Table 2 lists the hardware of the DTNs and Cori’s compute
nodes. 100Gbit/s links connect both DTNs via the internet. At
NERSC, the DTN is connected to Cori with dual 10 Gbit/s NICs.
Coris individual compute nodes are connected with a Cray Aries
interconnect, peaking at > 45 TB/s.

Connecting science experiments to HPC resources

Delta uses three separate software components to connect
KSTAR to Cori. A generator running on the KSTAR DTN,
a middleman running on the NERSC DTN, and a processor
running on Cori. To avoid performance hits when touching the
filesystem, Delta streams data between its components. By using
only in-memory data transfers this avoids performance hits when
touching the file system. Performance variability of file-based I/O
on HPC systems is however a well studied problem [Xie12] .
Furthermore, the workflow at hand and anticipated workflows
require frequent transfer of relatively small data packets. By
relying on streaming data transfers, Delta aims to avoid jitter
due to I/O bottlenecks.

The generator stages measurement data and sends it to the
middleman. The middleman forwards the data to the processor.
The processor receives the data, executes the appropriate analysis
kernels and stores the analysis results. Delta uses ADIOS [adios]
to facilitate high bandwidth streaming on the paths marked with
orange arrows in 1. ADIOS is a unified input/output system that
transports and transforms groups of self-describing data variables
across different media with performance as a main goal. It is
commonly used in the Department of Energy for high performance
parallel I/O. Its transport interface is step-based, which resembles
the generation of scientific data. ADIOS implements multiple
transport mechanisms as engines which take advantage of un-
derlying network communication mechanisms to provide optimal
performance. For the topology at hand, Delta configures ADIOS
to use the DataMan engine for both, trans-oceanic data and intra-
datacenter transfer. Switching the engine used by ADIOS is trivial
and requires only the change of a single line in a configuration
file.

Implementaion details

After providing an overview of the Delta framework and in-
troducing its components in the previous section we continue by
describing their implementation in the this section and benchmark
their performance in the following section.

Components of the Delta framework

We continue by discussing the architecture of the generator
and the processor shown in Fig. 2. Here we omit the
middleman as it only relays the data stream.

The generator is a single-threaded application that sources
data using a loader instance which handles all diagnostic spe-
cific data transformations and stages it for streaming. For the ECEI
diagnostic the tranformations includes for example calculating a
channel-dependent normalization and the aggregation of data into
time chunks, Nch blocks of sch consecutive samples. A writer
instance handles all streaming I/O using ADIOS. Pseudo-code for
the generator looks like this:
1 loader = loader_ecei(cfg["ECEI"])
2 writer = writer_gen(cfg["transport_tx"])
3 writer.Open()
4

5 batch_gen = loader.batch_generator()
6 for batch in batch_gen:
7 writer.BeginStep()
8 writer.put(batch)
9 writer.EndStep()

Here, cfg is a framework-wide json configuration file. Diagnostic-
specific parameters are stored in the ECEI section. ADIOS pa-
rameters for the writer are stored in the transport_tx section.
Since all data transformations are applied inside the loader class
the generator appears to be agnostic about what kind of diagnostic
data it gets. However, the number of data batches is specific to
the data at hand. Furthermore, the pseudo-code example above
demonstrates the step-centered design of the ADIOS library. It
encapsulates each time chunk in a single time step.

The middleman runs on the NERSC DTN and relays
data streams from the generator to the processor. Using the
classes available in Delta the pseudo-code looks similar to the
generator with a reader instance replacing the loader..

The processor runs on Cori. It reads time chunks from an
ADIOS stream, publishes them in a queue and submits analysis
tasks to a pool of worker threads. As illustrated in Fig. 2 a
reader object receives time chunks data and passes them to
a task_list instance, which submits all data analysis routines
on the executors. Pseudo-code for the processor looks like this
1 def consume(Q, task_list):
2 while True:
3 try:
4 msg = Q.get(timeout=timeout_in_secs)
5 except queue.Empty:
6 break
7 task_list.submit(msg)
8 Q.task_done()
9

10

11 def main():
12 executor_fft = MPIPoolExecutor(max_workers=NF)
13 executor_anl = MPIPoolExecutor(max_workers=NA)
14 a2_reader = reader(cfg["transport_rx"])
15 a2_reader.Open()
16 task_list = task_list_spectral(executor_anl,
17 executor_fft,
18 cfg)
19

20 dq = Queue.Queue()

LEADING MAGNETIC FUSION ENERGY SCIENCE INTO THE BIG-AND-FAST DATA LANE 143

Fig. 1: The network topology for which the Delta framework is designed. Data is streamed in the direction indicated by the orange arrow. At
KSTAR, measurement data is staged from its DTN to the NERSC DTN. Internally at NERSC, the data stream is forwarded to compute nodes
at Cori and analyzed. Orange arrows mark sections of the network where ADIOS facilitates high-performance streaming. Black arrows denote
standard TCP/IP connections.

Fig. 2: Schematic of the Delta framework. The generator runs at the data staging site and transmits time chunks via the ADIOS channels
SSSSS_ECEI_NN. Here SSSSS denotes the shot number and NN enumerates the ADIOS channels. The processor runs at the HPC site, recieves
the data and submits it for processing through a task_list. .

21 workers = []
22 for _ in range(n_thr):
23 w = threading.Thread(target=consume,
24 args=(dq, task_list))
25 w.start()
26 workers.append(w)
27

28

29 while True:
30 stepStatus = reader.BeginStep()
31 if stepStatus:
32 stream_data = a2_reader.Get(varname)
33 dq.put_nowait((stream_data,
34 reader.CurrentStep()))
35 reader.EndStep()
36 else:
37 break
38

39 worker.join()
40 dq.join()

To access the many cores available, processor is launched as
an MPI program under control of mpi4py.futures: srun -n
NP -m mpi4py.futures processor.py. The mpi4py
documentation suggests to run as mpiexec -n 1 -usize
NP processor.py but unfortunately Cori’s job system sup-
ports neither mpiexec nor defining the universe size by environ-
ment variables. The number of MPI ranks should be approximately
equal to the workers requested in the PoolExecutors, NP == NF +
NA - 1.

Then a2_reader is instantiated with
cfg[transport_rx], mirroring the configuration of the
writer. After defining a queue for inter-process communication, a

group of worker threads is started. In the main loop a2_reader
consumes incoming time chunk data from the ADIOS stream
and enqueues them. At the same time, the array of worker tasks
dequeues time chunks data and passes it to the task_list.

The data analysis code is implemented by cython kernels
which are described in a later subsection. While the low-level
implementation of Eqs. (1) - (4) is in cython, Delta encapsulates
them by the task class. Sans initialization the relevant class
interface is implemented as

1 class task():
2 ...
3 def calc_and_store(self, data, **kwargs):
4 result = self.kernel(data, **kwargs)
5 self.storage_backend.store(result, tidx)
6

7 def submit(self, executor, data, tidx):
8 ...
9 _ = [executor.submit(self.calc_and_store, data,

10 ch_it, tidx)
11 for ch_it in self.get_dispatch_sequence()]

The call of an analysis kernel happens in calc_and_store.
Once the kernel returns, the analyzed data is immediately stored.
This allows us to submit a large number of analysis task in parallel
in a fire-and-forget way. Implementing analysis and stor-
age as separate functions would introduce dependencies between
futures returned by executor.submit. Grouping analysis and
storage together guarantees that once calc_and_store returns,
the data has been analyzed and stored. In order to minimize data
communication, submit launches calc_and_store for an

144 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

exhaustive list of channel pair combinations which is accessed
by get_dispatch_sequence().

Since the ECEI analysis tasks for the workflow at hand expects
Fourier transformed data, the analysis kernels are called sequen-
tially right after the Fourier transformed data becomes available.
This logic is implemented by the task_list class:
1 from scipy.signal import stft
2

3 class task_list():
4

5 def submit(self, data, tidx):
6 fft_future = self.executor_fft.submit(stft,
7 data,
8 **kwargs)
9

10 for task in self.task_list:
11 task.submit(self.executor_anl,
12 fft_future.result(), tidx)

Executing the analysis tasks after the Fourier transformation fur-
ther reduces interdependencies in the workflow, i.e. this implemen-
tation awaits only a single future. Without collecting the analysis
tasks in a list one may for example execute Fourier transformations
prior to launching each individual analysis kernel. This particular
choice would increase the number of Fourier transformations by a
factor of four and may seem like a poor choice. On the other hand
would this result in less communication across the MPI ranks and
may perform better in situations where communication between
MPI ranks becomes a bottleneck.

Explored alternative architectures

Delta relies on the futures interface defined in PEP 3148
to launch data analysis kernels on an HPC resource [PEP3148].
Since both Cori and ADIOS are designed for MPI application
we use the mpi4py [mpi4py] implementation. Being a standard
interface, other implemenations like concurrent.futures
can readily be used. The Python Standard Library defines the
interface as executor.submit(fn, *args **kwargs).
Delta wraps PEP 3148 submit calls in wrapper methods of the
task and task_list class in order to pass kernel-dependent
keyword arguments and in order to facilitate more flexible launch
configuration on multiple executors.

Besides mpi4py we explored executing
task.calc_and_store calls on a Dask [dask] cluster.
Exposing concurrent.futures-compatible interface, both
libraries can be interchanged with little work. Running on a single
node we found little difference in execution speed. However once
the dask-distributed cluster was deployed on multiple nodes we
observed a significant slowdown due to network traffic overhead.
We did not investigate this problem any further.

As an alternative to using a queue with threads, we also
explored using asynchronous I/O. In this scenario, the main task
would define a coroutine receiving the data time chunks and
a second one dispatching them to an executor. In our tested
implementation, the coroutines would run in a main loop and
communicate via a queue. Our experiments showed no measurable
difference against a threaded implementation. On the other hand,
the threaded implementation fits more naturally in the multi-
processing design approach.

Using data analysis codes Delta

In a broad sense, data analysis can be described as applying a
transformation F to some data d,

y = F(d;λ1, . . . ,λn), (5)

given some parameters λ1 . . .λn. Translating the relation between
the F and d into an object-oriented setting is not always straight-
forward and one needs to have the application in mind when de-
signing a library. The approach taken by general-purpose packages
such as scipy or scikit-learn is to implement a transfor-
mation F as a class and interface to data through its member
functions. Taking Principal Component Analysis in scikit-learn as
an example, the default way of applying it to data is
from sklearn.decomposition import PCA
X = np.array([...])
pca = PCA(n_components=2)
pca.fit_transform(X)

This approach has proven itself useful and is the common way of
organizing libraries. Delta deviates slightly from this approach
and calls transformations in the calc_and_store member
function of the task_ecei class. The specific kernel to be called
is configured in the objects initialization:
from kernels import kernel_crossphase, ...
class task():

def __init__(self, cfg):
...

if (cfg["analysis"] == "cross-phase"):
self.kernel = kernel_crossphase

elif (cfg["analysis"] == cross-power"):
self.kernel = kernel.crosspower

...
def calc_and_store(self, data, ...):

...
result = self.kernel(data, ...)

At the time of writing, Delta only implements a workflow
for ECEI data and this design choice minimizes the number of
classes present in the framework. Grouping the data analysis
methods by diagnostic also allows to execute diagnostic-specific
pre-transformations that are best performed after transfer to the
processor collectively. One may wish for example to distribute
calculations of the 18336 channel pair combinations among mul-
tiple task instances. This approach lets us seamlessly do that.
Once the requirements and use cases have stabilized we will
explore suitable generalizations such as object factories for the
task_list class.

In summary, the architecture of Delta implements data
streaming using time-stepping interface of ADIOS and data analy-
sis using PEP 3148 compatible executors. In order to increase per-
formance we choose to use two PoolExecutors. The first executor
is used to execute short Fourier Transformations of the the input
data for the entire analysis task group. The second pool executor
is available for running the analysis kernels and immediate storage
of the results.

Performance analysis

While the overall performance of the framework can be measured
by the walltime of the analysis workflow at hand, the complex
composition of the framework requires us to understand the
performance of its building blocks. Referring to figure 2, IO
performance of the ADIOS library, the asynchronous receive-
publish-submit strategy implemented by processor and finally the
speed of individual analysis kernels contribute to the workflow
walltime. Furthermore, the workflow walltime may be sensitive
to the individual components interacting with one another. For
example, even though the processor design aims to facilitate high-
velocity data streams by using queues and multiple worker threads,
a fast data stream ingested by the processor may negatively affect

LEADING MAGNETIC FUSION ENERGY SCIENCE INTO THE BIG-AND-FAST DATA LANE 145

the performance of the PoolExecutors by submitting too many
tasks in a short time. It may well be that slower data streaming
rate result in a smaller workflow walltime. Given these consid-
erations we start be investigating the performance of individual
components in this section and finally investigate the performance
of the framework on the ECEI workflow.

Performance of the WAN connection

As a first step we measure the practically available bandwidth
between the KSTAR and NERSC DTNs using the network per-
formance tool iperf3 [iperf]. Multiple data streams are often nec-
essary to exhaust high-bandwidth networks. Varying the number
of senders from 1 to 8, we measure data transfer rates from 500
MByte/sec using 1 process up to a peak rate of 1500 MByte/sec
using 8 processes, shown in Figure 3. Using 1 thread we find
that the data transfer rate is approximately 500 MByte/sec with
little variation throughout the benchmark. Running the 2 and 4
process benchmark we see initial transfer rates of more than 1000
MByte/sec. After about 5 to 8 seconds, TCP observes network
congestion and falls back to fast recovery mode where the transfer
rates increase to the approximately the initial transfer rates until
the end of the benchmark run. The 8 process benchmark shows
a qualitatively similar behaviour but the congestion avoidance
starts at approximately 15 seconds where the transfer enters a fast
recovery phase.

Fig. 3: Data transfer rates between the KSTAR and NERSC DTNs
measured using iperf3 using 1, 2, 4, and 8 processes

While we measured the highest bandwidth when transferring
with 8 process, Delta currently only implements single process
data transfers.

Data Analysis Kernels

As seen in the code-example above, Delta implements data
analysis routines as computational kernels. These are implemented
in cython to circumvent the global interpreter lock and utilize
multiple cores. Measuring the average execution time over 10 runs
on a Cori compute node we find that the kernels demonstrate a
strong scaling for up to 16 threads, shown in Fig. 4. Using more
32 threads results in sub-linear speedup.

Performance of the ECEI workflow

Having established the performance of the individual components
we continue by benchmarking the performance of Delta per-
forming the entire ECEI analysis workflow. The task at hand is to
calculate Eqs.(1) - (4) for 18836 unique channel pair combinations
per time chunk. Each time chunk consists of sch = 10,000 samples

Fig. 4: Runtime of the multi-threaded kernels for coherence C, cross-
power S and cross-phase P compared against numpy implementations.

Scenario Walltime Nch Bandwidth

file 347s 500 350 MByte/sec
2-node 358s 485 95 MByte/sec
3-node 339s 463 450 MByte/sec

TABLE 3: Performance metrics for the ECEI workflow in the bench-
marked scenarios.

for 192 individual channels. A total of Nch = 500 time chunks are
to be processed, for a total of about 5 GByte of data.

The performance of Delta depends on the individual perfor-
mance of multiple components, such as the data streaming veloc-
ity, lag introduced by using queue inter-process communication,
spawning processes on the executors, MPI communication as well
as their interplay with one another. Having benchmarked individ-
ual components in the previous section, we now benchmark the
runtime of Delta performing the ECEI spectral analysis work-
flow in three scenarios. In the file scenario, the processor
reads data from a local ADIOS file. No data is streamed. In the
2-node scenario, data is streamed from the generator running
on the NERSC DTN to Cori. In the 3-node scenario, data is
streamed from the KSTAR DTN to the NERSC DTN and forwared
to Cori - this is the scenario shown in 2. Both the 2- and 3-node
scenario use ADIOS DataMan engine for data streaming. All runs
are performed on an allocation using 32 Cori nodes partitioned
into 128 MPI ranks with 16 Threads each for a total of 2048 CPU
cores.

Table 3 lists the Walltime and the number of proccessed time
chunk Nch and the utilized bandwidth. Walltime refers to the
walltime as measured by the processor and Nch gives the
number of time chunks analyzed by the processor. The utilized
bandwidth refers to the I/O speed achieved when reading from
disk in the file scenario, the average data transfer rate from the
NERSC DTN to Cori in the 2-node scenario and as the average
data transfer rate from the KSTAR DTN to the NERSC DTN in
the 3-node scenario.

The measured walltime for the file-based workflow is 352s,
358s for the 2-node scenario and 339s for the 3-node scenario.
Only minor packet loss occurs using the current implementation
of the DataMan engine. In order to mitigate packet loss the
generator pauses a tenth of a second after sending any packet
from the NERSC DTN to Cori, resulting in a bandwidth of 95

146 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Fig. 5: Horizontal bars mark the time that the a given time chunk nch
spends in the queue of the processor. The color legend is shown in
Figure 6

MByte/sec for the 2-node scenario. In the 3-node scenario
we show that Delta can ingest high velocity data streams from
KSTAR to NERSC and perform analysis on them. As in the
2-node scenario, we limit the bandwidth from the NERSC DTN
to Cori by pausing a fraction of a second before relaying a time
chunk. On average, Delta performs the entire analysis workflow
as fast in a streaming setting as it does when reading from the
local file system. The average time to analyze a single time chunk
is about 0.7 seconds, independent of the workflow.

Figure 5 shows the amount of time that data for a given
time chunk, nch = 1...Nch, spends in the queue of the processor.
All three scenarios show a similar trend - the amount of time
a time chunk spends in the queue increases with the time when
it is enqueued. This suggests that data is streamed faster to the
processor than the MPI ranks perform data analysis. This
implies that the queue acts as a cache for the incoming time chunk
data. Running the file scenario, the processor loads data almost
immediatetly after it starts up. For the 2-node and 3-node
scenarios the start time of the components on their respective
machines is not coordinated. This causes the first time chunk data
to arrive at varying times for the three scenarios.

As time chunks are dequeued, they are subject to a STFT.
Figure 6 denotes the time where the STFT of each time chunk is
performed with horizontal bars. The beginning of a horizontal bar
indicates where the STFT with the time chunk data is submitted
on executor_fft and the end of a bar marks the time STFT
is finished. Common for all three scenarios is that the STFTs
with the longest execution time are the ones for the first time
chunks received. Also, the majority of the STFTs is executed in
approximately one second. Equivalent STFT evaluations outside
Delta take about 0.15s on Cori. On average the STFT when called
from the streaming workflow is slower by a factor of 6. We
believe that this long execution time is in part explained by MPI
communication overhead.

Finally, Figures 7, 8 and 9 show the utilization of the MPI
ranks over time. The MPI ranks execute the STFT and analysis
kernels, the figures only show the time where analysis kernels
are executed. All three scenarios show a low usage of available
MPI ranks, approximately 16 - 20 in the beginning of the run.
After all time chunks are dequeued and Fourier transformed, all
available MPI ranks are used. Color encodes the different analysis
kernels. For example, green bars show time at which a cross-
correlation kernel is executed. The majority of the compuation

Fig. 6: Horizontal bars mark the during which the STFT for each time
chunk data is executed

Fig. 7: MPI rank utilization for the file scenario. Colored bars mark
the execution time of analysis kernels. Blue bars denote cross-phase,
orange bars denote cross-power, green bars denote cross-correlation
and red bars denote coherence.

time is consumed by cross-correlation kernels. This observation
agrees with the performance analysis that showed that the cross-
correlation kernel is the most time consuming.

Conclusions and future work

We demonstrate that Delta can facilitate near real-time analysis
of high-velocity streaming data. In our experiments we achieved
streaming rates of about 350 MByte/sec and execute a spectral
analysis workflow on ECEI measurements in less than 4 minutes.
Performing the analysis in the streaming scenario, illustrated

Fig. 8: MPI rank utilization for the 2-node scenario. The color
encoding of the analysis kernels is the same as in Figure 7

LEADING MAGNETIC FUSION ENERGY SCIENCE INTO THE BIG-AND-FAST DATA LANE 147

Fig. 9: MPI rank utilization for the 3-node scenario. The color
encoding of the analysis kernels is the same as in Figure 7

in Figure 1, comes with only a negligible performance impact
as compared to using local filesystem IO. ADIOS manages to
utilize about 70% of the available bandwidth for data streaming
from KSTAR to NERSC in the streaming analysis workflow.
mpi4py PoolExecutors facilitate an flexible execution of work
items on Cori, as required for our workflow where data arrive at
high velocity. Furthermore, python queues reliably facilitate inter-
process communication and act as a data cache under the tested
IO loads.

In the current form, there are multiple shortcomings of the
framework that need to be addressed. Firstly, the DataMan engine
received an experimental feature to mitigate packet loss. Secondly,
implementation details of MPI on Cori limit us to effectively a
single PoolExecutor. We are planning to investigate this more
closely and aim to properly separate the execution space of the
STFT and the analysis kernels. Thirdly, the framework will be
generalized in order to facilitate more data analysis tasks. Finally,
we are working on adapting Delta for next generation HPC
facilities which heavily rely on graphical processing units to
provide processing power.

Another issue we plan to address is to make Delta more
adaptive. This includes developing machine learning algorithm
for data compression and to decide which data batches are to be
offloaded to HPC resources for in-depth analysius. For example,
ECEI time chunk data that is not likely to be relevant for magnetic
island studies could be analyzed with fast, coarse routines at a
local workstation while relevant data could be forwarded to in-
depth analysis routines.

Acknowledgements

The authors would like to acknowledge the excellent technical
support from engineers and developers at the National Energy
Research Scientific Computing Center. This work used resources
of the National Energy Research Scientific Computing Center
(NERSC), a U.S. DOE Office of Science User Facility operated
under Contract No. DE-AC02-05CH11231. Delta is available on
github: [Git] All data used to generate the plots in this article can
be accessed on Zenodo [Zen] .

REFERENCES

[PPY] PlasmaPy Community, Nicholas A. Murphy, Andrew J. Leonard et
al. PlasmaPy: an open source community-developed Python pack-
age for plasma physics. Zenodo. http://doi.org/10.5281/zenodo.
1238132

[Men15] O. Meneghini, S.P. Smith, L.L. Lao et al. Integrated modeling
applications for tokamak experiments with OMFIT Nucl. Fusion
55 083008 (2015)

[Git] Ralph Kube (2020, June). DELTA-FUSION (aDaptive rEaL Time
Analysis of big fusion data). Retrieved from https://github.com/
rkube/delta

[Ent18] S. Entler, J. Horacek, T. Dlouhy and V. Dostal Approximation of
the economy of fusion energy Energy 152 p. 489 (2018)

[KSTAR] G.S. Lee, J. Kim, S.M. Hwang et al. The design of the KSTAR
tokamak Fus. Eng. Design 46 405-411 (1999) https://doi.org/10.
1016/S0920-3796(99)00032-0

[Cos74] A.E Costley, R.J. Hastie, J.W.M. Paul, and J. Chamberlain Electron
Cyclotron Emission from a Tokamak Plasma: Experiment and
Theory Phys. Rev. Lett. 33 p. 758 (1974).

[Yun14] G.S. Yun, W. Lee, M.J. Choi et al. Quasi 3D ECE imaging system
for study of MHD instabilities in KSTAR Rev. Sci. Instr. 85 11D820
(2014) http://dx.doi.org/10.1063/1.4890401

[Bal17] E.A. Baltz, E. Trask, M. Binderbauer et al. Achievement of Sus-
tained Net Plasma Heating in a Fusion Experiment with the
Optometrist Algorithm Sci. Reports 6425 (2017) https://doi.org/10.
1038/s41598-017-06645-7

[Bel18] V. A. Belyakov and A. A. Kavin Fundamentals of Magnetic
Thermonuclear Reactor Design Chapter 8 Woodhead Publishing
Series in Energy

[Yun10] G. S. Yun, W. Lee, M. J. Choi et al. Development of KSTAR ECE
imaging system for measurement of temperature fluctuations and
edge density fluctuations Rev. Sci. Instr. 81 10D930 (2010) https:
//dx.doi.org/10.1063/1.3483209

[Cho17] M. J. Choi, J. Kim, J.-M. Kwon et al. Multiscale interaction
between a large scale magnetic island and small scale turbu-
lence Nucl. Fusion 57 126058 (2017) https://doi.org/10.1088/1741-
4326/aa86fe

[cori] National Energy Research Scientific Computing Center. Cori. Re-
trieved from https://docs.nersc.gov/systems/cori/

[top500] @top500supercomp (2019, Nov) We are proud to announce the
54th edition of the TOP500 list! China extends lead in number
of TOP500 supercomputers, US holds on to performance ad-
vantage. To view the full list, visit https://top500.org/lists/2019/
11/ Retrieved from https://twitter.com/top500supercomp/status/
1196428698339160065

[dtn] Energy Sciences Network. Data Transfer Nodes. Retrieved
from http://es.net/science-engagement/technical-and-consulting-
services/data-transfer-nodes/

[Xie12] B. Xie, J. Chase, D. Dillow et al. Characterizing output bottlenecks
in a supercomputer SC ’12: Proceedings of the International
conference on High Performance Computing, Networking, Storage
and Analysis https://doi.org/10.1109/SC.2012.28

[nerscdtn] National Energy Research Scientific Computing Center. Data
Transfer Nodes. Retrieved from https://docs.nersc.gov/systems/dtn/

[iperf] ESnet / Lawrence Berkeley National Laboratory (2014, July 7)
iPerf - The ultimate speed test tool for TCP, UDP and SCTP. https:
//iperf.fr

[adios] Oak Ridge National Laboratory (2018, April 5) ADIOS 2: The
Adaptable Input/Output System version 2. Retrieved from https:
//adios2.readthedocs.io/en/latest/index.html

[PEP3148] B. Quinlan PEP 3148 futures - execute computations asyn-
chronously 2009 Retrieved from https://www.python.org/dev/peps/
pep-3148/

[mpi4py] L. Dalcin, R. Paz and M. Storti MPI for Python Journal of Parallel
and Distributed Computing, 65(9): 1108–1115, 2005 https://doi.
org/10.1016/j.jpdc.2005.03.010

[dask] M. Rocklin Dask: Parallel Computation with Blocked Algorithms
and Task Scheduling Proceedings of the 14th Python in Science
Conference p.126-132 2015 DOI: 10.25080/Majora-7b98e3ed-013

[FFT] Heinzel, G., Rüdiger, A., & Schilling, R. (2002). Spectrum and
spectral density estimation by the Discrete Fourier transform
(DFT), including a comprehensive list of window functions and
some new at-top windows. http://hdl.handle.net/11858/00-001M-
0000-0013-557A-5

[Zen] Kube, Ralph, Churchill, R Michael, Chang, CS, et al. (2020).
Leading magnetic fusion energy science into the big-and-fast data
lane. Zenodo http://doi.org/10.5281/zenodo.3871700

148 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

SHADOW: A workflow scheduling algorithm reference
and testing framework

Ryan W. Bunney§‡∗, Andreas Wicenec§‡, Mark Reynolds‡

F

Abstract—As the scale of science projects increase, so does the demand
on computing infrastructures. The complexity of science processing pipelines,
and the heterogeneity of the environments on which they are run, continues to
increase; in order to deal with this, the algorithmic approaches to executing these
applications must also be adapted and improved to deal with this increased
complexity. An example of this is workflow scheduling, algorithms for which
are continually being developed; however, in many systems that are used to
deploy science workflows for major science projects, the same algorithms and
heuristics are used for scheduling. We have developed SHADOW, a workflow-
oriented scheduling algorithm framework built to address an absence of open
implementations of these common algorithms, and to facilitate the development
and testing of new algorithms against these ’industry standards’. SHADOW
has implementations of common scheduling heuristics, with the intention of
continually updating the framework with heuristics, metaheuristics, and math-
ematical optimisation approaches in the near future. In addition to the algo-
rithm implementations, there is also a number of workflow and environment
generation options, using the companion utility SHADOWGen; this has been
provided to improve the productivity of algorithm developers in experimenting
with their new algorithms over a large variety of workflows and computing
environments. SHADOWGen also has a translation utilities that will convert
from other formats, like the Pegasus DAX file, into the SHADOW-JSON con-
figuration. SHADOW is open-source and uses key SciPy libraries; the intention
is for the framework to become a reference implementation of scheduling al-
gorithms, and provide algorithm designers an opportunity to develop and test
their own algorithms with the framework. SHADOW code is hosted on GitHub
at https://github.com/myxie/shadow; documentation for the project is available in
the repository, as well as at https://shadowscheduling.readthedocs.org.

Introduction

To obtain useful results from the raw data produced by science
experiments, a series of scripts or applications is often required
to produce tangible results. These application pipelines are re-
ferred to as Science Workflows [ALRP16], which are typically a
Directed-Acyclic Graph (DAG) representation of the dependency
relationships between application tasks in a pipeline. An example
of science workflow usage is Montage1, which takes sky images
and re-projects, background corrects and add astronomical images
into custom mosaics of the sky [BCD+08], [JCD+13]. A Montage
pipeline may consist of more than 10,000 jobs, perform more
than 200GB of I/O (read and write), and take 5 hours to run

* Corresponding author: ryan.bunney@research.uwa.edu.au
§ International Centre for Radio Astronomy Research
‡ University of Western Australia

Copyright © 2020 Ryan W. Bunney et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

[JCD+13]. This would be deployed using a workflow management
system (for example, Pegasus [DVJ+15]), which coordinates the
deployment and execution of the workflow. It is this workflow
management system that passes the workflow to a workflow
scheduling algorithm, which will pre-allocate the individual ap-
plication tasks to nodes on the execution environment (e.g. a local
grid or a cloud environment) in preparation for the workflow’s
execution.

The processing of Science Workflows is an example of the
DAG-Task scheduling problem, a classic problem at the inter-
section of operations research and high performance computing
[KA99a]. Science workflow scheduling is a field with varied
contributions in algorithm development and optimisation, which
address a number of different sub-problems within the field
[WWT15], [CCAT14], [BÇRS13], [HDRD98], [RB16], [Bur].
Unfortunately, implementations of these contributions are difficult
to find; for example, implementations that are only be found in
code that uses it, such as in simulation frameworks like Work-
flowSim [THW02], [CD12]; others are not implemented in any
public way at all [YB06], [ANE10]. These are also typically used
as benchmarking or stepping stones for new algorithms; for ex-
ample, the Heterogeneous Earliest Finish Time (HEFT) heuristic
continues to be used as the foundation for scheduling heuristics
[DFP12], [CCCR18], meta-heuristics, and even mathematical op-
timisation procedures [BBL+16], despite being 20 years old. The
lack of a consistent testing environment and implementation of
algorithms makes it hard to reproduce and verify the results of
published material, especially when a common workflow model
cannot be verified.

Researchers benefit as a community from having open im-
plementations of algorithms, as it improves reproducibility and
accuracy of benchmarking and algorithmic analysis [CHI14].
There exists a number of open-source frameworks designed for
testing and benchmarking of algorithms, demonstrate typical im-
plementations, and provide an infrastructure for the development
and testing of new algorithms; examples include NLOPT for non-
linear optimisation in a number of languages (C/C++, Python,
Java) [Joh], NetworkX for graph and network implementations
in Python, MOEA for Java, and DEAP for distributed EAs in
Python [DRFG+12]. SHADOW (Scheduling Algorithms for DAG
Workflows) is our answer to the absence of Workflow Scheduling-
based algorithm and testing framework, like those discussed
above. It is an algorithm repository and testing environment, in
which the performance of single- and multi-objective workflow
scheduling algorithms may be compared to implementations of
common algorithms. The intended audience of SHADOW is those

SHADOW: A WORKFLOW SCHEDULING ALGORITHM REFERENCE AND TESTING FRAMEWORK 149

Fig. 1: A sample DAG; vertices represent compute tasks, and edges
show precedence relationships between nodes. Vertex- and edge-
weights are conventionally used to describe computational and data
costs, respectively. This is adapted from [THW02], and is a simple
example of the DAG structure of a science workflow; a typical
workflow in deployment will often be more complex and contain many
hundreds of nodes and edges.

developing and testing novel workflow scheduling algorithms, as
well as those interested in exploring existing approaches within an
accessible framework.

To the best of our knowledge, there is no single-source
repository of implementations of DAG or Workflow scheduling
algorithms. The emphasis in SHADOW is on reproducibility and
accuracy in algorithm performance analysis, rather than a simu-
lated demonstration of the application of a particular algorithm in
certain environments. Additionally, with the popularity of Python
in other domains that are also growing within the workflow com-
munity, such as Machine and Deep Learning, SHADOW provides
a frictionless opportunity to integrate with the frameworks and
libraries commonly used in those domains.

Workflow Scheduling

A workflow is commonly represented in the literature as a Directed
Acyclic Graph (DAG) [CK88], [CA93], [Ull75], [KA99a]; a
sequence of tasks will have precedence constraints that limit when
a task may start. A DAG task-graph is represented formally as a
graph G = (V,E), where V is a set of v vertices and E is a set
of e edges [KA99a]; an example is featured in Figure 1, which
will be build upon as the paper progresses. Vertices and Edges
represent communication and computation costs respectively. The
objective of the DAG-scheduling problem is to map tasks to a
set of resources in an order and combination that minimise the
execution length of the final schedule; this is referred to as the
makespan.

The complexity and size of data products from modern science
projects necessitates dedicated infrastructure for compute, in a
way that requires re-organisation of existing tasks and processes.
As a result, it is often not enough to run a sequence of tasks in
series, or submit them to batch processing; this would likely be
computationally inefficient, as well taking as much longer than
necessary. As a result, science projects that have computationally-
and data-intensive programs, that are interrelated, have adopted the
DAG-scheduling model for representing their compute pipelines;
this is where science workflow scheduling is derived.

Design and Core Architecture

Design

SHADOW adopts a workflow-oriented design approach, where
workflows are at the centre of all decisions made within the
framework; environments are assigned to workflows, algorithms
operate on workflows, and the main object that is manipulated and
interacted with when developing an algorithm is likely to be a
workflow object.

By adopting a workflow-oriented model to developing algo-
rithms to test, three important outcomes are achieved:

• Freedom of implementation; for users wishing to develop
their own algorithms, there is no prohibition of additional
libraries or data-structures, provided the workflow struc-
ture is used within the algorithm.

• Focus on the workflow and reproducibility; when run-
ning analysis and benchmarking experiments, the same
workflow model is used by all algorithms, which ensures
comparisons between differing approaches (e.g. a single-
objective model such as HEFT vs. a dynamic implemen-
tation of a multi-objective heuristic model) are applied to
the same workflow.

• Examples: We have implemented popular and well-
documented algorithms that are commonly used to bench-
mark new algorithms and approaches. There is no need to
follow the approaches taken by these implementations, but
they provide a useful starting point for those interested in
developing their own.

SHADOW is not intended to accurately simulate the execution
of a workflow in an real-world environment; for example, working
with delays in processing, or node failure in a cluster. Strategies to
mitigate these are often implemented secondary to the scheduling
algorithms, especially in the case of static scheduling, and would
not be a fair approach to benchmarking the relative performance
between each application. Instead, it provides algorithms that
may be used, statically or dynamically, in a larger simulation
environment, where one would be able to compare the specific
environmental performance of one algorithm over another.

Architecture

SHADOW is split into three main components that are separated
by their intended use case, whether it be designing new algorithms,
or to benchmark against the existing implementations. These
components are:

• models
• algorithms
• visualiser

The models module is likely the main entry point for
researchers or developers of algorithms; it contains a number
of key components of the framework, the uses of which are
demonstrated both in the examples directory, as well as the
implemented sample algorithms in the algorithms module.
The algorithms module is concerned with the implementations
of algorithms, with the intention of providing both a recipe
for implementing algorithms using SHADOW components, and
benchmark implementations for performance analysis and testing.
The visualiser is a useful way to add graphical components to a
benchmarking recipe, or can be invoked using the command line
interface to quickly run one of the in-built algorithms.

150 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Fig. 2: An example workflow DAG adapted from [THW02] (the same
workflow as in Figure 1); weights on the edges describe data products
from the respective parent node being sent to the child. In SHADOW,
task computation cost is represented by the total number of Floating
Point Operations required to run the task (see Table 1). This is
intended to alleviate the difficulty of converting the run-time between
different test environment configurations.

Workflow and Costs Environment

Task FLOPs Machine FLOP/s
0 119000 cat0_m0 7000
1 92000 cat1_m1 6000
2 95000 cat2_m2 11000
3 109000
4 107000
5 169000
6 110000
7 147000
8 146000
9 101000

TABLE 1: Table of Task (Giga) FLOP requirements, with the (Giga)
FLOP/second provided by each respective machine. It is intended to
be applied to Figure 2.

These components are all contained within the main shadow
directory; there are also additional codes that are located in
utils, which are covered in the Additional Tools section.

Models

The models module provides the Workflow class, the founda-
tional data structure of shadow. Currently, a Workflow object
is initialised using a JSON configuration file that represents the
underlying DAG structure of the workflow, along with storing
different attributes for task-nodes and edges in Figure 2 (which
is an extension of Figure 1).

These attributes are implicitly defined within the configuration
file; for example, if the task graph has compute demand (as
total number of FLOPs/task) but not memory demand (as average
GB/task), then the Workflow object is initialised without memory,
requiring no additional input from the developer.

Using the example workflow shown in Figures 1 and 2, we
can demonstrate how to initialise a Workflow in SHADOW, and
what options exist for extending or adapting the object.

from shadow.models.workflow import Workflow
HEFTWorkflow = Workflow('heft.json')

The heft.json file contains the graph structure, based the
JSON dump received when using networks. Nodes and their
respective costs (computation, memory, monetary etc.) are stored
with their IDs.

...
"nodes": [

{
"comp": 119000,
"id": 0

},
{

"comp": 92000,
"id": 1

},
{

"comp": 95000,
"id": 2

},
...

],

It is clear from Figure HEFT Edges in the graph, which are the
dependency relationship between tasks, are described by links,
along with the related data-products:

"links": [
{

"data_size": 18,
"source": 0,
"target": 1

},
{

"data_size": 12,
"source": 0,
"target": 2

},
...

For example, looking at Figure 2 we see the dependency between
tasks 0 and 1, and the weight 18 on the edge. This is reflected in
the above component of the JSON file.

NetworkX is used to form the base-graph structure for the
workflow; it allows the user to specify nodes as Python objects,
so tasks are stored using the SHADOW Task object structure.
By using the NetworkX.DiGraph as the storage object for the
workflow structure, users familiar with NetworkX may use with
the SHADOW Workflow object in any way they would normally
interact with a NetworkX Graph.

In addition to the JSON configuration for the workflow
DAG, a Workflow object also requires an Environment object.
Environment objects represent the compute platform on which
the Workflow is executed; they are add to Workflow objects
in the event that different environments are being analysed. The
environment is also specified in JSON; currently, there is no
prescribed way to specify an environment in code, although it
is possible to do so if using JSON is not an option.

In our example, we have three machines on which we are
attempting to schedule the workflow from Figure 2. The different
performance of each machine is described in Table 1, with the
JSON equivalent below:

"system": {
"resources": {
"cat0_m0": {
"flops": 7000.0
"mem":
"io" :

},
"cat1_m1": {
"flops": 6000.0

},

SHADOW: A WORKFLOW SCHEDULING ALGORITHM REFERENCE AND TESTING FRAMEWORK 151

Fig. 3: This is a replication of the costs provided in [THW02]. The
table shows a different run-time for each task-machine pairing. It
is the same structure as Figure 2; however, the JSON specification
is different to cater for the pre-calculated run-time on separate
machines.

"cat2_m2": {
"flops": 11000.0

}
},
"rates": {
"cat0": 1.0, # GB/s
"cat1": 1.0,
"cat2": 1.0

}
}

Environments are added to the Workflow object in the following
manner:
from shadow.models.environment import Environment
env = Environment('sys.json')
HEFTWorkflow.add_environment(env)

The Workflow class calculates task run-time and other values
based on its current environment when the environment is passed
to the Workflow); however, users of the environment class may
interact with these compute values if necessary. Configuration files
may be generated in a number of ways, following a variety of
specifications, using the SHADOWGen utility.

It is also possible to use pre-calculated costs (i.e. completion
time in seconds) when scheduling with SHADOW.

This approach is less flexible for scheduling workflows, but
is a common approach used in the scheduling algorithm literature
[KA99a], [KA99b], [?], [BM08], [YB06]; an example of this is
shown in Figure 3. This can be achieved by adding a list of costs-
per-tasks to the workflow specification JSON file, in addition to
the following header. For example, if instead of the total FLOPS
we had provided to us in Table 1, we instead had timed the run-
time of the applications on each machine separately, the JSON for
Figure 2 would reflect the following:
{

"header" : {
"time": true
},
...

"nodes": [
{

"comp": [
14,
16,
9

],
"id": 0

},
...

}

The final class that may be of interest to algorithm developers is
the Solution class. For single-objective heuristics like HEFT
or min-min, the final result is a single solution, which is a set of
machine-task pairs. However, for population- and search-based
metaheuristics, multiple solutions must be generated, and then
evaluated, often for two or more (competing) objectives. These
solutions also need to be sanity-checked in order to ensure that
randomly generated task-machine pairs still follow the prece-
dence constraints defined by the original workflow DAG. The
Solution provides a basic object structure that stores machines
and task pairs as a dictionary of Allocations; allocations store
the task-ID and its start and finish time on the machine. This
provides an additional ease-of-use functionality for developers,
who can interact with allocations using intuitive attributes (rather
than navigating a dictionary of stored keywords). The Solution
currently stores a single objective (makespan) but can be expanded
to include other, algorithm-specific requirements. For example,
NSGAII* ranks each generated solution using the non-dominated
rank and crowding distance operator; as a result, the SHADOW
implementation creates a class, NSGASolution, that inherits the
basic Solution class and adds the these additional attributes.
This reduces the complexity of the global solution class whilst
providing the flexibility for designers to create more elaborate
solutions (and algorithms).

Algorithms

These algorithms may be extended by others, or used when run-
ning comparisons and benchmarking. The examples directory
gives you an overview of recipes that one can follow to use the
algorithms to perform benchmarking.

The SHADOW approach to describing an algorithm presents
the algorithm as a single entity (e.g. heft()), with an initialised
workflow object passed as a function parameter. The typical
structure of a SHADOW algorithm function is as follows:

• The main algorithm (the function to which a Workflow
well be passed) is titled using its publication name or title
(e.g. HEFT, PCP, NSGAII* etc.). Following PEP8, this is
(ideally) in lower-case.

• Within the main algorithm function, effort has been made
to keep it structured in a similar way to the pseudo-code as
presented in the respective paper. For example, HEFT has
two main components to the algorithm; Upward Ranking
of tasks in the workflow, and the Insertion Policy allocation
scheme. This is presented in SHADOW as:

def heft(workflow):
"""
Implementation of the original 1999 HEFT algorithm.

:params workflow: The workflow object to schedule
:returns: The solution object from the scheduled workflow
"""
upward_rank(workflow)
workflow.sort_tasks('rank')
insertion_policy(workflow)
return workflow.solution

Complete information of the final schedule is stored in the
HEFTWorkflow.solution object, which provides additional
information, such as task-machine allocation pairs. It is convention

152 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

ca
t0

_m
0

1 7 9

ca
t1

_m
1

4

0 20 40 60 80 100
Makespan (s)

ca
t2

_m
2

0 3 2 5 6 8

Fig. 4: Result of running shadow.heuristic.heft on the graph
shown in Figure 2. Final makespan is 98; gaps between tasks are
indicative of data transfer times between parent and child tasks on
different machines. This is generated using the AllocationPlot
wrapper from the Visualiser.

in SHADOW to have the algorithm return the Solution object
attached to the workflow:
solution = heft(HEFTWorkflow)

In keeping with the generic requirements of DAG-based schedul-
ing algorithms, the base Solution class prioritises makespan over
other objectives; however, this may be amended (or even ignored)
for other approaches. For example, the NSGAII algorithm uses
a sub-class for this purpose, as it generates multiple solutions
before ranking each solution using the crowded distance or non-
dominated sort [SD94]:
class NSGASolution(Solution):
""" A simple class to store each solutions'

related information
"""

def __init__(self, machines):
super().__init__(machines)
self.dom_counter = 0
self.nondom_rank = -1
self.crowding_dist = -1
self.solution_cost = 0

Visualiser

SHADOW provides wrappers to matplotlib that are struc-
tured around the Workflow and Solution classes. The
Visualiser uses the Solution class to retrieve allocation
data, and generates a plot based on that information. For example,
Figure 4 is the result of visualising the HEFTWorkflow example
mentioned previously:

This can be achieved by creating a script using the algorithms
as described above, and then passing the scheduled workflow to
one of the Visualiser classes:
from shadow.visualiser.visualiser import AllocationPlot

sample_allocation = AllocationPlot(
solution=HEFTWorkflow.solution

)

sample_allocation.plot(
save=True,

figname='sample_allocation.pdf'
)

Additional tools

Command-line interface

SHADOW provides a simple command-line interface (CLI) that
allows users to run algorithms on workflows without composing
a separate Python file to do so; this provides more flexibility and
allows users to use a scripting language of their choice to run
experiments and analysis.
python3 shadow.py algorithm heft \
'heft.json' 'sys.json'

It is also possible to use the unittest module from the script to
run through all tests if necessary:
python3 shadow.py test --all

SHADOWGen

SHADOWGen is a utility built into the framework to generate
workflows that are reproducible and interpretable. It is designed
to generate a variety of workflows that have been documented
and characterised in the literature in a way that augments current
techniques, rather than replacing them entirely.

This includes the following:

• Python code that runs the GGen graph generator2, which
produces graphs in a variety of shapes and sizes based
on provided parameters. This was originally designed to
produce task graphs to test the performance of DAG
scheduling algorithms.

• DAX Translator: This takes the commonly used Directed
Acyclic XML (DAX) file format, used to generate graphs
for Pegasus, and translates them into the SHADOW for-
mat. Future work will also interface with the Workflow-
Generator code that is based on the work conduced in
[BCD+08], which generates DAX graphs.

• DALiuGE/EAGLE Translator [WTV+17]: EAGLE logical
graphs must be unrolled into Physical Graph Templates
(PGT) before they are in a DAG that can be scheduled in
SHADOW. SHADOWGen will run the DALiUGE unroll
code, and then convert this PGT into a SHADOW-based
JSON workflow.

Cost generation in SHADOWGen

A majority of work published in workflow scheduling will use
workflows generated using the approach laid out in [BCD+08].
The five workflows described in the paper (Montage, CyberShake,
Epigenomics, SIPHT and LIGO) had their task run-time, memory
and I/O rates profiled, from which they created a WorkflowGen-
erator tool3. This tool uses the distribution sizes for run-time etc.,
without requiring any information on the hardware on which the
workflows are being scheduled. This means that the characterisa-
tion is only accurate for that particular hardware, if those values
are to be used across the board; testing on heterogeneous systems,
for example, is not possible unless the values are to be changed.

This is dealt with in varied ways across the literature. For
example, [RB18] use the distributions from [BCD+08] paper,
and change the units from seconds to MIPS, rather than do-
ing a conversion between the two. Others use the values taken
from distribution and workflow generator, without explaining how

SHADOW: A WORKFLOW SCHEDULING ALGORITHM REFERENCE AND TESTING FRAMEWORK 153

Run-time I/O Read I/O Write Peak Memory CPU Util
Job Count Mean (s) Std. Dev. Mean (MB) Std. Dev. Mean (MB) Std. Dev. Mean (MB) Std. Dev. Mean (%) Std. Dev

mProjectPP 2102 1.73 0.09 2.05 0.07 8.09 0.31 11.81 0.32 86.96 0.03
mDiffFit 6172 0.66 0.56 16.56 0.53 0.64 0.46 5.76 0.67 28.39 0.16

mConcatFit 1 143.26 0.00 1.95 0.00 1.22 0.00 8.13 0.00 53.17 0.00
mBgModel 1 384.49 0.00 1.56 0.00 0.10 0.00 13.64 0.00 99.89 0.00

mBackground 2102 1.72 0.65 8.36 0.34 8.09 0.31 16.19 0.32 8.46 0.10
mImgtbl 17 2.78 1.37 1.55 0.38 0.12 0.03 8.06 0.34 3.48 0.03
mAdd 17 282.37 137.93 1102.57 302.84 775.45 196.44 16.04 1.75 8.48 0.11

mShrink 16 66.10 46.37 411.50 7.09 0.49 0.01 4.62 0.03 2.30 0.03
mJPEG 1 0.64 0.00 25.33 0.00 0.39 0.00 3.96 0.00 77.14 0.00

TABLE 2: Example profile of Montage workflow, as presented in [JCD+13]

their run-time differ between resources [ANE13], [MJDN15];
Malawski et al. generate different workflow instances. using
parameters and task run-time distributions from real workflow
traces, but do not provide these parameters [MJDN15]. Recent
research from [WLZ+19] still uses the workflows identified in
[BCD+08], [JCD+13], but only the structure of the workflows is
assessed, replacing the tasks from the original with other, unrelated
examples.

SHADOWGen differs from the literature by using a
normalised-cost approach, in which the values calculated for the
run-time, memory, and I/O for each tasks is derived from the
normalised size as profiled in [JCD+13] and [BCD+08]. This way,
the costs per-workflow are indicative of the relative length and
complexity of each task, and are more likely to transpose across
different hardware configurations than using the varied approaches
in the literature.

X ′ =
(X×ntask)−Xmin

Xmax−Xmin
(1)

The distribution of values is derived from a table of normalised
values using a variation on min-max feature scaling for each
mean or standard deviation column in Table 2. The formula to
calculate each task’s normalised values is described in Equation 1;
the results of applying this to Table 2 is shown in Table 3:

This approach allows algorithm designers and testers to de-
scribe what units they are interested in (e.g. seconds, MIPS, or
FLOP seconds for run-time, MB or GB for Memory etc.) whilst
still retaining the relative costs of that task within the workflow.
In the example of Table 3, it is clear that mAdd and mBackground
are still the longest running and I/O intensive tasks, making the
units less of a concern.

Alternatives to SHADOW

It should be noted that existing work already addresses testing
workflow scheduling algorithms in real-world environments; tools
like SimGrid [CLQ], BatSim [DMPR17], GridSim [BM02], and
its extensions, CloudSim [CRB+11] and WorkflowSim [CD12],
all feature strongly in the literature. These are excellent resources
for determining the effectiveness of the implementations at the ap-
plication level; however, they do not provide a standardised reposi-
tory of existing algorithms, or a template workflow model that can
be used to ensure consistency across performance testing. Current
implementations of workflow scheduling algorithms may be found
in a number of different environments; for example, HEFT and
dynamic-HEFT implementations exist in WorkflowSim4 , but one
must traverse large repositories in order to reach them. There
are also a number of implementations that are present on open-
source repositories such as GitHub, but these are not always

official releases from papers, and it is difficult to keep track of
multiple implementations to ensure quality and consistency. The
algorithms that form the algorithms module in SHADOW are
open and continually updated, and share a consistent workflow
model. Kwok and Ahmed [KA99a] provide a comprehensive
overview of the metrics and foundations of what is required
when benchmarking DAG-scheduling algorithms, Maurya et al.
maurya2018‘ extend this work and describe key features of a
potential framework for scheduling algorithms; SHADOW takes
inspiration from, and extends, both approaches.

Conclusion

SHADOW is a development framework that addresses the absence
of a repository of workflow scheduling algorithms, which is
important for benchmarking and reproducibility [MT18]. This
repository continues to be updated, providing a resource for
future developers. SHADOWGen extends on existing research
from both the task- and workflow-scheduling communities in
graph generation by using existing techniques and wrapping them
into a simple and flexible utility. The adoption of a JSON data
format compliments the move towards JSON as a standardised
way of representing workflows, as demonstrated by the Common
Workflow Language [CCH+16] and WorkflowHub5.

Future work

Moving forward, heuristics and metaheuristics will continue to be
added to the SHADOW algorithms module to facilitate broader
benchmarking and to provide a living repository of workflow
scheduling algorithms. Further investigation into workflow vi-
sualisation techniques will also be conducted. There are plans
to develop a tool that uses the specifications in hpconfig6, a
Python class-based of different hardware (e.g. class XeonPhi
) and High Performance Computing facilities (e.g class
PawseyGalaxy). The motivation behind hpconfig is that
classes can be quickly unwrapped into a large cluster or system,
without having large JSON files in the repository or on disk;
they also improve readability, as specification data is represented
clearly as class attributes.

1. https://github.com/pegasus-isi/montage-workflow-v2
2. https://github.com/WorkflowSim/WorkflowSim-1.0/tree/master/sources/

org/workflowsim/planning
3. https://github.com/perarnau/ggen
4. https://github.com/pegasus-isi/WorkflowGenerator
5. github.com/myxie/hpconfig
6. https://workflowhub.org/simulator.html

154 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Run-time I/O Read I/O Write Peak Memory CPU Util
job Mean (s) Std. Dev. Mean (MB) Std. Dev. Mean (MB) Std. Dev. Mean (MB) Std. Dev. Mean (%) Std. Dev

mProject PP 9.47 0.49 11.22 0.38 44.30 1.70 64.66 1.75 476.20 0.16
mDiffFit 10.61 9.00 266.27 8.52 10.29 7.40 92.61 10.77 456.48 2.57

mConcatFit 0.37 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.13 0.00
mBgModel 1.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.25 0.00

mBackground 9.42 3.56 45.78 1.86 44.30 1.70 88.65 1.75 46.32 0.55
mImgtbl 0.12 0.06 0.06 0.02 0.01 0.00 0.35 0.02 0.15 0.00
mAdd 12.50 6.11 48.83 13.41 34.34 8.70 0.70 0.08 0.37 0.00

mShrink 2.75 1.93 17.15 0.30 0.02 0.00 0.18 0.00 0.09 0.00
mJPEG 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.19 0.00

TABLE 3: Updated relative cost values using the min-max feature scaling method described in Equation 1.

REFERENCES

[ALRP16] Ehab Nabiel Alkhanak, Sai Peck Lee, Reza Rezaei, and
Reza Meimandi Parizi. Cost optimization approaches for scien-
tific workflow scheduling in cloud and grid computing: A review,
classifications, and open issues. Journal of Systems and Software,
113:1–26, March 2016. doi:10.1016/j.jss.2015.11.
023.

[ANE10] S. Abrishami, M. Naghibzadeh, and D. Epema. Cost-driven
scheduling of grid workflows using Partial Critical Paths. In 2010
11th IEEE/ACM International Conference on Grid Computing,
pages 81–88, October 2010. doi:10.1109/GRID.2010.
5697955.

[ANE13] Saeid Abrishami, Mahmoud Naghibzadeh, and Dick H. J.
Epema. Deadline-constrained workflow scheduling algorithms
for Infrastructure as a Service Clouds. Future Generation
Computer Systems, 29(1):158–169, January 2013. doi:10.
1016/j.future.2012.05.004.

[BBL+16] T. Bridi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini.
A Constraint Programming Scheduler for Heterogeneous High-
Performance Computing Machines. IEEE Transactions on Par-
allel and Distributed Systems, 27(10):2781–2794, October 2016.
doi:10.1109/TPDS.2016.2516997.

[BCD+08] Shishir Bharathi, Ann Chervenak, Ewa Deelman, Gaurang
Mehta, Mei-Hui Su, and Karan Vahi. Characterization of sci-
entific workflows. In 2008 Third Workshop on Workflows in
Support of Large-Scale Science, pages 1–10, November 2008.
doi:10.1109/WORKS.2008.4723958.

[BÇRS13] Anne Benoit, Ümit V. Çatalyürek, Yves Robert, and Erik Saule.
A Survey of Pipelined Workflow Scheduling: Models and Al-
gorithms. ACM Comput. Surv., 45(4):50:1–50:36, August 2013.
doi:10.1145/2501654.2501664.

[BM02] Rajkumar Buyya and Manzur Murshed. GridSim: A toolkit for
the modeling and simulation of distributed resource management
and scheduling for Grid computing. Concurrency and Computa-
tion: Practice and Experience, 14(13-15):1175–1220, November
2002. doi:10.1002/cpe.710.

[BM08] Jorge Barbosa and António P. Monteiro. A List Scheduling
Algorithm for Scheduling Multi-user Jobs on Clusters. In José
M. Laginha M. Palma, Patrick R. Amestoy, Michel Daydé, Marta
Mattoso, and João Correia Lopes, editors, High Performance
Computing for Computational Science - VECPAR 2008, volume
5336, pages 123–136. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2008. doi:10.1007/978-3-540-92859-1_13.

[Bur] Andrew Marc Burkimsher. Fair, Responsive Scheduling of
Engineering Workflows on Computing Grids. page 238.

[CA93] V. Chaudhary and J. K. Aggarwal. A generalized scheme for
mapping parallel algorithms. IEEE Transactions on Parallel
and Distributed Systems, 4(3):328–346, March 1993. doi:
10.1109/71.210815.

[CCAT14] Tarek Chaari, Sondes Chaabane, Nassima Aissani, and Damien
Trentesaux. Scheduling under uncertainty: Survey and research
directions. In 2014 International Conference on Advanced
Logistics and Transport (ICALT), pages 229–234, May 2014.
doi:10.1109/ICAdLT.2014.6866316.

[CCCR18] Y. Caniou, E. Caron, A. K. W. Chang, and Y. Robert. Budget-
Aware Scheduling Algorithms for Scientific Workflows with
Stochastic Task Weights on Heterogeneous IaaS Cloud Plat-
forms. In 2018 IEEE International Parallel and Distributed Pro-

cessing Symposium Workshops (IPDPSW), pages 15–26, May
2018. doi:10.1109/IPDPSW.2018.00014.

[CCH+16] Brad Chapman, John Chilton, Michael Heuer, Andrey Kartashov,
Dan Leehr, Hervé Ménager, Maya Nedeljkovich, Matt Scales,
Stian Soiland-Reyes, and Luka Stojanovic. Common Workflow
Language, v1.0. figshare, United States, July 2016. doi:10.
6084/m9.figshare.3115156.v2.

[CD12] Weiwei Chen and Ewa Deelman. WorkflowSim: A toolkit for
simulating scientific workflows in distributed environments. In
2012 IEEE 8th International Conference on E-Science, pages
1–8, October 2012. doi:10.1109/eScience.2012.
6404430.

[CHI14] Tom Crick, Benjamin A. Hall, and Samin Ishtiaq. "Can
I Implement Your Algorithm?": A Model for Reproducible
Research Software. arXiv:1407.5981 [cs], September 2014.
arXiv:1407.5981.

[CK88] T. L. Casavant and J. G. Kuhl. A taxonomy of scheduling in
general-purpose distributed computing systems. IEEE Transac-
tions on Software Engineering, 14(2):141–154, February 1988.
doi:10.1109/32.4634.

[CLQ] Henri Casanova, Arnaud Legrand, and Martin Quinson. Sim-
Grid: A Generic Framework for Large-Scale Distributed Experi-
ments. page 7.

[CRB+11] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César
A. F. De Rose, and Rajkumar Buyya. CloudSim: A toolkit
for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms. Software:
Practice and Experience, 41(1):23–50, January 2011. doi:
10.1002/spe.995.

[DFP12] J. J. Durillo, H. M. Fard, and R. Prodan. MOHEFT: A multi-
objective list-based method for workflow scheduling. In 4th
IEEE International Conference on Cloud Computing Technol-
ogy and Science Proceedings, pages 185–192, December 2012.
doi:10.1109/CloudCom.2012.6427573.

[DMPR17] Pierre-François Dutot, Michael Mercier, Millian Poquet, and
Olivier Richard. Batsim: A Realistic Language-Independent
Resources and Jobs Management Systems Simulator. In Narayan
Desai and Walfredo Cirne, editors, Job Scheduling Strategies
for Parallel Processing, volume 10353, pages 178–197. Springer
International Publishing, Cham, 2017. doi:10.1007/978-
3-319-61756-5_10.

[DRFG+12] François-Michel De Rainville, Félix-Antoine Fortin, Marc-André
Gardner, Marc Parizeau, and Christian Gagné. DEAP: A python
framework for evolutionary algorithms. In Proceedings of the
Fourteenth International Conference on Genetic and Evolution-
ary Computation Conference Companion - GECCO Companion
’12, page 85, Philadelphia, Pennsylvania, USA, 2012. ACM
Press. doi:10.1145/2330784.2330799.

[DVJ+15] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott
Callaghan, Philip J. Maechling, Rajiv Mayani, Weiwei Chen,
Rafael Ferreira da Silva, Miron Livny, and Kent Wenger. Pe-
gasus, a workflow management system for science automation.
Future Generation Computer Systems, 46:17–35, May 2015.
doi:10.1016/j.future.2014.10.008.

[HDRD98] Willy Herroelen, Bert De Reyck, and Erik Demeulemeester.
Resource-constrained project scheduling: A survey of recent de-
velopments. Computers & Operations Research, 25(4):279–302,
April 1998. doi:10.1016/S0305-0548(97)00055-5.

[JCD+13] Gideon Juve, Ann Chervenak, Ewa Deelman, Shishir Bharathi,
Gaurang Mehta, and Karan Vahi. Characterizing and profiling

SHADOW: A WORKFLOW SCHEDULING ALGORITHM REFERENCE AND TESTING FRAMEWORK 155

scientific workflows. Future Generation Computer Systems,
29(3):682–692, March 2013. doi:10.1016/j.future.
2012.08.015.

[Joh] Steven G. Johnson. The NLopt nonlinear-optimization package,.
[KA99a] Yu-Kwong Kwok and Ishfaq Ahmad. Benchmarking and Com-

parison of the Task Graph Scheduling Algorithms. Journal of
Parallel and Distributed Computing, 59(3):381–422, December
1999. doi:10.1006/jpdc.1999.1578.

[KA99b] Yu-Kwong Kwok and Ishfaq Ahmad. Static Scheduling Al-
gorithms for Allocating Directed Task Graphs to Multiproces-
sors. ACM Comput. Surv., 31(4):406–471, December 1999.
doi:10.1145/344588.344618.

[MJDN15] Maciej Malawski, Gideon Juve, Ewa Deelman, and Jarek
Nabrzyski. Algorithms for cost- and deadline-constrained pro-
visioning for scientific workflow ensembles in IaaS clouds.
Future Generation Computer Systems, 48:1–18, July 2015.
doi:10.1016/j.future.2015.01.004.

[MT18] Ashish Kumar Maurya and Anil Kumar Tripathi. On benchmark-
ing task scheduling algorithms for heterogeneous computing
systems. The Journal of Supercomputing, 74(7):3039–3070, July
2018. doi:10.1007/s11227-018-2355-0.

[RB16] Maria Alejandra Rodriguez and Rajkumar Buyya. A taxon-
omy and survey on scheduling algorithms for scientific work-
flows in IaaS cloud computing environments. Concurrency
and Computation: Practice and Experience, 29(8):e4041, 2016.
doi:10.1002/cpe.4041.

[RB18] Maria A. Rodriguez and Rajkumar Buyya. Scheduling dy-
namic workloads in multi-tenant scientific workflow as a service
platforms. Future Generation Computer Systems, 79:739–750,
February 2018. doi:10.1016/j.future.2017.05.009.

[SD94] N. Srinivas and Kalyanmoy Deb. Muiltiobjective Optimization
Using Nondominated Sorting in Genetic Algorithms. Evol.
Comput., 2(3):221–248, September 1994. doi:10.1162/
evco.1994.2.3.221.

[THW02] H. Topcuoglu, S. Hariri, and Min-You Wu. Performance-
effective and low-complexity task scheduling for heterogeneous
computing. IEEE Transactions on Parallel and Distributed
Systems, 13(3):260–274, March 2002. doi:10.1109/71.
993206.

[Ull75] J. D. Ullman. NP-complete Scheduling Problems. J. Comput.
Syst. Sci., 10(3):384–393, June 1975. doi:10.1016/S0022-
0000(75)80008-0.

[WLZ+19] Yuandou Wang, Hang Liu, Wanbo Zheng, Yunni Xia, Yawen Li,
Peng Chen, Kunyin Guo, and Hong Xie. Multi-Objective Work-
flow Scheduling With Deep-Q-Network-Based Multi-Agent Re-
inforcement Learning. IEEE Access, 7:39974–39982, 2019.
doi:10.1109/ACCESS.2019.2902846.

[WTV+17] C. Wu, R. Tobar, K. Vinsen, A. Wicenec, D. Pallot, B. Lao,
R. Wang, T. An, M. Boulton, I. Cooper, R. Dodson, M. Dolensky,
Y. Mei, and F. Wang. DALiuGE: A graph execution framework
for harnessing the astronomical data deluge. Astronomy and
Computing, 20:1–15, July 2017. doi:10.1016/j.ascom.
2017.03.007.

[WWT15] Fuhui Wu, Qingbo Wu, and Yusong Tan. Workflow schedul-
ing in cloud: A survey. The Journal of Supercomputing,
71(9):3373–3418, September 2015. doi:10.1007/s11227-
015-1438-4.

[YB06] Jia Yu and Rajkumar Buyya. Scheduling Sci-
entific Workflow Applications with Deadline and
Budget Constraints Using Genetic Algorithms.
https://www.hindawi.com/journals/sp/2006/271608/abs/, 2006.
doi:10.1155/2006/271608.

156 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Software Engineering as Research Method: Aligning
Roles in Econ-ARK

Sebastian Benthall§‡∗, Mridul Seth‡

https://youtu.be/nxXr0LNdQUU

F

Abstract—While general purpose scientific software has enjoyed great suc-
cess in industry and academia, domain specific scientific software has not yet
become well-established in many disciplines where it has potential. Based on
a survey of the literature as well as the authors’ experiences contributing to
Econ-ARK, a structural modeling toolkit for Economics, we argue that this is
due to the well-documented skills gap that prevents researchers, publishers,
and professors from making the most of the opportunities afforded by scientific
software. When researchers professionalize their code, it enables more cumula-
tive progress in research and facilitates technology transfer. When publishers
release interactive computational artifacts, it enables constructionist learning
of the material. When students are trained in software engineering, they can
participate fully in the reproduction of their scientific field. This is especially
the case for fields where scientific knowledge is represented in software code,
as in the case of Economics. The skills gap will not be closed until software
engineering is considered a core skill for the discipline. Software engineering
should be reconceived as a research method.

Index Terms—computational method, computional thinking, constructionist
learning, research software engineering

Computing in Education and Science

Ever since [Pap82] introduced constructionist learning using com-
puters, educators have been enticed by the possibility that students
could learn valuable knowledge by playing with software. While
originally used as a tool for teaching mathematics, it was not long
before Papert’s Logo tool was also used in scientific education,
teaching students not just about the abstract mathematical sphere,
but about the physical world [ROP90]. The legacy of Logo is alive
and well in NetLogo [TW04], which is used by both students
and researchers alike in the study of complex and agent-based
systems, and in the Python agent-based modeling (ABM) toolkit
Mesa [DMJK15].1

Since, the ubiquity of computing and its increasingly central
role in industry has prompted the spread of ideas that were
once specific to computer science into other disciplines. [Win06]
coined the term "computational thinking" for the general skills
of managing abstraction, modularity, scalability, and robustness

* Corresponding author: spb413@nyu.edu
§ New York University School of Law
‡ Econ-ARK

Copyright © 2020 Sebastian Benthall et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

1. An example of an ABM is the Wolf Sheep Predation model, which is
used to explore the stability of predator-prey ecosystems [Wil97].

of systems. Now it refers to the cross-disciplinary use of these
computational concepts [Guz08] [SGB13]. The question raised by
computational thinking is how much computer science education
is necessary for these cross-disciplinary uses of computation.
Logo, after all, not only introduced students to mathematics, but
also programming. But did it teach computational thinking?

The industrial demand for students educated in handling "Big
Data" systems has since prompted a generalization of statistics
beyond its discipline in a way that’s analogous to the general-
ization of computer science. [Jor16] discusses this new industry
demand for "inferential thinking". Together, computational think-
ing and inferential thinking have been reimagined by some as
the foundation for a new form of cross-disciplinary data science
curriculum [AD17] [EVDSLB19]. A key technological feature
of these new curricula are digital notebooks that enable users
to compose computational narratives that make computing more
cognitively digestible to humans [PG15]. Now, Jupyter notebooks
are widely used for collaboration on research and, in some places,
as part of pedagogy.

Open source scientific software development has benefited
from the influx of capital due to industry interest in data science
applications. Software packages such as Numpy [WCV11], Pan-
das [McK11], and Scikit-learn [PVG+11] have become popular
as industrial tools. At the same time, these tools have provided a
foundation and aspirational example for more domain specific sci-
entific libraries, such as astropy [RTG+13], Biopython [CAC+09],
PsychoPy [Pei07], and SunPy [MPSC+13]. Scientific educators
continue to see potential in the use of these tools to support the
education of their students not only about computation, but about
the world [Bar16], in a return to Papert’s constructionist paradigm.

This vision of scientific research and education supported by
open source domain specific scientific libraries faces two signifi-
cant obstacles. The first is the development and sustainability of
the software itself. Open source software projects in general are
not guaranteed to succeed; most fail to gain wide adoption or reach
sustainability [SE12]. In addition to these general difficulties,
scientific software suffers from the fact that researchers who write
and modify software often do not have formal training in software
development. As a result, scientific software is often hampered by
technical debt. These problems are mitigated by national initiatives
to train scientists in software engineering skills, such as the UK’s
Software Sustainability Institute, as well as Software Carpentry
[Wil14]. There is further work to be done in institutional design
around filling this skills gap [KCN+16]. But it is known that
computational thinking skills alone are not sufficient for successful

SOFTWARE ENGINEERING AS RESEARCH METHOD: ALIGNING ROLES IN ECON-ARK 157

scientific software. Software engineering skills are necessary to
produce software that is usable beyond the lab or research group
that originates it, which is a necessary path towards software
sustainability [Ben19].

A second obstacle integrating software tools into scientific
practice is that software-based learning requires additional educa-
tion infrastructure. [SNLT18] document the challenges in provid-
ing JupyterHub with automatic grading extensions at universities
and colleges; they find that many institutions do not have the
resources or deep IT expertise necessary to build and maintain
this infrastructure. The growing necessity of cloud-based compu-
tational notebooks for assignments and exploration in scientific
education therefore raises concerns about social equity.

This paper explores these general themes through an analysis
of Econ-ARK [CKK+18] as a case study. Econ-ARK is a domain
specific software toolkit currently most widely used in Economics.
Launched in 2014, the project has recently experienced a phase
transition in development practices because of the onboarding
of research software engineers. The collaborations between Eco-
nomics professors and software engineers have revealed a broad
scope of potential in computational research, publication, and
pedagogy. It has also exposed how disciplinary training in Eco-
nomics does not include many concepts necessary to realizing that
potential. We conclude that the gaps between disciplinary training
and the conditions for realizing this potential can be partially
closed by framing software engineering as a research method.

Econ-ARK: Discipline Specifics

The Econ-ARK project [CKK+18] is a toolkit for the structural
modeling of optimizing economic choices by heterogenous agents.
A primary goal of its flagship software library HARK (Heteroge-
nous Agent Research toolKit) is to support economic research
into heterogeneous agent (HA) modeling [Hom06], which be-
came a research priority after the 2008 financial crisis revealed
the weaknesses in the then-dominant representative agent (RA)
based paradigm.2 It has been designed so that researchers and
students can take a hands-on approach to economic modeling in
software [CW18]. Econ-ARK is in some respects a port of Dynare
[ABJ+11], an earlier computing library for economic models, into
Python.

Econ-ARK lies roughly in the Papertian educational tradition,
similar to other agent-based modeling software such as NetLogo
[TW04] and Mesa [DMJK15]. However, in Econ-ARK models,
agents optimize their behavior strategically with respect to pre-
dicted effects over time. In this respect, Econ-ARK has some
characteristics of a reinforcement learning or artificial intelligence
toolkit.

Example. A paradigmatic, simple example of the kind of
problem studied using Econ-ARK is the microeconomic dynamic
stochastic optimization problem of calculating the mathematically
optimal amount to save [Car11].

This problem can be characterized by the equations:

U(ct) =
c1−ρ

t

1−ρ
mt+1 = R(mt − ct)+ pt+1

pt+1 = γ pt

where U is a utility function, ρ is a coefficient of risk aversion, ct
is the amount of resources the agent chooses to consume in each

2. These weaknesses had been known since the work of [Kir92].

period t, mt is the amount of market resources available to the
agent at each time period, pt is the level of income at each time
period, γ is the growth rate of income over time, and R is a rate of
return on savings.

These equations define a Markov Decision Problem (MDP),
which can be transformed into a Bellman equation given a dis-
count factor β :

Vt(mt , pt) = maxctU(ct)+βVt+1(mt+1, pt+1)

The optimal consumer choice can be solved via dynamic program-
ming.

However, it is possible to reduce the complexity of this prob-
lem significantly through mathematical analysis. Because income
is growing geometrically, it is possible to remove one of the state
variables p from the model, and solve for the MDP with the
following transition function:

mt+1 =
R
γ
(mt − ĉt)+1

The consumption function ĉ can then be solved in a reduced
(1-dimensional) state space. The optimal consumption function
for the original problem is then recoverable as ct = ĉt ∗ pt . It is
the goal of the Econ-ARK software to bundle the analytically
reduced solution with the original model as a way of representing
and making available the substantive knowledge gained in the
mathematical derivation.

Models in HARK are, at a certain level of mathematical
abstraction, equivalent to Markov Decision Problems (MDP).
However, generic MDP software is not adequate for research in
this field, for several reasons.

• Substantive, policy-oriented structural modeling. Un-
like many recent fields of data science, in which generic
model-fitting and machine-learning techniques are applied
to a large data set for the purpose of maximizing predictive
potential, this branch of Economics operates with rela-
tively scarce data and a drive for model veracity. Besides
the academic field of researchers, the intended audience
for these models are national central banks and other
policy-makers. For example, one policy application of
these models is predicting the impact of the CARES stim-
ulus bill on consumption [CCSW20]. These models are
scientifically valued for their ability to approximate real
social dynamics, and for their ability to build consensus
towards policy-making, in addition to their goodness of fit
to available data.

• Analytical results informing solvers. Like many other
sciences, this branch of Economics has a theoretical com-
ponent consisting in mathematical proofs about the models
in question. In addition to providing interpretable insight
into the invariant properties of a model, these results also
inform the design of model solvers and the user expe-
rience. For example, a mathematical result might reveal
under what parameter conditions a model has a degenerate
solution; the software will warn the user if they attempt to
solve the model in such a case. Elsewhere, an analytical
result might provide a shortcut such that it is possible
to write a solution algorithm with lower computational
complexity than a generic one would have.

• Continuous space decisions. Most MDP solvers and
simulators assume a discrete control and state space. The

158 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

economic problems studied using HARK are most often
defined with continuous control and state spaces, and
with continuous random variables as exogenous shocks.
HARK therefore includes a variety of discretization and
interpolation tools that support the transformation between
discrete and continuous representations.

The upshot of these conditions is that Econ-ARK software is
not only a tool for researchers doing empirical scientific work.
Rather, its software is an encoding of substantive research re-
sults in mathematical theory. A software implementation, which
integrates the results in a larger body of work and is subject to
robust software testing, is an additional form of validation of the
correctness and salience of a finding. This entails that the success
of Econ-ARK will imply a practical change to the research field:
students will study models that have been published in Python by
researchers in order to learn insights about the economy.

Case Study: Roles in Econ-ARK

Econ-ARK has been broadly conceived as a collection of projects
that supports this computational approach to education and re-
search in economic structural modeling. The project has been
organized around several different version-controlled software
repositories. The software in these repositories is written mostly
in Python, though there is also a great deal of expository content
and sometimes older code in other languages such as MATLAB
and Mathematica.

We have identified several different roles that people take
on when interacting with Econ-ARK. The same individual or
"natural person" might take on different roles at different times,
but nevertheless these categories have been useful as ideal types
[Hek83] with which to reason about requirements and skills.

Researcher. The role at the heart of the Econ-ARK system is
that of the Researcher. This user is trying to advance the frontier
of economic thinking by drawing on deep domain knowledge
(Economics) as well as general training in computational and
inferential thinking, applied math, and perhaps other fields. Re-
search with Econ-ARK may be nebulously defined because while
the question of how to implement a class of economic models
efficiently and robustly in Python is a research question in its
own right, these implementations are rarely considered first-order
research contributions. Researchers work within a complex field of
economic capital incentives (such as university salaries and grant
funding) and symbolic capital incentives (scholar recognition for
published work) [Bou04]. At the time of this article’s publi-
cation, the institutional mechanisms for training and rewarding
Economics researchers to work in the medium of robust software
are few. As a consequence there is a skills gap: researchers often
have programming ability, but not the software engineering and
IT training that is necessary to fully realize the vision of the
software’s potential [CHH+13].

Publisher. One way to untie the Gordian knot of incentives
around Econ-ARK research is to provide a more reliable and
efficent path towards recognized scholarly publication that uses
it. One proposal has been that economists begin a Journal of Open
Source Economics [Isk19], modeled loosely on the Journal of
Open Source Software (JOSS), which gives academic publication
credit to the creators of scientific software tools. Preliminary
efforts towards such a journal have been attempted through the
Econ-ARK sub-project REMARK (Replications and Explorations
Made using the ARK), which organizes contributed directories

of material that meet a minimal ’publishable’ standard of repro-
ducibility. This approach has surfaced many challenges, mainly
regarding the technical requirements of reliably hosting Python
environments for each publishable unit, and managing depen-
dencies across those environments. These technical challenges
of publication require IT skills that are in general not available
to researchers who may be technically capable of programming
models that show substantive academic results.

Teacher and Student. In an academic context, the pedagogi-
cal use case is as important as the researcher’s use case. While the
researcher is building new models to communicate new discover-
ies, the teacher guides students to learn skills and ideas that are
already known. Two of the hurdles faced by teachers attempting
to use Econ-ARK pedagogically are the creation and grading
of assignments and assisting students with the availability of an
adequate computing environment that does not distract them from
the course materials. Technical solutions have been developed
for both hurdles. nbgrader enables the creation of assignments
with Jupyter notebooks [Ham16] [BBB+19]. JupyterHub has been
deployed to allow students to get around the hardware limitations
of their laptops and the difficulties of setting up a local coding
environment [Kim18]. Notably, both technical solutions, which
have been developed only in the past few years, require skills
that are not part of normal disciplinary training in economics.
Economics professors currently require others to fill the social
role that enables these tools to be useful.

Software engineer. The elephant in the room in all discussions
of scientific software and computational education is that building
and deploying robust software is its own complex field that
often shares few disciplinary roots with the domain sciences.
These skills are often specific to technologies that originated in
industry or open source technology production, not in academia.
For example, the version control system Git was not originally
an academic project, but it nevertheless is now ubiquitously used
for computational academic research through its popularization
via GitHub. The workflow patterns of collaboratively developing
software using GitHub and managing release cycles are not part
of any conventional Economics curriculum, and yet researchers
increasingly need to learn and use these in order to participate
in computational research. Software engineering skills are not
only useful for these infrastructural requirements of publication
and pedagogy. Integrating new features, expressing substantive
disciplinary material, and making these features available for new
users requires these skills. In other words, software engineering
skills are required to make a software project robust and reusable
across many different labs and groups of researchers [Ben19].
This has led to calls in some places for a better supported
and formalized role for Research Software Engineers [PHH16]
[BHG+12].

This division of roles and skills raises some quandaries for
computational economics. Publication, pedagogy, and the sus-
tainability of the domain specific software library Econ-ARK all
require software engineering skills. But there is no point at which
new entrants into this discipline are trained in these skills. They
must be learned informally by researchers who are not incentivized
to do so, or they must be hired from an external talent pool trained
in other disciplines or at another workplace.

This interrupts the cycle, from student to researcher to pro-
fessor who teaches more students, which is necessary for the
autonomy of Economics as a field of knowledge. If at every point
in the process -- even at the point where new discoveries are

SOFTWARE ENGINEERING AS RESEARCH METHOD: ALIGNING ROLES IN ECON-ARK 159

integrated into the core software library -- there is a dependence
on an externally sourced skillset, then the discipline will fail to
reproduce scholars with the competence to participate in its own
field.

Case Study: Econ-ARK infrastructure

The Econ-ARK infrastructure is built around creating a sustainable
community with respect to various use cases and the challenges
of creating sustainable scientific software in Economics. We have
discussed some of the challenges of bridging work across user
roles of Researchers, Publishers, Professors and Software Engi-
neers. Here. we illustrate these general points with examples from
our software and infrastructure practices.

Decoupling scientific content from code. A lot of scientific
code is written as part of academic research projects where the
incentives aren’t closely aligned with those of creating scientific
software. The recent case of UK COVID microsimulation code
[MRC] brings out a stronger need of creating scientific software
with the correct incentives. The decision to draw the line between
a research artifact and a software is a hard decision which varies a
lot between different scientific domains and requires a high level
overlap of the researcher, publisher and software engineer roles.

When scientific code written by researchers is geared towards
the publishable end result like a paper, it can lead to short-sighted
design choices that in a broader software context are known as
"technical debt" [KNO12]. An illustration is this example of a
difference between a script and a modular function [Sci].

a research project to calculate the moving
averages of two stocks

import pandas as pd

data = pd.read_csv('stocks_data.csv')

x = data['APPL'].rolling(window=5).mean()
y = data['GOOG'].rolling(window=5).mean()

print(x, y)

Running this script prints out the moving average time series of the
two stocks. We can also create a software package which achieves
the similar thing in a more modular way.

move_avg.py

import pandas as pd

def calculate_MA(data, stock, days):
Calculates the moving average for a stock
return data[stock].rolling(window=days).mean()

We can achieve similar results using our new package move_avg,
but this isn’t restricted to our specific hard coded variables (num-
ber of days, stock, input data).

import pandas as pd
from move_avg import calculate_MA

data = pd.read_csv('stocks_data.csv')
print(calculate_MA(data, 'APPL', 5))
print(calculate_MA(data, 'GOOG', 5))

Initial decisions like hard coding variables in the code while
creating the research artifact (which happens in a lot of academic
research projects) lead away from creating a well defined reusable
scientific software library. This seems trivial for people with a

software engineering background but not necessarily for others.
We know this is a hard problem to solve in domain specific
scientific code where the boundaries between a research paper and
code could be blurry. To tackle this is Econ-ARK, we extracted
generalized code from research artifacts to create our software
package HARK [CKK+18] and maintained the research artifacts
which heavily rely on HARK as REMARKs (Replications and
Explorations Made using the ARK).

This decoupling exercise also helps with the reproducibility of
research projects as it gives other researchers the necessary tools
to examine the research artifacts. The decoupling can also enable
the use of empirical data and model fitting techniques, expanding
the functional scope of the original script.

Reproducible builds of scientific content. The reproducibil-
ity crisis has been plaguing academic research for some time
and the current ecosystem of software packaging and distribu-
tion certainly does not help it. To tackle this in Econ-ARK we
have used containerization technologies like Docker. Tools like
Repo2Docker [Jup] further help us with creating reproducible
builds of scientific content. Creating and working with these tools
still requires a basic background with software engineering, and
end users like students and researchers in economics may not have
the required background. We made tools to lower the barrier by
using pre-built containers and one-click (or one-command) repro-
ducible research artifacts [EA]. This effort has required a strong
overlap between Researchers and Software Engineers in a project.
Pushing for reproducibility in the community benefits students by
lowering the barriers to access research and publishers/researchers
by creating tools required to address the reproducibility crisis.

Interactive scientific publication. The publication of the
Econ-ARK-based analysis of the consumption response to
the CARES Act [CCSW20] was accompanied by an online
Dashboard3 that allows users to change parameters of the model
and visualize their impact on policy outcomes. This Dashboard
was deployed using Binder and developed by an Econ-ARK
Research Software Engineer. This dashboard supports the con-
structionist learning of the substance of the model. Here, that
paradigm is applied to convey knowledge not to students, but to
public policy makers and other economists.

This new way of presenting economic models may be more
digestible to a wider audience than a traditional research pub-
lication. However, researchers are not trained to create these
Dashboards as they are trained to write research papers. This
limits the scholarly impact of domain specific research software,
as many computational models are not being presented in this rich
interactive way.

Teaching resources. To keep the wheels turning in a research
discipline we require effective pedagogical resources, especially
in domains which are increasingly using scientific software to
further research. After creating pedagogical content we are faced
with the next hard challenge of creating an effective teaching
infrastructure. The crème de la crème of the SciPy community
has faced installation problems with software packages and it
is not hard to create a monster out of your local environment.
But luckily tools like MyBinder and JupyterHub have drastically
reduced the work required to set up a stable environment required
for teaching courses that depend heavily on scientific software.
At Econ-ARK we have used MyBinder (publicly and privately

3. https://mybinder.org/v2/gh/econ-ark/Pandemic/master?urlpath=voila%
2Frender%2FCode%2FPython%2Fdashboard.ipynb

160 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

hosted) extensively for teaching graduate economics courses and
it has significantly reduced the overhead required for local setup,
especially for students who are the primary users of a domain
specific scientific software like HARK. We have also effectively
used containerization for standardizing student assignments which
streamlines the work for both students and teachers.

Discussion

Is research software engineering becoming a core skill for research
that involves writing code? The skills for navigating many practi-
cal elements of software engineering are necessary for equipping a
digital classroom, effectively publishing results, and contributing
new features to scientific libraries. Yet they are currently con-
sidered a peripheral part of disciplinary education in Economics.
Researchers and professors are not taught these skills as part of
their training as students. This contributes to a systemic skills gap
between the discipline and technology.

One potential solution to this problem would be to introduce
more software engineering training into the core curriculum for
graduate students. Some Economics departments already offer a
course on Computational Methods, analogous to earlier courses on
Mathematical Methods, Econometrics, or other methods. As the
pragmatic needs of computational methods increasingly require
such activities as setting up local development environments,
preparing cloud computing infrastructure, and utilizing autodoc-
umentation, version control and package management tools, these
techniques could be included as part of a computational methods
curriculum.

This is a departure from both the computational thinking
[Win06] approach, which emphasizes abstract, conceptual skills
explicitly in contrast to the mechanical skills of programming,
let alone software engineering. It is also a departure from con-
structionist learning [Pap82], in that the method of learning is not
childlike play but what is instead most often considered a form
of laborious work. Rather, it is perhaps best conceived and taught
in the paradigm of situated learning [LW91], or an apprenticeship
based model. In this model, students engage in "legitimate periph-
eral participation" by working with tools under the mentorship
of experts, gradually becoming more central in the community of
practice. This model has been applied to both software engineering
education and open source community participation [YK03].

Preparing scientists with more general software engineering
skills would pave the way for more general acceptance of compu-
tational narrative [PG15] as a core method in scientific practice.
In the social sciences especially, this would open research fields
to wider ranges of discoveries through computational methods.
[Eps06] has argued that computational modeling in social science
is the natural successor to game theoretic and rational choice
modeling, which has a long social scientific history, allowing a
wider range of models with greater realism and theoretical insight.
While [Hom06] and [Tes06] have shown the applicability of these
methods to economics in particular, progress has been limited
by the lack of research software engineering skills available in
the field. To unlock the potential of computational science, re-
search software engineering must become recognized as a research
method.

Another incentive for making software engineering more cen-
tral as a research method for scientific practice is that mature soft-
ware products are a vector for technology transfer from academic
labs to the market [DR04]. As national funding agencies anticipate

a pivot towards bringing scientific results to market a top priority
[Amb20] it raises questions about what research methods are most
commercially relevant.

We are definitely not the first push for more training to
scientific researchers about general software design and best
practices (software versioning, continuous integration, testing).
Organizations like Software Carpentry [Wil14] have been success-
ful in this domain. Creating sustainable domain specific scientific
software requires a systematic decoupling of reusable library code
from research artifacts so users from different backgrounds can
successfully work with the software. Researchers writing code
with knowledge about software design will have more success in
creating a sustainable community. Our contribution in this paper is
to discuss how software design can be reconceived as a scientific
method, as opposed to a peripheral skill.

REFERENCES

[ABJ+11] Stéphane Adjemian, Houtan Bastani, Michel Juillard, Ferhat
Mihoubi, George Perendia, Marco Ratto, and Sébastien Ville-
mot. Dynare: Reference manual, version 4. 2011.

[AD17] Ani Adhikari and John DeNero. Computational and Inferential
Thinking: The Foundations of Data Science, 2017. URL: https:
//www.inferentialthinking.com/.

[Amb20] Mitch Ambrose. Lawmakers propose dramatic expansion
of nsf to boost us technology, May 2020. URL:
https://www.aip.org/fyi/2020/lawmakers-propose-dramatic-
expansion-nsf-boost-us-technology.

[Bar16] Lorena A Barba. Computational thinking: I do not
think it means what you think it means, 2016. URL:
https://lorenabarba.com/blog/computational-thinking-i-do-
not-think-it-means-what-you-think-it-means/.

[BBB+19] Douglas S Blank, David Bourgin, Alexander Brown, Matthias
Bussonnier, Jonathan Frederic, Brian Granger, Thomas L Grif-
fiths, Jessica Hamrick, Kyle Kelley, M Pacer, et al. nbgrader:
A tool for creating and grading assignments in the jupyter
notebook. The Journal of Open Source Education, 2(11), 2019.
doi:10.21105/jose.00032.

[Ben19] Sebastian Benthall. Software incubator workshop: A synthe-
sis, Feb 2019. URL: http://urssi.us/blog/2019/02/25/software-
incubator-workshop-a-synthesis/.

[BHG+12] Rob Baxter, N Chue Hong, Dirk Gorissen, James Hetherington,
and Ilian Todorov. The research software engineer. In Digital
Research Conference, Oxford, pages 1–3, 2012.

[Bou04] Pierre Bourdieu. Science of science and reflexivity. Polity,
2004.

[CAC+09] Peter JA Cock, Tiago Antao, Jeffrey T Chang, Brad A Chap-
man, Cymon J Cox, Andrew Dalke, Iddo Friedberg, Thomas
Hamelryck, Frank Kauff, Bartek Wilczynski, et al. Biopython:
freely available python tools for computational molecular bi-
ology and bioinformatics. Bioinformatics, 25(11):1422–1423,
2009. doi:10.1093/bioinformatics/btp163.

[Car11] Christopher D Carroll. Solution methods for microeconomic
dynamic stochastic optimization problems, 2011. URL: http:
//www.econ.jhu.edu/people/ccarroll/solvingmicrodsops.pdf.

[CCSW20] Christopher D Carroll, Edmund Crawley, Jiri Slacalek, and
Matthew N White. Modeling the consumption response to the
cares act. COVID Economics, 2020.

[CHH+13] Stephen Crouch, Neil Chue Hong, Simon Hettrick, Mike
Jackson, Aleksandra Pawlik, Shoaib Sufi, Les Carr, David
De Roure, Carole Goble, and Mark Parsons. The software
sustainability institute: changing research software attitudes
and practices. Computing in Science & Engineering, 15(6):74–
80, 2013. doi:10.1109/MCSE.2013.133.

[CKK+18] Christopher D. Carroll, Alexander M. Kaufman, Jacqueline L.
Kazil, Nathan M. Palmer, and Matthew N. White. The Econ-
ARK and HARK: Open Source Tools for Computational Eco-
nomics. In Fatih Akici, David Lippa, Dillon Niederhut, and M
Pacer, editors, Proceedings of the 17th Python in Science Con-
ference, pages 25 – 30, 2018. doi:10.25080/Majora-
4af1f417-004.

SOFTWARE ENGINEERING AS RESEARCH METHOD: ALIGNING ROLES IN ECON-ARK 161

[CW18] Christopher D Carroll and Matthew N White. Hands-
on heterogeneous agent macroeconomics, 2018. URL:
https://safe-frankfurt.de/fileadmin/user_upload/editor_
common/Events/Chris_Carrol_Syllabus.pdf.

[DMJK15] David Masad and Jacqueline Kazil. Mesa: An Agent-Based
Modeling Framework. In Kathryn Huff and James Bergstra,
editors, Proceedings of the 14th Python in Science Confer-
ence, pages 51 – 58, 2015. doi:10.25080/Majora-
7b98e3ed-009.

[DR04] Jean-Michel Dalle and Guillaume Rousseau. Toward collab-
orative open-source technology transfer. Collaboration, Con-
flict and Control, pages 34–42, 2004. doi:10.1049/ic:
20040262.

[EA] Econ-ARK. BufferStockTheory reproduce. URL:
https://github.com/llorracc/BufferStockTheory/blob/master/
reproduce.sh.

[Eps06] Joshua M Epstein. Generative social science: Studies in agent-
based computational modeling. Princeton University Press,
2006. doi:10.23943/princeton/9780691158884.
001.0001.

[EVDSLB19] Eric Van Dusen, Anthony Suen, Alan Liang, and Amal Bhatna-
gar. Accelerating the Advancement of Data Science Education.
In Chris Calloway, David Lippa, Dillon Niederhut, and David
Shupe, editors, Proceedings of the 18th Python in Science
Conference, pages 1 – 4, 2019. doi:10.25080/Majora-
7ddc1dd1-000.

[Guz08] Mark Guzdial. Education paving the way for computational
thinking. Communications of the ACM, 51(8):25–27, 2008.
doi:10.1145/1378704.1378731.

[Ham16] Jessica B Hamrick. Creating and grading ipython/jupyter
notebook assignments with nbgrader. In Proceedings of the
47th ACM Technical Symposium on Computing Science Ed-
ucation, pages 242–242, 2016. doi:10.1145/2839509.
2850507.

[Hek83] Susan J Hekman. Weber’s ideal type: A contemporary re-
assessment. Polity, 16(1):119–137, 1983. doi:10.2307/
3234525.

[Hom06] Cars H Hommes. Heterogeneous agent models in economics
and finance. Handbook of Computational Economics, 2:1109–
1186, 2006. doi:10.1016/s1574-0021(05)02023-x.

[Isk19] Fedor Iskhakov. The journal of open source economics
journal charter, 2019. URL: https://github.com/joseconomics/
JOSEcon-Project-Charter/blob/master/josecon_charter.pdf.

[Jor16] Michael I Jordan. On computational thinking, inferential
thinking and data science. In Proceedings of the 28th ACM
Symposium on Parallelism in Algorithms and Architectures,
pages 47–47, 2016. doi:10.1145/2935764.2935826.

[Jup] Jupyter. repo2docker. URL: https://github.com/jupyter/
repo2docker.

[KCN+16] Daniel Katz, Sou-Cheng Choi, Kyle Niemeyer, James Het-
herington, Frank Löffler, Dan Gunter, Ray Idaszak, Steven
Brandt, Mark Miller, Sandra Gessing, et al. Report on the third
workshop on sustainable software for science: Practice and
experiences (wssspe3). Journal of Open Research Software,
4(1), 2016. doi:10.5334/jors.118.

[Kim18] Alicia Kim. The jupyterhub journey: Starting small and
scaling up, May 2018. URL: https://data.berkeley.edu/news/
jupyterhub-journey-starting-small-and-scaling.

[Kir92] Alan P Kirman. Whom or what does the representative individ-
ual represent? Journal of economic perspectives, 6(2):117–136,
1992.

[KNO12] Philippe Kruchten, Robert L Nord, and Ipek Ozkaya. Technical
debt: From metaphor to theory and practice. Ieee software,
29(6):18–21, 2012. doi:10.1109/ms.2012.167.

[LW91] Jean Lave and Etienne Wenger. Situated learning: Legitimate
peripheral participation. Cambridge University Press, 1991.
doi:10.1017/cbo9780511815355.

[McK11] Wes McKinney. pandas: a foundational python library for
data analysis and statistics. Python for High Performance and
Scientific Computing, 14(9), 2011.

[MPSC+13] Stuart Mumford, David Pérez-Suárez, Steven Christe, Florian
Mayer, and Russell J. Hewett. SunPy: Python for Solar
Physicists. In Stéfan van der Walt, Jarrod Millman, and Katy
Huff, editors, Proceedings of the 12th Python in Science Con-
ference, pages 70 – 73, 2013. doi:10.25080/Majora-
8b375195-00c.

[MRC] UK MRC. Covidsim microsimulation model. URL: https://
github.com/mrc-ide/covid-sim.

[Pap82] Seymour Papert. Mindstorms. NY: Basic Books, 1982. doi:
10.1007/978-3-0348-5357-6.

[Pei07] Jonathan W Peirce. Psychopy—psychophysics software in
python. Journal of Neuroscience Methods, 162(1-2):8–13,
2007. doi:10.1016/j.jneumeth.2006.11.017.

[PG15] Fernando Perez and Brian E Granger. Project jupyter: Compu-
tational narratives as the engine of collaborative data science,
2015. URL: http://archive.ipython.org/JupyterGrantNarrative-
2015.pdf.

[PHH16] Olivier Philippe, Neil Chue Hong, and Simon Hettrick. Prelim-
inary analysis of a survey of uk research software engineers.
In 4th Workshop on Sustainable Software for Science: Practice
and Experience, 2016.

[PVG+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vin-
cent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel,
Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. The Journal of Machine
Learning Research, 12:2825–2830, 2011.

[ROP90] Mitchel Resnick, Stephen Ocko, and Seymour Papert.
LEGO/logo–learning through and about design. Epistemology
and Learning Group, MIT Media Laboratory Cambridge, MA,
1990.

[RTG+13] Thomas P Robitaille, Erik J Tollerud, Perry Greenfield, Michael
Droettboom, Erik Bray, Tom Aldcroft, Matt Davis, Adam
Ginsburg, Adrian M Price-Whelan, Wolfgang E Kerzendorf,
et al. Astropy: A community python package for astronomy.
Astronomy & Astrophysics, 558:A33, 2013.

[Sci] SciPy. Scipy lecture notes. URL: https://scipy-lectures.org/
intro/language/reusing_code.html.

[SE12] Charles M Schweik and Robert C English. Internet suc-
cess: a study of open-source software commons. MIT Press,
2012. doi:10.7551/mitpress/9780262017251.
001.0001.

[SGB13] Amber Settle, Debra S Goldberg, and Valerie Barr. Beyond
computer science: computational thinking across disciplines.
In Proceedings of the 18th ACM Conference on Innovation and
Technology in Computer Science Education, pages 311–312,
2013. doi:10.1145/2462476.2462511.

[SNLT18] Anthony Suen, Laura Norén, Alan Liang, and Andrea Tu.
Equity, Scalability, and Sustainability of Data Science Infras-
tructure. In Fatih Akici, David Lippa, Dillon Niederhut, and M
Pacer, editors, Proceedings of the 17th Python in Science Con-
ference, pages 15 – 17, 2018. doi:10.25080/Majora-
4af1f417-002.

[Tes06] Leigh Tesfatsion. Agent-based computational economics: A
constructive approach to economic theory. Handbook of Com-
putational Economics, 2:831–880, 2006. doi:10.1016/
s1574-0021(05)02016-2.

[TW04] Seth Tisue and Uri Wilensky. Netlogo: Design and implemen-
tation of a multi-agent modeling environment. In Proceedings
of the Agent 2004 Conference on Social Dynamics: Interaction,
Reflexivity and Emergence, volume 2004, pages 7–9, 2004.

[WCV11] Stéfan van der Walt, S Chris Colbert, and Gael Varoquaux.
The numpy array: a structure for efficient numerical computa-
tion. Computing in Science & Engineering, 13(2):22–30, 2011.
doi:10.1109/mcse.2011.37.

[Wil97] Uri Wilensky. Netlogo wolf sheep predation model,
1997. URL: http://ccl.northwestern.edu/netlogo/models/
WolfSheepPredation.

[Wil14] Greg Wilson. Software carpentry: lessons learned.
F1000Research, 3, 2014. doi:10.12688/
f1000research.3-62.v2.

[Win06] Jeannette M Wing. Computational thinking. Communications
of the ACM, 49(3):33–35, 2006. doi:10.1145/1118178.
1118215.

[YK03] Yunwen Ye and Kouichi Kishida. Toward an understanding
of the motivation of open source software developers. In
Proceedings of the 25th International Conference on Soft-
ware Engineering, 2003, pages 419–429. IEEE, 2003. doi:
10.1109/icse.2003.1201220.

162 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Falsify your Software: validating scientific code with
property-based testing

Zac Hatfield-Dodds‡∗

F

Abstract—Where traditional example-based tests check software using
manually-specified input-output pairs, property-based tests exploit a general
description of valid inputs and program behaviour to automatically search for
falsifying examples. Given that Python has excellent property-based testing
tools, such tests are often easier to work with and routinely find serious bugs
that all other techniques have missed.

I present four categories of properties relevant to most scientific projects,
demonstrate how each found real bugs in Numpy and Astropy, and propose
that property-based testing should be adopted more widely across the SciPy
ecosystem.

Index Terms—methods, software, validation, property-based testing

Introduction

Much research now depends on software for data collection, analy-
sis, and reporting; including on software produced and maintained
by researchers. This has empowered us enormously: it is hard to
imagine an analysis that was possible at all a generation ago which
could not be accomplished quickly by a graduate student today.

Unfortunately, this revolution in the power and sophistication
of our software has largely outstripped work on validation. While
it would be unthinkable to publish research based on custom-built
and unvalidated physical instruments, this is routine in software.
As an effect, [Soe15] estimates that

Any reported scientific result could very well be
wrong if data have passed through a computer, and these
errors may remain largely undetected1. It is therefore
necessary to greatly expand our efforts to validate scien-
tific software.

I argue that property-based testing [Mac] is more effective
for validation of Python programs than using only traditional
example-based tests2, and support this argument with a variety
of examples from well-known scientific Python projects.

This is a recent development: while the concept of property-
based testing dates back to 1999 [CH00], early tools required deep
computer-science expertise. Since 2015, Hypothesis [MHDC19]
has made state-of-the-art testing technology available and acces-

* Corresponding author: zac.hatfield.dodds@anu.edu.au
‡ Australian National University

Copyright © 2020 Zac Hatfield-Dodds. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

sible to non-experts in Python, and has added multiple features
designed for testing scientific programs3 since 2019.

What is property-based testing?

Where example-based tests check for an exact expected output,
property-based tests make less precise but more general assertions.
By giving up hand-specification of the expected output, we gain
tests that can be run on a wide range of inputs.

This generality also guides our tests to the right level of
abstraction, and gives clear design feedback: where example-based
tests map one input to one output regardless of complexity, every
special case or interacting feature has to be addressed. Clean
abstractions which allow you to say "for all ...", without caveats,
stand in clear contrast and are a pleasure to test.

Tests which use random data are usually property-based, but
using a library designed for the task has several advantages:

• a concise and expressive interface for describing inputs
• tests are never flaky - failing examples are cached and

replayed, even if the test failed on a remote build server
• automatic shrinking facilitates debugging by presenting a

minimal failing example for each distinct error

Automating these tedious tasks makes finding bugs consider-
ably faster, and debugging both easier and more fun. When Hy-
pothesis world-class shrinker [MD] hands you a failing example,
you know that every feature is relevant - if any integer could be
smaller (without the test passing) it would be; if any list could be
shorter or sorted (ditto) it would be, and so on.

Why is this so effective?

Examples I wouldn’t think of reveal bugs I didn’t know were
possible. It turns out that general descriptions of your data have
several advantages over writing out specific examples, and that
these are even stronger for research code.

Input descriptions are concise. Writing out a Hypothesis
"strategy"4 describing objects like a Numpy array or a Pandas
dataframe is often less code than a single instance, and clearly
expresses to readers what actually matters. The sheer tedium of
writing out representative test cases, without resorting to literally
random data, is a substantial deterrent to testing data analysis code;
with property-based testing you don’t have to.

1. and indeed [BNNL+19] reported such a bug, affecting around 160 papers.
2. i.e. common workflows using pytest. If you have no automated tests at

all, fix that first, but your second test could reasonably use Hypothesis.
3. e.g. numeric-aware error reporting, first-class support for array shapes

including broadcasting and gufunc signatures, dtypes and indexers, etc.

FALSIFY YOUR SOFTWARE: VALIDATING SCIENTIFIC CODE WITH PROPERTY-BASED TESTING 163

The system is designed to find bugs. Hypothesis also comes
packed with well-tuned heuristics and tools for finding bugs which
uniformly random data would almost never find - literal ’edge
cases’ in the space of possible inputs. In one memorable case a
new user was testing coordinate transformation logic, which fails
for singular matrices (a set of measure zero). Hypothesis knows
nothing at all about matrices, or even the topic of the test, but
promptly generated a failing example anyway.

Describe once, test everywhere. In a codebase with M
variations on the core data structures and N features, example-
based tests have M×N tests to write - and it’s all too easy to forget
to test the interaction of lesser-known features5. With property-
based tests those M variations can be designed into the strategies
which describe your data, scaling as M + N and ensuring that
nothing is forgotten6.

This scaling effect makes effective testing much easier for new
contributors, who do not need to consider all possible feature
interactions - they will arise naturally from the shared input
descriptions. For example, Hypothesis’ Numpy extension includes
tools to describe arrays, array shapes including broadcasting and
generalised ufunc signatures, scalar and structured dtypes, and
both basic and advanced indexing. Thinking carefully about what
inputs should be supported is usually a valuable exercise in itself!

We face multiple sources of uncertainty. When experimental
results come out weird, unpicking the unexpected behaviour of
your research domain from the possibility of equipment error or
software bugs is hard enough already. Property-based tests let you
verify more general behaviours of your code, and focus on the
domain rather than implementation details.

Properties and Case Studies

In this section I present four categories of properties. While not an
exhaustive list7, they are relevant to a very wide range of scientific
software - and when tested often uncover serious errors.

I also present case studies of real-world bugs8 from the
SciPy stack, especially from foundational libraries like Numpy
[Oli06] and Astropy [ART+13] [PWSG+18]. While seriously
under-resourced given their importance to essentially all research
in their fields [Num] [ea16], they are well-engineered and no more
defect-prone than any comparable software. If it can happen to
them, it can certainly happen to you.

The bugs presented below were each discovered, reported, and
fixed within a few days thanks to a community-driven and open
source development model; and projects from Astropy to Xarray -
via Numpy and Pandas - have begun to adopt property-based tests.

Outputs within expected bounds

For many functions, the simplest property to check is that their
output is within some expected bound. These may be computa-

4. for historical reasons, Hypothesis calls input descriptions ’strategies’
5. e.g. signalling NaNs, zero-dimensional arrays, structured Numpy dtypes

with field titles in addition to names, explicit dtype padding or endianness, etc.
Possible combinations of such features are particularly neglected.

6. test ’fixture’ systems scale similarly, but are less adaptable to individual
tests and can only be as effective as the explicit list of inputs they are given.

7. a notable omission is the ’null property’, where you execute code on valid
inputs but do not make any assertions on its behaviour. This is shockingly
effective at triggering internal errors, even before use of assertions in the code
under test - and a simple enough technique to explain in a footnote!

8. preferring those which can be demonstrated and explained in only a few
lines, though we have found plenty more which cannot.

tional or logical bounds like the limits of probability as [0,1], or
might be physical bounds like the temperature −273.15◦C.

Consider the softmax function, as described by the SciPy
documentation9. This function is often used to convert a vector of
real numbers into a probability distribution, so we know that sum
should always be (approximately) equal to one. Let’s test that with
an example-based and a property-based test:

from hypothesis import given, strategies as st
import hypothesis.extra.numpy as npst

def softmax(x):
return np.exp(x) / np.exp(x).sum()

def test_softmax_example():
assert softmax(np.arange(5)).sum() == 1

@given(npst.arrays(
dtype=float,
shape=npst.array_shapes(),
elements=st.floats(

allow_nan=False, allow_infinity=False
)

))
def test_softmax_property(arr):

total = softmax(arr).sum()
np.testing.assert_almost_equal(total, 1)

While our example-based test passes for small arrays of small in-
tegers, the naive algorithm is numerically unstable! Our property-
based test fails almost instantly, showing us the minimal ex-
ample of overflow with np.exp([710.]). If we instead use
np.exp(x - x.max()), the test passes.

I will not argue that this kind of testing can substitute for
numerical analysis, but rather that it can easily be applied to
routines which would otherwise not be analysed at all.

A more sophisticated example of bounds testing comes
from recent work in Astropy10, using Hypothesis to check that
conversions between different time scales did not unexpect-
edly lose precision11. Astropy contributors wrote custom strate-
gies to incorporate bias towards leap-seconds (unrepresentable
in datetime.datetime), and an assert_almost_equal
helper which uses hypothesis.target() to guide the search
process towards larger errors.

These tests found that round-trip conversions could be off by
up to twenty microseconds over several centuries12 due to loss of
precision in datetime.timedelta.total_seconds().
This effort also contributed to improved error reporting around
the ’threshold problem’13, where a minimal failing example does
not distinguish between subtle and very serious bugs.

Round-trip properties

Whenever you have a pair of inverse functions, think of round-
trip testing. If you save and then load data, did you lose any? If

9. docs.scipy.org/doc/scipy/reference/generated/scipy.special.softmax.html
10. culminating in github.com/astropy/astropy/pull/10373
11. as background, Python’s builtin datetime.datetime type repre-

sents time as a tuple of integers for year, month, ..., seconds, microseconds; and
assumes UTC and the current Gregorian calendar extended in both directions.
By contrast astropy.time.Time represents time with a pair of 64-bit
floats; supports a variety of civil, geocentric, and barycentric time scales; and
maintains sub-nanosecond precision over the age of the universe!

12. while a 20us error might not sound like much, it is a hundred billion
times the quoted precision, and intolerable for e.g. multi-decade pulsar studies.

13. described in hypothesis.works/articles/threshold-problem/ and addressed
by github.com/HypothesisWorks/hypothesis/pull/2393

164 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

you convert between two formats, or coordinate systems, can you
convert back?

These properties are remarkably easy to test, vitally important,
and often catch subtle bugs due to the complex systems interac-
tions. It is often worth investing considerable effort to describe
all valid data, so that examples can be generated with very rare
feature combinations.

If you write only one test based on this paper, try to save and
load any valid data.

I have consistently found testing IO round-trips to be among
the easiest and most rewarding property tests I write. My own
earliest use of Hypothesis came after almost a month trying to
track down data corruption issues in multi-gigabyte PLY files.
Within a few hours I wrote a strategy to generate PLY objects,
executed the test, and discovered that our problems were due to
mishandling of whitespace in the file header14.

Even simple tests are highly effective though - consider as an
example

@given(st.text(st.characters())
.map(lambda s: s.rstrip("\x00")))

def test_unicode_arrays_property(string):
assert string == np.array([string])[0]

This is a more useful test that it might seem: after working around
null-termination of strings, we can still detect a variety of issues
with length-aware dtypes, Unicode version mismatches, or string
encodings. A very similar test did in fact find an encoding error15,
which was traced back to a deprecated - and promptly removed -
compatibility workaround to support ’narrow builds’ of Python 2.

Differential testing

Running the same input through your code and through a trusted -
or simply different - implementation is another widely applicable
property: any difference in the outputs indicates that at least one of
them has a bug. Common sources of alternative implementations
include:

Another project or language. If you aim to duplicate func-
tionality from an existing project, you can check that your results
are identical for whatever overlap exists in the features of the two
projects. This might involve cross-language comparisons, or be as
simple as installing an old version of your code from before a
significant re-write.

A toy or brute-force implementation which only works for
small inputs might be out of the question for ’production’ use, but
can nonetheless be useful for testing. Alternatively, differential
testing can support ambitious refactoring or performance optimi-
sations - taking existing code with "obviously no bugs" and using
it to check a faster version with "no obvious bugs".

Varying unrelated parameters such as performance hints
which are not expected to affect the calculated result. Combining
this and the previous tactic, try comparing single-threaded vs.
multi-threaded mode - while some care is required to ensure
determinism it is often worth the effort.

As our demonstration, consider the numpy.einsum function
and two tests. The example-based test comes from the Numpy
test suite; and the property-based test is a close translation - it
still requires two-dimensional arrays, but allows the shapes and
contents to vary. Note that both are differential tests!

14. github.com/dranjan/python-plyfile/issues/9
15. github.com/numpy/numpy/issues/15363

def test_einsum_example():
p = np.ones(shape=(10, 2))
q = np.ones(shape=(1, 2))
assert_array_equal(

np.einsum("ij,ij->j", p, q, optimize=True),
np.einsum("ij,ij->j", p, q, optimize=False)

)

@given(
data=st.data(),
dtype=npst.integer_dtypes(),
shape=npst.array_shapes(min_dims=2, max_dims=2),

)
def test_einsum_property(data, dtype, shape):

p = data.draw(npst.arrays(dtype, shape))
q = data.draw(npst.arrays(dtype, shape))
assert_array_equal(...) # as above

When an optimisation to avoid dispatching to
numpy.tensordot over a dimension of size one was
added, the example-based test kept passing - despite
the bug if 1 in operands[n] instead of if 1 in
operands[n].shape16. This bug could only be triggered
with optimize=True and an input array with a dimension of
size one, xor containing the integer 1. This kind of interaction is
where property-based testing really shines.

There’s another twist to this story though: the bug was actually
identified downstream of Numpy, when Ryan Soklaski was testing
that Tensors from his auto-differentiation library MyGrad [Sok]
were in fact substitutable for Numpy arrays17. He later said of
property-based tests that18

It would have been impossible for me to implement
a trustworthy autograd library for my students to learn
from and contribute to if it weren’t for Hypothesis.

Metamorphic properties

A serious challenge when testing research code is that the correct
result may be genuinely unknown - and running the shiny new
simulation or analysis code is the only way to get any result at
all. One very powerful solution is to compare several input-output
pairs, instead of attempting to analyse one in isolation:

A test oracle determines whether a test execution
reveals a fault, often by comparing the observed program
output to the expected output. This is not always practi-
cal... Metamorphic testing provides an alternative, where
correctness is not determined by checking an individual
concrete output, but by applying a transformation to
a test input and observing how the program output
“morphs” into a different one as a result. [SFSR16]

Let’s return to softmax as an example. We can state general
properties about a single input-output pair such as "all elements of
the output are between zero and one", or "the sum of output ele-
ments is approximately equal to one"19. A metamorphic property
we could test is scale-invariance: multiplying the input elements
by a constant factor should leave the output approximately un-
changed.

@given(arr=..., factor=st.floats(-1000, 1000))
def test_softmax_metamorphic_property(arr, factor):

16. github.com/numpy/numpy/issues/10930
17. making test_einsum_property a differential test derived from a

derivative auto-differentiator.
18. github.com/HypothesisWorks/hypothesis/issues/1641

FALSIFY YOUR SOFTWARE: VALIDATING SCIENTIFIC CODE WITH PROPERTY-BASED TESTING 165

result = softmax(arr)
scaled = softmax(arr * factor)
np.testing.assert_almost_equal(result, scaled)

Astropy’s tests for time precision include metamorphic as well as
round-trip properties: several assert that given a Time, adding a
tiny timedelta then converting it to another time scale is almost
equal to converting and then adding.

Metamorphic properties based on domain knowledge are par-
ticularly good for testing "untestable" code. In bioinformatics,
[CHLX09] presents testable properties for gene regulatory net-
works and short sequence mapping20, and found a bug attributable
to the specification - not just implementation errors. METTLE
[XZC+20] proposes eleven generic metamorphic properties for
unsupervised machine-learning sytems21, and studies their use as
an aid to end-users selecting an appropriate algorithm in domains
from LIDAR to DNA sequencing.

Conclusion

Example-based tests provide anecdotal evidence for validity, in
that the software behaves as expected on a few known and
typically simple inputs. Property-based tests require a precise
description of possible inputs and a more general specification, but
then automate the search for falsifying counter-examples. They are
quick to write, convenient to work with, and routinely find serious
bugs that all other techniques had missed.

I argue that this Popperian approach is superior to the status
quo of using only example-based tests, and hope that the property-
based revolution comes quickly.

Acknowledgements

Thanks to David MacIver and the many others who have con-
tributed to Hypothesis; to Hillel Wayne, Kathy Reid, and Ryan
Soklaski for their comments on an early draft of this paper; to
Anne Archibald for her work with threshold tests; and to the many
mantainers of the wider Python ecosystem.

REFERENCES

[ART+13] Astropy Collaboration, T. P. Robitaille, E. J. Tollerud, P. Green-
field, M. Droettboom, E. Bray, T. Aldcroft, M. Davis, A. Gins-
burg, A. M. Price-Whelan, W. E. Kerzendorf, A. Conley,
N. Crighton, K. Barbary, D. Muna, H. Ferguson, F. Grollier,
M. M. Parikh, P. H. Nair, H. M. Unther, C. Deil, J. Woillez,
S. Conseil, R. Kramer, J. E. H. Turner, L. Singer, R. Fox, B. A.
Weaver, V. Zabalza, Z. I. Edwards, K. Azalee Bostroem, D. J.
Burke, A. R. Casey, S. M. Crawford, N. Dencheva, J. Ely,
T. Jenness, K. Labrie, P. L. Lim, F. Pierfederici, A. Pontzen,
A. Ptak, B. Refsdal, M. Servillat, and O. Streicher. Astropy:
A community Python package for astronomy. Astronomy &
Astrophysics, 558, October 2013. doi:10.1051/0004-
6361/201322068.

[BNNL+19] Jayanti Bhandari Neupane, Ram P. Neupane, Yuheng Luo,
Wesley Y. Yoshida, Rui Sun, and Philip G. Williams. Char-
acterization of leptazolines a–d, polar oxazolines from the
cyanobacterium leptolyngbya sp., reveals a glitch with the
“willoughby–hoye” scripts for calculating nmr chemical shifts.
Organic Letters, 21(20):8449–8453, 2019. URL: https:
//doi.org/10.1021/acs.orglett.9b03216, doi:10.1021/acs.
orglett.9b03216.

19. or even np.argsort(arr) == np.argsort(softmax(arr))

20. e.g. K-means clustering
21. for which hypothesis-bio [LSH+] provides many useful data-

generation strategies

[CH00] Koen Claessen and John Hughes. Quickcheck: A lightweight
tool for random testing of haskell programs. Proceedings of the
Fifth ACM SIGPLAN International Conference on Functional
Programming, 2000. URL: https://doi.org/10.1145/357766.
351266, doi:10.1145/357766.351266.

[CHLX09] Tsong Chen, Joshua WK Ho, Huai Liu, and Xiaoyuan Xie.
An innovative approach for testing bioinformatics programs
using metamorphic testing. BMC Bioinformatics, 10(1):24,
2009. URL: https://doi.org/10.1186/1471-2105-10-24, doi:
10.1186/1471-2105-10-24.

[ea16] Demitri Muna et al. The astropy problem, 2016. arXiv:1610.
03159.

[LSH+] Benjamin Lee, Reva Shenwai, Zongyi Ha, Michael B. Hall,
and Vaastav Anand. Hypothesis-Bio. URL: https://github.com/
Lab41/hypothesis-bio.

[Mac] David MacIver. In Praise of Property-Based Testing. URL: https:
//increment.com/testing/in-praise-of-property-based-testing/.

[MD] David MacIver and Alastair Donaldson. Test-case reduction
via test-case generation: Insights from the hypothesis reducer.
to be published in https://2020.ecoop.org/details/ecoop-
2020-papers/13/Test-Case-Reduction-via-Test-Case-
Generation-Insights-From-the-Hypothesis-Reducer. URL:
https://drmaciver.github.io/papers/reduction-via-generation-
preview.pdf.

[MHDC19] David MacIver, Zac Hatfield-Dodds, and Many Contributors.
Hypothesis: A new approach to property-based testing. Journal
of Open Source Software, 4(43):1891, 2019. URL: https://doi.
org/10.21105/joss.01891, doi:10.21105/joss.01891.

[Num] NumFocus. Why is numpy only now getting funded? URL:
https://numfocus.org/blog/why-is-numpy-only-now-getting-
funded.

[Oli06] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol
Publishing USA, 2006.

[PWSG+18] A. M. Price-Whelan, B. M. Sipőcz, H. M. Günther, P. L.
Lim, S. M. Crawford, S. Conseil, D. L. Shupe, M. W. Craig,
N. Dencheva, and et al. The astropy project: Building an
open-science project and status of the v2.0 core package.
The Astronomical Journal, 156(3):123, Aug 2018. URL:
http://dx.doi.org/10.3847/1538-3881/aabc4f, doi:10.3847/
1538-3881/aabc4f.

[SFSR16] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés. A
survey on metamorphic testing. IEEE Transactions on Software
Engineering, 42(9):805–824, 2016.

[Soe15] David A. W. Soergel. Rampant software errors may un-
dermine scientific results. F1000Research, 3:303, July 2015.
URL: https://doi.org/10.12688/f1000research.5930.2, doi:10.
12688/f1000research.5930.2.

[Sok] Ryan Soklaski. Mygrad. URL: https://github.com/rsokl/
MyGrad.

[XZC+20] Xiaoyuan Xie, Zhiyi Zhang, Tsong Yueh Chen, Yang Liu, Pak-
Lok Poon, and Baowen Xu. Mettle: A metamorphic testing
approach to assessing and validating unsupervised machine
learning systems. IEEE Transactions on Reliability, page
1–30, 2020. URL: http://dx.doi.org/10.1109/TR.2020.2972266,
doi:10.1109/tr.2020.2972266.

166 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Towards an Unsupervised Spatiotemporal
Representation of Cilia Video Using A Modular

Generative Pipeline

Meekail Zain‡§†, Sonia Rao‡†, Nathan Safir‡, Quinn Wyner§, Isabella Humphrey‡§, Alex Eldridge§, Chenxiao Li‖,
BahaaEddin AlAila‡∗∗, Shannon Quinn‡¶∗

F

Abstract—Motile cilia are a highly conserved organelle found on the exterior
of many human cells. Cilia beat in rhythmic patterns to transport substances or
generate signaling gradients. Disruption of these patterns is often indicative of
diseases known as ciliopathies, whose consequences can include dysfunction
of macroscopic structures within the lungs, kidneys, brain, and other organs.
Characterizing ciliary motion phenotypes as healthy or diseased is an essential
step towards diagnosing and differentiating ciliopathies. We propose a modular
generative pipeline for the analysis of cilia video data so that expert labor may
be supplemented for this task. Our proposed model is divided into three mod-
ules: preprocessing, appearance, and dynamics. The preprocessing module
augments the initial data, and its output is fed frame-by-frame into the generative
appearance model which learns a compressed latent representation of the cilia.
The frames are then embedded into the latent space as a low-dimensional path.
This path is fed into the generative dynamics module, which focuses only on
the motion of the cilia. Since both the appearance and dynamics modules are
generative, the pipeline itself serves as an end-to-end generative model. This
thorough and versatile model allows experts to spend less time caught in the
minutiae of cilia biopsy analysis, while also enabling new insights by quantifying
subtle patterns that would be otherwise difficult to categorize.

Index Terms—Machine Learning, Data Science, Video Analysis, Generative
Modeling, Variational Autoencoder, Modular, Pipeline

Introduction

Motile cilia are organelles commonly found throughout the
human body, such as in the bronchial and nasal passages
[HGGRD99][SS90]. Cilia beat in synchronous, rhythmic patterns
to expel foreign matter, collectively forming the mucociliary
defense, a vital mechanism for sinopulmonary health [BMO17].
Ciliopathies are genetic disorders which can adversely affect the
motion of cilia [FL12]. Disorders resulting from the disruption of
ciliary motion range from sinopulmonary diseases such as primary
ciliary dyskinesia (PCD) [OCH+07] to mirror symmetric organ

† These authors contributed equally.
‡ Computer Science Department, Franklin College of Arts and Sciences
§ Mathematics Department, Franklin College of Arts and Sciences
|| Comparative Biomedical Sciences, College of Veterinary Medicine
** Institute for Artificial Intelligence, Franklin College of Arts and Sciences
* Corresponding author: spq@uga.edu
¶ Cellular Biology Department, Franklin College

Copyright © 2020 Meekail Zain et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

placement and situs inversus [CA17] or randomized left-right
organ placement as in heterotaxy [GZT+14]. Precise diagnosis
of patients exhibiting abnormal ciliary motion prior to surgery
may provide clinicians with opportunities to institute prophylactic
respiratory therapies to prevent complications. Therefore, the
study of ciliary motion may have a broad clinical impact.

Visual examination of the ciliary waveform by medical pro-
fessionals is critical in diagnosing ciliary motion defects, but such
manual analysis is highly subjective and prone to error [RWH+14]
[KSC17]. This approach also precludes the possibility of cross-
institutional and longitudinal studies which include assessment of
ciliary motion. Therefore, we aim to develop an unsupervised,
computational approach to analyze ciliary motion, developing a
quantitative "library" of well-defined, clinically relevant ciliary
motion phenotypes. Clustering and classification are established
problems in machine learning. However, their applications to
ciliary waveform analysis are difficult, as cilia exhibit subtle, ro-
tational, non-linear motion [QFLC11]. While attempts have been
made at addressing this problem, we note that generic dynamics
models fail to classify and cluster this type of motion accurately
or meaningfully, and are insufficient for generating a semantically
potent representation. We thus apply a novel machine learning
approach to create an underlying representation which then can be
used for downstream tasks such as classification and clustering,
and any other tasks that experts may deem necessary. Furthermore,
we avoid using labeled data—specifically videos anotated based
on the health/type of ciliary motion displayed—in order to free the
model from systematic assumptions naturally imposed by labels:
the choice of labels themselves can inadvertently limit the model
by asserting that all data must conform to those exact labels.
An unsupervised model has the freedom to discover potential
semantically meaningful patterns and phenotypes that fall outside
current clinical thinking. Furthermore, an unsupervised model is
independent of expert input. Pragmatically, an unsupervised model
can be trained and used directly after data acquisition, rather than
having to wait on expert labeling. This simultaneously reduces the
barriers to access as a scientific tool, and the associated expenses
of use.

Our approach is to create a pipeline that learns a low-
dimensional representation of ciliary motion on unlabeled data.
The model we propose considers the spatial and temporal di-
mensions of ciliary motion separately. The pipeline encodes each

TOWARDS AN UNSUPERVISED SPATIOTEMPORAL REPRESENTATION OF CILIA VIDEO USING A MODULAR GENERATIVE PIPELINE 167

frame of the input video and then encodes the paths between
frames in the latent space. The low-dimensional latent space in this
pipeline will have semantic significance, and thus the distribution
and clustering of points in the latent space should be meaningful
for those studying ciliary motion and its connection to ciliopathies.

Related Works

A computational method for identifying abnormal ciliary motion
patterns was proposed by Quinn 2015 [QZD+15]. The authors
hypothesize ciliary motion as an instance of a dynamic texture,
which are rhythmic motions of particles subjected to stochastic
noise [DCWS03] and include familiar patterns such as flickering
flames, rippling water, and grass in the wind. Each instance of
dynamic texture contains a small amount of stochastic behavior
altering an otherwise consistent visual pattern. The authors chose
to consider ciliary motion as a dynamic texture as it consists
of rhythmic behavior subject to stochastic noise that collectively
determine the beat pattern. They then used autoregressive (AR)
representations of optical flow features that were fed into a support
vector machine classifier to decompose high-speed digital videos
of ciliary motion into "elemental components," or quantitative
descriptors of the ciliary motion, and classify them as normal or
abnormal.

While this study proved there is merit in treating ciliary motion
as a dynamic texture, the use of an AR model for the classification
task imposed some critical limitations. While AR models are often
used in representing dynamic textures, they are primarily used in
distinguishing distinct dynamic textures (e.g., rippling water from
billowing smoke), rather than identifying different instances of
the same texture (e.g., cilia beating normally versus abnormally).
Additionally, AR models impose strong parametric assumptions
on the underlying structure of the data, rendering AR models
incapable of capturing nonlinear interactions. Lastly, even though
the majority of the pipeline is automated, their study relied on
clinical experts to manually annotate the video data with regions of
interest (ROIs) in order to serve as ground truth for the inference.
Drawing ROIs required specialized labor, increasing the cost and
time of clinical operations. This is also potentially problematic in
that expert drawn ROIs introduce the same subjective bias that the
study is ostensibly attempting to remove.

The model proposed by Quinn 2015 was improved upon by
Lu 2018 [LMZ+18], the latter attempt using stacked Fully Con-
volutional DenseNets [HLW16] and Long Short-Term Memory
(LSTM) networks [GSC99]. Densely Connected Convolutional
Networks, referred to as DenseNets, do not make strong para-
metric or linear assumptions about the underlying data, allowing
more complex behavior to be captured. Once Lu 2018 extract
segmentation masks using their 74-layer FCDenseNet, ciliary
motion is treated as a time series using convolutional long short-
term memory (Conv-LSTM) networks, a specific type of recurrent
neural network (RNN), to model the long-term temporal depen-
dencies in the data.

We aim to build upon these studies by developing a fully un-
supervised approach to characterizing ciliary motion phenotypes.
This pipeline is advantageous in that it does not need hand-drawn
ROI maps nor a labeled dataset as training data. While clinicians
acknowledge the existence of distinct ciliary waveform pheno-
types beyond "normal" and "abnormal", experts lack standard
guidelines for qualitatively or quantitatively categorizing ciliary
beat pattern. Additionally, experts may not observe the level of

quantitative detail required to associate complex motion pheno-
types with specific ciliopathies and genetic mutations [QZD+15].
Thus, we shift away from a classification-style task (classifying
abnormal versus normal ciliary motion) to a representational learn-
ing task to generate meaningful, low-dimensional representations
of ciliary motion. Unsupervised representation learning enables
a model to learn families of complex ciliary motion phenotypes
beyond the normal-abnormal binary.

Methods

Our proposed model is divided into three modules: preprocessing,
appearance, and dynamics. The preprocessing module primarily
serves to supplement input data by generating segmentation masks
and extracting dense optical flow vector fields and pertinent differ-
ential quantities. Segmentation masks are used to limit spatial rep-
resentation learning to video regions containing cilia, and optical
flow fields are computed from consecutive frames as a compressed
representation of temporal behavior. The predicted segmentation
masks and optical flow entities are concatenated with the original
video data as additional channels to each frame to form an
augmented video. Each expanded video is fed frame-by-frame to
the appearance module which utilizes a Variational Autoencoder
(VAE) [KW19] to learn a compressed spatial representation for
images of cilia. Videos are then embedded as sequences of points
in the compressed latent space. The dynamics module employs
another VAE to learn a representation from this compressed
sequence, in order to reduce the amount of irrelevant information
considered. If it were to instead train on the original video itself,
the information would be too high-volume, potentially drowning
out useful information in a sea of noise. This compressed sequence
allows it to focus only on the motion of cilia. The dynamics
module VAE is trained on potentially random subsequences of
the embedded representations of video in order to assure that the
temporal representation learned is adequately robust to reconstruct
arbitrary parts of the sequence. Through this construction, we
factor the representation of cilia into disentangled spatial and
temporal components.

Data

Our data, obtained from the Quinn 2015 study, consist of nasal
biopsy samples observed in patients with diagnosed ciliopathies
and in healthy controls [QZD+15]. Nasal epithelial tissue was ob-
tained from the inferior nasal turbinate using a Rhino-Pro curette,
and cultured for three passages prior to recording. Grayscale video
data was recorded for 1.25 seconds using a Phantom v4.2 high
speed camera at 200 frames per second, resulting in 250 frames
per sample. Recorded videos vary in dimension, ranging from 256
to 640 pixels on either axis. Segmentation masks used during the
training of the preprocessing module were generated manually
using ITK-SNAP, where each pixel is a binary value corresponding
to whether the pixel contains cilia. Our dataset has a total of
325 sample videos, taken from Quinn 2015’s cohort sampled at
the University of Pittsburgh, and 230 ground-truth segmentation
masks.

Because healthy cilia rhythmically beat at around 10-12Hz
and our grayscale videos are recorded at 200 frames per second,
there are approximately 17 frames per single ciliary beat cycle
[QZD+15]. As such, we truncate our videos to 40 frames to
capture at minimum 2 full beat cycles; the starting frame is
randomly sampled. Because each video varies in dimensions, we

168 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Fig. 1: The proposed framework for creating a disentangled spatiotemporal representation

obtain patches of size 128× 128 as inputs to both the prepro-
cessing and appearance modules. Instead of randomly sampling
crops, we extract the first frame of the truncated video, and tile
each frame-mask set such that no 128×128 patches overlap. The
preprocessing module supplemented the 95 raw videos without
corresponding ground-truth segmentation masks with segmenta-
tion masks predicted by a Fully Convolutional DenseNet.

Preprocessing

The preprocessing module primarily functions to generate seg-
mentation masks that distinguish spatial regions containing cilia
from background noise and supplement cilia data with measures
of temporal behavior, such as optical flow and its derivative values.

Because we are interested in modelling the spatiotemporal
behavior of only cilia, segmentation masks, which provide a direct
mapping to pixels of interest within each frame, are critical within
the appearance module to limit representation learning to cilia
localities and ignore background noise. Although the end-to-end
pipeline provides an unsupervised framework to represent and
characterize complex and dynamic ciliary motion phenotypes,
this module utilizes supervised segmentation to produce initial
segmentation masks. Because we do not have ground-truth seg-
mentation masks for every sample in our dataset, a supervised
network allows us to augment our set such that each raw video
has a corresponding segmentation mask to be used in subsequent
modules. We draw upon prior supervised segmentation literature
to implement FCDenseNet, a fully convolutional dense network
that is able to leverage deep learning advantages without excessive
parameters or loss of resolution. Each layer in a DenseNet is
connected to every other layer in a feed-forward fashion; each
layer takes the previous layers’ feature maps as input, and its
respective feature map is used by following layers. Fully Con-
nected DenseNets (FCDenseNets) expand on this architecture
with the principle goal of upsampling to recover input resolution
[JDV+17]. Building a straightforward upsampling path requires
multiplication of high-resolution feature maps, resulting in a
computationally intractable number of feature maps. To mitigate
this "feature explosion" issue, FCDenseNets upsample only the
preceding dense block instead of upsampling all feature maps con-
catenated in previous layers. We modify and train a FCDenseNet
to generate usable segmentation masks as input to the appearance
module. Our architecture, shown in 2, consists of dense blocks,
transition blocks, and skip connections totalling to 103 layers.

Fig. 2: Fully Convolutional Dense Net with 103 layers

Although we utilize a supervised segmentation network, we note
that this is not necessary. We will be pursuing unsupervised
methodologies with comparable efficacy, and chose the supervised
network for the sake of creating an initial implementation and
proof of concept

Since we aim to represent both spatial and temporal features, it
is critical to obtain optical flow vector fields as a quantifiable proxy
for ciliary movement. Two dimensional motion can be thought of
as the projection of three dimensional motion on an image plane,
relative to a visual sensor such as a camera or microscope. As
such, optical flow represents the apparent motion of pixels within
consecutive frames, relative to the visual sensor. To calculate pixel
displacement, optical flow algorithms are contingent on several
assumptions.

1) Brightness constancy assumes that a pixel’s apparent
intensity does not change between consecutive frames

2) Small motion assumes that pixels are not drastically
displaced between consecutive frames

3) Spatial and temporal coherence assumes that a pixel’s
neighbors likely exhibit similar motion over gradual time

Solving these constraints yields a series of dense optical flow
vector fields; each vector represents a pixel, and the magnitude

TOWARDS AN UNSUPERVISED SPATIOTEMPORAL REPRESENTATION OF CILIA VIDEO USING A MODULAR GENERATIVE PIPELINE 169

and direction of each vector signal the estimated pixel position in
the following frame. We refer to Beauchemin and Barron [BB95]
for detailed mathematical expression of optical flow derivation.
Healthy cilia largely exhibit delicate textural behavior in which
patches of cilia move synchronously, slowly, and within a set
spatial region near cell boundaries. Additionally, our imaging
modality allowed for consistent object brightness throughout se-
quences of frames. As such, we explored optical flow solutions
that focus on brightness constancy, small motion, and spatial
coherence systems of equations.

Our optical flow fields are computed using a coarse-to-fine im-
plementation of Horn-Schunck’s influential algorithm. Although
we tested other methods, namely Farneback [Far03], Lucas-
Kanade [LK81], and TV-L1 [SPMLF13], coarse-to-fine Horn-
Schunck produced fields more robust to background movement.
Horn-Schunck operates by firstly assuming motion smoothness
between two frames; the algorithm then minimizes perceived
distortions in flow by iteratively updating a global energy function
[HS81]. The coarse-to-fine aspect transforms consecutive frames
into Gaussian image pyramids; at each iteration, corresponding to
levels in the Gaussian pyramids, an optical flow field is generated
by Horn-Schunck, and then used to "warp" the images toward one
another. This process is repeated until the two images converge.
While Horn-Schunck has potential to be noise-sensitive due to its
smoothness assumption, we observe that this is mitigated by the
coarse-to-fine estimation and hyperparameter tuning. Additionally,
we find that this estimation is more computationally and time
efficient than its contemporaries.

For further insight into behavioral patterns, we extract first-
order differential image quantities from our computed optical flow
fields. Estimating linear combinations of optical flow derivatives
results in orientation-invariant quantities: curl, deformation, and
divergence [FK04]. Curl represents apparent rotation; each scalar
in a curl field signaling the speed and direction of local angular
movement. Deformation is the shearing about two different axes,
in which one axis extends while the other contracts. Divergence, or
dilation, is the apparent movement toward or away from the visual
sensor, in which object size changes as a product of varied depth.
Because our cilia data are captured from a top-down perspective
without possibility of dilation, we limit our computation to curl
and deformation, similar to Quinn 2011 [QFLC11].

Introduction To Autoencoders

Both the appearance and dynamics modules ultimately rely on a
choice of a particular generative model. The chosen model greatly
affects the rendered representation, and thus the efficacy of the
entire pipeline. Our current choice of generative model is a VAE,
an architecture that generates a low-dimensional representation
of the data, parameterized as a probability distribution. A VAE
can be considered a modified autoencoder (AE). A general AE
attempts to learn a low-dimensional representation of the data by
enforcing a so-called "bottleneck" in the network. This bottleneck
is usually in the form of a hidden layer whose number of nodes
is significantly smaller than the dimensionality of the input. The
AE then attempts to reconstruct the original input using only this
bottleneck representation. The idea behind this approach is that to
optimize the reconstruction, only the most essential information
will be maintained in the bottleneck, effectively creating a com-
pressed, critical information based representation of the input data.
The size of the bottleneck is a hyperparameter which determines
how much of the data is compressed.

With this task in mind, an AE can be considered as the
composition of two constituent neural networks: the encoder, and
the decoder. Suppose that the starting dataset is a collection of
n-dimensional points, S ⊂ Rn, and we want the bottleneck to be
of size l, then we can write the encoder and decoder as functions
mapping between Rn and Rl :

Eθ : Rn→ Rl , Dθ : Rl → Rn

The subscript θ denotes that these functions are constructed
as neural networks parameterized by learanble weights θ . The
encoder is tasked with taking the original data input and sending
it to a compressed or encoded representation. The output of
the encoder serves as the bottleneck layer. Then the decoder is
tasked with taking this encoded representation and reconstructing
a plausible input which could have been encoded to generate this
representation, and thus is encouraged to become an approximate
inverse of the encoder. The loss target of a AE is generally some
distance function (not necessarily a metric) between items in the
data space, which we denote as

d : Rn×Rn→ R.

Given a single input x ∈ S, we then write the loss function as

Lθ (x) = d(x,Dθ (Eθ (x)))

where a common choice for d is the square of the standard
euclidean norm, resulting in

Lθ (x) = ‖x−Dθ (Eθ (x))‖2.

The AE unfortunately is prone to degenerate solutions where
when the decoder is sufficiently complex, rather than learning a
meaningful compressed representation, it instead learns a hash of
the input dataset, achieving perfect reconstruction at the expense
of any generalizability. Notably, even without this extreme hash
example, there is no restraint on continuity on the decoder, thus
even if a point z ∈ E(S) ⊂ Rl in the latent space decodes into a
nice, plausible data point in the original dataset, points close to z
need not nicely decode.

The Variational Autoencoder

A VAE attempts to solve this problem by decoding neighborhoods
around the encoded points rather than just the encoded points
themselves. A neighborhood around a point z ∈ Rl is modeled
by considering a multivariate gaussian distribution centered at
µ ∈Rl with covariance Σ∈Rl×l . It often suffices to assert that the
covariance be a diagonal matrix, allowing us to write Σ = diag(σ)
for some σ ∈ Rl . While the decision to model neighborhoods
via distributions deserves its own discussion and justification,
it falls outside the scope of this paper and thus we omit the
technical details while referring curious readers to [Doe16] for
further reading. Instead, we provide a sort of rationalization of
the conclusions of those discussions in the paragraphs that follow.
While this is a little backwards, we find it does a better job of
communicating the nature of the techniques to most audiences
than does touring the complex mathematical underpinnings. The
idea of modeling neighborhoods as distributions is implemented
by changing the encoder to a new function

Ẽθ : Rn→ Rl×Rl , Ẽθ : x 7→ (µ,σ)

where µ is the analog to the encoded z in the AE. However now
we also introduce σ , which is the main diagonal of a covariance

170 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

matrix Σ, which determines how far, and in what direction, to
randomly sample around the mean µ . What this means is after
encoding, we no longer get a singular point, but a distribution
modeling a neighborhood of points as promised. This distribution
is referred to as the posterior distribution corresponding to x,
written as q(z|x) =N (µ,Σ). We sample from this posterior using
the following construction

z∼ qθ (z|x) ⇐⇒ z = µ +Σε , where ε ∼N (0, Il)

to ensure that we may complete backpropagation, since µ,σ are
dependent on weights within the network. This is known as the
reparameterization trick. Our modified loss is then

Lθ (x) = ‖x−Dθ (z)‖2.

Through this change, over the course of training we obtain a
Monte Carlo estimation of the neighborhoods around the em-
bedded points, encouraging continuity in their decoding. This
result is still incomplete in that there’s no guarantee that the
decoder doesn’t degenerate to setting σ arbitrarily close to zero,
resulting in a slightly more complex AE. Thus we assert that if
one were to sample from some predetermined prior distribution
on the latent space, written as p(z), then the sampled point can
be reasonably decoded as a point in the starting data space. To
break that down, this means that the portions of the latent space
that our model should be best trained on should follow the prior
distribution. A common choice for prior, due to simplicity, is
the unit-variance Gaussian distribution. This is implemented by
imposing a Kullback–Leibler Divergence (KL Divergence) loss
between the posterior distributions (parameterized by our encoder
via µ,σ) and the prior distribution (in this case N (0, Il)). Thus
our final loss function is

Lθ (x) = ‖x−Dθ (z)‖2 +KL(qθ (z|x)‖ p(z)).

Now we finally have a vanilla VAE, wherein it can not only
encode and decode the starting dataset, but it can also decode
points in the latent space that it hasn’t explicitly trained with
(though with no strict promises on the resulting quality). Further
improvements to the VAE framework have been made in recent
years. To empower the decoder without introducing a significant
number of parameters, we implement a spatial broadcast decoder
(SBD), as outlined in [WMBL19]. To achieve greater flexibility
in terms of the shape of the prior and posterior distributions, we
employ the VampPrior in [TW17] with an added regularization
term. Both these changes afford us greater flexibility and perfor-
mance in creating a semantically meaningful latent space. The
VampPrior is an alternative prior distribution that is constructed
by aggregating the posteriors corresponding to K learned pseudo-
inputs χ1, . . . ,χK . The distribution is given by

p(z) =
1
K

K

∑
i

q(z|χi)

This choice of prior optimizes the pipeline for downstream tasks
such as clustering and phenotype discovery. We apply a regulariza-
tion term to the loss to encourage that these pseudo-inputs look as
though they could be reasonably generated by the starting dataset
3. Thus our loss becomes

z̃i ∼ q(z|χi)

Fig. 3: Pseudo-inputs of a VampPrior based VAE on MNIST without
additional regularization term (top row), and with regularization term
(bottom row)

Lθ (x) = ‖x−Dθ (z)‖2 +KL(qθ (z|x)‖ p(z))

+γ

(
K

∑
i
‖χi−Dθ (z̃i)‖2 +KL(qθ (z|χi)‖p(z))

)

This has an immediate use in both clustering and semantic pattern
discovery tasks. Rather than the embedding E(S) ⊂ Rl of the
dataset being distributed as a unit gaussian, it is distributed as
a mixture of gaussians, with each component being a posterior of
a pseudo-input. Consequently, the pseudo-inputs create notable
and calculable clusters, and the semantic significance of the
clusters can be determined, or at least informed, by analyzing the
reconstruction of the pseudo-input responsible for that posterior
distribution.

Appearance

The appearance module’s role is to learn a sufficient representation
so that, frames are reconstructed accurately on an individual basis,
and that spatial differences of frames over time is represented with
a meaningful sequence of points in the latent space. The latter is
the core assumption of the dynamics module.

The appearance module is designed to work with generalized
videos, regardless of specific application. Specifically it is de-
signed to take as input singular video frames, augmented with the
information generated during the preprocessing phase, including
optical flow quantities such as curl. These additional components
are included as additional channels concatenated to the starting
data, and thus is readily expandable to suit whatever augmented
information is appropriate for a given task. In the case of our
particular problem, one notable issue is that cilia occupy a small
portion of the frame as shown in Figure 6, and thus, the contents
of the images that we are interested in exist in some subspace that
is significantly smaller than the overall data space. This can result
in problems where the neural network optimizes components such
as background noise and image artifacts at the expense of the
clinically critical cilia information. To remedy this, we leverage
the segmentation masks created during the preprocessing phase to
focus the network on only the critical portions of the image.

To that effect, we mask the augmented frame data—the raw
images concatenated with additional information such as optical
flow quantities—using the segmentation masks and train the
network on these masked quantities. Mathematically we refer to
a single augmented frame with k channels as f , a doubly-indexed
collection of vectors, writing the channel information of pixel (i, j)
as fi, j ∈ Rk. We similarly write the generated segmentation mask

TOWARDS AN UNSUPERVISED SPATIOTEMPORAL REPRESENTATION OF CILIA VIDEO USING A MODULAR GENERATIVE PIPELINE 171

Eapp Dapp

Appearance
space

μ z

σ z

z∼

χ1 χ k

Fig. 4: The Appearance Module pipeline

m as a doubly-indexed collection of scalars with mi, j ∈ [0,1]⊂ R,
then we construct the augmented frame

f̃i, j := fi, j ·mi, j

The appearance module ultimately embeds a segmented region
of cilia observed in a single frame into what we refer to as the
appearance latent space. Due to the temporally static nature of
individual frames, this latent space is an encoded representation
of only the spatial information of the underlying processed data.
This spatial information includes aspects such as the shape and
distribution of cilia along cells, as well as factors such as their
length, orientation and overall shape. These spatial features can
be then used in downstream tasks such as phenotype discovery,
by drawing a strong connection between apparent patterns in the
appearance latent space as and semantically meaningful patterns
in the underlying data as well.

Our proposed model for the appearance module uses a varia-
tion of ResNet [HZRS15] as an encoder, while employing SBD in
the decoder, as well as an upsampling, ResNet-like network in the
decoder. Figure 4 shows the training pipeline for the appearance
module, the encoder Eapp is the neural network implementing
the variational distribution q(z|x), by estimating parameters to
a normal distribution given a certain input frame x = f . q(z|x)
is therefore N (µz,diag(σz)) where µz and σz are the mean
and standard deviation vectors of a normal distribution estimated
given a certain input frame, or a pseudo-input frame. The de-
coder Dapp is trained to reconstruct the input from a sampled
z∼N (µz,diag(σz)), by minimizing the L2 loss between the input
and the reconstructed output. The pseudo-inputs χ1..k are only used
during the training, to enforce the prior constraint through a Monte
Carlo estimation of the KL divergence, as mentioned earlier.

Dynamics

While the appearance module handles representing the video
frames individually under a generative model, the dynamics mod-
ule is where the temporal behavior is represented. We propose a
VAE generative seq2seq module that consists of both an encoder
and a decoder to embed the temporal dynamics in a latent semantic
space for motion patterns (dynamics). The encoder handles em-
bedding the dynamics of the observed video frames (input) into a
latent vector w in the dynamics semantic space Rddyn . This vector
w encodes the dynamics of the video subsequence observed by the
encoder. The decoder, then, is able to extrapolate the video into
future time-steps by unrolling a sampled latent vector w from the
dynamics space into a sequence of vectors c1..k. These vectors are
not the extrapolated sequence themselves, but instead represent a
sequence of changes to be made on a supplied appearance vector
ẑ0. This vector serves as an initial frame—a starting point for

extrapolation—and can be any frame from the video since the
vector w encodes the dynamics of the entire video. Applying this
sequence of change vectors to the initial appearance vector one-
by-one, using an aggregation operator φ(z,c), which could be as
simple as vector addition, results in a sequence of appearance
vectors ẑ1..k which represent the extrapolated sequence. This
sequence can then be decoded back into video frames through
the decoder of the appearance module Dapp.

Since the encoder and the decoder of the dynamics module
need to process sequences of vectors, they are modeled using a
Gated Recurrent Unit (GRU) [CvMG+14] and an LSTM unit,
respectively. They are types of RNN with unique architectures that
allow them to handle longer sequences of data than a generic RNN
could. A GRU cell operates on an input vector xt , and a hidden
state vector st at a certain time-step t. Applying a GRU step results
in an updated state vector st+1. An LSTM cell is similar, but it also
has an additional output state ht that gets updated as well like the
hidden state.

Figure 5 depicts the pipeline of the proposed dynamics mod-
ule, showing the encoder steps, sampling from the dynamics space,
and the decoder steps. The dynamics encoder GRU, Edyn, starts
from a blank state vector s0

enc = 0 that updates every time the
appearance vector of the next video frame is fed-in. After feeding
in the appearance vector of the final input frame zn, the state vector
sn

enc would encompass information about the motion patterns in
the observed video frames z1..n, and would then constitute a latent
vector in the dynamics semantic space w = sn.

The dynamics decoder LSTM Ddyn starts from a latent dy-
namics vector as its hidden state s0

dec = w, a blank output state
vector h0

dec = 0 and an initial supplied appearance vector to act
as the beginning output frame. Note that this supplied vector
can be any point but the last within the original input sequence,
thus we set ẑ0 = zi for some i ∈ {1, . . . ,n−1}. Applying each step
results in a change vector ct+1 = ht+1 (output state vector), that
gets applied to the most recent appearance vector in the output
sequence to predict the next appearance vector ẑt+1 = φ(ẑt ,ct+1),
which in turn is used as an input vector to the next LSTM step. The
sequence of predicted appearance vectors are then passed through
the appearance decoder Dapp(ẑ1), ...,Dapp(ẑk), to generate back the
video frames. During training time, an L2 loss is minimized on the
predicted k points in the appearance latent space and the true ones.

A prior constraint is imposed on the encoder’s output, as
per the VAE formulation. Therefore, the size of the state vec-
tor of the encoder is 2ddyn, composed of both µw, and σw,
such that w ∼ N (µw,diag(σw)). The prior loss then becomes
KL(N (µw,diag(σw)) ||N (0, I)) and is minimized throughout the
training.

It is important to note that the appearance module and the
dynamics module are decoupled, such that sampling a different
vector w from the dynamics latent space results in different motion
dynamics in the extrapolated sequence of video frames despite
starting from the same initial supplied frame. As is the case when
supplying a different initial output frame as well. To reinforce that,
after encoding an input sequence into a dynamics latent vector w,
multiple sequences of k+ 1 frames are sampled uniformly from
the same training video, where each generated sequence is set to
extrapolate from its first frame, and the same dynamics vector w.
The L2 loss between the extrapolated frames and the remaining k
frames in each sequence is minimized with backpropagation.

To summarize, encoder of the dynamics module is trained
to extract the motion dynamics from the appearance vectors of

172 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Edyn Ddyn

ɸ

Ddyn

ɸ

Ddyn

ɸ

Supplied initial
frame

Edyn

Edyn

Input sequence
Predicted sequence

Change vectors

Dynamics
spacesenc

0 senc
1 senc

n−1

z1 z2

senc
n

zn ẑ0 ẑ1 ẑk−1 ẑk

c1 c2 ck

sdec
0 sdec

1 sdec
kμw

σ w

w∼

Fig. 5: The Dynamics Module pipeline

a sequence of video frames, and embeds them in a semantic
space representing all possible cilia motion patterns. The decoder
applies motion patterns from a sampled dynamics vector to a
given starting frame, and predicts the appearance vectors to future
frames.

Results

The data used for the segmentation task consists of 223 cor-
responding sets of ground truth masks and high-speed digital
microscopy video data. The ground truth masks were manually
generated to represent regions of cilia, and the video contains
time-series differential image contrast grayscale frames. Each
model trained is evaluated by testing intersection over union (IoU),
testing precision, and testing accuracy. For every mask generated
by FCDN-103, IoU computes the region of overlap between
predicted pixels containing cilia and ground truth pixels containing
cilia over the joint regions of either prediction or ground truth
that contain cilia. Although IoU is typically a superior metric for
segmentation evaluation, FCDN-103 is optimized with the goal of
minimizing type II error or the presence of false positives because
the output masks will be used to narrow representation learning
to our region of interest. Thus, we aim to produce segmentation
masks with high precision that exclusively identify regions of cilia
containing minimal background scene.

We train our FCDN-103 model, written in PyTorch
[PGM+19], with an Adam optimizer and cross-entropy loss on
one NVIDIA Titan X GPU card. We split our data to consist of
1785 training patches and 190 testing patches. Throughout training
and tuning, we experiment with several parameters: standard
parameters such as batch size, learning rate, and regularization
parameters such as learning rate decay, weight decay, and dropout.
We observe optimal performance after 50 epochs, 14 patches per
batch, learning rate of 0.0001, learning rate decay of 0.0, and
weight decay of 0.0001. This model achieves 33.06% average
testing IOU, and 53.26% precision. Figure 6 shows two exam-
ples of 128 x 128 test patches with their corresponding ground
truth mask (middle) and FCDN-103 generated mask (right); the
predicted masks cover more concise areas of cilia than the ground

Fig. 6: Segmentation examples from left to right: raw test frame,
frame overlain with ground truth segmentation mask, frame overlain
with FCDN-103 predicted segmentation maskline

truths and ignore the background in entirety. Previously, Lu 2018
implement a Fully Convolutional DenseNet with 109 layers in a
tiramisu architecture trained on ciliary data [LMZ+18]; FCDN-
103 achieves an average of 88.3% testing accuracy, outperforming
Lu 2018’s FCDN-109 by two percentage points.

Curl and deformation fields are extracted from the generated
optical flow fields using SciPy’s signal and ndimage packages
[VGO+20]. Figure 7 shows an example of healthy cilia and
its mid-cycle optical flow where vector magnitude corresponds
to color saturation; we can reasonably assume that the primary
region of movement within optical flow fields will contain healthy
cilia. While optical flow fields can potentially provide information
on cilia location, we avoid solely using optical flow fields to
generate segmentation masks due to the presence of dyskinetic
cilia. Identifying stationary cilia is a crucial step in learning
ciliary motion phenotype. However, it is possible that optical flow
provides insight into both ciliary location and temporal behavior.

During optimization of the appearance module, we observe
that cilia do not tend to exhibit a large degree of spatial differences

TOWARDS AN UNSUPERVISED SPATIOTEMPORAL REPRESENTATION OF CILIA VIDEO USING A MODULAR GENERATIVE PIPELINE 173

Fig. 7: Raw imagery and corresponding optical flow visualization

over time, thus rather than processing every frame of the dataset,
we used the NumPy [vdWCV11] library to efficiently sample a
fixed number of frames from each video. For testing purposes, we
set the number of sampled frames to 40. We sample these frames
uniformly throughout the video to ensure that both high-frequency
(e.g. cilia beats) and low-frequency (e.g. cell locomotion) spatial
changes are represented to ensure that we train on a sufficiently
varied base of spatial features.

The entirety of the appearance module’s architecture was
written using PyTorch. The encoder is a composition of residual
blocks, with pixel-wise convolutions and maxpooling operations
between them to facilitate channel shuffling and dimensionality re-
duction respectively, connecting to a fully-connected layer which
represents the means and log-variances along each axis of the
latent space. We use log-variances instead of the usual standard
deviation, or even variance, to guarantee numerical stability, make
subsequent calculations such as KL divergence easier, and reduce
the propensity for degenerate distributions with variances that ap-
proach 0. Since we use a modified VampPrior, the KL Divergence
is between a single Gaussian, the posterior, and a mixture of
Gaussians, the prior, and thus intractable. In order to estimate
this, we employ a Monte Carlo estimation technique, manually
calculate the difference in log-probabilities for each distribution at
every pass of the loss function, asserting that throughout training
these values approximate the ideal KL Divergence. All figures
were generated using Matplotlib [Hun07]. The current project can
be found at our github repository.

Conclusion

While the initial task of this model was to represent cilia, it
also serves as a general framework that is readily extensible
to almost any task that involves the simultaneous, yet separate,
representation of spatial and temporal components. The specific
aim of this project was to develop separate, usable tools which
sufficiently accomplish their narrow roles and to integrate them

together to offer a more meaningful understanding of the overall
problem. While we are still in the early phases of evaluating
the entire integrated pipeline as a singular solution, we have
demonstrated early successes with the preprocessing module, and
have situated the appearance and dynamics modules in the context
of modern machine learning approaches well enough to justify
further exploration.

Further Research

This generative framework is a foundational element of a much
larger project: the construction of a complete library of ciliary
motion phenotypes for large-scale genomic screens, and the devel-
opment of a comprehensive and sophisticated analytics toolbox.
The analytics toolbox is intended to be used by developmental
and molecular biologists in research settings, as well as clinicians
in biomedical and diagnostic settings. By packaging this frame-
work in an easy-to-use open source toolbox, we aim to make
sophisticated generative modeling of ciliary motion waveforms
available to researchers who do not share our machine learning
backgrounds. This pipeline will also serve as a basis and back-end
for an exploration into the realm of collaborative, crowd-driven
data acquisition and processing in the form of a user-friendly web
tool.

More research should also be done to the implementations of
each module, and namely their codependencies. For example, how
do the quality of segmentation masks in the preprocessing module
affect the quality of spatial representation, and consequently dy-
namic representation? Is there virtue in allowing partial entangle-
ment between the appearance and dynamics module to optimize
their joint representation? Can the learned spatial representation
influence and inform the preprocessing module in a meaningful
way? We hope to explore these questions, and many more, in the
near future.

We also encourage the expansion and application of this frame-
work to various other problem contexts. The modular approach to
its design ensures portability and adaptability to other projects.
The fact that the dynamics module is designed to operate within
the abstract latent space of the appearance module means that
the appearance module acts as a buffer or converter between the
concrete data and the temporal analysis. Consequently, when ap-
plying the framework to new projects, only the appearance module
need be altered, while the preprocessing module may optionally be
adapted or entirely dropped, and the dynamics module preserved.

One example task this pipeline could be adapted to is that
of RNA folding analysis. The study of RNA folding patterns is
essential in areas such as drug development. One way to model
RNA folding is to consider a strand of RNA as a partially-
connected point cloud, tracked through time. In this case, the
preprocessing module may be forgone, and altering the appearance
encoder/decoder to a generic architecture compatible with point
clouds, e.g. a geometric neural network or GCNN is all that is
necessary. The dynamics module could be readily applied without
significant changes.

Acknowledgements

This study was supported in part by Google Cloud. We gratefully
acknowledge the support of NVIDIA Corporation with the dona-
tion of the Titan X Pascal GPU used for this research. This study
was supported in part by NSF CAREER #1845915.

174 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

REFERENCES

[BB95] S. S. Beauchemin and J. L. Barron. The computation of
optical flow. ACM Computing Surveys (CSUR), 27(3):433–466,
September 1995. URL: http://dl.acm.org/doi/10.1145/212094.
212141, doi:10.1145/212094.212141.

[BMO17] Ximena M. Bustamante-Marin and Lawrence E. Ostrowski.
Cilia and mucociliary clearance. Cold Spring Harbor perspec-
tives in biology, 9(4), 2017. doi:10.1101/cshperspect.
a028241.

[CA17] ANDREEA CATANA and ADINA PATRICIA APOSTU. The
determination factors of left-right asymmetry disorders- a short
review. Clujul Medical, 90(2):139–146, 2017. URL: https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC5433564/, doi:10.
15386/cjmed-701.

[CvMG+14] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using rnn
encoder-decoder for statistical machine translation, 2014.
arXiv:1406.1078, doi:10.3115/v1/D14-1179.

[DCWS03] Gianfranco Doretto, Alessandro Chiuso, Ying Nian Wu,
and Stefano Soatto. Dynamic textures. International
Journal of Computer Vision, 51(2):91–109, Feb 2003.
URL: https://doi.org/10.1023/A:1021669406132, doi:10.
1023/A:1021669406132.

[Doe16] Carl Doersch. Tutorial on variational autoencoders, 2016.
arXiv:1606.05908.

[Far03] Gunnar Farnebäck. Two-Frame Motion Estimation Based on
Polynomial Expansion. In Gerhard Goos, Juris Hartmanis, Jan
van Leeuwen, Josef Bigun, and Tomas Gustavsson, editors,
Image Analysis, volume 2749, pages 363–370. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2003. Series Title: Lecture
Notes in Computer Science. URL: http://link.springer.com/10.
1007/3-540-45103-X_50, doi:10.1007/3-540-45103-
X_50.

[FK04] Shih Ching Fu and Peter Kovesi. Extracting Differential
Invariants of Motion Directly From Optical Flow. In 13th
School of Computer Science & Software Engineering Research
Conference, 2004. doi:10.1.1.185.1179.

[FL12] Thomas W Ferkol and Margaret W Leigh. Ciliopathies: the
central role of cilia in a spectrum of pediatric disorders. The
Journal of pediatrics, 160(3):366, 2012. doi:10.1016/j.
jpeds.2011.11.024.

[GSC99] F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to
forget: continual prediction with lstm. In 1999 Ninth Inter-
national Conference on Artificial Neural Networks ICANN 99.
(Conf. Publ. No. 470), volume 2, pages 850–855 vol.2, 1999.
doi:10.1162/089976600300015015.

[GZT+14] Andrea S Garrod, Maliha Zahid, Xin Tian, Richard J Fran-
cis, Omar Khalifa, William Devine, George C Gabriel, Linda
Leatherbury, and Cecilia W Lo. Airway ciliary dysfunction
and sinopulmonary symptoms in patients with congenital heart
disease. Annals of the American Thoracic Society, 11(9):1426–
1432, 2014. doi:10.1513/AnnalsATS.201405-222OC.

[HGGRD99] Els Houtmeyers, Rik Gosselink, Ghislaine Gayan-Ramirez, and
Marc Decramer. Regulation of mucociliary clearance in health
and disease. European Respiratory Journal, 13(5):1177–1188,
1999. doi:10.1034/j.1399-3003.1999.13e39.x.

[HLW16] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely
connected convolutional networks. CoRR, abs/1608.06993,
2016. URL: http://arxiv.org/abs/1608.06993, arXiv:1608.
06993, doi:10.1109/CVPR.2017.243.

[HS81] Berthold K P Horn and Brian G Schunck. Determining Optical
Flow. Artificial Intelligence, 17:185–203, 08 1981. doi:10.
1016/0004-3702(81)90024-2.

[Hun07] J. D. Hunter. Matplotlib: A 2d graphics environment. Comput-
ing in Science Engineering, 9(3):90–95, 2007.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015. URL: http://arxiv.org/abs/1512.03385,
arXiv:1512.03385, doi:10.1109/CVPR.2016.90.

[JDV+17] Simon Jegou, Michal Drozdzal, David Vazquez, Adriana
Romero, and Yoshua Bengio. The One Hundred Layers
Tiramisu: Fully Convolutional DenseNets for Semantic Seg-
mentation. arXiv:1611.09326 [cs], October 2017. arXiv:
1611.09326. URL: http://arxiv.org/abs/1611.09326, doi:10.
1109/CVPRW.2017.156.

[KSC17] Celine Kempeneers, Claire Seaton, and Mark A Chilvers. Vari-
ation of ciliary beat pattern in three different beating planes
in healthy subjects. Chest, 151(5):993–1001, 2017. doi:
10.1016/j.chest.2016.09.015.

[KW19] Diederik P. Kingma and Max Welling. An introduction to
variational autoencoders. CoRR, abs/1906.02691, 2019. URL:
http://arxiv.org/abs/1906.02691, arXiv:1906.02691, doi:
10.1561/2200000056.

[LK81] Bruce Lucas and Takeo Kanade. An iterative image registration
technique with an application to stereo vision (ijcai). volume 81,
04 1981.

[LMZ+18] Charles Lu, M. Marx, M. Zahid, C. W. Lo, Chakra Chennub-
hotla, and Shannon P. Quinn. Stacked neural networks for end-
to-end ciliary motion analysis. CoRR, abs/1803.07534, 2018.
URL: http://arxiv.org/abs/1803.07534, arXiv:1803.07534.

[OCH+07] Christopher O’Callaghan, Mark Chilvers, Claire Hogg, Andrew
Bush, and Jane Lucas. Diagnosing primary ciliary dyskinesia,
2007. doi:10.1136/thx.2007.083147.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative
style, high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Process-
ing Systems 32, pages 8024–8035. Curran Associates, Inc.,
2019. URL: http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf.

[QFLC11] Shannon Quinn, Richard Francis, Cecilia Lo, and Chakra Chen-
nubhotla. Novel use of differential image velocity invariants
to categorize ciliary motion defects. In Proceedings of the
2011 Biomedical Sciences and Engineering Conference: Image
Informatics and Analytics in Biomedicine, pages 1–4, Knoxville,
TN, USA, March 2011. IEEE. URL: http://ieeexplore.
ieee.org/document/5872328/, doi:10.1109/BSEC.2011.
5872328.

[QZD+15] Shannon P Quinn, Maliha J Zahid, John R Durkin,
Richard J Francis, Cecilia W Lo, and S Chakra Chen-
nubhotla. Automated identification of abnormal respira-
tory ciliary motion in nasal biopsies. Science translational
medicine, 7(299):299ra124–299ra124, 2015. doi:10.1126/
scitranslmed.aaa1233.

[RWH+14] Johanna Raidt, Julia Wallmeier, Rim Hjeij, Jörg Große On-
nebrink, Petra Pennekamp, Niki T Loges, Heike Olbrich,
Karsten Häffner, Gerard W Dougherty, Heymut Omran, et al.
Ciliary beat pattern and frequency in genetic variants of primary
ciliary dyskinesia. European Respiratory Journal, 44(6):1579–
1588, 2014. doi:10.1183/09031936.00052014.

[SPMLF13] Javier Sánchez Pérez, Enric Meinhardt-Llopis, and Gabriele
Facciolo. TV-L1 Optical Flow Estimation. Image Processing On
Line, 3:137–150, July 2013. URL: http://www.ipol.im/pub/art/
2013/26/?utm_source=doi, doi:10.5201/ipol.2013.26.

[SS90] Peter Satir and Michael A Sleigh. The physiology of cilia
and mucociliary interactions. Annual review of physiology,
52(1):137–155, 1990. doi:10.1146/annurev.ph.52.
030190.001033.

[TW17] Jakub M. Tomczak and Max Welling. VAE with a vampprior.
CoRR, abs/1705.07120, 2017. URL: http://arxiv.org/abs/1705.
07120, arXiv:1705.07120.

[vdWCV11] Stéfan van der Walt, S. Chris Colbert, and Gaël Varoquaux. The
numpy array: a structure for efficient numerical computation.
CoRR, abs/1102.1523, 2011. URL: http://arxiv.org/abs/1102.
1523, arXiv:1102.1523, doi:10.1109/MCSE.2011.
37.

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haber-
land, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu
Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van
der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman,
Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert
Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake Vand erPlas, Denis Laxalde, Josef Perktold, Robert
Cimrman, Ian Henriksen, E. A. Quintero, Charles R Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1. 0 Contributors. SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python.

TOWARDS AN UNSUPERVISED SPATIOTEMPORAL REPRESENTATION OF CILIA VIDEO USING A MODULAR GENERATIVE PIPELINE 175

Nature Methods, 17:261–272, 2020. doi:https://doi.
org/10.1038/s41592-019-0686-2.

[WMBL19] Nicholas Watters, Loic Matthey, Christopher P. Burgess, and
Alexander Lerchner. Spatial broadcast decoder: A simple archi-
tecture for learning disentangled representations in vaes, 2019.
URL: http://arxiv.org/abs/1901.07017, arXiv:1901.07017.

