
Proceedings of the 17th

Python in Science Conference

July 9 - July 15 • Austin, Texas

Fatih Akici
David Lippa

Dillon Niederhut
M Pacer

PROCEEDINGS OF THE 17TH PYTHON IN SCIENCE CONFERENCE

Edited by Fatih Akici, David Lippa, Dillon Niederhut, and M Pacer.

SciPy 2018
Austin, Texas
July 9 - July 15, 2018

Copyright c© 2018. The articles in the Proceedings of the Python in Science Conference are copyrighted and owned by their
original authors

This is an open-access publication and is distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are
credited.

For more information, please see: http://creativecommons.org/licenses/by/3.0/

ISSN:2575-9752
https://doi.org/10.25080/Majora-4af1f417-018

ORGANIZATION

Conference Chairs
PRABHU RAMACHANDRAN, Enthought Inc. & IIT Bombay
SERGE REY, Arizona State University

Program Chairs
LORENA BARBA, George Washington University
GIL FORSYTH, Capital One

Communications
PAUL IVANOV, Bloomberg

Birds of a Feather
NELLE VAROQUAUX, Berkeley Institute for Data Science
JESSICA HAMRICK, Deep Mind

Proceedings
FATIH AKICI, ACE Cash Express
DAVID LIPPA, Amazon
DILLON NIEDERHUT, Enthought
M PACER, Netflix

Financial Aid
CELIA CINTAS, CONICET
SCOTT COLLIS, Argonne National Laboratory
PAT KELLY, Los Alamos National Laboratory
ERIC MA, MIT

Tutorials
ALEXANDRE CHABOT-LECLERC, Enthought
MIKE HEARNE, USGS
BEN ROOT, Atmospheric and Environmental Research, Inc.

Sprints
RYAN MAY, University Corporation for Atmospheric Research
JONATHAN ROCHER, KBI Biopharma
CHARLYE TRAN, Lewis University and The Recurse Center

Diversity
JACKIE KAZIL, Capital One
JULIE KRUGLER HOLLEK, Twitter

Activities
KYLE NIEMEYER, Oregon State University
JULIA PASQUARELLA, Enthought

Sponsors
JILL COWAN, Enthought

Financial
BILL COWAN, Enthought
JODI HAVRANEK, Enthought

Logistics
JILL COWAN, Enthought

Proceedings Reviewers
ALBERTO ANTONIETTI
ALEJANDRO WEINSTEIN
ALEXANDRA ABATE
ANGELOS KRYPOTOS
ANKUR ANKAN
ANNETTE GREINER
AVIPSA ROY
BILLY OKAL
BRIAN MCFEE
CHANDAN BOSE
CHITARANJAN MAHAPATRA
CHRIS CALLOWAY
CYRUS HARRISON
DANA FARBER
DAVID LIPPA
DEMBA BA
DILLON NIEDERHUT
FATIH AKICI
GUY TEL-ZUR
HOMIN LEE
JAIME ARIAS ALMEIDA
JAMES BEDNAR
JASON GROUT
JEREMIAH JOHNSON
JOHN LEEMAN
KRISHNA NEUPANE
KYLE KELLEY
MARIANNE HOOGEVEEN
MARK FENNER
MATT ROCKLIN
MEGAN SOSEY
MIKE SARAHAN
NICHOLAS MALAYA
NICOLÁS GUARÍN-ZAPATA
PATRICK HUCK
PAULINE BARMBY
RAVI SIVALINGAM
RICARDO BARROS LOURENÇO
RICARDO FERRAZ LEAL
SCOTT SIEVERT
SEETHA KRISHNAN
STEFAN VAN DER WALT
SUZANNE STATHATOS
TOM AUGSPURGER
TUMMALAPALLI SUDHAMSH REDDY
TZU-CHI YEN
YINGWEI YU

SCHOLARSHIP RECIPIENTS

JAMES BOURBEAU, University of Wisconsin, Madison
JAMES ALEXANDER BRANHAM, University of Texas at Austin
ROBERTO COLISTETE JUNIOR, Universidade Federal do Espirito Santo
FILIPE FERNANDES, conda-forge
KENNETH LYONS, University of California, Davis
UNIVERSITY OF OREGON, Zachary Sailer
MRIDUL SETH, BITS Pilani, Goa
SCOTT SIEVERT, University of Wisconsin, Madison

JUMP TRADING AND NUMFOCUS DIVERSITY SCHOLARSHIP RECIPIENTS

HANNAH AIZENMAN, Matplotlib
MARIANNE CORVELLEC, Institute for Globally Distributed Open Research and Education
KADAMBARI DEVARAJAN, University of Massachusetts at Amherst
JULIE LAVOIE,
YEE NG, University of Texas at Austin
PARUL SETHI, University of Delhi
MALVIKA SHARAN, EMBL, Heidelberg
CLARE SLOGGETT, Melbourne Bioinformatics, University of Melbourne
CHAYA STERN, Memorial Sloan Kettering Cancer Center
HORACIO ANDRES VARGAS GUZMAN, Max Planck Institute for Polymer Research

CONTENTS

Dynamic Social Network Modeling of Diffuse Subcellular Morphologies 1
Andrew Durden, Allyson T Loy, Barbara Reaves, Mojtaba Fazli, Abigail Courtney, Frederick D Quinn, S Chakra
Chennubhotla, Shannon P Quinn

Cloudknot: A Python Library to Run your Existing Code on AWS Batch 8
Adam Richie-Halford, Ariel Rokem

Equity, Scalability, and Sustainability of Data Science Infrastructure 15
Anthony Suen, Laura Norén, Alan Liang, Andrea Tu

Composable Multi-Threading and Multi-Processing for Numeric Libraries 18
Anton Malakhov, David Liu, Anton Gorshkov, Terry Wilmarth

The Econ-ARK and HARK: Open Source Tools for Computational Economics 25
Christopher D. Carroll, Alexander M. Kaufman, Jacqueline L. Kazil, Nathan M. Palmer, Matthew N. White

Developing a Start-to-Finish Pipeline for Accelerometer-Based Activity Recognition Using Long Short-Term Memory Recur-
rent Neural Networks 31
Christian McDaniel, Shannon Quinn

Practical Applications of Astropy 41
David Shupe, Frank Masci, Russ Laher, Ben Rusholme, Lee Armus

EarthSim: Flexible Environmental Simulation Workflows Entirely Within Jupyter Notebooks 48
Dharhas Pothina, Philipp J. F. Rudiger, James A Bednar, Scott Christensen, Kevin Winters, Kimberly Pevey, Christo-
pher E. Ball, Gregory Brener

Safe handling instructions for missing data 56
Dillon Niederhut

Text and data mining scientific articles with allofplos 61
Elizabeth Seiver, M Pacer, Sebastian Bassi

Sparse: A more modern sparse array library 65
Hameer Abbasi

Bringing ipywidgets Support to plotly.py 69
Jon Mease

WrightSim: Using PyCUDA to Simulate Multidimensional Spectra 77
Kyle F Sunden, Blaise J Thompson, John C Wright

Exploring the Extended Kalman Filter for GPS Positioning Using Simulated User and Satellite Track Data 84
Mark Wickert, Chiranth Siddappa

Real-Time Digital Signal Processing Using pyaudio helper and the ipywidgets 91
Mark Wickert

Organic Molecules in Space: Insights from the NASA Ames Molecular Database in the era of the James Webb Space
Telescope 99
Matthew J. Shannon, Christiaan Boersma

Harnessing the Power of Scientific Python to Investigate Biogeochemistry and Metaproteomes of the Central Pacific Ocean
106
Noelle A. Held, Jaclyn K. Saunders, Joe Futrelle, Mak A. Saito

Binder 2.0 - Reproducible, interactive, sharable environments for science at scale 113
Project Jupyter, Matthias Bussonnier, Jessica Forde, Jeremy Freeman, Brian Granger, Tim Head, Chris Holdgraf,
Kyle Kelley, Gladys Nalvarte, Andrew Osheroff, M Pacer, Yuvi Panda, Fernando Perez, Benjamin Ragan-Kelley, Carol
Willing

Spatio-temporal analysis of socioeconomic neighborhoods: The Open Source Longitudinal Neighborhood Analysis Package
(OSLNAP) 121
Sergio Rey, Elijah Knaap, Su Han, Levi Wolf, Wei Kang

Design and Implementation of pyPRISM: A Polymer Liquid-State Theory Framework 129
Tyler B. Martin, Thomas E. Gartner III, Ronald L. Jones, Chad R. Snyder, Arthi Jayaraman

A Bayesian’s journey to a better research workflow 137
Konstantinos Vamvourellis, Marianne Corvellec

Scalable Feature Extraction with Aerial and Satellite Imagery 145
Virginia Ng, Daniel Hofmann

signac: A Python framework for data and workflow management 152
Vyas Ramasubramani, Carl S. Adorf, Paul M. Dodd, Bradley D. Dice, Sharon C. Glotzer

Yaksh: Facilitating Learning by Doing 160
Prabhu Ramachandran, Prathamesh Salunke, Ankit Javalkar, Aditya Palaparthy, Mahesh Gudi, Hardik Ghaghada

PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018) 1

Dynamic Social Network Modeling of Diffuse
Subcellular Morphologies

Andrew Durden‖, Allyson T Loy¶, Barbara Reaves‡, Mojtaba Fazli‖, Abigail Courtney¶, Frederick D Quinn‡, S Chakra
Chennubhotla§, Shannon P Quinn‖∗∗∗

F

Abstract—The use of fluorescence microscopy has catalyzed new insights into
biological function, and spurred the development of quantitative models from
rich biomedical image datasets. While image processing in some capacity is
commonplace for extracting and modeling quantitative knowledge from biologi-
cal systems at varying scales, general-purpose approaches for more advanced
modeling are few. In particular, diffuse organellar morphologies, such as mi-
tochondria or actin microtubules, have few if any established spatiotemporal
modeling strategies, all but discarding critically important sources of signal from
a biological system. Here, we discuss initial work into building spatiotemporal
models of diffuse subcellular morphologies, using mitochondrial protein patterns
of cervical epithelial (HeLa) cells. We leverage principles of graph theory and
consider the diffuse mitochondrial patterns as a social network: a collection
of vertices interconnected by weighted and directed edges, indicating spatial
relationships. By studying the changing topology of the social networks over
time, we gain a mechanistic understanding of the types of stresses imposed on
the mitochondria by external stimuli, and can relate these effects in terms of
graph theoretic quantities such as centrality, connectivity, and flow. We demon-
strate how the mitochondrial pattern can be faithfully represented parametrically
using a learned mixture of Gaussians, which is then perturbed to match the
spatiotemporal evolution of the mitochondrial patterns over time. The learned
Gaussian components can then be converted to graph Laplacians, formally
defining a network, and the changes in the topology of the Laplacians can
yield biologically-meaningful interpretations of the evolving morphology. We
hope to leverage these preliminary results to implement a bioimaging toolbox,
using existing open source packages in the scientific Python ecosystem (SciPy,
NumPy, scikit-image, OpenCV), which builds dynamic social network models
from time series fluorescence images of diffuse subcellular protein patterns. This
will enable a direct quantitative comparison of network structure over time and
between cells exposed to different conditions.

Index Terms—Biomedical Imaging, Graph Theory, Social Networks

Introduction

Given the recent rise of fluorescence microscopy, and the subse-
quent proliferation of biomedical imaging data, live cell imaging

|| Department of Computer Science, University of Georgia, Athens, GA 30602
USA
¶ Department of Microbiology, University of Georgia, Athens, GA 30602 USA
‡ Department of Infectious Diseases, University of Georgia, Athens, GA 30602
USA
§ Department of Computational and Systems Biology, University of Pittsburgh,
Pittsburgh, PA 15232 USA
* Corresponding author: spq@uga.edu
** Department of Cellular Biology, University of Georgia, Athens, GA 30602
USA

Copyright © 2018 Andrew Durden et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

has become much more accessible. However, the growth in quan-
tification and modeling of biological and biomedical phenomena
has been uneven; "solid" morphologies such as cells and nuclei
are much easier to automatically segment, track, and quantify than
diffuse patterns induced by mitochondria or actin. There is a need
for methodologies and software capable of autonomous tracking,
segmentation, and quantification of spatiotemporal changes in
these structures.

Understanding the spatiotemporal evolution of subcellular
organelles in response to external stimuli and modeling this
behavior is critical to understanding the effects of the stimuli
on the internal state and configuration of the cell. This can
have downstream implications in the development of targeted
therapies. Recently, spatial covariance has been used to quantify
gene expression correlation in image like matrices representing
sequenced RNA [STS17]. Other recent work demonstrates the
benefits of measuring covariance between subcellular structures
to observe how coherent portions of the cells respond in tan-
dem to external stimuli [VCL+17]. While this work used hand-
crafted pixel-level thresholds and manual labeling of pixels into
organelle groupings, it nonetheless represents the spirit of our
work: developing quantifiable, data-driven spatiotemporal models
of subcellular structures.

Our work focuses on both spatial and temporal covariance to
better model and understand the response of subcellular structures
to stimuli. To do this, we draw on graph theory and cast the
punctate subcellular morphologies as instances of a social net-
work. A recent study of brain activity used networks to create
a quantitative measure of correlated activity in functional MRI
(fMRI) images which could then easily be clustered [DGD+16].
There are many advantages of using a social network model for
representing diffuse structures. It captures not only the overall
spatial morphology and distribution of the protein pattern, but
also intrinsically captures relationships between different spatial
components of the pattern. Finally, by permitting the network to
evolve over time, the changing properties of the social network
can be interpreted biologically to describe different observed
phenomena: just as "traditional" social networks evolve through
the addition and deletion of connections between individuals,
so do such events describe precisely how the morphology, both
locally in one part of the cell, and globally across multiple cells,
changes in response to stimuli.

We have begun by modeling the subcellular patterns of mi-
tochondria in cervical epithelial (HeLa) cells. Mitochondria are
dynamic organelles, which undergo continual rounds of fission

2 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

and fusion. These fission and fusion events are important for
maintaining proper function and overall mitochondrial health
[ZLN13] [WL16]. Mitochondrial fission allows for the turnover
of damaged and the protection of healthy organelles. Addition-
ally, mitochondrial fusion leads to the mixing of internal con-
tents, which is important for responding to environmental needs
[ZLN13] [KPSBW08].

The dynamics between fission and fusion creates a spectrum
of mitochondrial morphologies. Imbalances between fission and
fusion events generate phenotypes associated with mitochondrial
dysfunction [ZLN13]. An excess of fission or dearth of fusion
events results in fragmented mitochondria; in this phenotype, the
mitochondrial network is fractured, and individual mitochondria
exist in small spheres. Conversely, an overabundance of fusion
or a lack of fission events generate hyperfused mitochondria; in
this phenotype, the mitochondrial network is overconnected, and
composed of long interconnected tubules [CSCI+08]. Recently,
several bacterial species have been shown to cause mitochon-
drial perturbations during infection [SBS+11][FCGQR15]. Such
unique morphologies should be detectable at a quantitative level
using social network modeling.

Through social network modeling, we hope to build a more
rapid and efficient method for identifying changes in size, shape,
and distribution of mitochondria as well as other diffuse or-
ganelles. In this work, we present a proof-of-concept pipeline
which segments cells with fluorescent stains on the mitochondria
for individual analysis. Once the cells are segmented, we use
a Gaussian Mixture Model (GMM) to parameterize the spatial
distribution of the mitochondrial protein patterns at evenly-spaced
time intervals, and allow the GMM parameters to update smoothly
from the previous time point to the next. Finally, we demonstrate
how the learned parameters of the GMM can be used to construct
social networks for representing the mitochondria. The complete
pipeline can be seen in Fig. 1.

Data

We have constructed a library of live confocal imaging videos
that display the full spectrum of mitochondrial morphologies in
HeLa cells, from fragmented to hyperfused. To visualize the
mitochondria, HeLa cells were stably transfected with DsRed2-
Mito-7 (DsRed2-HeLa), which fluorescently labels mitochondria
with red emission spectra (a gift from Michael Davidson, Addgene
plasmid #55838). All of our videos were taken using a Nikon A1R
Confocal. Cells were kept in an imaging chamber that maintained
37 degrees C and 5% CO2 for the duration of imaging. The
resonant scanning head was used to capture an image every ten
seconds for the length of the video. The resulting time series
videos have more than 20,000 frames per video. Each frame is
of dimensions of 512x512 pixels (Fig. 2).

Wild type mitochondrial morphology was captured by imaging
DsRed2-HeLa cells in typical growth medium (DMEM plus 10 %
fetal bovine serum) (Fig. 2, center). To generate the fragmented
phenotype, cells were exposed to the pore-forming toxin listeri-
olysin O (LLO) at a final concentration of 6 nM (Fig. 2, left).
Mitochondrial hyperfusion was induced through the addition of
mitochondria division inhibitor-1 (mdivi-1) at a final concentration
of 50µM (Fig. 2, right). These subsets with different known
qualitative phenotypes serve as bases upon which to condition
our quantitative analyses.

Fig. 1: An abstract representation of our proposed pipeline. The first
frame represents the raw unsegmented image of mitochondria in three
cells. The second frame demonstrates simultaneous segmentation, as a
border is drawn around each cell. The third frame represents a single
cell being extracted for analysis using the determined segmentation.
The fourth frame shows a characteristic set of nodes determined by
applying a mixture model to the distribution of fluorescent mitochon-
dria. The final frame shows edges added to the nodes to complete
the network structure. At this point in the pipeline, network analysis
can be applied to the induced graph. These steps are applied to each
frame of video allowing for fully temporal analysis. .

Segmentation Pipeline

In order to avoid systemic bias in our downstream analysis
pipeline as a result of different videos containing a varied and
unbounded number of cells, we chose to study each cell individ-
ually. This required segmenting each individual cell and studying
its spatiotemporal dynamics in isolation from the others. While
segmentation of cells from fluorescence or histology images is
becoming very common, segmenting diffuse protein patterns--
such as mitochondria--is much more challenging. We leveraged
the fact that, given the small interval (10s) between frames of
a video, overall movement between a given pair of subsequent
frames would be minimal. We used deformable contours with
slight updates from the previous frame to build out segmenta-
tion masks. However, the diffuse structure combined with the
near overlap of cells in frames necessitated a "priming" of the
segmentation pipeline with a hand-drawn mask at time 0. We used

DYNAMIC SOCIAL NETWORK MODELING OF DIFFUSE SUBCELLULAR MORPHOLOGIES 3

Fig. 2: Sample frames from each of the subsets of data. (Left)
LLO induced mitochondrial fragmentation (Center) Wild type HeLa
mitochondrial morphology (Right) Mdivi-1 induced mitochondrial
hyperfusion

Fig. 3: Diagram of the cell segmentation process. (Top Left) Hand
drawn masks of the first frame in VTK format were used to "seed"
the deformable contours. (Top Right) A series of frames from a
single video with autonomously drawn contours. (Middle) Stack of
frames from a single video converted to separate videos for each cell.
(Bottom) single cell video unraveled as grayscale image for frame by
frame network modeling.

the ITK-SNAP software [YPCH+06] to label each cell manually
in the first frame of each video, generating a VTK file with the
segmentation maps (Fig. 3, top left).

Our segmentation process used these maps as "seeds", up-
dating the maps at each frame of the video using deformable
contours: iterative dilation, thresholding, and contour detection
process over the entire video, resulting in a set of masks for each
frame and each cell in the frame. These masks could then be used
to pull out individual cells over the course of the video (Fig. 3).

While this process was very effective at following the cells,
occasionally the model would lose small areas of mitochondrial

Fig. 4: (Left) a 2D probability representation of the intensity of a
sample cell. (Top Right) the Intensity map of the image in a 3D
representation. (Bottom Right) the 3D contour of the same cell.

mass which was sufficiently far away from the more contiguous
structure. To compensate, we added a final process of iterative
dilation to prevent loss and give a more generous contour. With
these adjustments, we ran into a rare problem of cell contact or
overlap. In response, we continued the iterative dilation with more
iterations and smaller dilations checking for overlap with another
map each iteration. In the case of an overlap, which would only be
a few pixels with the small dilation kernel, we used a simple XOR
to remove the few overlapping pixels while still allowing the mask
to expand in areas unclaimed by other cells. With this case being
rare, we found the process mostly followed any visible boundary
of the adjacent cell.

The output of this step was the individual cell masks, one for
each cell at each frame, providing a complete segmentation of
each cell.

Social Network Engineering

To induce a network structure over the mitochondrial patterns
of the segmented cells, we used a Gaussian Mixture Model
(GMM). The means and covariances of the model components
would represent two critical features of a social network: the
individual nodes (means), and the nodes’ relationships to each
other (covariances). An independent model would be trained for
each individual cell, and the model parameters would be permitted
to evolve over the course of the videos to capture the changing
underlying morphologies.

We first applied a Gaussian smoothing filter to minimize
or eliminate artifacts in the video images. We then converted
the frames of the video to a discrete probability distribution by
normalizing the grayscale pixel intensities to sum to 1 (Fig. 4).
Following the conversion to a probability density, we counted local
pixel maxima and used these points--both the number of maxima
found, and their spatial locations--as the initial components our
GMM. These components were fed into the GMM fit() procedure
in scikit-learn (Fig. 5). The learned GMM components would
minimize the disparity between the joint probability density of the
GMM, and the original empirical probability density of the image,
parameterizing the structure of the mitochondrial pattern. Using
the learned components as nodes in the final network allow for
the network structure to be learned purely from the mitochondrial
topology.

4 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

The code for converting a single image frame to a discrete
probability density function and learn the initial GMM compo-
nents are as follows:

def img_to_px(image):
"""
Converts the image to a probability
distribution amenable to GMM.

Parameters

image : array, shape (H, W)

8-bit grayscale image.

Returns

X : array, shape (N, 2)
The data.
"""
We need the actual 2D coordinates of the
#pixels.
#The following is fairly standard practice for
#generating a grid
#of indices, often to evaluate some function on
#a discrete surface.
x = np.arange(image.shape[1])
y = np.arange(image.shape[0])
xx, yy = np.meshgrid(x, y)

Now we unroll the indices and stack them into
#2D (i, j) coordinates.
z = np.vstack([yy.flatten(), xx.flatten()]).T

Finally, we repeat each index by the number
of times of its pixel value.
That is our X--consider each pixel an
#"event", and its value is the
number of times that event is observed.
X = np.repeat(z, image.flatten(), axis = 0)
return X

def skl_gmm(vid, vizual = False, skipframes = 10,
threshold_abs = 6, min_distance = 10):
"""
Runs a warm-start GMM over evenly-spaced
frames of the video.

Parameters

vid : array, shape (f, x, y)

Video, with f frames and spatial
dimensions x by y.

vizual : boolean
True will show images and nodes
(default: False).

skipframes : integer
Number of frames to skip (downsampling
constant).

Returns

covars : array, shape (f, k, 2, 2)

The k covariance matrices (each 2x2)
for each of f frames.

means : array, shape (f, k, 2)
The k 2D means for each of f frames.

"""
img = vid[0]
if(vizual):

plt.imshow(img)
plt.show()

X = image.img_to_px(img)
PI, MU, CV = params.image_init(img, k = None,

min_distance = min_distance,
threshold_abs = threshold_abs)

PR = np.array(list(map(sla.inv, CV)))
gmmodel = GaussianMixture(n_components = CV.shape[0],

weights_init = PI, means_init = MU,
precisions_init = PR)

gmmodel.fit(X)
if(vizual):

viz.plot_results(gmmodel.means_,
gmmodel.covariances_, 0, img.shape[1], 0,
img.shape[0], 0, 'this')

covars = [gmmodel.covariances_]
means = [gmmodel.means_]

#set warm start to true to use previous parameters
gmmodel.warm_start = True

for i in range(1+skipframes, vid.shape[0], skipframes):
img = vid[i]
if(vizual):

plt.imshow(img)
plt.show()

X = image.img_to_px(img)
gmmodel.fit(X)
covars = np.append(covars,

[gmmodel.covariances_], axis = 0)
means = np.append(means,

[gmmodel.means_],axis = 0)
if(vizual):

viz.plot_results(gmmodel.means_,
gmmodel.covariances_,0, img.shape[1],
0, img.shape[0], 0, 'this')

return means,covars

Fig. 5: A cell (Left) and the nodes (Right) as generated by a gaussian
mixture model for the first (Rop) and last (Rottom) frames of a video
showing a cell fragmented by LLO

For connecting the nodes with weighted edges, we explored
multiple approaches that balanced realistically encapsulating the
underlying biology (i.e., did not create connections between
uncorrelated objects) and computational tractability. Initially, we
chose a manual distance threshold and used this as the "neighbor-
hood size" for the radial-basis function, a common connection-
weighting metric that varies smoothly from 0 (not connected) to
1 (fully connected), and is a function of the Euclidean distance
between the two nodes, weighted by the neighborhood size. A
second attempt to make this process more data-driven was to
replace the manually-crafted neighborhood size with the Gaussian
covariance in the direction of the node to be connected (6, mid).
In both cases, to avoid fully-connected graphs and induce some

DYNAMIC SOCIAL NETWORK MODELING OF DIFFUSE SUBCELLULAR MORPHOLOGIES 5

Fig. 6: (Left) A partially connected network with binary connections.
(Center) A single node’s weighted connection within a fully connected
graph. (Right) A the strongest connection of each node as determined
by our current affinity function

sparsity, we set a hard threshold on the maximum distance between
nodes to connect (6, left).

While these produced networks with desirable properties, they
did not fully reflect the underlying biology. Critically, the latter
produced networks with connectivity levels that varied wildly even
between subsequent frames of the same video. We interpreted this
"thrashing" as noise: while we expect some systemic changes in
the topology of the network through the formation and destruction
of connections between nodes, we observed considerable shifts in
this topology even in the control (wild-type) videos. Therefore,
we sought a method for computing edge weights between nodes
that was more robust to minor fluctuations in the underlying
mitochondrial protein pattern. We also desired a similarity metric
less dependent on Euclidean distance: this distance measure was
entirely dependent on the magnification level of the microscope,
an undesirable dependency and potential source of artifacts should
the method be applied on data gathered from a variety of imaging
modalities.

To address these shortcomings with determining network con-
nectivity, we instead evaluated the Gaussian components directly
and used that probability as the edge weight. This not only ac-
counted for the anisotropy in the covariance of the Gaussian com-
ponents, but also captured the asymmetry between components: by
decoupling the direct link to Euclidean distance, the connections
could instead be weighted by how probable the location of the
node under consideration was (6, right). While this did result
in an asymmetric graph matrix, it more accurately reflected the
dynamics of the underlying biology, captured the relationships
between nodes in a more intuitive metric, and was entirely data-
driven with no hand-crafted thresholds.

Many popular social networks have asymmetric connections
between users. For example, Twitter and Instagram permit users
to follow another without being followed back. Even Facebook,
which has a symmetric "friend" connection, has asymmetric
underlying weights in terms of how friends interact over the
network. Biologically speaking, there is little evidence to prefer
a directed graph structure over an undirected one. However, with
a cell’s general Brownian behavior, the undirected structure seem
more analogous and flexible; we would anticipate an empirical
convergence to an undirected graph if the behavior warrants. This
element of the our graph structure will be more cemented as we
analyze the networks created.

To calculate our network structure in terms of the Gaussian
components, we use the following functions (normpdf includes
an implementation of a multivariate Gaussian probability density

function due to discrepancies with the scipy.stats.norm implemen-
tation):

def normpdf(X, mu, sigma):
"""
Evaluates the PDF under the current GMM
parameters.

Parameters

X : array, shape (N, d)

The data.
mu : array, shape (d,)

Mean of the Gaussian.
sigma : array, shape (d, d)

Gaussian covariance.

Returns

px : array, shape (N,)

The probability density of each data point,
given the parameters.

"""
d = 1 if len(X.shape) == 1 else X.shape[1]
if d == 1:

n = 1 / ((2 * np.pi * sigma) ** 0.5)
e = np.exp(-(((X - mu) ** 2) /

(2 * sigma)))
px = n * e

else:
det = sla.det(sigma)
inv = sla.inv(sigma)
p = np.einsum('ni,ji,ni->n', X - mu,

inv, X - mu)
n = 1 / ((((2 * np.pi) ** d) * det)

** 0.5)
px = np.exp(-0.5 * p) * n

return px

def aff_by_eval(means, covars):
"""
finds an affinity table for a set of
means and covariances representing nodes

Parameters

means : array, shape (k, 2)

the list of means with k nodes
covars : array, shape (k, 2, 2)

the list of covars with k nodes

Returns

aff_Table : array, shape (k, k)

"""
aff_Table = np.empty([means.shape[0], 0])
for i, (mean, covar) in enumerate(zip(means,

covars)):
p_mus_Kx = normpdf(means, mean, covar)
aff_Table = np.append(aff_Table,

np.transpose([p_mus_Kx]), axis=1)
return aff_Table

def get_all_aff_tables(means,covars):
"""
finds all affinity table for a set of Frames
each with lists of means and covariances

Parameters

means : array, shape (f, k, 2)

the list of lists of means with f frames and
k nodes

covars : array, shape (k, 2, 2)
the list of lists of covars with f frames
with k nodes

6 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Returns

aff_Table : array, shape (k, k)

"""
aff_Tables = [aff_by_eval(means[0], covars[0])]
for i in range(1, means.shape[0]):

aff_Tables = np.append(aff_Tables,
[aff_by_eval(means[i], covars[i])], axis =0)

return aff_Tables

Current Insights and Future Work Discussion

After building networks using the described GMM method for
each cell under varying conditions (control/wildtype, LLO, mdivi),
we have qualitatively observed systemic differences in the learned
model parameters that would separate these conditions. Inter-
estingly, as the mitochondria fragment (i.e., LLO), the GMM
components become more strongly connected, not less (7). We
attribute this to a misinformed intuition: as the mitochondria
fragment and the underlying probability density function becomes
more uniform, the GMM components will likewise become more
uniform, resulting in a more uniformly connected network. The
overall number of connections also increases, as the cells tend to
collapse at the same time as mitochondrial fragmentation, result-
ing in the same number of GMM components spatially colocating
in a much smaller space, effectively "forcing" connections by
virtue of proximity. By comparison, the control cell shows much
less variation in the distribution of network connectivity and edge
weights over time; this reflects a relatively stable social network,
unperturbed by external stimuli.

The next step, then, is to develop a temporal model of the
GMM component evolution in terms of the social network. This
would take the form of a series of graph Laplacians and observing
how the Laplacians change, likely as a function of Laplacian
gradients. This would highlight specific portions of the social
networks that covary over space and time; in other words, it would
provide insight into the coordinated fragmentation or hyperfusion
of the mitochondria in response to the provided stimulus. These
features could then be incorporated into a broader supervised
learning pipeline to distinguish patterns and discern the effects of
an unknown stimulant (e.g., drug discovery), or an unsupervised
learning pipeline to identify all observed mitochondrial pheno-
types.

Additional methods of analyzing the graph structure of the so-
cial network would help to determine specific phenotypic changes
induced by certain stimuli. In particular, classic graph metrics
such as connectivity, cliques, and eigenvector centrality would
help to precisely measure the global effects of certain stimuli on
the mitochondria. Other algorithms, such as spectral clustering
or PageRank for global network analysis from local phenomena
would provide intuition into the local changes in mitochondrial
phenotype responsible for inducing the global structure. These
features would be invaluable for characterizing certain specific
cell-wide or even organism-wide conditions.

We also aim to improve the process through which the social
network is constructed in the first place. The incorporation of a
single uniform component into the overall GMM would provide a
robust method of accounting for background noise in the form
of a learned, data-driven threshold. Additional refinements of
the affinity function that determines the existence of connections
between nodes, and their weight and direction, will be pursued:
the Kullback-Leibler (KL) divergence is a popular method for

measuring the difference between two probability distributions,
and would be a natural fit for evaluating how similar two GMM
components are.

In this paper, we have presented a proof-of-concept for
parameterizing and modeling spatiotemporal changes in diffuse
subcellular protein patterns using GMMs. We have presented how
the learned parameters of the GMM can be updated to account for
changing biological phenotypes, and how these parameters can
then be used to induce a social network of interacting nodes.
Finally, we show how the properties of the social network can
be interpreted to provide biological insights, in particular how the
underlying system may be responding to some kind of stimulus.
This has potential implications in fundamental biology and trans-
lational biomedicine; we aim to complete our analysis package
and release it as open source for the research community to use in
the near future.

Acknowledgments

This project was supported in part by a grant from the National
Science Foundation (#1458766).

REFERENCES

[CSCI+08] Ann Cassidy-Stone, Jerry E Chipuk, Elena Ingerman, Cheng
Song, Choong Yoo, Tomomi Kuwana, Mark J Kurth, Jared T
Shaw, Jenny E Hinshaw, Douglas R Green, et al. Chemical
inhibition of the mitochondrial division dynamin reveals its role
in bax/bak-dependent mitochondrial outer membrane permeabi-
lization. Developmental cell, 14(2):193–204, 2008.

[DGD+16] Andrew T Drysdale, Logan Grosenick, Jonathan Downar,
Katharine Dunlop, Farrokh Mansouri, Yue Meng, Robert N
Fetcho, Benjamin Zebley, Desmond J Oathes, Amit Etkin,
Alan F Schatzberg, Keith Sudheimer, Jennifer Keller, Helen S
Mayberg, Faith M Gunning, George S Alexopoulos, Michael D
Fox, Alvaro Pascual-Leone, Henning U Voss, BJ Casey, Marc J
Dubin, and Conor Liston. Resting-state connectivity biomark-
ers define neurophysiological subtypes of depression. Na-
ture Medicine, 2016. URL: http://dx.doi.org/10.1038/nm.4246,
doi:10.1038/nm.4246.

[FCGQR15] Kari Fine-Coulson, Steeve Giguère, Frederick D Quinn, and
Barbara J Reaves. Infection of a549 human type ii epithelial
cells with mycobacterium tuberculosis induces changes in mito-
chondrial morphology, distribution and mass that are dependent
on the early secreted antigen, esat-6. Microbes and infection,
17(10):689–697, 2015.

[KPSBW08] Andrew B Knott, Guy Perkins, Robert Schwarzenbacher, and
Ella Bossy-Wetzel. Mitochondrial fragmentation in neurodegen-
eration. Nature Reviews Neuroscience, 9(7):505, 2008.

[SBS+11] Fabrizia Stavru, Frédéric Bouillaud, Anna Sartori, Daniel Ric-
quier, and Pascale Cossart. Listeria monocytogenes transiently
alters mitochondrial dynamics during infection. Proceedings of
the National Academy of Sciences, 108(9):3612–3617, 2011.

[STS17] Valentine Svensson, Sarah A. Teichmann, and Oliver Stegle.
Spatialde - identification of spatially variable genes. bioRxiv,
2017. URL: https://www.biorxiv.org/content/early/2017/
11/08/143321, arXiv:https://www.biorxiv.org/
content/early/2017/11/08/143321.full.pdf,
doi:10.1101/143321.

[VCL+17] Alex M Valm, Sarah Cohen, Wesley R Legant, Justin Melu-
nis, Uri Hershberg, Eric Wait, Andrew R Cohen, Michael W
Davidson, Eric Betzig, and Jennifer Lippincott-Schwartz. Ap-
plying systems-level spectral imaging and analysis to reveal the
organelle interactome. Nature, 546(7656):162, 2017.

[WL16] Timothy Wai and Thomas Langer. Mitochondrial dynamics and
metabolic regulation. Trends in Endocrinology & Metabolism,
27(2):105–117, 2016.

[YPCH+06] Paul A. Yushkevich, Joseph Piven, Heather Cody Hazlett, Rachel
Gimpel Smith, Sean Ho, James C. Gee, and Guido Gerig. User-
guided 3D active contour segmentation of anatomical structures:
Significantly improved efficiency and reliability. Neuroimage,
31(3):1116–1128, 2006.

DYNAMIC SOCIAL NETWORK MODELING OF DIFFUSE SUBCELLULAR MORPHOLOGIES 7

Fig. 7: A series of distribution plots of the negative log of values found in six affinity tables developed using the model learned at an early,
middle, and late video frame. (Top) The tables generated from a control cell which show little variation in distribution. (Bottom) The tables
generated from the LLO cell which shows a drastic increase in connectivity over time as the cell fragments.

[ZLN13] Jian Zhao, Urban Lendahl, and Monica Nistér. Regulation of
mitochondrial dynamics: convergences and divergences between
yeast and vertebrates. Cellular and molecular life sciences,
70(6):951–976, 2013.

8 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Cloudknot: A Python Library to Run your Existing
Code on AWS Batch

Adam Richie-Halford‡∗, Ariel Rokem‡

https://youtu.be/D9LPzqoZ3f8

F

Abstract—We introduce Cloudknot, a software library that simplifies cloud-
based distributed computing by programmatically executing user-defined func-
tions (UDFs) in AWS Batch. It takes as input a Python function, packages it
as a container, creates all the necessary AWS constituent resources to submit
jobs, monitors their execution and gathers the results, all from within the Python
environment. Cloudknot minimizes the cognitive load of learning a new API
by introducing only one new object and using the familiar map method. It
overcomes limitations of previous similar libraries, such as Pywren, that runs
UDFs on AWS Lambda, because most data science workloads exceed the
current limits of AWS Lambda on execution time, RAM, and local storage.

Index Terms—Cloud computing, Amazon Web Services, Distributed computing

Introduction

In the quest to minimize time-to-first-result, data scientists are
increasingly turning to cloud-based distributed computing with
commercial vendors like Amazon Web Services (AWS). Cloud
computing platforms have the advantage of linear scalability: users
can access limitless computing resources to meet the demands
of their computational workloads. At the same time they offer
elasticity: resources are provisioned as-needed and can be de-
comissioned when they are no longer needed. In data-intensive
research scenarios in which large computational workloads are
coupled with large amounts of data this could, in principle, offer
substantial speedups.

But the complexity and learning curve associated with a
transition to cloud computing make it inaccessible to beginners.
This transition cost has been improving. For example, Dask
[Roc15] used to be difficult to run in parallel in a cloud computing
environment, but it is now more accessible, thanks in part to
tools such as dask-ec2 [Rod17] and kubernetes/helm [Aut18]. Yet
despite these improvements, computation in the cloud remains
inaccessible to many researchers who have not had previous
exposure to distributed computing.

A number of Python libraries have sought to close this gap
by allowing users to interact seamlessly with AWS resources
from within their Python environment. For example, Cottoncandy
allows users to store and access numpy array data on Amazon
S3 [NEZH+17]. Pywren [JPV+17] enables users to run their

* Corresponding author: richiehalford@gmail.com
‡ University of Washington, Seattle, WA

Copyright © 2018 Adam Richie-Halford et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

existing Python code on AWS Lambda, providing convenient
distributed execution for jobs that fall within the limits of this
service1. However, these limitations are impractical for many
data-oriented workloads, which require more RAM and local
storage, longer compute times, and complex dependencies. The
AWS Batch service offers a platform for workloads with these
requirements. Batch dynamically provisions AWS resources based
on the volume and requirements of user-submitted jobs. Instead of
provisioning and managing their own batch computing jobs, users
specify job constraints, such as the amount of memory required
for a single job, and the number of jobs. AWS Batch manages the
job distribution to satisfy those constraints. The user can optionally
constrain the cost by using Amazon EC2 Spot Instances [AWS18a]
and specifying a bid percentage2.

One of the main advantages of Batch, relative to the provision-
ing of your own compute instances is that it abstracts away the
exact details of the infrastructure that is needed, offering instead
relatively straight-forward abstractions:

• a job, which is an atomic, independent task to repeat on
multiple inputs, encapsulated in a linux executable, a bash
script or a Docker container;

• a job definition, which connects the job with the compute
resources it require;

• a compute environment, which defines the configuration
of the computational resources needed, such as number of
processors, or amount of RAM;

• a job queue, where jobs reside until they are run in a
compute environment.

While Batch provides useful functional abstractions for pro-
cessing data in bulk, the user interface provided through the
AWS web console still resists automation, requires learning many
of the terms that control its execution and does not facilitate
scripting and/or reproducibility [AWS18b]. The AWS Python API
offers a programming interface that can control the execution of
computational tasks in AWS Batch, but it is not currently designed
to offer an accessible single point of access to these resources.

Here, we introduce a new Python library with support for
Python 2.7 and 3.5+: Cloudknot [RHR18a] [RHR18c], that
launches Python functions as jobs on the AWS Batch service,
thereby lifting these limitations. Rather than introducing its own

1. Current limits include a maximum of 300 seconds of execution time, 1.5
GB of RAM, 512 MB of local storage, and no root access.

2. The bid percentage is the maximum price, expressed as a percentage of
the on-demand EC2 instance price, with which to bid on unused EC2 capacity.

CLOUDKNOT: A PYTHON LIBRARY TO RUN YOUR EXISTING CODE ON AWS BATCH 9

Single Program Multiple Data

Amazon EC2

Manages instances on

Referenced in
job definition on

Knot.map()
output

Method Knot.map()

Amazon S3

Collects output

Sends output

Retrieves input

cloudknot.Knot.__init__

AWS Batch

Create resources
using

Cloudformation

Amazon ECR

Send Dockerized
UDF

distribute
serialized input

using cloudpickle

Fig. 1: Cloudknot’s SPMD workflow. The left two columns depict steps
Cloudknot takes to create the single program (SP). The right column
depicts Cloudknot’s management of the multiple data (MD). Blue
rounded squares represent components of Cloudknot’s user-facing
API. Yellow circles represent AWS resources. Grey document shapes
represent containers, templates, or data used to communicate with
cloud resources.

set of terms and abstractions, Cloudknot provides a simple ab-
straction on top of Executor objects whose results are returned
by concurrent futures. Users of Cloudknot have to familiarize
themselves with one new object: the Knot. While some of its
functionality will initially be new to users of Cloudknot (e.g., the
way that resources on AWS are managed), its map method should
be familiar to most Python users.

The next section discusses Cloudknot’s approach to paral-
lelism and the API section describes Cloudknot’s user interface.
In the Examples section, we demonstrate a few of Cloudknot’s
use cases, including examples with data ranging from hundreds
of GB to several TB. We then summarize the trade-offs between
performance and accessibility in the Conclusion.

Design

The primary object in Cloudknot is the Knot, which employs
the single program, multiple data (SPMD) paradigm to achieve
parallelism. In this section, we describe Cloudknot’s approach to
establishing the single program (SP) and managing the multiple
data (MD). Knot’s user-facing API and interactions with cloud-
based resources are depicted in Figure 1.

Single Program (SP)

The Knot object creates the single program on initialization,
taking a user-defined function (UDF) as input and wrapping it
in a command line interface (CLI), which downloads data from
an Amazon Simple Storage Service (S3) bucket specified by an
input URL. The UDF is also wrapped in a Python decorator that
sends its output back to an S3 bucket. So in total, the resulting
command line program downloads input data from S3, executes
the UDF, and sends output back to S3. Knot then packages the
CLI, along with its dependencies, into a Docker container. The

container is uploaded into the Amazon Elastic Container Registry
(ECR). Cloudknot’s use of Docker allows it to handle non-trivial
software and data dependencies (see examples below). This is
because Docker provides a consistent and isolated environment,
allowing complete control over the software dependencies of a
particular application, and near-immediate deployment of these
dependencies [Boe14].

Separately, Knot uses an AWS CloudFormation template to
create the AWS resources required by AWS Batch3. Knot passes
the location of the Docker container on AWS ECR to its job
definition so that all jobs execute the SP. The user may restrict the
compute environment of the Knot to only certain instance types
(e.g. c4.2xlarge) or may choose a specific Amazon Machine
Image (AMI) to be loaded on each compute resource. Or, they
may simply request a minimum, desired, and maximum number
of virtual CPUs and let AWS Batch select and manage the EC2
instances.

Knot uses job definition and compute environment defaults
that are conservative enough to run most simple jobs, with the
goal of minimizing errors due to insufficient resources. The casual
user may never need to concern themselves with selecting an
instance type or specifying an AMI. Users who want to minimize
costs by specifying the minimum sufficient resources or users
who need additional resources for intensive jobs can control their
jobs’ memory requirements, instance types, or AMIs. This might
be necessary if the jobs require special hardware (e.g. GPGPU
computing) or if the user wants more fine-grained control over
which resources are launched.

One of the most complex aspects of AWS is its permissions
model4. Here, we assume that the user has the permissions needed
to run AWS Batch in the console. We also provide users with the
minimal necessary permissions in the documentation.

Finally, Knot exposes AWS resource tags [AWS18c] to the
user, allowing the user to assign metadata key-value pairs to
each created resource. This facilitates management of Cloudknot
generated resources and allows the user to quickly recognize
Cloudknot resources in the AWS console.

Multiple Data (MD)

To operate on the MD, the Knot.map() method uses a simple
for loop to iterate over the outer-most dimension of the input
array and assign each element to a separate AWS Batch job.

3. The required resources are

• AWS Identity and Access Management (IAM) Roles

– a batch service IAM role to allow AWS Batch to make calls
to other AWS services on the user’s behalf;

– an Elastic Container Service (ECS) instance role to be at-
tached to each container instance when it is launched;

– an Elastic Cloud Compute (EC2) Spot Fleet role to allow
Spot Fleet to bid on, launch, and terminate instances if the
user chooses to use Spot Fleet instances instead of dedicated
EC2 instances;

• an AWS Virtual Private Cloud (VPC) with subnets and a security
group;

• an AWS Batch job definition specifying the job to be run;
• an AWS Batch job queue that holds jobs until scheduled into a

compute environment;
• and an AWS Batch compute environment, which is a set of compute

resources that will be used to run jobs.

4. https://docs.aws.amazon.com/IAM/latest/UserGuide

10 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

The Knot serializes each element in the array and sends it to S3,
organizing the data in a schema that is internally consistent with
the expectations of the CLI. It then launches an AWS Batch array
job (or optionally, separate individual Batch jobs) to execute the
program over these data. When run, each batch job selects its own
input, executes the UDF, and returns its serialized output to S3.

If the instances and S3 bucket are in the same region, then
users do not pay for transfer from S3 to the EC2 instances and
back. They pay only for transfer out of the data center (i.e. from
their local machine to S3 and back). Transfer speed within the
data center also outperforms transfer speed between data centers.
So it is both less costly and more performant to colocate the
Cloudknot S3 bucket with the EC2 instances. Cloudknot includes
utility functions to change regions and S3 buckets for this purpose.

In the last step, Knot.map() downloads the output from S3
and returns it to the user. Since AWS Batch allows arbitrarily
long execution times, Knot.map() returns a list of futures for
the results, mimicking Python’s concurrent futures’ Executor
objects. If the results are too large to fit on the local machine,
the user may augment their UDF to write results to S3 or some
other remote storage and then simply return the address at which
to retrieve the result.

Under the hood, Knot.map() creates a
concurrent.futures.ThreadPoolExecutor
instance where each thread intermittently queries S3
for its returned output. The results are encapsulated
in concurrent.futures.Future objects, allowing
asynchronous execution. The user can use Future methods
such as done() and result() to test for success or view the
results. This also allows attaching callbacks to the results using
the add_done_callback() method. For example a user may
want to perform a local reduction on results generated on AWS
Batch.

API

The above interactions with AWS resources are hidden from the
user. The advanced and/or curious user can customize the Docker
container or CloudFormation template. But for most use cases, the
user interacts only with the Knot object. This section provides an
example calculating the value of π as a pedagogical introduction
to the Cloudknot API.

We first import Cloudknot and define the function that we
would like to run on AWS Batch. Cloudknot uses the pipreqs
[Kra17] package to generate the requirements file used to install
dependencies in the Docker container on AWS ECR. So all
required packages must be imported in the source code of the
UDF itself.

import cloudknot as ck

def monte_pi_count(n):
import numpy as np
x = np.random.rand(n)
y = np.random.rand(n)
return np.count_nonzero(x * x + y * y <= 1.0)

Next, we create a Knot instance and pass the UDF
using the func argument. The name argument affects
the names of resources created on AWS. For example,
in this case, the created job definition would be named
pi-calc-cloudknot-job-definition:

knot = ck.Knot(name='pi-calc', func=monte_pi_count)

We submit jobs with the Knot.map() method:

import numpy as np # for np.ones
n_jobs, n_samples = 1000, 100000000
args = np.ones(n_jobs, dtype=np.int32) * n_samples
future = knot.map(args)

This will launch an AWS Batch array job with 20 child jobs,
one for each element of the input array. Cloudknot can acco-
modate functions with multiple inputs by passing the map()
method a sequence of tuples of input arguments and the
starmap=True argument. For example, if the UDF signature
were def udf(arg0, arg1), one could execute udf over
all combinations of arg0 in [1, 2, 3] and arg1 in ['a',
'b', 'c'] by calling

args = list(itertools.product([1, 2, 3],
['a', 'b', 'c']))

future = knot.map(args, starmap=True)

We can then query the result status using future.done()
and retrieve the results using future.result(), which
will block until results are returned unless the user passes
an optional timeout argument. We can also check the sta-
tus of all the jobs that have been submitted with this Knot
instance by inspecting the knot.jobs property, which re-
turns a list of cloudknot.BatchJob instances, each of
which has its own done property and result() method.
So in the example above, future.done() is equivalent to
knot.jobs[-1].done and future.result() is equiva-
lent to knot.jobs[-1].result(). In this way, users have
access to AWS Batch job results that they have run in past sessions.

In this pedagogical example, we are estimating π using the
Monte Carlo method. Knot.map() returns a future for an array
of counts of random points that fall within the circle enclosed by
the unit square. To get the final estimate of π , we need to sum all
the elements of this array and divide by four, a simple use case for
future.add_done_callback():

PI = 0.0
n_total = n_samples * n_jobs
def pi_from_future(future):

global PI
PI = 4.0 * np.sum(future.result()) / n_total

future.add_done_callback(pi_from_future)

Lastly, without navigating to the AWS console, we can get a quick
summary of the status of all jobs submitted with this Knot using

>>> knot.view_jobs()
Job ID Name Status
--
fcd2a14b... pi-calc-0 PENDING

Examples

In this section, we will present a few use cases of Cloudknot.
We will start with examples that have minimal software and data
dependencies, and increase the complexity by adding first data
dependencies and subsequently complex software and resource
dependencies. These and other examples are available in Jupyter
Notebooks in the Cloudknot repository [RHR18b].

Solving differential equations

Simulations executed with Cloudknot do not have to comply with
any particular memory or time limitations. This is in contrast

CLOUDKNOT: A PYTHON LIBRARY TO RUN YOUR EXISTING CODE ON AWS BATCH 11

to Pywren’s limitations, which stem from the use of the AWS
Lambda service. On the other hand, Cloudknot’s use of AWS
Batch increases the overhead associated with creating AWS re-
sources and uploading a Docker container to ECR. While this
infrastructure setup time can be minimized by reusing AWS
resources that were created in a previous session, this setup time
suits use-cases for which execution time is much greater than the
time required to create the necessary resources on AWS.

To demonstrate this, we used Cloudknot and Pywren to find
the steady-state solution to the two-dimensional heat equation
by the Gauss-Seidel method [BBC+94]. The method chosen is
suboptimal, as is the specific implementation of the method, and
serves only as a benchmarking tool. In this unrealistic example,
we wish to parallelize execution both over a range of different
boundary conditions and over a range of grid sizes.

First, we hold the grid size constant at 10 x 10 and parallelize
over different temperature constraints on one edge of the simu-
lation grid. We investigate the scaling of job execution time as a
function of the size of the argument array. In Figure 2 we show the
execution time as a function of nargs, the length of the argument ar-
ray (with both on log2 scales). We tested scaling using Cloudknot’s
default parameters and also using custom parameters5. Regardless
of the Knot parameters, Pywren outperformed Cloudknot at all
argument array sizes. Indeed, Pywren appears to achieve constant
scaling between 22 ≤ nargs ≤ 29, revealing AWS Lambda’s capa-
bilities for massively parallel computation. For nargs > 29, Pywren
appears to conform to linear scaling with a constant of roughly
0.25. By contrast, Cloudknot exhibits noisy linear scaling for
nargs ' 25, with constants of roughly 2 for the custom configuration
and roughly 4 for the default configuration. Precise determination
of these scaling constants would require more data for a larger
range of argument sizes.

For the data in Figure 3, we still parallelized over only five
different temperature constraints, but we did so for increasing
grid sizes. Grid sizes beyond 125 x 125 required an individual
job execution time that exceeded the AWS Lambda execution
limit of 300s. So Pywren was unable to compute on the larger
grid sizes. There is a crossover point around 80 x 80 where
Cloudknot outperforms Pywren. Before this point, AWS Lambda’s
fast triggering and continuous scaling surpass the AWS Batch
queueing system. Conversely, past this point the compute power of
each individual EC2 instance launched by AWS Batch is enough
to compensate for the difference in queueing performance.

Taken together, Figures 2 and 3 indicate that if a UDF can
be executed within AWS Lambda’s five minute execution time
and 1.5 GB memory limitations and does not have software and
data dependencies that would prohibit using Pywren, it should
be parallelized on AWS using Pywren rather than Cloudknot.
However, when simulations are too large or complicated to fit
well into Pywren’s framework, Cloudknot is the appropriate tool
to simplify their distributed execution on AWS. Pywren’s authors
note that the AWS Lambda limits are not fixed and are likely
to improve. We agree and note only that EC2 and AWS Batch
limitations are likely to improve as well. So long as there exists
a computational regime between the two sets of limitations,

5. Default settings are min_vcpus=0, desired_vcpus=8, and
max_vcpus=256. Custom settings are desired_vcpus=2048,
max_vcpus=4096, and min_vcpus=512. Both default and custom
Cloudknot cases were also limited by the EC2 service limits for our region
and account, which vary by instance type but never exceeded 200 instances.

Fig. 2: Execution time to find solutions of the 2D heat equation for
many different temperature constraints on a 10 x 10 grid. We show
execution time scaling as a function of the number of constraints for
Pywren, the default Cloudknot configuration, and a Cloudknot config-
uration with more available vCPUs. Pywren outperforms Cloudknot
in all cases. We posit that the additional overhead associated with
building the Docker image, along with EC2 service limits affected
Cloudknot’s throughput.

Fig. 3: Execution time to find five solutions to the 2D heat equation
as a function of grid size. Grid sizes above 125 x 125 exceed Pywren’s
limit on execution time of 300 sec. The cross-over point at around 80
x 80 occurs when it is more beneficial to have the more powerful EC2
instances provided by Cloudknot with AWS Batch than the massively
parallel execution provided by Pywren with AWS Lambda.

Cloudknot can offer researchers a simple platform with which to
execute their scientific workloads.

Data Dependencies: Analysis of magnetic resonance imaging data

Because Cloudknot is run on the standard AWS infrastructure,
it allows specification of complex and large data dependencies.
Dependency of individual tasks on data can be addressed by
preloading the data into object storage on S3, and then down-
loading of individual bits of data needed to complete each task
into the individual worker machines.

12 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

As an example, we implemented a pipeline for analysis of
human MRI data. Human MRI data is a good use-case for a system
such as Cloudknot because much of the analysis proceeds in a
parallel manner. Even for large datasets with multiple subjects,
a large part of the analysis is conducted first at the level of
each individual brain. Aggregation of information across brains
is typically done after many preprocessing and analysis stages at
the level of each individual subject.

For example, diffusion MRI (dMRI) is a method that measures
the properties of the connections between different regions of the
brain. Over the last few decades, this method has been used to
establish the role of these connections in many different cognitive
and behavioral properties of the human brain, and to delineate the
role that the biology of these connections plays in neurological and
psychiatric disorders [Wan16]. Because of the interest in these
connections, several large consortium efforts for data collection
have aggregated large datasets of human dMRI data from multiple
different subjects [GSM+16].

In the analysis of dMRI data, the first few steps are done
at the individual level. For example, the selection of regions of
interest within each image and the denoising and initial modeling
of the data can all be completed at the individual level in parallel.
In a previous study, we implemented a dMRI analysis pipeline
that contained these steps and we used it to compare several Big
Data systems as a basis for efficient scientific image processing
[MDZ+17]. Here, we reused this pipeline. This allows us to
compare the performance of Cloudknot directly against the per-
formance of several alternative systems for distributed computing
that were studied in our previous work: Spark [ZCF+10], Myria
[HTdAC+14] and Dask [Roc15].

In Cloudknot, we used the reference implementation from
this previous study written in Python and using methods from
Dipy [GBA+14], which are implemented in Python and Cython.
In contrast to the other systems, essentially no changes had to
be made to the reference implementation when using Cloudknot,
except to download the part of the data required for an individual
job from S3 into the individual instances. Parallelization was
implemented only at the level of individual subjects, and a naive
serial approach was taken at the level of each individual.

We found that with a small number of subjects this reference
implementation is significantly slower with Cloudknot compared
to the parallelized implementation in these other systems. But
the relative advantage of these systems diminshes substantially
as the number of subjects grows larger (Figure 4), and the benefits
of parallelization across subjects starts to be more substantial.
With the largest number of subjects used, Cloudknot processed
25 subjects 10% slower than Spark and Myria; however, it was
25% slower than Dask, the fastest of the tools that we previously
benchmarked.

There are two important caveats to this analysis: the first is that
the analysis with the other systems was conducted on a cluster
with a fixed allocation of 16 nodes (each node was an AWS
r3.2xlarge instance with 8 vCPUs). The benchmark code does
run faster with more nodes added to the cluster [MDZ+17]. The
largest amount of data that was benchmarked was for 25 subjects,
corresponding to 105 GB of input data and a maximum of 210
GB of intermediate data. Notably, even for this amount of data,
Cloudknot deployed only two instances of the r4.16xlarge type --
each with 64 vCPUs and 488 GB of RAM. In terms of RAM,
this is the equivalent of a 16 node cluster of r3.2xlarge instances,
but the number of CPUs deployed to the task is about half. In

Fig. 4: MRI analysis pipeline with data requirements. A compari-
son of Cloudknot performance to other parallel computing systems:
Dask, Spark and Myria, based on a previous benchmark [MDZ+17].
Cloudknot is orders of magnitude slower for small amounts of data,
but reaches within 10-25 % of these systems’ performance for large
amounts of data.

general, users can choose to scale vertically (i.e., larger instance
types, with more CPUs) or horizontally (i.e., more machines of
smaller instance types) through the instance_types keyword
argument to Knot. Additional scaling can also be reached by
expanding the cluster with min_vcpus. The second caveat to
these results is that that the comparison timing data for the other
systems is from early 2017, and these systems may have evolved
and improved since.

Data and software dependencies: analysis of microscopy data

The MRI example demonstrates the use of a large and rather com-
plex dataset. In addition, Cloudknot can manage complex software
dependencies. Researchers in cell biology, molecular engineering
and nano-engineering are also increasingly relying on methods
that generate large amounts of data and on analysis that requires
large amounts of computing power. For example, in experiments
that evaluate the mobility of synthetically designed nano-particles
in biological tissue [Nan17], [NWS+12], researchers may record
movies of microscopic images of the tissue at high spatial and
temporal resolution and with a wide field of view, resulting in
large amounts of image data, often stored in multiple large files.
These collections often reach several TB in size.

To analyze these experiments, researchers rely on software
implemented in ImageJ for particle segmentation and tracking,
such as TrackMate [TPS+17]. However, when applied to large
amounts of data, using TrackMate serially in each experiment can
be prohibitively time consuming. One solution is to divide the
movies spatially into smaller field of view movies, and analyze
them in parallel.

ImageJ and Trackmate are written in Java and can be scripted
using Jython. This implies complex software dependencies, be-
cause the software requires installation of the ImageJ Jython
runtime. Because Cloudknot relies on docker, this installation can
be managed using the command line interface (i.e., wget). Once
a docker image is created that contains the software dependencies
for a particular analysis, Python code can be written on top of it to

CLOUDKNOT: A PYTHON LIBRARY TO RUN YOUR EXISTING CODE ON AWS BATCH 13

execute system calls that will run the analysis. This approach was
recently implemented in [Cur18].

Additional complexity in this use-case is caused by the volume
of data. Because of the data size in this case, a custom AMI had
to be created from the AWS Batch AMI, that includes a larger
volume (Batch AMI volumes are limited to 30 GB of disk-space).

Conclusion

Cloudknot simplifies cloud-based distributed computing by pro-
grammatically executing UDFs in AWS Batch. This lowers the
barrier to cloud computing and allows users to launch massive
workloads at scale from within their Python environment.

We have demonstrated Cloudknot’s ability to execute complex
algorithms over vast quantities of data using real-world examples
from neuroimaging and microscopy. And we’ve included analyses
that show Cloudknot’s performance compared to other distributed
computing frameworks. On one hand, scaling charts like the ones
in Figures 2, 3, and 4 are important because they show potential
users the relative cost in execution time of using Cloudknot
compared to other distributed computing platforms.

On the other hand, the timing results in this paper, indeed
most benchmark results in general, measure the bare execution
time, capturing only partial information about the time that it
takes to reach a computational result. This is because all the
distributed systems currently available require some amount of
systems administration and often incur non-trivial setup time. In
addition, most of the existing systems currently require some
amount of rewriting of the original code [MDZ+17]. If the amount
of time that a user will spend learning a new queueing system
or batch processing language, administering this system, and
rewriting their code for this system exceeds the time savings
due to reduced execution time, then it will be advantageous to
accept Cloudknot’s suboptimal execution time in order to use its
simplified API. Once they gain access to AWS Batch, beginning
Cloudknot users simply add an extra import statement, instantiate
a Knot object, call the map() method, and wait for results. And
because Cloudknot is built using Docker and the AWS Batch
infrastructure, it can accommodate the needs of more advanced
users who want to augment their Docker files or specify instance
types.

Cloudknot trades runtime performance for development per-
formance and is best used when development speed matters most.
Its simple API makes it a viable tool for researchers who want
distributed execution of their computational workflow, from within
their Python environment, without the steep learning curve of
learning a new platform. It may have business applications as well
since data scientists performing exploratory analysis would benefit
from short development times.

Future Work

Cloudknot can benefit from several enhancements:

• In future developments, we will focus our attention on
domain-specific applications (in neuroimaging, for exam-
ple) and include enhancements and bug-fixes that arise
from use in our own research.

• Unlike Dask, Cloudknot does not support computational
pipelines that define dependencies between different tasks.
Future releases may support job dependencies so that
specific jobs can be scheduled to wait for the results of
previously submitted jobs.

• Cloudknot could also provide a simple way to connect to
EC2 instances to allow in-situ monitoring of running jobs.
To do this now, a user must look up an EC2 instance’s
address in the AWS console and connect to that instance
using an SSH client. Future releases may launch this SSH
terminal from within the Python session.

• Knot uses hard-coded defaults for the configuration of its
job definition and compute environment. Future Cloudknot
releases could intelligently estimate these defaults based
on the UDF and the input data. For example, Knot could
estimate its resource requirements by executing the UDF
on one element of the input array many times using a
variety of EC2 instance types. By recording the execution
time, memory consumption, and disk usage for each trial,
Knot could then adopt the configuration parameters of the
best6 run and apply those to the remaining input.

In addition to these capability enhancements, Cloudknot could
benefit from performance enhancements designed to address the
performance gap with other distributed computing platforms. This
might involve prebuilding certain Docker containers or intelli-
gently selecting an AWS region to minimize cost or queueing time.
Lastly, we claimed that Cloudknot’s simple API likely gives it a
gentler learning curve than other distributed computing platforms,
but we did not rigorously compare the time investment required
to learn how to use Cloudknot, relative to other systems. Future
work may seek to fill this gap with a comparative human-computer
interaction (HCI) study.

Acknowledgements

This work was funded through a grant from the Gordon & Betty
Moore Foundation and the Alfred P. Sloan Foundation to the Uni-
versity of Washington eScience Institute. Thanks to Chad Curtis
and Elizabth Nance for the collaboration on the implementation of
a Cloudknot pipeline for analysis of microscopy data.

REFERENCES

[Aut18] The Kubernetes Authors. Helm: The package manager for
kubernetes. https://helm.sh/, 2018.

[AWS18a] Inc. Amazon Web Services. Amazon ec2 spot instances. https:
//aws.amazon.com/ec2/spot, 2018.

[AWS18b] Inc. Amazon Web Services. Getting started with aws
batch. https://docs.aws.amazon.com/batch/latest/userguide/
Batch_GetStarted.html, 2018.

[AWS18c] Inc. Amazon Web Services. Tagging your amazon
ec2 resources. https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/Using_Tags.html, 2018.

[BBC+94] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato,
J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der
Vorst. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia,
PA, 1994.

[Boe14] Carl Boettiger. An introduction to docker for reproducible
research, with examples from the R environment. CoRR,
abs/1410.0846, 2014. URL: http://arxiv.org/abs/1410.0846,
arXiv:1410.0846.

[Cur18] Chad Curtis. diff_classifier. https://github.com/ccurtis7/diff_
classifier, 2018.

[GBA+14] Eleftherios Garyfallidis, Matthew Brett, Bagrat Amirbekian,
Ariel Rokem, Stefan Van Der Walt, Maxime Descoteaux,
and Ian Nimmo-Smith. Dipy, a library for the analysis of
diffusion mri data. Frontiers in Neuroinformatics, 8:8, 2014.
doi:10.3389/fninf.2014.00008.

6. The "best" configuration could be specified by the user on Knot instantia-
tion as either the one which minimizes cost to the user or that which minimizes
the wall time required to process the input data.

14 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

[GSM+16] Matthew F Glasser, Stephen M Smith, Daniel S Marcus, Jesper
L R Andersson, Edward J Auerbach, Timothy E J Behrens,
Timothy S Coalson, Michael P Harms, Mark Jenkinson, Steen
Moeller, Emma C Robinson, Stamatios N Sotiropoulos, Junqian
Xu, Essa Yacoub, Kamil Ugurbil, and David C Van Essen.
The human connectome project’s neuroimaging approach. Nat.
Neurosci., 19(9):1175–1187, August 2016.

[HTdAC+14] Daniel Halperin, Victor Teixeira de Almeida, Lee Lee Choo,
Shumo Chu, Paraschos Koutris, Dominik Moritz, Jennifer Or-
tiz, Vaspol Ruamviboonsuk, Jingjing Wang, Andrew Whitaker,
Shengliang Xu, Magdalena Balazinska, Bill Howe, and Dan
Suciu. Demonstration of the myria big data management ser-
vice. In Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’14, pages 881–
884, New York, NY, USA, 2014. ACM.

[JPV+17] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht.
Occupy the Cloud: Distributed Computing for the 99%. ArXiv
e-prints, February 2017. arXiv:1702.04024.

[Kra17] Vadim Kravcenko. pipreqs. https://github.com/bndr/pipreqs,
2017.

[MDZ+17] Parmita Mehta, Sven Dorkenwald, Dongfang Zhao, Tomer
Kaftan, Alvin Cheung, Magdalena Balazinska, Ariel Rokem,
Andrew Connolly, Jacob Vanderplas, and Yusra AlSayyad.
Comparative evaluation of big-data systems on scientific image
analytics workloads. Proceedings of the VLDB Endowment,
10(11):1226–1237, 2017.

[Nan17] Elizabeth Nance. Brain-Penetrating nanoparticles for analysis
of the brain microenvironment. Methods Mol. Biol., 1570:91–
104, 2017.

[NEZH+17] Anwar O Nunez-Elizalde, Tianjiao Zhang, Alexander G Huth,
James S Gao, Storm Slivkoff, Mark D Lescroart, Fatma
Deniz, Carson McNeil, Robert Gibboni, Sara F Popham,
Ariel Rokem, Michael D Oliver, and Jack L Gallant. cot-
toncandy: scientific python package for easy cloud storage,
October 2017. URL: https://doi.org/10.5281/zenodo.1034342,
doi:10.5281/zenodo.1034342.

[NWS+12] Elizabeth A Nance, Graeme F Woodworth, Kurt A Sailor, Ting-
Yu Shih, Qingguo Xu, Ganesh Swaminathan, Dennis Xiang,
Charles Eberhart, and Justin Hanes. A dense poly (ethylene gly-
col) coating improves penetration of large polymeric nanopar-
ticles within brain tissue. Sci. Transl. Med., 4(149):149ra119–
149ra119, 2012.

[RHR18a] Adam Richie-Halford and Ariel Rokem. Cloudknot documen-
tation. https://richford.github.io/cloudknot/index.html, 2018.

[RHR18b] Adam Richie-Halford and Ariel Rokem. Cloudknot
examples. https://github.com/richford/cloudknot/tree/master/
examples, 2018.

[RHR18c] Adam Richie-Halford and Ariel Rokem. Cloudknot repository.
https://github.com/richford/cloudknot, 2018.

[Roc15] M Rocklin. Dask: Parallel computation with blocked algorithms
and task scheduling. In Proceedings of the 14th Python in
Science Conference (Scipy 2015), 2015.

[Rod17] Daniel Rodriguez. dask-ec2 repository. https://github.com/
dask/dask-ec2, 2017.

[TPS+17] Jean-Yves Tinevez, Nick Perry, Johannes Schindelin,
Genevieve M Hoopes, Gregory D Reynolds, Emmanuel Laplan-
tine, Sebastian Y Bednarek, Spencer L Shorte, and Kevin W
Eliceiri. TrackMate: An open and extensible platform for
single-particle tracking. Methods, 115:80–90, February 2017.

[Wan16] Brian A Wandell. Clarifying human white matter. Annu. Rev.
Neurosci., April 2016.

[ZCF+10] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott
Shenker, and Ion Stoica. Spark: cluster computing with working
sets. In Proceedings of the 2nd USENIX conference on Hot
topics in cloud computing, pages 10–10. static.usenix.org, 2010.

PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018) 15

Equity, Scalability, and Sustainability of Data Science
Infrastructure

Anthony Suen§∗, Laura Norén‡, Alan Liang§, Andrea Tu§

F

Abstract—We seek to understand the current state of equity, scalability, and
sustainability of data science education infrastructure in both the U.S. and
Canada. Our analysis of the technological, funding, and organizational struc-
ture of four types of institutions shows an increasing divergence in the ability
of universities across the United States to provide students with accessible
data science education infrastructure, primarily JupyterHub. We observe that
generally liberal arts colleges, community colleges, and other institutions with
limited IT staff and experience have greater difficulty setting up and maintaining
JupyterHub, compared to well-funded private institutions or large public research
universities with a deep technical bench of IT staff. However, by leveraging
existing public-private partnerships and the experience of Canada’s national
JupyterHub (Syzygy), the U.S. has an opportunity to provide a wider range of
institutions and students access to JupyterHub.

Index Terms—data science education, Jupyter, Jupyterhub, higher education

Introduction

Data science education has experienced great demand over the
past five years, with increasing numbers of programs and majors
being developed. This demand has fueled the growth of Jupyter-
Hubs, which create on-demand, cloud based Jupyter notebooks
for students and researchers. Compared to local environments
that run Jupyter, a cloud based JupyterHub provides many con-
veniences including not requiring any installation, quicker access
to course content, and computing flexibility, such that users even
on Chromebooks or iPads are able to run Jupyter notebooks.

Additional benefits include the ability to quickly deploy cus-
tomizations for different use cases, authentication, autograding,
and providing campus-wide computing and storage. Overall, uni-
versities have found that utilizing JupyterHubs increases accessi-
bility to data science tools, improves the scaling of data science
and computing courses into many other domains, and provides a
cohesive learning and research platform.

However, little was known about the barriers universities face
when attempting to deploy JupyterHub, which has only been in
use since 2015.

This paper aims to understand how JupyterHub is affecting
the equity, scalability, and sustainability of data science education
by providing four cases studies of how JupyterHubs are being

* Corresponding author: anthonysuen@berkeley.edu
§ University of California, Berkeley
‡ New York University

Copyright © 2018 Anthony Suen et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

deployed in varying academic institutions across the United States
and Canada. We will look at the barriers to deploy, maintain,
and grow JupyterHub from the technical staffing and financial
perspectives of each institution. The four case studies include large
and technical universities such as UC Berkeley, small liberal arts
colleges, private universities with large endowments like Harvard,
and the Canadian National JupyterHub Model.

We conducted over 10 qualitative interviews with university
faculty and IT staff from around the U.S. and Canada. We also
reviewed documentation found on Github and websites of 20
institutions regarding their JupyterHub deployments. We struc-
tured our analysis by first trying to understand the institution’s
educational goals and how it drives funding and decision/structure.
We then delve into the infrastructural costs, capabilities, along
with team size. We lastly measured educational impact, such as
the number of students served and the number of classes provided.
We conclude with a summary of the findings and potential ways
to improve equity, scalability, and sustainability of current existing
JupyterHub infrastructure.

Case Study 1: UC Berkeley

In Spring 2015, UC Berkeley became one of the first universities
to adopt JupyterHub1. Initially set up for 100 students in the new
Foundations of Data Science Course Data 8, the JupyterHub in-
stance has quickly expanded to now support over 1,000 students in
Data 8 each semester and more than 3,000 students in Berkeley’s
Data Science connectors, modules, and upper division courses. An
additional 45,000 students utilize the JupyterHub in Data 8’s free
online EdX version.

UC Berkeley aims to serve large portions of its 30,000 under-
graduates with data science tools, thus creating the motivation for
it to build one of the largest JupyterHub deployments in the world.
This cross campus pedagogical vision is assisted by the presence
of a large technical team, which consists of many members of
the core Jupyter team. UC Berkeley’s JupyterHub runs on the
Kubernetes platform, which allows for easily scalable clusters that
can support many thousands of users. Furthermore, Berkeley’s
JupyterHub infrastructure, which subsists on cloud credits, is
supported by long running industry relations and partnerships with
cloud vendors like Microsoft and Google.

The UC Berkeley infrastructure team in charge of running
Berkeley’s instance of JupyterHub, known as “Datahub”, consists
of the Dean of the Division of Data Sciences, one tenured teaching
faculty, one full-time staff member, ~10 postdocs and graduate
students who can help troubleshoot–many of which are from

16 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

the core Jupyter team–along with a large, technically proficient
undergraduate support staff2.

UC Berkeley’s model faces sustainability challenges given its
heavy reliance on undergraduates, graduate students and postdoc
staff and donated computing credits from cloud vendors. Student
and postdoc staff generally move on and have other priorities to
advance their careers as they typically do not advance their careers
by doing SysAdmin work, leading to a lack of consistent support
staff and a consequent lack of consistent expertise. The reliance
on free cloud credits is further not guaranteed forever and requires
regular negotiations with public cloud vendors.

Nonetheless, Berkeley’s model benefits from its campus-wide
scale, setting the ground for a large and diverse array of data sci-
ence courses to be setup with minimum infrastructure overhead3.
The infrastructure can also support very large courses, like quan-
titative gateway courses for many departments. The Berkeley
Datahub has a workflow with unique features like interactive
links and Ok.py for large scale autograding of thousands of
assignments. Finally, it provides a common suite of tools that are
widely accessible, allowing students a productive and cohesive
environment for both learning and research.

Case Study 2: Small Liberal Arts Universities

The team interviewed several small liberal arts colleges to see how
they utilized Jupyter in their data science or computer science
curricula. We learned that lack of funding, insufficient technical
knowledge, limited relationships and experiences dealing with
cloud vendors, and a shortage of time from busy instructors
seem to be the major hurdles to deploying a successfully running
JupyterHub.

At liberal arts colleges, deployments are usually designed for
small classes consisting of ~20-30 students and maintained by one
or two professors. There exists little IT help for the professor, as
compared to the vast number of support staff at institutions like
UC Berkeley. Some smaller institutions have even asked public
institutions like UC Berkeley for support. The lack of proper
guidance and departmental resources, along with overburdened
faculty, often may dissuade efforts to set up JupyterHub altogether.
Generally, paying for such technology is also tough and ad hoc for
smaller institutions.

One of the exceptions is Bryn Mawr College; its JupyterHub
deployment currently hosts and allows access to a wide range
of courses. Some courses such as Introduction to Computing
(introductory computer science course) have migrated to the
JupyterHub environment, while new courses such as Computing in
Biology have been introduced specifically utilizing Jupyter. Bryn
Mawr has emphasized using JupyterHub due to its accessibility for
biology students who have limited experienced with programming,
while also making it useful for CS students who are interested
in biological applications for CS. The Bio/CS 115: Computing
Through Biology course4, which was developed based on the
Jupyter environment, serves as an alternative CS intro course
and a 2nd semester Biology intro course. This option reduces the
prerequisite barriers of entry to both domains and allows students
to learn both in a well-integrated manner, especially given the
amount of intro courses that compete for their schedules.

Case Study 3: Wealthy Private Universities

Compared to smaller liberal arts universities, well-funded private
universities often have a rich suite of IT resources. Even if

internal IT staff encounter limitations, well funded private univer-
sities often pay third-party vendors to help deploy and maintain
JupyterHubs and all related support infrastructure. Harvard has
said that they “hired a firm to help us implement JupyterHub on
AWS”. Compared to smaller liberal arts colleges, the experience
is relatively free of frustration since the university covers all
costs. Nonetheless, Harvard has noted that using JupyterHub has
increased flexibility and hence decreased setup costs for both users
and instructors, and has further claimed that this solution is much
more cost effective compared to traditional solutions.

Most of the classes that have deployed JupyterHub are still
relatively small, with most having 12-50 students. At Harvard,
JupyterHub was deployed on AWS for two classes in the School
of Engineering, which provided significant customization. The
Signal Processing class used a Docker-based JupyterHub, where
each user was provisioned with a docker container notebook.
For the Decision Theory class, JupyterHub used a dedicated
EC2 instance per user’s notebook, providing better scalability,
reliability and cost efficiency5. Harvard’s School of Engineering
and Applied Science (SEAS) further announced in October 2017
for a schoolwide JupyterHub deployment6. In addition to SEAS’s
JupyterHub, the Harvard Medical School has its own JupyterHub
deployment.

Instead of deploying and maintaining their own JupyterHubs,
other universities have found success by contracting a third-party
vendor to deploy JupyterHub. Vocareum7, an example of one
company specializing in this space, helps to set up and manage
environments like Jupyter and hosts labs for students to access.
Currently, their data sciences lab is used by many wealthy private
universities including Cornell, Columbia, and the University of
Notre Dame. Others firms that provide similar services include
CoCalc and Gryd.

However, the majority of universities generally have less
experience with cloud computing and experienced IT staff, thus
limiting the replicability of the model. Furthermore, most uni-
versities’ data science initiatives cannot rely on their university’s
operating budget to support this type of teaching expense, espe-
cially if classes are relatively small (12-50 students), hindering
scalability of the model. If done in an uncoordinated way, the costs
can skyrocket if departments independently contract with cloud
providers and IT consultants to set up their own JupyterHubs.

Case Study 4: Canadian Federation (PIMS)

In 2017, an initiative in Canada led by the Pacific Institute of
Mathematics and Sciences (PIMS) and hosted by Compute Canada
started a new national model for JupyterHub that provides access
to numerous institutions across Canada8. With data privacy laws
removing the option of using cloud service providers, Syzygy
grew to become the largest federally funded JupyterHub and is
utilized by more than 8,000 students across 15 universities in
Canada. Syzygy is run and supported by one full-time system
network manager based at PIMS who oversees installations and
collaborates with IT staff at Compute Canada. Any Canadian
University can simply ask Syzygy for a JupyterHub and a new
cluster will be set up. The system manager is paid for by Compute
Canada, and further grants from the Canadian federal government
($4.5m) and Alberta ($1m) support professors and teachers. There
is also time donation from professors at 10 different institutions.

Syzygy has some potential bottlenecks. Firstly, there is only
one dedicated staff member conducting core management and

EQUITY, SCALABILITY, AND SUSTAINABILITY OF DATA SCIENCE INFRASTRUCTURE 17

operations for 15 different institutions. Some scaling issues also
currently exist as any institution’s JupyterHub is at most able
to handle ~2 classes of students concurrently (around 200-300
students). Nonetheless, this is a functional model in terms of scale
and sustainability based on the number of universities involved,
Canada’s population size, and strong governmental support.

The leaders of the effort believe that there are multiple benefits
to the strategy. Firstly, it can accommodate small classes, modules,
and even high schools across the country. Secondly, it allows
instructors to focus more on course development, instead of
operating a JupyterHub. Thirdly, it fosters better cross university
collaboration by sharing experiences and course modules through
a common network.

Conclusion - A Path Forward to a National Jupyterhub

While the grassroots efforts across the U.S. have sparked signifi-
cant innovation in the realm of data science education infrastruc-
ture, it has also created a growing chasm of capabilities between
institutions. To equitably increase the access to JupyterHub re-
quires a new model to support many smaller institutions.

Today, only large public or wealthy private universities in the
U.S. can provide JupyterHub for many undergraduates. At smaller
resource-constrained institutions, deploying a JupyterHub instance
for a single class possesses nontrivial costs and may be daunting
for one instructor or their university IT staff. Unfortunately, if there
is no alternative way to access JupyterHub for data science edu-
cation, smaller less well-funded institutions and underrepresented
communities cannot utilize JupyterHub.

When considering the future of JupyterHub in higher data
science education, we see four potential pathways:

• Status Quo - Continuing the current grassroots and un-
coordinated JupyterHub deployments across institutions
would mean smaller or less resource rich institutions
would likely continue to face existing barriers. For smaller
and resource constrained institutions, JupyterHub would
continue to experience very low slow rates of adoption.

• Institutional Grants - Increasing foundational or gov-
ernmental funding for individual universities to set up
their JupyterHubs is another option. Funding can enable
individual institutions to hire IT staff or pay third-party
vendors to create a JupyterHub environment. Based on
Berkeley’s and Harvard’s experiences, we’ve concluded
that grants to hire staff to deploy Jupyterhub is non-
scalable given the high costs of hiring IT staff with such
specialized experience. Funding third-party vendors like
CoCalc, Gryd, Vocareum and public cloud providers like
Google or Microsoft to help set up individual Jupyter-
Hubs is conceivable, but the individual nature of these
transactions may end up being more costly than potential
coordinated national or regional models.

• A National JupyterHub - A national JupyterHub would
offer cost benefits such as utilizing existing federally
funded national supercomputing centers. However, a single
national hub is difficult to realize due to high coordination
costs with thousands of universities.

• Regional Hubs Model - Given the number of universities
in the U.S., establishing several regional hubs can reduce
the burden of deployment and maintenance costs that
individual universities experience today. For each regional
network, by deploying a large Kubernetes cluster that can

support many thousands of users, individual universities
can then deploy their own JupyterHubs on the cluster.

The West Big Data Innovation Hub, UC Berkeley, and Mi-
crosoft will be launching a pilot program by setting up a Ku-
bernetes cluster using Azure for a small group of Western U.S.
universities to pilot their JupyterHubs starting in the Summer of
2018. This will lower the administrative burden while providing
a free scalable infrastructure solution for many small or resource
constrained universities. Further integration of regional computing
facilities at major research universities should be investigated.

1. Kim, A. (2018, May 2). The Jupyterhub Journey: Starting Small and
Scaling Up. Retrieved July 5, 2018, from https://data.berkeley.edu/news/
jupyterhub-journey-starting-small-and-scaling

2. Suen, A. (2018, March 15). People. Retrieved July 5, 2018, from https:
//data.berkeley.edu/about/people

3. Kim, A. (2018, February 20). Modules: Data Made Accessible to Many.
Retrieved July 5, 2018, from https://data.berkeley.edu/news/modules-data-
made-accessible-many

4. Shapiro, J. (2017, May 20). Computing Through Biology with Jupyter.
Speech presented at Jupyter Day Philly, Philadelphia. Retrieved May
24, 2018, from https://github.com/BrynMawrCollege/TIDES/blob/master/
JupyterDayPhilly/JAShapiro_JupyterDayPhilly_2017-05-19.pdf

5. Harvard. (2018). cloudJHub. Retrieved May 24, 2018, from https://github.
com/harvard/cloudJHub

6. Ba, D. (2017, October 23). SEAS Computing and Academic Tech-
nology for FAS Launch JupyterHub Canvas Integration. Retrieved July
6, 2018, from https://atg.fas.harvard.edu/news/seas-computing-and-academic-
technology-fas-launch-jupyterhub-canvas-integration

7. DATA SCIENCES LAB @ VOCAREUM. (n.d.). Retrieved July 6, 2018,
from https://www.vocareum.com/home/data-sciences-lab/

8. Canadians Land on Jupyter. (2017, July 11). Retrieved May 24, 2018,
from https://www.pims.math.ca/news/canadians-land-jupyter

9. Mandava, V. (2017, June 8). NSF Big Data Innovation Hubs collabo-
ration - looking back after one year - Microsoft Research. Retrieved May
24, 2018, from https://www.microsoft.com/en-us/research/blog/nsf-big-data-
innovation-hubs-collaboration/

18 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Composable Multi-Threading and Multi-Processing for
Numeric Libraries

Anton Malakhov‡∗, David Liu‡, Anton Gorshkov‡†, Terry Wilmarth‡

https://youtu.be/HKjM3peINtw

F

Abstract—Python is popular among scientific communities that value its sim-
plicity and power, especially as it comes along with numeric libraries such as
[NumPy], [SciPy], [Dask], and [Numba]. As CPU core counts keep increasing,
these modules can make use of many cores via multi-threading for efficient
multi-core parallelism. However, threads can interfere with each other leading
to overhead and inefficiency if used together in a single application on machines
with a large number of cores. This performance loss can be prevented if all
multi-threaded modules are coordinated. This paper continues the work started
in [AMala16] by introducing more approaches to coordination for both multi-
threading and multi-processing cases. In particular, we investigate the use of
static settings, limiting the number of simultaneously active [OpenMP] parallel
regions, and optional parallelism with Intel® Threading Building Blocks (Intel®
[TBB]). We will show how these approaches help to unlock additional perfor-
mance for numeric applications on multi-core systems.

Index Terms—Multi-threading, Multi-processing, Oversubscription, Parallel
Computations, Nested Parallelism, Multi-core, Python, GIL, Dask, Joblib,
NumPy, SciPy, TBB, OpenMP

1. Motivation

A fundamental shift toward parallelism was declared more than
11 years ago [HSutter], and today, multi-core processors have
become ubiquitous [WTichy]. However, the adoption of multi-
core parallelism in the software world has been slow and Python
along with its computing ecosystem is not an exception. Python
suffers from several issues which make it suboptimal for parallel
processing.

In particular, Python’s infamous global interpreter lock [GIL]
makes it challenging to scale an interpreter-dependent code using
multiple threads, effectively serializing them. Thus, the practice
of using multiple isolated processes is popular and widely utilized
in Python since it avoids the issues with the GIL, but it is prone
to inefficiency due to memory-related overhead. However, when it
comes to numeric computations with libraries like Numpy, most
of the time is spent in C extensions with no access to Python data
structures. The GIL can be released during such computations,
which enables better scaling of compute-intensive applications.
Thus, both multi-processing and multi-threading approaches are
valuable for Python users and have their own areas of applicability.

* Corresponding author: Anton.Malakhov@intel.com
‡ Intel Corporation
† These authors contributed equally.

Copyright © 2018 Anton Malakhov et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Scaling parallel programs is challenging. There are two fun-
damental laws which mathematically describe and predict scala-
bility of a program: Amdahl’s Law and Gustafson-Barsis’ Law
[AGlaws]. According to Amdahl’s Law, speedup is limited by
the serial portion of the work, which effectively puts a limit on
scalability of parallel processing for a fixed-size job. Python is
especially vulnerable to this because it makes the serial part of
the same code much slower compared to implementations in other
languages due to its deeply dynamic and interpretative nature. In
addition, the GIL serializes operations that could be potentially
executed in parallel, further adding to the serial portion of a
program.

Gustafson-Barsis’ law states that if the problem size grows
along with the number of parallel processors, while the serial
portion grows slowly or remains fixed, speedup increases as
processors are added. This law eases the concerns regarding
Python as a language for parallel computing when the amount
of serial computation in a Python code is fixed, and all the data-
processing is hidden behind libraries like NumPy and SciPy. How-
ever, a larger problem size demands more operational memory
to compute, but memory is a limited resource. Even if problem
size is nearly unlimited, as it is for "Big Data", it still has to be
decomposed into chunks that fit into memory. This limited growth
of the problem size on a single node results in the scalability
limitations defined by Amdahl’s Law anyway. Thus, the best
strategy to efficiently load a multi-core system is still to avoid
serial regions and synchronization.

1.1. Nested Parallelism

To avoid serial regions, we expose parallelism at all possible levels
of an application. For example, we make outermost loops parallel,
and explore functional, flow graph, or pipeline types of parallelism
on the application level. Python libraries that help to achieve
this are Dask, Joblib, and the built-in multiprocessing and
concurrent.futures modules. On the innermost level, data-
parallelism can be delivered by Python modules like [NumPy] and
[SciPy]. These modules can be accelerated with optimized math
libraries like Intel® Math Kernel Library (Intel® [MKL]), which
is multi-threaded internally using OpenMP (with default settings).

When everything is combined together, the situation arises
where code from one parallel region calls a function with another
parallel region inside. This is called nested parallelism.

COMPOSABLE MULTI-THREADING AND MULTI-PROCESSING FOR NUMERIC LIBRARIES 19

1.2. Issues of Oversubscription

The libraries named above do not coordinate the creation or
pooling of threads, which may lead to oversubscription, a sit-
uation in which there are many more active software threads
than available hardware resources. For sufficiently big machines
with roughly more than 16 cores, oversubscription can lead to
sub-optimal execution due to frequent context switches, excessive
thread migration, poor cache locality, and load imbalance.

For example, Intel OpenMP* runtime library (used by
NumPy/SciPy) may keep its threads active to facilitate the rapid
start of subsequent parallel regions. This is usually a useful
approach to reduce work distribution overhead, but when another
active thread pool exists in the application, it can impact per-
formance. This is because the waiting OpenMP worker threads
consume CPU time busy-waiting, while the other parallel work
cannot start until OpenMP threads stop spinning or are preempted
by the OS.

Because overhead from linear oversubscription (e.g. 2x) is
not always visible on the application level (especially for smaller
numbers of processor cores), it can be tolerated in many cases
when the work for parallel regions is big enough to hide the
overhead. However, in the worst case, a program starts multiple
parallel tasks and each of these tasks ends up executing an
OpenMP parallel region. This results in quadratic oversubscription
(with default settings) which ruins multi-threaded performance on
systems with a significant number of threads. For some larger
systems like Intel® Xeon Phi™, it may not even be possible to
create as many software threads as the number of hardware threads
squared due to insufficient resources.

1.3. Threading Composability

The co-existing issues of multi-threaded components together
define the threading composability of a program module or
component. A perfectly composable component should be able
to function efficiently among other such components without
affecting their efficiency. The first aspect of building a composable
threading system is to avoid creation of an excessive number of
software threads, preventing oversubscription. Ideally, a compo-
nent or a parallel region should not dictate how many threads it
needs for execution (mandatory parallelism). Instead, components
or parallel regions essentially expose available parallelism to
a runtime library, which in turn can provide control over the
number of threads or can automatically coordinate tasks between
components and parallel regions and map them onto available
software threads (optional parallelism).

1.4. Restricting Number of Threads used in Nested Levels

A common way to solve oversubscription issues involving the
OpenMP runtime library is to disable nested parallelism or
to carefully adjust it according to the number of application
threads. This is usually accomplished by setting environment
variables controlling the OpenMP runtime library. For example,
OMP_NUM_THREADS=1 restricts the number of threads used in
an OpenMP parallel region to 1. We do not discourage the use
of this approach as it might be sufficient to solve the problem
for many use cases. However, this approach can have potential
performance-reducing drawbacks:

*. Other names and brands may be claimed as the property of others.

1) There may not be enough parallelism at the outer applica-
tion level. Blindly disabling nested parallelism can result
in underutilization, and consequently, slower execution.

2) Globally setting the number of threads once does not
take into account different components or phases of the
application, which can have differing requirements for
optimal performance.

3) Setting the optimal value requires the user to have a
deep understanding of the issues, the architecture of the
application, and the system it uses.

4) There are additional settings to take into account like
KMP_BLOCKTIME (time a thread spins before going to
sleep) and thread affinity settings.

5) The issue is not limited to OpenMP. Many Python
packages like Numba, PyDAAL, OpenCV, and Intel’s
optimized SciKit-Learn are based on Intel® TBB or a
custom threading runtime.

2. New approaches

Our goal is to provide alternative solutions for composing multiple
levels of parallelism across multiple threading libraries with same
or better performance compared to the usual approaches. At the
same time, we wish to keep the interface for this simple, requiring
shallower knowledge and fewer decisions from end-users. We
evaluate several new approaches in this paper.

2.1. Static Settings

A common way to parallelize Python code is to employ process or
threads pools (or executors) provided through a standard library.
These pools are also used by other Python libraries implementing
parallel computations like Dask and Joblib. We modify these pools
so that each pool worker calling a nested parallel computation can
only use a particular number of processor cores.

For example, if we have an eight core CPU and want to
create a pool of two workers, we limit the number of threads
per pool worker to four. When using a process pool, we set the
thread affinity mask for each worker process so that any threads
created within a particular process operate only on a specific set of
processor cores. In our example, the first process will use cores 0
through 3 and the second process will use cores 4 through 7. Since
both OpenMP and Intel® TBB respect the incoming affinity mask
during initialization, they limit the number of threads per process
to four. As a result, we have a simple way of sharing threads
between pool workers without any oversubscription issues.

When a multi-threading pool is used for application-level
parallelism, the idea is the similar. Instead of setting process
affinity masks, we limit the number of threads per pool worker
using the threading runtime API. For example, we can use
omp_set_num_threads() to limit the number of threads
for OpenMP parallel regions. This approach is similar to how
OMP_NUM_THREADS environment variable can be specified for
the entire application. The difference is that here, we can use
knowledge of how many outermost workers are requested by the
application and how much hardware parallelism is available on
the machine, and then calculate an appropriate number of threads
automatically and apply it for the specific pool instance. This is a
more flexible approach for applications which might use pools of
different sizes within the same run.

To implement this approach, we have created a Python module
called smp (static or symmetric multi-processing). It works with

20 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

both thread and process pools from multiprocessing and
concurrent.futures modules using the monkey patching
technique that enables us to use this solution without any code
modifications in user applications. To run it, we use one of the
following commands:
python -m smp app.py
python -m smp -f <oversubscription_factor> app.py

The optional argument -f <oversubscription_factor>
sets an oversubscription factor that will be used to compute the
number of threads per pool worker. By default it is 2, which
means that in our example, 8 threads will be used per process. By
allowing this limited degree of oversubscription by default, many
applications achieve better load balance and performance that will
outweigh the overhead incurred by the oversubscription, as dis-
cussed in section 3.5. For the particular examples we show in this
paper, the best performance is achieved with an oversubscription
factor of 1 specified on the command line as -f 1, indicating that
any amount of oversubscription leads to non-optimal performance
for those applications.

2.2. Limiting Simultaneous OpenMP Parallel Regions

The second approach relies on extensions implemeted in the Intel’s
OpenMP runtime. The basic idea is to prevent oversubscription
by not allowing multiple parallel regions (on different top-level
application threads) to run simultaneously. This resembles the
"Global OpenMP Lock" that was suggested in [AMala16]. The
implementation provides two modes for scheduling parallel re-
gions: exclusive and counting. Exclusive mode implements an
exclusive lock that is acquired before running a parallel region
and released after the parallel region completes. Counting mode
implements a mechanism equivalent to a semaphore, which allows
multiple parallel regions with small number of threads to run
simultaneously, as long as the total number of threads does not
exceed a limit. When the limit is exceeded, the mechanism blocks
in a similar way to the exclusive lock until the requested resources
become available. This idea is easily extended to the multiple
process case using Inter-Process Coordination (IPC) mechanisms
such as a system-wide semaphore.

The exclusive mode approach is implemented in the In-
tel® OpenMP* runtime library being released as part of In-
tel® Distribution for Python 20181 as an experimental preview
feature, later the counting mode was also added. Setting the
KMP_COMPOSABILITY environment variable as follows should
enable each OpenMP parallel region to run exclusively, eliminat-
ing the worst oversubscription effects:
env KMP_COMPOSABILITY=mode=exclusive python app.py
env KMP_COMPOSABILITY=mode=counting python app.py

With composability mode in use, multi-processing coordination
is enabled automatically on the first usage. Each process has
its own pool of OpenMP worker threads. While these threads
are coordinated across the processes preventing oversubscription,
creating a large number of threads per process can still cause
resource exhaustion.

2.3. Coordinated Thread Pools with Intel® TBB

Our last approach was introduced in a previous paper [AMala16].
It is based on using Intel® TBB as a single engine for coordinating

1. It was also introduced on Anaconda cloud starting with the version
2017.0.3 in limited, undocumented form.

Fig. 1: Intel® TBB provides a common runtime for Python modules
and coordinates threads across processes.

parallelism across all Python pools and modules. TBB’s work
stealing task scheduler is used to map tasks onto a limited set
of TBB worker threads while the monkey-patching technique is
applied in a TBB module for Python that implements Python’s
ThreadPool on top of TBB tasks. This approach makes it
possible to dynamically balance the load across multiple tasks
from different modules but is limited to the multi-threading case.

In this paper, we extended this approach by introducing an
InterProcess Communication (IPC) layer for Intel® TBB. As
shown in figure 1, different modules that are combined into a
single application, work on top of the shared Intel® TBB pool,
which is coordinated across multiple processes.

The TBB module for Python introduces a shared library,
libirml, which is recognized by Intel® TBB library as a thread
pool provider. Before creating any new worker thread, this library
acquires an IPC semaphore. The semaphore is initialized with
maximum value set to the number of CPU hardware threads. When
all the allowed threads are allocated, no additional threads can be
created.

Because of this greedy algorithm, some TBB processes can
be left without worker threads at all. This is a legitimate situation
within the optional parallelism paradigm implemented in Intel®
TBB, which does not prevent master threads from making progress
and completing computation even without worker threads joined.
Thus, even in the worst case, counting all the worker and master
threads, the total number of active threads for all the running
processes does not exceed twice the number of CPU hardware
threads.

When the first process finishes its computation, TBB puts
the worker threads back in the pool and releases resources for
the semaphore. A special monitor thread implemented in libirml
detects this situation and the rest of the processes are allowed to
acquire the relinquished resources and to add threads on the fly to
ongoing computations in order to improve CPU utilization.

However, if we don’t remove excess threads, this solution does
not prevent resource exhaustion. Since we cannot move threads
from one process to another, there can be too many threads
allocated at the same time. This prevents processes with fewer
threads from creating more threads to balance the load. To fix
this issue, we implemented an algorithm that disposes of unused
threads when a shortage of resources is detected.

This TBB-based approach to coordination is more dynamic
and flexible than one based on OpenMP because it allows to re-
purpose and rebalance threads more flexibly, achieving better load

COMPOSABLE MULTI-THREADING AND MULTI-PROCESSING FOR NUMERIC LIBRARIES 21

balancing overall. Even in counting composability mode, OpenMP
needs to wait for all the requested threads to become available,
while Intel® TBB allows threads to join parallel computations
already in progress.

The TBB IPC module should be enabled manually via explicit
command line key --ipc, for example:
python -m tbb --ipc app.py

3. Evaluation

The results for this paper were acquired on a 2-socket system with
Intel® Xeon® CPU E5-2699 v4 @ 2.20GHz (22 cores * 2 hyper-
threads) and 256GB DDR4 @ 2400 MHz. This system consists of
88 hardware threads in total.

For our experiments, we used [Miniconda] distribution along
with the packages of Intel® Distribution for Python [IntelPy]
installed from anaconda.org/intel
activate miniconda
source <path to miniconda3>/bin/activate.sh
create & activate environment from the Intel channel
conda create -n intel3 -c intel numpy dask tbb4py smp
source activate.sh intel3
this setting is used for default runs
export KMP_BLOCKTIME=0

We installed the following versions and builds of the pack-
ages for our experiments: Python 3.6.3-intel_12, numpy 1.14.3-
py36_intel_0, dask 0.18.1-py36_0, mkl 2018.0.3-intel_1, openmp
2018.0.3-intel_0, tbb4py 2018.0.4-py36_0, smp 0.1.3-py_2.

Here is an example of how to run the benchmark programs in
different modes:
Default mode (with KMP_BLOCKTIME=0 in effect)
python bench.py
Serialized OpenMP mode
env OMP_NUM_THREADS=1 python bench.py
SMP module, oversubscription factor = 1
python -m smp -f 1 bench.py
Composable OpenMP, exclusive mode
env KMP_COMPOSABILITY=mode=exclusive python bench.py
Composable OpenMP, counting mode
env KMP_COMPOSABILITY=mode=counting python bench.py
Composable TBB mode (multithreading only)
python -m tbb bench.py
Composable TBB mode with IPC on
python -m tbb --ipc bench.py

For our examples, we will talk mostly about the multi-threading
case, but according to our investigations, all conclusions that will
be shown are applicable for the multi-processing case as well
unless additional memory copying happens between the processes,
which is out of scope for this paper.

Fig. 2: Execution times for balanced QR decomposition workload.

Please find these benchmarks along with install and run script
at [compbench]

3.1. Balanced QR Decomposition with Dask

The code below is a simple program using Dask that validates a
QR decomposition function by multiplying computed components
and comparing the result against the original input.

1 import time, dask, dask.array as da
2 x = da.random.random((440000, 1000),
3 chunks=(10000, 1000))
4 for i in range(3):
5 t0 = time.time()
6 q, r = da.linalg.qr(x)
7 test = da.all(da.isclose(x, q.dot(r)))
8 test.compute()
9 print(time.time() - t0)

Dask splits the array into 44 chunks and processes them in parallel
using multiple threads. However, each Dask task executes the
same NumPy matrix operations which are accelerated using Intel®
MKL under the hood and thus multi-threaded by default. This
combination results in nested parallelism, i.e. when one parallel
component calls another component, which is also threaded. The
execution is repeated numerous times, with results taken from later
iterations, in order to avoid the cache-warming effects present in
the first iterations.

Figure 2 shows the performance for the code above. By
default, Dask processes a chunk in a separate thread, so there
are 44 threads at the top level. By default, Dask creates a thread
pool with 88 workers, but only half of them are used since there are
only 44 chunks. Chunks are computed in parallel with 44 OpenMP
workers each. Thus, there can be 1936 threads competing for 44
cores, which results in oversubscription and poor performance.

A simple way to improve performance is to tune the OpenMP
runtime using the environment variables. First, we limit the total
number of threads. Since we have an 88-thread machine, we
limit OpenMP to a single thread per parallel region ((88 CPU
threads / 88 workers in thread pool) * 1x over-subscription).
We also noticed that reducing the period of time after which
an Intel OpenMP worker thread goes to sleep helps to improve
performance in workloads with oversubscription (this works best
for the multi-processing case but helps for multi-threading as
well). We achieve this by setting KMP_BLOCKTIME to zero by
default. These simple optimizations reduce the computational time
by 2.5x.

The third approach using smp module and specifying an
oversubscription factor of 1 (-f 1) does similar optimizations
automatically, and shows the same level of performance as for
OMP_NUM_THREADS=1. The approach is more flexible and
works with several thread/process pools in the application scope,
even if they have different sizes. Thus, it is a better alternative to
manual OpenMP tuning.

The remaining approaches are our dynamic OpenMP- and
Intel® TBB-based approaches. Both approaches improve the de-
fault result, but OpenMP gives us the fastest time. As described
above, the OpenMP-based solution allows processing of chunks
one by one without any oversubscription, since each separate
chunk can utilize the whole CPU. In contrast, the work stealing
task scheduler of Intel® TBB is truly dynamic and uses a single
thread pool to process all the given tasks simultaneously. As a

22 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Fig. 3: Execution time for balanced eigenvalues search workload.

result, besides higher overhead for work distribution, it has worse
cache utilization.

3.2. Balanced Eigenvalues Search with NumPy

The code below processes eigenvalues and right eigenvectors
search in a square matrix using Numpy:
1 import time, numpy as np
2 from multiprocessing.pool import ThreadPool
3 x = np.random.random((256, 256))
4 p = ThreadPool(88)
5 for j in range(3):
6 t0 = time.time()
7 p.map(np.linalg.eig, [x for i in range(1024)])
8 print(time.time() - t0)

In this example we process several matrices from an array in
parallel using Python’s ThreadPool while each separate matrix
is computed in parallel by Intel® MKL. Similar to the QR decom-
position benchmark above, we used quadratic oversubscription
here. This code has the distinctive feature that, in spite of parallel
execution of eigenvalues search algorithm, it cannot fully utilize
all available CPU cores. The additional level of parallelism we use
here significantly improves the overall benchmark performance.

Figure 3 shows benchmark execution time using the same
modes as in the QR decomposition example. The best choice for
this benchmark was to limit number of threads statically either
using manual settings or the smp module, and obtained about
10x speed-up. Also, Intel® TBB based approach performed much
better than composable OpenMP. The reason for this was that there
was insufficient parallelism present in each separate chunk. In fact,
exclusive composability mode in OpenMP leads to serial matrix
processing, so a significant part of the CPU stays unused. As a
result, the execution time in this case becomes even larger than
by default. The result of counting mode can be further improved
on Intel® MKL side if parallel regions can be adjusted to request
fewer threads.

3.3. Unbalanced QR Decomposition with Dask

In previous sections, we discussed balanced workloads where the
amount of work per thread at the top level is mostly the same.
As we expected, the best strategy for such cases is based on
static approaches. However, what if we need to deal with dynamic
workloads where the amount of work per thread or process varies?
To investigate such cases we have prepared unbalanced versions
of our static benchmarks. Each benchmark creates an outermost

2. For more complete information about compiler optimizations, see our
Optimization Notice [OptNote]

Fig. 4: Execution times for unbalanced QR decomposition workload.

thread pool for 44 workers. We will perform computations in three
stages. The first stage uses only one thread from the pool, which
is able to fully utilize the whole CPU. During the second stage,
half of the top level threads are used (22 in our example). In the
third stage, the whole pool is employed (44 threads).

The code below shows this unbalanced version of QR decom-
position workload:
1 import time, dask, dask.array as da
2 def qr(x):
3 t0 = time.time()
4 q, r = da.linalg.qr(x)
5 test = da.all(da.isclose(x, q.dot(r)))
6 test.compute(num_workers=44)
7 print(time.time() - t0)
8 sz = (440000, 1000)
9 x01 = da.random.random(sz, chunks=(440000, 1000))

10 x22 = da.random.random(sz, chunks=(20000, 1000))
11 x44 = da.random.random(sz, chunks=(10000, 1000))
12 qr(x01); qr(x22); qr(x44)

Figure 4 demonstrates execution time for all the approaches.
The first observation here is that the static SMP approach does
not achieve good performance with imbalanced workloads. Since
we have a single thread pool with a fixed number of workers,
it is unknown which of workers are used and how intensively.
Accordingly, it is difficult to set an appropriate number of threads
statically. Thus, we limit the number of threads per parallel region
based on the size of the pool only. As a result, just a few threads
are used in the first stage, which leads to underutilization and slow
performance. The second and third stages work well, but overall
we have a mediocre result.

The work stealing scheduler of Intel® TBB works slightly bet-
ter than the default version, but due to redundant work balancing
in this particular case it has significant overhead.

The best execution time comes from using composable
OpenMP. Since there is sufficient work to do in each parallel
region, allowing each chunk to be calculated one after the other
avoids oversubscription and results in the best performance.

3.4. Unbalanced Eigenvalues Search with NumPy

The second dynamic example present here is based on eigenvalues
search algorithm from NumPy:
1 import time, numpy as np
2 from multiprocessing.pool import ThreadPool
3 from functools import partial
4

5 x = np.random.random((256, 256))
6 y = np.random.random((8192, 8192))
7 p = ThreadPool(44)
8

COMPOSABLE MULTI-THREADING AND MULTI-PROCESSING FOR NUMERIC LIBRARIES 23

Fig. 5: Execution time for unbalanced eigenvalues search workload.

9 t0 = time.time()
10 mmul = partial(np.matmul, y)
11 p.map(mmul, [y for i in range(6)], 6)
12 print(time.time() - t0)
13

14 t0 = time.time()
15 p.map(np.linalg.eig, [x for i in range(1408)], 64)
16 print(time.time() - t0)
17

18 t0 = time.time()
19 p.map(np.linalg.eig, [x for i in range(1408)], 32)
20 print(time.time() - t0)

In this workload, we have the same three stages. The second and
the third stage computes eigenvalues and the first one performs
matrix multiplication. The reason we do not use eigenvalues search
for the first stage as well is that it cannot fully load the CPU as we
intended.

From figure 5 we can see that the best solution for this
workload is Intel® TBB mode, which reduces execution time to
85% of the default mode. SMP module works even slower than
the default version due to the same issues as described for the
unbalanced QR decomposition example. Composable OpenMP
works slower as well since there is not enough work for each
parallel region, which leads to CPU underutilization.

3.5. Impact of nested parallelism and oversubscription

The experiments in this section demonstrate the benefits of using
nested parallelism and determine what degree of oversubscription
impacts performance. We took our balanced eigenvalues search
workload (section 3.2) and ran it in default and the best performing
SMP modes. Then we ran it with various sizes for the top level
thread and process pool, from 1 to 88 workers.

3. For more complete information about compiler optimizations, see our
Optimization Notice [OptNote]

Fig. 6: Multi-threading scalability of eigenvalues search workload.

Fig. 7: Multi-processing scalability of eigenvalues search workload.

Figure 6 shows the scalability results for the multi-threading
case. The difference in execution time between these two methods
starts from 8 threads in top level pool and becomes larger as the
pool size increases.

The multi-processing scalability results are shown in figure
7. Multi-processing version differs from multi-threading one by
using multiprocessing.Pool and returning no result out
of the mapped function in order to exclude copying from the
measurements. The results are very similar to the multi-threading
case: oversubscription effects become visible starting from 8
processes at the top level of parallelization.

4. Solutions Applicability and Future Work

In summary, all three evaluated approaches to compose parallelism
are valuable and can provide significant performance increases
for both multi-threading and multi-processing cases. Ideally, we
would like to find a single solution, which works well in all cases.
Instead, the presented approaches complement each other and have
their own fields of applicability.

The SMP approach works perfectly for balanced workloads
where all the outermost workers have same amount of work.
Compared with manual tuning of OpenMP settings, this approach
is more stable, since it can work with pools of different sizes
within the scope of a single application without performance
degradation. Thanks to configuring process affinity mask, it also
covers other threading libraries such as Intel® TBB.

The composable OpenMP mode works best with unbalanced
benchmarks for cases where there is enough work to load each
innermost parallel region.

The dynamic task scheduler from Intel® TBB provides the
best performance when innermost parallel regions cannot fully
utilize the whole CPU and/or have varying amounts of work to
process.

The evidence presented in this paper does not explore the full
problem parameter space, however it does provide practical guid-
ance that can be used as a starting point to tune the performance
of applications with nested parallelism.

Threads created for blocking I/O operations are not subject
to performance degradation caused by oversubscription. In fact, it
is recommended to maintain a higher number of threads because

24 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

they are mostly blocked in the operating system. If your program
uses blocking I/O, please consider using asynchronous I/O instead
that blocks only one thread for the event loop and so prevents
other threads from being blocked.

We encourage readers to try suggested composability modes
and use them in production environments, if this provides better
results. However, there are potential enhancements that can be
implemented and we need feedback and real-life use cases in order
prioritize the improvements.

Both tbb and smp modules are implemented and tested with
both major Python versions, 2 (starting with 2.7+) and 3 (3.5 and
newer). The smp module works only on Linux currently, but can be
extended to other platforms as well. The smp bases calculations
only on the size of the pool and does not take into account its
real usage. We think it can be improved in future to trace task
scheduling pool events and become more flexible.

The composability mode of Intel OpenMP* runtime library
is currently limited to Linux platform as well. It works well
with parallel regions with high CPU utilization, but it has a
significant performance gap in other cases, which we believe can
be improved.

The IPC mode of the TBB module for Python is also limitted
to Linux and classified a preview feature, which might be insuffi-
ciently optimized and verified with different use cases. However,
the default mode of the TBB module for Python works as well
on Windows and Mac OS for multi-threading coordination in
single process. Also, the TBB-based threading layer of Intel®
MKL might be suboptimal compared to the default OpenMP-
based threading layer.

All these problems can be eliminated as more users become
interested in using nested parallelism in a prodution environment
and as all software mentioned here is further developed.

5. Conclusion

This paper provides a working definition for threading compos-
ability, specifically discussing the necessity for broader usage of
nested parallelism on multi-core systems. We also addressed per-
formance issues related to the GIL and oversubscription of threads,
for python libraries using parallelism with multi-core processors,
such as NumPy, SciPy, SciKit-learn, Dask, and Numba.

Three approaches are suggested as potential solutions. The first
approach is to statically limit the number of threads created on the
nested parallel level. The second one is to coordinate execution
of OpenMP parallel regions. The third one is to use a common
threading runtime using Intel® TBB extended to multi-processing
parallelism. All these approaches limit the number of active
threads in order to prevent penalties of oversubscription. They
coordinate parallel execution of independent program modules to
improve overall performance.

The examples presented in the paper show promising results
while achieving the best performance using nested parallelism
in threading composability modes. In particular, balanced QR
decomposition and eigenvalues search examples are 2.5x and
7.5x faster compared to the baseline implementations. Imbalanced
versions of these benchmarks are 34-35% faster than the baseline.

These improvements are all achieved with different ap-
proaches, demonstrating that the three solutions are valuable
and complement each other. Our comparison of the suggested
approaches provides recommendations for when it makes sense
to employ each of them.

All the described modules and libraries are available as open
source software and included as part of the free Intel® Distribution
for Python product. The Distribution is available as a stand-alone
installer [IntelPy] and as a set of packages on anaconda.org/intel
channel.

REFERENCES

[AMala16] Anton Malakhov, "Composable Multi-Threading for Python Li-
braries", Proc. of the 15th Python in Science Conf. (SCIPY
2016), July 11-17, 2016.

[NumPy] NumPy, http://www.numpy.org/
[SciPy] SciPy, https://www.scipy.org/
[Dask] Dask, http://dask.pydata.org/
[Numba] Numba, http://numba.pydata.org/
[TBB] Intel(R) TBB open-source site, https://www.

threadingbuildingblocks.org/
[OpenMP] The OpenMP(R) API specification for parallel programming,

http://openmp.org/
[HSutter] Herb Sutter, "The Free Lunch Is Over", Dr. Dobb’s

Journal, 30(3), March 2005. http://www.gotw.ca/publications/
concurrency-ddj.htm

[WTichy] Walter Tichy, "The Multicore Transformation", Ubiquity, Vol-
ume 2014 Issue May, May 2014. DOI: 10.1145/2618393. http:
//ubiquity.acm.org/article.cfm?id=2618393

[GIL] David Beazley, "Understanding the Python GIL", PyCON
Python Conference, Atlanta, Georgia, 2010. http://www.dabeaz.
com/python/UnderstandingGIL.pdf

[AGlaws] Michael McCool, Arch Robison, James Reinders, "Amdahl’s
Law vs. Gustafson-Barsis’ Law", Dr. Dobb’s Parallel, Octo-
ber 22, 2013. http://www.drdobbs.com/parallel/amdahls-law-vs-
gustafson-barsis-law/240162980

[MKL] Intel(R) MKL, https://software.intel.com/intel-mkl
[Joblib] Joblib, http://pythonhosted.org/joblib/
[Miniconda] Miniconda, https://conda.io/miniconda.html
[IntelPy] Intel(R) Distribution for Python, https://software.intel.com/

python-distribution
[compbench] Repository for composability benchmarks, https://github.com/

IntelPython/composability_bench
[OptNote] https://software.intel.com/en-us/articles/optimization-notice

PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018) 25

The Econ-ARK and HARK: Open Source Tools for
Computational Economics

Christopher D. Carroll‖∗, Alexander M. Kaufman‡, Jacqueline L. Kazil∗∗, Nathan M. Palmer§, Matthew N. White¶

https://youtu.be/1ytEhrnwu6A

F

Abstract—The Economics Algorithmic Repository and toolKit (Econ-ARK) aims
to become a focal resource for computational economics. Its first ‘framework,’
the Heterogeneous Agent Resources and Toolkit (HARK), provides a modern,
robust, transparent set of tools to solve a class of macroeconomic models whose
usefulness has become increasingly apparent both for economic policy and for
research purposes, but whose adoption has been limited because the exist-
ing literature derives from idiosyncratic, hand-crafted, and often impenetrable
legacy code. We expect future Econ-ARK frameworks (e.g., for analysis of the
transmission of beliefs through agents’ social networks) will draw heavily on key
elements of the existing HARK framework, including the API, the structure, and
documentation standards.

Index Terms—Heterogeneous-Agent Resources toolKit, econ-ark, computa-
tional economics, economic modeling

Disclaimer: Views expressed herein do not necessarily reflect
the views of the respective institutions that employ the respective
authors.

Introduction

The Economics Algorithmic Repository and toolKit (Econ-ARK)
is a modular programming framework for solving and estimating
macroeconomic and macro-financial models in which economic
agents can exhibit significant heterogeneity.1 Models with ex-
tensive heterogeneity among agents can be extremely useful for
policy and research purposes. However, the most commonly
published macroeconomic and macro-finance models have very
limited heterogeneity or none at all, in large part because these are
the only models that can be easily solved with existing toolkits
such as DYNARE [Adjemian2011].

In contrast, models with extensive heterogeneity among agents
have no central toolkit and must be solved in a bespoke way. This
requires a significant investment of time and human capital before
a researcher can produce usable work. This results in needless
code duplication, increasing the chance for error and wasting
valuable research time. The Econ-ARK project addresses these
concerns by providing a set of well-documented code modules that

* Corresponding author: ccarroll@jhu.edu
|| Johns Hopkins University
‡ Woodrow Wilson School of Public Policy
** Capital One
§ Econ-ARK
¶ University of Delaware

Copyright © 2018 Christopher D. Carroll et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

can be composed together to solve a range of heterogeneous-agent
models. Methodological advances in the computational literature
allow many types of models to be solved using similar approaches;
the Econ-ARK project simply brings these pieces together in
one place. HARK is written in Python 2.7, with a pull request
underway at the time of this writing to make it fully compatible
with both Python 2.7 and 3.6.

Academic research in statistics has standardized on the use of
the ‘R’ modeling language for scholarly communication, and on a
suite of tools and standards of practice (the use of R-markdown,
e.g.) that allow statisticians to communicate their ideas easily to
each other. Many other scholarly fields have similarly developed
suites of tools that allow scholars to easily and transparently
exchange quantitative ideas and computational results without
anyone having to master idiosyncratic details of anyone else’s
hand-crafted computer code.

The only branch of economics in which anything similar has
happened is representative agent (RA) macroeconomics, which
(to some degree) has standardized on the use of the DYNARE
[Adjemian2011] toolkit for solving representative agent dynamic
stochastic general equilibrium models.

We face two primary challenges. The first is to develop a
set of resources and examples and standards of practice for
communication that are self-evidently a major improvement on the
way economists exchange ideas now. The second is to persuade
scholars to adopt those tools.

The Econ-ARK is the vehicle by which we hope to achieve
these objectives. We have begun with the creation of a toolkit for
heterogeneous agents (HA) macroeconomics, in part because that
is a field where the need for improvement in standards of trans-
parency, openness, and reproducibility is particularly manifested,
and partly because it is a field where important progress seems
particularly feasible. QuantEcon is the most similar project to
Econ-ARK and makes use of open source coding tools. However,
that project focuses largely on foundational material appropri-
ate for an introductory graduate course on numeric methods in
macroeconomics, whereas the Econ-ARK is geared toward the
production of new research.2

The traditional approach in macroeconomics has been to
assume that aggregate behavior can be understood by modeling
the behavior of a single ’representative agent’ -- the ’represen-
tative consumer’ or ’representative firm’. HA macroeconomics
instead starts by constructing models of the behavior of individual
microeconomic agents (a firm or a consumer, e.g.) that match
key facts (say, that some people are borrowers and others are

26 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

savers) from the rich microeconomic evidence about the behavior
and circumstances of such agents. With that solid foundation
in place, macroeconomic outcomes are constructed by aggre-
gating the behavior of the individual agents subject to sensible
requirements on the characteristics of the aggregate (such as that
the aggregate amount borrowed cannot exceed a function of the
aggregate amount saved). For a broad review of representative
agent and heterogeneous agents economic modeling, see the
discussion by [Guvenen2011] and [Kirman1992]. More broadly,
the branch of agent-based macroeconomics explores the issues
of emergence and complexity. The interested reader is directed
to the Handbooks of Computational Economics, Volumes 2 and
4: [Tesfatsion2006] and [Hommes2018]. The most recent volume
in particular outlines similarities and differences between more
traditional heterogeneous agents macroeconomics and so-called
"agent-based methods," inspired from fields such as physics and
ecology.

The Heterogeneous-Agent Resources toolKit (HARK) is a
modular programming framework for solving, estimating, and
simulating macroeconomic models with heterogeneous agents.
Agents in HARK can be heterogeneous in a large number of ways,
such as in wealth, income processes, preferences, or expectations.
Models with heterogeneity among agents have proven to be
increasingly useful for policy and research purposes.

For example, recent work by [Kaplan2018] has shown that
changes in interest rates affect the economy in large part by
reallocating income flows across different types of households
rather than by causing every household to change their behavior
in the same way. The latter implicitly occurs in a traditional
rational expectations model, but may be misleading regarding the
underlying channel of the effect. [Carroll2017a] shows that the
response to fiscal policy (such as stimulus payments or tax cuts)
depends crucially on how such payments are distributed across
different groups. For example, an extension of unemployment
benefits has a bigger effect on spending than a cut in the capital
gains tax. [Geanakoplos2010] outlines how heterogeneity drives
the leverage cycle, and [Geanakoplos2012] applies these insights
to large-scale model of the housing and mortgage markets.

HA models of the kind described above have had a major
intellectual impact over the past few years. But the literature
remains small, and contributions have come mostly from a few
small groups of researchers with close connections to each other.
An excellent overview of this literature can be found in the most
recent volume of the Handbooks of Computational Economics
[Hommes2018] and works cited therein.

In large part, this reflects the formidable technical challenges
involved in constructing such models. In each case cited above,
the codebase underlying the results is the result of many years of
construction of hand-crafted code that has not been meaningfully
vetted by researchers outside of the core group of contributors.
This is not because researchers have refused to share their code;
instead, it is because the codebases are so large, so idiosyncratic,
and (in many cases) so poorly documented and organized as to
be nearly incomprehensible to anyone but the original authors
and their collaborators. Researchers with no connections to the
pioneering scholars have therefore faced an unpalatable choice
between investing years of their time reinventing the wheel, or
investing years of their time deciphering someone else’s peculiar
and idiosyncratic code.

Researchers who must review the scientific and technical
code written by others are keenly aware that the time required

to review and understand another’s code can dwarf the time
required to simply re-write the code from scratch (conditional on
understanding the underlying concepts). This can be particularly
important when multiple researchers may need to work on parts
of the same codebase, either across time or distance.

The HARK project addresses these concerns by providing a set
of well-documented code modules that can be combined to solve
a range of heterogeneous-agent models. Methodological advances
in the computational economics literature allow many types of
models to be solved using similar approaches; the key for HARK
is to identify methodologies that are “modular” (in a sense to be
described below).

In addition to these methodological advances, the HARK
project adopts modern software development practices to ease
the burden of code development, code review, code sharing, and
collaboration for researchers dealing with computational methods.

Because these problems are generic (and not specific to com-
putational economics), the software development community, and
particularly the open-source community, has spent decades devel-
oping tools for programmers to quickly consume and understand
code written by others, verify that it is correct, and to contribute
back to a large and diverse codebase without fear of introducing
bugs. The tools used by these professional developers include
formal code documentation, unit testing structures, modern ver-
sioning systems for automatically tracking changes to code and
content, and low-cost systems of communicating ideas, such as
interactive programming notebooks that combine formatted math-
ematics with executable code and descriptive content. These tools
operate particularly well in concert with one another, constituting
an environment that can greatly accelerate project development for
both individuals and collaborative teams. These technical tools are
not new-- the HARK project simply aims to apply the best of them
to the development of code in computational economics in order
to increase researcher productivity, particularly when interacting
with other researchers’ code.

The rest of this paper will first outline the useful concepts
we adopt from software development, with examples of each, and
then demonstrate how these concepts are applied in turn to the key
solution and estimation methods required to solve heterogeneous-
agent models. The sections are organized as follows: Section 1
discusses the natural modular structure of the types of problems
HARK solves and provides an overview of the code structure that
implements these solutions. Section 2 provides details of the core
code modules in HARK. Section 3 outlines two examples that
illustrate models in the HARK framework. Section 4 summarizes
and concludes.

1. HARK Structure

The class of problems that HARK solves is highly modular by
construction. There are approximately these steps in solving a
rational heterogeneous agents model:

1) Specify the problem faced by an individual agent
2) Specify how the actions and states of individual agents

collectively generate aggregate outcomes or processes
3) For given beliefs about aggregate processes, solve the

individual agent’s problem
4) Simulate the behavior of agents, generating a "history" of

aggregate outcomes
5) Formulate new beliefs about the aggregate processes

based on that history

THE ECON-ARK AND HARK: OPEN SOURCE TOOLS FOR COMPUTATIONAL ECONOMICS 27

6) Iterate on steps 3-5 until beliefs converge

In isolation, steps 1 and 3 constitute the solution to a "mi-
croeconomic" model in HARK: how an individual agent should
optimally act, treating all inputs to his problem as fixed. The
inclusion of steps 2, 4, 5, and 6 embeds the microeconomic
model in a "macroeconomic" model, requiring consistency among
agents’ individual behavior, the outcomes that result from the
aggregation of these choices, and agents’ beliefs about aggregate
processes. The assumption of rationality is imposed by having
the beliefs formulated in step 5 be justified given the history of
aggregate outcomes; agents correctly interpret (a hypothetical)
history when forming their new beliefs. Economists call such a
solution a "rational expectations equilibrium", as agents’ expec-
tations are fulfilled by reality, and they have no reason to update
these expectations or beliefs.3

In the section below titled "Sample Model: Perfect Foresight
Consumption-Saving," we directly illustrate a microeconomic
model in HARK; a full example of a macroeconomic model is
outlined in [Carroll2017b].

To estimate a model for some research purpose, the economist
tries to find the "deep" or "structural" parameters that make model
outcomes best match particular features of some dataset. That is,
the model is mathematically specified in steps 1 and 2 above, but
the economist does not know the values of some vector of model
parameters; the objective of the estimation is to find the parameters
that make the model best "match" real data. As the dataset, features
or moments to match, and particular estimation method (e.g.
simulated method of moments or maximum likelihood estimation)
are idiosyncratic to each research project, we will not elaborate
further here.

In HARK, each of the solution steps is highly modular, and
the structure of the solution method suggests a natural division of
the code. (The solution method is dynamic programming and fixed
point iteration, and the estimation method is Simulated Method of
Moments. These are described in detail in [Carroll2012].)

Python modules in HARK can generally be categorized into
three types: tools, models, and applications. Tool modules contain
functions and classes with general purpose tools that have no in-
herent “economic content,” but that can be used in many economic
models as building blocks or utilities. Tools might include func-
tions for data analysis (e.g. calculating Lorenz shares from data,
or constructing a non-parametric kernel regression), functions
to create and manipulate discrete approximations to continuous
distributions, or classes for constructing interpolated approxima-
tions to non-parametric functions. Tool modules reside in the "top
level" of HARK and have names like HARK.simulation and
HARK.interpolation. The core functionality of HARK is in
the tools modules; these will be discussed in detail in the following
section.

Model modules specify particular economic models, includ-
ing classes to represent agents in the model and the “mar-
ket structure” in which they interact, and functions for solv-
ing the “one period problem” of those models. For example,
ConsIndShockModel.py concerns consumption-saving mod-
els in which agents have CRRA utility over consumption and
face idiosyncratic (Individual) shocks to permanent and transitory
income. The module includes classes for representing “types”
of consumers, along with functions for solving (several flavors
of) the one period consumption-saving problem. When run,
model modules might demonstrate example specifications of their

models, filling in the model parameters with arbitrary values.
When ConsIndShockModel.py is run, it specifies an infinite
horizon consumer with a particular discount factor, permanent
income growth rate, coefficient of relative risk aversion and
other parameters, who faces lognormal shocks to permanent and
transitory income each period with a particular standard deviation;
it then solves this consumer’s problem and graphically displays
the results.4 Model modules generally have Model in their name.
There are two broad types of models solved by HARK, "mi-
croeconomic" models and aggregate or "macroeconomic" models.
In a microeconomic problem, agents solve their problem taking
their environment as a given -- the "macro" environment is fixed
exogenously. A macroeconomic problem is typically composed of
a number of agents solving their own microeconomic problems,
whose interactions affect the macroeconomic environment. Thus
the aggregate processes that describe the agents’ environment is
endogenous to the individual-level decisions made by each agent.
The two examples illustrate this in the “microeconomic” and
“macroeconomic” sections below.

Application modules use tool and model modules to solve,
simulate, and/or estimate economic models for a particular pur-
pose. While tool modules have no particular economic content and
model modules describe entire classes of economic models, appli-
cations are uses of a model for some research purpose. For exam-
ple, /SolvingMicroDSOPs/StructEstimation.py uses
a consumption-saving model from ConsIndShockModel.py,
calibrating it with age-dependent sequences of permanent income
growth, survival probabilities, and the standard deviation of in-
come shocks (etc); it then estimates the coefficient of relative risk
aversion and shifter for an age-varying sequence of discount fac-
tors that best fits simulated wealth profiles to empirical data from
the Survey of Consumer Finance. A particular application might
have multiple modules associated with it, all of which generally
reside in one directory. Particular application modules will not
be discussed in this paper further; please see the GitHub page
and associated documentation for references to the application
modules.

2. Tool Modules

HARK’s root directory contains the following tool modules, each
containing a variety of functions and classes that can be used in
many economic models, or even for mathematical purposes that
have nothing to do with economics. We expect that all of these
modules will grow considerably in the near future, as new tools
are “low hanging fruit” for contribution to the project.

HARK.core

This module contains core classes used by the rest of the HARK
ecosystem. A key goal of the project is to create modularity and
interoperability between models, making them easy to combine,
adapt, and extend. To this end, the HARK.core module specifies
a framework for economic models in HARK, creating a common
structure for them on two levels that can be called “microeco-
nomic” and “macroeconomic”.

Beyond the model frameworks, HARK.core also defines
a "superclass" called HARKobject. When solving a dynamic
economic model, it is often required to consider whether two
solutions are sufficiently close to each other to warrant stopping
the process (i.e. approximate convergence). HARK specifies that
classes should have a distance method that takes a single

28 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

input and returns a non-negative value representing the (generally
dimensionless) distance between the object in question and the
input to the method. As a convenient default, HARKobject
provides a “universal distance metric” that should be useful in
many contexts.5 When defining a new subclass of HARKobject,
the user simply defines the attribute distance_criteria as a list of
strings naming the attributes of the class that should be compared
when calculating the distance between two instances of that class.
See here for online documentation.

HARK.utilities

The HARK.utilities module carries a double meaning in
its name, as it contains both utility functions (and their deriva-
tives, inverses, and combinations thereof) in the economic mod-
eling sense as well as utilities in the sense of general tools.
Utility functions include constant relative risk aversion (CRRA)
and constant absolute risk aversion (CARA). Other functions in
HARK.utilities include data manipulation tools, functions
for constructing discrete state space grids, and basic plotting
tools. The module also includes functions for constructing discrete
approximations to continuous distributions and manipulating these
representations.

HARK.interpolation

The HARK.interpolation module defines classes for rep-
resenting interpolated function approximations. Interpolation
methods in HARK all inherit from a superclass such as
HARKinterpolator1D or HARKinterpolator2D, wrap-
per classes that ensure interoperability across interpolation meth-
ods. These classes all inherit from HARKobject, so that they
come equipped with the default distance metric.6

HARK.simulation: The HARK.simulation module pro-
vides tools for generating simulated data or shocks for post-
solution use of models. Currently implemented distributions in-
clude normal, lognormal, Weibull (including exponential), uni-
form, Bernoulli, and discrete.

HARK.estimation: Methods for optimizing an objective
function for the purposes of estimating a model can be found
in HARK.estimation. As of this writing, the implementation
includes minimization by the Nelder-Mead simplex method, mini-
mization by a derivative-free Powell method variant, and two tools
for resampling data (e.g., for a bootstrap). Future functionality
will include global search methods, including genetic algorithms,
simulated annealing, and differential evolution.

3. Model Modules

Microeconomic models in HARK use the AgentType class to
represent agents with an intertemporal optimization problem. Each
of these models specifies a subclass of AgentType; an instance
of the subclass represents agents who are ex-ante homogeneous
(they have common values for all parameters that describe the
problem, such as risk aversion). The AgentType class has a
solve method that acts as a “universal microeconomic solver”
for any properly formatted model, making it easier to set up a
new model and to combine elements from different models; the
solver is intended to encompass any model that can be framed as
a sequence of one period problems.7

Macroeconomic models in HARK use the Market class to
represent a market or other mechanisms by which agents’ (i.e.
instances of AgentType subclasses) interactions are aggregated

to produce “macro-level” outcomes. For example, the market in
a consumption-saving model might combine the individual asset
holdings of all agents in the market to generate aggregate savings
and capital in the economy, which in turn produces the interest
rate that agents care about. Agents then learn the aggregate capital
level and interest rate, which affects their future actions. In this
way, objects that microeconomic agents treat as exogenous when
solving their individual-level problems (such as the interest rate)
are made endogenous at at the macroeconomic level through
the Market aggregator. Like AgentType, the Market class
also has a solve method, which seeks out a dynamic general
equilibrium rule governing the aggregate processes.

Microeconomics: the AgentType Class

The core of our microeconomic dynamic optimization framework
is a flexible object-oriented representation of economic agents.
Each microeconomic model defines a subclass of AgentType,
specifying additional model-specific features and methods while
inheriting the methods of the superclass. This section provides a
brief example of a problem solved by a microeconomic instance
of AgentType.

Sample Model: Perfect Foresight Consumption-Saving:
To provide a concrete example of how the AgentType class works,
consider the very simple case of a perfect foresight consumption-
saving model. The agent has time-separable, additive CRRA
preferences over consumption Ct , discounting future utility at a
constant rate. He receives a particular stream of labor income Yt
each period and knows the interest rate R on assets At that he
holds from one period to the next. His decision about how much
to consume Ct in a particular period out of total market resources
Mt can be expressed in Bellman form as:

Vt(Mt) = max
Ct

u(Ct)+β (1−Dt+1)E[Vt+1(Mt+1)],

At = Mt −Ct ,

Mt+1 = RAt +Yt+1,

Yt+1 = Γt+1Yt ,

u(C) =
C1−ρ

1−ρ
.

The agent’s problem is thus characterized by values of ρ , R, and
β , plus sequences of survival probabilities (1−Dt+1) and income
growth factors Γt+1 for t = 0, ...,T − 1. This problem has an
analytical solution for both the value function and the consumption
function.

The ConsIndShockModel.py module defines the
class PerfForesightConsumerType as a subclass of
AgentType and provides solver classes for several variations
of a consumption-saving model, including the perfect foresight
problem. A HARK user could specify and solve a ten period
perfect foresight model with the following two commands (the
first command is split over multiple lines) :
MyConsumer = PerfForesightConsumerType(

time_flow=True, cycles=1, AgentCount = 1000,
CRRA = 2.7, Rfree = 1.03, DiscFac = 0.98,
LivPrb = [0.99,0.98,0.97,0.96,0.95,0.94,0.93,

0.92,0.91,0.90],
PermGroFac = [1.01,1.01,1.01,1.01,1.01,1.02,

1.02,1.02,1.02,1.02])

MyConsumer.solve()

The first line makes a new instance of ConsumerType, specifies
that time is currently “flowing” forward, specifies that the se-

THE ECON-ARK AND HARK: OPEN SOURCE TOOLS FOR COMPUTATIONAL ECONOMICS 29

Fig. 1: Consumption Functions

quence of periods happens exactly once, and that, if the model is
simulated after it is solved, there are 1000 agents with these exact
characteristics. The next five lines (all part of the same command)
set the time-invariant (CRRA is ρ , Rfree is R, and DiscFac
is β) and time-varying parameters (LivPrb is (1 − Dt+1),
PermGroFac is Γt+1). After running the solve method,
MyConsumer will have an attribute called solution, which
will be a list with eleven ConsumerSolution objects, repre-
senting the period-by-period solution to the model.8

The consumption function for a perfect foresight consumer
is a linear function of market resources-- not terribly exciting.
The marginal propensity to consume out of wealth doesn’t change
whether the consumer is rich or poor. When facing uncertain in-
come, however, the consumption function is concave: the marginal
propensity to consume is very high when agents are poor, and
lower when they are rich. Moreover, agents facing income risk
save more than agents under certainty. However, as agents facing
uncertainty get richer, their consumption function converges to the
perfect foresight consumption function-- rich but uncertain agents
act like agents who face no income risk. In Figure 1, the solid blue
line is consumption under certainty, while the dashed orange line
is consumption under uncertainty. The inset plot demonstrates that
these two functions converge as the horizontal axis of this plot is
extended.

Macroeconomics: the Market Class

The modeling framework of AgentType is called “microeco-
nomic” because it pertains only to the dynamic optimization
problem of individual agents, treating all inputs of the problem
from their environment as exogenously fixed. In what we label
as “macroeconomic” models, some of the inputs for the microe-
conomic models are endogenously determined by the collective
states and choices of other agents in the model. In a rational
dynamic general equilibrium, there must be consistency between
agents’ beliefs about these macroeconomic objects, their individ-
ual behavior, and the realizations of the macroeconomic objects or
processes that result from individual choices.

The Market class in HARK.core provides a framework
for such macroeconomic models, with a solve method that
searches for a rational dynamic general equilibrium. An instance
of Market includes as an attribute a list of AgentType objects

that compose the economy, a method for transforming microe-
conomic outcomes (states, controls, and/or shocks) into macroe-
conomic outcomes, and a method for interpreting a history or
sequence of macroeconomic outcomes into a new “dynamic rule”
for agents to believe. Agents treat the dynamic rule as an input to
their microeconomic problem, conditioning their optimal policy
functions on it. A dynamic general equilibrium is a fixed point
dynamic rule: when agents act optimally while believing the equi-
librium rule, their individual actions generate a macroeconomic
history consistent with the equilibrium rule.

Down on the Farm: The Market class uses a farming
metaphor to conceptualize the process for generating a history of
macroeconomic outcomes in a model. Suppose all AgentType
agents in the economy believe in some dynamic rule (i.e. the
rule is stored as attributes of each AgentType, which directly
or indirectly enters their dynamic optimization problem), and that
they have each found the solution to their microeconomic model
using their solve method. Further, the macroeconomic and
microeconomic states have been reset to some initial orientation.

To generate a history of macroeconomic outcomes, the
Market repeatedly loops over the following steps a set number
of times:

1) sow: Distribute the macroeconomic state variables to all
AgentTypes in the market.

2) cultivate: Each AgentType executes their
marketAction method, often corresponding to
simulating one period of the microeconomic model.

3) reap: Microeconomic outcomes are gathered from each
AgentType in the market.

4) mill: Data gathered by reap is processed into new
macroeconomic states according to some “aggregate mar-
ket process”.

5) store: Relevant macroeconomic states are added to a
running history of outcomes.

This procedure is conducted by the makeHistory method
of Market as a subroutine of its solve method. After making
histories of the relevant macroeconomic variables, the market then
executes its calcDynamics function with the macroeconomic
history as inputs, generating a new dynamic rule to distribute to the
AgentType agents in the market. The process then begins again,
with the agents solving their updated microeconomic models
given the new dynamic rule; the solve loop continues until the
“distance” between successive dynamic rules is sufficiently small.

Each subclass of Market has its own mill and
calcDynamics methods, and designates which variables are to
be gathered reap and distributed by sow, thus specifying what
it means to generate "aggregate outcomes" and "form beliefs" in
that particular model. We believe that the Market framework
is general enough to encompass a very wide range of disparate
models, from standard models in which individual assets are
aggregated into productive capital, to models of choice over health
insurance contracts with adverse selection and moral hazard, to
models of direct agent-to-agent interaction more commonly seen
in other scientific fields.

4. Summary and Conclusion

The Econ-ARK project’s broadest aim is to provide a platform for
improving communication and collaboration among economists
on technical and computational questions. Its first framework, the

30 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

HARK project, is a modular code library for constructing microe-
conomic and macroeconomic models with agents who differ from
each other in serious ways: in dimensions whose consequences
cannot be captured by analyzing the behavior of a single agent
with average characteristics.

The HARK project is the starting point because it is an
area where both the need and opportunities for improvement are
great. In particular, existing code to solve HA models tends to
be bespoke and idiosyncratic, with the consequence that tools
are often reinvented by different researchers working on similar
problems. Researchers should spend their valuable time producing
research, not reinventing wheels. The HARK toolkit already pro-
vides a useful set of industrial strength, reliable, reusable wheels,
constructed using a simple and easily extensible framework with
clear documentation and testing regimens.

Part of the reason we are confident our goal is feasible is that
the tools now available – Python, GitHub, and Jupyter notebooks
among them – have finally reached a stage of maturity that can
handle the communication of almost any message an economist
might want to convey.9

The longer-term goals of the Econ-ARK project are to create
a collaborative codebase that can serve the entire discipline of
economics, employing the best of modern software development
tools to accelerate understanding and implementation of cutting
edge research tools. The solution methods employed in HARK
are not the only methods available, and those who have additional
methodological suggestions are strongly encouraged to contribute.
The interested user should check the Econ-ARK GitHub page,
particularly the HARK sub-page. There you will find a README
and documentation. For the interested contributor, the issues
page outlines the future improvements in progress. Issues labeled
with "help wanted" are particularly good for getting started with
contributing.

Acknowledgements

The Econ-ARK project is supported by a generous grant from
the Alfred P. Sloan Foundation, with fiscal sponsorship from
NumFOCUS. The authors would like to thank both organizations
for their time, resources, and expertise.

Bibliography

[Adjemian2011] Adjemian, Stephane, Houtan Bastani, Michel
Juillard, Ferhat Mihoubi, George Perendia, Marco Ratto, and
Sebastien Villemot. 2011. "Dynare: Reference Manual, Version 4."
Dynare Working Papers 1, CEPREMAP. RePEc: cpmdynare/001 .

[Carroll2012] Carroll, Christopher. 2012. "Solving Microe-
conomic Dynamic Stochastic Optimization Problems." Lecture
Notes, Johns Hopkins University. url

[Carroll2017a] Carroll, Christopher, Jiri Slacalek, Kiichi
Tokuoka, and Matthew N White. 2017. "The Distribution of
Wealth and the Marginal Propensity to Consume." Quan-
titative Economics 8 (3). Wiley Online Library: 977–1020.
doi:10.3982/QE694

[Carroll2017b] Carroll, Christopher, Alexander Kaufman,
David Low, Nathan Palmer, and Matthew White. 2017. "A User’s
Guide for Hark: Heterogeneous Agents Resources and toolKit."
Econ ARK. url

[Geanakoplos2010] Geanakoplos, John. 2010. "The Leverage
Cycle." NBER Macroeconomics Annual 24 (1). The University of
Chicago Press: 1-66. doi:10.1086/648285

[Geanakoplos2012] Geanakoplos, John, Robert Axtell, J
Doyne Farmer, Peter Howitt, Benjamin Conlee, Jonathan Gold-
stein, Matthew Hendrey, Nathan M. Palmer, and Chun-Yi Yang.
2012. "Getting at Systemic Risk via an Agent-Based Model of
the Housing Market." American Economic Review 102 (3): 53-58.
doi:10.1257/aer.102.3.53

[Guvenen2011] Guvenen, Fatih. 2011. "Macroeconomics with
Heterogeneity: A Practical Guide," Economic Quarterly, Federal
Reserve Bank of Richmond 97 (3): 255-326. doi:10.3386/w17622

[Hommes2018] Hommes, Cars, and Blake LeBaron, eds.
2018. "Handbook of Computational Economics, Vol 4: Heteroge-
neous Agent Modeling," Handbook of Computational Economics,
Elsevier, Vol 4: 2-796. doi:10.1016/S1574-0021(18)30018-2

[Kaplan2018] Kaplan, Greg, Benjamin Moll, and Gio-
vanni L. Violante. 2018. "Monetary Policy According to
HANK." American Economic Review 108 (3): 697-743.
doi:10.1257/aer.20160042

[Kirman1992] Kirman, Alan P. 1992. "Whom or What Does
the Representative Individual Represent?" Journal of Economic
Perspectives 6 (2): 117-136. doi:10.1257/jep.6.2.117

[Tesfatsion2006] Tesfatsion, Leigh, Kenneth L. Judd, eds.
2006. "Handbook of Computational Economics, Vol 2: Agent-
Based Computational Economics," Handbook of Computa-
tional Economics, Elsevier, Vol 2: 829-1660. doi:10.1016/S1574-
0021(05)02039-3

1. In this context, "heterogeneity" refers to both ex post heterogeneity--
agents attaining different states or making different choices because they have
experienced different random shocks in the model-- and ex ante heterogeneity-
- agents differing in their preferences, beliefs, or other innate attribute before
the model "begins".

2. It is possible that some of the foundational tools from QuantEcon could
be incorporated into the Econ-ARK, with the permission of its project leads.
Our teams are in communication, and their advice has been valuable.

3. HARK does not impose the assumption of rationality; we use it here for
exposition because it is the standard assumption in economics. The modular
structure of the toolkit makes it easy to remove this assumption by, e.g., having
agents misperceive their own problem, imperfectly process information, or
form beliefs about aggregate processes that are not "justified" by the history.

4. Running ConsIndShockModel.py also demonstrates other variations
of the consumption-saving problem, but their description is omitted here for
brevity.

5. Roughly speaking, the universal distance metric is a recursive supnorm,
returning the largest distance between two instances, among attributes named
in distance_criteria. Those attributes might be complex objects them-
selves rather than real numbers, generating a recursive call to the universal
distance metric.

6. Interpolation methods currently implemented in HARK include
(multi)linear interpolation up to 4D, 1D cubic spline interpolation, 2D curvi-
linear interpolation over irregular grids, a 1D “lower envelope” interpolator,
and others.

7. See [Carroll2017b] for a much more thorough discussion.
8. The solution to a dynamic optimal control problem is a set of policy

functions and a value function, for each period. The policy function for this
consumption-saving problem is how much to consume Ct for a given amount of
market resources Mt . The eleventh and final element of solution represents
the trivial solution to the terminal period of the problem. For a much more
detailed discussion, please see [Carroll2017b].

9. See the recent blog post by Paul Romer, “Jupyter, Mathematica, and the
Future of the Research Paper” for a fuller argument).

PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018) 31

Developing a Start-to-Finish Pipeline for
Accelerometer-Based Activity Recognition Using

Long Short-Term Memory Recurrent Neural Networks

Christian McDaniel‡∗, Shannon Quinn‡

F

Abstract—Increased prevalence of smartphones and wearable devices has
facilitated the collection of triaxial accelerometer data for numerous Human
Activity Recognition (HAR) tasks. Concurrently, advances in the theory and
implementation of long short-term memory (LSTM) recurrent neural networks
(RNNs) has made it possible to process this data in its raw form, enabling
on-device online analysis. In this two-part experiment, we have first amassed
the results from thirty studies and reported their methods and key findings
in a meta-analysis style review. We then used these findings to guide our
development of a start-to-finish data analysis pipeline, which we implemented
on a commonly used open-source dataset in a proof of concept fashion. The
pipeline addresses the large disparities in model hyperparameter settings and
ensures the avoidance of potential sources of data leakage that were identified
in the literature. Our pipeline uses a heuristic-based algorithm to tune a baseline
LSTM model over an expansive hyperparameter search space and trains the
model on standardized windowed accelerometer signals alone. We find that we
outperform other baseline models trained on this data and are able to compete
with benchmark results from complex models trained on higher-dimensional
data.

Index Terms—Neural Network, Human Activity Recognition, Recurrent Neural
Network, Long Short-Term Memory, Accelerometer, Machine Learning, Data
Analysis, Data Science, Hyperparameter Optimization, Hyperparameter

Introduction

Human Activity Recognition (HAR) is a time series classification
problem in which a classifier attempts to discern distinguishable
features from movement-capturing on-body sensors [KHC10].
The most common sensor for HAR tasks is the accelerometer,
which measures high-frequency (30-200Hz) triaxial time series
recordings, often containing noise, imprecision, missing data,
and long periods of inactivity between meaningful segments
[RDML05], [BI04], [OR16]. Consequently, attempts to use tra-
ditional classifiers typically require significant preprocessing and
technical engineering of hand crafted features from raw data,
resulting in a barrier to entry for the field and making online
and on-device data processing impractical [GRX16], [MS10],
[GBGG16], [RDML05], [OR16].

* Corresponding author: clm121@uga.edu
‡ University of Georgia

Copyright © 2018 Christian McDaniel et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

The limitations of classical methods in this domain have been
alleviated by concurrent theoretical and practical advancements in
artificial neural networks (ANNs), which are more suited for com-
plex non-linear data. While convolutional neural networks (CNNs)
are attractive for their automated feature extraction capabilities
during convolution and pooling operations [SS17], [REBS17],
[FFH+16], [SKP18], [ZSO17], [GRX16], [OR16], [GBGG16],
recurrent neural networks (RNNs) are specifically designed to
extract information from time series data due to the recurrent
nature of their data processing and weight updating operations
[WZ89]. Furthermore, whereas earlier implementations of RNNs
experienced problems when processing longer time series (tens
to hundreds of time steps), the incorporation of a multi-gated
memory cell in long short-term memory recurrent neural networks
(LSTMs) [HS97] along with other regularization schemes helped
alleviate these issues.

As RNN usage continues, numerous studies have emerged
to address various aspects of understanding and implementing
these complex models, namely regarding the vast architectural and
hyperparameter combinations that are possible [GSS02], [RG17],
[PW17], [KJFF15], [MKS17]. Unfortunately, these pioneering
studies tend to focus on tasks other than HAR, leaving the
time series classification tasks of HAR without domain-specific
architecture guidance.

In a meta-analysis style overview of the use of LSTM RNNs
for HAR experiments across 30 reports (discussed below), we
found a general lack of consensus regarding the various model
architectures and hyperparameters used. Often, a given pair of
experiments explored largely or entirely non-overlapping ranges
for a single hyperparameter. Key architectural and procedural
details are often not included in the reports, making reproducibility
impossible. The analysis pipelines employed are often lacking
detail and sources of data leakage, where information from the
testing data is exposed to the model during training, appear to
be overlooked in certain cases. Without clear justifications for
model implementations and deliberate, reproducible data analy-
sis pipelines, objective model comparisons and inferences from
results cannot be made. For these reasons, the current report
seeks to summarize the previous implementations of LSTMs for
HAR research available in literature and outline a structured data
analysis pipeline for this domain. We implement a truncated
version of our pipeline, optimizing a baseline LSTM over an
expansive hyperparameter search space, and obtain results on par

32 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

with benchmark studies. We suspect that our efforts will encourage
scientific rigor in the field going forward and initiate more granular
exploration of the field as we understand these powerful data
analysis tools within this domain.

Background

This section is intended to give the reader a digestible introduction
to ANNs, RNNs, and the LSTM cell. The networks will be
discussed as they relate to multi-class classification problems as is
the task in HAR.

Artificial Neural Networks The first ANN architecture was
proposed by Drs. Warren McCulloch and Walter Pitts in 1943 as a
means to emulate the cumulative semantic functioning of groups
of neurons via propositional logic [MP43], [Ger17]. Frank Rosen-
blatt subsequently developed the Perceptron in 1957 [Ros57]. This
ANN variation carries out its step-wise operations via mathemat-
ical constructs known as linear threshold units (LTUs). The LTU
operates by aggregating multiple weighted inputs and feeding this
summation u through an activation function f (u) or step function
step(u), generating an interpretable output ỹ (e.g. 0 or 1) [Ger17].

ỹ = f (u)

= f (w · x)
where · is the dot product operation from vector calculus. x is
a single instance of the training data, containing values for all n
attributes of the data. As such, w is also of length n, and the entire
training data set for all m instances is a matrix X of dimensions m
by n (i.e., m x n).

A 2-layer ANN can be found in Figure 1 A. Each attribute
in instance x(i) represents a node in the perceptron’s input layer,
which simply provides the raw data to the the output layer - where
the LTU resides. To represent k target classes, k LTU nodes are
included in the output layer, each corresponding to a single class
in y. Each LTU’s prediction ỹ indicates the predicted probability
that the training instance belongs to the corresponding class. The
LTU output with the largest value - max(ỹ) - is taken as the overall
predicted class for the instance of the data being analyzed. Taken
over the entire dataset, each LTU has a prediction vector ỹk length
m and the entire output layer produces a prediction matrix Ỹ with
dimensions m x k. Additionally, each LTU contains its own weight
vector wk of length n (i.e., a fully-connected network), resulting in
a weight matrix W of dimensions n x k.

ANNs often contain complex architectures with additional
layers, which allow for nonlinear transformations of the data and
increase the flexibility and robustness of the model. If we look
at a simple three-layer neural network (see Figure 1 B), we see
input and output layers as described above, as well as a layer in
the middle, termed a hidden layer. This layer acts much like the
output layer, except that its outputs z for each training instance are
fed into the output layer, which then generates predictions ỹ from
z alone. The complete processing of all instances of the dataset, or
all instances of a portion of the dataset called a mini-batch, through
the input layer, the hidden layer, and the output layer marks the
completion of a single forward pass.

For the model to improve, the outputs generated by this
forward pass must be evaluated and the model updated in an
attempt to improve the model’s predictive power on the data.
An error term (e.g., sum of squared error (sse)) is calculated by
comparing individual predictions ỹk to corresponding ground truth
target values in yk. Thus, an error matrix E is generated containing

Fig. 1: A. A two-layer network and associated dimensions of the
components. B. A three-layer network showing a single data instance
x(i) being fed in as input.

error terms over all k classes for all m training instances. This
error matrix is used as an indicator for how to adjust the weight
matrix in the output layer so as to yield more accurate predictions,
and the corrections made to the output layer give an indication
of how to adjust the weights in the hidden layer. This process
of carrying the error backward from the output layer through the
hidden layer(s) is known as backpropagation. One forward pass
and subsequent backpropagation makes up a single epoch, and the
training process consists of many epochs repeated in succession to
iteratively improve the model.

The iterative improvements to the model are known as opti-
mization, and many methods exist to carry this process out. The
common example is stochastic gradient descent (SGD), which
calculates the gradient of the error - effectively the steepness of
E’s location as it "descends" toward lower error - and adjusts the
weight matrices at each layer in a direction opposite this gradient.
The change to be applied to the weight matrices is mediated via a
learning rate η [Mil18].

E = Y − f (XW)

optimization:
minW‖E‖F

hsseW =
1
2

k−1

∑
c=0

(yc− f (X ·wc)) · (yc− f (X ·wc))

∂hsse
∂wk

= X ∗ [f ′(X ·wk)∗ ek]∗η =−X ∗δk ∗η

where f (...) represents the activation function, minW represents
the objective function of minimizing with respect to W , and
‖E‖F stands for the Frobenius norm on the error matrix E.
hsseW represents the halved (for mathematical convenience) sum
of squared error, calculated for all k nodes in the output layer.
f ′(...) represents the derivative of the activation function over the
term in the parentheses.

Looking at our three-layer neural network depicted in Figure
1, a single epoch would proceed as follows:

1) Conduct a forward pass, compute ỹ and compare with y
to generate the error term:

zh = f1(ah · x)

DEVELOPING A START-TO-FINISH PIPELINE FOR ACCELEROMETER-BASED ACTIVITY RECOGNITION USING LONG SHORT-TERM MEMORY RECURRENT NEURAL NETWORKS33

ỹk = f2(bk · z)
ek = yk− ỹk

2) Backpropagate the error regarding the correction needed
for ỹ.

3) Backpropagate the correction to the hidden layer.
4) update weight matrices A and B via δ y and δ z:

bhk = bhk− zhδ y
k ∗η

= bhk−
∂hsse
∂bhk

∗η

a jh = a jh− x jδ z
h ∗η

= a jh−
∂hsse
∂a jh

∗η

sse is commonly used as the error term for regression problems,
whereas squared error or cross entropy is typical for classification
problems.

cross entropy =−
m

∑
i=1

k

∑
c=1

yic∗ log(fc(xi))

The high flexibility of neural networks increases the chances of
overfitting, and there are various ways to avoid this. Early stopping
is a technique that monitors the change in performance on a
validation set (subset of the training set) and stops training once
improvement slows sufficiently. Weight decay helps counter large
updates to the weights during backpropagation and slowly shrinks
the weights toward zero in proportion to their relative sizes.
Similarly, the dropout technique "forgets" a specified proportion
of the outputs from a layer’s neurons by not passing those values
on to the next layer. Standardizing the input is important, as it
encourages all inputs to be treated equally during the forward pass
by scaling and mitigating outliers’ effects [Ger17], [Mil18].

Other hyperparameters tend to affect training efficiency and
effectiveness and tend to differ with different datasets and types of
data. Hammerla, et. al. found learning rate η to be an important
hyperparameter in terms of its effect on performance [HHP16].
Too small a learning rate and the model will exhibit slow conver-
gence during training, while too large a value will lead to wild
oscillations during optimization [Mil18]. Hammerla, et. al. also
find the number of units per layer n to be important, and Miller
adds that too many hidden units is better than too few, leading
to sparse layers of weight matrices versus restricting flexibility of
the model, respectively. Bias helps account for irreducible error
in the data and is implemeneted via a node whose inputs are
always 1’s (top node in the input layer of Figure 1 A). Reimers
and Gurevych emphasize the importance of weight initialization
for model performance in their survey of the importance of
hyperparameter tuning for using LSTMs for language modeling
[RG17]. Jozefowicz, et. al. cite the initialization of the forget gate
bias to 1 as a major factor in LSTM performance [JZS15].

Recurrent Neural Networks (RNNs) The recurrent neuron,
developed by Drs. Ronald Williams and David Zipser in 1989
[WZ89], is extremely useful in training a model on sequence
data. Recurrent neurons address temporal dependencies along the
temporal dimension of time series data by sending their outputs
both forward to the next layer and "backward throught time,"
looping the neuron’s output back to itself as input paired with new
input from the previous time step. Thus, a component of the input
to the neuron is an accumulation of activated inputs from each

Fig. 2: The recurrent neuron from three perspectives. A. A single
recurrent neuron, taking input from X, aggregating this input over all
timesteps in a summative fashion and passing the summation through
an activation function at each timestep. B. The same neuron unrolled
through time, making it resemble a multilayer network with a single
neuron at each layer. C. A recurrent layer containing five recurrent
nodes, each of which processes the entire dataset X through all time
point.

previous time step. Figure 2 depicts a recurrent neuron as part of
a recurrent layer. Recurrent layers are placed between input layers
and output layers and can be used in succession with densely
connected and convolutional layers.

Instead of a single weight vector as in ANN neurons, RNN
neurons have two sets of weights, one (wx) for the new inputs
xt and one (wy) for the outputs of the previous time step y(t−1),
yielding matrices Wx and Wy when taken over the entire layer.
The portion of the neuron which retains a running record of the
previous time steps is the memory cell or just the cell [Ger17].

Outputs of the recurrent layer:

y(t) = φ(Wx · x(t)+Wy ·Y(t−1)+b)

where φ is the activation function and b is the bias vector of length
n (the number of neurons).

The hidden state, or the state, of the cell (h(t)) is the informa-
tion that is kept in memory over time.

To train these neurons, we "unroll" them after a complete
forward pass to reveal a chain of linked cells the length of time
steps t in a single input. We then apply standard backpropagation
to these links, calling the process backpropagation through time
(BPTT). This works relatively well for very short time series,
but once the number of time steps increases to tens or hundreds
of time steps, the network essentially becomes very deep during
BPTT and problems arise such as very slow training and exploding
and vanishing gradients [Ger17]. Various hyperparameter and
regularization schemes exist to alleviate exploding/vanishing gra-
dients, including gradient clipping [PMB13], batch normalization,
dropout, and the long short-term memory (LSTM) cell originally
developed by Sepp Hochreiter and Jurgen Schmidhuber in 1997
[HS97].

Long Short-Term Memory (LSTM) RNNs The LSTM cell
achieves faster training and better long-term memory than vanilla
RNN neurons by maintaining two state vectors, the short-term

34 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Fig. 3: The inner mechanisms of an LSTM cell. From outside the cell,
information flows similarly as with a vanilla recurrent cell, except that
the state now exists as two parts, one for long-term memory (c(t)) and
the other for short-term memory (h(t)). Inside the cell, four different
sub-layers and associated gates are revealed.

state h(t) and the long-term state c(t), mediated by a series of inner
gates, layers, and other functions. These added features allow the
cell to process the time series in a deliberate manner, recognizing
meaningful input to store long-term and later extract when needed,
and forget unimportant information or that which is no longer
needed [Ger17].

As can be seen in Figure 3, when the forward pass advances
by one time step, the new time step’s input enters the LSTM
cell and is copied and fed into four independent fully-connected
layers (each with its own weight matrix and bias vector), along
with the short-term state from the previous time step, h(t−1). The
main layer is g(t), which processes the inputs via tanh activation
function. In the basic recurrent cell, this is sent straight to the
output; in the LSTM cell, part of this is incorporated in the long-
term memory as decided by the input gate. The input gate also
takes input from another layer, i(t), which processes the inputs
via the sigmoid activation function σ (as do the next two layers).
The third layer, f(t), processes the inputs, combines them with
c(t−1), and passes this combination through a forget gate which
drops a portion of the information therein. Finally, the fourth
fully-connected layer o(t) processes the inputs and passes them
through the output gate along with a copy of the updated long-
term state c(t) after its additions from f(t), deletions by the forget
gate, further additions from the filtered g(t)-i(t) combination and a
final pass through a tanh activation function. The information that
remains after passing through the output gate continues on as the
short-term state h(t).

i(t) = σ(W)xi · x(t)+Whi ·h(t−1)+bi

f(t) = σ(W)x f · x(t)+Wh f ·h(t−1)+b f

o(t) = σ(W)xo · x(t)+Who ·h(t−1)+bo

g(t) = σ(W)xg · x(t)+Whg ·h(t−1)+bg

c(t) = f(t)⊗ c(t−1)+ i(t)⊗g(t)

y(t) = h(t) = o(t)⊗ tanh(c(t))

where ⊗ represents element-wise multiplication [Ger17].

Related Works

The following section outlines the nuanced hyperparameter com-
binations used by 30 studies available in literature in a meta-
analysis style survey. Published works as well as pre-published
and academic research projects were included so as to gain insight
into the state-of-the-art methodologies at all levels and increase
the volume of works available for review. It should be noted that
the following summaries are not necessarily entirely exhaustive
regarding the specifications listed. Additionally, many reports did
not include explicit details of many aspects of their research.

The survey of previous experiments in this field provided
blueprints for constructing an adequate search space of hyper-
parameters. We have held our commentary on the findings of this
meta-study until the Discussion section.

Experimental Setups Across the 30 studies, each used a unique
implementation of LSTMs for the research conducted therein.
Data sets used include the OPPORTUNITY Activity Recogni-
tion dataset [OR16], [RVCK17], [GRX16], [ZYCG17], [Bro17],
[GP17], UCI HAR dataset [U18], [ZYCG17], PAMAP2 [OR16],
[Set18], [GP17], [ZYH+18], Skoda [OR16], [GP17], WISDM
[CZZZ16], [U18], and various study-specific and/or internally-
collected datasets [MMB+18]. Activity classes include “Activities
of Daily Life” (ADL; e.g., opening a drawer, climbing stairs,
walking, or sitting down), smoking [Ber17], cross-country skiing
[REBS17], eating [KDD17], nighttime scratching [MAR+16],
driving [CFF+17], and so on.

Data analysis pipelines employed include cross validation
[LBMG15], repeating trials [SS16], and various train-validation-
test splitting procedures [SS17], [WA17], [HDJS18]. Most studies
used the Python programming language and implemented LSTMs
via third-party libraries such as Theano Lasagne, RNNLib, and
Keras with TensorFlow.

Preprocessing Some reports kept preprocessing to a minimum,
e.g., linear interpolation to fill missing values [OR16], per-channel
normalization [OR16], [HDJS18], and standardization [CZZZ16],
[ZYCG17]. Zhao, et. al. standardized the data to have 0.5 standard
deviation [ZYCG17] as opposed to the typical unit standard
deviation, citing Wiesler, et. al. as supporting this nuance for deep
learning implementations [WRSN14].

More advanced noise reduction strategies include ker-
nel smoothing [GRX16], removing the gravity component
[MAR+16], applying a low-pass filter [LBMG15], removing the
initial and last 0.5 seconds [HDJS18]. Moreau, et. al. grouped to-
gether segments of data from different axes, tracking the dominant
direction of motion across axes [MAR+16].

For feeding the data into the models, the sliding window
technique was commonly used, with window sizes ranging from
32 [MMB+18] to 5000 [ZYCG17] milliseconds (ms); typically
50% of the window size was used as the step size [REBS17],
[SS17], [Bro17], [OR16]. Guan and Plotz ran an ensemble of
models, each using a random sampling of a random number
of frames with varying sample lengths and starting points. This
method is similar to the bagging scheme of random forests and
was implemented to increase robustness of the model [GP17].

Architectures Numerous architectural and hyperparameter
choices were made among the various studies. Most studies
used two LSTM layers [OR16], [CZZZ16], [KDD17], [RVCK17],
[U18], [ZYCG17], [GP17], [HDJS18], [MMB+18], while oth-
ers used a single layer [WA17], [Bro17], [SS16], [CFF+17],
[ZWYM16], [ZYH+18], [SKP18], three layers [ZWYM16], or
four layers [MP17].

DEVELOPING A START-TO-FINISH PIPELINE FOR ACCELEROMETER-BASED ACTIVITY RECOGNITION USING LONG SHORT-TERM MEMORY RECURRENT NEURAL NETWORKS35

The number of units (i.e., nodes, LSTM cells) per layer range
from 3 [MAR+16] to 512 [Set18]. Several studies used different
numbers of units for different circumstances – e.g., three units per
layer for unilateral movement (one arm) and four units per layer
for bilateral movement (both arms) [MAR+16] or 28 units per
layer for the UCI HAR dataset (lower dimensionality) versus 128
units per layer for the Opportunity dataset [ZYCG17]. Others used
different numbers of units for different layers of the same model
– e.g., 14-14-21 for a 3-layer model [ZWYM16].

Almost all of the reports used the sigmoid activation for the
recurrent connections within cells and the tanh activation function
for the LSTM cell outputs, as these are the activation functions
used the original paper [HS97]. Other activation functions used for
the cell outputs include ReLU [ZYCG17], [HDJS18] and sigmoid
[ZYH+18].

Several studies designed or utilized novel LSTM architec-
tures that went beyond the simple tuning of hyperparameters.
Architectures tested include the combination of CNNs with
LSTMs such as ConvLSTM [GRX16], DeepConvLSTM [OR16],
[SS17], [Bro17], and the multivariate fully convolutional LSTM
network (MLSTM-FCN) [KMDH18]; innovations regarding the
connections between hidden units including the bidirectional
LSTM (b-LSTM) [REBS17], [Bro17], [MAR+16], [LBMG15],
[HHP16], hierarchical b-LSTM [LC12], deep residual b-LSTM
(deep-res-bidir LSTM) [ZYCG17], and LSTM with peephole con-
nections (p-LSTM) [REBS17]; and other nuanced architectures
such as ensemble deep LSTM [GP17], weighted-average spatial
LSTM (WAS-LSTM) [ZYH+18], deep-Q LSTM [SKP18], the
multivariate squeeze-and-excite fully convolutional network AL-
STM (MALSTM-FCN) [KMDH18], and similarity-based LSTM
[FFH+16]. Note that the term “deep” indicates the use of multiple
layers of hidden connections - generally three or more LSTM
layers qualifies as "deep".

The use of densely-connected layers before or after the LSTM
layers was also common. Kyritsis, et. al. added a dense layer with
ReLU activation after the LSTM layers, Zhao, et. al. included
a dense layer with tanh activation after the LSTMs, and Musci,
et. al. used a dense layer before and after its two LSTM layers
[KDD17], [ZWYM16], [MMB+18]. The WAS-LSTM, deep-Q
LSTM, and the similarity-based LSTM used a combination of
dense and LSTM hidden layers.

Training Weight initialization strategies employed include
random orthogonal initialization [OR16], [SS17], fixed random
seed [Set18], the Glorot uniform initialization [Bro17], random
uniform initialization on [-1, 1] [MAR+16], or using a random
normal distribution [HDJS18]. For mini-batch training, reported
batch sizes range from 32 [RVCK17], [Set18] to 450 [Ber17]
training examples (e.g., windows) per batch.

Loss functions for monitoring training include categorical
cross-entropy [OR16], [MP17], [CZZZ16], [SS17], [KDD17],
[Set18], [Bro17], [HDJS18], [ZYH+18], F1 score loss [GP17],
mean squared error (MSE) [CFF+17], and mean absolute error
[ZWYM16]. During back propagation, various updating rules
– e.g. RMSProp [OR16], [Set18], [Bro17], Adam [MP17],
[KDD17], [Bro17], [HDJS18], [ZYH+18], and Adagrad [SS16],
[HHP16] – and learning rates – 10^-7 [SS16], 10^-4 [SS17],
[GP17], 2e-4 [MAR+16], 5e-4 [LBMG15], and 10^-2 [OR16] are
used.

Regularization techniques employed include weight decay of
90% [OR16], [SS17]; update momentum of 0.9 [MAR+16], 0.2
[LBMG15], or the Nesterov implementation [SS16]; dropout (e.g.,

50% [OR16], [SS17] or 70% [ZWYM16]) between various layers;
batch normalization [ZYCG17]; or gradient clipping using the
norm [ZYCG17], [HDJS18], [ZYH+18]. Broome chose to test
the stateful configuration for its baseline LSTM [Bro17]. In this
configuration, unit memory cell weights are maintained between
each training example instead of resetting them to zero after each
forward pass.

The number of epochs specified ranged from 100 [Bro17] to
10,000 [HDJS18]. Many studies chose to use early stopping to pre-
vent overfitting [JWHT17]. Various patience schemes, specifying
how many epochs with no improvement above a given threshold
the model should allow, were chosen.

Performance Measures Various performance measures were
used to assess the performance of the model, including the F1
score - used by most [OR16], [Bro17], [GRX16], [ZYCG17],
[Bro17], classification error [REBS17], accuracy [SS17], [Set18],
and ROC [MAR+16], [HDJS18].

As this meta-analysis style overview has shown, there are
many different model constructions being employed for HAR
tasks. The work by the aforementioned studies as well as others
have laid the groundwork for this field of research.

Experimental Setup

We implemented a truncated version of our Pipeline, and have
made code available for running the entire Pipeline on the UCI
HAR Dataset at https://github.com/xtianmcd/accelstm.

Data Although many studies use the gyroscope- and
magnetometer-supplemented records from complex inertial sig-
nals, accelerometer data is the most ubiquitous modality in this
field and training models on this data alone helps illuminate
the robustness of the model and requires lower computational
complexity (i.e., more applicable to online and on-device clas-
sifications). As such, this report trains its models on triaxial
accelerometer data alone.

The primary dataset used for our experiments is the Human
Activity Recognition Using Smartphones Data Set (UCI HAR
Dataset) from Anguita, et. al. [AGO+13].

UCI HAR Dataset Classes (6) include walking, climbing stairs,
descending stairs, sitting, standing, and laying down. Data was
collected from built-in accelerometers and gyroscopes (not used
in our study) in smartphones worn on the waists of participants.

A degree of preprocessing was applied to the raw signals them-
selves by the data collectors. The accelerometer data (recorded
at 50Hz) was preprocessed to remove noise by applying a third
order low pass Butterworth filter with corner frequecy of 20Hz
and a median filter. A second filter was then applied to the total
accelerometer signal (T) to remove the gravity component, leaving
the isolated body accelerometer signal (B). The accelerometer
signals for both B and T were provided as pre-split single-axis
windowed signals divided into separate files; see Figure 4 A.
Windows contained 2.56 seconds (128 time steps) of data and
had a step size of 50% of the window size. A 70:30 train-to-test
split was used, splitting one of the participants between the two
sets.

Preprocessing We kept preprocessing to a minimum. We
first attempted to “undo” as much of the preprocessing already
performed on the data and reformat the data for feeding it into
the network. We did this to establish a baseline format for
the data at the start of the Pipeline so that data from differ-
ent datasets can be used. The code for this procedure can be

36 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Fig. 4: Depiction of the "undoing" procedure to return the data in
the UCI HAR Dataset to its unprocessed form. A. Data is provided
as train/test-split single-axis windowed acccelerometer signals. B.
Combine train and test sets. C. Remove windows; reformat labels
and subject include’s accordingly. D. Axes are combined into a three-
dimensional time series; one-hot labels are generated. E. 3-D time
series and labels are grouped by subject to emulate subject-wise data
acquisition.

found in the GitHub repository linked above in the file accel-
stm/src/data/HAR_get_data.py. First, we re-combined the training
and testing sets (Figure 4 B). We effectively removed the windows
by concatenating together time points from every other window,
reforming contiguous time series (Figure 4 C). We then combined
each axis-specific time series to form the desired triaxial data
format, where each time point consists of the accelerometer values
along the x-, y-, and z-axes as a 3-dimensional array (Figure 4 D).
We generated one-hot labels in that step as well. We kept track
of the participant to which each record belonged (Figure 4 E) so
that no single participant was later included in both training and
testing sets.

We used an 80:20 training-to-testing split (Figure 5 A-D),
and subsequently standardized the data by first fitting the stan-
dardization parameters (i.e., mean and standard deviation) to the
training data and then using these parameters to standardize the
training and testing sets separately (Figure 5 E1). This sequenced
procedure prevents exposing any summary information about
the testing set to the model before training, i.e., data leakage.
Finally, a fixed-length sliding window was applied (Figure 5 E2),
the windows were shuffled to avoid localization during training
(Figure 5 F), and the data was ready to feed into the LSTM neural
network.

Training All model training code can be found in the GitHub
repository linked above in the folder accelstm/src/models. Train-
ing the model was broken up into two sections, the first of
which consisted of hyperparameter optimization. We employed
a heuristic-based search, namely the tree-structured Parzen (TPE)
expected improvement (EI) algorithm, in order to more efficiently
navigate the vast hyperparameter search space. EI algorithms
estimate the ability of a supposed model x to outperform some
performance standard y∗, and TPE aims to assist this expectation
by heuristically modeling the search space without requiring

Fig. 5: Outline of the proposed data analysis pipeline. A. The data
should start as raw tri-axial data files separated into individual
records; one record per individual. B. Shuffle the records. C. Partition
the records into k equal groupings for the k-fold cross validation.
D. Concatenate the records end-to-end within the train and test sets
(for feeding in to the LSTM). E. Standardize the data, careful to
avoid data leakage; subsequently window the data. F. Shuffle the
windowed data sets. G. If in Part 1 of the Pipeline, optimize the
model’s hyperparameters; if in Part 2, train the optimized model on
the training data. H. Predict outcomes for the testing data using the
trained model and score the results.

exhaustive exploration thereof. TPE iteratively substitutes equally-
weighted prior distributions over hyperparameters with Gaussians
centered on the examples seen over time. This re-weighting of the
search space allows TPE to estimate p(y) and p(x|y) - regarding
the performance y from suggested model x - ultimately allowing
the EI algorithm to estimate p(y|x) of model M via Bayes Theorem
[BBBK11].

EIy∗(x) :=
∫ ∞

−∞
max(y∗− y,0)pM(y|x)dy

becomes

EIy∗(x) =
∫ y∗

−∞
max(y∗− y,0)pM(y|x)dy

=
∫ y∗

−∞

p(x|y)p(y)
p(x)

dy

=
γy∗l(x)

∫ y∗
−∞ p(y)dx

yl(x)+(1− γ)g(x)

∝ (γ +
g(x)
l(x)

(1− γ))−1

where
γ = p(y∗ < y)

p(x|y) = l(x) if y < y∗

= g(x) if y≥ y∗

and p(a|b) is the conditional probability of a given event b.
The ranges of hyperparameters were devised to include all

ranges explored by the various reports reviewed in the above
section of this paper, as well as any other well-defined range or
setting used in the field, yielding an immense search space with
trillions of possible combinations. The hyperparameters included
in the search space are listed in Table 1. Due to constraints in
the Python package used for hyperparameter optimization (i.e.,
hyperas from hyperopt), a subsequent tuning of the window size,
stride length and number of layers needed to be performed on the
highest performing combination of all other hyperparameters via
randomized grid search. This step was omitted in the current proof

DEVELOPING A START-TO-FINISH PIPELINE FOR ACCELEROMETER-BASED ACTIVITY RECOGNITION USING LONG SHORT-TERM MEMORY RECURRENT NEURAL NETWORKS37

of concept experiment, but the code for carrying out the grid search
can be found in the file accelstm/src/models/more_opt.py. Thus,
for initial optimization and the final cross validation (detailed
below), data was partitioned using a window size of 128 with
50% stride length and fed into a 2-layer LSTM network.

For the second portion of the experiment, the Pipeline is
completed via 5-fold cross validation, where the folds were made
at the participant level so that no single participant’s data ended
up in both training and testing sets.

Languages and Libraries All models were written in the
Python programming language. The LSTMs were built and run us-
ing the Keras library and TensorFlow as the backend heavy lifter.
Hyperas from Hyperopt was used to optimize the network. Scikit
learn provided the packages for cross validation, randomized grid
search, and standardization of data. Numpy and Pandas were used
to read and reformat the data among various other operations.

Results

During preliminary testing, we found that the model performed
better on the total raw accelerometer signal (T) compared to the
body-only data with the gravity-component (B) removed. As such,
we used the total accelerometer signal (T) in our experiment.

The hyperparameter optimization explored a search space
with trillions of possible parameter combinations. Due to time
constraints, we stopped the search after six full days (hundreds
of training iterations), during which time the suggested models’
accuracies on test sets had ranged from 12.66% to 94.96%. The
algorithm found several high-performing models and had used at
least once all the values possible for each activation function,
initialization strategy, regularization strategy, learning rate, and
optimizer in the search space. The algorithm had tested models
that both used and omitted batch normalization and bias, and it
had tested dropout values between 0.005 and 0.991, batch sizes
between 35 and 441 samples per batch, and from 10 to 508 units
at both of the two layers.

Due to limited time to run our experiments, we conducted part
two of the experiment concurrently with part one using a baseline
LSTM architecture we felt would be a good starting point based on
notes throughout the literature. The hyperparameter settings used
in the model are as follows: window size, 128 time steps; step
size, 50% of window size; number of layers, 2; units (layer1),
128; units (layer2), 114; batch size, 64; cell activation, tanh;
recurrent activation, sigmoid; dropout, 0.5; weight initialization,
Glorot Uniform; regularization, None; optimizer, RMSProp; bias,
yes. We ran 5-fold CV on the model and computed the overall and
class-wise F1 scores and accuracies. Cross validation yielded an
average accuracy of 90.97% and F1 score of 0.90968, with a single
best run of 95.25% accuracy and 0.9572 F1 score. We include the
single best run for comparison with other reports, many of which
do not report evidence of using cross validation or repeated trials.

Discussion

The execution of HAR research in various settings from the
biomedical clinic early on [BMT+01], [RDML05], [BTvHS98] to
current-day innovative settings such as the automobile [CFF+17],
the bedroom [MAR+16], the dining room [KDD17], and out-
door sporting environments [REBS17] justifies the time spent
expanding this area of research. As LSTM models are increasingly
demonstrated to have potential for HAR research, the importance
of deliberate and reproducible works is paramount.

Review of Previous Works A survey of the literature revealed a
lack of cohesiveness regarding the use of LSTMs for accelerome-
ter data and the overall data analysis pipeline. We grew concerned
with possible sources of data leakage. Test set data should come
from different participants than those used for the training data
[HTF17], and no information from the test set should be exposed
to the model before training.

We were surprised to see some of the more advanced prepro-
cessing techniques being employed. Much of the appeal of non-
linear models such as neural networks is their ability to learn from
raw data itself and independently perform smoothing and feature
extraction on noisy data through parameterized embeddings of the
data. For example, Karpathy’s 2015 study of LSTMs for language
modeling showed specific neurons being activated when quotes
were opened and deactivated when the quotes were closed, while
others were activated by parenthetical phrases, marked the end of
sentences, and so on [KJFF15]. Additionally, these preprocessing
methods are more computationally expensive and less realistic for
online and on-device implementations than is desired. The im-
proved performance of the model on the total accelerometer signal
(T) versus the body-only signal (B) with the gravity component
removed demonstrates the promising potential of non-linear data-
dependent models for classifying complex noisy data and supports
our claim that extensive preprocessing is not necessary.

We do feel standardization is justified for this data due to
its complexity and poor signal-to-noise ratio. Standardization is
often important for data-dependent models such as LSTMs since
the presence of outliers and skewed distributions may distort the
weight embeddings [JWHT17].

Hyperparameter Optimization and Data Analysis Pipeline We
structured our experiments with the objective of maintaining sim-
plicity, relying as much as possible on the baseline model itself,
maximizing generalizability and reproducibility of our methods
and results, and unifying the existing methods and results in
literature.

We saw very promising results from the hyperparameter opti-
mization portion of the experiment. The TPE algorithm, although
not run to completion in this experiment, was able to navigate
the search space and find several well-performing models. We
chose to err on the side of caution by using very granular ranges
over the numerical hyperparameters, and as a result we ran out of
time even using the heuristic-based TPE algorithm. We suggest
further experiments to reduce the search space by using less
granular ranges over the numeric hyperparameters, and exploring
more advanced heuristic search methods. Doing so will decrease
the search time and allow completion of the entire Pipeline in
a more reasonable amount of time. Nonetheless, the TPE’s so-
far-best model at the time of termination and our baseline model
from Part 2 outperformed other baseline LSTMs trained on higher
dimensional data from the same dataset [U18], [ZYCG17]; see
Table 2.

We also compare our performance with other benchmark ex-
periments on the UCI HAR dataset. Compared with more complex
LSTMs trained using more features, our averaged cross validation
results scored competitively with the b-LSTM (91.09%), the
residual LSTM (91.55%), and the deep res-bidir-LSTM (93.57%)
all from Zhao, et. al. [ZYCG17]. As we found no evidence of
cross validation in these other reports, we compare our single
best-performing test’s accuracy of 95.25% and F1 score of 0.9572
and find it to compete with the highest scoring models found
in literature: 4 layer LSTM (96.7% accuracy, 0.96 F1score)

38 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Category Hyperparameter Range

Data
Processing

Window Size 24, 48, 64, 128, 192, 256
Stride 25%, 50%, 75%
Batch Size 32, 64, 128, ..., 480

Archi-
tecture

Units 2, 22, 42, 62, ..., 522
Layers 1, 2, 3

Forward
Processing

Activation
Function (unit,
state)

softmax, tanh, sigmoid, ReLU, linear

Bias True, False
Weight
Initialization
(cell, state)

zeros, ones, random uniform dist., random
normal dist., constant (0.1), orthogonal, Le-
cun normal, Glorot uniform

Regular-
ization

Regularization
(cell, state, bias,
activation)

None, L2 Norm, L1 Norm

Weight Dropout
(unit, state)

uniform distribution (0, 1)

Batch normaliza-
tion

True, False

Learning Optimizers SGD, RMSProp, Adagrad, Adadelta, Nadam,
Adam

Learning Rate 10−7,10−6,10−5,10−4,10−3,10−2,10−1

TABLE 1: The various hyperparameters included in the search space, and their respective ranges.

Model Performance Features

Baseline LSTM 1 90.77% 9 (T,B,G)
Baseline LSTM 2 85.35% 3-9 (?)
Pipeline P1 (Best) 93.47% 3

Pipeline P2 (CV) 90.97% 3
0.90968 3

Pipeline P2 (Best) 95.25% 3
0.9572 3

TABLE 2: Results table including results from baseline LSTM models
trained on all 9 features provided in the dataset - total accelerometer
signals (T), body accelerometer signals (gravity component removed,
B), gyroscope signals (G). One of the baseline LSTM’s did not
explicitly specify the number of features used but only mentioned
accelerometer signals. We provide results from Part 1 (P1, Hyper-
parameter Optimization) and Part 2 (P2, Cross-Validation) of our
Pipeline. P2 scores include accuracies as percentages and F1 scores
as decimals.

[MP17], MLSTM-FCN and MALSTM-FCN (96.71% accuracy)
[KMDH18], and one-vs-one (OVO) SVM (96.4% accuracy, 551
features) [ROGA+13].

Conclusion/Future Work

We demonstrate the ability for a baseline LSTM model trained
solely on raw triaxial accelerometer data (without gravity com-
ponent removed) to perform competitively with classical models
trained on hundreds of hand-crafted features and with other more
complex LSTM models trained on higher dimensional sensor data.

We demonstrate the ability to optimize a data-centric model
over an expansive hyperparameter search space and train it end-to-
end within a scientifically rigorous and deliberate Data Analysis
Pipeline. The code used in this project can be found at https:
//github.com/xtianmcd/accelstm.

Going forward, we would like to repeat this experiment to
average performances from different models returned by the TPE
algorithm; we would also like to repeat this experiment on other
HAR datasets. Further exploration should be done to analyze why
the algorithm’s selections are indeed superior, how different data
affect these choices, and how the LSTM cells within the models
themselves are representing this type of data as has been done with
LSTMs in other domains.

We hope that this Pipeline will serve useful in producing
explicit and reproducible experiment results and in pushing the
field forward in a methodical way.

REFERENCES

[AGO+13] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra,
and Jorge L Reyes-Ortiz. A public domain dataset for human
activity recognition using smartphones. 21th European Sympo-
sium on Artificial Neural Networks, Computational Intelligence
and Machine Learning, ESANN 2013, 2013.

[BBBK11] James Bergstra, Remi Bardenet, Yoshua Bengio, and Balazs
Kegl. Algorithms for hyper-parameter optimization. NIPS, 2011.

[Ber17] Victor Bergelin. Human activity recognition and behavioral
prediction using wearable sensors and deep learning. Master’s
thesis, Linkopings Universitet Matematiska Institutionen, 2017.

[BI04] Ling Bao and Stephen S Intille. Activity recognition from user-
annotated acceleration data. Springer-Verlag, 2004.

[BMT+01] JB Bussmann, WL Martens, JH Tulen, FC Shasfoort, HJ van den
Berg-Emons, and HJ Stam. Measuring daily behavior using
ambulatory accelerometry - the activity monitor. Behavior
Research Methods, Instruments, and Computers, 2001.

[Bro17] Sofia Broome. Objectively recognizing human activity in body-
worn sensor data with more or less deep neural networks.
Master’s thesis, KTH Royal Institute of Technology School of
Computer Science and Communication, 2017.

[BTvHS98] JB Bussmann, JH Tulen, EC van Herel, and HJ Stam. Quantifica-
tion of physical activities by means of ambulatory accelerometry
- a validation study. Psychophysiology, 1998.

[CFF+17] Eduardo Carvalho, Bruno V Ferreira, Jair Ferreira, Cleidson
de Souza, Hanna V Carvalho, Yoshihiko Suhara, Alex Sandy
Pentland, and Gustavo Pessin. Exploiting the use of recurrent
neural networks for driver behavior profiling. 2017 International
Joint Conference on Neural Networks - IJCNN, 2017.

DEVELOPING A START-TO-FINISH PIPELINE FOR ACCELEROMETER-BASED ACTIVITY RECOGNITION USING LONG SHORT-TERM MEMORY RECURRENT NEURAL NETWORKS39

[CZZZ16] Yuwen Chen, Kunhua Zhong, Ju Zhang, and Xueliang Zhao.
Lstm networks for mobile human activity recognition. 2016
International Conference on Artificial Intelligence, 2016.

[FFH+16] Madalina Fiterau, Jason Fries, Eni Halilaj, Nopphon Siranart,
Suvrat Bhooshan, and Christopher Re. Similarity-based lstms for
time series representation learning in the presence of structured
covariates. 29th Conference on Neural Information Processing
Systems - NIPS 2016, 2016.

[GBGG16] Hristijan Gjoreski, Jani Bizjak, Martin Gjoreski, and Marjaz
Gams. Comparing deep and classical machine learning meth-
ods for human activity recognition using wrist accelerometer.
Technical report, Jozef Stefan Institute Department of Intelligent
Systems, 2016.

[Ger17] Aurelien Geron. Hands-On Machine Learning with Scikit-Learn
and TensorFlow. OReilly Media, Inc., Sebastopol, CA, 2017.

[GP17] Yu Guan and Thomas Plotz. Ensembles of deep lstm learners for
activity recognition using wearables. Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies,
2017.

[GRX16] Weixuan Gao, Chuanwei Ruan, and Rui Xu. Sensor-based
semantic-level human activity recognition using temporal clas-
sification. Technical report, Stanford University, 2016.

[GSS02] Felix A Gers, Nicol N Schraudolph, and Jurgen Schmidhuber.
Learning precise timing with lstm recurrent networks. Journal
of Machine Learning Research, 2002.

[HDJS18] B Hu, PC Dixon, JV Jacobs, and JM Schiffman. Machine
learning algorithms based on signals from a single wearable
inertial sensor can detect surface- and age-related differences
in walking. Journal of Biomechanics, 2018.

[HHP16] Nils Y Hammerla, Shane Holloran, and Thomas Ploetz. Deep,
convolutional, and recurrent models for human activity recogni-
tion using wearables. ArXiv, 2016.

[HS97] Sepp Hochreiter and Jurgen Schmidhuber. Long short-term
memory. Neural Computation, 1997.

[HTF17] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The
elements of statistical learning. Springer, 2017.

[JWHT17] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tib-
shirani. An Introduction to Statistical Learning. Springer, New
York, 2017.

[JZS15] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An
empirical exploration of recurrent network architectures. 32nd
International Conference on Machine Learning, 2015.

[KDD17] Konstantinos Kyritsis, Christos Diou, and Anastasios Delopou-
los. Food intake detection from inertial sensors using lstm
networks. New Trends in Image Analysis and Processing -
ICIAP, 2017.

[KHC10] Eunju Kim, Sumi Helal, and Diane Cook. Human activity
recognition and pattern discovery. IEEE Persuasive Computing,
9(1), 2010.

[KJFF15] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing
and understanding recurrent networks. ArXiv, 2015.

[KMDH18] Fazle Karim, Somshubra Majumdar, Houshang Darabi, and
Samuel Harford. Multivariate lstm-fcns for time series classi-
fication. ArXiv, 2018.

[LBMG15] Gregoire Lefebvre, Samuel Berlemont, Franck Mamalet, and
Christophe Garcia. Inertial Gesture Recognition with BLSTM-
RNN. Springer Series in Bio-/Neuroinformatics 4 - Artificial
Neural Networks, Switzerland, 2015.

[LC12] Myeong-Chun Lee and Sung-Bae Cho. Mobile gesture recog-
nition using hierarchical recurrent neural network with bidirec-
tional long short-term memory. 6th International Conference on
Mobile Ubiquitous Computing, Systems, Services and Technolo-
gies, 2012.

[MAR+16] Arnaud Moreau, Peter Anderer, Marco Ross, Andreas Cerny,
Timothy Almazan, and Barry Peterson. Detection of nocturnal
scratching movements in patients with atopic dermatitis using
accelerometers and recurrent neural networks. IEEE Journal of
Biomedical and Health Informatics, 2016.

[Mil18] John A Miller. Introduction to data science using scalation.
Technical report, University of Georgia Department of Com-
puting Science, 2018.

[MKS17] Stephen Merity, Nitish Shirish Keskar, and Richard Socher.
Regularizing and optimizing lstm language models. ArXiv, 2017.

[MMB+18] Mirto Musci, Daniele De Martini, Nicola Blago, Tullio
Facchinetti, and Marco Piastra. Online fall detection using
recurrent neural networks. ArXiv, 2018.

[MP43] WS McCulloch and W Pitts. A logical calculus of the ideas
immanent in neurons activity. Bulletin of Mathematical Biology,
5(4):115–133, 1943.

[MP17] Abdulmajid Murad and Jae-Young Pyun. Deep recurrent neural
networks for human activity recognition. Sensors, 17(11), 2017.

[MS10] Andrea Mannini and Angelo Maria Sabatini. Machine learning
methods for classifying human physical activity from on-body
accelerometers. Sensors, 2010.

[OR16] Javier Ordonez and Daniel Roggen. Deep convolutional and
lstm recurrent neural networks for multimodal wearable activity
recognition. Sensors, 2016.

[PMB13] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the
difficulty of training recurrent neural networks. ArXiv, 2013.

[PW17] Ofir Press and Lior Wolf. Using the output embedding to
improve language models. ArXiv, 2017.

[RDML05] Nishkam Ravi, Nikhil Dandekar, Preetham Mysore, and
Michael L Littman. Activity recognition from accelerometer
data. IAAI 2005 Proceedings of the 17th conference on Innova-
tive applications of artificial intelligence, 3:1541–1546, 2005.

[REBS17] Aliaa Rassem, Mohammed El-Beltagy, and Mohamed Saleh.
Cross-country skiing gears classification using deep learning.
ArXiv, 2017.

[RG17] Nils Reimers and Iryna Gurevych. Optimal hyperparameters for
deep lstm-networks for sequence labeling tasks. ArXiv, 2017.

[ROGA+13] Jorge Luis Reyes-Ortiz, Alessandro Ghio, Davide Anguita,
Xavier Parra, Joan Cabestany, and Andreu Catala. Human
activity and motion disorder recognition - towards smarter in-
teractive cognitive environments. 21th European Symposium
on Artificial Neural Networks, Computational Intelligence and
Machine Learning, ESANN 2013, 2013.

[Ros57] Frank Rosenblatt. The perceptron - a perceiving and recognizing
automation. Technical report, Cornell Aeronautical Laboratory,
1957.

[RVCK17] Patricio Rivera, Edwin Valerezo, Mun-Taik Choi, and Tae-Seong
Kim. Recognition of human hand activities based on a single
wrist imu using recurrent neural networks. International Journal
of Pharma Medicine and Biological Sciences, 2017.

[Set18] Dan Setterquist. Using a smartphone to detect the standing-to-
kneeling and kneeling- to-standing postural transitions. Master’s
thesis, KTH Royal Institute of Technology School of Electrical
Engineering and Computer Science, 2018.

[SKP18] W Seok, Y Kim, and C Park. Pattern recognition of human
arm movement using deep reinforcement learning. 2018 Inter-
national Conference on Information Networking - ICOIN, 2018.

[SS16] Sungho Shin and Wonyong Sung. Dynamic hand gesture recog-
nition for wearable devices with low complexity recurrent neural
networks. 2016 IEEE International Symposium on Circuits and
Systems - ISCAS, 2016.

[SS17] Henrik Sjostrum and Carlos Nieves Sanchez. Deepconvlstm on
single accelerometer locomotion recognition. Technical report,
UMEA Universitet, 2017.

[U18] Chandini U. A machine learning based activity recognition for
ambient assisted living. International Journal on Future Rev-
olution in Computer Science and Communication Engineering,
4(3), 2018.

[WA17] Elias Wu and Paa Adu. What am i doing - robust human ac-
tivity detection with smartphones athletics and sensing devices.
Technical report, Stanford University, 2017.

[WRSN14] Simon Wiesler, Alexander Richard, Ralf Schluter, and Hermann
Ney. Mean-normalized stochastic gradient for large-scale deep
learning. IEEE International Conference on Acoustics, Speech
and Signal Processing, 2014.

[WZ89] Ronald J Williams and David Zipser. A learning algorithm
for continually running fully recurrent neural networks. Neural
Computation, 1989.

[ZSO17] Tahmina Zebin, Patricia J Scully, and Krikor B Ozanyan. Human
activity recognition with inertial sensors using a deep learning
approach. Sensors, 2016 IEEE, 2017.

[ZWYM16] Rui Zhao, Jinjiang Wang, Ruqiang Yan, and Kezhi Mao. Ma-
chine health monitoring with lstm networks. 2016 10th Interna-
tional Conference on Sensing Technology - ICST, 2016.

[ZYCG17] Yu Zhao, Rennong Yang, Guillaume Chevalier, and Maoguo
Gong. Deep residual bidir-lstm for human activity recognition
using wearable sensors. ArXiv, 2017.

[ZYH+18] Xiang Zhang, Lina Yao, Chaoran Huang, Sen Wang, Mingkui
Tan, Guodong Long, and Can Wang. Multi-modality sensor data
classification with selective attention. 2018 International Joint

40 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Conference on Artificial Intelligence At Stockholm, Sweden,
2018.

PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018) 41

Practical Applications of Astropy

David Shupe‡∗, Frank Masci‡, Russ Laher‡, Ben Rusholme‡, Lee Armus‡

https://youtu.be/2GTLkH5sfJc

F

Abstract—Packages developed under the auspices of the Astropy Project
([ART+13], [TPS+18]) address many common problems faced by astronomers
in their computational projects. In this paper we describe how capabilities pro-
vided by Astropy have been employed in two current projects. The data system
for the Zwicky Transient Facility processes a terabyte of image data every night,
with a lights-out automated pipeline that produces difference images about ten
minutes after the receipt of every exposure. Astropy is used extensively in the
astrometry and light-curve-generation modules, making especially heavy use of
FITS header manipulation, table I/O, and coordinate conversion and matching.
The second project is a web application made with Plotly Dash for proposal stud-
ies for the Origins Space Telescope. The astropy.cosmology module provided
easy redshifting of our template galaxy spectrum, and astropy.units enabled the
porting of an instrument sensitivity function to Python, with verification that a
very complex combination of units resulted in a dimensionless signal-to-noise
value.

Index Terms—astronomy, data processing

Introduction

The Astropy Project is a community-driven effort to provide both
a core Python package of functionality commonly used by as-
tronomers, and an extended ecosystem of interoperable packages,
with high standards for documentation and testing ([ART+13],
[TPS+18]). The astropy core package includes subpackages for
representing and manipulating space and time coordinates; I/O
for astronomical file formats; world coordinate systems in images
(e.g. converting between celestial coordinates and image pixels);
cosmological calculations; and manipulating numerical quantities
with units. Most astronomers using the astropy core package use it
for interactive analyses. In this paper, we highlight the importance
of astropy in two production environments: the data system for
the Zwicky Transient Facility (ZTF), and a web application for
the proposed Origins Space Telescope.

The ZTF Project

The Zwicky Transient Facility (ZTF) is a new robotic survey now
underway, using the 48-inch Samuel Oschin Telescope at Palomar
Observatory in southern California. This telescope was originally
constructed to take images with photographic plates, in large part
to provide targets for the 200-inch Hale Telescope at the same
observatory. The ZTF camera fills the focal plane of the 48-inch

* Corresponding author: shupe@ipac.caltech.edu
‡ Caltech/IPAC

Copyright © 2018 David Shupe et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

telescope with sixteen 6k × 6k charge-coupled devices (CCDs)
with an active detector area of 47 square degrees (Dekany et al
in prep; [DSB+16]). ZTF is conducting a fast, wide-area time-
domain survey (Bellm et al in prep) designed to discover fast,
young and rare flux transients; counterparts to gravitational wave
sources; low-redshift Type Ia supernovae for cosmology; variable
stars and eclipsing binaries; and moving objects in our Solar
System such as asteroids (Graham et al in prep). The entire sky
visible to Palomar can be imaged each night to declinations above
-30 degrees. The survey began in March 2018 and will continue
for three years. Figure 1 shows a field-of-view comparison of ZTF
with its predecessor at Palomar, the Palomar Transient Factory
(PTF; [LKD+09]), and the forthcoming Large Synoptic Survey
Telescope (LSST).

A typical night of ZTF observations includes about 750 expo-
sures totaling about 1 Terabyte of image data when uncompressed.
Each quadrant of the CCDs is processed separately for a total of
about 55,000 calibrated science images per night. Depending on
sky location, 0.5 to 1 billion individual source measurements are
extracted per night. The ZTF data system (Masci et al. 2018, in
review, [LMG+18]) is operated by the IPAC data center on the
Caltech campus. Within a few minutes of receipt of an exposure at
IPAC, a real-time image subtraction pipeline outputs alert packets
of potential transient objects, at rates already nearing 1 million
per night. Alert packets from the public portion of the survey have
just become available1, along with a repository of the schema and
code examples2.

The data system is mostly scripted in Perl, with job manage-
ment relying on a Postgres database. A cluster of 66 compute
nodes handles the processing. Astropy is used in several key
components of the pipeline. In the following subsections we
outline Astropy use and what we’ve learned from operational
experience.

Improving reliability of the astrometric solver

Assigning coordinates to ZTF images is challenging for several
reasons. The accuracy of the pointing of the boresight (center
of the field-of-view) is about 20 arcseconds rms. Atmospheric
effects cause image distortions on small scales, and these effects
are exacerbated at low elevations. ZTF employs the Scamp astro-
metric solver from the Astromatics suite ([Ber06]) to match star
positions from the Gaia Data Release 1 (DR1) catalog ([GPd+16],
[GBV+16]) and ultimately fit a 4th-order polynomial to the image
distortions. Scamp is written in C and requires inputs in a very

1. https://ztf.uw.edu/alerts/public
2. https://github.com/ZwickyTransientFacility/ztf-avro-alert

42 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Fig. 1: Field of view of the ZTF camera, compared to the predecessor
Palomar Transient Factory (PTF) camera, and the forthcoming Large
Synoptic Survey Telescope (LSST). The background image shows the
Orion constellation.

specialized format. We have developed a procedure that has
significantly reduced the rate of incorrect solutions in crowded
fields, by providing Scamp with an accurate starting point (see
Figure 2).

Scamp requires both the input catalog of detections and the
reference catalog to be provided in LDAC (Leiden Data Analysis
Center)3 FITS format. This format consists of header information
encoded in a binary format in a table extension, followed by
another table extension of detections. Recent versions of Scamp
will start from a prior World Coordinate System (WCS; [CG02])
solution provided to the program. Providing a distortion prior
derived from many observations makes it much easier for Scamp
to converge on the global minimum, i.e. the correct distortion
solution. Our efforts to include the WCS in the LDAC file of
detections using astropy.io.fits were unsuccessful. However, the
WCS information in the LDAC file can be overridden by a text
file of header information provided separately to Scamp.

Our distortion prior is constructed from an offline analysis
of images taken at high elevations (low airmasses), the same
conditions used in the ZTF survey. For selected fields, we set
up idealized WCS objects with 1 degree per "pixel":
from astropy.wcs import WCS
field_radec = {619: (143.619, 26.15),

620: (151.101, 26.15),

3. https://marvinweb.astro.uni-bonn.de/data_products/THELIWWW/
LDAC/LDAC_concepts.html

Fig. 2: Processing diagrams for ZTF astrometry. An offline analysis
(top) is performed on a few exposures to make a prior model for each
of the 64 quadrants in the focal plane. These terms are combined
with telescope pointing to make an accurate prior for Scamp in the
realtime pipeline (bottom), resulting in a calibrated header text file
with the full coordinate solution including distortions, and a catalog
of the detected stars with assigned RA and Dec coordinates. These
outputs of the astrometric fitting are matched again with the Gaia
reference catalog to produce metrics for assessing the quality of the
astrometric fit.

665: (133.35, 33.35),
667: (149.057, 33.35)}

wdict = {}
for field, (ra, dec) in field_radec.items():

w = WCS(naxis=2)
w.wcs.crpix = [0.0, 0.0]
w.wcs.cdelt = np.array([1.0, 1.0])
w.wcs.crval = [ra, dec]
w.wcs.ctype = ["RA---TAN", "DEC--TAN"]
wdict[field] = w

Then when reading in a catalog of sources with positions for each
field, we convert the right ascensions and declinations to projection
plane coordinates ([CG02]) ξ , η in units of degrees in the tangent
plane:

w = wdict[field]
plane_coords = w.wcs_world2pix(

np.vstack([tab['ra'],tab['dec']]).T,1)
xi = plane_coords[:,0]
eta = plane_coords[:,1]

A linear model is fit relating image pixel values to the computed
ξ and η values, while allowing offsets and linear terms for
each exposure and readout channel. This fit yields the CRPIX1
and CRPIX2 values (pixel offsets) from the telescope boresight
to each of the 64 readout channels. This linear solution yields
residuals of about four arcseconds in magnitude. Then "global"
pixel coordinates are constructed and a quadratic fit relating these
to ξ and η is computed. This second fit is used to find ξ and η
for the center of each quadrant-image. For each quadrant-image,
a linear fit is made to yield the multiplicative terms for pixel scale
and rotation (CD-matrix values; [CG02]) for each quadrant. This

PRACTICAL APPLICATIONS OF ASTROPY 43

procedure transfers the pointing to the center of each individual
quadrant-image.

The CD-matrix, CRPIX1, CRPIX2, and ξ , η values for each
quadrant are saved to be used by the astrometry pipeline. The
parameters are read and inserted into a text file (.ahead file) that
initializes Scamp. For each image, a first run of Scamp is made
using ’PRE-DISTORTED’ mode. This performs pattern-matching
of detected stars and reference stars from Gaia DR1. Scamp is
allowed only a little freedom to rotate and change scale. A second
pass of Scamp skips the pattern-matching and fits a fourth-degree
distortion polynomial as part of the output WCS. An essential
speed improvement was pre-fetching static copies of the Gaia
DR1 catalog and storing these in the LDAC FITS format using
astropy.io.fits, in a static area, to be available as static catalogs for
Scamp.

Assessing the quality of the astrometric solution

A problem encountered often in the PTF survey was not being
able to readily tell whether a solution output by Scamp was of
poor quality. Astrometric problems greatly increase the number of
spurious transients produced by image subtraction and later steps
of the pipeline and scanning processes. Scamp does output a chi-
squared statistic. When provided with realistic errors, most good
solutions result in a chi-squared statistic of about five. To ensure
that the system catches the case of a distortion polynomial that
is unconstrained in the corner of an image, we developed a scale
check test of the final solution against the distortion prior that we
initially provided to Scamp.

First we generate a grid over the detector, and then make pixel
coordinates at each grid point:
y_pix1 = np.arange(1, 3082, 140)
x_pix1 = np.arange(1, 3074, 128)
m1 = np.meshgrid(x_pix1, y_pix1)
mx = np.array(m1[0].flat)
my = np.array(m1[1].flat)
pcoords = np.vstack([mx,my]).T
pcoordsb = np.vstack([mx+1,my+1]).T
pcoordsr = np.vstack([mx+1,my]).T
pcoordsd = np.vstack([mx,my+1]).T

Then using the WCS objects from the prior and from the final
solution, we calculate pixel areas:
from astropy.coordinates import SkyCoord
import astropy.units as u
finalcoords = SkyCoord(wcs_final.all_pix2world(

pcoords, 1), unit=u.deg, frame='icrs')
finalcoordsb = SkyCoord(wcs_final.all_pix2world(

pcoordsb, 1), unit=u.deg, frame='icrs')
finalcoordsr = SkyCoord(wcs_final.all_pix2world(

pcoordsr, 1), unit=u.deg, frame='icrs')
finalcoordsd = SkyCoord(wcs_final.all_pix2world(

pcoordsd, 1), unit=u.deg, frame='icrs')
finalareas = (finalcoords.separation(finalcoordsb)*

finalcoordsr.separation(finalcoordsd)/2

These steps are repeated for the prior. Finally we compute a
percentage change in pixel scale:
pctscaledif = 100*(np.sqrt(finalareas) -

np.sqrt(priorareas))/np.sqrt(priorareas)

If the percentage scale difference changes by more than a percent,
the image is marked as unusable. Figure 3 shows the mean value of
the percentage scale difference for a night of ZTF commissioning
exposures, showing the changes follow a model4 for differential
atmospheric refraction.

4. http://wise-obs.tau.ac.il/~eran/Wise/Util/Refraction.html

Fig. 3: Mean pixel scale versus airmass for one night of commission-
ing data. The line shows model points for pressure and temperature
appropriate for Palomar Observatory.

A peculiarity for ZTF is that with a field-of-view that is seven
degrees on a side, the airmass reported by the telescope control
system does not apply well for the outer CCDs. We use an AltAz
model to recompute airmass when analyzing metric values for the
pixel scale change.

palomar = EarthLocation.of_site('palomar')
time = Time(df.obsmjd, format='mjd')
coords = SkyCoord(ra=df.ra0, dec=df.dec0,

unit=u.deg, frame='icrs',
obstime=time,
location=palomar)

altaz = coords.transform_to(
AltAz(obstime=time,

location=palomar))
df['secz'] = altaz.secz

A future update to the astrometry module, now being tested,
distorts the CD-matrix along the azimuthal direction and by a
magnitude determined from the differential refraction model. The
correction is not needed for the main survey and will help find
solutions for targets of opportunity at high airmass.

Accounting for light-travel-time in ZTF light curves

For ZTF, the PSF-fitting photometry that is extracted from every
image is periodically combined into matchfiles in HDF5 format.
These matchfiles form the basis of the lightcurve service that will
be deployed by IPAC’s Infrared Science Archive. The matchfiles
are also used to provide light curves for variable star studies.

The matchfiles are seeded by PSF-fitting photometry extracted
from reference images. The reference images are coadds of be-
tween 15 and 40 exposures of a ZTF field. Astropy’s SkyCoord
class is employed to perform the matching of input sources to
reference objects.

Astropy is also used to provide heliocentric Julian dates for
each source. The difference between heliocentric Julian date and
observed Julian date is the light-travel time difference between the
Earth-to-coordinate direction and the Sun-to-coordinate direction.
It is computationally prohibitive to compute this time difference
for each individual source. Instead, a SkyOffset frame is defined at
the maximum coordinate for a field, and then a 9x9 grid is set up
on that offset grid. A fit is made of light-travel-time difference as
a quadratic function of longitude and latitude in the offset frame.

44 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

This provides an accuracy in the calculation of the heliocentric
date that is much less than a ZTF exposure time of 30 seconds.

Since some ZTF fields straddle RA=0, a mean or median of
RA yields misleading values. For our nearly-degree-sized fields,
we use the maximum values and define an offset frame:

import numpy as np
from astropy.coordinates import SkyCoord
import units as u

max_ra = np.max(ra)
max_dec = np.max(dec)
Make calculations in sky offset frame
max_coord = SkyCoord(ra=max_ra*u.deg,

dec=max_dec*u.deg)
aframe = max_coord.skyoffset_frame()

The PSF-fitting catalog coordinates are transformed to the offset
frame and a bounding box in that frame is computed:

psfcoords = SkyCoord(ra=ra*u.deg,
dec=dec*u.deg)

psfcoords = psfcoords.transform_to(aframe)
min_lon = np.min(psfcoords.lon)
max_lon = np.max(psfcoords.lon)
min_lat = np.min(psfcoords.lat)
max_lat = np.max(psfcoords.lat)

A 9x9 grid is set up in the SkyOffset frame:

grid_lon = np.linspace(min_lon.value,
max_lon.value,
endpoint=True,
num=9)

grid_lat = np.linspace(min_lat.value,
max_lat.value,
endpoint=True,
num=9)

glon, glat = np.meshgrid(grid_lon, grid_lat)
glon, glat = glon.flatten(), glat.flatten()
gcoords = SkyCoord(lon=glon*u.deg,

lat=glat*u.deg,frame=aframe)

Although coord.EarthLocation.of_site was used in our offline
astrometry analysis, its network fetch of coordinates is not reliable
for many parallel processes. The hard-coded observatory location
is combined with the modified Julian date of the observation to
compute light-travel-time over our 9x9 grid:

from astropy import time

palomar = coord.EarthLocation.from_geocentric(
-2410346.78217658,
-4758666.82504051,
3487942.97502457, u.m)

mytime = time.Time(mjd, format='mjd', scale='utc',
location=palomar)

ltt_helio = mytime.light_travel_time(gcoords,
'heliocentric')

Coefficients for a least-squares fit of a 2-dimensional quadratic
surface are computed and applied to our catalog coordinates to
yield light-travel-times for each source, and then added to our
observed times to result in heliocentric Julian dates:

A = np.c_[np.ones(glon.shape), glon, glat,
glon*glat, glon**2, glat**2]

coeffs,_,_,_ = np.linalg.lstsq(A, ltt_helio.sec)
fitted = np.dot(np.c_[np.ones(psfcoords.lon.shape),

psfcoords.lon.value,
psfcoords.lat.value,
psfcoords.lon.value*psfcoords.lat.value,
psfcoords.lon.value**2,
psfcoords.lat.value**2],
coeffs).reshape(psfcoords.lon.shape)

hjd = mytime + fitted*u.s

Configuration file issue

In the course of running the ZTF pipeline in produc-
tion, we encountered a serious problem caused by the
$HOME/.astropy/config file. This file would randomly corrupt,
causing every Astropy import to fail. The cause of the problem was
different Astropy versions installed in our Python 2 & 3 virtual
environments. The configuration file is overwritten every time a
different versions of Astropy version is imported. Our pipeline
contained a mixture of Python 2 and Python 3 code, running in
parallel at enough scale, that a collision would eventually occur.
The problem was solved by installing the same version of Astropy
in both versions of Python.

Lessons learned from the ZTF experience

• Python and Astropy worked very well to wrap the Scamp
solver and to provide its specialized inputs to make it
converge reliably on correct astrometric solutions.

• The key to working with the LDAC format is providing an
additional text file header that is easily manipulated with
Astropy.

• Astropy.wcs supports TPV distortions since version 1.1,
enabling us to compute metrics assessing the quality of
the astrometric fits.

• When you have a 7-degree field of view, the elevation,
azimuth, and airmass reported by the telescope system lack
sufficient precision.

• Elminiate network calls as much as possible, by pre-
fetching the astrometric catalogs, and bypassing as-
tropy.coordinates.EarthLocation.of_site.

• SkyCoord.offset_frame is essential to avoid zero-wrapping
problems in celestial coordinates, and is very useful when
working on a patch of sky.

• Configuration files can cause problems at scale.
• Technical debt from not converting everything to Python 3

will bite you.

Origins Space Telescope

The Origins Space Telescope is a space observatory concept under
study as part of NASA’s astrophysics roadmap. The first design
includes a 9-meter primary mirror with all components cooled to
less than 6 K, to provide orders of magnitude more sensitivity than
previous space infrared missions.

As part of the concept study, a web application has been
constructed to showcase the potential of one of the spectroscopic
instruments, the Mid-Resolution Survey Spectrometer ([BO18]).
The purpose of the application is to allow trade studies of different
observational parameters, including the telescope diameter, the
exposure time, and the distance to the star or galaxy of interest.
Plotly Dash5 was chosen as the technology for constructing the
project.

Part of the project involved converting a complicated func-
tion for instrument sensitivity to Python. The astropy.units and
astropy.constants packages made it relatively easy to check the
results of the calculation.

Many astronomers are used to working with "magic numbers"
that are constants or combinations of constants that we keep in our
heads. Here is an example:

5. https://plot.ly/products/dash/

PRACTICAL APPLICATIONS OF ASTROPY 45

freq=double(2.9979e5/wave) ; in GHz
h=double(6.626e-18) ; h in erg / GHz
c=double(2.9979e10) ; c in cm / sec

With astropy.units and affiliated packages:

import astropy.constants as const
import astropy.units as u

freq = const.c/wave

The noise equivalent flux calculation for the spectrometer depends
in part on the numbers of photons (occupation number) coming
from the background at a particular wavelength.

n̄ =
c2Iν

2hν3

where Iν is the background intensity in MJy/sr. An assertion in the
calculation of occupation number ensures it is dimensionless:

def occnum_bkg(wave, background):
"""
returns photon occupation
number from background
"""

freq=const.c/wave

occnum = (u.sr*const.c**2*background/
(2*const.h*freq**3)

background is provided in MJy / sr
assert occnum.unit.is_equivalent(

u.dimensionless_unscaled)
return occnum

The assertion ensures that the occupation number is dimension-
less.

The noise equivalent power for an element in the spectrometer
depends the frequency, bandwidth and photon occupation number
at that frequency:

NEP = hν
√

∆ν n̄(n̄+1)

where the bandwidth ∆ν = ν/R and R is the spectrometer reso-
lution. In the instrument sensitivity function, this is implemented
with an assertion to check units at an intermediate stage:

delta_freq = freq / resolution
nep_det = (const.h*freq*

np.sqrt(delta_freq*nbar*(nbar+1))
*sqrt(2)) # in W/sqrt(Hz)

assert nep_det.unit.is_equivalent(u.W*u.Hz**-0.5)

For the extragalactic example in the application, the as-
tropy.cosmology module was used to redshift the spectrum. The
Planck 2015 cosmology ([PAA+16]) is one of the built-in cos-
mologies in the package. For each user-selected value of redshift,
we computed the luminosity distance to scale the flux values of
the spectrum.

For re-gridding the wavelength spectrum, we used the pysyn-
phot package (not an astropy package but developed in part
by Astropy developers) ([STS13]) to interpolate the redshifted
spectrum onto the observed wavelength channels.

The application has been deployed on the Heroku platform6. A
screenshot of the galaxy spectrum is shown in Figure 4. To ensure
good performance when changing parameters, the instrument sen-
sitivity was pre-computed for the lines in the spectra, for different
backgrounds and redshifts.

6. https://ost-mrss.herokuapp.com

The astropy.units package is broadly useful outside astronomy;
to that end, the unyts package ([GZT+18]) is a newly-available
standalone alternative.

Lessons learned include:

• Using a units package together with assertions at inter-
mediate stages helped to validate a complex instrument
sensitivity function.

• However, a units package does not help get factors of (1+z)
correct.

• Pre-computing sensitivities for several parameter choices
sped up the application.

• The pysynphot functionality for regridding spectra would
be useful to break out into a more accessible Astropy-
affiliated package.

Conclusions

This paper highlights the use of Astropy in two production
environments: the Zwicky Transient Facility data system, and a
web application for the Origins Space Telescope. Astropy’s capa-
bilities for manipulating FITS files and image headers, coupled
with its coordinate conversion capabilities, helped us implement
a scheme to greatly improve the reliability of ZTF astrome-
try, and provided other conveniences. The astropy.units and as-
tropy.cosmology packages provided essential transformations for
the Origins study application. We found that some care needs to
be taken with minimizing or eliminating network calls, and with
handling configuration files that assume a single package version
is in use.

Acknowledgments

We are grateful to D. Levitan, W. Landry, S. Groom, B. Sesar,
J. Surace, E. Bellm, A. Miller, S. Kulkarni, T. Prince and many
other contributors to the PTF and ZTF projects. The Origins
Space Telescope app includes significant contributions from C.M
Bradford, K. Pontopiddan, K. Larson, J. Marshall, and T. Diaz-
Santos.

ZTF is led by the California Institute of Technology, US
and includes IPAC, US; the Joint Space-Science Institute (via
the University of Maryland, College Park), US; Oskar Klein
Centre of the University of Stockholm, Sweden; University of
Washington, US; Weizmann Institute of Science, Israel; DESY and
Humboldt University of Berlin, Germany; University of Wisconsin
at Milwaukee, US; the University System of Taiwan, Taiwan; and
Los Alamos National Labora- tory, US; ZTF acknowledges the
generous support of the National Science Foundation under AST
MSIP Grant No 1440341. The alert distribution service is provided
by the DIRAC Institute at the University of Washington. The
High Performance Wireless Research & Education Network (HP-
WREN; https://hpwren.ucsd.edu) is a project at the University of
California, San Diego and the National Science Foundation (grant
numbers 0087344 (in 2000), 0426879 (in 2004), and 0944131 (in
2009)).

This work has made use of data from the European
Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/
gaia), processed by the Gaia Data Processing and Analysis
Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/
consortium). Funding for the DPAC has been provided by national
institutions, in particular the institutions participating in the Gaia
Multilateral Agreement.

46 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Fig. 4: The web application for the Origins Space Telescope, showing the galaxy spectrum and controls for changing source characteristics
and instrument parameters.

REFERENCES

[ART+13] Astropy Collaboration, Thomas P. Robitaille, Erik J. Tollerud,
Perry Greenfield, Michael Droettboom, Erik Bray, Tom Ald-
croft, Matt Davis, Adam Ginsburg, Adrian M. Price-Whelan,
Wolfgang E. Kerzendorf, Alexander Conley, Neil Crighton, Kyle
Barbary, Demitri Muna, Henry Ferguson, Frédéric Grollier, Mad-
hura M. Parikh, Prasanth H. Nair, Hans M. Unther, Christoph
Deil, Julien Woillez, Simon Conseil, Roban Kramer, James E. H.
Turner, Leo Singer, Ryan Fox, Benjamin A. Weaver, Victor
Zabalza, Zachary I. Edwards, K. Azalee Bostroem, D. J. Burke,
Andrew R. Casey, Steven M. Crawford, Nadia Dencheva, Justin
Ely, Tim Jenness, Kathleen Labrie, Pey Lian Lim, Francesco
Pierfederici, Andrew Pontzen, Andy Ptak, Brian Refsdal, Mathieu
Servillat, and Ole Streicher. Astropy: A community Python
package for astronomy. Astronomy and Astrophysics, 558:A33,
October 2013. doi:10.1051/0004-6361/201322068.

[Ber06] E. Bertin. Automatic Astrometric and Photometric Calibration
with SCAMP. In C. Gabriel, C. Arviset, D. Ponz, and S. Enrique,
editors, Astronomical Data Analysis Software and Systems XV,
volume 351 of Astronomical Society of the Pacific Conference
Series, page 112, July 2006.

[BO18] Charles Matt Bradford and Origins Space Telescope Study Team.
The Medium Resolution Survey Spectrometer (MRSS) for the
Origins Space Telescope: Enabling 3-D Surveys of the Universe in
the Far-IR. In American Astronomical Society Meeting Abstracts,
January 2018.

[CG02] M. R. Calabretta and E. W. Greisen. Representations of celestial
coordinates in FITS. Astronomy and Astrophysics, 395:1077–
1122, December 2002. arXiv:astro-ph/0207413, doi:
10.1051/0004-6361:20021327.

[DSB+16] Richard Dekany, Roger M. Smith, Justin Belicki, Alexandre
Delacroix, Gina Duggan, Michael Feeney, David Hale, Stephen
Kaye, Jennifer Milburn, Patrick Murphy, Michael Porter, Daniel J.
Reiley, Reed L. Riddle, Hector Rodriguez, and Eric C. Bellm. The
Zwicky Transient Facility Camera. In Ground-based and Airborne
Instrumentation for Astronomy VI, volume 9908, page 99085M,
August 2016. doi:10.1117/12.2234558.

[GBV+16] Gaia Collaboration, A. G. A. Brown, A. Vallenari, T. Prusti,
J. H. J. de Bruijne, F. Mignard, R. Drimmel, C. Babusiaux,
C. A. L. Bailer-Jones, U. Bastian, and et al. Gaia Data Release 1.
Summary of the astrometric, photometric, and survey properties.
Astronomy and Astrophysics, 595:A2, November 2016. arXiv:
1609.04172, doi:10.1051/0004-6361/201629512.

[GPd+16] Gaia Collaboration, T. Prusti, J. H. J. de Bruijne, A. G. A. Brown,
A. Vallenari, C. Babusiaux, C. A. L. Bailer-Jones, U. Bastian,
M. Biermann, D. W. Evans, and et al. The Gaia mission.
Astronomy and Astrophysics, 595:A1, November 2016. arXiv:
1609.04153, doi:10.1051/0004-6361/201629272.

[GZT+18] N. J. Goldbaum, J. A. ZuHone, M. J. Turk, K. Kowalik, and A. L.
Rosen. unyt: Handle, manipulate, and convert data with units in
Python. ArXiv e-prints, June 2018. arXiv:1806.02417.

[LKD+09] Nicholas M. Law, Shrinivas R. Kulkarni, Richard G. Dekany,
Eran O. Ofek, Robert M. Quimby, Peter E. Nugent, Jason Surace,
Carl C. Grillmair, Joshua S. Bloom, Mansi M. Kasliwal, Lars

PRACTICAL APPLICATIONS OF ASTROPY 47

Bildsten, Tim Brown, S. Bradley Cenko, David Ciardi, Ernest
Croner, S. George Djorgovski, Julian van Eyken, Alexei V. Fil-
ippenko, Derek B. Fox, Avishay Gal- Yam, David Hale, Nouhad
Hamam, George Helou, John Henning, D. Andrew Howell, Janet
Jacobsen, Russ Laher, Sean Mattingly, Dan McKenna, Andrew
Pickles, Dovi Poznanski, Gustavo Rahmer, Arne Rau, Wayne Ros-
ing, Michael Shara, Roger Smith, Dan Starr, Mark Sullivan, Viswa
Velur, Richard Walters, and Jeff Zolkower. The Palomar Transient
Factory: System Overview, Performance, and First Results. Pub-
lications of the Astronomical Society of the Pacific, 121:1395, De-
cember 2009. arXiv:0906.5350, doi:10.1086/648598.

[LMG+18] Russ R. Laher, Frank J. Masci, Steve Groom, Benjamin
Rusholme, David L. Shupe, Ed Jackson, Jason Surace, Dave
Flynn, Walter Landry, Scott Terek, George Helou, Ron Beck,
Eugean Hacopians, Umaa Rebbapragada, Brian Bue, Roger M.
Smith, Richard G. Dekany, Adam A. Miller, S. B. Cenko, Eric
Bellm, Maria Patterson, Thomas Kupfer, Lin Yan, Tom Barlow,
Matthew Graham, Mansi M. Kasliwal, Thomas A. Prince, and
Shrinivas R. Kulkarni. Processing Images from the Zwicky
Transient Facility. RTSE Conference Proceedings, 2018. arXiv:
1708.01584.

[PAA+16] Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud,
M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, R. B.
Barreiro, J. G. Bartlett, N. Bartolo, E. Battaner, R. Battye, K. Ben-
abed, A. Benoît, A. Benoit-Lévy, J. P. Bernard, M. Bersanelli,
P. Bielewicz, J. J. Bock, A. Bonaldi, L. Bonavera, J. R. Bond,
J. Borrill, F. R. Bouchet, F. Boulanger, M. Bucher, C. Burigana,
R. C. Butler, E. Calabrese, J. F. Cardoso, A. Catalano, A. Challi-
nor, A. Chamballu, R. R. Chary, H. C. Chiang, J. Chluba, P. R.
Christensen, S. Church, D. L. Clements, S. Colombi, L. P. L.
Colombo, C. Combet, A. Coulais, B. P. Crill, A. Curto, F. Cuttaia,
L. Danese, R. D. Davies, R. J. Davis, P. de Bernardis, A. de
Rosa, G. de Zotti, J. Delabrouille, F. X. Désert, E. Di Valentino,
C. Dickinson, J. M. Diego, K. Dolag, H. Dole, S. Donzelli,
O. Doré, M. Douspis, A. Ducout, J. Dunkley, X. Dupac, G. Ef-
stathiou, F. Elsner, T. A. Enßlin, H. K. Eriksen, M. Farhang,
J. Fergusson, F. Finelli, O. Forni, M. Frailis, A. A. Fraisse,
E. Franceschi, A. Frejsel, S. Galeotta, S. Galli, K. Ganga,
C. Gauthier, M. Gerbino, T. Ghosh, M. Giard, Y. Giraud-Héraud,
E. Giusarma, E. Gjerløw, J. González-Nuevo, K. M. Górski,
S. Gratton, A. Gregorio, A. Gruppuso, J. E. Gudmundsson,
J. Hamann, F. K. Hansen, D. Hanson, D. L. Harrison, G. Helou,
S. Henrot- Versillé, C. Hernández-Monteagudo, D. Herranz, S. R.
Hildebrandt, E. Hivon, M. Hobson, W. A. Holmes, A. Hornstrup,
W. Hovest, Z. Huang, K. M. Huffenberger, G. Hurier, A. H. Jaffe,
T. R. Jaffe, W. C. Jones, M. Juvela, E. Keihänen, R. Keskitalo,
T. S. Kisner, R. Kneissl, J. Knoche, L. Knox, M. Kunz, H. Kurki-
Suonio, G. Lagache, A. Lähteenmäki, J. M. Lamarre, A. Lasenby,
M. Lattanzi, C. R. Lawrence, J. P. Leahy, R. Leonardi, J. Lesgour-
gues, F. Levrier, A. Lewis, M. Liguori, P. B. Lilje, M. Linden-
Vørnle, M. López-Caniego, P. M. Lubin, J. F. Macías-Pérez,
G. Maggio, D. Maino, N. Mandolesi, A. Mangilli, A. Marchini,
M. Maris, P. G. Martin, M. Martinelli, E. Martínez-González,
S. Masi, S. Matarrese, P. McGehee, P. R. Meinhold, A. Melchiorri,
J. B. Melin, L. Mendes, A. Mennella, M. Migliaccio, M. Millea,
S. Mitra, M. A. Miville-Deschênes, A. Moneti, L. Montier,
G. Morgante, D. Mortlock, A. Moss, D. Munshi, J. A. Murphy,
P. Naselsky, F. Nati, P. Natoli, C. B. Netterfield, H. U. Nørgaard-
Nielsen, F. Noviello, D. Novikov, I. Novikov, C. A. Oxborrow,
F. Paci, L. Pagano, F. Pajot, R. Paladini, D. Paoletti, B. Partridge,
F. Pasian, G. Patanchon, T. J. Pearson, O. Perdereau, L. Perotto,
F. Perrotta, V. Pettorino, F. Piacentini, M. Piat, E. Pierpaoli,
D. Pietrobon, S. Plaszczynski, E. Pointecouteau, G. Polenta,
L. Popa, G. W. Pratt, G. Prézeau, S. Prunet, J. L. Puget, J. P.
Rachen, W. T. Reach, R. Rebolo, M. Reinecke, M. Remazeilles,
C. Renault, A. Renzi, I. Ristorcelli, G. Rocha, C. Rosset, M. Ros-
setti, G. Roudier, B. Rouillé d’Orfeuil, M. Rowan-Robinson, J. A.
Rubiño-Martín, B. Rusholme, N. Said, V. Salvatelli, L. Salvati,
M. Sandri, D. Santos, M. Savelainen, G. Savini, D. Scott, M. D.
Seiffert, P. Serra, E. P. S. Shellard, L. D. Spencer, M. Spinelli,
V. Stolyarov, R. Stompor, R. Sudiwala, R. Sunyaev, D. Sutton,
A. S. Suur-Uski, J. F. Sygnet, J. A. Tauber, L. Terenzi, L. Toffo-
latti, M. Tomasi, M. Tristram, T. Trombetti, M. Tucci, J. Tuovinen,
M. Türler, G. Umana, L. Valenziano, J. Valiviita, F. Van Tent,
P. Vielva, F. Villa, L. A. Wade, B. D. Wandelt, I. K. Wehus,
M. White, S. D. M. White, A. Wilkinson, D. Yvon, A. Zacchei,
and A. Zonca. Planck 2015 results. XIII. Cosmological param-

eters. Astronomy and Astrophysics, 594:A13, September 2016.
doi:10.1051/0004-6361/201525830.

[STS13] STScI Development Team. pysynphot: Synthetic photometry
software package. Astrophysics Source Code Library, March
2013. arXiv:1303.023.

[TPS+18] The Astropy Collaboration, A. M. Price-Whelan, B. M. Sipócz,
H. M. Günther, P. L. Lim, S. M. Crawford, S. Conseil, D. L.
Shupe, M. W. Craig, N. Dencheva, A. Ginsburg, J. T. VanderPlas,
L. D. Bradley, D. Pérez- Suárez, M. de Val-Borro, T. L. Aldcroft,
K. L. Cruz, T. P. Robitaille, E. J. Tollerud, C. Ardelean, T. Babej,
M. Bachetti, A. V. Bakanov, S. P. Bamford, G. Barentsen,
P. Barmby, A. Baumbach, K. L. Berry, F. Biscani, M. Boquien,
K. A. Bostroem, L. G. Bouma, G. B. Brammer, E. M. Bray,
H. Breytenbach, H. Buddelmeijer, D. J. Burke, G. Calderone,
J. L. Cano Rodríguez, M. Cara, J. V. M. Cardoso, S. Cheedella,
Y. Copin, D. Crichton, D. DÁvella, C. Deil, É. Depagne, J. P.
Dietrich, A. Donath, M. Droettboom, N. Earl, T. Erben, S. Fabbro,
L. A. Ferreira, T. Finethy, R. T. Fox, L. H. Garrison, S. L. J.
Gibbons, D. A. Goldstein, R. Gommers, J. P. Greco, P. Greenfield,
A. M. Groener, F. Grollier, A. Hagen, P. Hirst, D. Homeier,
A. J. Horton, G. Hosseinzadeh, L. Hu, J. S. Hunkeler, Ž. Ivezić,
A. Jain, T. Jenness, G. Kanarek, S. Kendrew, N. S. Kern, W. E.
Kerzendorf, A. Khvalko, J. King, D. Kirkby, A. M. Kulkarni,
A. Kumar, A. Lee, D. Lenz, S. P. Littlefair, Z. Ma, D. M.
Macleod, M. Mastropietro, C. McCully, S. Montagnac, B. M.
Morris, M. Mueller, S. J. Mumford, D. Muna, N. A. Murphy,
S. Nelson, G. H. Nguyen, J. P. Ninan, M. Nöthe, S. Ogaz, S. Oh,
J. K. Parejko, N. Parley, S. Pascual, R. Patil, A. A. Patil, A. L.
Plunkett, J. X. Prochaska, T. Rastogi, V. Reddy Janga, J. Sabater,
P. Sakurikar, M. Seifert, L. E. Sherbert, H. Sherwood-Taylor, A. Y.
Shih, J. Sick, M. T. Silbiger, S. Singanamalla, L. P. Singer, P. H.
Sladen, K. A. Sooley, S. Sornarajah, O. Streicher, P. Teuben, S. W.
Thomas, G. R. Tremblay, J. E. H. Turner, V. Terrón, M. H. van
Kerkwijk, A. de la Vega, L. L. Watkins, B. A. Weaver, J. B.
Whitmore, J. Woillez, and V. Zabalza. The Astropy Project:
Building an inclusive, open-science project and status of the v2.0
core package. ArXiv e-prints, page arXiv:1801.02634, January
2018. arXiv:1801.02634.

48 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

EarthSim: Flexible Environmental Simulation
Workflows Entirely Within Jupyter Notebooks

Dharhas Pothina‡∗, Philipp J. F. Rudiger§, James A Bednar§, Scott Christensen‡†, Kevin Winters‡†, Kimberly Pevey‡†,
Christopher E. Ball§†, Gregory Brener§†

https://youtu.be/KTbd_oUkP4Q

F

Abstract—Building environmental simulation workflows is typically a slow pro-
cess involving multiple proprietary desktop tools that do not interoperate well.
In this work, we demonstrate building flexible, lightweight workflows entirely
in Jupyter notebooks. We demonstrate these capabilities through examples in
hydrology and hydrodynamics using the AdH (Adaptive Hydraulics) and GSSHA
(Gridded Surface Subsurface Hydrologic Analysis) simulators. The goal of this
work is to provide a set of tools that work well together and with the existing
scientific python ecosystem, that can be used in browser based environments
and that can easily be reconfigured and repurposed as needed to rapidly solve
specific emerging issues such as hurricanes or dam failures.

As part of this work, extensive improvements were made to several general-
purpose open source packages, including support for annotating and editing
plots and maps in Bokeh and HoloViews, rendering large triangular meshes
and regridding large raster data in HoloViews, GeoViews, and Datashader,
and widget libraries for Param. In addition, two new open source projects
are being released, one for triangular mesh generation (Filigree) and one for
environmental data access (Quest).

Index Terms—python, visualization, workflows, environmental simulation, hy-
drology, hydrodynamics, grid generation

Introduction

Environmental Simulation consists of using historical, current and
forecasted environmental data in conjunction with physics-based
numerical models to simulate conditions at locations across the
globe. The simulations of primary interest are weather, hydrol-
ogy, hydrodynamics, soil moisture and groundwater transport.
These simulations combine various material properties such as
soil porosity and vegetation types with topology such as land
surface elevation and bathymetry, along with forcing functions
such as rainfall, tide, and wind, to predict quantities of interest
such as water depth, soil moisture, and various fluxes. Currently,
the primary methodology to conduct these simulations requires a
combination of heavy proprietary desktop tools such as Surface-
water Modeling System (SMS) [Aquaveo] and Computational
Model Builder (CMB) [Hines09], [CMB] that are tied to certain
platforms and do not interoperate well with each other.

* Corresponding author: Dharhas.Pothina@erdc.dren.mil
‡ US Army Engineer Research and Development Center
§ Anaconda, Inc.
† These authors contributed equally.

Copyright © 2018 Dharhas Pothina et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

The process of building and running environmental simula-
tions using these tools is time consuming, requiring a large amount
of manual effort and a fair amount of expertise. Typically, the time
required to build a reasonable model is measured in months. These
workflows support some use cases well, especially multi-year
projects where there is often the need for highly accurate, high-
resolution physical modeling. But these existing tools and work-
flows are too heavyweight for other potential applications, such
as making short-term operational decisions in novel locations.
They also make it difficult to flexibly switch between desktop and
remote high-performance-computing (HPC) systems as needed for
scaling up and for interactive use.

An additional limitation of the existing desktop tools (i.e.
CMB and SMS) are that the users are limited to the functionality
and algorithms that are available in the tool. Adding new function-
ality requires expensive development efforts as well as cooperation
of the tool vendors. For example, adding a coastline extraction
tool to CMB based on the grabcut algorithm [Carsten04] required
contracting with the vendor and several months of development
time. As shown later in this paper, the functionality can be quickly
put together using existing packages within the scientific python
ecosystem.

In this work, we demonstrate building flexible, lightweight
workflows entirely in Jupyter notebooks with the aim of timely
support for operational decisions, providing basic predictions of
environmental conditions quickly and flexibly for any region
of the globe. For small datasets these notebooks can operate
entirely locally, or they can be run with local display and remote
computation and storage for larger datasets. We demonstrate these
capabilities through examples in hydrology and hydrodynamics
using the AdH [McAlpin17] and GSSHA [Downer08] simulators.
The goal of this work is to provide a set of tools that work well
together and with the existing scientific python ecosystem, can
be used in browser based environments and that can easily be
reconfigured and repurposed as needed to rapidly solve specific
emerging issues. A recent example of this was during Hurricane
Harvey when ERDC was required at short notice to provide flood
inundation simulations of the cities of San Antonio, Houston and
Corpus Christi to emergency response personnel. This required
rapid assembly of available data from disparate sources, genera-
tion of computational grids, model setup and execution as well as
generation of custom output visualizations.

An explicit decision was made to avoid creation of new

EARTHSIM: FLEXIBLE ENVIRONMENTAL SIMULATION WORKFLOWS ENTIRELY WITHIN JUPYTER NOTEBOOKS 49

Fig. 1: Example of a Region of Interest sectioned into multiple
polygons each with a specific material property.

special-purpose libraries as much as possible and to instead
enhance existing tools with the capabilities required. Hence, as
part of this work, extensive improvements were made to several
general-purpose open source packages, including support for an-
notating and editing plots and maps in Bokeh and HoloViews,
rendering large triangular meshes and regridding large raster data
in HoloViews, GeoViews, and Datashader, and widget libraries for
Param [Bokeh], [Holoviews], [Geoviews], [Datashader], [Param].
In addition, two new open source projects are being released
for triangular mesh generation and environmental data access
[Filigree], [Quest].

Background

The traditional workflow for building environmental simulations
can be broken down into the following stages:

1) Model specification: Building a human-specified con-
ceptual model that denotes regions of interest (ROIs)
and their properties. Typically, this involves drawing of
points, lines and polygons to define the ROIs and define
features, boundary types and material properties (land
surface elevation, soil type, bottom friction, permeability,
etc.). See Figure 1.

2) Data Retrieval: Material properties, hydrology and cli-
matology datasets are retrieved from various public web-
based and local-data stores.

3) Computational mesh generation: The ROIs are parti-
tioned into a computational mesh that is used by the en-
vironmental simulation engine. The simulation types that
we are focused on in this work use a 2D structured/regular
rectangular grid or an unstructured 2D triangular mesh
(See Figure 2). 3D meshes are obtained by extruding
the 2D mesh in the z direction in the form of layers.

Fig. 2: Example of an unstructured 2D triangular computational mesh
of a river that is transected by a roadway embankment with culvert
and bridge openings.

Initial generation of a computational mesh is typically
automated and controlled by attributes in the model
specification process. After this an iterative approach is
used to build a high-quality mesh based on the needs
of the numerical algorithms and to resolve key physical
properties in certain regions. Often mesh vertices and
elements need to be adjusted manually.

4) Data gridding: Based on the model specification, any
spatially varying material properties, initial conditions
and time-varying forcing functions (i.e. boundary con-
ditions) are regridded from the original data sources to
the computational mesh.

5) Simulation: The computational mesh along with the re-
gridded data, plus any model parameters (turbulence
model, etc.) and forcings required (rainfall, etc.) needed
for a specific simulation are written to files formatted for a
particular environmental simulation engine. This model is
then run with the simulation engine (i.e. AdH, GSSHA).
For larger simulations, this is run on an HPC system.

6) Visualization/analysis: The results of environmental sim-
ulations typically consist of time varying scalar and
vector fields defined on the computational mesh, stored
in binary or ASCII files. Analysts first render an overall
animation of each quantity as a sanity check, typically
in 2D or 3D via a VTK-based Windows app in current
workflows. For more detailed analysis, analysts typically
specify certain lower-dimensional subsets of this multidi-
mensional space, such as:

• Virtual measurement stations: A specific point on
the Earth’s surface where e.g. water level can be
computed for every time point and then compared
with historical data from nearby actual measure-
ment stations

• Cross-sections: A 1D curve across the surface of
the Earth, where a vertical slice can be extracted
and plotted in 2D

• Iso-surfaces: Slices through the multidimensional
data where a certain value is held constant, such
as salinity. Associated quantities (e.g. temperature)
can then be plotted in 2D as a color.

50 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Fig. 3: Water velocity color contours overlain with velocity quiver
plot showing river flow bypassing roadway embankment.

Figure 3 shows an example visualization of a water
circulation field.

This overall pipeline can give very high quality results, but it
takes 3-6 months to build and run a model, which is both expensive
and also precludes the use of this approach for modeling emergent
issues quickly enough to affect operational decisions. Most of
these stages are also locked into particular Windows-based GUI
applications that are typically tied to execution only on specific
desktop machines where they are installed. In most cases, once
the model input files are generated, they can be manually moved
to an HPC cluster and run from the command line, but then no GUI
is available. This linkage of computation and visualization can be
very problematic, because the local machine may not have enough
processing power to simulate the model in a reasonable time, but if
the model is simulated remotely, the resulting data files can be too
large to be practical to transfer to the local machine for analysis. To
give an example of the data sizes and timescales involved, simple
example/tutorial hydrodynamic model runs on idealized domains
using AdH can take up to an hour. The largest simulation that can
be run on a local workstation generate files of the order of a few
gigabytes and can take several days to run. Realistic, regional scale
models are almost always run on HPC systems typically using 500
to a 1000 processors and generate up to a terabyte worth of data.
HPC runs typically take anywhere from several hours to a day to
complete. An example of the type of HPC systems used for AdH
model runs are the Department of Defences supercomputers Topaz
and Onyx. Topaz is an SGI ICE X System. Standard compute
nodes have two 2.3-GHz Intel Xeon Haswell 18-core processors
(36 cores) and 128 GBytes of DDR4 memory. Compute nodes
are interconnected by a 4x FDR InfiniBand Hypercube network.
Onyx is a Cray XC40/50. Standard compute nodes have two 2.8-
GHz Intel Xeon Broadwell 22-core processors (44 cores) and 128
GBytes of DDR4 memory. Compute nodes are interconnected by
a Cray Aries high-speed network. Both systems have dedicated
GPU compute nodes available. [ERDCHPC]

Moreover, the tools that implement the current workflow are
primarily "heavyweight" approaches that encode a wide set of
assumptions and architectural decisions specific to the applica-

tion domain (environmental simulation), and changing any of
these assumptions or decisions will typically require an exten-
sive vendor-implemented project of C/C++ software development.
These constraints make it difficult for end users who are experts
in the application domain (but not necessarily full-time software
developers) to develop and test architectural improvements and the
effects of different modeling approaches that could be suitable for
specific applications.

Because much of the functionality required to implement the
above workflow is already available as general-purpose libraries
in the Python software ecosystem, we realized that it was feasible
to provide a lightweight, flexible alternative for most of these
stages, with rapid iterative refinement of a conceptual model,
simulation on whatever hardware is available, and fast, flexible,
primarily 2D visualization of remote or local data in a local
browser. The idea is to put power and flexibility into the hands
of domain experts so that they can respond quickly and easily
to emerging issues that require input to help decision making
throughout their organizations, without requiring a lengthy period
of model development and without requiring external software
contractors to make basic changes to assumptions and modeling
mechanisms. In this paper, we show how we have built such a
system.

EarthSim

EarthSim is a website and associated GitHub repository that serves
two purposes. First, it is a location to work on new tools before
moving them into other more general purpose python libraries
as they mature. Second, it contains examples of how to solve
the common Earth Science simulation workflow and visualization
problems outlined above. EarthSim aims to demonstrate building
flexible, lightweight workflows entirely in Jupyter notebooks with
the goal of timely support for operational decisions, providing
basic predictions of environmental conditions quickly and flexibly
for any region of the globe. The overall goal is to provide a set of
tools that work well together and with the wider scientific python
ecosystem. EarthSim is not meant to be a one-size-fits-all solution
for environmental simulation workflows but a library of tools that
can be mixed and matched with other tools within the python
ecosystem to solve problems flexibly and quickly. To that end,
the specific enhancements we describe are targeted towards areas
where existing tools were not available or were insufficient for
setting up an end to end simulation.

EarthSim primarily consists of the core PyViz tools (Bokeh,
HoloViews, GeoViews, Datashader, and Param) as well as two
other new open source tools Filigree and Quest. Short descriptions
of these tools follow:

Bokeh provides interactive plotting in modern web browsers,
running JavaScript but controlled by Python. Bokeh allows Python
users to construct interactive plots, dashboards, and data applica-
tions without having to use web technologies directly.

HoloViews provides declarative objects for instantly visu-
alizable data, building Bokeh plots from convenient high-level
specifications so that users can focus on the data being explored.

Datashader allows arbitrarily large datasets to be rendered
into a fixed-size raster for display, making it feasible to work
with large and remote datasets in a web browser, either in batch
mode using Datashader alone or interactively when combined with
HoloViews and Bokeh.

Param allows the declaration of user-modifiable values called
Parameters that are Python attributes extended to have features

EARTHSIM: FLEXIBLE ENVIRONMENTAL SIMULATION WORKFLOWS ENTIRELY WITHIN JUPYTER NOTEBOOKS 51

such as type and range checking, dynamically generated values,
documentation strings, and default values. Param allows code
to be concise yet robustly validated, while supporting automatic
generation of widgets for configuration setting and for controlling
visualizations (e.g. using ParamBokeh).

All of the above tools are fully general, applicable to any
data-analysis or visualization project, and establish a baseline
capability for running analysis and visualization of arbitrarily large
datasets locally or remotely, with fully interactive visualization
in the browser regardless of dataset size (which is not true of
most browser-based approaches). The key is concept is that the
local client system will always be cabable of performing the
visualization, i.e. can deliver it to the user in a browser, regardless
of the dataset size. The assumption is that the remote server will
be able to handle the datasets, but because Datashader is based on
the Dask parallel library, it is possible to assemble a remote system
out of as many nodes as required need to handle a given dataset,
also work can be done out of core if the user is prepared to wait.
Based on this architecture, this software stack will not be a limiting
factor, only the users’ ability to procure nodes or the time taken
to render. This is in contrast to other software stacks that typically
have a hard size limit. It can be clarified that we have achieved this
claim by a three-level implementation: Dask, which can distribute
the computation across arbitrarily many user-selected nodes (or
multiplexed over time using the same node) to achieve the required
computational power and memory, Datashader, which can make
use of data and compute managed by dask to reduce the data into
a fixed-size raster for display, and Bokeh, to render the resulting
raster along with other relevant data like maps.

In addition, the data is not encoded, compressed, modeled,
or subsampled, it’s just aggregated (no data is thrown away, it’s
simply summed or averaged), and the aggregation is done on the
fly to fit the resolution of the screen. This provides the experience
of having the dataset locally, without actually having it and allows
for responsive interactive exploration of very large datasets.

The other libraries involved are specialized for geographic
applications:

GeoViews extends HoloViews to support geographic pro-
jections using the Cartopy library, making it easy to explore
and visualize geographical, meteorological, and oceanographic
datasets.

Quest is a library that provides a standard API to search, pub-
lish and download data (both geographical and non-geographical)
across multiple data sources including both local repositories and
web based services. The library also allows provides tools to
manipulate and manage the data that the user is working with.

Filigree is a library version of the computational mesh gen-
erator from Aquaveo’s XMS software suite [Aquaveo]. It allows
for the generation of high quality irregular triangular meshes that
conform to the constraints set up by the user.

In surveying the landscape of existing python tools to conduct
environmental simulations entirely within a Jupyter notebook
environment, four areas were found to be deficient:

1) Interactively drawing and editing of glyphs (Points,
Lines, Polygons etc) over an image or map.

2) Interactive annotation of objects on an image or map.
3) Efficient visualization of large structured and unstruc-

tured grid data in the browser.
4) Setup of interactive dashboards.

Fig. 4: Visualization of drawing tools showing drawn polygons,
points, paths, and boundary boxes overlaying a web tile service.

Fig. 5: Drawing tools provide a dynamic link to source data accessible
via python backend.

In the next few sections, we describe how this functionality
is now available from Python without requiring custom Javascript
code.

Enhancements: Drawing Tools

The Bokeh plotting library has long supported extensive inter-
active operations for exploring existing data. However, it did
not previously offer any facilities for generating or editing new
data interactively, which is required when constructing inputs for
running new simulations. In this project, we added a set of Bokeh
editing/drawing tools (See Figure 4), which are sophisticated
multi-gesture tools that can add, delete, or modify glyphs on a
plot. The edit tools provide functionality for drawing and editing
glyphs client-side (in the user’s local browser) and synchronizing
the changes with data sources on the Python server that can then
be accessed in Python. The individual tools can be enabled as
needed for each particular plot:

• BoxEditTool: Drawing, dragging and deleting rectangular
glyphs.

• PointDrawTool: Adding, dragging and deleting point-like
glyphs.

• PolyDrawTool: Drawing, selecting and deleting Polygon
(patch) and Path (polyline) glyphs.

• PolyEditTool: Editing the vertices of one or more Polygon
or Path glyphs.

To make working with these tools easy, HoloViews was
extended to define "streams" that provide an easy bidirectional
connection between the JavaScript plots and Python (See Figure
5). This allows for definition of geometries in Python and editing
in the interactive plot, or creation/modification of geometries in the
interactive plot with subsequent access of the data from Python for
further processing.

Similar tools allow editing points, polygons, and polylines.
As a simple motivating example, drawing a bounding box on

a map now becomes a simple 7-line program:
import geoviews as gv
import geoviews.tile_sources as gts

52 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

import holoviews.streams as hvs

gv.extension('bokeh')
box = gv.Polygons(hv.Box(0, 0, 1000000))
roi = hvs.BoxEdit(source=box)
gts.StamenTerrain.options(width=900, height=500) * box

In a Jupyter notebook, this code will display a world map and let
the user move or edit a box to cover the region of interest (ROI),
which can then be accessed from Python as:
roi.data

For example, Figure 6 demonstrates how USGS National Eleva-
tion Dataset (NED) data can then be retrieved for the ROI as:
import quest
import xarray as xr
import holoviews as hv
import cartopy.crs as ccrs

element = gv.operation.project(hv.Polygons(
roi.element), projection=ccrs.PlateCarree()

)
xs, ys = element.array().T
bbox = list(gv.util.project_extents(

(xs[0], ys[0], xs[2], ys[1]),
ccrs.GOOGLE_MERCATOR,
ccrs.PlateCarree())

)

collection_name = 'elevation_data'
quest.api.new_collection(name=collection_name)
service_features = quest.api.get_features(

uris='svc://usgs-ned:19-arc-second',
filters={'bbox': bbox}

)
collection_features = quest.api.add_features(

collection=collection_name,
features=service_features

)
datasets = quest.api.stage_for_download(

uris=collection_features
)

quest.api.download_datasets(datasets=datasets)
elevation_dataset = quest.api.apply_filter(

name='raster-merge',
options={'datasets': datasets, 'bbox': bbox}

)['datasets'][0]
elevation_file = quest.api.get_metadata(

elevation_dataset
)[elevation_dataset]['file_path']

elevation_raster = xr.open_rasterio(
elevation_file

).isel(band=0)
img = gv.Image(elevation_raster, ['x', 'y'])
gts.StamenTerrain.options(width=600) * img

Enhancements: Annotations

The drawing tools allow glyphs to be created graphically, which
is an essential first step in designing a simulation. The next
step is then typically to associate specific values with each such
glyph, so that the user can declare boundary conditions, parameter
values, or other associated labels or quantities to control the
simulation. Examples of how to do this are provided in EarthSim
as "annotators", which show an editable table alongside the plot
that has drawing tools (See Figure 7), allowing users to input text
or numerical values to associate with each glyph. The table and
plots are interlinked, such that editing either one will update the
other, making it simple to edit data however is most convenient.

Using an annotator currently requires defining a new class
to control the behavior, but work on simplifying this process is

Fig. 6: Visualization data downloaded with quest for a ROI specified
with the drawing tools.

Fig. 7: The Point Annotation tool provides for indexing and grouping
of points

ongoing, and if it can be made more straightforward the code
involved will move into GeoViews or HoloViews as appropriate.

Enhancements: Efficient Raster regridding

Many of the datasets used in Earth-related workflows come in the
form of multidimensional arrays holding values sampled regularly
over some portion of the Earth’s surface. These rasters are often
very large and thus slow to transfer to a client browser, and are
often too large for the browser to display at all. To make it feasible
to work naturally with this data, efficient regridding routines were
added to Datashader. Datashader is used by HoloViews to re-
render data at the screen’s resolution before display, requiring
only this downsampled version to be transferred to the client
browser. The raster support is described at datashader.org, using
all available computational cores to quickly render the portions of
the dataset needed for display. The same code can also be used to
re-render data into a new grid spacing for a fixed-sized rectangular
simulator like GSSHA.

The Datashader code does not currently provide reprojection
of the data into a different coordinate system when that is needed.
A separate implementation using the xESMF library was also
developed for GeoViews to address this need and to provide
additional Earth-specific interpolation options. The geoviews.org

EARTHSIM: FLEXIBLE ENVIRONMENTAL SIMULATION WORKFLOWS ENTIRELY WITHIN JUPYTER NOTEBOOKS 53

Fig. 8: Example of a datashader visualization of triangular unstruc-
tured mesh of a portion of Chesapeake Bay

website explains how to use either the Datashader or xESMF
regridding implementations developed in this project.

Enhancements: Triangular mesh visualization

Although Earth imaging data is typically measured on a regular
grid, how quickly the values change across the Earth’s surface
is highly non-uniform. For instance, elevation changes slowly
in many regions, but very quickly in others, and thus when
simulating phenomena like water runoff it is often necessary to
use very high resolution in some locations and relatively sparse
sampling in others. To facilitate working with irregularly gridded
data, the Bokeh, HoloViews, GeoViews, and Datashader libraries
were extended to support "TriMesh" data, i.e., irregular triangle
grids. For very large such grids, Datashader allows them to be
rendered into much smaller rectangular grids for display, making it
feasible to explore meshes with hundreds of millions of datapoints
interactively. The other libraries provide additional interactivity for
smaller meshes without requiring Datashader, while being able to
use Datashader for the larger versions (Figure 8).

Interactive Dashboards

The drawing tools make it possible to generate interactive dash-
boards quickly and easily to visualize and interact with source
data. Figure 9 shows hydrodynamic model simulation results
displayed in an animation on the left. Users are able to query the
results by annotating paths directly on the results visualization.
As annotations are added, the drawing on the right dynamically
updates to show the depth results along the annotated paths.
The animation tool is dynamically linked to both drawings to
demonstrate changes over time.

The drawing tools allow for specification of source data as
key dimensions (independent variables or indices) or as value
dimensions (dependent values or results data). Value dimensions
can be visualized using widgets that are dynamically linked to

Fig. 9: Dashboard with animation demonstrating the ability to dy-
namically visualize multiple looks at a single source dataset.

Fig. 10: Dynamic interaction with drawing via interactive widgets.

the drawing. This allows for simplified visualizations of multi-
dimensional datasets such as parameter sweeps (Figure 10).

Drawings can be both the sender and receiver of dynamic
information. Dashboards can be created that visualize data, allow
users to specify paths in which to query data (e.g. river cross-
sections), and visualize the results of the query in a dynamic
manner. In Figure 11, the user-drawn cross-sections on the image
on the left query the underlying depth data and generate the image
on the right. Users can then interact with the right image sliding
the vertical black bar along the image which simultaneously
updates the left image with a marker to denote the location along
the path.

Crucially, note that very little of the code involved here is
customized for hydrology or geographic applications specifically,

Fig. 11: Dynamic linking provides interaction between drawings as
both sender and receiver.

54 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Fig. 12: User-specification of boundary, dam centerline, and reservoir
level with the drawing tools.

which means that the same techniques can be applied to different
problems as they arise in practice, even if they require changing
the domain-specific assumptions involved.

GSSHA Hydrology Workflow Example

Using many of the tools described here, we have created a note-
book workflow to setup, execute, and visualize the results of the
GSSHA hydrology model. This workflow uses the drawing tools
to specify an area of interest, and then Quest to download elevation
and landuse data. Param is used to specify the model inputs, and
finally GeoViews and Datashader are used to visualize the results.
This flexible workflow can easily be applied to any location in the
globe, and the specific output visualizations can easily be modified
to meet specific project needs. The complete workflow can be
found at http://earthsim.pyviz.org/topics/GSSHA_Workflow.html.

AdH Dambreak Workflow Example

The drawing tools, coupled with AdH, allow for rapid devel-
opment of dambreak simulations to analyze potential hazard
situations. In this example, as seen in Figure 12, the Polygon tool
is used to delineate the boundary of a watershed, a dam centerline
is specified with the Path tool, and a reservoir level specified with
the Point tool.

Data from all three user-specified data sources can also be
accessed and described via tables that are dynamically linked
to the drawing. Additionally, Param widgets allow for users to
specify the reservoir level as either a water depth or an elevation
and whether to use an existing inital water depth file.

Available elevation data to describe the watershed is collected
via Quest. Filigree is then called to develop a unstructured 2D
triangular mesh within the boundary polygon. Using the basic
information about the dam and the dynamically generated mesh,
a reservoir is created behind the dam centerline. This is achieved
by setting AdH water depths on the mesh to reflect the reservoir
level. AdH then simulates the instantaneous breaching of the dam.
The resulting simulation of water depths over time can then be
visualized in the drawing tools as an animation.

Fig. 13: Demonstration of a interactive widget for coastline extraction
using the grabcut algorithm.

Coastline Extraction (GrabCut) Workflow Example

The GrabCut algorithm provides a way to annotate an image using
polygons or lines to demark the foreground and background. The
algorithm estimates the color distribution of the target object and
that of the background using a Gaussian mixture model. This is
used to construct a Markov random field over the pixel labels, with
an energy function that prefers connected regions having the same
label, and running a graph cut based optimization to infer their
values. This procedure is repeated until convergence, resulting in
an image mask denoting the foreground and background.

In this example this algorithm is applied to satellite imagery to
automatically extract a coast- and shoreline contour. First we load
an Image or RGB and wrap it in a HoloViews element, then we
can declare a GrabCutDashboard (See Figure 13). Once we have
created the object we can display the widgets using ParamBokeh,
and call the view function to display some plots.

The toolbar in the plot on the left contains two poly-
gon/polyline drawing tools to annotate the image with foreground
and background regions respectively. To demonstrate this process
in a static paper there are already two polygons declared, one
marking the sea as the foreground and one marking the land as the
background.

We can trigger an update in the extracted contour by pressing
the Update contour button. To speed up the calculation we can also
downsample the image before applying the Grabcut algorithm.
Once we are done we can view the result in a separate cell. See
Figure 14

The full coastline extraction with Grabcut Jupyter note-
book is available at the EarthSim website: https://pyviz.github.
io/EarthSim/topics/GrabCut.html

Future Work

Through the work presented here, we have shown that it is possible
to build flexible, lightweight workflows entirely within Jupyter
notebooks. However, there is still room for improvement. Current
areas being targeted for development are:

• Performance enhancements for GIS & unstructured mesh
datasets

• Making annotation and drawing tools easier to use (i.e.
requiring less custom code)

EARTHSIM: FLEXIBLE ENVIRONMENTAL SIMULATION WORKFLOWS ENTIRELY WITHIN JUPYTER NOTEBOOKS 55

Fig. 14: Final image with extracted coastline show in red.

• Layout of Jupyter Notebooks in Dashboard type form
factors with code hidden

• Integration with non Jupyter notebook web frontends (i.e.
Tethys Platform [Swain14])

• Prototype bidirectional visual programing environment
(e.g. ArcGIS Model Builder)

REFERENCES

[Downer08] Downer, C. W., Ogden, F. L., and Byrd, A.R. 2008,
GSSHAWIKI User’s Manual, Gridded Surface Subsurface Hy-
drologic Analysis Version 4.0 for WMS 8.1, ERDC Technical
Report, Engineer Research and Development Center, Vicksburg,
Mississippi.

[McAlpin17] McAlpin, J. T. 2017, Adaptive Hydraulics 2D Shallow Water
(AdHSW2D) User Manual (Version 4.6), Engineer Research and
Development Center, Vicksburg, Mississippi. Available at https:
//chl.erdc.dren.mil/chladh

[Hines09] Hines, A. et al., Computational Model Builder (CMB): A Cross-
Platform Suite of Tools for Model Creation and Setup, 2009
DoD High Performance Computing Modernization Program
Users Group Conference, San Diego, CA, 2009, pp. 370-373.

[Carsten04] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake.
2004. "GrabCut": interactive foreground extraction using iter-
ated graph cuts. ACM Trans. Graph. 23, 3 (August 2004), 309-
314. DOI: https://doi.org/10.1145/1015706.1015720

[Aquaveo] “Introduction | Aquaveo.com.” [Online]. Available: https://www.
aquaveo.com/. [Accessed: 05-Jul-2018].

[CMB] “CMB Hydro | CMB.” [Online]. Available: https://www.
computationalmodelbuilder.org/cmb-hydro/. [Accessed: 05-Jul-
2018].

[Bokeh] “Welcome to Bokeh — Bokeh 0.13.0 documentation.” [Online].
Available: https://bokeh.pydata.org/en/latest/. [Accessed: 05-Jul-
2018].

[Holoviews] “HoloViews — HoloViews.” [Online]. Available: http://
holoviews.org/. [Accessed: 05-Jul-2018].

[Geoviews] “GeoViews — GeoViews 1.5.0+g63ddd7c-dirty documenta-
tion.” [Online]. Available: http://geoviews.org/. [Accessed: 05-
Jul-2018].

[Datashader] “Installation — Datashader 0.6.6+geb9218c-dirty documenta-
tion.” [Online]. Available: http://datashader.org/. [Accessed: 05-
Jul-2018].

[Param] “Param — Param 1.4.1-dev documentation.” [Online]. Avail-
able: http://param.pyviz.org/. [Accessed: 05-Jul-2018].

[Filigree] TODO talk to Aquaveo for correct Filigree reference
[Quest] “Welcome to Quest’s documentation! — Quest 0.5 documenta-

tion.” [Online]. Available: https://quest.readthedocs.io/en/latest/.
[Accessed: 05-Jul-2018].

[EarthSim] “EarthSim — EarthSim 0.0.1 documentation.” [Online]. Avail-
able: http://earthsim.pyviz.org/. [Accessed: 05-Jul-2018].

[ERDCHPC] “ERDC DSRC - Hardware.” [Online]. Available: https://www.
erdc.hpc.mil/hardware/index.html. [Accessed: 05-Jul-2018].

[Swain14] Swain, N., S. Christensen, N. Jones, and E. Nelson (2014),
Tethys: A Platform for Water Resources Modeling and Decision
Support Apps, paper presented at AGU Fall Meeting Abstracts.

56 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Safe handling instructions for missing data

Dillon Niederhut‡∗

https://youtu.be/2gkw2T5jAfo

F

Abstract—In machine learning tasks, it is common to handle missing data by
removing observations with missing values, or replacing missing data with the
mean value for its feature. To show why this is problematic, we use listwise
deletion and mean imputing to recover missing values from artificially created
datasets, and we compare those models against ones with full information.
Unless quite strong independence assumptions are met, we observe large
biases in the resulting coefficients and an increase in the model’s prediction
error. We include a set of recommendations for handling missing data safely,
and a case study showing how to put those recommendations into practice.

Index Terms—data science, missing data, imputation

Introduction

It is common in data analytics tasks to encounter missing values
in datasets, where by missing we mean that some particular
values does or should exist, and failed to be observed or recorded
[little-rubin-2002]. There are several causes for missingness in
datasets, which vary in theoretical difficulty from bit flipping
(less problematic) to participant dropout in extended experimental
studies (more problematic). According to the Inglis Conjecture1,
the best way to handle missing data is to apply corrections to the
acquisition of that data. Because strategies for doing this tend to
be domain specific, we will not be addressing this topic further in
this paper.

In a similar vein, different research fields tend to have idiosyn-
cratic methods for statistical correction of missing data, although
they should not [newman-2014]. At one end of this spectrum is the
epidemiology community, who are both unusual and commend-
able for their principled stance and clear guidelines regarding the
handling and reporting of missingness [perkins-et-al-2018]. At the
other end of the spectrum are research communities who handle
missingness ad hoc, and frequently fail to report the presence of
missingess at all.

Safe handling instructions are needed because the presence of
unobserved data causes two theoretical problems with statistical
models [schafer-graham-2002]. One of these is inferential: when
data are missing from a particular feature or variable, estimates of
the variance of that feature are unreliable and therefore so are any
tests that use those variances. The second of these is descriptive:
when data are missing according to a particular pattern, model

* Corresponding author: dniederhut@enthought.com
‡ Enthought, Inc.

Copyright © 2018 Dillon Niederhut. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

parameters that learn from the remaining data become biased by
that pattern.

Anecdotally, the machine learning community appears less
concerned with statistical inference, and feels relatively comfort-
able with the idea of replacing missing values with the mean
value for each feature. The justification appears to be that mean
imputing (called single imputation in the missingness literature)
preserves the central tendency for that feature. However, statistical
learning procedures are not determined by the mean values of their
features—indeed, we often scale these down to zero—but rather
by the the relationship between the variance of two features, which
is modified by the presence of missing values and collapsed by
single imputation.

This is the key theoretical problem with missing values: that
they modify the covariance in datasets. To illustrate this, let’s
imagine that we have a dataset with no missing values and a linear
relationship between one feature and one target. We’ll remove
30% of the data (specifically the records at low values of our
target) and then run a few models on the fully attested dataset and
the dataset with missingness to see how the models compare.

Fig. 1: Best fit lines across experiments for a fully-attested dataset
compared to best fit lines and for a dataset with missingness imposed
at random. Note the bias in the differences in slope.

What we see in Fig. 1 is that the models run over the
dataset with missing values have a very particular kind of error.
Specifically, the error in estimating the coefficient of the feature is
not distributed as a Gaussian around the true value, but is always
a reduction of the true value. This is bias, and it was created by
the missingness process that we imposed on our data.

There are a theoretically infinite number of physical process
that generate missingness in datasets, so in practice we will bin

SAFE HANDLING INSTRUCTIONS FOR MISSING DATA 57

them into one of three categories that characterizes the input to
the process which generates those missing values [rubin-1976].
If the probability that a value is missing is independent of any
input, the process is stochastic and we call it Missing Completely
At Random (MCAR). If the probability that a value is missing
depends on another feature in our dataset, we call this Missing
At Random (MAR)2. If the probability that a value is missing
depends on that value itself, we call this Missing Not At Random
(MNAR). In theory, it is not possible to be certain whether values
are MAR or MNAR, so they tend to be treated similarly.

Methods

To demonstrate when and how this bias appears, 1890 datasets
were randomly generated with linear, quadratic, and sinusoidal
relationships between two features and one target, at sizes that
ranged between 100 and 10000 rows, and with an error term that
varied in strength between factors of 0.0 (no error) and 0.5 (half
of the magnitude of the data). Missingness regimes were imposed
on only one of these two features, which we will refer to as the
principle feature (x). The equations for generating the targets are
given in Eqs. 1, 2, and 3. The datasets were supplemented with two
auxiliary features3 whose correlation strength with the principal
feature varied between 0.0 and 0.5.

t = 2∗ x+ y+ ε (1)

t = x2 − y+ ε (2)

t = 2∗ sin(x)− y+ ε (3)

A fractional amount of values was removed from the principal
feature for each of the three missingness regimes, MCAR, MAR,
and MNAR. For data missing completely at random, this was done
with np.random.choice. For data missing at random and not
at random, this was done by using the index of the N smallest val-
ues of the target and the principle feature, respectively. The amount
of data removed varied between 0% (no missingness) and 50% of
attested values, which is typical of the amount of missingness
reported in experimental studies (50% is on the high end, more
likely to be observed in longitudinal studies [sullivan-et-al-2017]).

Missing values were corrected using three different strategies.
The first of these was to remove entire rows where any data
is non present—this is called listwise deletion. The second was
single imputation. We used the mean imputer from scikit-learn, but
prior research shows that more complicated single imputation (like
using the per sample grouped mean) has the same theoretical prob-
lems. The third strategy was an expectation maximization routine
implemented in impyute [impyute], which estimates replacements
for missing values that maximize the probability of the rest of the
data.

These datasets were fit with four models—linear regression,
lasso regression, ridge regression, and support vector regression
from scikit-learn. For stability when generating statistical sum-
maries, each experimental combination for datasets with less than
10,000 rows was run through ten trials. This resulted in a total of
3,628,800 experiments.

For each experiment, difference scores were calculated for
model coefficients between experiments with fully attested data
and experiments with missing values for both the primary feature
(the one with values removed by missingness) and the secondary
feature (no data removed). We also calculated the difference in the

regime strategy t p

mcar listwise_del 0.389 0.697
mcar mean_imputer 7.684 0.0
mcar em_imputer 12.336 0.0
mar listwise_del 27.859 0.0
mar mean_imputer 28.509 0.0
mar em_imputer 48.919 0.0
mnar listwise_del 0.331 0.741
mnar mean_imputer 9.535 0.0
mnar em_imputer 36.687 0.0

TABLE 1: Results of pairwise t-tests comparing difference scores for
the primary coefficient.

regime strategy t p

mcar listwise_del 0.005 0.996
mcar mean_imputer -2.28 0.023
mcar em_imputer -3.745 0.0
mar listwise_del -29.256 0.0
mar mean_imputer -2.437 0.015
mar em_imputer -2.876 0.004
mnar listwise_del -3.486 0.0
mnar mean_imputer -0.128 0.898
mnar em_imputer 0.072 0.943

TABLE 2: Results of pairwise t-tests comparing difference scores for
the secondary coefficient.

mean squared error of the models between the full datasets and
those with missingness applied.

Pairwise independent Welch’s t-tests were performed on dif-
ferences in the model coefficients and model error between the
fully attested data and the three strategies for imputing missing
values for each of the three kinds of missingness regimes, for a
total of 9 tests. To avoid inflating the overall error rate for each
family of comparisons, we used the Bonferroni correction and set
the alpha for each individual test to 0.005.

Experiments were completed on a server with an AMD Phe-
nom II X4 955 3.2 GHz processor running Ubuntu 16.04, under
Anaconda Python 3.5.4, impyute 0.0.4, Numpy 1.13.1, scikit-learn
0.19.0. The code used to run these experiments, the data they
generated, a Jupyter notebook containing the code for generating
the statistics and plots in this paper, and frozen requirements for
the code environment is publicly available at https://github.com/
deniederhut/safe-handling-instructions-for-missing-data.

Results

Pairwise t-tests conducted on the coefficients of the primary
feature show significant differences from zero in seven of the nine
cases (Table 1). The only cases where the model learned a similar
coefficient involved the use of listwise deletion as a strategy for
handling missing data. The smallest difference was observed for
cases missing completely at random (stochastically). The largest
differences were observed when data were missing at random.

Pairwise t-tests conducted on the difference scores for the
secondary coefficient show a similar pattern of results (Table 2).
Specifically, the only case in which the estimated parameter for
the feature without any missingness applied to it was close to

58 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

regime strategy t p

mcar listwise_del -1.332 0.183
mcar mean_imputer -5.643 0.0
mcar em_imputer -7.297 0.0
mar listwise_del -46.945 0.0
mar mean_imputer -54.322 0.0
mar em_imputer -52.646 0.0
mnar listwise_del -9.102 0.0
mnar mean_imputer -12.127 0.0
mnar em_imputer -17.626 0.0

TABLE 3: Results of pairwise t-tests comparing difference scores for
the model error.

zero was when data were missing completely at random, and
the missing cases were removed listwise. The largest differences
in the coefficient for the secondary feature were observed for
data missing at random or missing not at random, when the
missingness strategy employed was listwise deletion. Listwise
deletion tends to cause the coefficient for the secondary feature to
be underestimated, while both imputation strategies tend to cause
the coefficient to be overestimated.

Pairwise t-tests applied to the overall model error show a
similar pattern of results, where the only difference score that is
close to zero is for the case of listwise deletion applied to a dataset
where values are missing completely at random (Table 3). The
largest increases in model error is observed when data are missing
at random, no matter which strategy for handling missingness is
used.

Discussion

Fig. 2: Changes in the coefficient of y when using listwise deletion
across different missingness regimes.

We find that deleting records with missing values is only
safe when data are missing completely at random. Under other
missingness regimes, this strategy produced biased coefficients
for all features, and significantly worse model errors. Interestingly,
listwise deletion as a strategy produced the largest bias of all tested
strategies in features with no missing data, significantly overesti-
mating their importance to the model (Fig. 2). This suggests that
unsafe use of listwise deletion may be one contributing factor in
spurious correlations and findings that otherwise fail to replicate.

Fig. 3: Changes in the coefficient of x when using single imputation
across different missingness regimes.

Single imputation, or using a feature mean or median as
replacement for missing data, results in biased coefficients and
significantly larger model errors no matter what kind of process
created the missingness in the dataset (Fig. 3). As such, it is
our recommendation that it not be used. However, in this set of
experiments single imputation did produce smaller biases in model
features that were not missing any data.

We were surprised by the poor performance of expectation
maximization during the experiment given the widespread
evidence of its effectiveness in prior literature [shah-et-al-2014].
This discrepancy could be due to a mistake in the design of
the experiment, or due to the algorithm’s implementation in
impyute. As far as we are aware, well-tested multiple imputation
libraries like MICE [vanbuuren-groothuisoudshoorn-2011],
Amelia [blackwell-honaker-king-2017], and MissForest
[stekhoven-buhlmann-2012], have yet to be directly ported
to Python4.

Fig. 4: Changes in the coefficient of x by the size of the total dataset.

As a final comment, we often hear that the solution for
missing values is simply to collect more data. However, unless
this additional data collection explicitly addresses missingness
by correcting the acquisition process (per Inglis), the additional
data has the paradoxical effect of making the biases worse.
The expected magnitude of the bias does not change with data
size—this is governed by the missingness regime and the fraction
of missing data. However, the variance in the bias across repeated

SAFE HANDLING INSTRUCTIONS FOR MISSING DATA 59

experiments will shrink, leading to confidence in the estimated
coefficients that is both misplaced and inflated (fig. 4).

Guidelines

We include here guidelines for researchers to use when handling
missing data to ensure that it is done safely.

1) Try to construct your acquisition step such that there will
not be missing values. This may involve following up
with individual cases to find why they are non present, so
plan to track to provenance of your data.

2) In addition to your primary features of interest, collect
data that are known to be causally related or correlated.
These are called auxiliary features and will help you es-
tablish the missingness regime for your data and generate
realistic estimates for missing values if needed.

3) Once your data have been collected, examine them for
patterns of missingness. A common approach is to build
a missingness indicator for each feature with missing val-
ues, and run pairwise correlations against other features
in the dataset. This is more effective with good auxiliary
features.

4) If you are 100% sure that your missingness is MCAR,
you have the option of using listwise deletion, keeping in
mind that this should not be done for analyses with low
statistical power.

5) Otherwise use a modern multiple imputation technique
like MICE or MO, and generate 5-10 imputed datasets.
Be sure to create any derived features that you plan on
including in your final model before the imputation step.

6) Run the rest of your analysis as planned for each of the
imputed datasets, and report the average parameters of all
of the imputed models.

7) When you report your results, include the fraction of
missing values, the pattern of missing values, and the
strategy used to handle them. If your imputed models
have widely diverging results, you should report descrip-
tive statistics for any parameters that are highly variable.

Case Study

We can illustrate the use of these guidelines with a real-world case
study. The data we’ll use is from Scott Cole’s open source dataset
on burrito quality in San Diego5. The dataset consists of approx-
imately 400 ratings of burritos from different restaurants within
San Diego, where the ratings for each burrito include five point
Likert scores for overall quality, cost, mean, uniformity, salsa, and
wrap (the tortilla). The dataset also includes indicator variables
for the presence of various ingredients in the burritos, including
common ingredients like beans and avocado, and uncommon ones,
like sushi and taquitos.

The indicator variables were recoded to work with scikit-learn,
and the Likert scores were normalized on a per-rater basis to
increase the inter-rater reliability. This brought the dataset down to
an effective size of 231 observations. We then used a decision tree
(with no hyperparameter tuning) to generate a reference model for
predicting overall burrito quality given the individual ratings and
presence/absence of ingredients.

The individual ingredients in the burrito don’t seem to con-
tribute much to the overall score (Table 4). The quality of the meat
emerged as the most important feature in a good burrito, with the

feature importance

Meat 0.54674656983
Salsa 0.12792116636
Uniformity 0.15980891451

TABLE 4: Features with the highest importance ratings on the fully
attested burritos dataset, under a decision tree regressor with no
tuning.

quality of the salsa and the uniformity of ingredients throughout
the length of the burrito as the next two most important features.

We then impose a regime of MAR on our dataset, removing
one ranking score randomly from every record that falls above the
30th percentile for burrito rankings. The causal explanation for
this might be something like reviewers are more likely to forget to
record data about their burritos when the burrito is tasty, because
they are too busy enjoying it.
rows = df[df.overall > df.overall.quantile(.3)].index
cols = np.random.choice(['Cost', 'Meat', 'Salsa',

'Uniformity'], rows.size)
for row, col in zip(rows, cols):

df.loc[row, col] = np.nan

Because we are using data from another research team, there
isn’t much we can do with respect to steps 1 and 2 in the
guidelines above. So we start with step 3, looking for patterns
in the missingness in our dataset, by constructing an indicator for
missing values:
df['has_nulls'] = pd.isnull(df).sum(axis=1)

and then running a correlation against the variables of our dataset
(Fig. 5). There is a large correlation (r=0.8) between the number
of missing values and the overall burrito quality, and moderate
correlations (0.4 < r < 0.6) with other key rankings, including the
quality of the meat and salsa in the burrito.

Fig. 5: Pearson correlation strength of model features with count
number of missing values per observation.

These correlations indicate that our data are not MCAR, and so
we will proceed with multiple imputation. We create five imputed
datasets, and train the same untuned decision tree regressor on
each of them as above, recording the important features and model
scores for each trial. For comparison, we will also run train the
model on data using single imputation and listwise deletion.

The multiple imputation dataset returns feature importances
that are similar to those found in the model run on the fully attested

60 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

feature importance

Meat 0.42690684148
Salsa 0.14982927778
Uniformity 0.21762993715

TABLE 5: Features from one trial of a dataset using multiple
imputation (here, the expectation maximization procedure found in
impyute).

data, where the meat quality was the most important feature,
followed by uniformity and salsa, in that order (Table 5). The
single imputation and listwise deletion models both fail to recover
the importance of meat quality in the burrito, and compensate
for this by overestimating the importance of either the salsa, the
uniformity, or the cost.

Fig. 6: Distribution of model score for decision trees trained under
multiple imputation, single imputation, and listwise deletion. The
score obtained on the fully attested model is the reference line in
blue.

When comparing model scores (here, the coefficient of de-
termination), none of the models which have had data removed
perform as well as the fully attested model (Fig. 6). However, the
score on the best model only falls within the range of models
trained on multiple imputation data, and not those trained on
deleted or singly imputed data. Listwise deletion is the worst
performing model here, largely because of the reduced size of
the dataset (76 observations).

In our final report, we would include in our methods section
that 70% of observations were missing data for at least one feature.
We would say that the presence of missing values showed a strong
correlation with overall burrito quality, meat quality, and salsa
quality, leading us to speculate that people are less likely to fill out
surveys when thoroughly relishing a good burrito. We would say
that we imputed values using expectation maximization, and that
we are reporting averaged results from five separate imputations.

Conclusion

Missing values are a widespread issue in many analytical fields. To
handle them safely, there must be some understanding of the kind
of process that generated them. Data that are missing completely
at random (stochastically) do not create bias during parameter
estimation, and can be handled by removing rows with missing
values. Missing values that exhibit a definite pattern or dependency

need to be replaced by reasonable estimates using a modern
multiple imputation technique. Finally, to ensure reproducibility,
statistics and decisions at each of these steps should be reported.

REFERENCES

[blackwell-honaker-king-2017] M. Blackwell, J. Honaker, and G.
King. A unified approach to mea-
surement error, Sociological Meth-
ods & Research, 46:303-341, 2017.
doi:10.1177/0049124115585360.

[vanbuuren-groothuisoudshoorn-2011] S. van Buuren and K. Groothuis-
Oudshoorn. mice: multivariate impu-
tation by chained equations in R, Jour-
nal of Statistical Software, 45, 2011.

[impyute] E. Law. impyute, https://pypi.org/
project/impyute/.

[little-rubin-2002] R. Little and D. Rubin. Statisti-
cal analysis with missing data (2nd
ed.). New York, NY: Wiley. 2002.
doi:10.1002/9781119013563.

[newman-2014] D. Newman, Missing data: five
practical guidelines, Organizational
Research Methods, 17:372-411.
doi:10.1177/1094428114548590.

[perkins-et-al-2018] N. Perkins, S. Cole, O. Harel, E. Tch-
etgen, B. Sun, E. Mitchell, and E.
Schisterman. Principled approaches
to missing data in epidemiological
studies. American Journal of Epi-
demiology, 187:568-575, 2018. doi:
10.1093/aje/kwx348.

[rubin-1976] D. Rubin. Inference and missing
data, Biometrika, 63:581-592, 1976.
doi:10.1093/biomet/63.3.581.

[schafer-graham-2002] J. Schafer and J. Graham. Miss-
ing data: Our view of the state
of the art. Psychological Methods,
7:147-177, 2002. doi:10.1037/1082-
989X.7.2.147.

[shah-et-al-2014] A. Shah, J. Bartlett, J. Carpenter, O.
Nicholas, and H. Hemingway. Com-
parison of random forest and para-
metric imputation models for imput-
ing missing data using MICE: A
CALIBER study. American Journal
of Epidemiology, 179:764-774, 2014.
doi:10.1093/aje/kwt312

[stekhoven-buhlmann-2012] D. Stekhoven and P. Bühlmann.
MissForest - non-parametric missing
value imputation for mixed-type data,
Bioinformatics, 28:112-118, 2012.
doi:10.1093/bioinformatics/btr597.

[sullivan-et-al-2017] T. Sullivan, L. Yelland, K. Lee, P.
Ryan, and A. Salter. Treatment of
missing data in follow-up studies
of randomised controlled trials: A
systematic review of the literature.
Clinical Trials, 14:387-395, 2017.
doi:10.1177/1740774517703319.

1. Named after Dr. Ben Inglis of the University of California, the Inglis
Conjecture states that it requires less effort to fix the data acquisition step than
to perform post hoc statistical corrections.

2. Random in the sense of a random variable, which is a statistical designa-
tion roughly corresponding to a dependent variable.

3. An auxiliary feature is one which measures a related variable but is not
necessarily included in the final model.

4. impyute has an imputing function called MICE, but implements a modi-
fication of the original algorithm.

5. Licensed under MIT, and available at https://github.com/srcole/burritos.
You can watch Scott’s lightning talk about this dataset from SciPy 2017 at
https://youtu.be/f-Vcq_anPaY?t=47m44s.

PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018) 61

Text and data mining scientific articles with allofplos

Elizabeth Seiver∗, M Pacer§, Sebastian Bassi‡

F

Abstract—Mining scientific articles is hard when many of them are inaccessible
behind paywalls. The Public Library of Science (PLOS) is a non-profit Open
Access science publisher of the single largest journal (PLOS ONE), whose
articles are all freely available to read and re-use. allofplos is a Python package
for maintaining a constantly growing collection of PLOS’s 230,000+ articles. It
also efficiently parses these article files into Python data structures. This article
will cover how allofplos keeps your articles up-to-date, and how to use it to easily
access common article metadata and fuel your meta-research, with actual use
cases from inside PLOS.

Index Terms—Text and data mining, metascience, open access, science pub-
lishing, scientific articles, XML

Introduction

Why mine scientific articles?

Scientific articles are the standard mechanism of communication
in science. They embody a clear way by which human minds
across centuries and continents are able to communicate with one
another, growing the total sum of knowledge. Scientific articles are
unique resources, in that they are the material artifacts by which
this cultural exchange is made concrete and persistent. They offer a
unique source of insight into the history of carefully argued, hard-
won knowledge. Accordingly because they are made of annotated
text, they offer unique opportunities for well-defined text and
data mining problems. Importantly, because PLOS represents the
largest single journal in the history of publishing, it has collected
an excellent corpus for this study, spanning seven journals that
specialize in biology and medicine. Equally importantly, because
PLOS is Open Access, the opportunity to use this data set is
available to anyone capable of downloading and analyzing it. The
allofplos library enables more people to do that more easily.

What is allofplos?

allofplos is a Python package for downloading and maintain-
ing up-to-date scientific article corpora, as well as parsing PLOS
XML articles in the JATS (Journal Article Tag Suite) [jats] format.
It is available on PyPI [allofplospypi] as well as a GitHub repos-
itory [allofplosgh]. Many existing Python packages for parsing
XML and/or JATS focus on defensive parsing, where the structure
is assumed not to be reliable or the document is immediately

* Corresponding author: elizabeth.seiver@gmail.com
§ Netflix
‡ Globant

Copyright © 2018 Elizabeth Seiver et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

converted to another intermediate format (often JSON) and XML
is just a temporary stepping stone. allofplos uses lxml [lxml05],
which is compiled in C, for fast XML parsing and conversion to
familiar Python data structures like lists, dictionaries, and datetime
objects. The intended audience is researchers who are familiar
with scientific articles and Python, but may not be familiar with
JATS XML. Other related tools include a parser from fellow Open
Access publisher eLife [elife] as well as the Open Access subset
for downloading OA articles in bulk from PubMed Commons
(PMC) [pmc].

Functionality

The primary function of allofplos is to download and maintain
a corpus of PLOS articles. To enable users to parse articles without
downloading 230,000 XML files, allofplos ships with a starter
directory of 122 articles (starterdir), and includes commands
for downloading a 10,000 article demo corpus as well. The default
path to a corpus is stored as the variable corpusdir in the
Python program, and first checks for the environment variable
$PLOS_CORPUS which overrides that default location. If you
have used pip to install the program, specifying $PLOS_CORPUS
will ensure that the article data will not be overwritten when
you update the allofplos package, as the default location
is within the package. (Forking/cloning the GitHub repository
avoids this problem, because the default corpus location is in the
.gitignore file.)
import os
os.environ['PLOS_CORPUS'] = 'path/to/corpus_directory'
from allofplos import update
update.main()

Downloading new articles can also be accessed via the command
line:

$ export PLOS_CORPUS="path/to/corpus_directory"
$ python -m allofplos.update

If no articles are found at the specified corpus location, it will
initiate a download of the full corpus. This is a 4.6 GB zip file
stored on Google Drive, updated daily via an internal PLOS server,
that then is unzipped in that location to around 25 GB of 230,000+
XML articles. For incremental updates of the corpus, allofplos first
scans the corpus directory for all DOIs (Digital Object Identifiers)
[doi] of all articles (constructed from filenames) and compares that
with every article DOI from the PLOS search API. The missing
articles are then downloaded individually in a rate-limited fashion
from links that are constructed using the DOIs. Those files are
identical to the ones in the .zip file. The .zip file prevents users
from needing to scrape the entire PLOS website for the XML
files, and "smartly" scrapes only the latest articles. For a subset of

62 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

provisional articles called "uncorrected proofs", it checks whether
the final version is available, and downloads the updated version
if so. The files are then ready for parsing and analysis.

Article corpora and parsing

To initialize a corpus (defaults to corpusdir, or the location
set by the $PLOS_CORPUS environmental variable), use the
Corpus class. This points allofplos at the directory of articles
to be analyzed.

from allofplos import Corpus
corpus = Corpus()

To analyze the starter directory, also import starterdir and
set corpus = Corpus(starterdir). The number of arti-
cles in the corpus can be found with len(corpus). The list
of every DOI for every article in the corpus can be found at
corpus.dois, and the path to every XML file in the corpus
directory at corpus.filenames. To select a random Article
object, use corpus.random_article. To select a random
list of ten Article objects, use corpus.random_sample(10).
You can also iterate through articles as such:

for article in corpus[:10]:
print(article.title)

Because DOIs contain semantic meaning and XML filenames are
based on the DOI, if you systematically loop through the corpus,
it will not be a representative sample but rather will implicitly
progress first by journal name and then by publication date. The
iterator for Corpus() puts the articles in a random order to avoid
this problem.

The Article class

As mentioned above, you can use the Corpus class to initialize
an Article() object without calling Article directly. An Article
takes a DOI and the location of the corpus directory to read the
accompanying XML document into lxml.

art = Article('10.1371/journal.pcbi.1004692')

The lxml tree of the article is memoized in art.tree so it can
be repeatedly called without needing to re-read the XML file.

>>> type(art.tree)
lxml.etree._ElementTree

Article parsing in allofplos focuses on metadata (e.g., article
title, author names and institutions, date of publication, Creative
Commons copyright license [cc], JATS version/DTD), which are
conveniently located in the front section of the XML. We de-
signed the parsing API to quickly locate and parse XML elements
as properties without needing to know the JATS tagging format.

>>> art.doi
'10.1371/journal.pcbi.1004692'
>>> art.title
'Ensemble Tractography'
>>> art.journal
'PLOS Computational Biology'
>>> art.pubdate
datetime.datetime(2016, 2, 4, 0, 0)
>>> art.license
{'license': 'CC-BY 4.0',
'license_link':

'https://creativecommons.org/licenses/by/4.0/',
'copyright_holder': 'Takemura et al',

'copyright_year': 2016}
>>> art.dtd
'JATS 1.1d3'

For author information, Article reconciles and combines data
from multiple elements within the article into a clean standard
form, including author email addresses and affiliated institutions.
Property names match XML tags whenever possible.

Using XPath

While the Article class handles most basic metadata within the
XML files, users may also wish to analyze the content of the
article more directly. The XPath query language is built into lxml
and provides a way to search for particular XML tags or attributes.
(Note that XPath will always return a list of results, as element tags
and locations are not unique.) You can perform XPath searches on
art.tree, which also works well for finding article elements
that are not Article class properties, such as the acknowledgments,
which have the tag <ack>.

>>> acknowledge = art.tree.xpath('//ack/p')[0]
>>> acknowledge.text[:41]
'We thank Ariel Rokem and Jason D. Yeatman'

For users who are more familiar with XML or want
to perform quality control checks on XML files, XPath
searches can find articles that match a particular XML
structure. For example, PLOS’s production team needed to
find articles that had a <list> item anywhere within a
<boxed-text> element. They iterated through the corpus using
art.tree.xpath('//boxed-text//list').

Use case: searching Methods sections

We can put these pieces together to make a list of articles
that use PCR (Polymerase Chain Reaction, a common molec-
ular biology technique) in their Methods section (pcr_list).
The body of an article is divided into sections (with the ele-
ment tag <sec>) and the element attributes of Methods sec-
tions are either {'sec-type': 'materials|methods'}
or {'sec-type': 'methods'}. In addition to importing
allofplos, the lxml.etree module needs to be imported to turn
XML elements into Python strings via the tostring() method.

import lxml.etree as et
pcr_list = []
for article in corpus.random_sample(20):

Step 1: find Method sections
methods_sections = article.root.xpath(

"//sec[@sec-type='materials|methods']")
if not methods_sections:

methods_sections = article.root.xpath(
"//sec[@sec-type='methods']")

for sec in methods_sections:

Step 2: turn the method sections into strings
method_string = et.tostring(sec, method='text',

encoding='unicode')

Step 3: add DOI if 'PCR' in string
if 'PCR' in method_string:

pcr_list.append(article.doi)
break

else:
pass

TEXT AND DATA MINING SCIENTIFIC ARTICLES WITH ALLOFPLOS 63

Included SQLite database

The allofplos code includes a SQLite database with all articles
in starter directory. In this release there are 122 records that
represents a wide range of papers. In order to use the database,
the user needs a SQLite client. The official client is command
line based and can be downloaded from https://www.sqlite.org/
download.html. The database can also be displayed on graph-
ical viewers such as DB Browser for SQLite and SQLiteStu-
dio. There are also some options to query the database online,
without installing any software, like https://sqliteonline.com/ and
http://inloop.github.io/sqlite-viewer/.

The main table of the database is plosarticle. It has the DOI,
title, abstract, publication date and other fields that link to other
child tables, like articletype and journal_id. The corresponding
author information is stored in the correspondingauthor table and
is linked to the plosarticle table using the relation table called
coauthorplosarticle.

For example, to get all papers whose corresponding authors
are from France:

SELECT DOI FROM plosarticle
JOIN coauthorplosarticle ON
coauthorplosarticle.article_id = plosarticle.id
JOIN correspondingauthor ON
(correspondingauthor.id =
coauthorplosarticle.corr_author_id)
JOIN country ON
country.id = correspondingauthor.country_id
WHERE country.country = 'France';

This will return the DOIs from three papers from the starter
database:
10.1371/journal.pcbi.1004152
10.1371/journal.ppat.1000105
10.1371/journal.pgen.1002912
10.1371/journal.pcbi.1004082

The researcher can avoid using SQL queries by using the included
Object-relational mapping (ORM) models. The ORM library used
is peewee. A file with sample queries is stored in the repository
with the name of allofplos/dbtoorm.py. Part of this file defines all
Python classes that corresponds to the SQLite Database. These
class definitions are from the beginning of the file until the
comment marked as # End of ORM classes creation.

After this comment, there is an example of how to build a
query. The following query is the peewee compatible syntax that
constructs the same SQL query as outlined before:

query = (Plosarticle
.select()
.join(Coauthorplosarticle)
.join(Correspondingauthor)
.join(Country)
.join(Journal,

on=(Plosarticle.journal == Journal.id))
.where(Country.country == 'France')
)

This will return a query object. This object can be walked over
with a for loop as any Python iterable:

for papers in query:
print(papers.doi)

SQLite database constructor

There is a script at allofplos/makedb.py that can be used to
generate the SQLite Database from a directory full of XML

articles. This script was used to generate the included starter.db.
If the user wants to make another version, from another subset (or
from the whole corpus), this script will be useful.

To generate a SQLite DB with all the files currently in the
Corpus directory, and save the DB as mydb.db:

$ python makedb.py --db mydb.db

There is an option to generate a DB with only a random subset of
articles. For a DB with 500 articles randomly selected, use:

$ python makedb.py --random 500 --db mydb.db

Future directions

We also have plans for future updates to allofplos. First, we plan
to make the article parsing publisher-neutral, allowing for reading
JATS content from other publishers in addition to PLOS. Second,
we want to improve incremental corpus updates so that all changes
can be downloaded and updated via a standardized mechanism
such as a hash table. This includes ’silent republications’, where
articles are updated online without an official correction notice
(the substance of the article is unchanged, but the XML has
been updated). While the local allofplos server has methods for
catching these changes and updating the zip file appropriately,
there is not currently a way to make sure a user’s local corpus
copy reflects all of those changes. Third, we want to expand the
possibilities of multiple corpora and allow for article versioning,
such as for comparing older and newer versions of articles instead
of just replacing them entirely. And finally, we want to expand and
integrate the functionality of the sqlite database so that selecting
a subset of articles based on metadata criteria such as journal,
publication date, or author is faster and easier than looping through
each XML file individually.

Conclusions

As more scientific articles are published, it will become more
important that these articles can be analyzed in aggregate. Tools
like allofplos make such an effort much easier. With an
intuitive and straightforward Corpus() and Article() APIs,
allofplos avoids much of the complexity of parsing xml
for new users, while still enabling XML experts the flexibility
and power needed to accomplish their aims. By building in the
ability to automatically update and maintain the corpus, people
can trust that they have the most state-of-the-art data without
needing to manually check the >230,000 articles (a task few
would undertake). By connecting this information to database
technologies, allofplos enables quickly accessing data when
that efficient access is needed. By making strides in all of these
directions allofplos demonstrates itself to be a valuable tool
in the scientific python toolkit.

REFERENCES

[lxml05] Behnel, S., Faassen, M. et al. (2005), lxml: XML and HTML
with Python, http://lxml.de.

[cc] Creative Commons Licenses. https://creativecommons.org/
licenses/

[allofplosgh] allofplos GitHub repository. https://github.com/PLOS/
allofplos

[allofplospypi] allofplos PyPI repository. https://pypi.org/project/allofplos/
[jats] JATS NIH/NISO standard. https://jats.nlm.nih.gov/publishing/

tag-library/1.1d3/chapter/how-to-read.html
[elife] elife-tools GitHub repository. https://github.com/elifesciences/

elife-tools

64 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

[doi] Digital Object Identifiers. https://www.doi.org/doi_handbook/
1_Introduction.html

[pmc] PMC Open Access Subset. https://www.ncbi.nlm.nih.gov/
pmc/tools/openftlist/

PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018) 65

Sparse: A more modern sparse array library

Hameer Abbasi‡∗

https://youtu.be/xH5eVcb1SlA

F

Abstract—This paper is about sparse multi-dimensional arrays in Python. We
discuss their applications, layouts, and current implementations in the SciPy
ecosystem along with strengths and weaknesses. We then introduce a new
package for sparse arrays that builds on the legacy of the scipy.sparse imple-
mentation, but supports more modern interfaces, dimensions greater than two,
and improved integration with newer array packages, like XArray and Dask. We
end with performance benchmarks and notes on future work. Additionally, this
work provides a concrete implementation of the recent NumPy array protocols to
build generic array interfaces for improved interoperability, and so may be useful
for broader community discussion.

Index Terms—sparse, sparse arrays, sparse matrices, scipy.sparse, ndarray,
ndarray interface

Introduction

Sparse arrays are important in many situations and offer both
speed and memory benefits over regular arrays when solving a
broad spectrum of problems. For example, they can be used in
solving systems of equations [LN89], solving partial differential
equations [MR91], machine learning problems involving Bayesian
models [Tip01] and natural language processing [NTK11].

As a motivating example, consider two NumPy arrays with
a shape of (10 ** 5, 10 ** 5) and only five nonzero el-
ements per row. Computations on such arrays, such as addition,
multiplication and so on would perform the operation on each of
the 1010 elements individually, taking up a large amount of time
and memory.

If we instead focused on just the nonzero elements in each
array and worked with those, we would be down to at most 106

elements to work with, a huge improvement. If we were smart
about how the array would be stored, we could also bring down
memory usage as well. This is, in essence, what sparse arrays do
and what they’re used for.

Traditionally, within the SciPy ecosystem, sparse arrays
have been provided within SciPy [Sci18] in the submodule
scipy.sparse, which is arguably the most feature-complete
implementation of sparse matrices within the ecosystem, provid-
ing support for basic arithmetic, linear algebra and graph theoretic
algorithms.

However, it lacks certain features which prevent it from work-
ing nicely with other packages in the ecosystem which consume
NumPy’s [Num18] ndarray interface:

* Corresponding author: hameerabbasi@yahoo.com
‡ TU Darmstadt

Copyright © 2018 Hameer Abbasi. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

• It doesn’t follow the ndarray interface (rather, it follows
NumPy’s deprecated matrix interface)

• It is limited to two dimensions only (even one-dimensional
structures aren’t supported)

In addition, scipy.sparse is depended on by many down-
stream projects, which makes removing NumPy’s matrix inter-
face that much more difficult, and limits usage of both ndarray
style duck arrays and scipy.sparse arrays within the same
codebase.

This is important for a number of other packages that are
quite innovative, but cannot take advantage of scipy.sparse
for these reasons, because they expect objects following the
ndarray interface. These include packages like Dask [Das18]
(which is useful for parallel computing, even across clusters, for
both NumPy arrays and Pandas dataframes) and XArray [xar18]
(which extends Pandas dataframes to multiple dimensions).

Both of these frameworks could benefit tremendously from
sparse structures. In the case of Dask, it could be used in combi-
nation with sparse structures to scale up computational tasks that
need sparse structures. In the case of XArray, datasets with large
amounts of missing data could be represented efficiently, as well
as other benefits such as broadcasting by axis name rather than by
rather opaque axis positions.

In this paper, we present Sparse [Spa18], a sparse array
library that supports arbitrary dimension sparse arrays and sup-
ports most common parts of the ndarray interface. It supports
basic arithmetic, application of ufunc s directly to sparse arrays
(including with broadcasting), most common reductions, indexing,
concatenation, stacking, transpose, reshape and a number of other
features. The primary format in this library is based on the
coordinate format, which stores indices where the array is nonzero,
and the corresponding data.

Since a full explanation of usage would be a repeat of the
NumPy user manual and the package documentation, we move on
to some of the design decisions that went into making this pack-
age, including some challenges we had to face some optimizations,
applications and possible future work.

Algorithms and Challenges

Choice of storage format

We chose the COO format for its simplicity while storing and
accessing elements, even though it isn’t the most efficient storage
format. In this format, two dense arrays are required to store the
sparse array’s data. The first is a coordinates array, which stores
the coordinates where the array is nonzero. This array has a shape
(ndim, nnz). The second is a data array, which stores the

66 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

dim1 dim2 dim3 ... data

0 0 0 ... 10
0 0 3 ... 13
0 2 2 ... 9
...
3 1 4 ... 21

TABLE 1
A visual representation of the COO format.

data corresponding to each coordinate, and thus it has the shape
(nnz,). Here, ndim represents the number of dimensions of the
array and nnz represents the number of nonzero entries in the
array.

For simplicity of operations in many cases, the coordinates
are always stored in C-contiguous order. Table 1 shows a visual
representation of how data is stored in the COO format.

We use whatever data-type the source array has for the data
array and np.int64 for the coordinates array. This means
that, assuming ndim = 3 and dtype.itemsize = 8 (as
is the case for a data type of np.int64, np.uint64 and
np.float64), the tipping point versus dense arrays for memory
usage will be a density of 0.25, with the benefit increasing with
the inverse of the density.

Element-wise operations

Element-wise operations are an important and common part of
any array interface. For example, arithmetic, casting an array,
and all NumPy ufunc s are common examples of element-wise
operations.

These turn out to be simple for NumPy arrays, but are surpris-
ingly complex for sparse arrays. The first problem to overcome
was that there was no dependency on Numba [Ana18]/Cython
[Cyt18]/C++ at the time that this algorithm was to be imple-
mented, and a discussion was ongoing about which algorithm
to use. [Spae] I, therefore wished to solve the problem in pure
NumPy, therefore looping over all possible nonzero coordinates
was not an option, and we had to process the coordinates and
data in batches. The batches that made sense at the time were
something like the following:

1) Coordinates in the first array but not in the second.
2) Coordinates in the second array but not in the first.
3) Coordinates in both arrays simultaneously.

This algorithm (when applied to multiple inputs instead of just
two) looks like the following:

all_coords = []
all_data = []

for each combination of inputs where some are zero
and some nonzero:
if all inputs are zero:

continue

coords = find coordinates common to
nonzero inputs

coords = filter out coordinates that are
in zero inputs

data = apply function to data corresponding
to these coordinates

all_coords.append(coords)

all_data.append(data)

concatenate all_coords and all_data

The addition of broadcasting makes this problem even more
complex to solve, as it turns out that for sparse arrays, simply
broadcasting all arrays to a common shape and then performing
element-wise operations is not the most efficient way to perform
such an operation.

Consider two arrays, one shaped (n,) and another shaped
(m, n), both with only one nonzero entry. If all we wanted to do
was multiply them, the result would have just one nonzero entry,
yet broadcasting the first array would result in an array with m
nonzero entries (which clearly isn’t the most optimal way to do
things). For this reason, we chose to handle broadcasting within
the algorithm itself, instead of broadcasting all inputs upfront.

Effectively, this resulted in the following algorithm, which
doesn’t have the limitation mentioned above. This is because any
zeros are filtered out before any broadcasting is done:

all_coords = []
all_data = []

for each combination of inputs where some are zero
and some nonzero:
if all inputs are zero:

continue

coords = find coordinates common to
nonzero inputs
(for dimensions that are not being
broadcast in both, with repetition
similar to an SQL outer join)

data = apply function to data corresponding
to these coordinates

coords, data = filter out zeros from coords/data

coords, data = filter out coordinates/data that
are in zero inputs
(again, for non-broadcast dimensions)

broadcast coordinates and data to output shape

all_coords.append(coords)
all_data.append(data)

concatenate all_coords and all_data

The full implementation can be found in [Spaa]. While this algo-
rithm is effective at applying all sorts of element-wise operations
for any amount of inputs, it does have a few drawbacks:

• It’s slower than scipy.sparse, because

– It loops over all possible combinations of
zero/nonzero coordinates, which makes it
O
((

2nin −1
)
×nnz

)
in the worst case, where nin

is the number of inputs to the operation and nnz
are the number of nonzero elements.

– It’s in COO format rather than CSR/CSC.
– scipy.sparse uses specialized code paths for

each operation that greatly reduce the strain on the
CPU whereas we keep everything generic.

• In the current implementation, sorting of coordinates is
sometimes done unnecessarily.

This can be improved in the future in the following ways:

• Looping over possibly nonzero coordinates with some-
thing like Numba or Cython.

SPARSE: A MORE MODERN SPARSE ARRAY LIBRARY 67

– This approach will solve most of the speed issues.
– Sorting will be rendered unnecessary.
– Specialized code paths introduce a large mainte-

nance burden, but can be implemented.

• Introducing multidimensional CSR/CSC.

You can see the current performance of the code in Table 2.
Currently, the implementation raises a ValueError if

ndarray s are mixed with sparse arrays, or if the operation
produces a dense array, such as operations like y = x + 5
where x is sparse. This is an intentional design choice: We raise
an error to show that the result is likely dense, and that if the
user wishes to perform a dense operation, they should convert all
arrays involved to dense ones and repeat the operation. This is
better than an undesired performance degradation, which can be
hard to detect.

However, work is being done to reduce the amount of such
errors. For example, there is a feature planned to allow mixed
ndarray -sparse operations if such operations do not produce
dense results e.g. multiplication. [Spac]. Also, we are planning
to allow arbitrary fill values in arrays, which will allow for
operations such as y = x + 5 (if x.fill_value was zero,
y.fill_value will be five). [Spad]

Reductions

We implemented reductions by the elegant concept of a "grouped
reduce". The idea is to first group the coordinates by the non-
selected axes, and then reduce along the selected axes. This is
simple to implement in practice, and also works quite well. Here
is some psuedocode that we use for reductions:

x = x.transpose((selected_axes, non_selected_axes))
x = x.reshape((selected_axes_size,

non_selected_axes_size))

y, counts = perform a reduce on x
grouped by the first coordinate
using ufunc.reduceat

where counts < non_selected_axes_size, reduce
an extra time by zero

y = y.reshape(non_selected_axes_shape)

The full implementation can be found at [Spab]. Only some
reductions are possible with this algorithm at the moment, but
most common ones are supported. Supported reductions must have
a few properties:

• They must be implemented in the form of
ufunc.reduce

• The ufunc must be reorderable
• Reducing by multiple zeros shouldn’t change the result
• An all-zero reduction must produce a zero.

Although these criteria seem restricting, in practice most
reductions such as sum, prod, min, max, any and all ac-
tually fall within the class of supported reductions. We used
__array_ufunc__ protocol to allow application of ufunc
reductions to COO arrays. Notable unsupported reductions are
argmin and argmax, because they cannot be implemented in
the form ufunc.reduce.

This is nearly as fast as the reductions in scipy.sparse
when reducing along C-contiguous axes, but is slow otherwise.
Performance results can be seen in Table 2. Profiling reveals that
most of the time in the slow case is taken up by sorting, as

ufunc.reduceat expects all "groups" to be right next to each
other. This can be improved in the following ways:

• Implement a radix argsort, which will significantly speed
up the sorting.

• Perform a "grouped reduce" by other methods, such as
how Pandas does it, perhaps by using a dict to maintain
the results.

Indexing

For indexing, we realize that to construct the new coordinates and
data, we can perform two kinds of filtering as to which coordinates
will be in the new array and which ones won’t.

The first is where we look at the coordinates directly, and then
filter them out successively for each given index. For integers,
we check for coordinates that are exactly equal to that index. For
slices, we similarly check for matching coordinates. We do this
for each index. This turns out to be O(ndim×nnz) in total. where
ndim is the number of dimensions of the array to the operation
and nnz are the number of nonzero elements.

This has a few benefits: it is simple to do and the performance
only depends on the size of the input array.

The second is where we look at each integer index in series,
and then look at sub-arrays for each integer index. Since the
coordinates are sorted in lexographical order, we will have to do
a binary search for the start and end of each sub array, and repeat
this for each integer index within the previous sub-array. Getting
a single item or an integer slice in this case is O(nidx× lognnz).
Here, nidx is the number of provided integer indices. For slices,
we will loop over each possible integer in the slice and repeat the
above procedure.

For integer indexing, the second method is almost always
faster. For slices, the situation becomes more complicated. Even
for slices, in some cases, it is faster to use the second procedure.
This happens for small slices, e.g. x[:10].

For other cases, it’s wise to initially use the second procedure
(to filter out some sub-arrays), and then switch to the first. For
example, for x[:500, :500, :500], as using just the second
procedure will require a large amount of binary searches (5003 in
this case).

So we used a hybrid approach where the second method is
used until there are a sufficiently low number of coordinates left
for filtering, then we fall back to simple filtering. Where we do the
switch is determined by a heuristic: will the expected number of
binary searches be faster in a specific case, or directly filtering the
number of left-over coordinates? The overall algorithm is imple-
mented in Numba, because when this algorithm was implemented,
the discussion in [Spae] had been resolved. However, it has since
been reopened due to further missing features in Numba.

After getting the required coordinates and corresponding data,
we apply some simple transformations to it to get the output
coordinates and data.

However, one thing is important to realize: indexing sparse
arrays is more expensive than indexing dense arrays. Indexes of
dense arrays produce a view for any combination of slices and
integers, and take O(nidx) time in every case. Sparse arrays take
more time, and it’s usually not possible to produce a view of the
original array.

68 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Benchmark Sparse SciPy Sparse NumPy

Addition 50.8 ms ± 3.45
ms

2.49 ms ± 211
µs

507 ms ± 6.43
ms

Multiplication 10.7 ms ± 526
µs

14.9 ms ± 1.68
ms

529 ms ± 13.5
ms

Sum,
Axis=0

12 ms ± 116 µs 545 µs ± 49.8
µs

97.8 ms ± 4.19
ms

Sum,
Axis=1

959 µs ± 23.7
µs

641 µs ± 83.9
µs

62.7 ms ± 4.86
ms

TABLE 2
Performance benchmarks comparing Sparse to SciPy and dense NumPy code

Transposing and Reshaping

Transposing corresponds to a simple reordering of the dimensions
in the coordinates, along with a re-sorting of the coordinates and
data to make the coordinates C-contiguous again.

Reshaping corresponds to linearizing the coordinates and
then doing the reverse for the new shape, similar to
np.ravel_multi_index and np.unravel_index. How-
ever, we write our own custom implementation for this.

Matrix and tensor multiplication

For tensordot, we currently just use the
NumPy implementation, replacing np.dot with
scipy.sparse.csr_matrix.dot. This is mainly just
transposing and reshaping the matrix into 2-D, using np.dot
(or scipy.sparse.csr_matrix.dot in our case), and
performing the reshape and transpose operations in reverse.

For sparse.dot, we simply dispatch to tensordot, pro-
viding the appropriate axes.

This may not always produce a sparse array as output. If we
think of each element of the output matrix as a dot product of the
appropriate row of the first matrix and the appropriate column of
the second matrix, we realize that it may be difficult to guarantee
that this will be zero. Indeed, in general, nnzout ≤ nnzin1 ×nnzin2,
without knowing much about the structure of the matrix. For some
inputs however, the outputs will be relatively sparse (for example
for identity matrices and diagonal matrices).

Benchmarks

Because of our desire for clean and generic code as well as using
mainly pure Python as opposed to Cython/C/C++ in most places,
our code is not as fast as scipy.sparse.csr_matrix. It,
however, does beat numpy.ndarray, provided the sparsity of
the array is small enough. The benchmarks were performed on a
laptop with a Core i7-3537U processor and 16 GB of memory.
Any arrays used had a shape of (10000, 10000) with a
density of 0.001. The results are tabulated in Table 2.

The NumPy results are given only for comparison, and for the
purposes of illustrating that using sparse arrays does, indeed, have
benefits over using dense arrays when the density of the sparse
array is sufficiently low.

Outlook and Future Work

We discussed the current leading solution for sparse arrays in
the ecosystem, scipy.sparse, along with its shortcomings and
limitations. We then introduced a new package for N-dimensional
sparse arrays, and how it has the potential to address these

shortcomings. We discuss its current implementation, including
the algorithms used in some of the different operations and the lim-
itations and drawbacks of each algorithm. We also discuss future
improvements that could be made to improve these algorithms.

There are a number of areas we would like to focus on in the
future. These include, in very broad terms:

• Better performance
• Better integration with community packages, such as

scikit-learn, Dask and XArray
• Support for more of the ndarray interface (particularly

through protocols)
• Implementation of more linear algebra routines, such as

eig, svd, and solve
• Implementation of more sparse storage formats, such as a

generalization of CSR/CSC

REFERENCES

[Ana18] Anaconda, Inc. Numba, 2018. URL: https://numba.pydata.org/.
[Cyt18] Cython developers. Cython, 2018. URL: http://cython.org/.
[Das18] Dask core developers. Dask, 2018. URL: https://dask.pydata.org/

en/latest/.
[LN89] Dong C Liu and Jorge Nocedal. On the limited memory BFGS

method for large scale optimization. Mathematical programming,
45(1-3):503–528, 1989.

[MR91] Mo Mu and John R Rice. An organization of sparse Gauss
elimination for solving PDEs on distributed memory machines.
1991.

[NTK11] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-
way model for collective learning on multi-relational data. In ICML,
volume 11, pages 809–816, 2011.

[Num18] NumPy developers. Numpy, 2018. URL: https://www.numpy.org/.
[Sci18] SciPy developers. Scipy, 2018. URL: https://www.scipy.org/.
[Spaa] Sparse developers. Sparse Implementation: Elem-

wise. URL: https://github.com/pydata/sparse/blob/
b51d74924d62ff6537b15ce4e1dd4e56080a3b6f/sparse/coo/umath.
py#L12.

[Spab] Sparse developers. Sparse Implementation: Reduc-
tions. URL: https://github.com/pydata/sparse/blob/
b51d74924d62ff6537b15ce4e1dd4e56080a3b6f/sparse/coo/core.
py#L564.

[Spac] Sparse developers. Sparse Issue: Allow ndarray in elemwise again.
URL: https://github.com/pydata/sparse/issues/124.

[Spad] Sparse developers. Sparse Issue: Arbitrary fill value. URL: https:
//github.com/pydata/sparse/issues/143.

[Spae] Sparse developers. Sparse Issue: Use Cython, Numba, or C/C++
for algorithmic code. URL: https://github.com/pydata/sparse/issues/
143.

[Spa18] Sparse developers. Sparse, 2018. URL: https://sparse.pydata.org/en/
latest/.

[Tip01] Michael E Tipping. Sparse Bayesian learning and the relevance
vector machine. Journal of machine learning research, 1(Jun):211–
244, 2001.

[xar18] xarray Developers. xarray, 2018. URL: https://xarray.pydata.org/en/
stable/.

PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018) 69

Bringing ipywidgets Support to plotly.py

Jon Mease‡∗

https://youtu.be/1ndo6C1KWjI

F

Abstract—Plotly.js is a declarative JavaScript data visualization library built on
D3 and WebGL that supports a wide range of statistical, scientific, financial,
geographic, and 3-dimensional visualizations. Support for creating Plotly.js visu-
alizations from Python is provided by the plotly.py library. Version 3 of plotly.py
integrates ipywidgets support, providing a host of benefits to plotly.py users
working in the Jupyter notebook. This paper describes the architecture of this
new version of plotly.py, and presents examples of several of these benefits.

Index Terms—ipywidgets, plotly, jupyter, visualization

Introduction

The Jupyter Notebook [KRKP+16] has emerged as the dominant
interface for exploratory data analysis and visualization in the
Python data science ecosystem. The ipywidgets library [GFC]
provides a suite of interactive widgets for use in the Jupyter
Notebook, and it serves as a foundation for library authors to build
on to create their own custom widgets.

This paper describes our work to bring ipywidgets support to
plotly.py version 3. Compared to version 2, plotly.py version 3
brings plotly.py users working in the Jupyter Notebook a host of
benefits. Figures already displayed in the notebook may now be
updated in-place using property assignment syntax. All properties
throughout the entire figure hierarchy are now discoverable us-
ing tab completion and documented with informative docstrings.
Property values are now fully validated by the Python library
and helpful error messages are raised on validation failures.
Figure transitions may now be animated. Numpy arrays are now
transferred between the Python and JavaScript libraries using a
binary serialization protocol for improved performance. Finally,
Python callbacks may now be registered for execution upon zoom,
pan, click, hover, and data selection events.

Plotly.js Overview

Plotly.js is a JavaScript data visualization library based on D3
and WebGL that supports a wide range of statistical, scientific,
financial, geographic, and 3-dimensional visualizations [Inc15].
The library was initially developed by Plotly Inc. as a core
component of their commercial visualization offerings. The library
was open sourced under the MIT license in 2015 [Ploc], and may
now be used fully offline without requiring any interaction with
Plotly Inc’s commercial infrastructure.

* Corresponding author: jon.mease@jhuapl.edu
‡ Johns Hopkins Applied Physics Laboratory

Copyright © 2018 Jon Mease. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

{"data": [
{"type": "bar",
"y": [2, 3, 1],
"name": "A",},
{"type": "scatter",
"y": [3, 1, 2],
"name": "B",
"marker": {"size": 12}}
],

"layout": {"xaxis":
{"range": [-1, 3],
"tickvals": [0, 1, 2]}}}

Fig. 1: JSON specification of a basic Plotly.js figure

Data model

Plotly figures are fully defined by a declarative JSON specifi-
cation. Key components of this specification are shown in the
example in Figure 1.

The top-level 'data' property contains an array of the traces
present in the figure. The object representing each trace contains a
'type' property that identifies the trace type (e.g. 'scatter',
'bar', 'violin', 'mesh3d', etc.). The remaining properties
are used to configure the trace. As of version 1.37.1, Plotly.js sup-
ports 32 distinct trace types covering many statistical, scientific,
financial, geographic, and 3-dimensional use-cases.

The top-level 'layout' property is an object with properties
that specify characteristics of the figure that are independent of its
traces. These include the figure’s size, axis extents, legend styling,
background color, and many others.

Of particular interest to this work, the Plotly.js library is
capable of exporting a detailed schema corresponding to this
JSON specification. The schema includes the names of all valid

70 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

{"layoutAttributes":
...
"hovermode": {

"valType": "enumerated",
"values": [

"x",
"y",
"closest",
false

],
"description": "Determines ... "
...

}
...

}

Fig. 2: Plotly.js schema example for the hovermode property

properties and information about their permitted values. This
schema is the basis for the Plotly rest API [Ploa] and, as discussed
below, this schema enables us to use code-generation to generate
a complete Python object hierarchy corresponding to the JSON
structure. Figure 2 presents a excerpt of the plot schema describing
the 'hovermode' property of layout.

Next, we provide a brief overview of the relevant portions of
the Plotly.js API that are used by the new widget library. For more
information, including detailed method signatures, see [Plob].

Commands

The following Plotly.js commands are used to create and update
figures.

Plotly.newPlot

Create a new figure with initial traces and layout
Plotly.restyle

Update one or more properties of one or more pre-existing
traces

Plotly.relayout

Update one or more properties of the figure’s layout
Plotly.update

Update both trace and layout properties simultaneously
Plotly.addTraces

Add new traces to an existing figure
Plotly.deleteTraces

Delete select traces from an existing figure
Plotly.moveTraces

Move select traces to a new position in the figure’s data
array

Plotly.animate

Animate property updates in supported trace types

Events

The following events are emitted by Plotly.js figures in response
to various kinds of user interaction.

plotly_restyle

Emitted when properties of one or more traces are updated.
This may either be the result of a Plotly.restyle
command or the result of user interaction. For example,

clicking on a trace in the legend toggles the trace’s
visibility in the figure. This visibility state is stored in the
top-level visible enumeration property on traces.

plotly_relayout

Emitted when properties of the figure’s layout are updated.
This may either be the result of a Plotly.relayout
command or the result of user interaction. For example,
panning or zooming a figure’s axis updates the 'range'
sub-property of the top-level 'xaxis' and 'yaxis'
layout properties.

plotly_selected

Emitted when a user completes a selection action using the
box select or lasso select tools. The event’s data contain the
indices of the traces from which points were selected and
the indices of the selected points themselves. Similar
events are also emitted when a user clicks
(plotly_click), hovers onto (plotly_hover), or
hovers off of (plotly_unhover) points in a trace.

Variables

The current state of a figure is stored in the following four
variables.

data and layout
These variables store the trace and layout properties
explicitly specified by the user.

_fullData and _fullLayout
These variables store the full collection of trace and layout
properties that are currently in use, whether specified by
the user or selected by Plotly.js as defaults.

ipywidgets Overview

The ipywidgets library [GFC] provides a useful collection of
interactive widgets (sliders, check boxes, radio buttons, etc.) for
use in the Jupyter Notebook and in several other contexts [wida].
For the full list of built-in widgets see [widb].

The integration of graphical widgets into the notebook work-
flow allows users to configure ad-hoc control panels to inter-
actively sweep over parameters using graphical widget controls,
rather than by editing code or writing loops over fixed ranges of
values.

The infrastructure behind the built-in ipywidgets is available
to library authors and many custom ipywidgets libraries have
been developed [Cus]. Three notable data visualization examples
include bqplot [CSM+] for 2-dimensional Grammar of Graphics
[Wil05] style visualizations, ipyvolume [Bre] for 3-dimensional
and volumetric visualizations, and ipyleaflet [CG] for geographic
visualization.

The high level architecture, shown in Figure 3, consists of
four components: The Python model, the JavaScript model, the
JavaScript views, and the Comms interface. These components
are described below.

Python Model

The Python model is a Python class that inherits from the
ipywidgets.Widget superclass and uses the traitlets library
[tra] to declare typed attributes that should be synchronized with
the JavaScript model.

BRINGING IPYWIDGETS SUPPORT TO PLOTLY.PY 71

Model Model

View

View

Comms

Python JavaScript/HTML

Fig. 3: High level ipywidgets architecture

JavaScript Model

The JavaScript model is a JavaScript class that extends the
@jupyter-widgets/base/WidgetModel class and de-
clares a collection of attributes that match the traitlet declarations
in the corresponding Python model.

When used in the Jupyter Notebook, there is a one-to-one
relationship between the Python and JavaScript models. The
JavaScript model is constructed just after the Python model is con-
structed, which may be well before the widget is first displayed.

JavaScript View

The JavaScript view (hereafter referred to as "the view" since
there is no ambiguity) is a JavaScript class that extends the
@jupyter-widgets/base/WidgetView class. When used
in the notebook, a separate view is constructed each time a model
is displayed. Each view has a reference to one JavaScript model,
and multiple views may share the same model.

Comms and Synchronization

The Jupyter Comms API provides an abstraction for performing
two-way communication between the front-end and the Python
kernel, hiding the complexity of the web server, ZeroMQ, and
WebSocket implementation details.

The synchronization of the Python and JavaScript models
is accomplished using the widget messaging protocol over the
Jupyter Comms infrastructure.

A powerful feature of the widget messaging protocol is that
it supports the efficient serialization of nested data structures
containing binary buffers. This capability is used by ipyvolume
[Bre] (and now plotly.py) to transfer Python numpy arrays into
JavaScript TypedArrays without ASCII encoding.

New Plotly.py Figure API

In plotly.py version 3, a figure is represented by an instance of
the plotly.graph_objs.Figure class. A Figure instance
maintains an internal representation of the figure’s JSON specifi-
cation, and presents a convenient API for creating and updating
this specification.

Code generation is used to create a rich hierarchy of Python
classes that correspond to the object hierarchy specified in the plot
schema described above. Figure 4 presents an example of property
tab completion (a), a property docstring (b), and a validation error
message (c) for the 'hovermode' property of layout that is
defined by the schema excerpt in Figure 2.

Select components of the new API are described below, and
an example of their use is presented in Figure 5.

Construction

If the full specification of the desired figure is known in advance,
the specification may be passed directly to the Figure construc-
tor as a Python dict. This construction process will trigger the
validation of all properties and nested properties according to the
plot schema. Figure 5 (a) presents an example of constructing a
Figure with a single bar trace.

Property Assignment

A Figure’s properties may be configured iteratively after con-
struction using property assignment. Figure 5 (b) presents an
example of setting the x-axis range to [-1, 3] using property
assignment.

Add Traces

A new trace may be added to an existing Figure using the
add_{trace} method that corresponds to the desired trace type.
Figure 5 (c) presents an example of adding a new scatter trace
to a Figure instance using the add_scatter method.

Batch Update

Multiple properties may be updated simultaneously using a
Figure.batch_update() context manager. In this case, all
property assignments specified inside the batch_update con-
text will be executed simultaneously when the context exits. Figure
5 (d) presents an example of assigning four properties across two
traces and the layout inside a batch_update context.

Reorder Traces

The ordering of traces in the Figure’s data list determines the
order in which the traces are displayed in the legend, and the
colors that are chosen for traces by default. The trace order can be
updated by assigning to the data property a list that contains a
permutation of the figure’s current traces. Figure 5 (e) presents an
example of swapping the order of the bar and scatter traces.

Delete Traces

Traces may be deleted by omitting them from the list of traces that
is assigned to a Figure’s data property. Figure 5 (f) presents an
example of deleting the bar trace by assigning a list that contains
only the scatter trace.

Batch Animate

Multiple properties may be updated simultaneously using a
Figure.batch_animate() context manager. When applied
to a Figure instance this works just like the batch_update
context manager. However, when applied to a FigureWidget
instance (described below) the Plotly.js library will attempt to
smoothly animate the transition to the new property values. Figure
5 (g) presents an example of animating a change in the Figure’s
x-axis and y-axis range extents.

72 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

...

(d)

(c)

(b)

(a)

Fig. 4: Tab completion, documentation, and validation of hovermode property

New Plotly.py ipywidgets Implementation

The entry point for the new ipywidgets support is
the plotly.graph_objs.FigureWidget class.
FigureWidget is a subclass of Figure and, as such,
inherits all of the Figure characteristics described in the
previous section.

Implementing a custom ipywidgets library for Plotly.js
presents some architectural challenges. Plotly.js does not expose a
model-view separation, each figure stores its own data locally in
the figure’s root DOM element. This means that each ipywidgets
JavaScript view will necessarily be an independent Plotly.js figure
instance with its own data. As such, we must take responsibility
for keeping the JavaScript model in sync with the state of the
Plotly.js figures in each view.

An additional performance-based architectural restriction is
that as few properties as possible should be transferred between
the Python and JavaScript models. This restriction eliminates
solutions that require serialization of the entire plot specification
when only a subset of the properties are modified.

The following sections describe our solution to these chal-
lenges.

Python to JavaScript Synchronization

Python to JavaScript synchronization is achieved by translat-
ing Python FigureWidget mutation operations into Plotly.js
API commands. These commands, and their associated data, are
transferred to the JavaScript model and views using the widget
messaging protocol, over the Jupyter Comms infrastructure, as
described above. The views are updated by executing the specified
Plotly.js command, and the JavaScript model is updated manually
in a consistent fashion.

Construction

Construction operations are translated into Plotly.newPlot
commands. Figure 6 (a) presents an example of the newPlot
command that results from the construction operation in Figure 5
(a) if the Figure class is replaced by FigureWidget.

Property Assignment

Trace property assignments are translated into
Plotly.restyle commands, and layout property assignments
are translated into Plotly.relayout commands. Figure 6
(b) presents an example of the relayout command that results
from the property assignment operation in Figure 5 (b).

BRINGING IPYWIDGETS SUPPORT TO PLOTLY.PY 73

>>> import plotly.graph_objs as go
>>> fig = go.FigureWidget(

data=[go.Bar(y=[2, 3, 1])])

>>> fig.layout.xaxis.range = [-1, 3]

>>> fig.add_scatter(y=[3, 1, 2])

>>> with fig.batch_update():
... fig.data[0].name = 'A'
... fig.data[1].name = 'B'
... fig.data[1].marker.size = 12
... fig.layout.xaxis.tickvals = \
... [0, 1, 2]

>>> fig.data = \
... [fig.data[1], fig.data[0]]

>>> with fig.batch_animate():
... fig.layout.xaxis.range = \
... [-2, 4]
... fig.layout.yaxis.range = \
... [-3, 5]

>>> fig.data = [fig.data[0]]

{"data": [
{"type": "bar",
"y": [2, 3, 1]}],

"layout": {}}

{"data": [
{"type": "bar",
"y": [2, 3, 1]}],

"layout": {"xaxis":
{"range": [-1, 3]}}}

{"data": [
{"type": "bar",
"y": [2, 3, 1]},
{"type": "scatter",
"y": [3, 1, 2]}],

"layout": {"xaxis":
{"range": [-1, 3]}}}

{"data": [
{"type": "bar",
"y": [2, 3, 1],
"name": "A"},
{'type": "scatter",
"y": [3, 1, 2],
"name": "B",
"marker": {"size": 12}}],

"layout": {"xaxis":
{"range": [-1, 3],
"tickvals": [0, 1, 2]}}}

{"data": [
{"type": "scatter", ...},
{"type": "bar", ...}],

"layout": {"xaxis":
{"range": [-1, 3],
"tickvals": [0, 1, 2]}}}

{"data": [
{"type": "scatter", ...}],

"layout": {"xaxis":
{"range": [-1, 3],
"tickvals": [0, 1, 2]}}}

{"data": [
{"type": "scatter", ...}],

"layout": {"xaxis":
{"range": [-1, 3],
"tickvals": [0, 1, 2]},
"yaxis":
{"range": [-3, 5]}}

JSON Specification Display

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Code

Fig. 5: New Figure API Example

74 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

{"data": [
{"type": "bar",
"y": [2, 3, 1]}],

"layout": {}}

{"xaxis.range": [-1, 3]}

{"type": "scatter",
"y": [3, 1, 2]}

{"data": {"name": ["A", "B"],
"marker.size":

[undefined, 12]},
"layout": {"xaxis.tickvals":

[0, 1, 2]}}

{"traceInds": [0, 1],
"newTraceIndes": [1, 0]}

{"traceInds": [1]}

{"layout":
{"xaxis.range": [-1, 3],
"yaxis.range": [-3, 5]}}

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Plotly.newPlot

Plotly.relayout

Plotly.addTraces

Plotly.update

Plotly.moveTraces

Plotly.deleteTraces

Plotly.animate

ArgumentsPlotly.js Command

Fig. 6: Plotly.js commands corresponding to operations in Figure 5 if the Figure class is replaced by FigureWidget

Add Traces

Add trace operations are translated into Plotly.addTraces
commands. Figure 6 (c) presents an example of the addTraces
command that results from the add_scatter operation in 5 (c).

Batch Update

Batch update operations are translated in to Plotly.update
commands. Figure 6 (d) presents an example of the update
command that results from the batch_update operation in 5
(d).

Reorder Traces

Trace reordering operations are translated into
Plotly.moveTraces commands. Figure 6 (e) presents
an example of the moveTraces command that results from the
data assignment operation in 5 (e).

Delete Traces

Trace deletion operations are translated into
Plotly.deleteTraces commands. Figure 6 (f) presents an
example of the deleteTraces command that results from the
data assignment operation in 5 (f).

Batch Animate

Batch animate operations are translated into Plotly.animate
commands. Figure 6 (g) presents an example of the animate

command that results from the batch_animate operation in 5
(g).

JavaScript to Python Synchronization

JavaScript to Python synchronization is required when a user
interacts with a Plotly.js figure in a view in such a way that
the figure’s internal specification is modified. For example, the
action of zooming or panning a figure causes a modification to the
figure’s x-axis and y-axis range properties.

To maintain consistency, views listen for plotly_restyle
and plotly_relayout events and forward these commands to
the Python model. The Python model then applies the command
to itself and forwards the command to the Java Script model and
any additional views.

Property change callbacks

Python functions may be registered for execution when particular
trace or layout properties are modified by using the on_change
method. This method is available on all compound objects in the
figure hierarchy.

Figure 7 presents an example of constructing and display-
ing a FigureWidget instance (a) and then registering the
handle_zoom function for execution when the range sub-
property of either the xaxis or the yaxis properties is changed
(b).

BRINGING IPYWIDGETS SUPPORT TO PLOTLY.PY 75

>>> import plotly.graph_objs as go
>>> from IPython.display import display
>>> fig = go.FigureWidget(

data=[go.Scatter(y=[3, 1, 2])],
layout={'xaxis': {'range': [-1, 3]}})

>>> display(fig)

>>> def handle_zoom(layout, xrange, yrange):
... print('new x-range:', xrange)
... print('new y-range:', yrange)

>>> fig.layout.on_change(handle_zoom,
'xaxis.range',
'yaxis.range')

Model Model

View

View

Python JavaScript/HTML

rel
ayo

ut

relayout

relayout argument:
{"xaxis.range": [0, 1],
"yaxis.range": [1.5, 2.5]}

new x-range: (0, 1)
new y-range: (1.5, 2.5)

(a)

(b)

(d)

(e)

(f)
(g)

(h)

zoom (c)

Fig. 7: Zoom property change callback example

Next, the zoom tool is used to select a region that extends
from 0 to 1 on the x-axis and from 1.5 to 2.5 on the y-axis
(c). The Plotly.js figure that executes the zoom action emits a
plotly_relayout event (d) which the view forwards to the
Python model (e). The Python model applies the update to itself
and then sends a relayout message to the JavaScript model
(f) and any additional JavaScript views (g). Finally, the Python
model executes any callback functions registered on the range
sub-property of xaxis or yaxis (h).

Point interaction callbacks

As discussed above, a Plotly.js figure emits events when a user in-
teracts with a trace by clicking (plotly_click), hovering onto
(plotly_hover), hovering off of (plotly_unhover), or se-
lecting (plotly_selected) points. Trace objects in plotly.py
now support the registration of Python callbacks to be executed
when these events occur.

Figure 8 presents an example of constructing and displaying
a FigureWidget instance with a scattergl trace containing
100,000 normally distributed points (a). The scattergl trace
is a WebGL optimized version of the SVG-based scatter trace
used in previous examples.

Trace markers are configured to be colored based on a color
scale and a numeric vector. The cmin and cmax properties
specify that color values of 0 should be mapped to the bottom
of the color scale (light gray for the default scale) and values of
1 should be mapped to the top of the color scale (dark red for
the default scale). The color vector is initialized to all zeros so all
points are initially light gray in color.

Next, the brush function is defined and then registered with
the trace for execution when a selection event occurs using the
trace’s on_selection method (b). The first argument to the
brush function is the trace that was selected (the scattergl
trace in this case) and the second argument is a list of the indices
of the points that were selected.

The box select tool is used to select a rectangular region of
points (c). This triggers the execution of the brush function. The
brush function updates the marker’s color property to be an
array where the elements corresponding to selected points have
a value of 1 and all other elements have a value of 0. Due to
the marker color configuration described above, this causes the
selected points to be displayed in dark red.

It is significant to note that even though there are 100,000
points, the time to display the initial figure and the time to update
point colors based on a new selection are each less than one
second. This latency level is enabled by the efficient transfer of
numpy arrays to the JavaScript front-end as binary buffers over
the Jupyter Comms interface, and by the WebGL accelerated
implementation of the scattergl trace.

Default Properties

Plotly.js provides a flexible range of configuration options to
control the appearance of a figure’s traces and layout, and it will
attempt to compute reasonable defaults for properties not specified
by the user.

To improve the experience of interactively refining a figure’s
appearance, it is very helpful to provide the user with the default
values of unspecified properties. For example, if a user would like
to specify a scatter trace marker size that is slightly larger than
the default, it is very helpful for the user to know that the default
value is 6.

Default property information for traces may be determined by
comparing the data and _fullData variables of the Plotly.js
figure. Any property value specified in _fullData that is not
specified in data is considered a default property value. Simi-
larly, the layout and _fullLayout variables may be used to
determine default values for layout properties.

Default properties are transferred from a view to the Python
model upon any change to the Plotly.js figure. These default
property values are then returned by the Python model during
property access when no user specified value is available.

76 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

>>> import plotly.graph_objs as go
>>> import numpy as np
>>> from IPython.display import display
>>> N = 100000
>>> fig = go.FigureWidget(
... data = [
... go.Scattergl(
... x = np.random.randn(N),
... y = np.random.randn(N),
... mode = 'markers',
... marker={'color': np.zeros(N),
... 'opacity': 0.6,
... 'cmin': 0, 'cmax': 1,
... 'line': {'width': 1},
... 'showscale' : True})],
... layout = {'width': 500,
... 'height': 500})
>>> display(fig)

>>> def brush(trace, points, *_):
... inds = np.array(points.point_inds)
... selected = np.zeros(N)
... if inds.size:
... selected[inds] = 1
... trace.marker.color = selected

>>> fig.data[0].on_selection(brush)

Box select (c)

(a)

(b)

(d)

Fig. 8: Data selection and brushing example

Conclusion

The integration of plotly.py version 3 with the ipywidgets library
brings a wide range of benefits to plotly.py users working in the
Jupyter Notebook. Figure properties are now easily discoverable
through the use of tab completion, and they are understandable
thanks to the presence of detailed docstrings. This greatly reduces
the need for users to interrupt their analysis workflow to consult
external documentation resources.

All of these properties may be updated using property as-
signment syntax and the updates are immediately applied to all

of the displayed views of the figure. This allows users to begin
the visualization process with simple figures, and then iteratively
refine them.

These iterative updates transfer as few properties from Python
to JavaScript as possible, and numpy arrays are transferred as bi-
nary buffers without ASCII encoding. Combined with the Plotly.js
library’s performance optimized WebGL trace types, this allows
users to create and interactively explore visualizations of data sets
with hundreds of thousands of points.

Plotly figures may now be arranged in custom layouts with
other ipywidgets, and Python functions may now be registered for
execution in response to figure interactions including pan, zoom,
click, hover, and selection. These features allow users to create
rich dashboards right in the notebook.

In total, the integration of ipywidgets support in plotly.py
version 3 dramatically enhances the interactive data visualization
experience for plotly.py users working in the Jupyter Notebook,
and we are excited to see what the SciPy community will build
with these new tools.

Acknowledgements

The development of the ipywidgets integration was supported by
the Johns Hopkins Applied Physics Laboratory. The integration of
this work into plotly.py version 3 was additionally supported by
Plotly Inc.

REFERENCES

[Bre] Maarten Breddels. maartenbreddels/ipyvolume: 3d plotting for
Python in the Jupyter notebook based on IPython widgets using
WebGL. URL: https://github.com/maartenbreddels/ipyvolume.

[CG] Sylvain Corlay and Brian Granger. jupyter-widgets/ipyleaflet:
A Jupyter - Leaflet.js bridge. URL: https://github.com/jupyter-
widgets/ipyleaflet.

[CSM+] Sylvain Corlay, Srinivas Sunkara, Dhruv Madeka, Ro-
main Menegaux, Chakri Cherukuri, and Jason Grout.
bloomberg/bqplot: Plotting library for IPython/Jupyter Note-
books. URL: https://github.com/bloomberg/bqplot.

[Cus] Project Jupyter | Widgets. URL: http://jupyter.org/widgets.
[GFC] Jason Grout, Jonathan Frederic, and Sylvain Corlay. ipywid-

gets: Interactive widgets for the Jupyter Notebook. URL:
https://github.com/jupyter-widgets/ipywidgets.

[Inc15] Plotly Technologies Inc. Collaborative data science, 2015. URL:
https://plot.ly.

[KRKP+16] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez,
Brian Granger, Matthias Bussonnier, Jonathan Frederic, Kyle
Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul
Ivanov, Damián Avila, Safia Abdalla, and Carol Willing. Jupyter
notebooks – a publishing format for reproducible computational
workflows. In F. Loizides and B. Schmidt, editors, Positioning
and Power in Academic Publishing: Players, Agents and Agen-
das, pages 87 – 90. IOS Press, 2016.

[Ploa] Plotly REST API, v2. URL: https://api.plot.ly/v2/plot-schema.
[Plob] Plotly.js Function Reference. URL: https://plot.ly/javascript/

plotlyjs-function-reference/.
[Ploc] Plotly.js Open-Source Announcement. URL: https://plot.ly/

javascript/open-source-announcement/.
[tra] Traitlets — traitlets 4.3.2 documentation. URL: https://traitlets.

readthedocs.io/en/stable/.
[wida] Embedding Jupyter Widgets in Other Contexts than the Note-

book — Jupyter Widgets 7.2.1 documentation. URL: https:
//ipywidgets.readthedocs.io/en/latest/embedding.html.

[widb] Widget List — Jupyter Widgets 7.2.1 documentation. URL:
http://ipywidgets.readthedocs.io/en/latest/examples/Widget%
20List.html.

[Wil05] Leland Wilkinson. The Grammar of Graphics (Statistics and
Computing). Springer-Verlag, Berlin, Heidelberg, 2005.

PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018) 77

WrightSim: Using PyCUDA to Simulate
Multidimensional Spectra

Kyle F Sunden‡∗, Blaise J Thompson‡, John C Wright‡

F

Abstract—Nonlinear multidimensional spectroscopy (MDS) is a powerful ex-
perimental technique used to interrogate complex chemical systems. MDS
promises to reveal energetics, dynamics, and coupling features of and between
the many quantum-mechanical states that these systems contain. In practice,
simulation is typically required to connect measured MDS spectra with these
microscopic physical phenomena. We present an open-source Python package,
WrightSim, designed to simulate MDS. Numerical integration is used to
evolve the system as it interacts with several electric fields in the course of a
multidimensional experiment. This numerical approach allows WrightSim to
fully account for finite pulse effects that are commonly ignored. WrightSim
is made up of modules that can be exchanged to accommodate many different
experimental setups. Simulations are defined through a Python interface that is
designed to be intuitive for experimentalists and theorists alike. We report sev-
eral algorithmic improvements that make WrightSim faster than previous im-
plementations. We demonstrated the effect of parallelizing the simulation, both
with CPU multiprocessing and GPU (CUDA) multithreading. Taken together,
algorithmic improvements and parallelization have made WrightSim multi-
ple orders of magnitude faster than previous implementations. WrightSim
represents a large step towards the goal of a fast, accurate, and easy to use
general purpose simulation package for multidimensional spectroscopy. To our
knowledge, WrightSim is the first openly licensed software package for these
kinds of simulations. Potential further improvements are discussed.

Index Terms—Simulation, spectroscopy, PyCUDA, numerical integration,
Quantum Mechanics, multidimensional

Introduction

Nonlinear multidimensional spectroscopy (MDS) is an increas-
ingly important analytical technique for the analysis of complex
chemical material systems. MDS can directly observe fundamental
physics that are not possible to record in any other way. With
recent advancements in lasers and optics, MDS experiments are
becoming routine. Applications of MDS in semiconductor pho-
tophysics [CTK+15], medicine [FGG+09], and other domains
[PLMZ18] are currently being developed. Ultimately, MDS may
become a key research tool akin to multidimensional nuclear
magnetic resonance spectroscopy. [PRK+09]

A generic MDS experiment involves exciting a sample with
multiple pulses of light and measuring the magnitude of the
sample response (the signal). The dependence of this signal on
the properties of the excitation pulses (frequency, delay, fluence,

* Corresponding author: sunden@wisc.edu
‡ University of Wisconsin--Madison

Copyright © 2018 Kyle F Sunden et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Fig. 1: Simulated spectrum at normalized coordinates

polarization etc.) contains information about the microscopic
physics of the material. However, this information cannot be
directly "read off" of the spectrum. Instead, MDS practitioners
typically compare the measured spectrum with model spectra.
A quantitative microscopic model is developed based on this
comparison between experiment and theory. Here, we focus on this
crucial modeling step. We present a general-purpose simulation
package for MDS: WrightSim1.

Figure 1 is a visualization of a spectrum in 2-dimensional
frequency-frequency space. The axes are two different frequencies
for two separate input electric fields. The system that we have
chosen for this simulation is very simple, with a single resonance.
The axes are translated such that there is a resonance around
0.0 in both frequencies. This two-dimensional simulation is rep-
resentative of WrightSim’s ability to traverse through many
aspects of experimental space. Every conceivable pulse parameter
(delay, fluence, frequency, chirp etc.) can become an axis in the

1. Source code available at https://github.com/wright-group/WrightSim, re-
leased under MIT License.

78 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

simulation.
WrightSim is designed with the experimentalist in mind,

allowing users to parameterize their simulations in much the same
way that they would collect a similar spectrum in the laboratory.
WrightSim is modular and flexible. It is capable of simulating
different kinds of MDS, and it is easy to extend to new kinds.

WrightSim uses a numerical integration approach that cap-
tures the full interaction between material and electric field
without making common limiting assumptions. This approach
makes WrightSim flexible, accurate, and interpretable. While
the numerical approach we use is more accurate, it does de-
mand significantly more computational time. We have focused
on performance as a critical component of WrightSim. Here
we report algorithmic improvements which have significantly
decreased computational time (i.e. wall clock time) relative to
prior implementations. We also discuss parallelization approaches
we have taken, and show how the symmetry of the simulation
can be exploited. While nascent, WrightSim has already shown
itself to be a powerful tool, greatly improving execution time over
prior implementation.

A Brief Introduction of Relevant Quantum Mechanics

This introduction is intended to very quickly introduce what is
being done, but not why. If you are interested in a more com-
plete description, please refer to Kohler, Thompson, and Wright.
[KTW17]

WrightSim uses the density matrix formulation of quantum
mechanics. This formulation allows us to describe mixed states
(coherences) which are key players in light-matter-interaction and
spectroscopy. This involves numerically integrating the Liouville-
von Neumann equation [Gib02]. This strategy has been described
before [GED09], so we are brief in our description here.

WrightSim calculates multidimensional spectra for a given
well-defined Hamiltonian. We do not make common limiting
assumptions that allow reduction to analytical expressions. In-
stead, we propagate all of the relevant density matrix elements,
including populations and coherences, in a numerical integration.
This package does not perform ab initio computations. This
places WrightSim at an intermediate level of theory where the
Hamiltonian is known, but accurately computing the correspond-
ing multidimensional spectrum requires complicated numerical
analysis.

Now, we focus on one representative experiment and Hamil-
tonian. In this case, we are simulating the interactions of three
electric fields to induce an output electric field. For three fields,
there are 3! = 6 possible time orderings for the pulses to interact
and create superpositions or populations in the material system
(Figure 2, columns). Within each time ordering, there are sev-
eral different pathways (Figure 2, rows). In total, there are 16
pathways, represented in Figure 2 as a series of wave mixing
energy level (WMEL) diagrams [LA85]. We are restricting this
simulation to have two positive interactions (solid up arrows or
dashed down arrows) and one negative interaction (dashed up
arrow or solid down arrow). Experimentalists isolate this condition
spatially using an aperture. They can isolate the time orderings
by introducing delays between pulses. Simulation allows us to
fully separate each pathway, leading to insight into the nature of
pathway interference in the total signal line shape.

Figure 3 shows a finite state automaton for the same system as
Figure 2. The nodes are the density matrix elements themselves.

Fig. 2: Independent Liouville pathways simulated. Excitations from
ω1 are in yellow, excitations from ω2 = ω2′ are shown in purple.
Figure was originally published as Figure 1 of Kohler, Thompson,
and Wright [KTW17]

ρ00

ρ
(1)
10

ρ
(2′)
10

ρ
(−2)
01

ρ
(1+2′)
20

ρ
(1−2)
11

ρ
(2′−2)
11

ρ
(1−2+2′)
10

ρ
(1−2+2′)
21

Fig. 3: Finite state automaton of the interactions with the den-
sity matrix elements. Matrix elements are denoted by their coher-
ence/population state (the subscript) and the pulses which they have
already interacted with (the superscript). Arrows indicate interactions
with ω1 (blue), ω2′ (red), and ω2 (green). Figure was originally
published as Figure S1 of Kohler, Thompson, and Wright [KTW17]

All pathways start at the ground state (ρ00). Encoded within each
node is both the quantum mechanical state and the fields with
which the system has already interacted. Interactions occur along
the arrows, which generate density in the resulting state. Here, the
fields must each interact exactly once. Output is generated by the
rightmost two nodes, which have interacted with all three fields.
These nine states represent all possible states which match the
criterion described by the process we are simulating.

We take these nine states and collect them into a state density

WRIGHTSIM: USING PYCUDA TO SIMULATE MULTIDIMENSIONAL SPECTRA 79

vector, ρ (Equation 1.1):

ρ ≡

ρ̃00

ρ̃(−2)
01

ρ̃(2′)
10

ρ̃(1)
10

ρ̃(1+2′)
20

ρ̃(1−2)
11

ρ̃(2′−2)
11

ρ̃(1−2+2′)
10

ρ̃(1−2+2′)
21

Next we need to describe the transitions within these states. This
is the Hamiltonian matrix. Since we have nine states in our density
vector, the Hamiltonian is a nine by nine matrix. To simplify
representation, six time dependent variables are defined:

A1 ≡
i
2

µ10e−iω1τ1 c1(t− τ1)ei(ω1−ω10)t

A2 ≡
i
2

µ10eiω2τ2 c2(t− τ2)e−i(ω2−ω10)t

A2′ ≡
i
2

µ10e−iω2′ τ2′ c2′(t− τ2′)e
i(ω2′−ω10)t

B1 ≡
i
2

µ21e−iω1τ1 c1(t− τ1)ei(ω1−ω21)t

B2 ≡
i
2

µ21eiω2τ2 c2(t− τ2)e−i(ω2−ω21)t

B2′ ≡
i
2

µ21e−iω2′ τ2′ c2′(t− τ2′)e
i(ω2′−ω21)t

These variables each consist of a constant factor of i
2 , a dipole mo-

ment term (µ10|21), an electric field phase and amplitude (the first
exponential term), an envelope function (c, a Gaussian function
here), and a final exponential term which captures the resonance
dependence. These variables can then be used to populate the
matrix:

Q≡

0 0 0 0 0 0 0 0 0
−A2 −Γ10 0 0 0 0 0 0 0
A2′ 0 −Γ10 0 0 0 0 0 0
A1 0 0 −Γ10 0 0 0 0 0
0 0 B1 B2′ −Γ20 0 0 0 0
0 A1 0 −A2 0 −Γ11 0 0 0
0 A2′ −A2 0 0 0 −Γ11 0 0
0 0 0 0 B2 −2A2′ −2A1 −Γ10 0
0 0 0 0 −A2 B2′ B1 0 −Γ21

The Γ values along the diagonal represent loss terms such as
dephasing (loss of coherence) and population relaxation. To isolate
a given time ordering, we can simply set the value of elements
which do not correspond to that time ordering to zero.

At each time step, the dot product of the matrix with the ρ
vector is the change in the ρ vector to the next time step (when
multiplied by the differential). WrightSim uses a second order
technique (Runge-Kutta) [BDH06] for determining the change
in the ρ vector. The core of the simulations is to take the ρ
vector and multiply by the Hamiltonian at each time step (noting
that the Hamiltonian is time dependant, as are the electric fields,
themselves). This process repeats over a large number of small
time steps, and must be performed separately for any change in the
inputs (e.g. frequency [ω] or delay[τ]). As a result, the operation is
highly parallelizable. The integration is performed in the rotating
frame so the number of time steps can be as small as possible.

Usage

WrightSim is designed in a modular, extensible manner in order
to be friendly to experimentalists and theorists alike. The key steps
to running a basic simulation are:

• Define the experimental space
• Select a Hamiltonian for propagation
• Run the scan
• Process the results

Experimental spaces are defined in an INI format that defines
a set of parameters and specifies their defaults and relationships.
This can be thought of as a particular experimental setup or
instrument.

We use the same experiment and Hamiltonian described above
to demonstrate usage. Here, we are using a space called trive
which provides, among other settings, two independent frequency
axes and two independent delay axes, controlling a total of three
incident pulses. The frequency axes are called w1 and w22, the
delays are d1 and d2. To scan a particular axis, simply set the
points array to a NumPy [?] array and set it’s active attribute
to True. You can also set a static value for any available axis,
by setting the points attribute to a single number (and keeping
active set to False). Finally, the experiment class defines
the timing of the simulation. Three main parameters control this:
timestep, which controls the size of each numerical integration
step, early_buffer, which defines how long to integrate be-
fore the first pulse maximum, and late_buffer, which defines
how long to integrate after the last pulse maximum. Here is
an example of setting up a 3D (shape 64x64x32) scan with an
additional static parameter set:
import WrightSim as ws
import numpy as np

dt = 50. # pulse duration (fs)
nw = 64 # number of frequency points (w1 and w2)
nt = 32 # number of delay points (d2)

create experiment
exp = ws.experiment.builtin('trive')

set the scan ranges
exp.w1.points = np.linspace(-500., 500., nw)
exp.w2.points = np.linspace(-500., 500., nw)
exp.d2.points = np.linspace(-2 * dt, 8 * dt, nt)
tell WrightSim to treat the axis as scanned
exp.w1.active = exp.w2.active = exp.d2.active = True

set a non-default delay time for the 'd1' axis
exp.d1.points = 4 * dt # fs
exp.d1.active = False

set time between iterations, buffers
exp.timestep = 2. # fs
exp.early_buffer = 100.0 # fs
exp.late_buffer = 400.0 # fs

The Hamiltonian object is responsible for the density vector and
holding on to the propagation function used when the experiment
is run. Included in the density vector responsibility is the iden-
tity of which columns will be returned in the end result array.
Hamiltonians may have arbitrary parameters to define themselves
in intuitive ways. Under the hood, the Hamiltonian class also holds
the C struct and source code for the PyCUDA implementation and
a method to send itself to the CUDA device. Here is an example

2. Note, while the Latin character w is used here because it is easier to type
in code, it actually represents the Greek letter ω , conventionally, a frequency.

80 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

of setting up a Hamiltonian object with restricted pathways and
explicitly set recorded element parameters:
create hamiltonian
ham = ws.hamiltonian.Hamiltonian(w_central=0.)

Select particular pathways
ham.time_orderings = [4, 5, 6]
Select particular elements to be returned
ham.recorded_elements = [7,8]

Finally, all that is left is to run the experiment itself. The run
method takes the Hamiltonian object and a keyword argument mp,
short for "multiprocess". Any value that evaluates to False will
run non-multiprocessed (i.e. single threaded). Almost all values
that evaluates to True with run CPU - multiprocessed with the
number of processes determined by the number of cores of the
machine. The exception is the special string 'gpu', which will
cause WrightSim to run using PyCUDA.
do scan, using PyCUDA
scan = exp.run(ham, mp='gpu')

obtain results as a NumPy array
gpuSig = scan.sig.copy()

Running returns a Scan object, which contains several internal
features of the scan including the electric field values themselves.
The important part, however is the signal array that is generated.
In this example, the complex floating point number array is of
shape (2x64x64x32) (i.e. the number of recorded_elements
followed by the shape of the experiment itself). These numbers
can be easily manipulated and visualized to produce spectra like
that seen in 1. The Wright Group also maintains a library for
working with multidimensional data, WrightTools [TSM+].
This library will be integrated more fully to provide even easier
access to visualization and archival storage of simulation results.

Performance

Performance is a critical consideration in the implementation of
WrightSim. Careful analysis of the algorithms, identifying and
measuring the bottlenecks, and working to implement strategies
to avoid them are key to achieving the best performance pos-
sible. Another key is taking advantage of modern hardware for
parallelization. These implementations have their advantages and
trade-offs, which are quantified and examined in detail herein.

NISE [Gro16] is the package written by Kohler and Thompson
while preparing their manuscript [KTW17]. NISE uses a slight
variation on the technique described above, whereby they place
a restriction on the time ordering represented by the matrix, and
can thus use a seven element state vector rather than a 9 element
state vector. This approach is mathematically equivalent to that
presented above. NISE is included here as a reference for the
performance of previous simulations of this kind.

Algorithmic Improvements

When first translating the code from NISE into WrightSim, we
sought to understand why it took so long to compute. We used
Python’s standard library package cProfile to produce traces
of execution, and visualized them with SnakeViz [jif17]. Figure
4 shows the trace obtained from a single-threaded run of NISE
simulating a 32x32x16 frequency-frequency-delay space. This
trace provided some interesting insights into how the algorithm
could be improved. First, 99.5% of the time is spent inside of a
loop which is highly parallelizable. Second, almost one third of

that time was spent in a specific function of NumPy, ix_. Further
inspection of the code revealed that this function was called in the
very inner most loop, but always had the same, small number of
parameters. Lastly, approximately one tenth of the time was spent
in a particular function called rotor (the bright orange box in
Figure 4). This function computed cos(theta) + 1 j ∗ sin(theta),
which could be replaced by the equivalent, but more efficient
exp(1 j ∗ theta). Additional careful analysis of the code revealed
that redundant computations were being performed when generat-
ing matrices, which could be stored as variables and reused.

When implementing WrightSim, we took into account all of
these insights. We simplified the code for matrix generation and
propagation by only having the one 9 by 9 element matrix rather
than two 7 by 7 matrices. The function that took up almost one
third the time (ix_) was removed entirely in favor of a simpler
scheme for denoting which values to record, simply storing a list
of the indices directly. We used variables to store the values needed
for matrix generation, rather than recalculating each element. As
a result, solely by algorithmic improvements, almost an order of
magnitude speedup was obtained (See Figure 5). Still, 99% of the
time was spent within a highly parallelizable inner loop.

CPU and GPU Parallel Implementations

NISE already had, and WrightSim inherited, CPU multipro-
cessed parallelism using the Python standard library multiprocess-
ing interface. Since almost all of the program is parallelizable, this
incurs a four times speedup on a machine with four processing
cores (limited more by the operating system scheduling other
tasks than by Amdahl’s law). This implementation required little
adjustment outside of minor API tweaks.

In order to capitalize on the highly parallelizable nature of our
multidimensional simulation, the algorithm was re-implemented
using Nvidia CUDA [NBGS08]. In order to make the implementa-
tion as easy to use as possible, and maintainable over the lifetime
of WrightSim, PyCUDA [KPL+12] was used to integrate the
call to a CUDA kernel from within Python. PyCUDA allows the
source code for the device side functions (written in C/C++) to
exist as strings within the Python source files. These strings are
just-in-time compiled (using nvcc) immediately prior to calling
the kernel. For the initial work with the CUDA implementation,
only one Hamiltonian and one propagation function were written,
however it is extensible to additional methods. The just-in-time
compilation makes it easy to replace individual functions as
needed (a simple form of metaprogramming).

The CUDA implementation is slightly different from the pure
Python implementation. It only holds in memory the Hamiltonian
matrices for the current and next step, where the Python imple-
mentation computes all of the matrices prior to entering the loop.
This was done to conserve memory on the GPU. Similarly, the
electric fields are computed in the loop, rather than computing
all ahead of time. These two optimizations reduce the memory
overhead, and allow for easier to write functions, without the help
of NumPy to perform automatic broadcasting of shapes.

Scaling Analysis

Scaling analysis, tests of the amount of time taken by each
simulation versus the number of points simulated, were con-
ducted for each of the following: NISE single threaded, NISE
Multiprocessed using four cores, WrightSim Single threaded,
WrightSim Multiprocessed using four cores, and WrightSim
CUDA implementation. A machine with an Intel Core i5-7600

WRIGHTSIM: USING PYCUDA TO SIMULATE MULTIDIMENSIONAL SPECTRA 81

Fig. 4: Profile trace of a single threaded simulation from NISE.

Fig. 5: Profile trace of a single threaded simulation from WrightSim.

(3.5 GHz) CPU and an Nvidia GTX 1060 (3GB) graphics card,
running Arch Linux was used for all tests. The simulations were
functionally identical, with the same number of time steps and
same recorded values. The NISE simulations use two seven
by seven matrices for the Hamiltonian, while the WrightSim
simulations use a single nine by nine matrix. The results are
summarized in Figure 6.

The log-log plot shows that the time scales linearly with
number of points. All lines have approximately the same slope at
high values of N, though the CUDA implementation grows slower
at low N. The Algorithmic improvements alone offer doubled per-

formance over even 4-Core multiprocessed NISE simulation. The
CUDA implementation has a positive intercept at approximately
200 milliseconds. This is due, in large part, to the compilation
overhead.

Limitations

The CUDA implementation faces limitations at both ends in terms
of number of points. On the low side, the cost of compilation
and transfer of data makes it slower than the 4-Core CPU Multi-
processing implementation. This crossover point is approximately
256 points (for this simulation, all other parameters being equal).
Incidentally, that is also a hard coded block size for the CUDA

82 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Fig. 6: Scaling Comparison of WrightSim and NISE

kernel call. While this could be modified to ensure no illegal
memory accesses occur on smaller cases, the fact that you are
not saving by using CUDA (and even single core performance
is under a second) means it is not worth the effort at this time.
The hard-coded block size also means that multiples of 256 points
must be used in the current implementation.

With larger number of points, we are limited by the amount of
memory available to be allocated on the GPU. For each pixel in
the simulations presented here, 250 complex numbers represented
as doubles must be allocated. Additional space is needed, however
it is dominated by this array, which contains the outputs which are
then transferred back to the host. Each CUDA thread additionally
dynamically allocates the arrays it needs to perform the com-
putation. The current implementation, paired with the particular
hardware used, has a limit somewhere between 218 and 219 points.
This limit could be increased by using single precision floating
point numbers to represent the complex arrays, if the precision
trade-off is acceptable (which is yet to be determined).

Future Work

This is still quite early days for WrightSim. While it is already
a promising proof of concept display of how PyCUDA can be
applied to this problem, there is still much room for improvement.
In general, there are improvements to be made in terms of features,
API/ease of use, and indeed further algorithmic improvements.

Features

NISE had implemented a few additional features which were not
carried over to WrightSim during the initial development efforts
which focused on performance thus far.

There was support for chirped electric field pulses, which
behave in less ideal fashions than the true sinusoids and Gaussian
peaks used thus far. These non-ideal perturbations can have a real
effect in spectra collected in the lab, and accurately modelling
them helps to interpret these spectra.

Samples in laboratory experiments may have some amount of
inhomogeneity within the sample, resulting in broader than would
otherwise be expected peaks. This inhomogeneity can be modeled
by storing the response array which is calculated by numerical
integration, and translating the points slightly. The original NISE
implementation would perform the simulation multiple times,
where that is not needed as a simple translation will do. At one
point we considered generating a library of responses in well
known coordinates and saving them for future use, avoiding the
expensive calculation all together. That seems to be less urgent,
given the speed of the CUDA code.

NISE provided a powerful and flexible set of tools to “Mea-
sure" the signal, using Fourier transforms and produce arrays that
even further mimic what is observed experimentally. That system
needs to be added to WrightSim for it to be feature-complete.
More naïve methods of visualizing work in this case, but a true
measurement would allow for richer, more detailed analysis and
interpretation.

Some new features could be added, including saving inter-
mediate responses using an HDF5 based file format. The CUDA
implementation itself would benefit from some way of saving
the compiled code for multiple runs, removing the 0.2 second
overhead. Current implementation compiles directly before calling
the kernel, whether it has compiled it before or not. If performing
many simulations in quick succession (e.g. a simulation larger than
the memory allows in a single kernel call) with the same C code,
the savings would add up.

The just-in-time compilation enables some special metapro-
gramming techniques which could be explored. The simple case
is using separately programmed functions which have the same
signature to do tasks in different ways. Currently there is a
small shortcut in the propagation function which uses statically
allocated arrays and pointers to those arrays rather than using
dynamically allocated arrays. This relies on knowing the size at
compilation time. The numbers could be replaced by preprocessor
macros which are also fed to the compiler to assign this value
"pseudo-dynamically" at compilation time. A much more ad-
vanced metaprogramming technique could, theoretically, generate
the C struct and Hamiltonian generation function by inspecting the
Python code and performing a translation. Such a technique would
mean that new Hamiltonians would only have to be implemented
once, in Python, and users who do not know C would be able to
run CUDA code.

Usability

One of the primary reasons for reimplementing the simulation
package is to really think about our interface. As much as possible,
the end user should not need to be an experienced programmer to
be able to get a simulation. One of the next steps for WrightSim
is to take a step back and ensure that our API is sensible and
easy to follow. We wish to, as much as possible, provide ways
of communicating through configuration files, rather than code.
Ultimately, a GUI front end may be desirable, especially as the
target audience is primarily experimentalists.

Additional Hamiltonians would make the package significantly
more valuable as well. To add more Hamiltonians will require
ensuring the code is robust, that values are transferred as expected.
A few small assumptions were made in the interest of efficiency
in the original implementation. Certain values, such as the initial
density vector, represented by the Hamiltonian were hard-coded
on the device code. While the hard-coded values are reasonable

WRIGHTSIM: USING PYCUDA TO SIMULATE MULTIDIMENSIONAL SPECTRA 83

for most simulations, the ability to set theses at run time is desired,
and will be added in the future.

Further Algorithmic Improvements

While great strides were taken in improving the algorithms from
previous implementations, there are several remaining avenues to
gain improved performance in execution time and memory usage.
The CUDA implementation is memory bound, both in terms of
what can be dispatched, and in terms of time of execution. The
use of single precision complex numbers (and other floating point
values) would save roughly half of the space. One of the inputs
is a large array with parameters for the each electric field at each
pixel. This array contains much redundant data, which could be
compressed with the parsing done in parallel on the device.

If the computed values could be streamed out of the GPU
once computed, while others use the freed space, then there would
be almost no limit on the number of points. This relies on the
ability to stream data back while computation is still going, which
we do not have experience doing, and are not sure CUDA even
supports. The values are not needed once they are recorded, so
there is no need from the device side to keep the values around
until computation is complete.

Additional memory could be conserved by using a bit field
instead of an array of chars for determining which time orderings
are used as a boolean array. This is relatively minimal, but is a
current waste of bits. The Python implementation could potentially
see a slight performance bump from using a boolean array rather
than doing list searches for this same purpose.

The CUDA implementation does not currently take full ad-
vantage of shared cache. Most of the data needed is completely
separated, but there are still a few areas where it could be useful.

The current CUDA implementation fills the Hamiltonian with
zeros at every time step. The values which are nonzero after
the first call are always going to be overwritten anyway, so this
wastes time inside of of nested loop. This zeroing could be done
only before the first call, removing the nested loop. Additionally,
many matrices have a lot of zero values. Often they are triangular
matrices, which would allow for a more optimized dot product
computation which ignores the zeros in the half which is not
populated. Some matrices could even benefit by being represented
as sparse matrices, though these are more difficult to use.

Finally, perhaps the biggest, but also most challenging, remain-
ing possible improvement would be to capitalize on the larger
symmetries of the system. It’s a non-trivial task to know which
axes are symmetric, but if it could be done, the amount that
actually needs to be simulated would be much smaller. Take the
simulation in Figure 1. This was computed as it is displayed, but
there are two orthogonal axes of symmetry, which would cut the
amount actually needed to replicate the spectrum down by a factor
of four. Higher dimensional scans with similar symmetries would
benefit even more.

Conclusions

WrightSim, as implemented today, represents the first major
step towards a cohesive, easy to use, fast simulation suite for
quantum mechanical numerically integrated simulations using
density matrix theory. Solely algorithmic improvements enabled
the pure Python implementation to be an order of magnitude
faster than the previous implementation. The algorithm is highly
parallelizable, enabling easy CPU level parallelism. A new im-
plementation provides further improvement than the CPU parallel

code, taking advantage of the General Purpose-GPU Computation
CUDA library. This implementation provides approximately 2.5
orders of magnitude improvement over the existing NISE serial
implementation. There are still ways that this code can be im-
proved, both in performance and functionality. With WrightSim,
we aim to lead by example among the spectroscopic community
by providing an open-source package for general-purpose MDS
simulation.

REFERENCES

[BDH06] Paul Blanchard, Robert L Devaney, and Glen R Hall. Numerical
Methods. In Differential Equations, chapter 7, pages 627–667.
Thomson Brooks/Cole, third edition, 2006.

[CTK+15] Kyle J. Czech, Blaise J. Thompson, Schuyler Kain, Qi Ding,
Melinda J. Shearer, Robert J. Hamers, Song Jin, and John C.
Wright. Measurement of ultrafast excitonic dynamics of few-
layer MoS2using state-selective coherent multidimensional spec-
troscopy. ACS Nano, 9(12):12146–12157, dec 2015. doi:
10.1021/acsnano.5b05198.

[FGG+09] Frederic Fournier, Rui Guo, Elizabeth M. Gardner, Paul M. Don-
aldson, Christian Loeffeld, Ian R. Gould, Keith R. Willison, and
David R. Klug. Biological and biomedical applications of two-
dimensional vibrational spectroscopy: Proteomics, imaging, and
structural analysis. Accounts of Chemical Research, 42(9):1322–
1331, sep 2009. URL: https://doi.org/10.1021/ar900074p, doi:
10.1021/ar900074p.

[GED09] Maxim F. Gelin, Dassia Egorova, and Wolfgang Domcke. Ef-
ficient calculation of time- and frequency-resolved four-wave-
mixing signals. Accounts of Chemical Research, 42(9):1290–
1298, sep 2009. URL: http://dx.doi.org/10.1021/ar900045d, doi:
10.1021/ar900045d.

[Gib02] J.W. Gibbs. Elementary Principles in Statistical Mechanics:
Developed with Especial Reference to the Rational Foundations
of Thermodynamics. C. Scribner’s sons, 1902. URL: https:
//books.google.com/books?id=IGMSAAAAIAAJ.

[Gro16] Wright Group. Nise: Numerical integration of the shrödinger
equation, 2016. URL: http://github.com/wright-group/NISE.

[jif17] jiffyclub. Snakeviz, 2017. URL: http://jiffyclub.github.io/
snakeviz/.

[KPL+12] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan Catan-
zaro, Paul Ivanov, and Ahmed Fasih. PyCUDA and Py-
OpenCL: A scripting-based approach to GPU run-time code
generation. Parallel Computing, 38(3):157–174, mar 2012.
URL: http://dx.doi.org/10.1016/j.parco.2011.09.001, doi:10.
1016/j.parco.2011.09.001.

[KTW17] Daniel D. Kohler, Blaise J. Thompson, and John C. Wright.
Frequency-domain coherent multidimensional spectroscopy when
dephasing rivals pulsewidth. The Journal of Chemical Physics,
147(8):084202, aug 2017. URL: https://doi.org/10.1063/1.
4986069, doi:10.1063/1.4986069.

[LA85] Duckhwan Lee and Andreas C. Albrecht. A unified view of
raman, resonance raman, and fluorescence spectroscopy (and their
analogues in two-photon absorption. In R. J. H. Clark and R. E.
Hester, editors, Advances in infrared and Raman Spectroscopy,
chapter 4, pages 179–213. London; New York, 1 edition, 1985.

[NBGS08] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron.
Scalable parallel programming with CUDA. Queue, 6(2):40, mar
2008. URL: https://doi.org/10.1145/1365490.1365500, doi:10.
1145/1365490.1365500.

[PLMZ18] Megan K. Petti, Justin P. Lomont, Michał Maj, and Martin T.
Zanni. Two-dimensional spectroscopy is being used to address
core scientific questions in biology and materials science. The
Journal of Physical Chemistry B, 122(6):1771–1780, feb 2018.
URL: https://doi.org/10.1021/acs.jpcb.7b11370, doi:10.1021/
acs.jpcb.7b11370.

[PRK+09] Andrei V. Pakoulev, Mark A. Rickard, Kathryn M. Kornau,
Nathan A. Mathew, Lena A. Yurs, Stephen B. Block, and John C.
Wright. Mixed frequency-/time-domain coherent multidimen-
sional spectroscopy: Research tool or potential analytical method?
Accounts of Chemical Research, 42(9):1310–1321, sep 2009.
doi:10.1021/ar900032g.

[TSM+] Blaise J. Thompson, Kyle F. Sunden, Darien J. Morrow,
Nathan Andrew Neff-Mallon, Kyle J. Czech, Daniel D. Kohler,
Tom Parker, and Rachel Swedin. Wrighttools. doi:10.5281/
zenodo.1198904.

84 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Exploring the Extended Kalman Filter for GPS
Positioning Using Simulated User and Satellite Track

Data
Mark Wickert‡∗, Chiranth Siddappa‡

F

Abstract—This paper describes a Python computational tool for exploring the
use of the extended Kalman filter (EKF) for position estimation using the Global
Positioning System (GPS) pseudorange measurements. The development was
motivated by the need for an example generator in a training class on Kalman
filtering, with emphasis on GPS. In operation of the simulation framework both
user and satellite trajectories are played through the simulation. The User
trajectory is input in local east-north-up (ENU) coordinates and satellites tracks,
specified by the C/A code PRN number, are propagated using the Python
package SGP4 using two-line element (TLE) data available from [Celestrak].

Index Terms—Global positioning system, Kalman filter, Extended Kalman filter,

Introduction

The Global Positioning System (GPS) allows user position estima-
tion using time difference of arrival (TDOA) measurements from
signals received from a constellation of 24 medium earth orbit
satellites of space vehicles (SVs). The Kalman filter is a popular
optimal state estimation algorithm [Simon2006] used by a variety
of engineering and science disciplines. In particular the extended
Kalman filter (EKF) is able to deal with nonlinearities related to
both the measurement equations and state vector process update
model. The EKF used in GPS has a linear process model, but a
nonlinear measurement model [Brown2012]. This paper describes
a Python computational tool for exploring the use of the EKF for
GPS position estimation using pseudorange measurements. The
development was motivated by the need for an example generator
in a training class on Kalman filtering, with emphasis on GPS.
What is special about the tool created here is that both User and
satellite trajectories are custom generated for input to a Kalman
filter implemented in a Jupyter notebook. The steps followed are
logical and clear. You first enter a desired User trajectory/route,
then choose appropriate in-view GPS satellites, and then using
actual GPS satellite orbital mechanics information, create a sim-
ulated receiver measurement stream. A 3D plot shows you the
satellite tracks in space and the User trajectory on the surface
of the earth, over time. The Kalman filter code, also defined in
the Jupyter notebook, uses the matrix math commonly found in
textbooks, but it is easy to follow as we make use of the PEP

* Corresponding author: mwickert@uccs.edu
‡ University of Colorado Colorado Springs

Copyright © 2018 Mark Wickert et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

465 @ infix operator for matrix multiplication. As the final step,
the data set is played through the Kalman filter in earth-centered
earth-fixed (ECEF) coordinates. The User trajectory is input in
local east-north-up (ENU) coordinates, and the SVs in view by
the User to form the location estimate, are specified by the coarse
acquisition (C/A) code pseudo-random noise (PRN) number. The
ECEF coordinates of the SVs are then propagated using [SGP4]
using the two-line element (TLE) data available from [Celestrak],
in time step with the User trajectory. The relationship between
ECEF and ENU is explained in Figure 1. For convenience,
this computational tool, is housed in a Jupyter notebook. Data
set generation and 3D trajectory plotting is provided with the
assistance of a single module, [GPS_helper].

Z

Y

X

North

East

Up

ecef

ecef

ecef

φ

λ

User
ENU frame

(xi , yi , zi)

(xu , yu , zu)

Fig. 1: The earth centric earth fixed (ECEF) coordinate system
compared with the local east-north-up (ENU) coordinate system.

GPS Background

GPS was started in 1973 with the first block of satellites launched
over the 1978 to 1985 time interval [GPS]. The formal name
became NAVSTAR, which stands for NAVigation Satellite Timing
And Ranging system, in the early days. At the present time there
are 31 GPS satellites in orbit. The original design called for
24 satellites. The satellites orbit at an altitude of about 20,350
km (~12,600 mi). This altitude classifies the satellites as being
in a medium earth orbit (MEO), as opposed to low earth orbit

EXPLORING THE EXTENDED KALMAN FILTER FOR GPS POSITIONING USING SIMULATED USER AND SATELLITE TRACK DATA 85

(LEO), or geostationary above the equator (GEO), or high earth
orbit (HEO). The orbit period is 11 hours 58 minutes with six
SVs in view at any time from the surface of the earth. Clock
accuracy is key to the operation of GPS and the satellite clocks are
very accurate. Four satellites are needed for a complete position
determination since the user clock is an uncertainty that must be
resolved. The maximum SV velocity relative to an earth user is
800m/s (the satellite itself is traveling at ~7000 mph), thus the
induced Doppler is up to kHz on the L1 carrier frequency of
1.57542 GHz. This frequency uncertainty plus any motion of the
user itself, creates additional challenges in processing the received
GPS signals.

Waveform Design and Pseudorange Measurements

Time difference of arrival (TDOA) is the key to forming the User
position estimates. This starts by assigning a unique repeating
code of 1023 bits to each SV and corresponds to the L1 carrier
waveform it transmits. As the User receives the superposition of
all the in-view satellites, the code known by its PRN number
assigned to a particular satellite, is discernable by cross-correlating
the composite received L1 signal and a locally generated PRN
waveform. The correlation peak and its associated TDOA, become
the pseudorange or approximate radial distance between the User
and SV when multipled by c, the speed of light.

The pseudorange contains error due to the receiver clock offset
from the satellite time and other error components [Brown2012].
The noise-free pseudorange takes the form

ρi =
√

(xi− xu)2 +(yi− yu)2 +(zi− zu)2 + c∆t (1)

where (xi,yi,zi), i = 1, . . .4, is the satellite ECEF location and
(xu,yu,zu) is the user ECEF location, c is the speed of light, and
∆t is the receiver offset from satellite time. The product c∆t can
be thought of as the range equivalent timing error. There are three
geometry unknowns and time offset, thus at minimum there are
four non-linear equations of (1) are what must be solved to obtain
the User location.

Solving the Nonlinear Position Equations

Two techniques are widely discussed in the literature and applied
in practice [GPS] and [Kaplan]: (1) nonlinear least squares and
(2) the extended Kalman filter (EKF). In this paper we focus on
the use of the EKF. The EKF is an extension to the linear Kalman
filter, so we start by briefly describing the linear model case and
move quickly to the nonlinear case.

Kalman Filter and State Estimation

It was back in 1960 that R. E. Kalman introduced his filter
[Kalman]. It immediately became popular in guidance, navigation,
and control applications. The Kalman filter is an optimal, in the
minimum mean-squared error sense, as means to estimate the
state of a dynamical system [Simon2006]. By state we mean
a vector of variables that adequately describes the dynamical
behavior of a system over time. For the GPS problem a simplifying
assumption regarding the state model is to assume that the User
has approximately constant velocity, so a position-velocity (PV)
only state model is adequate. The Kalman filter is recursive,
meaning that the estimate of the state is refined with each new
input measurement and without the need to store all of the past
measurements.

Within the Kalman filter we have a process model and a mea-
surement model. The process equation associated with the process
model, describes how the state is updated through a state transition
matrix plus a process noise vector having covariance matrix Q.
The measurement model contains the measurement equation that
abstractly produces the measurement vector as a matrix times the
state vector plus a measurement noise vector having covariance
matrix R. The optimal recursive filter algorithm is formed using
the quantities that make up the process and measurement models.
For details the reader is referred to the references.

For readers wanting a hands-on beginners introduction to the
Kalman filter, a good starting point is the book by Kim [Kim2011].
In Kim’s book the Kalman filter is neatly represented input/output
block diagram form as shown in Figure 2, with the input being
the vector of measurements zk, at time k, and the output x̂k an
updated estimate of the state vector. The Kalman filter variables
are defined in Table 1. Note the dimensions seen in Table 1 are
n = number of state variables and m = number of measurements.

0. Set Initial values:
x̂0 , P0

1. Predict state & error covariance:
x̂ k
−= Ax̂ k−1

−

Pk
−= APk−1A

T +Q

2. Compute the Kalman gain:

K k = Pk
−HT HPk

−HT +R()−1

4. Compute the error covariance :
Pk = Pk

−−K kHPk
−

3. Compute the state estimate:

x̂ k = x̂ k
−+K k zk −Hx̂ k

−()zk x̂ k

Input
Meas.

Output
State
Estim.

Repeat

Fig. 2: General Kalman filter block diagram.

State Vector for the GPS Problem

For a PV model the User state vector position and velocity in x,y,z
and clock equivalent range and range velocity error [Brown2012]:

x = [x1 x2 x3 x4 x5 x6 x7 x8]

= [x ẋ y ẏ z ż c∆t
.

c∆t] (2)

where ECEF coordinates are assumed and the over dots denote the
time derivative, e.g., ẋ = dx/dt. We further assume that there is no
coupling between x,y,z,c∆t, thus the state transition matrix A is a
4×4 block diagonal matrix of the form

A =

Acv 0 0 0
0 Acv 0 0
0 0 Acv 0
0 0 0 Acv

 (3)

86 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

State Estimate (output)
x̂k (n×1) State estimate at time k
Measurement (input)
zk (m×1) Measurement at time k
System Model
A (n×n) State transition matrix
H (m×n) Measurement matrix
Q (n×n) State error autocovariance matrix
R (m×m) Measurement error autocovariance

matrix
Internal Comp. Quant.
Kk (n×m) Kalman gain
Pk (n×n) Estimate of error covariance matrix
x̂−k (n×1) Prediction of the state estimate
P−k (n×n) Prediction of error covariance matrix

TABLE 1: The Kalman filter variables and a brief description.

where

Acv =

[
1 ∆t
0 1

]
(4)

Process Model Covariance Matrix

The process covariance matrix for the GPS problem is a block di-
agonal Matrix, with three identical blocks for the position-velocity
pairs and one matrix for the clock-clock drift pair. The block
diagonal form means that the states are assumed be statistically
coupled only in pairs and outside of the pairs uncorrelated. In
the model of [Brown2012] each position-velocity state-pair has
two variance terms and one covariance term describing an upper
triangle 2×2 submatrix

Qxyz = σ2
xyz

[
∆t3

3
∆t2

2
∆t2

2 ∆t

]
(5)

where σ2
xyz is a white noise spectral density representing random

walk velocity error. The clock state variable pair has a 2× 2
covariance matrix governed by Sp, the white noise spectral density
leading to random walk velocity error. The clock and clock drift
has a more complex 2× 2 covariance submatrix, Qb, with Sg
the white noise spectral density leading to a random walk clock
frequency error plus white noise clock drift, thus two components
of clock phase error

Qb =

[
S f ∆t + Sg∆t3

3
Sg∆t2

2
Sg∆t2

2 Sg∆t

]
(6)

In final form Q is a 4×4 block covariance matrix

Q =

Qxyz 0 0 0
0 Qxyz 0 0
0 0 Qxyz 0
0 0 0 Qb

 (7)

Measurement Model Covariance Matrix

The covariance matrix of the pseudorange measurement error is
assumed to be diagonal with equal variance σ2

r , thus we have

R =

σ2
r 0 0 0

0 σ2
r 0 0

0 0 σ2
r 0

0 0 0 σ2
r

 (8)

for the case of m = 4 measurements. Being diagonal means that
all measurements are assumed statistically uncorrelated, which is
reasonable.

Extended Kalman Filter

The extended Kalman filter (EKF) allows both the state update
equation, Step 1 in Figure 2, to be a nonlinear function of the state,
and the measurement model, Step 3 in Figure 2, to be a nonlinear
function of the state. Thus the EKF block diagram replaces two
expressions in Figure 2 as follows:

Ax̂k−1 −→ f(x̂k−1) (9)

Hx̂−k−1 −→ h(x̂−k−1) (10)

For the case of the GPS problem we have already seen that the
state transition model is linear, thus the first calculation of Step
1, predicted state update expression, is the same as that found in
the standard linear Kalman filter. For Step 3, the state estimate,
we need to linearize the equations h(x̂−k). This is done by forming
a matrix of partials or Jacobian matrix, which then generates an
equivalent H matrix as found in the linear Kalman filter, but in the
EKF is updated at each iteration of the algorithm.

H =
∂h
x

∣∣∣∣
x=x̂−k

(11)

=

∂ρ1
∂x 0 ∂ρ1

∂y 0 ∂ρ1
∂ z 0 1 0

∂ρ2
∂x 0 ∂ρ2

∂y 0 ∂ρ2
∂ z 0 1 0

∂ρ3
∂x 0 ∂ρ3

∂y 0 ∂ρ3
∂ z 0 1 0

∂ρ4
∂x 0 ∂ρ4

∂y 0 ∂ρ4
∂ z 0 1 0

(12)

where

∂ρi

∂x
=

−(xi− x̂−1)√
(xi− x̂−1)

2 +(yi− x̂−3)
2 +(zi− x̂−5)

2
(13)

∂ρi

∂y
=

−(yi− x̂−3)√
(xi− x̂−1)

2 +(yi− x̂−3)
2 +(zi− x̂−5)

2
(14)

∂ρi

∂ z
=

−(zi− x̂−5)√
(xi− x̂−1)

2 +(yi− x̂−3)
2 +(zi− x̂−5)

2
(15)

for i = 1,2,3 and 4.

Computational Tool

The Python computational tool is composed of a Jupyter notebook
and a helper module GPS_helper.py. The key elements of
the helper are described in Figure 3. Here we see that the class
GPS_data_source is responsible for propagating the SVs in
view by the User in time-step with a constant velocity line
segment User trajectory. The end result is a collection of matrices
(ndarrays) that contain the ECEF User coordinates as the triples
(xu,yu,zu) versus times (also the ENU version) and for each SV
indexed as i = 1,2,3,4, the ECEF triples (xi,yi,zi), also as a
function of time. The time step value is Tss.

It is important to note that in creating a data set the de-
veloper must choose satellite PRNs that place the SVs in view
of the user for the given start time and date. One approach is
by trial and error. Pick a particular time and date, choose four
PRNs, and produce the data set and create a 3D plot using
GPS_helper.SV_User_Traj_3D(). This is quite tedious!
A better approach is to use a GPS cell phone app, or better yet a

EXPLORING THE EXTENDED KALMAN FILTER FOR GPS POSITIONING USING SIMULATED USER AND SATELLITE TRACK DATA 87

none

Module: GPS_helper.py

Class: GPS_data_source Inputs/Outputs

Constructor(): (0) GPS TLE text file from Celestrak as
‘GPS_tle.txt’

(1) List of SVs in view by User as ‘PRN #’
(2) User Reference Location as LAT, LONG,

ALT
(3) Sampling Period (default = 1s)

user_traj_gen():

 returns: (0) User position in ENU (ndarray) vs time
(1) User position in ECEF (ndarray) vs time
(2) SV position (ndarray) vs time
(3) SV velocity (ndarray) vs time

Functions: Inputs/Outputs

(0) GPS data source object
(1) SV position ndarray
(2) User position ndarray
(3) 3D plot ALT = 20
(4) 3D plot AZIM = 20

(0) Route (a list of 2D nodes in ENU mi)
(1) User velocity in mph
GMT trajectory start time (2-6):
(2) Year (2k year, i.e., 2018 -> 18)
(3) Month
(4) Day
(5) Hour
(6) Minute

SV_User_Traj_3D():
(displays 3D plot)

 returns:

Fig. 3: Of significance the helper module, GPS_helper.py, con-
tains a class and a 3D plotting function that supports time-varying
data set generation of satellite positions and the corresponding User
trajectory.

stand-alone GPS that displays a map with PRN numbers of what
SVs are in view and their signal strengths. An example from a
Garmin GPSmap 60CSx [Garmin] is shown in Figure 4 The time
and date used in the simulation then corresponds to the time and
date of the actual app measurements. A current TLE set should
also be obtained from Celestrak.

Horizon

45 deg
above the
Horizon

SV using
PRN 14

Signal
strengths

Fig. 4: SV map of satellites in use on a commercial GPS receiver.

With a data set generated the next step is to generate pseudor-
ange measurements, as the real GPS receiver would obtain TDOAs
via waveform cross-correlation with a local version of the SVs
PRN sequence. Finally, we estimate the user position using the
EKF. Classes for both these calculations are contained the Jupyter
notebook Kalman_GPS_practice. A brief description of the
two classes in given in Figure 5.

The mathematical details of the EKF were discussed earlier,
the Python code implementation is found in the public and private
methods of the GPS_EKF class. The essence of Figure 2 is the
code in the update() method:
def next_sample(self, z, SV_Pos):

"""
Update the Kalman filter state by inputting a

Class: GPS_EKF Inputs/Outputs

none, none but all EKF attributes updated

Kalman GPS Jupyter Notebook Classes

Class: GetPseudoRange Inputs/Outputs

Constructor(): (0) Pseudorange std. dev. (default 0)
(1) Pseudo range bias CDt (default 0)
(2) Number of satellites in view (default 4)

measurement():

 returns: none, but USER_SR (ndarray) is filled

(0) User position ECEF at time step k
(1) Satellite (SV) positions ECEF at time

step k

(0) User position in ECEF (ndarray) vs time
(1) Satellite (SV) position in ECEF (ndarray)

vs time

next_sample()

 returns:

(0) User initial position in ECEF
(1) Time step (default 1s)
(2) Process model diagonal covariance
(3) Clock drift random phase walk

(default 36)
(4) Clock drift random frequency walk

(default 0.01)
(5) Pseudorange measurement

variance (default 36)
(6) Number of satellites in view (default 4)

Constructor():

Fig. 5: Jupyter notebook classes that synthesize pseudorange test
vectors from the time-varying data set created by GPS_helper.py,
and implement the extended Kalman filter for estimating the time-
varying User position.

new set of pseudorange measurements.
Return the state array as a tuple.
Update all other Kalman filter quantities
Input SV ephemeris at one time step, e.g.,
SV_Pos[:,:,i]
"""
H = Matrix of partials dh/dx
H = self.Hjacob(self.x, SV_Pos)

xp = self.A @ self.x
Pp = self.A @ self.P @ self.A.T + self.Q

self.K = Pp @ H.T @ inv(H @ Pp @ H.T + self.R)

zp = h(xp), the predicted pseudorange
zp = self.hx(xp, SV_Pos)

self.x = xp + self.K @ (z - zp)
self.P = Pp - self.K @ H @ Pp
Return the x,y,z position
return self.x[0,0], self.x[2,0], self.x[4,0]

Note the above code uses the Python 3.5+ matrix multiplication
operator, @, to make the code nearly match the matrix algebra
expressions of Figure 2.

Simulation Examples

In this section we consider two examples of using the Python
framework to estimate a time-varying User trajectory using a time-
varying set of GPS satellites. In the code snippets that follow
were extracted from a Jupyter notebook that begins with the magic
%pylab inline, hence the namespace is filled with numpy
and matplotlib.

We start by creating a line segment user trajectory with
ENU tagging, followed by a GPS data source using TLEs
date 1/10/2018, and finally, populate User and satellite (SV)
ndarrays using the user_traj_gen() method:
Line segment User Trajectory
rl1 = [('e',.2),('n',.4),('e',-0.1),('n',-0.2),

('e',-0.1),('n',-0.1)]

88 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Create a GPS data source
GPS_ds1 = GPS.GPS_data_source('GPS_tle_1_10_2018.txt',

Rx_sv_list = \
('PRN 32','PRN 21','PRN 10','PRN 18'),
ref_lla=(38.8454167, -104.7215556, 1903.0),
Ts = 1)

Populate User and SV trajectory matrices
Populate User and SV trajectory matrices
USER_vel = 5 # mph
USER_Pos_enu, USER_Pos_ecf, SV_Pos, SV_Vel = \

GPS_ds1.user_traj_gen(route_list=rl1,
Vmph=USER_vel,
yr2=18,
mon=1,
day=15,
hr=8+7, # 1/18/2018
minute=45) # 8:45 AM MDT

5/17/18, 10)32 PMKalman_GPS_practice

Page 6 of 28file:///Users/markwickert/Downloads/Kalman_GPS_practice.html

Earth

Fig. 6: A 3D plot of the SV trajectories using PRN 32, PRN 21,
PRN 10, and PRN 18, and the User trajectory over 13.2 min in
ECEF, dated 8:45 AM MDT on 1/18/2018.

5/17/18, 10)32 PMKalman_GPS_practice

Page 7 of 28file:///Users/markwickert/Downloads/Kalman_GPS_practice.html

In [8]: plot(USER_Pos_enu[:,0],USER_Pos_enu[:,1])
plot(USER_Pos_enu[0,0],USER_Pos_enu[0,1],'g.')
plot(USER_Pos_enu[-1,0],USER_Pos_enu[-1,1],'r.')
title(r'User Trajectory in ENU Coordinates')
xlabel(r'East (mi)')
ylabel(r'North (mi)')
grid();

Develop a GPS EKF
The constant velocity process model of [2] is adopted for this project. The step is defining the eight element
state vector :x

Fig. 7: The ideal user trajectory as defined by rl1 in the above code
snippet.

The 3D plot 6 shows clearly the motion of the SVs, even though
the simulation run-time is only 13.2 min. The User trajectory on
the earth, in this case a location in Colorado Springs, CO appears
as a red blob, unless the plot is zoomed in. From the ENU User
trajectory we now have a clear view of the route taken by the user.
The velocity is only 5 mph in straight line segments.

Case #1

With the data set created we now construct an EKF simulation for
estimating the User trajectory from the measured pseudoranges for
four SVs. Specifically we consider high quality satellite signals,
with measurement update period Ts = 1s, and constant velocity
VUser = 5 mph. The simulation code, as taken from a Jupyter
notebook cell, is given below:
Nsamples = SV_Pos.shape[2]
print('Sim Seconds = %d' % Nsamples)
dt = 1
Save user position history
Pos_KF = zeros((Nsamples,3))
Save history of error covariance matrix diagonal
P_diag = zeros((Nsamples,8))

Pseudo_ranges1 = GetPseudoRange(PR_std=0.1,
CDt=0,
N_SV=4)

GPS_EKF1 = GPS_EKF(USER_xyz_init=USER_Pos_ecf[0,:]
+ 5*randn(3),
dt=1,
sigma_xyz=5,
Sf=36,
Sg=0.01,
Rhoerror=36,
N_SV=4)

for k in range(Nsamples):
Pseudo_ranges1.measurement(USER_Pos_ecf[k,:],

SV_Pos[:,:,k])
GPS_EKF1.next_sample(Pseudo_ranges1.USER_PR,

SV_Pos[:,:,k])
Pos_KF[k,:] = GPS_EKF1.x[0:6:2,0]
P_diag[k,:] = GPS_EKF1.P.diagonal()

With the simulation complete, we now consider the ECEF errors
in m in Figure 8 for m for (x,y,z) components. The initial
position guess in this example has a standard deviation of 5 m (or
variance of 25 meters-squared), so we see that from the start of
the tracking the errors are relatively rather small and then settle
down to peak errors of pm1 m, or so.

5/18/18, 6(27 AMKalman_GPS_practice

Page 18 of 28file:///Users/markwickert/Downloads/Kalman_GPS_practice.html

Selected Error Covariance Results for the Simulation Run
The error covariance matrix, , is , with the diagonal entries beingthe variances of each of the states.

Convergence looks reasonable as we see an intial error transient and then a gradual reduction in the
covariance.

P 8 × 8

User Tracking Errors in ECEF

Fig. 8: ECEF errors in position estimation for Case #1.

Figure 9 shows selected error covariance matrix terms from Pk
throughout the simulation. The terms displayed are the position
diagonal terms, that is σ2

x ,σ2
y , and σ2

z . The initial conditions of
the EKF make these variance terms initially large. Settling begins
about 50s into the simulation, and the decay continues as the 13.2
m simulation comes to an end. The EKF is behaving as expected.

EXPLORING THE EXTENDED KALMAN FILTER FOR GPS POSITIONING USING SIMULATED USER AND SATELLITE TRACK DATA 89

5/18/18, 6(27 AMKalman_GPS_practice

Page 19 of 28file:///Users/markwickert/Downloads/Kalman_GPS_practice.html

In [14]: plot(P_diag[:,0])
plot(P_diag[:,2])
plot(P_diag[:,4])
title(r'Selected Covariance Matrix \mathbf{P} Diagonal Entries')
ylabel(r'Variance (m2)')
xlabel(r'Time (s) (given $T_s = 1$s)')
legend((r'σ_x^2',r'σ_y^2',r'σ_z^2'),loc='best')
grid();

Consider the submatrix of corresponding to the x, y, and z, position and velocity states, at
the final time sample of the simulation run.

In [15]: print(np.array_str(GPS_EKF1.P[:6,:6], precision=2))
#print np.array_str(x, precision=2, suppress_small=True)

6 × 6 P

[[5.55e+01 2.32e+01 1.43e+02 4.12e+00 -6.38e+01 -1.27e+00]
 [2.32e+01 3.46e+01 3.92e+00 6.13e-01 -1.24e+00 1.41e-01]
 [1.43e+02 3.92e+00 1.71e+03 6.97e+01 -7.57e+02 -2.11e+01]
 [4.12e+00 6.13e-01 6.97e+01 4.12e+01 -2.18e+01 -3.27e+00]
 [-6.38e+01 -1.24e+00 -7.57e+02 -2.18e+01 3.76e+02 2.80e+01]
 [-1.27e+00 1.41e-01 -2.11e+01 -3.27e+00 2.80e+01 3.26e+01]]

Fig. 9: Selected error covariance matrix terms, in particular the
diagonal elements σ2

x , σ2
y , σ2

z .

Finally, in Figure 10 we have a plot of the User trajectory
estimate in ENU, as a map-like 2D plot showing just the east-
west and north-south axes. The units are tenths of miles, so with
the User moving along linear line segments at just 5 mph, the
trajectory looks perfect.

5/18/18, 6(27 AMKalman_GPS_practice

Page 20 of 28file:///Users/markwickert/Downloads/Kalman_GPS_practice.html

In [16]: GPS_EKF1.P.diagonal()

Convert the ECEF User Trajectory Back to ENU Local Coordinates

In [18]: Npts = Pos_KF.shape[0]
Pos_KF_enu = zeros((Npts,3))
for k in range(Npts):
 Pos_KF_enu[k,:] = GPS.ecef2enu(Pos_KF[k,:],
 GPS_ds1.ref_ecef,
 GPS_ds1.ref_lla[0],
 GPS_ds1.ref_lla[1])
plot(Pos_KF_enu[:,0]/1609.344,Pos_KF_enu[:,1]/1609.344,'b')
title(r'KF Estimated Trajectory in ENU \
Coordinates @ %2.0f mph' % (USER_vel,))
xlabel(r'East (mi)')
ylabel(r'North (mi)')
grid();

Out[16]: array([5.54745383e+01, 3.46397865e+01, 1.70625839e+03, 4.11822186e+0
1,
 3.75796604e+02, 3.26168031e+01, 1.36063623e+03, 8.29052050e-0
1])

Fig. 10: The estimated user trajectory in ENU coordinates and the
same scale as Figure 7.

In the next example parameters will be varied to see the
impact.

Case #2

In this case we still consider high quality satellite signals and a 1s
update period, but now the user velocity is increased to 30 mph,
so the time to traverse the User trajectory is reduced from 13.2
min down to 2.2 min. The random initial (xyz) position is set to
a error standard deviation of 50 m compared with 5 m in the first
case. We expect to see some difference in performance.

In Figure 11 we again plot the ECEF errors in m. The large
initial position error variance forces the plot axes scale to change
from Case #1. The initial errors are now very large, but do
settle to small values with the exception of blips that occur every
time the user changes direction by making a 90◦ turn. The blips
are somewhat artificial, since making a perfect right-angle turn
without slowing or rounding the corner is more practical. Still it is
interesting to see this behavior and also see that the EKF recovers
from these errors.

Figure 12 again shows the error covariance terms for σ2
x ,σ2

y ,
and σ2

z . The results here are very similar to Case #1. The variance
peaks at about 50 s into the simulation and then rapidly decays.
This is not too surprising as the EKF tuning has changed from

5/18/18, 6(27 AMKalman_GPS_practice

Page 25 of 28file:///Users/markwickert/Downloads/Kalman_GPS_practice.html

Selected Error Covariance Results for the Simulation Run
The error covariance matrix, , is , with the diagonal entries beingthe variances of each of the states.

Convergence looks reasonable as we see an intial error transient and then a gradual reduction in the
covariance.

P 8 × 8

User Tracking Errors in ECEF

Fig. 11: ECEF errors in position estimation for Case #1.

Case #1, with the exception of the initial position error. Since
the simulation only runs for 2.2 min which is 132 s, we have to
compare the variances at this time to the Case #2 end results. They
appear to be about the same, once again the EKF appears to be
working correctly.

5/18/18, 6(27 AMKalman_GPS_practice

Page 26 of 28file:///Users/markwickert/Downloads/Kalman_GPS_practice.html

In [85]: plot(P_diag[:,0])
plot(P_diag[:,2])
plot(P_diag[:,4])
title(r'Selected Covariance Matrix \mathbf{P} Diagonal Entries')
ylabel(r'Variance (m2)')
xlabel(r'Time (s) (given $T_s = 1$s)')
legend((r'σ_x^2',r'σ_y^2',r'σ_z^2'),loc='best')
grid();

Consider the submatrix of corresponding to the x, y, and z, position and velocity states, at
the final time sample of the simulation run.

In [90]: print(np.array_str(GPS_EKF1.P[:6,:6], precision=2))
#print np.array_str(x, precision=2, suppress_small=True)

6 × 6 P

[[1.29e+02 2.45e+01 5.32e+02 9.55e+00 -2.75e+02 -5.06e+00]
 [2.45e+01 3.48e+01 9.11e+00 8.51e-01 -4.93e+00 -6.00e-01]
 [5.32e+02 9.11e+00 3.35e+03 8.30e+01 -1.71e+03 -3.12e+01]
 [9.55e+00 8.51e-01 8.30e+01 4.06e+01 -3.18e+01 -3.63e+00]
 [-2.75e+02 -4.93e+00 -1.71e+03 -3.18e+01 9.14e+02 3.50e+01]
 [-5.06e+00 -6.00e-01 -3.12e+01 -3.63e+00 3.50e+01 3.34e+01]]

Fig. 12: Selected error covariance matrix terms, in particular the
diagonal elements σ2

x , σ2
y , σ2

z .

Finally, Figure 13 plots the ENU trajectory estimate in the
plane EN (ignoring the UP coordinate as before). The speed is
upped by a factor six compared to case #1. The most notable
change is trajectory overshoot at each of the right-angle turns.
No surprise here as the EKF is asked to handle very abrupt (and
impractical) position changes. The EKF recovers quickly.

Overall the results for both cases are very good. There a lot of
knobs to turn in this framework, so many options to explore.

It is worthy of note at this point that the Unscented Kalman
Filter (UKF) [Wan2006], and the more general class of algorithms
known as Sigma-Point Kalman Filters (SPKF), are today much
preferred to the EKF of the past. The EKF is sub-optimal, and the
linearization approach makes it sensitive to initial conditions. The
EKF requires the Jacobian matrix, which may be hard to obtain,
and may not converge without carefully chosen initial conditions.
In this paper the EKF was chosen for use in a training scenario
because it is the next logical step from the linear Kalman filter,
and its development is simple to follow. The UKF is harder to get
explain. In the end, the UKF is of similar complexity to the EKF,

90 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

5/18/18, 6(27 AMKalman_GPS_practice

Page 27 of 28file:///Users/markwickert/Downloads/Kalman_GPS_practice.html

In [91]: GPS_EKF1.P.diagonal()

Convert the ECEF User Trajectory Back to ENU Local Coordinates

In [88]: Npts = Pos_KF.shape[0]
Pos_KF_enu = zeros((Npts,3))
for k in range(Npts):
 Pos_KF_enu[k,:] = GPS.ecef2enu(Pos_KF[k,:],
 GPS_ds1.ref_ecef,
 GPS_ds1.ref_lla[0],
 GPS_ds1.ref_lla[1])
plot(Pos_KF_enu[:,0]/1609.344,Pos_KF_enu[:,1]/1609.344,'b')
title(r'KF Estimated Trajectory in ENU \
Coordinates @ %2.0f mph' % (USER_vel,))
xlabel(r'East (mi)')
ylabel(r'North (mi)')
grid();

Out[91]: array([1.29140202e+02, 3.47975843e+01, 3.34560907e+03, 4.06004720e+0
1,
 9.13835319e+02, 3.34143369e+01, 2.90153558e+03, 9.84575907e-0
1])

Fig. 13: The estimated user trajectory in ENU coordinates and the
same scale as Figure 7.

can offer large performance benefits, and does not require the use
of a Jacobian.

Conclusions and Future Work

The objective of creating a Jupyter notebook-based simulation
tool for studying the use of the EKF in GPS position estimation
has been met. There are many tuning options to explore, which
provides a very nice environment for studying a large variety sce-
narios. The performance results are consistent with expectations.

There are several improvements under consideration. The first
is to develop a more realistic user trajectory generator. The second
is to make measurement quality a function of the SV range, which
would also make the measurement quality SV specific, rather than
identical as it is now. A third desire is to move to the UKF to avoid
the use of the Jacobian, reduce the sensitivity to initial conditions,
and improve performance.

REFERENCES

[Celestrak] CelesTrack, (2017, January 26). Retrieved June 26, 2018, from
https://celestrak.com.

[SGP4] Python implementation of most recent SGP4 satellite tracking,
(2018, May 24). Retrieved June 26, 2018, from https://github.
com/brandon-rhodes/python-sgp4.

[GPS_helper] Tools and Examples for GPS, (2018, June 24), Retrieved from
https://github.com/chiranthsiddappa/gps_helper.

[GPS] Global Positioning System, (2018, June 24). Retrieved June 26,
2018, from https://en.wikipedia.org/wiki/Global_Positioning_
System.

[Garmin] GPSMAP® 60CSx with sensors and maps owner’s manual,
(2007), Retrieved June 26, 2018, from https://static.garmincdn.
com/pumac/GPSMAP60CSx_OwnersManual.pdf.

[Kalman] Kalman, R. (1960). A New Approach to Linear Filtering and
Prediction Problems. Journal of Basic Engineering, 35–45.

[Brown2012] Brown, R. and Hwang, P. (2012). Introduction to Random
Signals and Applied Kalman Filtering with MATLAB Exercises,
4th edition. New York: Wiley.

[Kaplan] Kaplan, E. and Hegarty, C., editors (2017). Understanding
GPS/GNSS: Principles and Applications, third edition. Boston:
Artech House.

[Kim2011] Phil Kim, P. (2011). Kalman Filtering for Beginners with MAT-
LAB Examples. CreateSpace Independent Publishing Platform.

[Simon2006] Simon, D. (2006). Optimal State Estimation. New York: Wiley-
Interscience.

[Wan2006] Wan, E. (2006). Sigma-Point Filters: An Overview with Ap-
plications to Integrated Navigation and Vision Assisted Con-
trol. IEEE Nonlinear Statistical Signal Processing Workshop.
doi:10.1109/NSSPW.2006.4378854.

PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018) 91

Real-Time Digital Signal Processing Using
pyaudio_helper and the ipywidgets

Mark Wickert‡∗

F

Abstract—The focus of this paper is on teaching real-time digital signal pro-
cessing to electrical and computer engineers using the Jupyter notebook and the
code module pyaudio_helper, which is a component of the package scikit-
dsp-comm. Specifically, we show how easy it is to design, prototype, and test us-
ing PC-based instrumentation, real-time DSP algorithms for processing analog
signal inputs and returning analog signal outputs, all within the Jupyter notebook.
A key feature is that real-time algorithm prototyping is simplified by configuring
a few attributes of a DSP_io_stream object from the pyaudio_helper
module, leaving the developer to focus on the real-time DSP code contained in
a callback function, using a template notebook cell. Real-time control of running
code is provided by ipywidgets. The PC-based instrumentation aspect allows
measurement of the analog input/output (I/O) to be captured, stored in text files,
and then read back into the notebook to compare with the original design expec-
tations via matplotlib plots. In a typical application slider widgets are used
to change variables in the callback. One and two channel audio applications as
well as algorithms for complex signal (in-phase/quadrature) waveforms, as found
in software-defined radio, can also be developed. The analog I/O devices that
can be interfaced are both internal and via USB external sound interfaces. The
sampling rate, and hence the bandwidth of the signal that can be processed, is
limited by the operating system audio subsystem capabilities, but is at least 48
KHz and often 96 kHz.

Index Terms—digital signal processing, pyaudio, real-time, scikit-dsp-comm

Introduction

As the power of personal computer has increased, the dream
of rapid prototyping of real-time signal processing, without the
need to use dedicated DSP-microprocessors or digital signal
processing (DSP) enhanced microcontrollers, such as the ARM
Cortex-M4 [cortexM4], can be set aside. Students can focus on
the powerful capability of numpy, scipy, and matplotlib,
along with packages such as scipy.signal [Scipysignal] and
scikit-dsp-comm [DSPComm], to explore real-time signals
and systems computing.

The focus of this paper is on teaching real-time DSP to elec-
trical and computer engineers using the Jupyter notebook and the
code module pyaudio_helper, which is a component of the
package scikit-dsp-comm. To be clear, pyaudio_helper
is built upon the well known package [pyaudio], which has its
roots in Port Audio [portaudio]. Specifically, we show how easy it
is to design, prototype, and test using PC-based instrumentation,

* Corresponding author: mwickert@uccs.edu
‡ University of Colorado Colorado Springs

Copyright © 2018 Mark Wickert. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

real-time DSP algorithms for processing analog signal inputs and
returning analog signal outputs, all within the Jupyter notebook.
Real-time algorithm prototyping is simplified by configuring a
DSP_io_stream object from the pyaudio_helper module,
allowing the developer to quickly focus on writing a DSP callback
function using a template notebook cell. The developer is free
to take advantage of scipy.signal filter functions, write
custom classes, and as needed utilize global variables to allow
the algorithm to maintain state between callbacks pushed by the
underlying PyAudio framework. The PC-based instrumentation
aspect allows measurement of the analog input/output (I/O) to
be captured, stored in text files, and then read back into the
notebook to compare with the original design expectations via
matplotlib plots. Real-time control of running code is pro-
vided by ipywidgets. In a typical application slider widgets are
used to change variables in the callback during I/O streaming. The
analog I/O devices that can be interfaced are both internal and via
USB external sound interfaces. The sampling rate, and hence the
bandwidth of the signal that can be processed, is limited by the
operating system audio subsystem capabilities, but is at least 48
KHz and often 96 kHz.

We will ultimately see that to set up an audio stream requires:
(1) create and instance of the DSP_io_stream class by assign-
ing valid input and output device ports to it, (2) define a callback
function to process the input signal sample frames into output
sample frames with a user defined algorithm, and (3) call the
method interactive_stream() to start streaming.

Analog Input/Output Using DSP Algorithms

A classic text to learn the theory of digital signal processing
is [Opp2010]. This book is heavy on the underlying theoretical
concepts of DSP, including the mathematical modeling of analog
I/O systems as shown in Figure 1. This block diagram is a math-
ematical abstraction of what will be implemented using [pyaudio]
and a PC audio subsystem. An analog or continuous-time signal
x(t) enters the system on the left and is converted to the discrete-
time signal x[n] by the analog to digital block. In practice this
block is known as the analog-to-digital converter (ADC). The
sampling rate fs, which is the inverse of the sampling period,
T , leads to x[n] = x(nT). To be clear, x[n], denotes a sequence of
samples corresponding to the original analog input x(t). The use
of brackets versus parentheses differentiates the two signal types
as discrete-time and continuous-time respectively. The sampling
theorem [Opp2010] tells us that the sampling rate fs must be
greater than twice the highest frequency we wish to represent

92 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

in the discrete-time domain. Violating this condition results in
aliasing, which means a signal centered on frequency f0 > fs/2
will land inside the band of frequencies [0, fs/2]. Fortunately, most
audio ADCs limit the signal bandwidth of x(t) in such a way that
signals with frequency content greater than fs/2 are eliminated
from passing through the ADC. Also note in practice, x[n] is
a scaled and finite precision version of x(t). In real-time DSP
environments the ADC maps the analog signal samples to signed
integers, most likely int16. As we shall see in pyaudio, this is
indeed the case.

Analog
To

Digital

Digital
To

Analog

Digital Signal
Processing
Algorithms

x(t) y(t)
x[n] y[n]

fs fs
fs = sampling rate
T = sampling period

Fig. 1: Analog signal processing implemented using real-time DSP.

The DSP algorithms block can be any operation on samples
x[n] that makes sense. Ultimately, once we discuss frame-based
processing in the next section, we will see how Python code
fulfills this. At this beginning stage, the notion is that the samples
flow through the algorithm one at a time, that is one input results
in one output sample. The output samples are converted back to
analog signal y(t) by placing the samples into a digital-to-analog
converter (DAC). The DAC does not simply set y(nT) = y[n], as
a continuous function time t must be output. A reconstruction
operation takes place inside the DAC which interpolates the
y[n] signal samples over continuous time. In most DACs this is
accomplished with a combination of digital and analog filters, the
details of which is outside the scope of this paper. The use of

In a DSP theory class the algorithm for producing y[n] from
x[n] is typically a causal linear time-invariant (LTI) system/filter,
implemented via a difference equation, i.e.,

y[n] =−
N

∑
k=1

aky[n− k]+
M

∑
m=0

bmx[n−m] (1)

where ak,k = 1,2, . . . ,N and bm,m = 0,1, . . . ,M are the filter
coefficients. The filter coefficients that implement a particular filter
design can be obtained using design tools in [DSPComm].

Other algorithms of course are possible. We might have a
two channel system and perform operations on both signals, say
combining them, filtering, and locally generating time varying
periodic signals to create audio special effects. When first learning
about real-time DSP it is important to start with simple algorithm
configurations, so that external measurements can be used to
characterize the systems and verify that the intended results are
realized. Developing a real-time DSP project follows along the
lines of, design, implement, and test using external test equip-
ment. The Jupyter notebook allows all of this to happen in one
place, particularly if the test instrumentation is also PC-based,
since PC-based instrument results can be exported as csv and
then imported in Jupyter notebook using loadtxt. Here we
advocate the use of PC-based instruments, so that all parties,
student/instructor/tinkerer, can explore real-time DSP from most
anywhere at any time. In this paper we use the Analog Discovery
2 [AD2] for signal generation (two function generator channels),
signal measurement (two scope channels, with fast Fourier trans-
form (FFT) spectrum analysis included). It is also helpful to have
a signal generator cell phone app available, and of course music
from a cell phone or PC. All of the cabling is done using 3.5mm

stereo patch cables and small pin header adapters [3p5mm] to
interface to the AD2.

Frame-based Real-Time DSP Using the DSP_io_stream
class

The block diagram of Figure 2 illustrates the essence of
this paper. Implementing the structure of this figure re-
lies upon the class DSP_io_stream, which is housed in
sk_dsp_comm.pyaudio_helper.py. To make use of this
class requires the scipy stack (numpy, scipy, and matplotlib), as
well as [DSPComm] and [pyaudio]. PyAudio is multi-platform,
with the configuration platform dependent. The set-up is doc-
umented at [pyaudio] and SPCommTutorial. The classes and
functions of pyaudio_helper are detailed in Figure 3. We will
make reference to the classes, methods, and functions throughout
the remainder of this paper.

ADC

ADC DAC

DACFrame-Based
DSP

CallbackPa
ck

 in
to

Fr

am
es

U
np

ac
k

Fr
am

es

Globals for
Ctrl. & DSP

States

ipython Widgets
for Algorithm
Attribute Ctrl.

PC Audio System (Win, macOS, Linux)

1
or

 2

1
or

 2

xr (t)

xl (t) yl (t)

yr (t)

Jupyter Notebook Code

Channels
1 or 2

Channels
1 or 2

Fig. 2: Two channel analog signal processing implemented using
frame-based real-time DSP.

With DSP_io_stream one or two channel streaming is
possible, as shown in Figure 2. The ADCs and DACs can be
internal to the PC or external, say using a USB interface. In a
modern PC the audio subsystem has a microphone hardwired to
the ADCs and the DACs are connected to the speakers and 3.5mm
headphone jack. To provide more flexibility in doing real-time
DSP, an external USB audio interface is essential. Two worthy
options are the Sabrent at less than $10 and the iMic at under
$40. You get what you pay for. The iMic is ideal for full two
channel audio I/O processing and also has a line-in/mic switch
setting, while the Sabrent offers a single channel input and two
channel output. Both are very capable for their intended purposes.
A photograph of the AD2 with the iMic interface, 3.5mm splitters
and the pin header interfaces mentioned earlier, is shown in Figure
4. The 3.5mm audio splitters are optional, but allow headphones to
be plugged into the output while leaving the AD2 scope connected,
and the ability to input music/function generator from a cellphone
while leaving the AD2 input cable connected (pins wires may
need to be pulled off the AD2 to avoid interaction between the
two devices in parallel).

When a DSP_io_stream is created (top of Figure 3) it
needs to know which input and output devices to connect to.
If you just want and input or just an out, you still need to
supply a valid output or input device, respectively. To list the
internal/external devices available on a given PC we use the
function available_devices() from Figure 3. If you add
or remove devices while the notebook kernel is running, you will
need to restart the kernel to get an accurate listing of devices. The
code block below was run with the iMic plugged into a USB hub:

REAL-TIME DIGITAL SIGNAL PROCESSING USING PYAUDIO_HELPER AND THE IPYWIDGETS 93

Class: loop_audio Inputs/Outputs

(0) Append a new frame of left float signal
samples to the attribute
data_capture_left

(1) Append a new frame of right float signal
samples to the attribute
data_capture_right

none

Module: sk_dsp_comm.pyaudio_helper.py

Class: DSP_io_stream Inputs/Outputs

Constructor(): (0) Stream callback function name
(1) Input device index (default 1)
(2) Output device index (default 4)
(3) Frame length (default 1024)
(4) Sampling rate in Hz (default 44100)
(5) Capture buffer length in s (default 0)
(6) Sleep time (default 0.1 s from PyAudio)

interactive_stream():
(threaded & buttons)

 returns:

(0) Append a new frame of float signal
samples to the attribute data_capture

Functions: Inputs/Outputs

(0) Stream time in s (default 2, 0 for infinite)
(1) Number of channels (default 1 or 2)

DSP_capture_add_
samples():

 returns:

DSP_callback_toc():

DSP_callback_tic():

 returns: none, but ipywidget start/stop buttons

None, but updates a time stamp attribute

 returns: none

None, but updates a time stamp attribute

none

 returns: none

available_devices():

Constructor(): (0) Audio sample array to be looped
(1) Offset into array (default 0)

get_samples(): (0) frame_length

None

Prints available input and output audio
devices along with their port indices

 returns:

stream_stats():

cb_active_plot():

None

Prints callback statistics

(0) Start time in ms
(1) Stop time in ms
(2) Line color (default ‘b’)

Timing plot showing time in callback returns:

DSP_capture_add_
samples_stereo():

get_LR(): (0) Packed float32 input frame

(0) Unpacked float32 left channel
(1) Unpacked float32 right channel

 returns:

 returns:

pack_LR(): (0) Left output float32 frame
(1) Right output float32 frame

(0) Packed float32 frame returns:

Fig. 3: The major classes and functions of the module
sk_dsp_comm.pyaudio_helper.py.

import sk_dsp_comm.pyaudio_helper as pah
In[3]: pah.available_devices()
Out[3]:
Index 0 device name = Built-in Microphone,

inputs = 2, outputs = 0
Index 1 device name = Built-in Output,

inputs = 0, outputs = 2
Index 2 device name = iMic USB audio system,

inputs = 2, outputs = 2

The output list can be viewed as a look-up table (LUT) for
how to patch physical devices into the block diagram of Figure 2.

We now shift the focus to the interior of Figure 2 to discuss
frame-based DSP and the Frame-Based DSP Callback. When a
DSP microcontroller is configured for real-time DSP, it can focus
on just this one task very well. Sample-by-sample processing is
possible with low I/O latency and overall reasonable audio sample

iMic USB stereo
audio I/O

Optional 3.5mm
audio splitters
to allow parallel
analog I/O

Stereo 3.5mm
to AD2 pin
header adaptors

Analog Discovery
2 (AD2)

Wiring harness to
give access to
signal generators,
scope channels
and other
capabilities

Fig. 4: The iMic stereo USB audio device and the Digilent Analog
Discovery 2 (AD2), including the wiring harness.

throughput. On a PC, with its multitasking OS, there is a lot
going on. To get reasonable audio sample throughput the PC audio
subsystem fills or packs an input buffer with frame_length
samples (or two times frame_length), sample for a two chan-
nel stream) originating as 16-bit signed integers (i.e., int16),
before calling the callback function. The details of the callback
function is the subject of the next section. As the callback prepares
to exit, an output buffer of 16-bit signed integers is formed,
again of length frame_length, and the buffer is absorbed by
the PC audio subsystem. In the context of embedded systems
programming, the callback can be thought of as an interrupt
service routine. To the PC audio community the frame or buffer
just described, is also known as a CHUNK. In a two-channel
stream the frame holds an interleaving of left and right channels,
...LRLRL... in the buffer formed/absorbed by the PC audio
system. Understand that the efficiency of frame-based processing
comes with a price. The buffering either side of the callback block
of Figure 2 introduces a latency or processing time delay of at
least two times the frame_length times the sampling period.

Moving along with this top level discussion, the central
block of Figure 2 is labeled Frame-Based DSP Callback, and
as we have alluded to already, is where the real-time DSP code
resides. Global variables are needed inside the callback, as the
input/output signature is fixed by [pyaudio]. The globals allow
algorithm parameters to be available inside the callback, e.g., filter
coefficients, and in the case of a digital filter, the filter state must
be maintained from frame-to-frame. We will see in the examples
section how scipy.signal.lfilter(), which implements
(1), conveniently supports frame-based digital filtering. To allow
interactive control of parameters of the DSP algorithm we can
use ipywidgets. We will also see later the sliders widgets are
particularly suited to this task.

Anatomy of a PyAudio Callback function

Before writing the callback we first need to instantiate a
DSP_io_stream object, as shown in the following code block:

DSP_IO = pah.DSP_io_stream(callback, #callback name
2,2, # set I/O device indices
fs=48000, # sampling rate
Tcapture=0) # capture buffer length

The constructor for DSP_io_stream of Figure 3 and the code
block above confirm that most importantly we need to supply
a function callback name, and most likely provide custom in-
put/output device numbers, choose a sampling rate, and optionally
choose the length of the capture buffer.

94 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

A basic single channel loop through callback function, where
the input samples are passed to the output, is shown in the code
block below:
define a pass through, y = x, callback
def callback(in_data, frame_length, time_info,

status):
global DSP_IO, b, a, zi #no widgets yet
DSP_IO.DSP_callback_tic() #log entering time
convert audio byte data to an int16 ndarray
in_data_nda = np.frombuffer(in_data,

dtype=np.int16)
#***
Begin DSP operations here
for this app cast int16 to float32
x = in_data_nda.astype(float32)
y = x # pass input to output
Typically more DSP code here
Optionally apply a linear filter to the input
#y, zi = signal.lfilter(b,a,x,zi=zi)
#***
Save data for later analysis
accumulate a new frame of samples if enabled
with Tcapture
DSP_IO.DSP_capture_add_samples(y)
#***
Convert from float back to int16
y = y.astype(int16)
DSP_IO.DSP_callback_toc() #log departure time
Convert ndarray back to bytes
return y.tobytes(), pah.pyaudio.paContinue

The frame_length has been set to 1024, and of the four
required inputs from [pyaudio], the first, in_data, is the in-
put buffer which we first convert to a int16 ndarray us-
ing np.frombuffer, and then as a working array convert
to float32. Note to fill the full dynamic range of the fixed-
point signal samples, means that the x[n] sample values can range
over [−215,215−1]. Passing over the comments we set y=x, and
finally convert the output array y back to int16 and then in the
return line back to a byte-string buffer using .tobytes().
In general when y is converted from float back to int16,
clipping/overflow will occur unless the dynamic range mentioned
above is observed. Along the way code instrumentation methods
from Figure 3 are included to record time spent in the call-
back (DSP_callback_tic() and DSP_callback_toc())
and store samples for later analysis in the attribute
capture_buffer (DSP_capture_add_samples). These
features will be examined in an upcoming example.

To start streaming we need to call the method
interactive_stream(), which runs the stream in a thread
and displays ipywidgets start/stop buttons below the code cell
as shown in Figure 5.

Fig. 5: Setting up an interactive stream for the simple y = x loop
through, using a run time of 0, which implies run forever.

Performance Measurements

The loop through example is good place to explore some perfor-
mance metrics of 2, and take a look at some of the instrumen-
tation that is part of the DSP_io_stream class. The methods
DSP_callback_tic() and DSP_callback_toc() store
time stamps in attributes of the class. Another attribute stores

samples in the attribute data_capture. For the instrumentation
to collect operating data we need to set Tcapture greater than
zero. We will also set the total run time to 2s:

DSP_IO = pah.DSP_io_stream(callback,2,2,fs=48000,
Tcapture=2)

DSP_IO.interactive_stream(2,1)

Running the above in Jupyter notebook cell will capture 2s of data.
The method stream_stats() displays the following:

Ideal Callback period = 21.33 (ms)
Average Callback Period = 21.33 (ms)
Average Callback process time = 0.40 (ms)

which tells us that as expected for a sampling rate of 48 kHz, and
a frame length of 1024 is simply

Tcallback period = 1024× 1
48000

= 21.33 ms (2)

The time spent in the callback should be very small, as very
little processing is being done. We can also examine the callback
latency by first having the AD2 input a low duty cycle pulse
train at a 2 Hz rate, thus having 500 ms between pules. We then
use the scope to measure the time difference between the input
(scope channel C2) and output (scope channel C1) waveforms.
The resulting plot is shown in Figure 6. We see that PyAudio and
and the PC audio subsystem introduces about 70.7ms of latency.
A hybrid iMic ADC and builtin DAC results in 138 ms on macOS.
Moving to Win 10 latency increases to 142 ms, using default USB
drivers.

Latency ~ 70.7ms

Fig. 6: Callback latency measurement using the AD2 where C2 is the
input and C1 is the output, of a 2 Hz pulse train in the loop through
app.

The frequency response magnitude of an LTI system can be
measured using the fact that [Opp2010] at the output of a system
driven by white noise, the measured power output spectrum is
a scaled version of the underlying system frequency response
magnitude squared, i.e.,

Sy,measured(f) = σ2
x |HLTI system(f)|2 (3)

where σ2
x is the variance of the input white noise signal. Here

we use this technique to first estimate the frequency response
magnitude of the input path (ADC only) using the attribute
DSP_IO.capture_buffer, and secondly take end-to-end
(ADC-DAC) measurements using the AD2 spectrum analyzer in
dB average mode (500 records). In both cases the white noise
input is provided by the AD2 function generator. Finally, the
AD2 measurement is saved to a CSV file and imported into the
Jupyter notebook, as shown in the code block below. This allows

REAL-TIME DIGITAL SIGNAL PROCESSING USING PYAUDIO_HELPER AND THE IPYWIDGETS 95

an overlay of the ADC and ADC-DAC measurements, entirely in
the Jupyter notebook.
import sk_dsp_comm.sigsys as ss
f_AD,Mag_AD = loadtxt('Loop_through_noise_SA.csv',

delimiter=',',skiprows=6,
unpack=True)

Pxx, F = ss.my_psd(DSP_IO.data_capture,2**11,48000);
plot(F,10*log10(Pxx/Pxx[20]))
plot(f_AD,Mag_AD-Mag_AD[100])
ylim([-10,5])
xlim([0,20e3])
ylabel(r'ADC Gain Flatness (dB)')
xlabel(r'Frequency (Hz)')
legend((r'ADC only from DSP_IO.capture_buffer',r

'ADC-DAC from AD2 SA dB Avg'))
title(r'Loop Through Gain Flatness using iMic at

$f_s = 48$ kHz')
grid();
savefig('Loop_through_iMic_gain_flatness.pdf')

The results are compared in Figure 7, where we see a roll-off
of about 3 dB at about 14 kHz in both the ADC path and the
composite ADC-DAC path. The composite ADC-DAC begins to
rise above 17 kHz and flattens to 2 dB down from 18-20 kHz. As
a practical matter, humans do not hear sound much above 16 kHz,
so the peaking is not much of an issue. Testing of the Sabrent
device the composite ADC-DAC 3 dB roll-off occurs at about 17
kHz. The native PC audio output can for example be tested in
combination with the iMic or Sabrent ADCs.

Fig. 7: Gain flatness of the loop through app of just the ADC path
via the DSP_IO.capture_buffer and then the ADC-DAC path
using the AD2 spectrum analyzer to average the noise spectrum.

Examples

In this section we consider a collection of applications examples.
This first is a simple two channel loop-through with addition of
left and right gain sliders. The second is again two channel, but
now cross left-right panning is developed. In of these examples
the DSP is memoryless, so there is no need to maintain state using
Python globals. The third example is an equal-ripple bandpass
filter, which utilizes sk_dsp_comm.fir_design_helper to
design the filter. The final example develops a three-band audio
equalizer using peaking filters to raise and lower the gain over a
narrow band of frequencies.

Left and Right Gain Sliders

In this first example the signal processing is again minimal, but
now two-channel (stereo) processing is utilized, and left and right
channel gain slider using ipywidgets are introduced. Since

the audio stream is running in a thread, the ipywidgets can
freely run and interactively control parameters inside the callback
function. The two slider widgets are created below, followed by
the callback, and finally calling the interactive_stream
method to run without limit in two channel mode. A 1 kHz
sinusoid test signal is input to the left channel and a 5 kHz sinusoid
is input to the right channel. While viewing the AD2 scope output
in real-time, the gain sliders are adjusted and the signal levels
move up and down. A screenshot taken from the Jupyter notebook
is combined with a screenshot of the scope output to verify the
correlation between the observed signal amplitudes and the slider
positions is given in Figure 8. The callback listing, including the
set-up of the ipywidgets gain sliders, is given below:

Set up two sliders
L_gain = widgets.FloatSlider(description = 'L Gain',

continuous_update = True,
value = 1.0, min = 0.0,
max = 2.0, step = 0.01,
orientation = 'vertical')

R_gain = widgets.FloatSlider(description = 'R Gain',
continuous_update = True,
value = 1.0, min = 0.0,
max = 2.0, step = 0.01,
orientation = 'vertical')

L and Right Gain Sliders callback
def callback(in_data, frame_count, time_info,

status):
global DSP_IO, L_gain, R_gain
DSP_IO.DSP_callback_tic()
convert byte data to ndarray
in_data_nda = np.frombuffer(in_data,

dtype=np.int16)
separate left and right data
x_left,x_right = DSP_IO.get_LR(in_data_nda.\

astype(float32))
#***
DSP operations here
y_left = x_left*L_gain.value
y_right = x_right*R_gain.value

#***
Pack left and right data together
y = DSP_IO.pack_LR(y_left,y_right)
Typically more DSP code here
#***
Save data for later analysis
accumulate a new frame of samples
DSP_IO.DSP_capture_add_samples_stereo(y_left,

y_right)
#***
Convert from float back to int16
y = y.astype(int16)
DSP_IO.DSP_callback_toc()
Convert ndarray back to bytes
return y.tobytes(), pah.pyaudio.paContinue

Note for this two channel stream, the audio subsystem interleaves
left and right samples, so now the class methods get_LR and
pack_LR of Figure 3 are utilized to unpack the left and right
samples and then repack them, respectively. A screenshot of the
gain sliders app, including an AD2 scope capture, with C1 on the
left channel and C2 on the right channel, is given in Figure 8.

The ability to control the left and right audio level are as
expected, especially when listening.

Cross Left-Right Channel Panning

This example again works with a two channel signal flow. The
application is to implement a cross channel panning system.
Ordinarily panning moves a single channel of audio from 100%

96 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

(a) Jupyter notebook start/stop stream controls and left/right gain sliders

(b) Audio outputs for a 1 kHz left input and 5 kHz right input

Fig. 8: A simple stereo gain slider app: (a) Jupyter notebook interface
and (b) testing using the AD2 with generators and scope channel C1
(orange) on left and C2 (blue) on right.

left to 100% right as a slider moves from 0% to 100% of its range.
At 50% the single channel should have equal amplitude in both
channels. In cross channel panning two input channels are super
imposed, but such that at 0% the left and right channels are fully
in their own channel. At 50% the left and right outputs are equally
mixed. At 100% the input channels are now swapped. Assuming
that a represents the panning values on the interval [0,100], a
mathematical model of the cross panning app is

Lout = (100−a)/100×Lin +a/100×Rin (4)

Rout = a/100×Lin +(100−a)/100×Rin (5)

where Lin and Lout are the left channel inputs and outputs respec-
tively, and similarly Rin and Rout for the right channel. In code we
have:
Cross Panning
def callback(in_data, frame_length, time_info,

status):
global DSP_IO, panning
DSP_IO.DSP_callback_tic()
convert byte data to ndarray
in_data_nda = np.frombuffer(in_data,

dtype=np.int16)
separate left and right data
x_left,x_right = DSP_IO.get_LR(in_data_nda.\

astype(float32))
#***
DSP operations here
y_left = (100-panning.value)/100*x_left \

+ panning.value/100*x_right
y_right = panning.value/100*x_left \

+ (100-panning.value)/100*x_right

#***
Pack left and right data together

y = DSP_IO.pack_LR(y_left,y_right)
Typically more DSP code here
#***
Save data for later analysis
accumulate a new frame of samples
DSP_IO.DSP_capture_add_samples_stereo(y_left,

y_right)
#***
Convert from float back to int16
y = y.astype(int16)
DSP_IO.DSP_callback_toc()
Convert ndarray back to bytes
return y.tobytes(), pah.pyaudio.paContinue

This app is best experienced by listening, but visually Figure 9
shows a series of scope captures, parts (b)-(d), to explain how
the sounds sources swap from side-to-side as the panning value
changes.

0%

50%

100%

(a) Jupyter notebook start/stop stream controls and the panning slider

(b) Audio outputs with panning control at 0%

(c) Audio outputs with panning control at 50%

(d) Audio outputs with panning control at 100%

Fig. 9: Cross left/right panning control: (a) launching the app in the
Jupyter notebook and (b)-(d) a sequence of scope screenshots as the
panning slider is moved from 0% to 50%, and then to 100%.

For dissimilar left and right audio channels, the action of the
slider creates a spinning effect when listening. It is possible to
extend this app with an automation, so that a low frequency
sinusoid or other waveform changes the panning value at a rate
controlled by a slider.

FIR Bandpass Filter

In this example we design a high-order FIR bandpass filter using
sk_dsp_comm.fir_design_helper and then implement
the design to operate at fs = 48 kHz. Here we choose the bandpass
critical frequencies to be 2700, 3200, 4800, and 5300 Hz, with
a passband ripple of 0.5 dB and stopband attenuation of 50
dB (see fir_d). Theory is compared with AD2 measurements

REAL-TIME DIGITAL SIGNAL PROCESSING USING PYAUDIO_HELPER AND THE IPYWIDGETS 97

using, again using noise excitation. When implementing a digital
filter using frame-based processing, scipy.signal.lfilter
works nicely. The key is to first create a zero initial condition array
zi and hold this in a global variable. Each time lfilter is used
in the callback the old initial condition zi is passed in, then the
returned zi is held until the next time through the callback.

import sk_dsp_comm.fir_design_helper as fir_d
import scipy.signal as signal
b = fir_d.fir_remez_bpf(2700,3200,4800,5300,

.5,50,48000,18)
a = [1]
Set up a zero initial condition to start
zi = signal.lfiltic(b,a,[0])

define callback (#2)
def callback2(in_data, frame_length, time_info,

status):
global DSP_IO, b, a, zi
DSP_IO.DSP_callback_tic()
convert byte data to ndarray
in_data_nda = np.frombuffer(in_data,

dtype=np.int16)
#***
DSP operations here
Here we apply a linear filter to the input
x = 5*in_data_nda.astype(float32)
#y = x
The filter state/(memory), zi,
must be maintained from frame-to-frame,
so hold it in a global
for FIR or simple IIR use:
y, zi = signal.lfilter(b, a, x, zi=zi)
for IIR use second-order sections:
#y, zi = signal.sosfilt(sos, x, zi=zi)
#***
Save data for later analysis
accumulate a new frame of samples
DSP_IO.DSP_capture_add_samples(y)
#***
Convert from float back to int16
y = y.astype(int16)
DSP_IO.DSP_callback_toc()
return y.tobytes(), pah.pyaudio.paContinue

DSP_IO = pah.DSP_io_stream(callback2,2,2,
fs=48000,Tcapture=0)

DSP_IO.interactive_stream(Tsec=0,numChan=1)

Following the call to DSP_io.interactive_stream() the
start button is clicked and the AD2 spectrum analyzer estimates
the power spectrum. The estimate is saved as a CSV file and
brought into the Jupyter notebook to overlay the theoretical design.
The comparison results are given in Figure 10.

The theory and measured magnitude response plots are in very
close agreement, making the end-to-end design, implement, test
very satisfying.

Three Band Equalizer

Here we consider the second-order peaking filter, which has
infinite impulse response, and place three of them in cascade
with a ipywidgets slider used to control the gain of each
filter. The peaking filter is used in the design of audio equalizer,
where perhaps each filter is centered on octave frequency spacings
running from from 10 Hz up to 16 kHz, or so. Each peaking filter
can be implemented as a 2nd-order difference equation, i.e., N = 2
in equation (1). The design equations for a single peaking filter are
given below using z-transform [Opp2010] notation:

Hpk(z) =Cpk
1+b1z−1 +b2z−2

1+a1z−1 +a2z−2 (6)

Fig. 10: An overlay plot of the theoretical frequency response with the
measured using an AD2 noise spectrum capture import to the Jupyter
notebook.

which has coefficients

Cpk =
1+ kqµ
1+ kq

(7)

kq =
4

1+µ
tan

(
2π fc/ fs

2Q

)
(8)

b1 =
−2cos(2π fc/ fs)

1+ kqµ
(9)

b2 =
1− kqµ
1+ kqµ

(10)

a1 =
−2cos(2π fc/ fs)

1+ kq
(11)

a2 =
1− kq

1+ kq
(12)

where
µ = 10GdB/20, Q ∈ [2,10] (13)

and fc is the center frequency in Hz relative to sampling rate
fs in Hz, and GdB is the peaking filter gain in dB. Con-
veniently, the function peaking is available in the module
sk_dsp_comm.sigsys. The app code is given below starting
with the slider creation:
band1 = widgets.FloatSlider(description \

= '100 Hz',
continuous_update = True,
value = 2.0, min = -20.0,
max = 20.0, step = 1,
orientation = 'vertical')

band2 = widgets.FloatSlider(description \
= '1000 Hz',
continuous_update = True,
value = 10.0, min = -20.0,
max = 20.0, step = 1,
orientation = 'vertical')

band3 = widgets.FloatSlider(description \
= '8000 Hz',
continuous_update = True,
value = -1.0, min = -20.0,
max = 20.0, step = 1,
orientation = 'vertical')

import sk_dsp_comm.sigsys as ss
import scipy.signal as signal
b_b1,a_b1 = ss.peaking(band1.value,100,Q=3.5,

fs=48000)
zi_b1 = signal.lfiltic(b_b1,a_b1,[0])
b_b2,a_b2 = ss.peaking(band2.value,1000,Q=3.5,

fs=48000)

98 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

zi_b2 = signal.lfiltic(b_b2,a_b2,[0])
b_b3,a_b3 = ss.peaking(band3.value,8000,Q=3.5,

fs=48000)
zi_b3 = signal.lfiltic(b_b3,a_b3,[0])
b_12,a_12 = ss.cascade_filters(b_b1,a_b1,b_b2,a_b2)
b_123,a_123 = ss.cascade_filters(b_12,a_12,b_b3,a_b3)
f = logspace(log10(50),log10(10000),100)
w,H_123 = signal.freqz(b_123,a_123,2*pi*f/48000)
semilogx(f,20*log10(abs(H_123)))
grid();

define a pass through, y = x, callback
def callback(in_data, frame_length, time_info,

status):
global DSP_IO, zi_b1, zi_b2, zi_b3
global band1, band2, band3
DSP_IO.DSP_callback_tic()
convert byte data to ndarray
in_data_nda = np.frombuffer(in_data,

dtype=np.int16)
#***
DSP operations here
Here we apply a linear filter to the input
x = in_data_nda.astype(float32)
#y = x
Design the peaking filters on-the-fly
and then cascade them
b_b1,a_b1 = ss.peaking(band1.value,100,

Q=3.5,fs=48000)
z1, zi_b1 = signal.lfilter(b_b1,a_b1,x,

zi=zi_b1)
b_b2,a_b2 = ss.peaking(band2.value,1000,

Q=3.5,fs=48000)
z2, zi_b2 = signal.lfilter(b_b2,a_b2,z1,

zi=zi_b2)
b_b3,a_b3 = ss.peaking(band3.value,8000,

Q=3.5,fs=48000)
y, zi_b3 = signal.lfilter(b_b3,a_b3,z2,

zi=zi_b3)
#***
Save data for later analysis
accumulate a new frame of samples
DSP_IO.DSP_capture_add_samples(y)
#***
Convert from float back to int16
y = y.astype(int16)
DSP_IO.DSP_callback_toc()
Convert ndarray back to bytes
return y.tobytes(), pah.pyaudio.paContinue

Following the call to DSP_io.interactive_stream() the
start button is clicked and the FFT spectrum analyzer estimates the
power spectrum. The estimate is saved as a CSV file and brought
into the Jupyter notebook to overlay the theoretical design. The
comparison results are given in Figure 11.

Reasonable agreement is achieved, but listening to music is a
more effective way of evaluating the end result. To complete the
design more peaking filters should be added.

Conclusions and Future Work

In this paper we have described an approach to implement
real-time DSP in the Jupyter notebook. This real-time capability
rests on top of PyAudio and the wrapper class DSP_io_stream
contained in sk_dsp_comm.pyaudio_helper. The
ipywidgets allow for interactivity while real-time DSP
code is running. The callback function does the work using
frame-based algorithms, which takes some getting used to. By
working through examples we have shown that much can be
accomplished with little coding.

A limitation of using PyAudio is the input-to-output latency.
At a 48 kHz sampling rate a simple loop though app has around

(a) Jupyter notebook start/stop stream controls and peaking gain sliders

(b) Composite three band frequency response; theory and noise spectrum

Fig. 11: Three band equalizer: (a) launching the app in the Jupyter
notebook and (b) an overlay plot of the theoretical log-frequency
response with the measured using an AD2 noise spectrum capture
import to the Jupyter notebook.

70 ms of delay. For the application discussed in the paper latency
is not a show stopper.

In the future we hope to easily develop algorithms that can
demodulate software-defined radio (SDR) streams and send the
recovered modulation signal out the computer’s audio interface via
PyAudio. Environments such as GNURadio companion already
support this, but being able to do this right in the Jupyter notebook
is our desire.

REFERENCES

[cortexM4] The DSP capabilities of ARM® Cortex®-M4 and Cortex-M7
Processors. (2016, November). Retrieved June 25, 2018, from
https://community.arm.com/processors/b/blog/posts/white-
paper-dsp-capabilities-of-cortex-m4-and-cortex-m7.

[Scipysignal] Signal Processing. (2018, May 5). Retrieved June 25, 2018 from
https://docs.scipy.org/doc/scipy/reference/signal.html.

[DSPComm] scikit-dsp-comm. (2018, June 22). Retrieved June 25, 2018 from
https://github.com/mwickert/scikit-dsp-comm.

[pyaudio] PyAudio, (2017, March). Retrieved June 25, 2018, from
https://people.csail.mit.edu/hubert/pyaudio/.

[portaudio] Port Audio. (2012, January 25). Retrieved June 25, 2018 from
http://www.portaudio.com/.

[ipywidgets] ipywidgets. (2018, June 11). Retrieved June 25, 2018, from
https://github.com/jupyter-widgets/ipywidgets.

[Opp2010] Oppenheim, A and Schafer, R (2010). Discrete-Time Signal
Processing (3rd ed.), New Jersey: Prentice Hall.

[AD2] Analog Discovery 2. (2018, June). Retrieved June 25, 2918
from https://store.digilentinc.com/analog-discovery-2-100msps-
usb-oscilloscope-logic-analyzer-and-variable-power-supply/.

[3p5mm] 3.5mm Analog Discovery Adaptor Design. (2018,
January 30). Retrieved June 25, 2018 from
http://www.eas.uccs.edu/~mwickert/ece5655/.

PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018) 99

Organic Molecules in Space: Insights from the NASA
Ames Molecular Database in the era of the James

Webb Space Telescope

Matthew J. Shannon‡§∗, Christiaan Boersma¶§

F

Abstract—We present the software tool pyPAHdb to the scientific astro-
nomical community, which is used to characterize emission from one of
the most prevalent types of organic molecules in space, namely polycyclic
aromatic hydrocarbons (PAHs). It leverages the detailed studies of organic
molecules done at the NASA Ames Research Center. pyPAHdb is a streamlined
Python version of the NASA Ames PAH IR Spectroscopic Database (PAHdb;
www.astrochemistry.org/pahdb) suite of IDL tools. PAHdb has been extensively
used to analyze and interpret the PAH signature from a plethora of emission
sources, ranging from solar-system objects to entire galaxies. pyPAHdb decom-
poses astronomical PAH emission spectra into contributing PAH sub-classes in
terms of charge and size using a database-fitting technique. The inputs for the
fit are spectra constructed using the spectroscopic libraries of PAHdb and take
into account the detailed photo-physics of the PAH excitation/emission process.

Index Terms—astronomy, databases, fitting, data analysis

Science rationale

Polycyclic aromatic hydrocarbons

Polycyclic aromatic hydrocarbons (PAHs) are a class of molecules
found throughout the Universe that drive many critical astrophys-
ical processes. They dominate the mid-infrared (IR) emission
of many astronomical objects, as they absorb ultraviolet (UV)
photons and re-emit that energy through a series of IR emission
features between 3-20 µm. They are seen in reflection nebulae,
protoplanetary disks, the diffuse interstellar medium (ISM), plan-
etary nebulae, and entire galaxies (e.g., Figure 1), among other
environments. Structurally, they are composed of a hexagonal
carbon lattice (see Figure 2); taken as an entire family, they are by
far the largest known molecules in space. PAHs are exceptionally
stable, allowing them to survive the harsh conditions amongst a
remarkably wide variety of astronomical objects.

The role of astronomical PAHs

Thanks to their ubiquity, PAH IR emission signatures are routinely
used by astronomers as probes of object type and astrophysical

* Corresponding author: Matthew.J.Shannon@nasa.gov
‡ Universities Space Research Association, Columbia, MD
§ NASA Ames Research Center, MS245-6, Moffett Field, CA 94035-1000
¶ San José State University Research Foundation, 210 N 4th St Fl 4, San Jose,
CA 95112

Copyright © 2018 Matthew J. Shannon et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Fig. 1: A combined visible light-IR image from the Spitzer Space
Telescope of the galaxy Messier-82 (M82), also known as the Cigar
galaxy because of its cigar-like shape in visible light. The red region
streaming away from the galaxy into intergalactic space traces the
IR emission from PAHs. Credits: NASA/JPL-Caltech/C. Engelbracht
(Steward Observatory) and the SINGS team.

processes. For example, the PAH IR signature is used as an
indicator of star formation in high redshift galaxies [RPD+14]
and to differentiate between black hole and starburst engines in
galactic nuclei [GLS+98]. Those astronomers who study star and
planet formation use the IR PAH signature as an indicator of the
geometry of circumstellar disks [MWB+01] [BPM+09].

PAHs are believed to form in the circumstellar ejecta of late-
type stars, after which they become part of the ISM as the material
travels away from the star. Over time, PAHs are incorporated
into dense clouds, wherein they participate in ongoing chemistry
and are eventually brought into newly-forming star and budding
planetary systems.

They play important roles in circumstellar processes and the
diffuse ISM by modulating radiation fields and influencing charge
balance. Once incorporated into dense molecular clouds, they can
dominate cloud cooling and promote H2 formation. PAHs also
control the large-scale ionization balance and thereby the coupling

100 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

of magnetic fields to the gas. Through their influence on the forces
supporting clouds against gravity, PAHs also affect the process of
star formation itself. They are a major contributor to the heating of
diffuse atomic gas in the ISM and thereby the physical conditions
in such environments and its structure.

The unique properties of PAHs, coupled with their spectro-
scopic response to changing astrophysical conditions and their
ability to convert UV photons to IR radiation, makes them pow-
erful probes of astronomical objects at all stages of the stellar
life cycle. Notably, they allow astronomers to probe properties of
diffuse media in regions not normally accessible.

NASA Ames PAH IR Spectroscopic Database (PAHdb)

The Astrophysics & Astrochemistry Laboratory at NASA Ames
Research Center [NAS] provides data and tools for analyzing and
interpreting astronomical PAH spectra. The NASA Ames PAH
IR Spectroscopic Database (PAHdb; [BRBA18] [BBR+14]) is the
culmination of more than 30 years of laboratory and computational
research carried out at the NASA Ames Research Center to test
and refine the astronomical PAH model. PAHdb consists of three
components (all under the moniker of "PAHdb"): the spectroscopic
libraries, the website (see Figure 2), and the suite of off-line IDL1

tools. PAHdb has the world’s foremost collection of PAH spectra.
PAHdb is highly cited and is used to characterize and under-

stand organic molecules in our own Galaxy and external galaxies.
The database includes a set of innovative astronomical models and
tools that enables astronomers to probe and quantitatively analyze
the state of the PAH population. For instance, one can derive PAH
ionization balance, size, structure, and composition and tie these to
the prevailing local astrophysical conditions (e.g., electron density,
parameters of the radiation field, etc.) [BBA16] [BBA18].

NASA’s next great observatory for PAH research: JWST

The next great leap forward for IR astronomy is the the James
Webb Space Telescope (JWST). JWST is NASA’s next flagship ob-
servatory and the successor to the exceptionally successful Hubble
Space Telescope (www.nasa.gov/hubble) and Spitzer Space Tele-
scope (www.nasa.gov/spitzer). JWST is being developed through a
collaboration between NASA, the European Space Agency (ESA)
and the Canadian Space Agency (CSA). The telescope features a
primary mirror with a diameter of 6.5 m and carries four science
instruments. These instruments will observe the Universe with
unprecedented resolution and sensitivity in the near- and mid-IR.
The observatory is expected to launch early 2021.

As part of an awarded JWST Early Release Science (ERS)
program2, we are developing a Python-based toolkit for quickly
analyzing PAH emission in IR spectroscopic data

pyPAHdb: a tool designed for JWST

The purpose of pyPAHdb is to derive astronomical parameters
directly from JWST observations, but the tool is not limited to
JWST observations alone. pyPAHdb is the light version of a full
suite of Python software tools3 that is currently being developed,
which is an analog of the off-line IDL tools4. A feature comparison
is made in Table 1 (see also Section "The underlying PAH photo-
physics"). pyPAHdb will enable PAH experts and non-experts

1. IDL is a registered trademark of Harris Geospatial.
2. The ERS program is titled "Radiative Feedback from Massive Stars as

Traced by Multiband Imaging and Spectroscopic Mosaics" (jwst-ism.org; ID:
1288).

Fig. 2: Screenshot of the NASA Ames PAH IR Spectroscopic Database
website located at www.astrochemistry.org/pahdb/. Shown here are
the details and vibrational spectrum for the PAH molecule ovalene
(C32H14). Additionally, each vibrational transition is animated and
can be inspected for ease of interpretation (shown in the lower-right).

pyPAHdb IDL/Python tools

Included molecules. Fixed User defined
Excitation energy Fixed User defined
Emission profile Fixed Selectable
FWHM Fixed User defined
Band redshift Fixed User defined
Emission model Fixed Selectable
NNLS 3 3

Class breakdown 3 3

Parallelization 3 3

Handle uncertainties 3

TABLE 1: Feature comparison between pyPAHdb and the full
suites of off-line IDL/Python tools. Note: NNLS is non-negative
least squares; FWHM is full-width at half-maximum of an emission
profile; "uncertainties" in this context refers to handling observational
spectroscopic uncertainties.

alike to analyze and interpret astronomical PAH emission spectra.

pyPAHdb analyzes spectroscopic observations (including
spectral maps) and characterizes the PAH emission using a
database-fitting approach, providing the PAH ionization and size
fractions.

The package is imported using the following statement:

import pypahdb

3. AmesPAHdbPythonSuite: github.com/PAHdb/AmesPAHdbPythonSuite
4. AmesPAHdbIDLSuite: github.com/PAHdb/AmesPAHdbIDLSuite

ORGANIC MOLECULES IN SPACE: INSIGHTS FROM THE NASA AMES MOLECULAR DATABASE IN THE ERA OF THE JAMES WEBB SPACE TELESCOPE 101

Fig. 3: pyPAHdb flowchart. (1) Astronomical spectroscopic data is loaded, whether represented in FITS or ASCII files. (2) An over-sampled
pre-computed matrix of PAH spectra is loaded and interpolated onto the wavelength grid of the astronomical observations. Database-fitting is
performed using non-negative least-squares (NNLS), which yields the contribution of an individual PAH molecule to the total fit. As a result,
we obtain a breakdown of the model fit in terms of PAH charge and size. (3) The results are written to disk as a single FITS file and a PDF
summarizing the model fit (one page per pixel, if a spectral cube is provided as input).

The general program methodology is encapsulated in the flowchart
presented in Figure 3 and is as follows:

(1) Read-in a file containing spectroscopic PAH observations
of an astronomical object. This functionality is provided
by the class observation, which is implemented
in observation.py. It is the responsibility of the
user to ensure all non-PAH emission components have
been removed from the spectrum. The class uses a fall-
through try-except chain to attempt to read the given
filename using the facilities provided by astropy.io.
The spectroscopic data is stored as a class attribute as
a spectrum object, which holds the data in terms of
abscissa and ordinate values using numpy arrays. The
units associated with the abscissa and ordinate values
are, in the case of a FITS file, determined from the
accompanying header, which itself is also stored as a class
attribute. The spectral coordinate system is interpreted

from FITS header keywords following the specification
by [GCVA06]. The spectrum class is implemented in
spectrum.py and provides functionality to convert
between different coordinate representations. Below is
example Python code demonstrating the use of the class.
The file NGC7023-NW-BRIGHT.txt_pahs.txt in
this demonstration can be found in the examples direc-
tory that is part of the pyPAHdb package. The output of
the following code-block is shown in Figure 3.

import pypahdb as pah
import matplotlib.pyplot as plt
file = 'NGC7023-NW-BRIGHT.txt_pahs.txt'
obs = pah.observation(file)
s = obs.spectrum
plt.plot(s.abscissa, s.ordinate[:,0,0])
plt.ylabel(s.units['ordinate']['str']);
plt.xlabel(s.units['abscissa']['str']);
plt.show()

102 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

(2) Decompose the observed PAH emission into contribu-
tions from different PAH subclasses, here charge and size.
This functionality is provided by the class decomposer,
which is implemented in decomposer.py. The class
takes as input a spectrum object, of which it creates a
deep copy and calls its spectrum.convertunitsto
method to convert the abscissa units to wavenumber.
Subsequently, a pre-computed numpy matrix of highly
oversampled PAH emission spectra stored as a pickle
is loaded from file. Utilizing numpy.interp, each of
the PAH emission spectra, represented by a single column
in the pre-computed matrix, is interpolated onto the fre-
quency grid (in wavenumber) of the input spectrum. This
process is parallelized using the multiprocessing
package. optimize.nnls is used to perform a non-
negative least-squares (NNLS) fit of the pre-computed
spectra to the input spectra. NNLS is chosen because it
is appropriate to the problem, fast, and always converges.
The solution vector (weights) is stored as an attribute
and considered private. Combining lazy instantiation
and Python’s @property, the results of the fit and the
breakdown can be retrieved. In case the input spectrum
represents a spectral cube and where possible, the cal-
culations are parallelized across each pixel using, again,
the multiprocessing package. Below is example
code demonstrating the use of the class and extends the
previous code-block. The output of the code-block is
shown in Figure 3.

result = pah.decomposer(obs.spectrum)
s = result.spectrum
plt.plot(s.abscissa, s.ordinate[:,0,0], 'x')
plt.ylabel(s.units['ordinate']['str']);
plt.xlabel(s.units['abscissa']['str']);
plt.plot(s.abscissa, result.fit[:,0,0])
plt.show()

(3) Produce output to file given a decomposer object. This
functionality is provided by the class writer, which is
implemented in writer.py, and serves to summarize
the results from the decomposer class so that a user
may assess the quality of the fit and store the PAH char-
acteristics of their astronomical observations. The class
uses astropy.fits to write the PAH characteristics
to a FITS file and the matplotlib package to generate
a PDF summarizing the results. The class will attempt to
incorporate relevant information from any (FITS) header
provided. Below is example code demonstrating the use
of the class, which extends the previous code-block. The
size breakdown part of the generated PDF output is
shown in Figure 3.

pah.writer(result, header=obs.header)

It is anticipated that pyPAHdb will constitute an effective and
useful tool of an astronomer’s toolbox, handling thousands of
spectra. Therefore, performance is of importance. To measure
performance, a spectral cube containing the PAH emission spectra
at some 210 pixel locations is analyzed with pyPAHdb (see also
Section "Demonstration"). To put the measurement in context, it
is compared to analyzing the same spectral cube using the off-line
IDL tools. In this comparison the analysis with pyPAHdb is 15
times faster at four seconds as compared to using the IDL tools,

when tested on a 2.8 GHz Intel Core i7 MacBook Pro with 16 GB
of memory.

The underlying PAH photo-physics

To analyze astronomical PAH emission spectra with the absorption
data contained in PAHdb’s libraries, the PAHdb data need to
be turned into emission spectra. As discussed in the previous
section, pyPAHdb hides the underlying photo-physics in a pre-
computed matrix that is read-in by the decomposer class. The
pre-computed matrix is constructed using the full Python suite and
takes modeled, highly-over-sampled PAH emission spectra from
version 3.00 of the library of computed spectra.

This matrix uses the data on a collection of "astronomical"
PAHs, which include those PAHs that have more than 20 carbon
atoms, have no hetero-atom substitutions except for possibly
nitrogen, have no aliphatic side groups, and are not fully dehy-
drogenated. In addition, the fullerenes C60 and C70 are added.

While several more sophisticated emission models are avail-
able in the full Python suite, here a PAH’s emission spectrum
is calculated from the vibrational temperature it reaches after
absorbing a single 7 eV photon and making use of the thermal
approximation (e.g., [STA93] and [VPM+01]). Table 1 highlights
some of the differences between pyPAHdb and the full suite of
IDL/Python tools.

The spectral intensity I j(ν), in erg s-1 cm-1 mol-1, from a mol
of the jth PAH is thus calculated as:

I j(ν) =
n

∑
i=1

2hcν3
i σi

e
hcνi
kT −1

φ(ν) , (1)

with ν the frequency in cm-1, h Planck’s constant in erg s, c the
speed-of-light in cm s-1, νi the frequency of mode i in cm-1, σi
the integrated absorption cross-section for mode i in cm mol-1,
k Boltzmann’s constant in erg K-1, T the vibrational temperature
in K, and φ(ν) is the frequency dependent emission profile in
cm. The sum is taken over all n modes and the emission profile is
assumed Gaussian with a full-width at half-maximum (FWHM) of
15 cm-1. Note that before applying the emission profile, a redshift
of 15 cm-1 is applied to each of the band positions (νi) to mimic
some anharmonic effects. This redshift value is currently the best
estimate from laboratory experiments (see e.g., the discussion in
[BBA13]).

The vibrational temperature attained after absorbing a single 7
eV photon is calculated by the molecule’s heat capacity. The heat
capacity, CV in erg K, of a molecular system can be described in
terms of isolated harmonic oscillators by:

CV = k
∞∫

0

e−
hν
kT

[
hν
kT

1− e−
hν
kT

]2

g(ν)dν , (2)

where g(ν) is known as the density of states and describes the
distribution of vibrational modes. However due to the discrete
nature of the modes, the density of states is just a sum of δ -
functions:

g(ν) =
n

∑
i=1

δ (ν −νi) . (3)

The vibrational temperature is ultimately calculated by solving:
Tvibration∫

0

CVdT = Ein , (4)

where Ein is the energy of the absorbed photon—here this is 7 eV.

ORGANIC MOLECULES IN SPACE: INSIGHTS FROM THE NASA AMES MOLECULAR DATABASE IN THE ERA OF THE JAMES WEBB SPACE TELESCOPE 103

Fig. 4: Demonstration of applying the simple PAH emission model
as outlined in Equations 1-4 to the 0 K spectrum of coronene (in
black; C24H12

+) from version 3.00 of the library of computed spectra
of PAHdb. After applying the PAH emission model, but before the
convolution with the emission profile, the blue spectrum is obtained.
The final spectrum is shown in orange. For display purposes the
profiles have been given a FWHM of 45 cm-1.

In Python, in the full suite, Equation 4 is solved using root-
finding with scipy.optimize.brentq. The integral is cal-
culated with scipy.optimize.quad.

Figure 4 illustrates the process on the spectrum of the coronene
cation (C24H12

+), which reaches a vibrational temperature of 1406
K after absorbing a single 7 eV photon.

Demonstration

As a more sophisticated demonstration of pyPAHdb’s utility, we
analyze a spectral cube dataset of the reflection nebula NGC 7023,
as constructed from Spitzer Space Telescope observations. This
data cube is overlaid on a visible-light image of NGC 7023 from
the Hubble Space Telescope in Figure 5, left panel [BBA18].

The spectral cube is aligned such that, in these observations,
we observe the transition from diffuse, ionized/atomic species
(e.g., HI) near the exciting star to dense, molecular material (e.g.,
H2) more distant from the star. The transition zone between the
two is the photodissociation region, where PAHs have a strong
presence. The properties of the PAH molecules are known to vary
across these boundaries, since they are exposed to harsh radiation
in the exposed cavity of the diffuse zone, and shielded in the
molecular region.

We use pyPAHdb to derive the variability of PAH properties
across this boundary layer by analyzing the full spectrum at every
pixel. The code-block below, which is taken from example.py
included in the pyPAHdb distribution, demonstrates how this
is done. Note that this is the same general syntax as is used
for analyzing a single spectrum, but here NGC7023.fits is a
spectral cube.

------------ Running pyPAHdb ------------

import pyPAHdb
observation = pyPAHdb.observation('NGC7023.fits')
result = pyPAHdb.decomposer(observation.spectrum)

This will output the results file,
'NGC7023_pypahdb.fits':
pyPAHdb.writer(result, header=observation.header)

With the results from the entire spectral cube, maps of relevant
astrophysical quantities can be constructed. For example, Figure 5
(right panel) presents a map of the varying PAH ionization fraction
across NGC 7023. As expected, the fraction is systematically
higher across the diffuse region, where PAHs are more exposed to
the star, than the dense region, where PAHs are partially shielded
from the star. This figure was constructed in the following manner:

----- Plotting a map of ionization ------

Import needed/useful modules.
import matplotlib.pyplot as plt
import numpy as np
from astropy.io import fits
from mpl_toolkits.axes_grid1 import \

make_axes_locatable

Read in the results from pyPAHdb.
The data is 3-dimensional, with the first axis
denoting the PAH properties, and the latter two
being spatial.
hdulist = fits.open('NGC7023_pypahdb.fits')
ionization_fraction, large_fraction, norm = \

hdulist[0].data

Create a figure instance.
fig = plt.figure()
ax = fig.add_subplot(111)

Plot our ionization map; we've flipped it left-right
to match the Hubble image's orientation.
im = ax.imshow(np.fliplr(ionization_fraction),

origin='upper', cmap='viridis',
interpolation='nearest')

Add a nice colorbar.
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%",

pad=0.05)
cbar = plt.colorbar(im, cax=cax)
cbar.set_label('ionization fraction [#]',

rotation=270, labelpad=18)

Set axes labels.
ax.set_xlabel('pixel [#]')
ax.set_ylabel('pixel [#]')

Save the figure.
plt.savefig('ionization_fraction_map.pdf',

format='pdf', bbox_inches='tight')
plt.close()

The type of analysis demonstrated here allows users to quickly
interpret the distribution of PAHs in their astronomical obser-
vations and variations in PAH charge and size. Note that in
addition to the ionization fraction, the pyPAHdb results file
NGC7023_pypahdb.fits contains a data array for the large
PAH fraction and norm (accessed and plotted in the same
manner), which we have defined in the code above.

Summary

The data and tools provided through PAHdb have proven to be
valuable assets for the astronomical community for analyzing and

104 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Fig. 5: Left: An image of the reflection nebula NGC 7023 as obtained by the Hubble Space Telescope. Overlaid is a pixel grid representing a
spectral cube of observations taken with the Spitzer Space Telescope; each pixel contains an infrared spectrum. In this figure, the exciting star
is just beyond the lower left corner. We are observing a photodissociation region boundary: the material in the lower half of the figure is diffuse
and exposed to the star; the material in the upper (right) half is molecular and shielded from the star. The diagonal boundary separating the
two zones is clearly visible. PAHs are common in these environments. Figure adapted from [BBA18]. Right: We display PAH ionization across
the NGC 7023 (white grid in left panel), using pyPAHdb. Here, an ionization fraction of 1 means all PAHs are ionized, while 0 means all are
neutral. Note that in the diffuse, exposed cavity (lower half) the PAHs are on average more ionized than in the denser molecular zone (upper
half).

interpreting PAH emission spectra. The launch of JWST in 2021
will usher a new era of astronomical PAH research. In the context
of an awarded JWST Early Release Science program, we are devel-
oping pyPAHdb as a key data analysis tool to facilitate quick and
effective analysis of PAH emission spectra. While this tool is being
developed with JWST in mind, it is not limited to JWST data: it
currently supports spectra from Spitzer Space Telescope, Infrared
Space Observatory, and any user-defined spectrum. pyPAHdb is
in active development and will be finalized well before JWST’s
launch.

REFERENCES

[BBA13] C. Boersma, J. D. Bregman, and L. J. Allamandola. Properties
of Polycyclic Aromatic Hydrocarbons in the Northwest Photon
Dominated Region of NGC 7023. I. PAH Size, Charge, Com-
position, and Structure Distribution. ApJ, 769:117, June 2013.
doi:10.1088/0004-637X/769/2/117.

[BBA16] C. Boersma, J. Bregman, and L. J. Allamandola. The Charge
State of Polycyclic Aromatic Hydrocarbons Across Reflection
Nebulae: PAH Charge Balance and Calibration. ApJ, 832:51,
November 2016. doi:10.3847/0004-637X/832/1/51.

[BBA18] C. Boersma, J. Bregman, and L. J. Allamandola. The Charge
State of Polycyclic Aromatic Hydrocarbons across a Reflection
Nebula, an H II Region, and a Planetary Nebula. ApJ, 858:67,
May 2018. doi:10.3847/1538-4357/aabcbe.

[BBR+14] C. Boersma, C. W. Bauschlicher, A. Ricca, A. L. Mattioda,
J. Cami, E. Peeters, F. Sánchez de Armas, G. Puerta Saborido,
D. M. Hudgins, and L. J. Allamandola. The NASA Ames
PAH IR Spectroscopic Database Version 2.00: Updated Con-
tent, Web Site, and On(Off)line Tools. ApJS, 211:8, 2014.
doi:10.1088/0067-0049/211/1/8.

[BPM+09] C. Boersma, E. Peeters, N. L. Martín-Hernández, G. van der
Wolk, A. P. Verhoeff, A. G. G. M. Tielens, L. B. F. M. Waters,
and J. W. Pel. A spatial study of the mid-IR emission features
in four Herbig Ae/Be stars. A&A, 502:175–187, July 2009.
doi:10.1051/0004-6361/200911820.

[BRBA18] C. W. Bauschlicher, Jr., A. Ricca, C. Boersma, and L. J. Alla-
mandola. The NASA Ames PAH IR Spectroscopic Database:
Computational Version 3.00 with Updated Content and the In-
troduction of Multiple Scaling Factors. ApJS, 234:32, February
2018. doi:10.3847/1538-4365/aaa019.

[GCVA06] E. W. Greisen, M. R. Calabretta, F. G. Valdes, and S. L.
Allen. Representations of spectral coordinates in FITS. A&A,
446:747–771, February 2006. doi:10.1051/0004-6361:
20053818.

[GLS+98] R. Genzel, D. Lutz, E. Sturm, E. Egami, D. Kunze, A. F. M.
Moorwood, D. Rigopoulou, H. W. W. Spoon, A. Sternberg,
L. E. Tacconi-Garman, L. Tacconi, and N. Thatte. What Pow-
ers Ultraluminous IRAS Galaxies? ApJ, 498:579, May 1998.
doi:10.1086/305576.

[MWB+01] G. Meeus, L. B. F. M. Waters, J. Bouwman, M. E. van den
Ancker, C. Waelkens, and K. Malfait. ISO spectroscopy of
circumstellar dust in 14 Herbig Ae/Be systems: Towards an
understanding of dust processing. A&A, 365:476, January 2001.
doi:10.1051/0004-6361:20000144.

[NAS] NASA Ames Research Center. Astrophysics and astrochemistry
laboratory. URL: www.astrochemistry.org.

[RPD+14] D. A. Riechers, A. Pope, E. Daddi, L. Armus, C. L. Carilli,
F. Walter, J. Hodge, R.-R. Chary, G. E. Morrison, M. Dickinson,
H. Dannerbauer, and D. Elbaz. Polycyclic Aromatic Hydrocarbon
and Mid-Infrared Continuum Emission in a z>4 Submillimeter
Galaxy. ApJ, 786:31, May 2014. doi:10.1088/0004-
637X/786/1/31.

[STA93] W. A. Schutte, A. G. G. M. Tielens, and L. J. Allamandola.
Theoretical modeling of the infrared fluorescence from interstel-
lar polycyclic aromatic hydrocarbons. apj, 415:397, September
1993. doi:10.1086/173173.

[VPM+01] L. Verstraete, C. Pech, C. Moutou, K. Sellgren, C. M. Wright,

ORGANIC MOLECULES IN SPACE: INSIGHTS FROM THE NASA AMES MOLECULAR DATABASE IN THE ERA OF THE JAMES WEBB SPACE TELESCOPE 105

M. Giard, A. Léger, R. Timmermann, and S. Drapatz. The
Aromatic Infrared Bands as seen by ISO-SWS: Probing the PAH
model. aa, 372:981, June 2001. doi:10.1051/0004-6361:
20010515.

106 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Harnessing the Power of Scientific Python to
Investigate Biogeochemistry and Metaproteomes of

the Central Pacific Ocean
Noelle A. Held§‡, Jaclyn K. Saunders‡§, Joe Futrelle‡, Mak A. Saito‡∗

https://youtu.be/WYmAu0GiSU4

F

Abstract—Oceanographic expeditions commonly generate millions of data
points for various chemical, biological, and physical features, all in different
formats. Scientific Python tools are extremely useful for synthesizing this data to
make sense of major trends in the changing ocean environment. In this paper,
we present our application of scientific Python to investigate metaproteome data
from the oxygen-depleted Central Pacific Ocean. The microbial proteins of this
region are major drivers of biogeochemical cycles, and represent a living proxy
of the ancient anoxic ocean. They also provide a look into the trajectory of
the ocean in the face of rising temperatures, which cause deoxygenation. We
assessed 103 metaproteome samples collected in the Central Pacific Ocean
on the 2016 ProteOMZ cruise. This data represents ~60,000 identified proteins
and over 6 million datapoints, in addition to over 6,600 corresponding chemical,
physical, and biological metadata points.

An interactive data analysis tool which enables the scientific user to visual-
ize and interrogate patterns in these large metaproteomic datasets in conjunc-
tion with hydrographic features was not previously available. Bench scientists
who would like to use this oceanographic data to gain insight into marine
biogeochemical cycles were at a disadvantage as no tool existed to query
these complex datasets in a visually meaningful way. Our goal was to provide a
graphical visualization tool to enhance the exploration of these complex dataset;
specifically, using interactive tools to enable users the ability to filter and au-
tomatically generate plots from slices of large metaproteomic and hydrographic
datasets. We developed a Bokeh application [BOKEH] for data exploration which
allows the user to hone in on proteins of interest using widgets. The user can
then explore relationships between protein abundance and water column depth,
hydrographic data, and taxonomic origin. The result is a complete and interactive
visualization tool for interrogating a multivariate oceanographic dataset, which
helped us to demonstrate a strong relationship between chemical, physical,
and biological variables and the microbial proteins expressed. Because it was
impossible to display all the proteins at once in the Bokeh application, we
additionally describe an application of Holoviews/Datashader [HOLOVIEWS],
[DATASHADER] to this data, which further highlights the extreme differences
between oxygen rich surface waters and the oxygen poor mesopelagic. This
application can be easily adapted to new datasets, and is already proving to be
a useful tool for exploring patterns in ocean protein abundance.

Index Terms—oceanography, microbial ecology, biogeochemistry, omics, visu-
alization, bokeh, datashader, holoviews, pandas, dask, jupyter

§ Massachusetts Institute of Technology, Cambridge, MA
‡ Woods Hole Oceanographic Institution, Woods Hole, MA
* Corresponding author: msaito@whoi.edu

Copyright © 2018 Noelle A. Held et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Introduction

Oceanography is concerned with understanding the ocean as a
holistic and dynamic system, integrating information from disci-
plines such as biology, chemistry, geology, and physics. But just
how to incorporate this multivariate data is a key challenge in the
field. For example, research expeditions commonly generate mil-
lions of data points, all with different formats, scales, and primary
research goals. Scientific Python tools can help oceanographers
synthesize multivariate information to make sense of trends; here
we present an application to investigate metaproteome data from
the oxygen poor central Pacific Ocean.

The tropical Pacific Ocean contains a naturally low-oxygen
region called an oxygen minimum zone (OMZ) (Figure 1). Bi-
ological and chemical processes in the OMZ are different from
surrounding oxygenated waters. For example, nitrification (use of
ammonia or other organic nitrogen sources to fuel processes that
typically use oxygen, in simplified form the reaction NH4 -> NO2 -
> NO3) is a key process in the OMZ but not present in oxygenated
waters [ULLOA2012]. OMZs may represent a living proxy of
the past anoxic ocean. They are also a picture into the future.
Climate change driven by anthropogenic carbon dioxide emissions
is causing ocean waters to be warmer and more stratified. This
leads to deoxygenation processes and predicted expansion of
OMZs [WRIGHT2012]. Thus, understanding the biogeochemistry
of existing, natural OMZs is important for predicting conditions
in the future ocean.

We travelled to the oxygen poor Pacific ocean in winter 2016
to study biological and chemical processes on the ProteOMZ
research cruise (https://schmidtocean.org/cruise/investigating-life-
without-oxygen-in-the-tropical-pacific/). To explore the biogeo-
chemical processes in this region, we collected over 103 metapro-
teomics samples at various locations and depths, representing
56,577 identified proteins and over 6 million individual data
points. In addition, we collected over 6,600 corresponding chem-
ical and physical metadata points (18 variables) which provide
context to the biological protein data. Proteins are the molecu-
lar machines driving biogeochemical transformations within mi-
crobial cells; as such, protein datasets provide a rich look at
ecosystem function. To our knowledge this is the largest marine
metaproteomics dataset to date.

In this paper, we describe our efforts to create an integrated
proteomics and metadata visualization tool. The application is

HARNESSING THE POWER OF SCIENTIFIC PYTHON TO INVESTIGATE BIOGEOCHEMISTRY AND METAPROTEOMES OF THE CENTRAL PACIFIC OCEAN 107

Fig. 1: Oxygen concentrations in the world ocean at 300m depth.
Warm colors indicate more oxygen, cool colors indicate less. The
sampling locations of the ProteOMZ cruise are overlaid as yellow
stars. ProteOMZ samples the oxygen-depleted tropical Pacific region.
Oxygen data: World Ocean Atlas [GARCIA2014]

intended as an exploratory tool for user-driven discovery of
patterns in oceanographic protein abundance in relationship to
hydrographic and ecological context. Using Bokeh [BOKEH] as
the main visualization library, we developed an application that
integrates multivariate data into interactive plots and tables. We
begin by describing the data model, which emerged both from the
inherent properties of the data and the constraints of the Bokeh
library. We then describe an example in which we demonstrate
major phylogenetic and functional differences between oxygen
rich surface waters to oxygen poor mesopelagic waters. Due to
performance constraints, the Bokeh application can only display
a subset of the data. Therefore we additionally describe an ap-
plication of Datashader implemented in Holoviews and Jupyter
Notebook to visualize patterns in the entire dataset. This notebook
further demonstrates functional partitioning between oxygen rich
and poor waters, emphasizing the extremity of these biogeochemi-
cal differences. We conclude with a brief discussion of the benefits
and drawbacks of our data construction and library choices, as well
as some recommendations for developers and scientists working
with these libraries.

Methods and Results

In situ sampling and data acquisition

Samples were collected in January-February 2016 at 14 locations
(stations) in the tropical Pacific ocean. At each station, large
volume in situ pumps were deployed at multiple depths in the
water column. For each pump, hundreds of liters of water were
passed through stacked 51 µM , 3 µM and 0.2 µM filters. The data
described here is for the 0.2-3 µM filter range which includes most
single cell phytoplankton and free living heterotrophic bacteria.
More detail on proteomics analyses can be found in [SAITO2014].
The full sample collection and analysis methods for this dataset in
particular will be reported in an upcoming publication.

Visualizing Hydrographic Data

We developed a visualization platform to explore the hydrographic
data, which includes physical parameters such as temperature

Fig. 2: Station map for the hydrographic data.

and chemical parameters such as ammonium concentrations. The
visualization was written with Bokeh in the the Jupyter Notebook
interface and produces a standalone html document as the output.
This allows the document to be shared with colleagues and,
importantly, does not require them to have bokeh or even python
installed on their machine. The visualization consists of a map
rendered in Google Maps using the gmap function in Bokeh
(Figure 2a) and scatter plots showing the vertical distribution of
the hydrographic parameters throughout the water column, with
surface values at the top (Figure 2b). The plots are arranged with
gridplot. This visualization is fed from a hydrographic data CSV
file, where the data for each variable is in a separate column. This
facilitates ingestion into Bokeh’s ColumnDataSource, allowing the
plots to be linked. Thus, when the user selects data from one plot,
corresponding data for that location is highlighted in the other
plots.

Bokeh Application

The main product of this work is a fully interactive Bokeh server
application, which integrates protein quantitative data, protein
annotations, and hydrographic data. For full interactivity among
plots, Bokeh requires data to be in a single 2D ColumnDataSource.
Thus, the first challenge we faced was how to compress our
multidimensional data into a 2D format that could be accessed by
multiple plots and updated via widgets. The protein quantitative
data is a CSV formatted output which is generated directly from
the common proteomics analysis program Scaffold [SCAFFOLD].
For illustrative purposes in this paper we use a truncated CSV
file containing 15,000 of the nearly 60,000 identified proteins.
However, we have had success using the entire 60,000 protein
dataset.

108 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Fig. 3: Hydrographic data as a function of water column depth. The file is exported by Bokeh as a standalone html document, allowing it to
be easily shared with collaborators.

The CSV file is read as a pandas dataframe [PANDAS] and
consists of 103 rows (one per each unique sampling location and
depth) and over 15,000 columns, where each column represents
a different protein that was identified in the field sample. This
15,000 protein dataset is a subset of the the full protein dataset
of 60,000 proteins. The protein annotation information is read as
a separate file and includes taxonomic and functional information
about each protein in the dataset. Finally, the hydrographic data
consists of 103 rows, again, one per each unique sampling location
and depth) and 16 columns each containing a hydrographic or
chemical parameter also measured on the expedition. We com-
bined all three of these dataframes into a combined data model,
allowing the entire application to be fed from ColumnDataSources
generated from slices of a single Pandas dataframe (Figure 4). This
facilitates connectivity among the plots via tools such as hover
and tap, and allows the user to explore all the visualizations using
widgets for protein annotation and hydrographic data.

We now describe a use case to demonstrate the utility of the
application (Figure 5-8). On initial load, the user can see a map of
the ProteOMZ 2016 sampling locations (Figure 5). The user can
select a Station via a widget and display a vertical distribution
of all of the proteins identified at this station throughout the
water column, from surface to deep. Hovering over a protein in
the vertical distribution profile displays its identity. The vertical
distribution, protein annotation table, and protein vs. hydrographic
data charts are directly linked since they are fed through the
same ColumnDataSource. Selecting a protein via the TapTool
highlights it in the vertical profile, protein annotation table, and in
the Protein vs. Hydrographic data chart. A user who is interested
in a specific protein can select it from the table, which updates
the vertical line profile to highlight that protein. For instance, we
can select the most abundant protein in the dataset at Station 5

and see that it is a nitrate oxidoreductase protein (Figure 6). The
protein vs. hydrographic data chart displays protein abundance as
a function of various hydrographic features, which can be selected
by a widget. With the hydrographic widget we select nitrate
(NO3), a product of nitrification, and see that abundance of nitrate
oxidoreductase is positively correlated with nitrate (Figure 7). The
protein is negatively correlated with its reactant ammonium (NH4),
and also with the intermediary product nitrite (NO2). Consistent
with the idea that nitrification is prevalent in oxygen minimum
zones , we see that the protein is negatively correlated with oxygen
(O2) concentrations.

Selecting a station additionally populates a vertical profile of
the total number of unique proteins identified (line) and number
of peptide-to-spectrum matches expressed on a log scale (bubble)
at each depth sampled. In proteomics, we do not measure proteins
but instead parts of proteins called peptides, which are then
matched to spectra that are predicted in silico from a genome
database. The peptide-to-spectrum match indicates the total num-
ber of peptides identified (non unique). Typically the number of
peptide-to-spectrum matches is related to the number of unique
peptides identified; we see this reflected in the data at Station
5. For instance, we see that at depths 200m and below there
are more proteins and more peptide-to-spectrum matches than in
surface waters. However, though the number of unique proteins
is approximately constant between 200 and 500m, the number of
PSMs varies.

So far we have looked only at protein function, but a user
may also be interested in taxonomic origin of the proteins. At
Station 5, we see in the Diversity of Microbial Proteins bar
graph that most of the proteins we identified are from the group
“Other Bacteria,” which encompasses most heterotrophic bacteria
including the nitrifying bacteria (Figure 8). There are also many

HARNESSING THE POWER OF SCIENTIFIC PYTHON TO INVESTIGATE BIOGEOCHEMISTRY AND METAPROTEOMES OF THE CENTRAL PACIFIC OCEAN 109

Fig. 4: Data model for integrating protein abundance, protein annotation, and hydrographic data into a single Bokeh ColumnDataSource,
allowing for interactivity among the visualizations in the application.

Prochlorococcus and Pelagibacter proteins in the dataset, which
is consistent with the fact that these cells are among the most
abundant in the ocean [EGGLESTON2016]. A user can select
a specific taxon with the taxon widget; for example, we can
select “Prochlorococcus” from the taxon widget and redisplay
the data (Figure 5). We can now see that Prochlorococcus, a
photosynthetic cyanobacterium, is present primarily in the sunlit
surface waters above 120m. If we display “Other Bacteria,” we can
see that indeed that the heterotrophic nitrifying bacteria are highly
abundant in the oxygen-depleted waters beginning around 200m.
Thus with just a few clicks we can explore major taxonomic and
functional regimes throughout the oxic and suboxic water column.

Application of Datashader

We quickly discovered that attempting to display over 15,000
lines on a single Bokeh plot was infeasible. We thus display only
the top 5% most abundant proteins but allow the user to adjust
this percentage via the Percentile slider. When the application is
run via Bokeh server on a single laptop, only the top 5-10% of
proteins can be displayed without significantly slowing down the
visualizations. This alone is powerful - over 1000 proteins are
displayed on the initial load, and the widgets allow the user to
hone in on taxa and processes of interest such that meaningful
information is still easy to find. However, it is clear that the data
is oversampled and thatproteins that are especially low abundance
such as cell signalling and regulatory proteins are systematically
"lost" in this visualization.

We used Datashader implemented in Holoviews and a Jupyter
notebook to view the dataset in its entirety to see if major patterns
in protein abundance emerge when all 15,000 test dataset lines
are displayed. To improve performance in Datashader line, we
re-formatted the dataframe to be two columns (x and y values)
with each protein/depth set separated by NaNs. The dataframe was
converted to a Dask dataframe [DASK] for performance reasons.
Though this data model requires us to copy the “Depth” data
15,000 times, the performance improvement in the Datashader
aggregation steps make this step worthwhile.

One question we can ask of the data is whether patterns emerge
among proteins that are more or less abundant than average. We
normalized the protein quantitation data by dividing each column
by its average, such that the resulting data represents the fold-
change in the protein in relationship to its mean over the entire
water column. In the visualization, a value of 1 on the x axis
suggests that protein abundance is equal to the mean; below 1 the
protein is less abundant than average and above 1 the protein is
more abundant.

In the datashader plot, the data is overlaid on itself such
that areas with more saturated color indicates a high number of
proteins with similar fold-change in concentration (Figure 8). This
shows the partitioning of microbial proteins on depth. Proteins

that are abundant in the surface converge to 0, or "disapper"
around 120m. At Station 5, the warm sunight euphotic mixed
layer ends at approximately 120m. These surface proteins are most
likely attributed to Prochlorococcus, an abundant bacterium that
lives only in sunlight waters. Below 120m, proteins attributed to
heterotrophic bacteria become abundant.

Discussion

We designed a data integration and discovery tool for the Pro-
teOMZ research expedition. In just a few clicks, the application
allows users to explore trends in protein abundance, probe rela-
tionships between protein abundance and hydrographic data, and
dial in to biological processes of interest. As an example we
describe how we were able to rapidly investigate the taxonomic
and functional differences between oxygen replete surface waters
and the oxygen minimum mesopelagic. Since the application uses
data from a common proteomics data file format, it will be simple
to plug new oceanographic datasets into this application as they
become available.

A key challenge to this project was building a data model
that worked most efficiently with the libraries we selected. For
instance, the Bokeh ColumnDataSource imposed a 2D structure
on our multi-dimensional data. In Datashader we faced a similar
issue, in which we discovered that aggregating 15,000 individual
lines is prohibitively slow; by simply reformatting the data so
the aggregation treats the data as individual points we could
significantly improve performance. Learning about the constraints
of these libraries was an important step in the process of creating
this application, especially because we pushed the limits of the
libraries. This required deep reading of user guides, API docu-
mentation, and Q/A repositories. We thus have two suggestions -
1) that scientists (and others) understand and carefully consider
the data models and preferences of the libraries they plan to use
before they begin the project and 2) that documentation of the data
models and best practices in data formatting be more explicitly
referenced in library user guides and be made easier to understand
for the non-expert.

Another challenge we faced were problems with API stability.
In large part this is due to the fact that we chose to work with
libraries that are still in V0 release. We quickly learned to version
control our code and used virtual environments to retain specific
package versions. Luckily, since the projects are open source
it is relatively easy to find information about recent changes,
though this is not without frustration. For instance, the Bokeh
application originally contained a donut chart, which has since
been deprecated. We look forward to more stable releases of the
Bokeh, Holoviews, and Datashader libraries, especially because
we are now incorporating some of these visualizations into the
upcoming Ocean Protein Portal (http://proteinportal.whoi.edu/), a

110 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Fig. 5: Initial load of the Bokeh application.

Fig. 6: Selecting on a single protein and investigating relationship to hydrographic data.

Fig. 7: Filtering on the taxon, we can see that Prochlorococcus proteins are present only in the upper 120m of the water column at this station.

HARNESSING THE POWER OF SCIENTIFIC PYTHON TO INVESTIGATE BIOGEOCHEMISTRY AND METAPROTEOMES OF THE CENTRAL PACIFIC OCEAN 111

Fig. 8: Selecting “Other Bacteria,” we can see that the nitrifying bacteria become prevalent around 200m in the oxygen minimum zone.

Fig. 9: Datashaded version of the vertical protein distribution plot,
displaying all 15,000 proteins at Station 5. Each protein abundance is
displayed as the difference from its average, so a value of >1 indicates
a protein that is more abundant. A large number of Prochlorococcus
proteins is present in the upper 120m; this collection of proteins
disappears at the base of the euphotic zone. A large number of
proteins is present in approximately the same fold change abundance
throughout the mesopelagic region.

data sharing and discovery interface for marine metaproteomics
data.

The main benefit of building these visualizations using Sci-
entific Python tools is that scientists who are not primarily
programmers can easily manipulate and maintain the code. The
code is relatively straightforward, largely due to the fact that the
Bokeh and in particular Holoviews backends do much of the heavy
lifting. This makes it easier for colleagues to adapt the code to
their own datasets. The linked charts in the Bokeh application
allow for intuitive (read: more efficient) exploration of the data. In
addition, charts generated by Bokeh, Datashader and Holoviews

are beautiful “out of the box.” This is an advantage when we share
these visualizations not only with other scientific experts, but also
with the general public during outreach events.

The visualizations we built are already proving to be useful.
We discuss above just one high level example in which the appli-
cation helps us to explore taxonomic and functional differences
between oxic and suboxic water masses. Finer level analyses
are sure to uncover even more exciting trends. We are already
plugging in new datasets to the application. As mentioned above,
many of these visualizations (in addition to some new ones,
such as Holoviews Sankey plot) are being incorporated into the
upcoming Ocean Protein Portal, which will make them even more
accessible to the scientific community.

Code

Hydrography Visualization: https://github.com/maksaito/
proteOMZ_hydrography_visualization Bokeh Application:
https://github.com/maksaito/proteOMZ_visualization_app_public
Datashader notebook: https://github.com/naheld/15000lines_
datashader

Acknowledgements

This work is supported by a National Science Foundation Gradu-
ate Research Fellowship under grant number 1122274 (N. Held)
and a NASA Postdoctoral Program Fellowship (J. Saunders). It is
also supported by the Gordon and Betty Moore Foundation grant
number 3782 (M. Saito) and National Science Foundation grant
EarthCube 1639714.

REFERENCES

[BOKEH] Bokeh Project. http://bokeh.pydata.org/.
[DASK] Dask Project. https://dask.pydata.org/en/latest/.
[DATASHADER] Datashader Project. http://datashader.org/index.html.
[EGGLESTON2016] Eggleston, E. M., & Hewson, I. (2016). Abundance

of two Pelagibacter ubique bacteriophage genotypes
along a latitudinal transect in the north and south At-
lantic Oceans. Frontiers in Microbiology, 7(SEP), 1–9.
https://doi.org/10.3389/fmicb.2016.01534

[GARCIA2014] Garcia, H. E., R. A. Locarnini, T. P. Boyer, J. I.
Antonov, O.K. Baranova, M.M. Zweng, J.R. Reagan,
D.R. Johnson, 2014. World Ocean Atlas 2013, Volume
3: Dissolved Oxygen, Apparent Oxygen Utilization,
and Oxygen Saturation. S. Levitus, Ed., A. Mishonov
Technical Ed.; NOAA Atlas NESDIS 75, 27 pp.

112 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

[HOLOVIEWS] Holoviews Project. http://holoviews.org/.
[PANDAS] Pandas Project. https://pandas.pydata.org/.
[SAITO2014] Saito, M. A., McIlvin, M. R., Moran, D. M., Goepfert,

T. J., DiTullio, G. R., Post, A. F., & Lamborg, C. H.
(2014). Multiple nutrient stresses at intersecting Pacific
Ocean biomes detected by protein biomarkers. Science
(New York, N.Y.), 345(6201), 1173–7. https://doi.org/
10.1126/science.1256450

[SCAFFOLD] Scaffold, Proteome Software http://www.
proteomesoftware.com/products/scaffold/

[ULLOA2012] Ulloa, O., Canfield, D. E., DeLong, E. F., Letelier, R.
M., & Stewart, F. J. (2012). Microbial oceanography
of anoxic oxygen minimum zones. Proceedings of the
National Academy of Sciences, 109(40), 15996–16003.
https://doi.org/10.1073/pnas.1205009109

[WRIGHT2012] Wright, J. J., Konwar, K. M., & Hallam, S. J. (2012).
Microbial ecology of expanding oxygen minimum
zones. Nature Reviews Microbiology, 10(6), 381–394.
https://doi.org/10.1038/nrmicro2778

PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018) 113

Binder 2.0 - Reproducible, interactive, sharable
environments for science at scale

Project Jupyter‡†, Matthias Bussonnier‖†, Jessica Forde‡†, Jeremy Freeman‡‡†, Brian Granger§†, Tim Head¶†, Chris
Holdgraf‖∗, Kyle Kelley†††, Gladys Nalvarte∗∗†, Andrew Osheroff‡‡†, M Pacer†††, Yuvi Panda‖†, Fernando Perez‖†,

Benjamin Ragan-Kelley∗∗†, Carol Willing§†

https://youtu.be/KcC0W5LP9GM

F

Abstract—Binder is an open source web service that lets users create sharable,
interactive, reproducible environments in the cloud. It is powered by other core
projects in the open source ecosystem, including JupyterHub and Kubernetes
for managing cloud resources. Binder works with pre-existing workflows in the
analytics community, aiming to create interactive versions of repositories that
exist on sites like GitHub with minimal extra effort needed. This paper details
several of the design decisions and goals that went into the development of the
current generation of Binder.

Index Terms—cloud computing, reproducibility, binder, mybinder.org, shared
computing, accessibility, kubernetes, dev ops, jupyter, jupyterhub, jupyter note-
books, github, publishing, interactivity

Binder is a free, open source, and massively publicly available
tool for easily creating sharable, interactive, reproducible environ-
ments in the cloud.

The scientific community is increasingly unified around re-
producibility. A survey in 2016 of 1,576 researchers reported that
90% of respondents believed there exists a reproducibility crisis in
the scientific community. A majority of respondents also reported
difficulty reproducing the work of colleagues [Bak16]. Similar
results have been reported in the cell biology community [The]
and the machine learning community [Pin17]. Making research
reproducible requires pursuing two sub-goals, both of which are
difficult to achieve:

• technical reproducibility:
making reproducible scientific results possible at all

• practical reproducibility:
enabling others to reproduce results without difficulty

Both technical and practical reproducibility depend upon the
software and technology available to researchers at any moment
in time. With the growth in open source tools for data analysis,

† These authors contributed equally.
‡ Project Jupyter
|| UC Berkeley
‡‡
§ Cal Poly, San Luis Obispo
¶ Wild Tree Tech, Switzerland
* Corresponding author: choldgraf@berkeley.edu
†† Netflix
** Simula Research Lab

Copyright © 2018 Project Jupyter et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

as well as the “data heavy” approach many fields are adopting,
these problems become more complex yet more tractable than
ever before.

Fortunately, as the problem has grown more complex, the
open source community has risen to meet the challenge. Tools for
packaging analytics environments into “containers” allow others to
re-create the computational environments needed to run analyses
and evaluate results. Online communities make it easier to share
and discover scientific results. A myriad of open source tools
are freely available for doing analytics in open and transparent
ways. New paradigms for writing code and displaying results in
rich, engaging formats allow results to live next to the prose that
explains their purpose.

However, manual implementation of this processes is complex,
and reproducing the full stack of another person’s work is too
labor intensive and error-prone for day-to-day use. A recent study
of scientific repositories found that citation of "both visualization
tools as well as common software packages (such as MATLAB)
was a widespread failure" [SSM18]. As a result, the technical
barriers limit practical reproducibility. To lower the technical
barriers of sharing computational work, we introduce Binder 2.0,
a tool that we believe makes reproducibility more practically
possible.

An overview of Binder

Binder consists of a set of tools for creating sharable, interactive,
and deterministic environments that run on personal computers
and cloud resources. It manages the technical complexity around:

• creating containers to capture a code repository and its
technical environment;

• generating user sessions that run the environment defined
in those containers; and

• providing links that users can share with others to allow
them to interact with these environments.

Binder is built on modern-day tools from the open source
community and is itself fully open source for others to use.

You can access a public deployment of Binder at mybinder.org,
a web service that the Binder and JupyterHub teams run as a
demonstration of the BinderHub technology and as digital public
infrastructure for those who wish to share Binder links so that
others may interact with their code repositories. It is meant to be a

114 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

testing ground for different use cases in the Binder ecosystem
as well as a public service for the scientific and educational
community. mybinder.org serves nearly 9,000 daily sessions,
and has already been used for reproducible publishing1, sharing
interactive course materials2, at the university and high-school
level, creating interactive package documentation in Python3 with
Sphinx Gallery, and sharing interactive content that requires a
language-specific kernel in order to run4.

Binder continues in the tradition of promoting "the complete
software development environment and the complete set of in-
structions which generated the figures" [BD95] by effortlessly
providing these tools to the general public in the cloud. The first
iteration of Binder was released in 2016 [FO16] and provided
a prototype that managed reproducible user environments in the
cloud. In the years since, there have been several advances in
technology for managing cloud resources, serving interactive user
environments, and creating reproducible containers for analytics.
Binder 2.0 utilizes these new tools, and it is more scalable and
maintainable, is easier to deploy, and supports more analytic
and scientific workflows than before. While previous work has
specified methods or file formats for the sharing of research
[BD95] [GL07] [LV15], Binder only requires configuration files
typically seen in contemporary software development. Related on-
line platforms for reproducibility also have specific front ends for
presenting research and commands for running code [AESM17]
[LV15] [SHP12], while Binder flexibly allows users to inter-
act with a repository using modern data science tools such as
RStudio, Jupyter Notebok, and JupyterLab. By containerizing the
environment and using these front-end data science tools, Binder
prioritizes an interactive user experience so that "someone else can
discover it for themselves" [Som18].

At the highest level, Binder is a particular combination of
open source tools to achieve the goal of sharable, reproducible
environments. This paper lays out the technical vision of Binder
2.0, including the guiding principles and goals behind each piece
of technology it uses. It also discusses the guiding principles
behind the new open source technology that the project has
created.

Guiding Principles of Binder

Several high-level project goals drive the development of Binder
2.0. These are outlined below:

Deployability. Binder is driven by open source technology,
and the BinderHub server should be deployable by a diverse
representation of people in the scientific, publishing, and data
analytic communities. This often means that it must be maintained
by people without an extensive background in cloud management
and dev-ops skills. BinderHub (the underlying technology behind
Binder) should thus be deployable on a number of cloud frame-
works, and with minimal technical skills required.

Maintainability. Deploying a service on cloud resources is
important but happens less frequently than maintaining those
cloud resources all day, every day. Binder is designed to utilize
modern-day tools in cloud orchestration and monitoring. These

1. https://github.com/minrk/ligo-binder
2. https://www.inferentialthinking.com/chapters/01/3/plotting-the-

classics.html
3. https://sphinx-gallery.readthedocs.io/en/latest/advanced_configuration.

html#binder-links
4. http://greenteapress.com/wp/think-dsp/

tools minimize the time that individuals must spend ensuring that
the service performs as expected. Recognizing the importance
of maintainability, the Binder team continues to work hard to
document effective organizational and technical processes around
running a production BinderHub-powered service such as my-
binder.org. The goal of the project is to allow a BinderHub service
to be run without specialized knowledge or extensive training in
cloud orchestration.

Pluggability. Binder’s goal is to make it easier to adopt and
interact with existing tools in the open source ecosystem. As
such, Binder is designed to work with a number of open source
packages, languages, and user interfaces. In this way, Binder acts
as glue to bring together pieces of the open source community,
and it easily plugs into new developments in this space.

Accessibility. Binder should be as accessible as possible to
members of the open source, scientific, educational, and data
science communities. By leveraging pre-existing workflows in
these communities rather than requiring people to adopt new
ones, Binder increases its adoption and user acceptance. Input
and feedback from members of those communities guide future
development of the technology. As a key goal, Binder should
support pre-existing scientific workflows and improve them by
adding sharability, reproducibility, and interactivity.

Usability. Finally, the Binder team wants simplicity and fast
interaction to be core components of the service. Minimizing
the number of steps towards making your work sharable via
Binder helps provide an effective user experience. Consumers
of shared work must be able to quickly begin using the Binder
repository that another person has put together. To achieve these
goals, creating multiple ways in which people can use Binder’s
services is key. For example, easily sharing a link to the full
Binder interface and offering a public API endpoint to request and
interact with a kernel backed by an arbitrary environment increase
usability.

In the following sections, we describe the three major technical
components that the Jupyter and Binder teams have developed for
the Binder project—JupyterHub, repo2docker, and BinderHub. All
are open source, and rely heavily on other tools in the open source
ecosystem. We’ll discuss how each feeds into the principles we’ve
outlined above.

Scalable interactive user sessions

Binder runs as either a public or a private web service, and it
needs to handle potentially large spikes in user sessions as well
as sustained user activity over several minutes of time. It also
needs to be deployable on a number of cloud providers in order
to avoid locking in the technology to the offerings of a single
cloud service. To accomplish this Binder uses a deployment of
JupyterHub that runs on Kubernetes, both of which contribute to
BinderHub’s scalability and maintainability.

JupyterHub, an open source tool from the Jupyter commu-
nity, provides a centralized resource that serves interactive user
sessions. It allows definition of a computational environment
(e.g. a Docker image) that runs the Jupyter notebook server.
A core principle of the Jupyter project is to be language- and
workflow-agnostic, and JupyterHub is no exception. JupyterHub
can be used to run dozens of languages served with a variety of
user interfaces, including Jupyter Notebooks [Bus18], JupyterLab
[Pro17b], RStudio [Pro17a], Stencila [RN18], and OpenRefine
[Hea18].

BINDER 2.0 - REPRODUCIBLE, INTERACTIVE, SHARABLE ENVIRONMENTS FOR SCIENCE AT SCALE 115

Fig. 1: Two example user interfaces that users can run within Binder. Because BinderHub uses a JupyterHub for hosting all user sessions,
one can specify an environment that serves any Jupyter-supported user interface, provided that it can run via the browser. A. Examining image
data from Ross et al. on Binder with JupyterLab [RHDV17]. JupyterLab provides access to the file system (left column), a notebook interface
(middle column), as well as traditional script files and interactive kernels (right column). B. An RStudio interface running the modern RStudio
and tidyverse stack. In both cases, users can explore the code and make their own modifications from within the Binder session, without
any need to manually install dependencies.

Another key benefit of JupyterHub is that it is straightforward
to run on Kubernetes, a modern-day open source platform for
orchestrating computational resources in the cloud. Kubernetes
can be deployed on most major cloud providers, self-hosted
infrastructure (such as OpenStack deployments), or even on an
individual laptop or workstation. For example, Google Cloud
Platform, Microsoft Azure, and Amazon AWS each have managed
Kubernetes clusters that run with minimal user intervention. Thus,
it is straightforward to deploy JupyterHub on any major cloud
provider.

Kubernetes is designed to be relatively self-healing, often
automatically resolving problems that would normally disrupt the
service. It also has a declarative syntax for defining the cloud re-
sources that are needed to run a web service. Thus, maintainers can
update a JupyterHub running on Kubernetes with minimal changes
to configuration files for the deployment, providing the flexibility
to configure the JupyterHub as needed, without requiring a lot of
hands-on intervention and tinkering.

Finally, Kubernetes is both extremely scalable and battle-tested
because it was originally developed to run Google’s web services.
A cloud orchestration tool that can handle the usage patterns of
a service like GMail can almost certainly handle the analytics
environments that are served with Binder. In addition, by using
Kubernetes, Binder (with JupyterHub) leverages the power of
Kubernetes’ strong open source community. As more companies,
organizations, and universities adopt and contribute to the tool, the
Binder community will benefit from these advances.

There are several use-cases of JupyterHub being used for
shared, interactive computing. For example, UC Berkeley hosts
a Foundations in Data Science [Ber] course that serves nearly
1,000 interactive student sessions simultaneously. The Wikimedia
foundation also uses JupyterHub to facilitate users accessing the
Wikipedia dataset [Wik], allowing them to run bots and automate
the editing process with a Jupyter interface. Finally, organizations
such as the Open Humans Project provide a JupyterHub for their
community [Ope] to analyze, explore, and discover interesting
patterns in a shared dataset.

Deterministic environment building - Repo2Docker

Docker [Doc] is extremely flexible, and has been used through-
out the scientific and data science community for standardizing
environments that are sharable with other people. A Docker
image contains nearly all of the pieces necessary to re-run an
analysis. This provides the right balance between flexibility (e.g.
a Docker image can contain basically any environment) and being
lightweight to deploy and store in the cloud. JupyterHub can serve
an arbitrary environment to users based off of a Docker image, but
how is this image created in the first place?

While it is possible (and common) to hand-craft a Docker
image using a set of instructions called a Dockerfile, this step
requires a considerable amount of knowledge about the Docker
platform, making it a high barrier to the large majority of scientists
and data analysts. Binder’s goal is to operate with many different
workflows in data analytics, and requiring the use of a Dockerfile
to define an environment is too restrictive.

At the same time, the analytics community already makes
heavy use of online code repositories, often hosted on websites
such as GitHub [Git] or Bitbucket [Atl]. These sites are home
to tens of thousands of repositories containing the computational
work for research, education, development, and general commu-
nication. Best practices in development already dictate storing the
requirements needed (in text files such as environment.yml)
along with the code itself (which often lives in document structures
such as Jupyter Notebooks or RMarkdown files). As a result, in
many cases the repository already contains all the information
needed to build the required environment.

Binder’s solution to this is a lightweight tool called
“repo2docker” [Pro17c]. It is an open source command line tool
that converts code repositories into a Docker image suitable for
running with JupyterHub. Repo2docker:

1) is called with a single argument, a path to a git repository,
and optionally a reference to a git branch, tag, or commit
hash. The repository can either be online (such as on
GitHub or GitLab) or local to the person’s computer.

2) clones the repository, then checks out the reference that
it has been passed (or defaults to “master”).

116 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

3) looks for one or more “configuration” files that are used
to define the environment needed to run the code inside
the repository. These are generally files that already exist
in the data science community. For example, if it finds
a requirements.txt file, it assumes that the user
wants a Python installation and installs everything inside
the file. If it finds an install.R file, it assumes the user
wants RStudio available, and pre-installs all the packages
listed inside.

4) constructs a Dockerfile that builds the environment
specified by the configuration files, and that is meant to
be run via a Jupyter notebook server.

5) builds an image from this Dockerfile, and then regis-
ters it online with a Docker repository of choice.

Repo2docker aims to be flexible in the analytics workflows it
supports, and it minimizes the amount of effort needed to support a
new workflow. A core building block of repo2docker is the “Build
Pack” - a class that defines all of the operations needed to construct
the environment needed for a particular analytics workflow. These
Build Packs have a detect method that returns True when a par-
ticular configuration file is present (e.g. requirements.txt
will trigger the Python build pack). They also have a method called
get_assemble_scripts that inserts the necessary lines into
a Dockerfile to support this workflow.

For example, below we show a simplified version of the
Python build pack in repo2docker. In this case, the detect
method looks for a requirements.txt file and, if it exists,
triggers the get_assemble_scripts method, which inserts
lines into the Dockerfile that install Python and pip. Binder uses
repo2docker to build repository images dynamically.

class PythonBuildPack(CondaBuildPack):
"""Setup Python for use with a repository."""

def __init__(self):
...

def get_assemble_scripts(self):
"""Return build-steps specific to this repo."""
assemble_scripts = super().get_assemble_scripts()
KERNEL_PYTHON_PREFIX is the env with the kernel
whether it's distinct from the notebook
or the same.
pip = '${KERNEL_PYTHON_PREFIX}/bin/pip'

install requirements.txt in the kernel env
requirements_file = self.binder_path(
'requirements.txt')

if os.path.exists(requirements_file):
assemble_scripts.append((

'${NB_USER}',
'{} install --no-cache-dir -r "{}"'.format(

pip, requirements_file)
))

return assemble_scripts

def detect(self):
"""Check if repo builds w/ Python buildpack."""
requirements_txt = self.binder_path(
'requirements.txt')

return os.path.exists(requirements_txt)

Repo2docker also supports more generic configuration files that
are applied regardless of the particular Build Pack that is detected.
For example, a file called “postBuild” will be run from the shell
after all dependencies are installed. This is often used to pre-
compile code or download datasets from the web.

Fig. 2: The BinderHub user interface. Users input a link to a public
git repository. Binder will check out this repository and build the
environment needed to run the code inside. It then provides you a link
that can be shared with others so that they may run an interactive
session that runs the repository’s code.

Finally, in the event that a particular setup is not natively
supported, repo2docker will also build a Docker image from a
plain Dockerfile. This means users are never blocked by the
design of repo2docker.

By modularizing the environment generation process in this
fashion, it is possible to mix and match environments that are
present in the final image. Repo2docker’s goal is to allow for a
fully composable analytics environment. If a researcher requires
Python 2, 3, RStudio, and Julia, simultaneously for their work,
repo2docker should enable this.

In addition, by capturing pre-existing workflows rather than
requiring data analysts to adopt new ones, there is a minimal
energy barrier towards using repo2docker to deterministically
build images that run a code repository. For example, if the
following requirements.txt file is present in a repository,
repo2docker will build an image with Python 3 and the packages
pip installed.
$ cat requirements.txt
numpy
scipy
matplotlib

While the following file name/content will install RStudio with
these R commands run before building the Docker image.:
$ cat binder/install.R
install.packages("ggplot2")

$ cat binder/runtime.txt
r-2017-10-24

In this case, the date specified in runtime.txt instructs
repo2docker to use a specific MRAN repository [Mic] date. In
addition, note that these files exist in a folder called binder/
(relative to the repository root). If repo2docker discovers a folder
of this name, it will build the environment from the contents of
this folder, ignoring any configuration files that are present in the
project’s root. This allows users to dissociate the configuration
files used to build the package from those used to share a Binder
link.

By facilitating the process by which researchers create these
reproducible images, repo2docker addresses the “works for me”
problem that is common when sharing code. There are no longer

BINDER 2.0 - REPRODUCIBLE, INTERACTIVE, SHARABLE ENVIRONMENTS FOR SCIENCE AT SCALE 117

Fig. 3: The BinderHub architecture for interactive GUI sessions. Users connect to the Binder UI via a public URL. All computational
infrastructure is managed with a Kubernetes deployment (light green) managing several pods (dark green) that make up the BinderHub
service. Interactive user pods (blue squares) are spawned and managed by a JupyterHub.

breaking differences in the environment of two users if they are
running code from the same image generated by repo2docker.
Additionally, researchers can use repo2docker to confirm that all
of the information needed to recreate their analysis is contained
within their configuration files, creating a way to intuitively define
“recipes” for reproducing one’s work.

A web-interface to user-defined kernels and interactive ses-
sions - BinderHub

JupyterHub can serve multiple interactive user sessions from
pre-defined Docker images in the cloud. Repo2docker generates
Docker images from the files in a git repository. BinderHub is the
glue that binds these two open source tools together. It uses the
building functionality of repo2docker, the kernel and user-session
hosting of JupyterHub, and a Docker registry that connects these
two processes together. BinderHub defines two primary patterns
of interaction with this process: sharable, interactive, GUI-based
sessions; and a REST API for building, requesting, and interacting
with user-defined kernels.

The BinderHub User Interface

The primary pattern of interaction with BinderHub for an author
is via its “build form” user interface. This form lets users point
BinderHub to a public git repository. When the form is filled in
and the “launch” button is clicked, BinderHub takes the following
actions:

1) Check out the repository at the version that is specified.
2) Check the latest commit hash. BinderHub compares the

version specified in the URL with the versions that have
been previously built for this repository in the registry (if
a branch is given, BinderHub checks the latest commit
hash on this branch).

3) If the version has not been built, launch a repo2docker
process that builds and registers an image from the repos-
itory, then returns a reference to the registered image.

4) Create a temporary JupyterHub user account for the
visitor, with a private token.

5) Launch a JupyterHub user session that sources the
repo2docker image in the registry. This session will serve
the environment needed to run the repository, along with
any GUI that the user specifies.

6) Clean up the user session. Once the user departs,
Binder destroys the temporary user ID for the user’s

unique session, as well as their temporary files from their
interactive session (steps 4 and 5). The Docker image for
the repository persists, and will be used in subsequent
launch attempts (as long as the repository commit hash
does not change).

Once a repository has been built with BinderHub, authors can
then share a URL that triggers this process. URLs for BinderHub
take the following form:
<bhub-url>/v2/<repoprovider>/<org>/<reponame>/<ref>

For example, the URL for the binder-examples repository
that builds a Julia environment is
mybinder.org/v2/gh/binder-examples/julia-python/master

When a user clicks on this link, they will be taken to a brief loading
page as a user session that serves this repository is created. Once
this process is finished, they can immediately start interacting with
the environment that the author has created.

The BinderHub REST API

While GUIs are preferable for most human interaction with a
BinderHub, there are also situations when a programmatic or
text-based interaction is preferable. For example, someone may
wish to use BinderHub to request arbitrary kernels that power
computations underlying a completely different GUI. For these
use cases, BinderHub also provides a REST API that controls all
of the steps described above.

BinderHub currently provides a single REST endpoint that
allows users to programmatically build and launch Binder reposi-
tories. It takes the following form:
<bhub-url>/build/<provider>/<spec>

This follows a similar pattern to BinderHub’s sharable URLs. For
example, the following API request results in a Binder environ-
ment for the JupyterLab example repository on mybinder.org:
mybinder.org/build/gh/binder-examples/jupyterlab/master

Accessing this endpoint will trigger the following events:

1) Check if the image for this URL exists in the BinderHub
cached image registry. If yes, launch it.

2) If it doesn’t exist in the image registry, check if a build
is currently running. If there is not, then start a build
process. If there is, then attach to the pre-existing build
process.

118 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Fig. 4: play.nteract.io [nte16] is a GUI front-end that connects to the
mybinder.org REST API. When a user opens the page, it requests
a kernel from mybinder.org according to the environment chosen in
the top-right menu. Once mybinder.org responds that it is ready, users
can execute code that will be sent to their Binder kernel, with results
displayed on the right.

3) Stream logs from the build process to the user.
4) If the build succeeds, contact the JupyterHub API, telling

it to launch a user server with the environment that has
just been built.

5) Once the server is launched, display a message showing
the URL where they can connect to the notebook server
(and thus connect with the Jupyter Notebook Server
REST API).

Information about the process above is streamed to the user
via a persistent HTTP connection with structured JSON messages
via the EventStream protocol. Here’s an example of the output for
the above build:

data: {"phase": "built",
"imageName": "gcr.io/binder-prod/r2d-051...",
"message": "Found built image, launching..."}

data: {"phase": "launching", "message": "Launching...}

data: {"phase": "ready",
"message": "server running at <POD-URL>",
"url": "<POD-URL>",
"token": "<POD-TOKEN>"}

In this case, the user can then access the value in url: to use
their Binder session (either via their browser, or programmatically
via the notebook server REST API served at this URL).

There are already several examples of services that use Binder-
Hub’s REST API to run webpages and applications that utilize
arbitrary kernel execution. For example, thebelab [Min] makes it
possible to deploy HTML with code blocks that are powered by a
BinderHub kernel. The website creator can define the environment
needed to run code on the page, and the end user can generate
interactive code output once they visit the webpage. There are also
several applications that use BinderHub’s kernel API to power
their computation. For example, the nteract [nte16] project uses
BinderHub to run an interactive code sandbox that serves an
nteract interface and can be powered by arbitrary kernels served
by BinderHub.

BinderHub is permissively licensed and intentionally modular
in order to serve as many use cases as possible. Our goal is
to provide the tools to allow any person or organization to
provide arbitrary, user-defined kernels that run in the cloud. The
Binder team runs one such service as a proof-of-concept of the
technology, as well as digital public infrastructure that can be used

to share interactive code repositories. This service runs at the URL
mybinder.org and will be discussed in the final section.

Mybinder.org: Maintaining and sustaining a public service

In addition to providing a showcase for the technical components
of the BinderHub, repo2docker, and JupyterHub architecture,
the Binder project is also a case study in the maintenance and
deployment of an open-source service. Managing and providing
a site such as mybinder.org is not trivial, with challenges in
team operations, maintaining service stability without any full-
time staff, and exploring models for keeping the project financially
sustainable over time. This final section describes recent efforts to
address some of these questions, and to explore possible outcomes
for others.

The Binder team (and thus mybinder.org) runs on a model
of transparency and openness in the tools it creates as well
as the operations of mybinder.org. The Binder team has put
together several group processes and documentation to facilitate
maintaining this public service, and to provide a set of resources
for others who wish to do the same. For example, the Binder Site
Reliability Guide5 is continuously updated with team knowledge,
incident reports, helper scripts, and a description of the technical
deployment at mybinder.org. There are also several data streams
that the Binder team routinely makes available for others who are
interested in deploying and maintaining a BinderHub service. For
example, the Binder Billing6 repository shows all of the cloud
hardware costs for the last several months of mybinder.org oper-
ation. In addition, the Binder Grafana board7 shows a high-level
view of the status of the BinderHub, JupyterHub, and Kubernetes
processes underlying the service.

Cost of running the public Binder service

The Binder team has designed the public service to be as cost
effective as possible. mybinder.org restricts users to one CPU and
two GB of RAM. We save a great deal by not providing users with
persistent storage across sessions. Users can only access public git
repositories and are restricted in the kinds of network I/O that can
take place. In addition, a BinderHub deployment efficiently uses
its resources in order to avoid over-provisioning cloud resources.

The decision to avoid the notion of a user "identity" in partic-
ular has strong effects on the cost of running a BinderHub server.
Because users do not require persistent storage (e.g. the content
of any changes they make to Jupyter Notebooks throughout a
session), a significant cost of running a JupyterHub is avoided.
In addition, a BinderHub deployment can efficiently use the
resources available to it in order to avoid over-provisioning cloud
resources as much as possible.

Currently, the hosting bill for mybinder.org runs at a cost of
around $180 per day and around 7,000 users per day. This comes
out to around 180×30

7000×30 ≈ 3 cents per user. The mybinder.org team
publishes its daily hosting costs in a public repository on GitHub
[Jup18]. It hopes that this serves to encourage other organizations
to deploy BinderHub for their own purposes, since it is possible
to do so in a cost-effective manner.

Finally, because Kubernetes is an open source system for
managing containers, it has been deployed on a number of cloud
providers as well as on self-owned hardware and virtual machines.

5. http://mybinder-sre.readthedocs.io/en/latest/
6. https://github.com/jupyterhub/binder-billing
7. https://grafana.mybinder.org

BINDER 2.0 - REPRODUCIBLE, INTERACTIVE, SHARABLE ENVIRONMENTS FOR SCIENCE AT SCALE 119

Fig. 5: Cloud computing costs for running mybinder.org in 2018.
The x axis shows one point per day. The number of daily unique
users has consistently grown over this time, while modifications to the
BinderHub codebase (as well as the cloud resources used) have kept
costs relatively flat. As a result, mybinder.org currently operates
at about 3 cents per user per day.

While mybinder.org currently runs on the Google Cloud Platform,
a BinderHub can run on any typical deployment of Kubernetes
with minimal hardware requirements. This flexibility helps avoid
vendor lock-in and is crucial for an open source tool such as
BinderHub and JupyterHub. It also makes it possible for my-
binder.org (or other BinderHub deployments) to seek the most
cost-effective option for its needs.

Models for sustainability

The Binder team is exploring multiple models for sustaining
the public digital infrastructure of mybinder.org, the team re-
quired to operate it, and the broader Binder ecosystem. At its
current rate, the annual hosting cost of mybinder.org is around
$180×365 ≈ $66,000, an amount that could be sustainable with
a grant-funded model. Operating and supporting the public digital
infrastructure of mybinder.org requires several staff members
distributed globally to provide reasonable coverage across time
zones for user support and incident response. This means salary
costs will require a significant amount of funding.

The Binder team is actively exploring a federation model for
BinderHub servers. Other organizations, companies, or univer-
sities can deploy their own BinderHubs for their own users or
students, either on their own hardware or on cloud providers such
as Google, Amazon, or Microsoft. These organization-specific
deployments could require authentication or provide access to
more complex cloud resources. In this case, mybinder.org could
serve as a hub that connects this federated network of BinderHubs
together, directing the user to an organization-specific BinderHub
provided that they have the proper credentials on their machine.

The future of Binder

This paper outlines the technical infrastructure underlying my-
binder.org and the BinderHub open source technology, including
the guiding design principles and goals of the project. Binder is
designed to be modular, to adapt itself to pre-existing tools and
workflows in the open source community, and to be transparent in
its development and operations.

Each of the tools described above is open source and permis-
sively licensed, and we welcome the contributions and input from
others in the open source community. In particular, we are excited
to pursue Binder’s development in the following scenarios:

1) Reproducible publishing. One of the core benefits of
BinderHub is that it can generate deterministic environ-
ments that are linked to a code repository stored in a long-
term archive like Zenodo8. This makes it useful for gen-
erating static representations of the environment needed
to reproduce a scientific result. Binder has already been
used alongside scientific publications ([LIG], [RHDV17],
[CR18], [HRM+17], [RT16], [NHKvdW18]) to provide
an interactive and reproducible document with minimal
added effort. In the future, the Binder project hopes
to partner with academic publishers and professional
societies to incorporate these reproducible environments
into the publishing workflow.

2) Education and interactive materials. Binder’s goal is
to lower the barrier to interactivity, and to allow users to
utilize code that is hosted in repository providers such as
GitHub. Because Binder runs as a free and public service,
it could be used in conjunction with academic programs
to provide interactivity when teaching programming and
computational material. For example, the Foundations
in Data Science course at UC Berkeley already utilizes
mybinder.org to provide free interactive environments for
its open source textbook. The Binder team hopes to find
new educational uses for the technology moving forward.

3) Access to complex cloud infrastructure. While my-
binder.org provides users with restricted hardware for
cost-savings purposes, a BinderHub can be deployed on
any cloud hardware that is desired. This opens the door
for using BinderHub as a shared, interactive gateway that
provides access to an otherwise inaccessible dataset or
computational resource. For example, the GESIS Institute
for Social Sciences provides a JupyterHub and Binder-
Hub [GES] for their users at the university. The Binder
team hopes to find new cases where BinderHub can be
used as an entrypoint to provide individuals access to
more sophisticated resources in the cloud.

Binder is a free, open source, and massively publicly available
tool for easily creating sharable, interactive, reproducible environ-
ments in the cloud. The Binder team is excited to see the Binder
community continue to evolve and utilize BinderHub for new uses
in reproducibility and interactive computing.

REFERENCES

[AESM17] André Anjos, Laurent El-Shafey, and Sébastien Marcel. BEAT:
An Open-Source Web-Based Open-Science platform. April
2017. URL: http://arxiv.org/abs/1704.02319, arXiv:1704.
02319.

8. https://zenodo.org

120 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

[Atl] Atlassian. Bitbucket. https://bitbucket.org. Accessed: 2018-5-
24. URL: https://bitbucket.org.

[Bak16] Monya Baker. 1,500 scientists lift the lid on reproducibility.
Nature, 533(7604):452–454, May 2016. URL: http://dx.doi.
org/10.1038/533452a.

[BD95] Jonathan B Buckheit and David L Donoho. WaveLab and
reproducible research. In Anestis Antoniadis and Georges
Oppenheim, editors, Wavelets and Statistics, pages 55–81.
Springer New York, New York, NY, 1995. URL: https:
//doi.org/10.1007/978-1-4612-2544-7_5.

[Ber] Berkeley Division of Data Sciences. Foundations of data
science. http://data8.org/. Accessed: 2018-5-23. URL:
http://data8.org/.

[Bus18] Matthias Bussonnier. I python, you r, we julia. https://medium.
com/@mbussonn/baf064ca1fb6, April 2018. Accessed: 2018-
5-23. URL: https://medium.com/@mbussonn/baf064ca1fb6.

[CR18] Neil Cornish and Travis Robson. The construction and use of
LISA sensitivity curves. March 2018. URL: http://arxiv.org/
abs/1803.01944, arXiv:1803.01944.

[Doc] Docker, Inc. Docker. https://www.docker.com/. Accessed:
2018-5-24. URL: https://www.docker.com/.

[FO16] Jeremy Freeman and Andrew Osheroff. Toward
publishing reproducible computation with binder.
https://elifesciences.org/labs/a7d53a88/toward-publishing-
reproducible-computation-with-binder, May 2016. Accessed:
2017-12-11. URL: https://elifesciences.org/labs/a7d53a88/
toward-publishing-reproducible-computation-with-binder.

[GES] GESIS – Leibniz Institute for the Social Sciences. GESIS
notebooks (beta). https://notebooks.gesis.org/. Accessed:
2018-5-23. URL: https://notebooks.gesis.org/.

[Git] GitHub. GitHub. URL: https://github.com.
[GL07] Robert Gentleman and Duncan Temple Lang. Statistical

analyses and reproducible research. J. Comput. Graph. Stat.,
16(1):1–23, 2007. URL: http://www.jstor.org/stable/27594227.

[Hea18] Tim Head. openrefineder, 2018. URL: https://github.com/
betatim/openrefineder.

[HRM+17] Christopher R Holdgraf, Jochem W Rieger, Cristiano Micheli,
Stephanie Martin, Robert T Knight, and Frederic E Theunis-
sen. Encoding and decoding models in cognitive electrophys-
iology. Front. Syst. Neurosci., 11:61, September 2017. URL:
http://dx.doi.org/10.3389/fnsys.2017.00061.

[Jup18] JupyterHub. binder-billing, 2018. URL: https://github.com/
jupyterhub/binder-billing.

[LIG] LIGO Scientific Collaboration. LIGO open science center.
https://losc.ligo.org/tutorials/. Accessed: 2017-12-12. URL:
https://losc.ligo.org/tutorials/.

[LV15] Percy Liang and Evelyne Viegas. CodaLab worksheets for
reproducible, executable papers, December 2015. URL: https:
//nips.cc/Conferences/2015/Schedule?showEvent=5779.

[Mic] Microsoft. Microsoft R application network. URL: https://
mran.microsoft.com/.

[Min] R K Min. Thebelab. https://github.com/minrk/thebelab. Ac-
cessed: 2018-6-13. URL: https://github.com/minrk/thebelab.

[NHKvdW18] Mark C Neyrinck, Johan Hidding, Marina Konstantatou, and
Rien van de Weygaert. The cosmic spiderweb: equivalence
of cosmic, architectural and origami tessellations. Royal
Society Open Science, 5(4):171582, April 2018. URL: http:
//rsos.royalsocietypublishing.org/content/5/4/171582.

[nte16] nteract contributors. nteract, 2016. URL: https://play.nteract.
io/.

[Ope] Open Humans Foundation. Personal data notebooks. https://
www.openhumans.org/activity/personal-data-notebooks/. Ac-
cessed: 2018-5-24. URL: https://www.openhumans.org/
activity/personal-data-notebooks/.

[Pin17] Joelle Pineau. Reproducibility in deep reinforcement learning
and beyond, December 2017. URL: https://twitter.com/xtimv/
status/938917013086380032.

[Pro17a] Project Juptyer Contributors. Using R with jupyter / RStudio
on binder, 2017. URL: https://github.com/binder-examples/r.

[Pro17b] Project Jupyter Contributors. jupyterlab-demo, 2017. URL:
https://github.com/jupyterlab/jupyterlab-demo.

[Pro17c] Project Jupyter Contributors. repo2docker, 2017. URL: https:
//github.com/jupyter/repo2docker/.

[RHDV17] Andrew Slavin Ross, Michael C Hughes, and Finale Doshi-
Velez. Right for the right reasons: Training differentiable
models by constraining their explanations. In Proceedings of
the Twenty-Sixth International Joint Conference on Artificial

Intelligence, pages Pages 2662–2670., March 2017. URL:
https://www.ijcai.org/proceedings/2017/371.

[RN18] RK, Min and Daniel Nüst. nbstencilaproxy, 2018. URL: https:
//github.com/minrk/nbstencilaproxy.

[RT16] Hanno Rein and Daniel Tamayo. Second-order variational
equations for n-body simulations. Monthly Notices of the Royal
Astronomical Society, 459(3):2275–2285, July 2016. URL:
https://academic.oup.com/mnras/article/459/3/2275/2595117.

[SHP12] V Stodden, C Hurlin, and C Pérignon. RunMyCode.org: A
novel dissemination and collaboration platform for executing
published computational results. In 2012 IEEE 8th Interna-
tional Conference on E-Science, pages 1–8, October 2012.
URL: http://dx.doi.org/10.1109/eScience.2012.6404455.

[Som18] James Somers. The scientific paper is obsolete. The At-
lantic, April 2018. URL: https://www.theatlantic.com/science/
archive/2018/04/the-scientific-paper-is-obsolete/556676/.

[SSM18] Victoria Stodden, Jennifer Seiler, and Zhaokun Ma. An
empirical analysis of journal policy effectiveness for com-
putational reproducibility. Proc. Natl. Acad. Sci. U. S. A.,
115(11):2584–2589, March 2018. URL: http://dx.doi.org/10.
1073/pnas.1708290115.

[The] The American Society for Cell Biology. ASCB
member survey on reproducibility. Technical report.
URL: http://www.ascb.org/wp-content/uploads/2015/11/final-
survey-results-without-Q11.pdf.

[Wik] Wikimedia. PAWS: A web shell. https://wikitech.wikimedia.
org/wiki/PAWS. Accessed: 2018-5-23. URL: https://wikitech.
wikimedia.org/wiki/PAWS.

PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018) 121

Spatio-temporal analysis of socioeconomic
neighborhoods: The Open Source Longitudinal

Neighborhood Analysis Package (OSLNAP)

Sergio Rey‡∗, Elijah Knaap‡, Su Han‡, Levi Wolf§, Wei Kang‡

https://youtu.be/VWMj_rNb0io

F

Abstract—The neighborhood effects literature represents a wide span of the
social sciences broadly concerned with the influence of spatial context on social
processes. From the study of segregation dynamics, the relationships between
the built environment and health outcomes, to the impact of concentrated
poverty on social efficacy, neighborhoods are a central construct in empirical
work. From a dynamic lens, neighborhoods experience changes not only in their
socioeconomic composition, but also in spatial extent; however, the literature has
ignored the latter source of change. In this paper, we discuss the development
of a novel, spatially explicit tool: the Open Source Longitudinal Neighborhood
Analysis Package (OSLNAP) using the scientific Python ecosystem.

Index Terms—neighborhoods, GIS, clustering, dynamics

Introduction

For social scientists in a wide variety of disciplines, neighborhoods
are central thematic topics, focal units of analysis, and first-
class objects of inquiry. Despite their centrality in public health,
sociology, geography, political science, economics, psychology,
and urban planning, however, neighborhoods remain understudied.
One of the reasons for that is because researchers lack appropriate
analytical tools for understanding neighborhood evolution through
time and space. Towards this goal we are developing the open
source longitudinal neighborhood analysis program (OSLNAP).
We envisage OSLNAP as a toolkit for better, more open and repro-
ducible science focused on neighborhoods and their sociospatial
ecology. In this paper we first provide an overview of the main
components of OSLNAP. Next, we present an illustration of
selected OSLNAP functionality. We conclude the paper with a
road map for future developments.

OSLNAP

Neighborhood analysis involves a multitude of analytic tasks, and
different types of inquiry lead to different analytical pipelines
in which distinct tasks are combined in sequence. OSLNAP is
designed in a modular fashion to facilitate the composition of

* Corresponding author: sergio.rey@ucr.edu
‡ Center for Geospatial Sciences, University of California, Riverside
§ School of Geographical Sciences, University of Bristol

Copyright © 2018 Sergio Rey et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

different pipelines for neighborhood analysis. Its functionality is
available through several interfaces that include a web-based front
end as well as a library for scripting in Jupyter notebooks or at
the shell. As such, OSLNAP is intended to support different types
of researchers and questions. For example, a sociologist interested
in comparative segregation dynamics can use OSLNAP to derive
time-consistent boundaries for a collection of US metropolitan ar-
eas from 1980-2010. Alternatively, public health epidemiologists
can use the same boundaries to study the impact of neighborhood
context on childhood obesity trends. Both of these types of studies
might be characterized as "neighborhood effects" studies as neigh-
borhood units serve as containers to study different socioeconomic
processes.

An alternative group of studies falls under the "neighborhood
dynamics" label. Here the interest is in the neighborhood units
themselves and how their boundaries and internal socioeconomic
composition evolve over time. Processes such as gentrification
and the so called great inversion [Ehr12] where wealthy, higher
educated, white populations are relocating into the center cities
while growing numbers of minorities move to the suburbs both
fundamentally restructure urban and suburban neighborhoods.
OSLNAP is designed to support both neighborhood effects and
neighborhood dynamics modes of inquiry.

Here we provide an overview of each of the main analytical
components of OSLNAP before moving on to an illustration of
how selections of the analytical functionality can be combined for
particular use cases. OSLNAP’s analytical components are orga-
nized into three core modules: [a] data layer; [b] neighborhood
definition layer; [c] longitudinal analysis layer.

Data Layer

Like many quantitative analyses, one of the most important and
challenging aspects of longitudinal neighborhood analysis is the
development of a tidy and accurate dataset. When studying the
socioeconomic makeup of neighborhoods over time, this challenge
is compounded by the fact that the spatial units whose composition
is under study often change size, shape, and configuration over
time. The harmonize module provides social scientists with
a set of simple and consistent tools for building transparent
and reproducible spatiotemporal datasets. Further, the tools in
harmonize allow researchers to investigate the implications of

122 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Fig. 1: Enumeration Unit Changes [U.S10].

alternative decisions in the data processing pipeline and how those
decisions affect the results of their research.

Neighborhood demographic and socioeconomic data relevant
to social scientists are typically collected via a household census
or survey and aggregated to a geographic reporting unit such as
a state, county or zip code which may be relatively stable. The
boundaries of smaller geographies like census tracts, however,
often are designed to encapsulate roughly the same number of
people for the sake of comparability, which means that they are
necessarily redrawn with each data release as population grows
and fluctuates. Figure 1 illustrates the issues involved. Here two
census tracts from 2000 have been merged to form a new tract in
2010. However, while one of the original tracts is completely con-
tained in the new tracts, the second original tract is only partially
contained in the new tract. In other words, since same physical
location may fall within the boundary of different reporting units
at different points in time, it is impossible to compare directly a
single neighborhood with itself over time.

To facilitate temporal comparisons, research to date has pro-
ceeded by designating a “target” geographic unit or zone that is
held constant over time, and allocating data from other zones using
areal interpolation and other estimation techniques. This process is
sometimes known as “boundary harmonization” [LSX16]. While
“harmonized” data is used widely in neighborhood research, the
harmonization process also has known shortcomings, since the
areal interpolation of aggregate data is subject to the ecological
fallacy–the geographic manifestation of which is known as the
“Modifiable Areal Unit Problem” (MAUP) [Ope84]. Simply put,
MAUP holds that areal interpolation introduces bias since the
spatial distribution of variables in each of the overlapping zones
is unknown. A number of alternative approaches have been sug-
gested to reduce the amount of error by incorporating auxiliary
data such as road networks, which help to uncover the “true”
spatial distribution of underlying variables, but this remains an
active area of research [Sch17], [SQ13], [Tap10], [Xie95].

In practice, these challenges mean that exceedingly few neigh-
borhood researchers undertake harmonization routines in their
own research, and those performing temporal analyses typically
use exogenous, pre-harmonized boundaries from a commercial
source such as the Neighborhood Change Database (NCDB)
[Tat], or the freely available Longitudinal Tract Database (LTDB)
[LXS14]. The developers of these products have published studies
verifying the accuracy of their respective data, but those claims
have gone untested because external researchers are unable to fully

replicate the underlying methodology.
To overcome the issues outlined above, OSLNAP provides a

suite of methods for conducting areal interpolation and bound-
ary harmonization in the harmonize module. It leverages
geopandas and PySAL for managing data and performing
geospatial operations, and the PyData stack for attribute calcu-
lations [RA10]. The harmonize module allows a researcher to
specify a set of input data (drawn from the space-time database
described in the prior section), a set of target geographic units
to remain constant over time, and an interpolation function that
may be applied to each variable in the dataset independently. For
instance, a researcher may decide to use different interpolation
methods for housing prices than for the share of unemployed
residents, than for total population; not only because the researcher
may wish to treat rates and counts separately, but also because
different auxiliary information might be applicable for different
types of variables.

In a prototypical workflow, harmonize permits the end-user
to carry out a number of tasks: [a] compile and query a spatiotem-
poral database using either local data or connections to public data
services; [b] define the relevant variables to be harmonized and
optionally apply a different (spatial and/or temporal) interpolation
function to each; [c] harmonize temporal data to consistent spatial
units by either selecting an existing native unit (e.g. zip codes in
2016), inputting a user-defined unit (e.g. a theoretical or newly
proposed boundary), or developing new primitive units (e.g. the
intersection of all polygons).

Neighborhood Identification

Neighborhoods are complex social and spatial environments with
multiple interacting individuals, markets, and processes. Despite
decades of research it remains difficult to quantify neighborhood
context, and certainly no single variable is capable of capturing
the entirety of a neighborhood’s essential essence. For this reason,
several traditions of urban research focus on the application
of multivariate clustering algorithms to develop neighborhood
typologies. Such typologies are sometimes viewed as more holistic
descriptions of neighborhoods because they account for multiple
characteristics simultaneously [Gal01].

One notable tradition from this perspective called “geodemo-
graphics”, is used to derive prototypical neighborhoods whose
residents are similar along a variety of socioeconomic and demo-
graphic attributes [FG89], [SS14]. Geodemographics have been
applied widely in marketing [FE05], education [SL09], and health
research [PGL+11] among a wide variety of additional fields. The
geodemographic approach has also been criticized, however, for
failing to model geographic space formally. In other words, the
geodemographic approach ignores spatial autocorrelation, or the
“first law of geography”–that the attributes of neighboring zones
are likely to be similar.

Another tradition in urban research, known as “regionaliza-
tion” has thus been focused on the development of multivariate
clustering algorithms that account for spatial dependence explic-
itly. To date, however, these traditions have rarely crossed in the
literature, limiting the utility each approach might have toward
applications in new fields. In the clustermodule, we implement
both clustering approaches to (a) foster greater collaboration
among weakly connected components in the field of geographic
information science, and (b) to allow neighborhood researchers
to investigate the performance of multiple different clustering

SPATIO-TEMPORAL ANALYSIS OF SOCIOECONOMIC NEIGHBORHOODS: THE OPEN SOURCE LONGITUDINAL NEIGHBORHOOD ANALYSIS PACKAGE (OSLNAP) 123

solutions in their work and evaluate the implications of including
space as a formal component in their clustering models.

In OSLNAP, the cluster module leverages the scientific
python ecosystem, building from scikit-learn [PVG+11], geopan-
das [Geo18], and PySAL [Rey15]. Using input from the Data
Layer, the cluster module allows researchers to develop neigh-
borhood typologies based on either attribute similarity (the geode-
mographic approach) or attribute similarity with incorporated spa-
tial dependence (the regionalization approach). Given a space-time
data set, the cluster module permits three different treatments
of time when defining neighborhoods. The first focuses on the case
where only a single cross-section is available, and the clustering is
carried out to define neighborhoods for that one point in time.
In the second case, multiple waves or periods of observations
are available and the clustering is repeated for each time slice
of observations. This can be a useful approach if researchers
are interested in the durability and permanence of certain kinds
of neighborhoods. If similar types reappear in multiple cross
sections (e.g. if the k-means algorithm places the k-centers in
approximately similar locations each time period), then it may
be inferred that the metropolitan dynamics are somewhat stable,
at least at the macro level, since new kinds of neighborhoods do
not appear to be evolving and old, established neighborhood types
remain prominent. The drawback of this approach is the type of
a single neighborhood cannot be compared between two different
time periods because the types are independent in each period.

In the third approach, clusters are defined from all observations
in all time periods. The universe of potential neighborhood types
is held constant over time, the neighborhood types are consistent
across time periods, and researchers can examine how particular
neighborhoods get classified into different neighborhood types as
their composition transitions through different time periods. While
comparatively rare in the research, this latter approach allows a
richer examination of socio-spatial dynamics. By providing tools
to drastically simplify the data manipulation and analysis pipeline,
we aim to facilitate greater exploration of urban dynamics that will
help catalyze more of this research.

To facilitate this work, the cluster module provides
wrappers for several common clustering algorithms from
scikit-learn that can be applied . Beyond these, however,
it also provides wrappers for several spatial clustering algorithms
from PySAL, in addition to a number of state-of-the art algorithms
that have recently been developed [Wol18].

In a prototypical workflow, cluster permits the end-
user to: [a] query the (tidy) space-time dataset created via the
harmonize module; [b] define the neighborhood attributes and
time periods and on which to develop a typology; [c] run one or
more clustering algorithms on the space-time dataset to derive
neighborhood cluster membership. Clustering may be applied
cross-sectionally or on the pooled time-series, and clustering
may incorporate spatial dependence, in which case cluster
provides options for users to parameterize a spatial contiguity
matrix. Clustering results may be reviewed quickly via the built-
in plot() method, or interactively by leveraging the planned
geovisualization module.

Longitudinal Analysis

Having identified the neighborhood types for all units of analysis
over the whole time span, researchers might be interested in how
they evolve over time. The third core module of OSLNAP’s ana-
lytical components, change, provides a suite of functionality to-

wards this end. Traditional longitudinal analysis in neighborhood
contexts focuses solely on changes in residential socioeconomic
composition, while we and others have argued that changes in
geographic footprints are also substantively interesting [RAF+11].
Therefore, this component draws upon recent methodological
developments from spatial inequality dynamics and implements
two broad sets of spatially explicit analytics to provide deeper
insights into the evolution of socioeconomic processes and the
interaction between these processes and geographic structure.

Both sets of analytics operate on time series of neighborhood
types; they each take as input a set of spatial units of analysis
(e.g. census tracts) that have been assigned a categorical variable
for each point in time (e.g. the output of the cluster module).
They differ, however, in how the time series are modeled and
analyzed. The first set centers on transition analysis, which treats
each time series as stochastically generated from time point to
time point. It is in the same spirit of the first-order Markov Chain
analysis where a (k,k) transition matrix is formed by counting
transitions across all the k neighborhood types between any two
consecutive time points for all spatial units. One drawback of this
approach is that it treats all the time series as being independent of
one another and following an identical transition mechanism. The
spatial Markov approach was proposed by [Rey01] to interrogate
potential spatial interactions by conditioning transition matrices
on neighboring context while the spatial regime Markov approach
allows several transition matrices to be formed for different spatial
regimes which are constituted by contiguous spatial units. Both
approaches together with inferences have been implemented in
Python Spatial Analysis Library (PySAL) [Rey15] and Geospatial
Distribution Dynamics (giddy) package [gid18]. The change
module considers these packages as dependencies and wraps rel-
evant classes and functions to make them consistent and efficient
for longitudinal neighborhood analysis.

The other set of spatially explicit approach to neighborhood
dynamics is concerned with sequence analysis which treats each
time series of neighborhood types as a whole, in contrast to
transition analysis. The core of sequence analysis is the similarity
measure between a pair of sequences. Various aspects of a neigh-
borhood sequence such as the order in which successive neighbor-
hood types appears, the year(s) in which a specific neighborhood
type appears, and the duration of a neighborhood type could be
the focus of the similarity measure. Choosing which aspect or
aspects to focus on should be driven by the research question at
hand and the interpretation should proceed with caution [SR16].
A major approach of sequence analysis, the optimal matching
(OM) algorithm, which was originally used for matching protein
and DNA sequences [AT00], has been adopted to measure the
similarity between neighborhood sequences in metropolitan areas
such as Los Angeles and Chicago [Del16], [Del17]. It generally
works by finding the minimum cost for transforming one sequence
to another using a combination of operations including substitu-
tion, insertion, deletion and transposition. The similarity matrix is
then used as the input for another round of clustering to derive a
typology of neighborhood trajectory to produce several sequences
of neighborhood types typically happening in a particular order
[Del16].

In a prototypical workflow, the change module permits the
end user to explore the nature of neighborhood change from a
dynamic, holistic or combined holistic & dynamic perspective.
From a dynamic perspective, transition analysis can be used to
apply a first-order Markov chain model to look at probabilities

124 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

of transitioning between neighborhood types over time. It also
supports the use of a spatial Markov chains model to interrogate
the role of spatial interactions in shaping neighborhood dynamics
or the application of a spatial regime Markov chains model to
explore spatially heterogeneous neighborhood dynamics. From a
holistic perspective, sequence analysis involves the application of
the OM algorithm with classic cost functions for substitution,
insertion, deletion and transposition, or those explicitly taking
account of potential spatial dependence and spatial heterogeneity.
Finally, a combined holistic & dynamic perspective is gained by
feeding the output from transiton analysis, which is the empical
transition probability matrix, or spatially dependent transition
probability matrices into sequence analysis to help set operation
costs.

Empirical Illustration

In the following sections we demonstrate the utility of OSLNAP by
presenting the results of several initial analyses conducted with the
package. We begin with a series of cluster analyses, which are then
used to analyze neighborhood dynamics. Typically, workflows of
this variety would require extensive data collection, munging and
recombination; with OSLNAP, however, we accomplish the same
in just a few lines of code. Using the Los Angeles metropolitan
area as our example, we present three neighborhood typologies,
each of which leverages the same set of demographic and socioe-
conomic variables, albeit with different clustering algorithms. The
results show similarities across the three methods but also several
marked differences. This diversity of results can be viewed as
either nuisance or flexibility, depending on the research question
at hand, and highlights the need for research tools that facilitate
rapid creation and exploration of different neighborhood clustering
solutions. For each example, we prepare a cluster analysis for the
Los Angeles metropolitan region using data at the census tract
level. We visualize each clustering solution on a map, describe the
resulting neighborhood types, and examine the changing spatial
structure over time. For each of the examples, we cluster on the
following variables: race categories (percent white, percent black,
percent Asian, percent Hispanic), educational attainment (share
of residents with a college degree or greater) and socioeconomic
status (median income, median home value, percent of residents
in poverty).

Agglomerative Ward

We begin with a simple example identifying six clusters via
the agglomerative Ward method. Following the geodemographic
approach, we aim to find groups of neighborhoods that are similar
in terms of their residential composition, regardless of whether
those neighborhoods are physically proximate. Initialized with the
demographic and socioeconomic variables listed earlier, the Ward
method identifies three clusters that are predominantly white on
average but which differ with respect to socioeconomic status. The
other three clusters, meanwhile, tend to be predominantly minority
neighborhoods but are differentiated mainly by the dominant racial
group (black versus Hispanic/Latino) rather than by class. The
results, while unsurprising to most urban scholars, highlight the
continued segregation by race and class that characterize American
cities. For purposes of illustration, we give each neighborhood
type a stylized moniker that attempts to summarize succinctly its
composition (again, a common practice in the geodemographic
literature). To be clear, these labels are oversimplifications of the

socioeconomic context within each type, but they help facilitate
rapid consumption of the information nonetheless. The resulting
clusters are presented in Figure 2.

• Type 0. racially concentrated (black and Hispanic) poverty
• Type 1. minority working class
• Type 2. integrated middle class
• Type 3. white upper class
• Type 4. racially concentrated (Hispanic) poverty
• Type 5. white working class

When the neighborhood types are mapped, geographic patterns
are immediately apparent, despite the fact that space is not consid-
ered formally during the clustering process. These visualizations
reveal what is known as “the first law of geography”–that near
things tend to be more similar than distant things (stated otherwise,
that geographic data tend to be spatially autocorrelated) [Tob70].
Even though we do not include the spatial configuration as part
of the modeling process, the results show obvious patterns, where
neighborhood types tend to cluster together in euclidian space. The
clusters for neighborhoods type zero and four are particularly com-
pact and persistent over time (both types characterized by racially
concentrated poverty), helping to shed light on the persistence of
racial and spatial inequality. With these types of visualizations in
hand, researchers are equipped not only with analytical tools to
understand how neighborhood composition can affect the lives of
its residents (a research tradition known as neighborhood effects),
but also how neighborhood identities can transform (or remain
stagnant) over time and space. Beyond the simple diagnostics
plots presented above, OSLNAP also includes an interactive vi-
sualization interface that allows users to interrogate the results
of their analyses in a dynamic web-based environment where
interactive charts and maps automatically readjust according to
user selections.

Affinity Propagation

Affinity propagation is a newer clustering algorithm with imple-
mentations in scikit-learn that is capable of determining the num-
ber of clusters endogenously (subject to a few tuning parameters).
Initialized with the default settings, OSLNAP discovers 14 neigh-
borhood types in the Los Angeles region; in a way, this increases
the resolution of the analysis beyond the Ward example, since
increasing the number of clusters means neighborhoods are more
tightly defined with lower variance in their constituent variables.
On the other hand, increasing the number of neighborhood types
also increase the difficulty of interpretation since the each type
will be, by definition, less differentiable from the others. In the
proceeding section, we discuss how researchers can exploit this
variability in neighborhood identification to yield different types
of dynamic analyses. Again, we find it useful to present stylized
labels to describe each neighborhood type:

• Type 0. white working class
• Type 1. white extreme wealth
• Type 2. black working class
• Type 3. Hispanic poverty
• Type 4. integrated poverty
• Type 5. Asian middle class
• Type 6. white upper-middle class
• Type 7. integrated Hispanic middle class
• Type 8. extreme racially concentrated poverty
• Type 9. integrated extreme poverty

SPATIO-TEMPORAL ANALYSIS OF SOCIOECONOMIC NEIGHBORHOODS: THE OPEN SOURCE LONGITUDINAL NEIGHBORHOOD ANALYSIS PACKAGE (OSLNAP) 125

Fig. 2: Neighborhood Types in LA using Ward Clustering.

Fig. 3: Neighborhood Types in LA using Affinity Propagation.

• Type 10. Asian upper middle class
• Type 11. integrated white middle class
• Type 12. white elite
• Type 13. Hispanic middle class

Despite having more than double the number of neighborhood
types in the Ward example, many of the spatial patterns remain
when using affinity propagation clustering, including concentrated
racial poverty in South Central LA, concentrated affluence along
much of the coastline, black and Hispanic enclaves in the core of
the city, and white working class strongholds in more rural areas
to the north of the region. Comparing these two examples makes
clear that some of the sociodemographic patterns in the LA region
are quite stable, and are somewhat robust to the clustering method
or number of clusters. Conversely, by increasing the number of
clusters in the model, researchers can explore a much richer
mosaic of social patterns and their evolution over time, such as
the continued diversification of the I-5 corridor along the southern
portion of the region.

SKATER

Breaking from the geodemographic approach, the third example
leverages SKATER, a spatially-constrained clustering algorithm
that finds groups of neighborhoods that are similar in composition,
but groups them together if and only if they also satisfy the criteria

for a particular geographic relationship [Wol18]. As such, the
family of clustering algorithms that incorporate spatial constraints
(from the tradition known as “regionalization”) must be applied
cross-sectionally, and yield an independent set of clusters for each
time period, as shown in Figure 4. The clusters, thus, depend not
only on the composition of the census units, but also their spatial
configuration and connectivity structure at any given time.

Despite the fact that clusters are independent from one year
to the next (and thus, we lack appropriate space in this text
for describing the SKATER results for each year) comparing
the results over time nonetheless yield some interesting insights.
Regardless of the changing spatial and demographic structure of
the Los Angeles region, some of the neighborhood boundaries
identified are remarkably stable, such as the area of concentrated
affluence in Beverly Hills and its nearby communities that jut
out to the region’s West. Conversely, there is considerable change
among the predominantly minority communities in the center of
the region, whose boundaries appear to be evolving considerably
over time. In these places, a researcher might use the output
from SKATER to conduct an analysis to determine the ways
in which the empirical neighborhood boundaries derived from
SKATER conform to residents’ perceptions of such boundaries,
their evolution over time, and their social re-definition as devel-
oped by different residential groups [Wol18]. Irrespective of its

126 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Fig. 4: Neighborhood Types in LA using SKATER.

particular use, the regionalization approach presents neighborhood
researchers with another critical tool for understanding the bi-
directional relationship between people and places.

In each of the sample analyses presented above, we use
OSLNAP to derive a set of neighborhood clusters or types that
can be used to analyze the demographic makeup of places over
time. In some cases, these maps can serve as foundations for
descriptive analyses or be analyzed as research projects in their
own right. In other cases, in which social processes rather than the
demographic makeup of communities are the focus of study, the
neighborhood types derived here can be used as input to dynamic
analyses of neighborhood change and evolution, particularly as
they relate to phenomena such as gentrification and displacement.
In the following sections, we demonstrate how the neighborhood
typologies generated by OSLNAP’s cluster module can be used
as input to the change module to explore the neighborhood
evolution.

Transition Analysis to Neighborhood Change

The change module can provide insights into the nature of
neighborhood change in the Los Angeles metropolitan area. We
utilize the neighborhood types for all census tracts of the Los
Angeles metropolitan area across four census years identified by
selected clustering algorithms in the former section as the input
for the change module. Among the three clustering algorithms,
SKATER was applied to each cross section of census tracts
independently yielding clusters which are not directly comparable
over time. Thus, we focus only on the six neighborhood types
identified by the agglomerative Ward method (Fig. 2) and the
fourteen neighborhood types identified by the affinity propagation
method (Fig. 3).

We start with the aspatial transition analysis which pools all
the time series of neighborhood types and counts how many tran-
sitions between any pair of neighborhood types across immediate
consecutive census years (t, t + 10) (or (t, t + 5) for 2010-2015)
which are further organized into a (k,k) transition count matrix
NNN. Adopting the maximum likelihood estimator for the first-order
Markov transition probability as shown in Equation (1), a (k,k)
transition probability matrix can thus be constructed providing the
insights in the underlying dynamics of neighborhood change. The
(6,6) and the (14,14) transition probability matrices for Ward
and affinity propagation clusters are estimated and visualized in

Fig. 5: Markov transition probability matrix for Ward and Affinity
Propagation clusters.

Fig. 5 where the color in grid (i, j) represents the probability of
transitioning from neighborhood type i to j in the next census
year. It is obvious that both transition probability matrices are
characterized by large diagonal entries, indicating a certain level
of neighborhood stability for the focal four census years. This
is especially true for the Ward neighborhood type 4 which is
characterized by racially concentrated (Hispanic) poverty. The
probability of staying at this type is 0.876 meaning that there is
only 12.4% chance of changing to other neighborhood types once
the census tract enters into type 4.

p̂i j =
ni j

∑k
q=1 niq

, where i, j ∈ S= {1,2, · · · ,k} (1)

Moving from the aspatial transition analysis, we interrogate poten-
tial spatial interactions among neighborhood dynamics using the
spatial Markov chain approach. More specifically, we hypothesize
that the transition probability for any focal census tract is not
constant, but rather dependent on the spatial context, that is, the
most common neighborhood type of contiguous tracts, the so-
called spatial lag. Therefore, k exhaustive and mutually exclusive
subsamples are constructed based on the spatial lag at t, from
which k (k,k) transition probability matrices are estimated based
on Equation (1). Fig. 6 displays the spatial Markov transition
probability matrices for Ward neighborhood types. It should be
noted that the interpretation with these conditional transition
probabilities should proceed with caution as the increased number
of parameters to be estimated here could lead to large standard
errors for some estimates. For example, the (0,0) entry in the

SPATIO-TEMPORAL ANALYSIS OF SOCIOECONOMIC NEIGHBORHOODS: THE OPEN SOURCE LONGITUDINAL NEIGHBORHOOD ANALYSIS PACKAGE (OSLNAP) 127

Fig. 6: Spatial Markov transition probability matrices for Ward
clusters.

Fig. 7: Neighborhoods with similar spatial-social histories since 1980

subplot of Spatial Lag 3 is 1. The tendency of interpreting the 100
percent to be tracts "perfectly stuck at" Ward neighborhood type
0 if the spatial lag is type 3 should be compromised by the fact
that there is only 1 observation transitioning from type 0 which
has the spatial lag of type 3 at t and this very observation happens
to stay at type 0. Since we are short of information, we could not
conclude with the "perfectly stuck" theory. The spatial Markov
tests (available upon request) including the likelihood ratio test
and the χ2 test [BB03], [RKW16] are both rejected indicating
that neighboring context plays an important role in shaping the
neighborhood dynamics.

Sequence Analysis to Neighborhood Change

Armed with the sequences of sociodemographic classifications
for every harmonized tract in LA, the distance between these se-
quences can be computed. Since these sequences are intrinsically
aligned in time, the Hamming distance between classifications
yields an effective metric for how different places’ demographic
changes have been. The pairwise Hamming distance matrix for
demographic transitions in LA is sufficient to recover a set of
boundaries. However, alone, this metric only considers that two
areas are in different sociodemographic classifications at a specific
point in time. It does not consider the difference in the attribute’s
strength of assignment in these classifications, nor does it consider
how well an area fits into its demographic classification.

Conceptually, this is important; even though the gist of the
demographic classifications stay consistent over time, the mem-
bers of these classes may shift around significantly over time. As
a tract drifts from one classification to another classification over
time, it may move within the class before it hops classifications

if the movement is slow. This means that, at each point in time,
tracts are more or less representative of their clusters; a transition
of one area from "white working class" to "white upper class" may
not necessarily reflect the same amount of social/spatial volatility
as a move from "minority working class" to "white upper class,"
as might happen during rapid gentrification.

As such, we can also weight the edit distance based on how
"expensive" the edit is in terms of the clustering distance. Using
this weighting method, not all transitions from white working class
to white upper class will be treated the same: observations that are
"almost" white upper class but not quite will be considered more
similar to white upper class tracts. But, since a reassignment is still
involved, there will still be a cost associated with that edit. Clus-
terings for both the raw Hamming edit distance and the weighted
Hamming edit distances over sociodemographic sequences are
shown in Figure 7 using [Wol18]. Broadly speaking, the assign-
ments between the two clustering methods are strongly related
(with an adjusted Rand index of .68), but macro-level distinctions
between assignment structures are visible, particularly in the areas
of central northern LA near the Hollywood Hills, as well as the
areas of east LA, near Fullerton. This means that, when the sub-
classification information is taken into account, clusterings can
change. However, when examining spatially-contiguous clusters,
the total amount of possible change is often quite constrained as
well. Thus, the move from unweighted to weighted edit distances
may make even more of a difference in some cases.

Future Directions

At present, we are in the early phases of the project and moving
forward we will be focusing on the following directions.

Parameter sweeps: In the definition of neighborhoods, a
researcher faces a daunting number of decisions surrounding
treatment of harmonization, selection of variables, and choice of
clustering algorithm, among others. In the neighborhood literature,
the implications of these decisions remain unexplored and this
is due to the computational burdens that have precluded formal
examination. We plan on a modular design for OSLNAP that
would support extensive parameter sweeps to provide an empirical
basis for exploring these issues and to offer applied researchers
computationally informed guidance on these decisions.

Data services: OSLNAP is being designed to work with
existing harmonized data sets available from various firms and
research labs. Because these fall under restrictive licenses, users
must first acquire these sources - they cannot be distributed with
OLSNAP. To address the limitations associated with this strategy,
we are exploring interfaces to public data services such as CenPy
[cen18] and tigris [tig18].

Interactive visualization: Apart from scripted environments
demonstrated in this paper, OSLNAP is being designed with a
web-based, interactive front-end that allows users to explore the
results of different neighborhood analyses with the assistance of
linked maps, charts, and tables. Together, these linked "views"
allow a researcher to interrogate their results in a manner far richer
than creating a series of static maps.

Reproducible Urban Data Science: A final direction for future
research is the development of reproducible workflows as part of
OSLNAP. Here we envisage leveraging our earlier work on prove-
nance for spatial analytical workflows [ARL14] and extending it
to the full longitudinal neighborhood analysis pipeline.

128 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Conclusion

In this paper we have presented the motivation for, initial design,
and implementation of OSLNAP. We feel that, even at this early
stage in the project, OSLNAP has benefitted from the scope and
deep nature of the PyData stack as we have been able to move from
conceptualization to prototyping in fairly short order. At the same
time, we see OSLNAP playing an important role in widening the
use of Python in urban and spatial data science. We are looking
forward to the future development of OSLNAP and interaction
with both the PyDATA community and the broader community of
computational social sciences.

Acknowledgment

This research was supported by NSF grant SES-1733705.

REFERENCES

[ARL14] Luc Anselin, Sergio J. Rey, and Wenwen Li. Metadata and prove-
nance for spatial analysis: the case of spatial weights. International
Journal of Geographical Information Science, 28(11):2261–2280,
May 2014. doi:10.1080/13658816.2014.917313.

[AT00] Andrew Abbott and Angela Tsay. Sequence analysis and optimal
matching methods in sociology: Review and prospect. Sociolog-
ical Methods & Research, 29(1):3–33, 2000. doi:10.1177/
0049124100029001001.

[BB03] F. Bickenbach and E. Bode. Evaluating the Markov prop-
erty in studies of economic convergence. International Re-
gional Science Review, 26(3):363–392, 2003. doi:10.1177/
0160017603253789.

[cen18] cenpy Developers. cenpy. https://github.com/ljwolf/cenpy, 2018.
[Del16] Elizabeth C Delmelle. Mapping the DNA of urban neighbor-

hoods: Clustering longitudinal sequences of neighborhood socioe-
conomic change. Annals of the American Association of Ge-
ographers, 106(1):36–56, 2016. doi:10.1080/00045608.
2015.1096188.

[Del17] Elizabeth C Delmelle. Differentiating pathways of neighbor-
hood change in 50 U.S. metropolitan areas. Environment and
Planning A, 49(10):2402–2424, oct 2017. doi:10.1177/
0308518X17722564.

[Ehr12] Alan Ehrenhalt. The great inversion and the future of the American
city. Random House, 2012.

[FE05] Marc Farr and Andy Evans. Identifying ‘unknown diabetics’ using
geodemographics and social marketing. Journal of Direct, Data
and Digital Marketing Practice, 7(1):47–58, aug 2005. doi:
10.1057/palgrave.dddmp.4340504.

[FG89] R Flowerdew and W Goldstein. Geodemographics in Practice:
Developments in North America. Environment and Planning A,
21(5):605–616, may 1989. doi:10.1068/a210605.

[Gal01] George Galster. On the Nature of Neighbourhood. Ur-
ban Studies, 38(12):2111–2124, nov 2001. doi:10.1080/
00420980120087072.

[Geo18] GeoPandas Developers. GeoPandas 0.3.0.
http://geopandas.org/index.html, 2018.

[gid18] giddy Developers. GeospatIal Distribution DYnamcis.
http://github.com/pysal/giddy.html, 2018.

[LSX16] John R. Logan, Brian J. Stults, and Zengwang Xu. Validating
population estimates for harmonized census tract data, 2000-2010.
Annals of the American Association of Geographers, 106(5):1013–
1029, Jun 2016. doi:10.1080/24694452.2016.1187060.

[LXS14] John R. Logan, Zengwang Xu, and Brian J. Stults. Interpolating
U.S. decennial census tract data from as early as 1970 to 2010:
A longitudinal tract database. The Professional Geographer,
66(3):412–420, May 2014. doi:10.1080/00330124.2014.
905156.

[Ope84] S Openshaw. Ecological Fallacies and the Analysis of Areal
Census Data. Environment and Planning A, 16(1):17–31, jan 1984.
doi:10.1068/a160017.

[PGL+11] Jakob Petersen, Maurizio Gibin, Paul Longley, Pablo Mateos,
Philip Atkinson, and David Ashby. Geodemographics as a tool
for targeting neighbourhoods in public health campaigns. Journal
of Geographical Systems, 13(2):173–192, 2011. doi:10.1007/
s10109-010-0113-9.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[RA10] Sergio J. Rey and Luc Anselin. PySAL: A Python Library of
Spatial Analytical Methods. In Handbook of Applied Spatial
Analysis, volume 37, pages 175–193. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2010. doi:10.1007/978-3-642-
03647-7_11.

[RAF+11] Sergio J. Rey, Luc Anselin, David C. Folch, Daniel Arribas-
Bel, Myrna L. Sastré Gutiérrez, and Lindsey Interlante. Mea-
suring Spatial Dynamics in Metropolitan Areas. Economic De-
velopment Quarterly, 25(1):54–64, feb 2011. doi:10.1177/
0891242410383414.

[Rey01] S. J. Rey. Spatial empirics for economic growth and convergence.
Geographical Analysis, 33(3):195–214, 2001. doi:10.1111/
j.1538-4632.2001.tb00444.x.

[Rey15] Sergio J. Rey. Python Spatial Analysis Library (PySAL): An
update and illustration. In Chris Brunsdon and Alex Singleton,
editors, Geocomputation: A Practical Primer, pages 233–253.
SAGE Publications Ltd, 2015. doi:10.1007/978-3-642-
03647-7_11.

[RKW16] Sergio J. Rey, Wei Kang, and Levi Wolf. The properties of tests
for spatial effects in discrete markov chain models of regional
income distribution dynamics. Journal of Geographical Systems,
18(4):377–398, 2016. doi:10.1007/s10109-016-0234-
x.

[Sch17] Jonathan P. Schroeder. Hybrid areal interpolation of census counts
from 2000 blocks to 2010 geographies. Computers, Environment
and Urban Systems, 62:53–63, Mar 2017. doi:10.1016/j.
compenvurbsys.2016.10.001.

[SL09] Alexander D Singleton and Paul A Longley. Creating open source
geodemographics: Refining a national classification of census out-
put areas for applications in higher education. Papers in Regional
Science, 88(3):643–666, aug 2009. doi:10.1111/j.1435-
5957.2008.00197.x.

[SQ13] Harini Sridharan and Fang Qiu. A Spatially Disaggregated Areal
Interpolation Model Using Light Detection and Ranging-Derived
Building Volumes. Geographical Analysis, 45(3):238–258, jul
2013. doi:10.1111/gean.12010.

[SR16] Matthias Studer and Gilbert Ritschard. What matters in dif-
ferences between life trajectories: a comparative review of se-
quence dissimilarity measures. Journal of the Royal Statistical
Society: Series A (Statistics in Society), 179(2):481–511, 2016.
doi:10.1111/rssa.12125.

[SS14] Alexander D Singleton and Seth E Spielman. The Past, Present,
and Future of Geodemographic Research in the United States and
United Kingdom. The Professional Geographer, 66(4):558–567,
oct 2014. doi:10.1080/00330124.2013.848764.

[Tap10] Anna F. Tapp. Areal Interpolation and Dasymetric Mapping
Methods Using Local Ancillary Data Sources. Cartography and
Geographic Information Science, 37(3):215–228, 2010. doi:
10.1559/152304010792194976.

[Tat] Peter Tatian. Local scene: Neighborhood change database (ncdb).
PsycEXTRA Dataset. doi:10.1037/e479172006-003.

[tig18] tigris Developers. tigris. https://github.com/walkerke/tigris, 2018.
[Tob70] W. R. Tobler. A computer movie simulating urban growth in the

Detroit region. Economic Geography, 46(2):234–240, 1970. doi:
10.2307/143141.

[U.S10] U.S. Census. Understanding the 2010 Tract Relationship Files,
2010. URL: https://www2.census.gov/geo/pdfs/maps-data/data/
rel/tractrelfile.pdf.

[Wol18] Levi John Wolf. Spatially-Encouraged Spectral Clustering : A
Critical Revision of Spatially-Constrained Spectral Clustering.
2018.

[Xie95] Yichun Xie. The overlaid network algorithms for areal in-
terpolation problem. Computers, Environment and Urban Sys-
tems, 19(4):287–306, 1995. doi:10.1016/0198-9715(95)
00028-3.

PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018) 129

Design and Implementation of pyPRISM: A Polymer
Liquid-State Theory Framework

Tyler B. Martin¶∗, Thomas E. Gartner III‡, Ronald L. Jones¶, Chad R. Snyder¶, Arthi Jayaraman‡§

https://youtu.be/MYw-pmz02p0

F

Abstract—In this work, we describe the code structure, implementation, and
usage of a Python-based, open-source framework, pyPRISM, for conducting
polymer liquid-state theory calculations. Polymer Reference Interaction Site
Model (PRISM) theory describes the equilibrium spatial-correlations, thermo-
dynamics, and structure of liquid-like polymer systems and macromolecular ma-
terials. pyPRISM provides data structures, functions, and classes that stream-
line predictive PRISM calculations and can be extended for other tasks such
as the coarse-graining of atomistic simulation force-fields or the modeling of
experimental scattering data. The goal of providing this framework is to reduce
the barrier to correctly and appropriately using PRISM theory and to provide a
platform for rapid calculations of the structure and thermodynamics of polymeric
fluids and polymer nanocomposites.

Index Terms—polymer, materials science, modeling, theory

Introduction

Free and open-source (FOSS) scientific software lowers the bar-
riers to applying theoretical techniques by codifying complex
approaches into usable tools that can be leveraged by non-experts.
Here, we describe the implementation and structure of pyPRISM,
a Python tool which implements Polymer Reference Interaction
Site Model (PRISM) theory. [MGIJ+18], [dis] PRISM theory
is an integral equation formalism that describes the structure
and thermodynamics of polymer liquids. [SC87] Despite the
successful application of PRISM theory to study a variety of
complex soft-matter systems, [SC94] its use has been limited
compared to other theory and simulation methods that have
available open-source tools, such as Self-Consistent Field Theory
(SCFT), [psc], [AQM+16] Molecular Dynamics (MD), [hoo],
[GNA+15], [ALT08], [lam], [Pli95] or Monte Carlo (MC), [sim],
[cas], [RM11]. Some important factors contributing to this reduced
usage are the complexities associated with implementing PRISM
theory and the lack of an available open-source codebase. Our
previous publication, [MGIJ+18], focused primarily on the theo-
retical aspects of the method and presented several case studies
to illustrate the utility of PRISM theory. In this work, we focus
more specifically on the practical implementation and usage of
PRISM theory within the pyPRISM framework. In the following

* Corresponding author: tyler.martin@nist.gov
¶ National Institute of Standards and Technology
‡ Chemical and Biomolecular Engineering, University of Delaware
§ Materials Science and Engineering, University of Delaware

Copyright © 2018 Tyler B. Martin et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Polymer Nanoparticle Nanocomposite

Polymer
Site (M)

Nanoparticle
Site (P)

!""($)
&"" $ 	
(""($)

Intra and Inter-Molecular
Spatial Correlations

Fig. 1: A schematic representation of the components of a coarse
grained polymer nanocomposite made up of polymer chains and large
spherical nanoparticles. This system is the focus of reference [HS05].
In this example, there are two site-types: a monomer site-type (M)
in green and a nanoparticle site-type (P) in yellow. Also labeled are
the polymer-polymer intra-molecular (ΩM,M(r)) and inter-molecular
correlation functions (HM,M(r) and CM,M(r)).

sections, we will briefly discuss the basics of PRISM theory,
our implementation of the theory in pyPRISM, our approach
toward educating the scientific community about PRISM theory
and pyPRISM, and finally our view for the future of the tool.

PRISM Theory

For a detailed discussion of PRISM theory, as well as a review
of key applications of the theory, we direct the reader to our
previous publication. [MGIJ+18] Here, we briefly highlight the
salient points of PRISM theory in order to help motivate the design
of our class structure.

PRISM theory describes the spatial correlations in a liquid-
like polymer system made up of spherical interacting "sites."
The category of liquid-like polymers includes melts, blends,
solutions, and nanocomposites of both homopolymers and copoly-
mers. Within these systems, PRISM is able to handle varying
chain chemistry, monomer sequence, and topology. The traditional
PRISM formalism is spherically symmetric, which in general
prevents the use of PRISM to study glassy, crystalline, phase-
separated or otherwise non-isotropic materials. While there is a
modified PRISM formalism for oriented (liquid-crystalline) mate-
rials, [OS05a], [OS05b], [PS00], [PS99] those modifications are
outside the scope of the current work. Figure 1 shows a schematic

130 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

of a polymer nanocomposite that could be studied with PRISM
theory using a two-site model.

In general, PRISM sites represent a segment of a molecule
or polymer chain, similar to the atoms or coarse-grained beads
that comprise an MD or MC simulation. Unlike these simulation
methods, PRISM treats all of the sites of a given type as indistin-
guishable and does not track the individual positions of each site
in space. Instead, the structure of the system is described through
average spatial correlation functions. The fundamental PRISM
equation for multi-component systems is represented in Fourier-
space as a matrix equation of the site-site spatial correlation
functions.

Ĥ(k) = Ω̂(k)Ĉ(k)
[
Ω̂(k)+ Ĥ(k)

]
(1)

In this expression, Ĥ(k) is the inter-molecular total correlation
function matrix, Ĉ(k) is the inter-molecular direct correlation
function matrix, and Ω̂(k) is the intra-molecular correlation
function matrix. Ω̂(k) describes the how the monomers within
a molecule are connected and placed, Ĥ(k) and Ĉ(k) describe
how the molecules are placed in space relative to one another.
The key difference between Ĥ(k) and Ĉ(k) is that the former
includes many-body effects, while the latter does not. Knowledge
of Ĥ(k), Ĉ(k), and Ω̂(k) for a given system allows one to calculate
a range of important structural and thermodynamic parameters,
e.g., structure factors, radial distribution functions, second virial
coefficients, Flory-Huggins χ parameters, bulk isothermal com-
pressibilities, and spinodal decomposition temperatures.

Each of the variables in Equation 1 represents a function
of wavenumber k which returns an n× n matrix, with n being
the number of site-types in the calculation. Each element of a
correlation function matrix (e.g., Ĥα,β (k)) represents the value
of that correlation function between site types α and β at a
given wavenumber k. These correlation function matrices are
symmetric, therefore there are n(n+1)

2 independent site-type pairs
and correlation function values in each correlation function matrix.
The nanocomposite in Figure 1 is modeled using n = 2 site-types
which yields three independent site-type pairs: polymer-polymer,
polymer-particle, and particle-particle.

Equation 1, as written, has one unspecified degree of freedom
for each site-type pair, therefore additional mathematical relation-
ships must be supplied to obtain a solution. These relationships are
called closures and are derived in various ways from fundamental
liquid-state theory. Closures are also how the chemistry of a
system is specified via pairwise interaction potentials Uα,β (r). For
example, one widely-used closure is the Percus-Yevick closure
shown below

Cα,β (r) =
(

e−Uα,β (r)−1.0
)(

1.0+Γα,β (r)
)
, (2)

where Γ(r) is defined in real-space as

Γα,β (r) = Hα,β (r)−Cα,β (r). (3)

While the PRISM equation can be solved analytically [SC94] in
select cases, we focus on a more generalizable numerical approach
here. Figure 2 shows a schematic of our approach. For all site-
types or site-type pairs, the user provides input values for Ω̂α,β (k),
site-site pair potentials Uα,β (r), site-type densities ρα , and an
initial guess for all Γα,β (r). After the user supplies all necessary
parameters and input correlation functions, pyPRISM applies a
numerical optimization routine, such as a Newton-Krylov method,
[new] to minimize a self-consistent cost function. The details of
this cost function were discussed in our previous work. [MGIJ+18]

Molecular Structure !"($)

Pair Potentials &(')

Composition ()

Initial Guess *(')

Closure Expressions

Total Correlations +(')

Direct Correlations ,(')

INPUTS

OUTPUTS

PRISM Cost
Function

Kernel

Fig. 2: Schematic of PRISM theory numerical solution process.

After the cost function is minimized, the PRISM equation is
considered "solved" and the resultant correlation functions can
be used for calculations.

pyPRISM Overview

pyPRISM defines a scripting API (application programming inter-
face) that allows users to conduct calculations and numerically
solve the PRISM equation for a range of liquid-like polymer
systems. All of the theoretical details of PRISM theory are
encapsulated in classes and methods which allow users to spec-
ify parameters and input correlation functions by name e.g.,
PercusYevick for Equation 2. Furthermore, the structure of
these classes was kept as simple as possible so that novice scien-
tific programmers could easily extend pyPRISM by implementing
new closures, potentials, or intra-molecular correlation functions.
These code structure of pyPRISM is shown in schematically in
Figure 3 and is discussed in the Implementation Section.

Providing a scripting API rather than an "input file"-based
scheme gives users the ability to use the full power of Python
for complex PRISM-based calculations. For example, one could
use parallelized loops to fill a database with PRISM results using
Python’s built-in support for thread or process pools. Alternatively,
pyPRISM could easily be coupled to a simulation engine by
calling the engine via a subprocess, processing the engine output,
and then feeding that output to to a pyPRISM calculation. The
pyPRISM API is demonstrated in the Example pyPRISM Script
section by modeling the system shown in Figure 1.

While experts in PRISM theory likely will need little guidance
on how to appropriately apply pyPRISM, we also would like to
make pyPRISM accessible to the widest possible audience. To
this end, we have created comprehensive documentation [pyPa]
and tutorial [pyPb] materials. Users can also try pyPRISM in
their web-browser by visiting [pyPc]. See the Pedagogy section
for more information on our philosophy in educating the scientific
community about pyPRISM.

Installation

pyPRISM is a Python library that has been tested on Linux, OS
X, and Windows with the CPython 2.7, 3.5 and 3.6 interpreters
and only depends on Numpy [num], [WCV11] and Scipy [sci],
[Oli07] for core functionality. Optionally, pyPRISM provides a
unit conversion utility if the Pint [pin] library is available and a
simulation trajectory analysis tool if pyPRISM is compiled with
Cython [cyt]. pyPRISM is available on GitHub, [pyPd], conda-
forge [pyPe] and the Python Package Index (PyPI) [pyPf] for
download. It can be installed from the command line via
$ conda install -c conda-forge pyPRISM

DESIGN AND IMPLEMENTATION OF PYPRISM: A POLYMER LIQUID-STATE THEORY FRAMEWORK 131

CALCULATORSTHEORY REPRESENTATIONSCORE DATA STRUCTURES

Inherits: Potential

HardSphere
LennardJones
WeeksChandlerAndersen
HardCoreLennardJones
Exponential

Inherits: Table

ValueTable
PairTable

Inherits: Object

Table
MatrixArray
Density
Diameter
Domain
Space
System
PRISM

Inherits:

Closure/AtomicClosure

PercusYevick
HyperNettedChain
MeanSphericalApproximation
MartynovSarkisov Functions of Solved PRISM Objects

pair_correlation

structure_factor

second_virial

solvation_potential

chi

pmf

spinodal_condition

Inherits: Object

Debyer (Cython Extension)
UnitConverter (uses Pint)

Inherits: Omega

Gaussian
GaussianRing
FreelyJointedChain
DiscreteKoyama
SingleSite
InterMolecular
FromArray
FromFile

Inherits: Object

Omega
Closure
Potential

Fig. 3: Overview of codebase and class organization. A full description of the codebase classes and methods can be found in the online
documentation. [pyPa].

or alternatively
$ pip install pyPRISM

Full installation instructions can be found in the documentation.
[pyPa]

Implementation

Figure 3 shows an overview of the available classes and functions
in pyPRISM and how they relate categorically. To begin, we con-
sider the core data structures listed in the left column of the figure.
Parameters and data in PRISM theory fall into two categories:
those that define the properties of a single site-type (e.g., density,
diameter) and those that define properties for a site-type pair
(e.g., closure, potential, intra-molecular correlation functions).
pyPRISM defines two base container classes based on this con-
cept, both of which inherit from a parent pyPRISM.Table class:
pyPRISM.ValueTable and pyPRISM.PairTable. These
classes store numerical and non-numerical data, support complex
iteration, and provide a .check() method that is used to ensure
that all parameters are fully specified. Both pyPRISM.Table
subclasses also support setting multiple pair-data at once, thereby
making scripts easier to maintain via reduced visual noise and
repetition. Additionally, pyPRISM.ValueTable automatically
invokes matrix symmetry when a user sets an off-diagonal pair,
assigning the α,β and β ,α pairs automatically.
1 '''
2 Example of pyPRISM.ValueTable usage
3 '''
4

5 import pyPRISM
6

7 PT = pyPRISM.PairTable(types=['A','B','C'],
8 name='potential')
9

10 # Set the A-A pair
11 PT['A','A'] = 'Lennard-Jones'
12

13 # Set the B-A, A-B, B-B, B-C, and C-B pairs
14 PT['B',['A','B','C']] = 'Weeks-Chandler-Andersen'
15

16 try:
17 # Raises ValueError b/c not all pairs are set
18 PT.check()
19 except ValueError:
20 print('Not all pairs are set in ValueTable!')
21

22 # Set the C-A, A-C, C-C pairs
23 PT['C',['A','C']] = 'Exponential'
24

25 # No-op as all pairs are set
26 PT.check()
27

28 for i,t,v in PT.iterpairs():
29 print('{} {}-{} is {}'.format(i,t[0],t[1],v))
30

31 # The above loop prints the following:
32 # (0, 0) A-A is Lennard-Jones
33 # (0, 1) A-B is Weeks-Chandler-Andersen
34 # (0, 2) A-C is Exponential
35 # (1, 1) B-B is Weeks-Chandler-Andersen
36 # (1, 2) B-C is Weeks-Chandler-Andersen
37 # (2, 2) C-C is Exponential
38

39 for i,t,v in PT.iterpairs(full=True):
40 print('{} {}-{} is {}'.format(i,t[0],t[1],v))
41

42 # The above loop prints the following:
43 # (0, 0) A-A is Lennard-Jones
44 # (0, 1) A-B is Weeks-Chandler-Andersen
45 # (0, 2) A-C is Exponential
46 # (1, 0) B-A is Weeks-Chandler-Andersen
47 # (1, 1) B-B is Weeks-Chandler-Andersen
48 # (1, 2) B-C is Weeks-Chandler-Andersen
49 # (2, 0) C-A is Exponential
50 # (2, 1) C-B is Weeks-Chandler-Andersen
51 # (2, 2) C-C is Exponential

In some cases where additional logic or error checking is needed,
we have created more specialized container classes. For example,
both the site volumes and the site-site contact distances are func-
tions of the individual site diameters. The pyPRISM.Diameter
class contains multiple pyPRISM.Table objects which are dy-
namically updated as the user defines site-type diameters. The
pyPRISM.Density class was created for analogous reasons so
that the pair-density matrix,

ρ pair
α,β = ρα ρβ

the site-density matrix,

ρsite
α,β =

{
ρα if i = j
ρα +ρβ if i 6= j

and the total site density,

ρ total = ∑
α

ρsite
α,α

132 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

can all be calculated dynamically as the user specifies or modifies
the individual site-type densities ρα .

An additional specialized container is pyPRISM.Domain.
This class specifies the discretized real- and Fourier-space grids
over which the PRISM equation is solved and is instantiated by
specifying the length (i.e., number of gridpoints) and grid spacing
in real- or Fourier space (i.e., dr or dk). An important detail
of the PRISM cost function mentioned above is that correlation
functions need to be transformed to and from Fourier space during
the cost function evaluation. pyPRISM.Domain also contains
the Fast Fourier Transform (FFT) methods needed to efficiently
carry out these transforms. The mathematics behind these FFT
methods, which are implemented as Type II and III Discrete Sine
Transforms (DST-II and DST-III), are discussed in our previous
work. [MGIJ+18]

The pyPRISM.System class contains multiple
pyPRISM.ValueTable and pyPRISM.PairTable objects
in addition to the specialized container classes described above.
The goal of the pyPRISM.System class is to be a super-
container that can validate that a system is fully and correctly
specified before allowing the user to attempt to solve the PRISM
equation.

While pyPRISM.System primarily houses input property
tables, pyPRISM.PRISM represents a fully specified PRISM
calculation and contains the cost function to be numerically min-
imized. The correlation functions shown in Equation 1 are stored
in the pyPRISM.PRISM object as pyPRISM.MatrixArray
objects, which are similar to pyPRISM.ValueTable ob-
jects but with a focus on mathematics rather than storage.
pyPRISM.MatrixArray objects can only contain numerical
data and provide many operators and methods which simplify
PRISM theory mathematics. In particular, they satisfy the need
for easy access to both the matrix and pair-function repre-
sentations of the correlation functions, shown schematically in
Figure 4 . The former is necessary for carrying out the math-
ematics of the PRISM equation (Equation 1) and the latter
for performing Fourier transformations of the individual pair-
functions. The pyPRISM.MatrixArray objects also carry out
a number of run-time error checks including ensuring that both
MatrixArray objects involved in a binary operations (such as
addition) are in the same space (real or Fourier). The core data
structure underlying the pyPRISM.MatrixArray is a three-
dimensional Numpy ndarray of m n× n matrices, where m is the
length of the pyPRISM.Domain.

1 '''
2 Example of MatrixArray usage.
3 '''
4 ## Setup ##
5 length = 1024 # number of gridpoints
6 dr = 0.1 # real-space grid spacing
7 rank = 2 # number of site-types
8 types = ['A', 'B'] # name of site-types
9

10 domain = pyPRISM.Domain(length,dr)
11 rho = pyPRISM.Density(types)
12

13 # Total and intra-molecular correlation functions
14 # dataH and dataW are size (length,rank,rank)
15 # numpy ndarrays that are assumed to be in memory
16 kwargs = dict(length=length,rank=rank,types=types)
17 H = pyPRISM.MatrixArray(data=dataH,**kwargs)
18 W = pyPRISM.MatrixArray(data=dataW,**kwargs)
19

20 ## Example Calculation of Structure Factor ##
21 S = (W + H)/rho.site

Fig. 4: Schematic of the pair-function and MatrixArray representa-
tions of the total correlation function for the polymer nanocomposite
system shown in Figure 1. The r1,r2,rN variables represent specific
distances in the real-space solution grid.

22 S_AB = S['A','B'] # extract S_AB from MatrixArray
23

24 ## MatrixArray by Scalar Operations ##
25 # All matrices in W are modified by the scalar x
26 x = 1 # arbitrary scalar
27 W+x; W-x; W*x; W/x; # elementwise ops
28

29 ## MatrixArray by Matrix Operations ##
30 # All matrices in W are modified by the matrix rho
31 W+rho; W-rho; W*rho; W/rho; # elementwise ops
32 W.dot(rho) # matrix mult.
33

34 ## MatrixArray by MatrixArray Operations ##
35 # Operations are matrix to corresponding matrix
36 W+H; W-H; W*H; W/H; # elementwise ops
37 W.dot(H) # matrix mult.
38

39 ## Fourier Transformations ##
40 # Transform a single array versus all functions
41 # in a MatrixArray
42 W_AA = domain.to_real(W['A','A']) # one function
43 domain.MatrixArray_to_fourier(H) # all functions
44

45 ## Other Operations ##
46 W.invert() # invert each matrix in W
47 W['A','B'] # set or get function for pair A-B
48 W.getMatrix(i) # get matrix i in MatrixArray
49 W.iterpairs() # iterate over all 1-D functions

The pyPRISM.PRISM object is solved by calling the .solve()
method which invokes a numerical algorithm to minimize the
output of the .cost() method by varying the input Γα,β (r).
Once a pyPRISM.PRISM object is numerically solved, it can
be passed to a calculator that processes the optimized correlation
functions and returns various structural and thermodynamic data.
The current list of available calculators is shown in the rightmost
column of Figure 3 and is fully described in the documentation.
[pyPa]

Beyond the core data structures, pyPRISM defines classes
which are meant to represent various theoretical equations
or ideas. Classes which inherit from pyPRISM.Potential,
pyPRISM.Closure, or pyPRISM.Omega represent interac-
tion potentials, theoretical closures, or intra-molecular correla-

DESIGN AND IMPLEMENTATION OF PYPRISM: A POLYMER LIQUID-STATE THEORY FRAMEWORK 133

Fig. 5: All pair-correlation functions from the pyPRISM example for
the polymer nanocomposite system depicted in Figure 1.

tion functions Ω̂α,β (k), respectively. These properties must be
specified for all site-type pairs before a pyPRISM.PRISM ob-
ject can be created. To ensure that users can easily add new
potentials, closures, and Ω̂α,β (k) to the codebase, we have kept
the programming interface contract of these classes as simple as
possible: Subclasses must inherit from the proper parent class and
implement a .calculate() method.

Example pyPRISM Script

1 '''
2 pyPRISM script calculating the pair correlation
3 functions and chi parameters of a polymer
4 nanocomposite.
5 '''
6

7 import pyPRISM
8

9 sys = pyPRISM.System(['particle','polymer'],kT=1.0)
10 sys.domain = pyPRISM.Domain(dr=0.01,length=4096)
11

12 sys.diameter['polymer'] = 1.0
13 sys.diameter['particle'] = 5.0
14

15 sys.density['polymer'] = 0.75
16 sys.density['particle'] = 6e-6
17

18 sys.omega['polymer','polymer'] = \
19 pyPRISM.omega.FreelyJointedChain(length=100,l=4/3)
20 sys.omega['polymer','particle'] = \
21 pyPRISM.omega.InterMolecular()
22 sys.omega['particle','particle'] = \
23 pyPRISM.omega.SingleSite()
24

25 sys.potential['polymer','polymer'] = \
26 pyPRISM.potential.HardSphere()
27 sys.potential['polymer','particle'] = \
28 pyPRISM.potential.Exponential(alpha=0.5,epsilon=1.0)
29 sys.potential['particle','particle'] = \
30 pyPRISM.potential.HardSphere()
31

32 sys.closure['polymer',['polymer','particle']] = \
33 pyPRISM.closure.PercusYevick()
34 sys.closure['particle','particle'] = \
35 pyPRISM.closure.HyperNettedChain()
36

37 PRISM = sys.solve()
38

39 pcf = pyPRISM.calculate.pair_correlation(PRISM)

40 pcf_11 = pcf['particle','particle']
41

42 chi = pyPRISM.calculate.chi(PRISM)
43 chi_12 = pcf['particle','polymer']

Example Discussion

The code above shows how to use pyPRISM to calculate the prop-
erties of a polymer nanocomposite made of linear polymer chains
and spherical nanoparticles. This system is shown schematically
in Figure 1 and is fully described in reference [HS05]. The results
of this calculation are plotted in Figure 5. In this section, we will
discuss the details of this example in a line by line fashion as we
specify all inputs shown in Figure 2 and then solve the PRISM
equation.
6 import pyPRISM
7

8 sys = pyPRISM.System(['particle','polymer'],kT=1.0)
9 sys.domain = pyPRISM.Domain(length=4096, dr=0.01)

All pyPRISM calculations begin by first importing the pyPRISM
library, and then creating a pyPRISM.System object. The first
argument to the pyPRISM.System constructor is the names of
the site-types for the calculation. In this case, we have two site-
types which we (arbitrarily) call polymer and particle. Option-
ally, the constructor allows that the thermal energy level, kBT ,
be specified. Next a pyPRISM.Domain object is created with
length=4096 grid-points and a grid spacing of dr=0.1.

Note that all parameters in pyPRISM are specified in a reduced
unit system commonly called Lennard-Jones units. In this scheme,
a characteristic length dc, mass mc, and energy ec are specified. All
other units are then specified in terms of these characteristic units.
For example, if dc = 1 nm, the grid spacing in the above code
would be dr = 0.1dc = 0.1 nm. See [FB02] for more information
on the Lennard-Jones reduced unit scheme.

11 sys.diameter['polymer'] = 1.0
12 sys.diameter['particle'] = 5.0
13

14 sys.density['polymer'] = 0.75
15 sys.density['particle'] = 6e-6

Next, site-type diameters and number densities are specified for
both site-types in units of dc and beads per d3

c , respectively.
Qualitatively, these specifications imply that we are considering a
dilute concentration of nanoparticles dissolved in a polymer matrix
made up of polymer sites of significantly smaller diameter.

17 sys.omega['polymer','polymer'] = \
18 pyPRISM.omega.FreelyJointedChain(length=100,l=4/3)
19 sys.omega['polymer','particle'] = \
20 pyPRISM.omega.InterMolecular()
21 sys.omega['particle','particle'] = \
22 pyPRISM.omega.SingleSite()

The intra-molecular correlation function Ω̂polymer,polymer(k) is
specified as a freely jointed chain, a well-known physi-
cal model for a polymer chain. [RC03] Since the poly-
mer chains and particles are not connected, Ω̂polymer,particle(k)
is specified as inter-molecular. The particles are modeled
as spherical sites so Ω̂particle,particle(k) is modeled as a
pyPRISM.omega.SingleSite.

24 sys.potential['polymer','polymer'] = \
25 pyPRISM.potential.HardSphere()
26 sys.potential['polymer','particle'] = \
27 pyPRISM.potential.Exponential(alpha=0.5,epsilon=1.0)
28 sys.potential['particle','particle'] = \
29 pyPRISM.potential.HardSphere()

134 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Upolymer,polymer(r) and Uparticle,particle(r) pair potentials are
specified as athermal hard sphere interactions, while the
Upolymer,particle(r) potential is an exponential attractive interaction.
This configuration describes a dense melt-like polymer nanocom-
posite where the polymer chains are attracted to and adhere to
(wet) the nanoparticle surface. The α and ε parameters in the
pyPRISM.potential.Expontential constructor control
the range and strength of the exponential attraction.

31 sys.closure['polymer',['polymer','particle']] = \
32 pyPRISM.closure.PercusYevick()
33 sys.closure['particle','particle'] = \
34 pyPRISM.closure.HyperNettedChain()

To demonstrate one utility of the pyPRISM.PairTable data
structure, here we have specified both the polymer-polymer and
polymer-particle closure in a single line. Both pair-data are spec-
ified to the Percus-Yevick closure, while the particle-particle clo-
sure is set to be the hypernetted chain closure. In this code-block
and those above, note how the subclasses of pyPRISM.Omega,
pyPRISM.Potential and pyPRISM.Closure are used to
easily specify complex theoretical constructs.

36 PRISM = sys.solve()

When all properties are defined, the user calls the
pyPRISM.System.solve() method which first conducts a
number of sanity checks and issues any relevant exceptions or
warnings if issues are found. If no issues are found, a PRISM
object is created and minimization is attempted. The .solve()
method accepts arguments which allow the user to tune the details
of the minimization.

38 pcf = pyPRISM.calculate.pair_correlation(PRISM)
39 pcf_11 = pcf['particle','particle']
40

41 chi = pyPRISM.calculate.chi(PRISM)
42 chi_12 = pcf['particle','polymer']

Once the minimization completes, a pyPRISM.PRISM
object is returned which contains the final solutions
for H(r) and C(r) along with all input parameters
and data. The pyPRISM.PRISM object is then passed
through the pyPRISM.calculate.pair_correlation
and pyPRISM.calculate.chi calculators. Both of these
methods return pyPRISM.ValueTables, which can be sub-
scripted to access the individual pair-functions. In the exam-
ple, we extract the particle-particle pair correlation function,
gparticle,particle(r) and the particle-polymer χparticle,polymer parame-
ter.

While it would be feasible to study this polymer nanocom-
posite system via simulation methods such as MD or MC, the
use of PRISM theory offers some distinct advantages. PRISM
theory does not suffer from finite-size or equilibration effects,
both of which limit simulation methods. Furthermore, a simulation
of sufficient size to study the large nanoparticles and relatively
long polymer chains in this example would require many hours to
days of CPU or GPU time from a supercomputing resource. This
is due to the computational expense of evaluating the pairwise
interactions at each simulated configuration and the many millions
of configurations that must be generated in order to properly
equilibrate and sample such a nanocomposite. In contrast, PRISM
theory can be numerically solved in seconds even on modest
hardware such as a laptop computer. This is because, unlike
MD or MC, solving PRISM theory does not involve generating
molecular configurations, but rather is a set of integral equations
which are numerically solved for the spatial correlation functions,

NB0.Introduction
NB1.PythonBasics
NB2.Theory.General
NB3.Theory.PRISM
NB4.pyPRISM.Overview
NB5.CaseStudies.PolymerMelts
NB6.CaseStudies.Nanocomposites
NB7.CaseStudies.Copolymers
NB8.pyPRISM.Internals
NB9.pyPRISM.Advanced

No Programming Background
Simulation Background

PRISM Background
Advanced pyPRISM

Fig. 6: Depiction of the tutorial tracks we provide for users of different
backgrounds and trainings. See the Tutorial page [pyPb] for more
information.

Hα,β (r) and Cα,β (r). This numerical solution process is briefly
described above at the end of the PRISM Theory section and is
described in detail in Section II.E of [MGIJ+18]. In addition to the
computational performance benefits of PRISM theory over MD or
MC, once the full set of pairwise spatial correlation functions is
solved for, a variety of properties can quickly be screened without
having to process large simulation trajectories.

PRISM theory provides a powerful alternative or complement
to traditional simulation approaches, but we should note that it
is not without limitation. There are restrictions on the types of
systems and thermodynamic state points to which PRISM theory
can be applied and the numerical closures are approximations and
therefore sources of error. See Section IV.D of [MGIJ+18] for a
discussion on the known limitations of PRISM theory.

Pedagogy

It is our goal to create a central platform for polymer liquid state
theorists while also lowering the barriers to using PRISM theory
for the greater polymer science community. Towards this effort,
we have identified two primary challenges:

1) The process of understanding and numerically solving
PRISM theory is complex and filled with pitfalls and
opportunities for error.

2) Many of those who would benefit most from PRISM
theory do not have a strong programming background.

Our strategy to address both of these challenges is a strong
focus on providing pedagogical resources to users. To start, we
have put significant effort into our documentation. Every page
of the API documentation [pyPa] contains a written description
of the theory being implemented, all necessary mathematics,
descriptions of all input and output parameters, links to any
relevant journal articles, and a detailed and relevant example.
While including these features in our documentation is not a new
idea, we are focusing on providing these resources immediately
upon release and iterating based on user feedback to improve the
clarity and scope of the information provided.

Moving beyond API documentation, we also have created
knowledgebase materials which provide more nuanced informa-
tion about using and numerically solving PRISM theory. This

DESIGN AND IMPLEMENTATION OF PYPRISM: A POLYMER LIQUID-STATE THEORY FRAMEWORK 135

knowledgebase includes everything from concise lists of systems
and properties that can be studied with pyPRISM to tips and tricks
for reaching convergence of the numerical solver. In reference to
Challenge 2 above, we also recognize that a significant barrier
for non-experts to use these tools is the installation process.
Our installation documentation [pyPa] attempts to be holistic and
provide detailed instructions for the several different ways that
users can install pyPRISM.

We have also created a self-guided tutorial to PRISM theory
and pyPRISM in the form of a series of Jupyter notebooks. [pyPb],
[jup] The tutorial notebooks are designed to target a wide audience
with varied programming and materials science expertise, with
topics ranging from a basic introduction to Python to how to
add new features to pyPRISM. The tutorial also has several case
study-focused notebooks which walk users through the process
of reproducing PRISM results from the literature. Figure 6 shows
our recommendations for how users of different backgrounds and
skill levels might move through the tutorial. In order to ensure the
widest audience possible can take advantage of this tutorial, we
have also set up a binder instance [pyPc], which allows users to
try out pyPRISM and run the tutorial instantly in a web-browser
without installing any software. This feature should also benefit
users who might be hampered by Challenge 2 above.

Future Directions

While pyPRISM is a step forward in providing a central platform
for polymer liquid-state theory calculations, we intend to signifi-
cantly extend the tool beyond its release state. The most obvious
avenue for extension will be to add new potentials, closures, and
intra-molecular correlation functions

(
Ω̂α,β (k)

)
to the codebase.

As described above, we hope that a significant portion of these
classes will be contributed by users. Where analytical expressions
for Ω̂α,β (k) do not exist, they can also be calculated from simu-
lation trajectories. While we do provide a Cython-enhanced tool
to do the calculation, we also plan to add features to more easily
couple pyPRISM to common MD and MC simulation packages.
[hoo], [lam], [sim], [cas] These linkages would also make it easier
for users to carry out the Self-Consistent PRISM (SCPRISM)
method. [MGIJ+18]

PRISM theory also has advanced applications that are not
possible in the current pyPRISM workflow. One example is the
use of PRISM theory to translate a detailed atomistic simulation
model to a less detailed, less computationally expensive coarse-
grained model in a methodology called Integral Equation Coarse
Graining (IECG). [DG17b], [DG17a], [MCLG12], [YSNG04] We
plan to provide utilities in the pyPRISM codebase that aid in
carrying out this method. PRISM theory can also be used to model
or fit neutron and X-ray scattering data. In particular, PRISM
theory can be used to take existing scattering models for single
particles or polymer chains and model the effects of intermolecular
interactions. This approach would greatly extend the applicability
of existing scattering models, which on their own are only valid
in the infinitely dilute concentration limit, but could be combined
with pyPRISM to model higher concentrations.

Summary

pyPRISM is an open-source tool with the goal of facilitating the
usage of PRISM theory, a polymer liquid-state theory. Compared
to more widely-used simulation methods such as MD and MC,
PRISM theory is significantly more computationally efficient,

does not need to be equilibrated, and does not suffer from finite
size effects. pyPRISM lowers the barriers to using PRISM theory
by providing a simple scripting interface for setting up and
numerically solving the theory. Furthermore, in order to ensure
users correctly and appropriately use pyPRISM, we have created
extensive pedagogical materials in the form of API documentation,
knowledgebase materials, and Jupyter-notebook powered tutorials.

Acknowledgements

TBM is supported by a National Research Council (NRC) fel-
lowship at the National Institute of Standards and Technology
(NIST). In addition, this work has been supported by the members
of the NIST nSoft consortium (nist.gov/nsoft). TEG and AJ
thank National Science Foundation Division of Materials Research
Condensed Matter and Materials Theory (NSF DMR-CMMT)
grant number 1609543 for financial support. This research was
supported in part through the use of Information Technologies
(IT) resources at the University of Delaware, specifically the high-
performance computing resources of the Farber supercomputing
cluster. This work used the Extreme Science and Engineering Dis-
covery Environment (XSEDE) Stampede cluster at the University
of Texas through allocation MCB100140 (AJ), which is supported
by National Science Foundation grant number ACI-1548562.

REFERENCES

[ALT08] Joshua A. Anderson, Chris D. Lorenz, and A. Travesset. General
purpose molecular dynamics simulations fully implemented on
graphics processing units. Journal of Computational Physics,
227(10):5342 – 5359, 2008. doi:10.1016/j.jcp.2008.
01.047.

[AQM+16] Akash Arora, Jian Qin, David C. Morse, Kris T. Delaney,
Glenn H. Fredrickson, Frank S. Bates, and Kevin D. Dorfman.
Broadly accessible self-consistent field theory for block polymer
materials discovery. Macromolecules, 49(13):4675–4690, 2016.
doi:10.1021/acs.macromol.6b00107.

[cas] URL: https://www3.nd.edu/~ed/research/cassandra.html.
[cyt] URL: http://cython.org.
[DG17a] M. Dinpajooh and M. G. Guenza. Thermodynamic consistency

in the structure-based integral equation coarse-grained method.
Polymer, 117:282–286, 2017. doi:https://doi.org/10.
1016/j.polymer.2017.04.025.

[DG17b] Mohammadhasan Dinpajooh and Marina G. Guenza. On the
density dependence of the integral equation coarse-graining ef-
fective potential. The Journal of Physical Chemistry B, 2017.
doi:10.1021/acs.jpcb.7b10494.

[dis] Any identification of commerical or open-source software in this
paper is done so purely in order to specify the methodology
adequately. Such identification is not intended to imply recom-
mendation or endorsement by the National Institute of Standards
and Technology, nor is it intended to imply that the softwares
identified are necessarily the best available for the purpose.

[FB02] Daan Frenkel and Smit Berend. Monte Carlo Simulations:
A Basic Monte Carlo Algorithm, book section 3, pages 40–
42. Computational Science Series. Academic Press, San Diego,
California, 2 edition, 2002.

[GNA+15] Jens Glaser, Trung Dac Nguyen, Joshua A. Anderson, Pak Lui,
Filippo Spiga, Jaime A. Millan, David C. Morse, and Sharon C.
Glotzer. Strong scaling of general-purpose molecular dynamics
simulations on gpus. Computer Physics Communications, 192:97
– 107, 2015. doi:10.1016/j.cpc.2015.02.028.

[hoo] URL: http://glotzerlab.engin.umich.edu/hoomd-blue/index.html.
[HS05] Justin B. Hooper and Kenneth S. Schweizer. Contact ag-

gregation, bridging, and steric stabilization in dense polymer-
particle mixtures. Macromolecules, 38(21):8858–8869, 2005.
doi:10.1021/ma051318k.

[jup] URL: https://jupyter.org.
[lam] URL: http://lammps.sandia.gov/.

136 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

[MCLG12] J. McCarty, A. J. Clark, I. Y. Lyubimov, and M. G. Guenza.
Thermodynamic consistency between analytic integral equa-
tion theory and coarse-grained molecular dynamics simula-
tions of homopolymer melts. Macromolecules, 45(20):8482–
8493, 2012. URL: <GotoISI>://WOS:000310101600039http://
pubs.acs.org/doi/pdfplus/10.1021/ma301502w, doi:10.1021/
ma301502w.

[MGIJ+18] T. B. Martin, T. E. Gartner III, R. L. Jones, C. R. Snyder, and
A. Jayaraman. pyprism: A computational tool for liquid-state the-
ory calculations of macromolecular materials. Macromolecules,
51(8):2906–2922, 2018. doi:10.1021/acs.macromol.
8b00011.

[new] URL: https://docs.scipy.org/doc/scipy/reference/generated/scipy.
optimize.newton_krylov.html.

[num] URL: http://numpy.org/.
[Oli07] T. E. Oliphant. Python for scientific computing. Com-

puting in Science & Engineering, 9(3):10–20, 2007. URL:
http://ieeexplore.ieee.org/document/4160250/, doi:10.1109/
MCSE.2007.58.

[OS05a] F. T. Oyerokun and K. S. Schweizer. Theory of glassy
dynamics in conformationally anisotropic polymer systems.
Journal of Chemical Physics, 123(22), 2005. URL:
<GotoISI>://WOS:000234120800047http://aip.scitation.org/
doi/pdf/10.1063/1.2135776, doi:10.1063/1.2135776.

[OS05b] F. T. Oyerokun and K. S. Schweizer. Thermodynamics, orien-
tational order and elasticity of strained liquid crystalline melts
and elastomers. Journal of Physical Chemistry B, 109(14):6595–
6603, 2005. URL: <GotoISI>://WOS:000228231200018http:
//pubs.acs.org/doi/pdfplus/10.1021/jp045646i, doi:10.1021/
jp045646i.

[pin] URL: http://pint.readthedocs.io/.
[Pli95] S. Plimpton. False parallel algorithms for short-range molecular-

dynamics. Journal of Computational Physics, 117(1):1–19, 1995.
doi:10.1006/jcph.1995.1039.

[PS99] G. T. Pickett and K. S. Schweizer. Liquid-state theory
of anisotropic flexible polymer fluids. Journal of
Chemical Physics, 110(14):6597–6600, 1999. URL:
<GotoISI>://WOS:000079541700002http://aip.scitation.org/
doi/pdf/10.1063/1.478566, doi:10.1063/1.478566.

[PS00] G. T. Pickett and K. S. Schweizer. Liquid crystallinity
in flexible and rigid rod polymers. Journal of
Chemical Physics, 112(10):4881–4892, 2000. URL:
<GotoISI>://WOS:000085563800049http://aip.scitation.org/
doi/pdf/10.1063/1.481039, doi:10.1063/1.481039.

[psc] URL: http://pscf.cems.umn.edu/.
[pyPa] URL: http://pyprism.readthedocs.io/.
[pyPb] URL: http://pyprism.readthedocs.io/en/latest/tutorial/tutorial.

html.
[pyPc] URL: https://mybinder.org/v2/gh/usnistgov/pyprism/master?

filepath=tutorial.
[pyPd] URL: https://github.com/usnistgov/pyPRISM.
[pyPe] URL: https://anaconda.org/conda-forge/pyprism.
[pyPf] URL: https://pypi.org/project/pyPRISM/.
[RC03] M. Rubinstein and R.H. Colby. Polymer Physics. OUP Oxford,

2003.
[RM11] Neeraj Rai and Edward J. Maginn. Vapor–liquid coexistence and

critical behavior of ionic liquids via molecular simulations. The
Journal of Physical Chemistry Letters, 2(12):1439–1443, 2011.
doi:10.1021/jz200526z.

[SC87] K. S. Schweizer and J. G. Curro. Integral-equation theory of the
structure of polymer melts. Physical Review Letters, 58(3):246–
249, 1987. doi:10.1103/PhysRevLett.58.246.

[SC94] K. S. Schweizer and J. G. Curro. PRISM Theory of the Structure,
Thermodynamics, and Phase-Transitions of Polymer Liquids and
Alloys, volume 116 of Advances in Polymer Science, pages 319–
377. 1994. doi:10.1007/BFb0080203.

[sci] URL: http://scipy.org/.
[sim] URL: http://dmorse.github.io/simpatico/index.html.
[WCV11] S. van der Walt, S. C. Colbert, and G. Varoquaux. The numpy

array: A structure for efficient numerical computation. Com-
puting in Science & Engineering, 13(2):22–30, 2011. URL:
http://ieeexplore.ieee.org/document/5725236/, doi:10.1109/
MCSE.2011.37.

[YSNG04] G. Yatsenko, E. J. Sambriski, M. A. Nemirovskaya, and
M. Guenza. Analytical soft-core potentials for macromolecular
fluids and mixtures. Physical Review Letters, 93(25), 2004.
doi:10.1103/PhysRevLett.93.257803.

PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018) 137

A Bayesian’s journey to a better research workflow

Konstantinos Vamvourellis‡∗, Marianne Corvellec§

https://youtu.be/piQvcVala9I

F

Abstract—This work began when the two authors met at a software devel-
opment meeting. Konstantinos was building Bayesian models in his research
and wanted to learn how to better manage his research process. Marianne
was working on data analysis workflows in industry and wanted to learn more
about Bayesian statistics. In this paper, the authors present a Bayesian scientific
research workflow for statistical analysis. Drawing on a case study in clinical
trials, they demonstrate lessons that other scientists, not necessarily Bayesian,
could find useful in their own work. Notably, they can be used to improve
productivity and reproducibility in any computational research project.

Index Terms—Bayesian statistics, life sciences, clinical trials, probabilistic pro-
gramming, Stan, PyStan

Introduction

We present a research workflow for Bayesian statistical analysis.
We demonstrate lessons we learned from our own computational
research that other scientists, not necessarily Bayesian, could find
useful when they manage their work. To illustrate these lessons,
we use a specific case study in clinical trial modeling.

Clinical trial data are presented to experts and clinicians to
assess the efficacy and safety of a given drug. The analysis of
trial data is based on statistical summaries of the data, including
averages, standard deviations, and significance levels. However,
dependencies between the treatment effects are the subject of clin-
ical judgment and are rarely included in the statistical summaries.

We propose a Bayesian approach to model clinical trial data.
We use latent variables to account for the whole joint distribution
of the treatment effects, including effects of different types. As
a result, we can find the predictive distribution of the treatment
effects on a new patient accounting for uncertainty in all the
parameters, including correlation between the effects.

The analysis is implemented in PyStan, the Python interface to
Stan, which is the state-of-the-art, free and open-source Bayesian
inference engine. Stan and the researchers behind it provide users
with guidance that make Bayesian inference easier to use. We
discuss aspects of this ecosystem in the second-to-last section.

Although this case study is by no means the ideal introductory
example of computational modeling, it provides us with a real-
world problem from which we can share practical lessons. We
believe this paper can be of help to a number of different audi-
ences. Firstly, it can help non-Bayesian statisticians, or beginning

* Corresponding author: k.vamvourellis@lse.ac.uk
‡ London School of Economics and Political Science
§ Institute for Globally Distributed Open Research and Education (IGDORE)

Copyright © 2018 Konstantinos Vamvourellis et al. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

Bayesians, get a a sense of how to apply Bayesian statistics to
their work. Secondly, it can provide computational scientists with
advice on building a reproducible and efficient research workflow.
And, thirdly, it can spark discussions among advanced Bayesians
about the complexities of Bayesian workflows and how to build
better models.

A Bayesian Workflow

We present a Bayesian workflow for statistical modeling. We
recognize that the research process is too complex to summarize in
a recipe-style list. However, we find that there are a few building
blocks that are common to every Bayesian statistical analysis.
In this paper, we focus on these and break them down to a
few basic steps. To avoid over-simplification, we hint to possible
connections with more advanced aspects where appropriate. We
believe that following a workflow, such as suggested here, can
help researchers avoid mistakes and increase productivity. It also
helps make research projects more reproducible, as we discuss in
the last section.

We propose a simple workflow made of the following steps:

1) Scope the problem;
2) Specify the likelihood and priors;
3) Generate synthetic data that resemble the true data to a

reasonable degree;
4) Fit the model to the synthetic data;

a. Check that the true values are recovered;
b. Check the model fit;

5) Fit the model to the real data.

An advanced workflow, which is beyond the scope of this
paper, could be extended to include the following steps:

6) Check the predictive accuracy of the model;
7) Evaluate the model fit;
8) Select best model among different candidates (model

selection);
9) Perform a sensitivity analysis.

In what follows, we will use M(θ) to denote the model as
a function of its parameter θ (θ is either a scalar or a vector
representing a set of parameters). Data usually consist of observ-
able outcomes1 y and covariates2 x, if any. We will distinguish
between the two when necessary; otherwise, we will denote all
data together by D. We use p(·) to denote either probability

138 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

distributions or probability densities, even though it is not rigorous
notation.

1) Scope the problem
The main goal of this workflow is to achieve successful

Bayesian inference. That is, correctly retrieving samples from the
posterior distribution of the parameter values, which are typically
unknown before the analysis, using the information contained in
the data. The major difference of the Bayesian approach relative
to frequentist, is that it modifies the likelihood function (to be
introduced later) into a proper distribution over the parameters,
called the posterior distribution. The posterior distribution p(θ |D)
forms the basis of the Bayesian approach from which we derive
all quantities of interest.

Why do we need statistical inference in the first place? We
need it to answer our questions about the world. Usually, our
questions refer to an implicit or explicit parameter θ in a statistical
model, such as:

• What values of θ are most consistent with the data?
• Do the data support a certain condition (e.g., for θ a scalar,

θ > 0)?
• How can we predict the future outcome of an experiment?

To proceed, we need to define a model. Choosing a model is
usually tied to the exact research questions we are interested in.
We can choose to start with a postulated data generation process
and then decide how to interpret the parameters in relation to the
research question. Alternatively, it is equally valid to start from
the research question and design the model so that its parameters
are directly connected to the specific questions we wish to answer.
In the next section, we illustrate with an example how to design a
model to answer a specific research question.

Note that the question of prediction depends directly on
inferring successfully the parameter values. We shall come back
to this at the end of this section.

2) Specify the likelihood and priors
Once we have defined the scope of the problem, we need

to specify the design of the model which is captured in the
likelihood function f (D|θ ,M). Usually, argument M is dropped
for notational simplicity, the model being chosen and assumed
known3. Note, however, that when the model includes covari-
ates, the more accurate expression is f (y|θ ,x). This function
ties together the ingredients of statistical inference and allows
information to flow from the data D to the parameters θ . With
Bayes’ rule, p(θ |D) = p(D|θ)p(θ)/p(D), we can calculate the
posterior distribution.

The second ingredient of Bayesian inference is the prior
distribution p(θ). Priors are inescapably part of the Bayesian
approach and, hence, have to be considered carefully. The goal
of Bayesian inference is to combine the prior information on the
parameters (the prior distribution), with the evidence contained
in the data (the likelihood), to derive the posterior distribution
p(θ |D). It is difficult to predict how sensitive the final results will
be to a change in the priors. However, it is important to note that

1. Depending on their field, readers may want to think ‘dependent variables’
or ‘labels’.

2. Depending on their field, readers may want to think ‘independent vari-
ables’ or ‘features’.

3. This is a good time to highlight that the choice of the model is a constant
assumption in everything we do from now on. In research projects, it is
common to work with a few different models in parallel.

the impact of priors progressively diminishes as the number of
observations increases.

The ideal scenario for applying the Bayesian approach is when
prior knowledge is available, in which case the prior distribution
can and should capture that knowledge. But, sometimes, we might
want to avoid expressing prior knowledge, especially when such
knowledge is not available. How are we supposed to choose priors
then? Constructing default priors is an active area of research that
is beyond the scope of this work. Here, we provide a high-level
overview and refer the interested reader to various sources for
further reading.

Priors which express very little or no prior knowledge are
called vague or uninformative priors. Such priors are deliberately
constructed in a way which minimizes their impact on the resulting
inference, relative to the information brought in by the likelihood.
In fact, Bayesian inference technically works even when the prior
is not a proper distribution but a function that assumes all values
are equally likely, referred to as improper prior. However, it is
generally advisable to avoid improper priors, especially in settings
beyond just inference, such as the more advanced workflow of
steps 6)–9). If no prior knowledge is available, a normal distri-
bution with large variance is still a better default prior than a
uniform distribution. It is important to note that improper or even
vague priors are not appropriate for model selection.

Additional considerations can impact the choice of priors,
especially when chosen together with the likelihood. From a
computational perspective, the most convenient priors are called
conjugate priors, because they mimic the structure of the like-
lihood function and lead to a closed-form posterior distribution.
Priors can have additional benefits when used with a certain goal in
mind. For example, priors can be used to guard against overfitting
by pulling the parameters away from improbable values, or help
with feature selection (e.g., see horse-shoe priors).

Bayesian critics often see priors as a weakness, whereas
in reality they are an opportunity. Notably, priors give us the
opportunity to employ our knowledge to guide the inference in
the absence of evidence from the data. Also, it is important to
remember that, in a scientific research context, we rarely have
absolutely no prior knowledge and we typically do not consider
any parameter value to be equally likely.

3) Generate synthetic data
Once we have agreed on a generative process, i.e., a model

M, we can use it to simulate data D′. To do that, we choose
reasonable parameter values θ0 and use M to generate data
based on these values. Alternatively, instead of coming up with
reasonable parameter values, we can sample these values from
the prior distribution θ0 ∼ p(θ). The synthetic data D′ can then
be interpreted as our prior distribution of the data. Hence, by
inspecting the synthetic data, we can reflect back on our choices
for the likelihood and priors. However, if we do use our priors to
generate parameter values, we should make sure that our priors
are not uninformative, which would likely produce unreasonable
synthetic data.

Note how the model M is a hypothesized process and comes
with necessary assumptions and simplifications. It is highly un-
likely that the real world would follow exactly M. That being said,
if M is close enough to the real generative process, it can still
be very useful to help us understand something about the world.
As the phrase goes, “all models are wrong, but some models are
useful.”

4) Fit the model to the synthetic data

A BAYESIAN’S JOURNEY TO A BETTER RESEARCH WORKFLOW 139

If simulating data using our generative process M is the
forward direction, statistical inference is the reverse direction by
which we find what parameter values could have produced such
data, under M.

The most popular statistical inference algorithm is maximum
likelihood estimation (MLE), which finds the parameter values
that maximize the likelihood given the observed data. To reiterate,
under the Bayesian approach, we treat the parameters θ as random
variables and express our prior knowledge about θ with the prior
probability distribution p(θ). Bayesian inference is the process
of updating our beliefs about θ in light of the data D. The
updating process uses Bayes’ rule and results in the conditional
distribution p(θ |D), the posterior distribution. Bayesian inference
is generally a hard problem. In most cases, we cannot derive
the mathematical form of the posterior distribution; instead, we
settle for an algorithm that returns samples from the posterior
distribution.

When we fit the model to synthetic data, we want to check two
things: the correctness of the inference algorithm and the quality
of our model.

a. Much like in software testing, we want to check if the
inference process works by starting simple and advance progres-
sively to the real challenge. By fitting the model to synthetic data
generated from the same model, we effectively rule out issues
of mismatch between our model and the real data. Testing the
inference algorithm under these ideal conditions allows us to
perfect the inference algorithm in a controlled environment, before
trying it on the real data. In our experience, this step brings to the
surface many bugs in the code as well as issues about the model
in general. It offers an added benefit, later on, when we critique
the fit of our model M to the real data D. Having confidence in
the correctness of our inference process allows us to attribute any
mismatch issues to the choice of the model, as opposed to the
inference algorithm.

By fitting the model to synthetic data, we recover samples
from the posterior distribution of the model parameters. There are
various model fit tests to choose from. At a minimum, we need
to check that the true parameter values θ0 are within the range
implied by the posterior distributions4. Success at this stage is not
a sufficient guarantee that the model will fit well to the real data,
but it is a necessary condition for proceeding further.

b. Fitting the model to synthetic data is the first opportunity to
critique the model M and, if necessary, calibrate it to better suit
our needs. This is a good time to catch any issues that affect the
quality of the model irrespective of how well it captures reality.
For example, an issue that comes up often is non-identifiability, the
situation where the likelihood and the data is specified in a way
such that there is not enough information to identify the correct
parameter values, no matter how big the sample size is. It is also
a good time to check if small variations to the model (such as
replacing a normal with a heavier-tail distribution) fit our needs
better. For instance, calibrating a model to make inferences about
the center of a distribution, such as the mean, is relatively easy. On
the other hand, we might need to do more extensive calibration if
we are interested in the tail behavior of the distribution, such as

4. A common test is to construct an interval that includes 95% of the most
likely values, called highest posterior density interval, and check that it covers
the true parameter values θ0 that were used to generate the synthetic data. We
should tolerate a few misses, since 95% intervals will not cover the true values
5% of the time, even if the algorithm is perfectly calibrated.

maximum values. If we do choose to use a different model M′, we
need to go back to step 2) and start again.

Model evaluation is an essential part of a good workflow. It is
a complex task that can be used with both synthetic and real data,
providing possibly different insights each time. We do not have
space to go into more details in this paper but we provide pointers
in the further reading section.

5. Fit the model to the real data
This is the moment we have been waiting for: We are ready to

fit our model to the real data and get the final results. Usually, we
focus our attention on a specific quantity of interest that is derived
from the posterior samples (see further reading for pointers). If
we are satisfied with the fit of the model, we are done. In most
cases, though, at this stage we are expected to evaluate the model
again, this time focusing on how well it captures reality. This
step is highly application-specific and requires a combination
of statistical expertise and subject-matter expertise (we refer the
interested reader to sources later). We note that it is important to
build confidence in the power of our inference algorithm before
proceeding on to interpreting results. This helps us separate, to the
extent possible, inference issues from model issues. At this stage,
it is likely that we will come up with a slightly updated model M′.
We then have to go back and start again from the beginning.

Posterior Predictive Checks and Model Evaluation
In this subsection, we would like to touch briefly on two topics

for more advanced workflows, prediction and model evaluation.
The Bayesian posterior predictive distribution is given by the
following formula:

p(ỹ|D) =
∫

p(ỹ,θ |D)dθ

=
∫

p(ỹ|θ)p(θ |D)dθ

In practice, we approximate the integral using samples from the
posterior distributions. Posterior predictive checks, evaluating the
predictive accuracy of a model, can also be used to evaluate
a model. To do this, we check how well it predicts unknown
observable data ỹ, where unknown means that the model was not
fit to ỹ5.

Further reading
For a concise overview of statistical modeling and inference,

including a high-level comparison with the frequentist approach,
see [Woo15]. For a more extended treatment of the Bayesian ap-
proach, see [Rob07]. For an accessible Bayesian modeling primer,
especially for beginner Bayesians, see [McE15] and [MR06]. For
a complete treatment of Bayesian data analysis, including many
workflow-related discussions, see [GCS+13]6.

A Case Study in Clinical Trial Data Analysis

We propose a Bayesian model to extract insights from clinical
trial datasets. We are interested in understanding the effect of a
treatment on the patients. Our goal is to use the data to predict the
effect of the treatment on a new patient. We apply our method on
artificially created data, for illustration purposes only.

5. To check the predictive accuracy of the model, we need to measure our
predictions ỹ against real data. To do this, we usually hold out a small random
sample of the original data and deliberately restrain from fitting the model to
that sample.

6. And for an example implementation of a complete workflow with
PyStan, see https://github.com/betanalpha/jupyter_case_studies/tree/master/
pystan_workflow.

140 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Subject ID Group
Type

Hemoglobin
Level

Dyspepsia Nausea

123 Control 3.42 1 0
213 Treatment 4.41 1 0
431 Control 1.12 0 0
224 Control -0.11 1 0
233 Treatment 2.42 1 1

TABLE 1: Toy clinical trial data.

1) Scope the problem
Regulators focus on a few key effects when deciding whether

a drug is fit for market. In our case we will assume, for simplicity,
that there are three effects, where two are binary variables and the
other is a continuous variable.

Our dataset is organized as a table, with one patient (subject)
per row and one effect per column. For example, if our clinical
trial dataset records three effects per subject, ‘Hemoglobin Levels’
(continuous), ‘Nausea’ (yes/no), and ‘Dyspepsia’ (yes/no), the
dataset looks like Table 1.

The fact that the effects are of mixed data types, binary and
continuous, makes it harder to model their interdependencies. To
address this challenge, we use a latent variable structure. Then,
the expected value of the latent variables will correspond to the
average effect of the treatment. Similarly, the correlations between
the latent variables will correspond to the correlations between
effects. Knowing the distribution of the latent variables will give
us a way to predict what the effect on a new patient will be,
conditioned on the observed data.

2) Specify the model, likelihood, and priors
a. Model: Let Y be a N × K matrix where each column

represents an effect and each row refers to an individual subject.
This matrix contains our observations, it is our clinical trial
dataset. We distinguish between treatment and control subjects by
considering separately Y T (resp. YC), the subset of Y containing
only treatment (resp. control) subjects. Since the model for Y T and
YC is identical, for convenience, we suppress the notation into Y
in the remainder of this section.

We consider the following general latent variable framework.
We assume subjects are independent and wish to model the
dependencies between the effects. The idea is to bring all columns
to a common scale (−∞,∞). The continuous effects are observed
directly and are already on this scale. For the binary effects, we
apply appropriate transformations on their parameters via user-
specified link functions h j(·), in order to bring them to the (−∞,∞)
scale. Let us consider the i-th subject. Then, if the j-th effect is
measured on the binary scale, the model is

Yi j ∼ Bernoulli(ηi j)

h j(ηi j) = Zi j,

where the link function h j(·) can be the logit, probit, or any other
bijection from [0,1] to the real line. Continuous data are assumed
to be observed directly and accurately (without measurement
error), and modeled as follows:

Yi j = Zi j for i = 1, . . . ,N.

In order to complete the model, we need to define the N×K matrix
Z. Here, we use a K-variate normal distribution NK(·) on each Zi·

row, such that
Zi· ∼ NK(µ,Σ),

where Σ is a K×K covariance matrix, µ is a row K-dimensional
vector, and Zi· are independent for all i.

In the model above, the vector µ = (µ1, . . . ,µK) represents the
average treatment effect in the common scale. In our example,
the first effect (Hemoglobin Level) is continuous and hence its
latent value directly observed. Regarding the remaining two effects
(Dyspepsia and Nausea), their latent values can only be inferred
via their binary observations. Note that the variance of the non-
observed latent variables is non-identifiable [CG98], [TDM12], so
we need to fix it to a known constant (here we use 1) to fully
specify the model. We do this by decomposing the covariance into
correlation and variance: Σ = DRD, where R is the correlation
matrix and D is a diagonal matrix of variances D j j = σ2

j for the
j-th effect.

b. Likelihood: The likelihood function can be expressed as

f (Y |Z,µ,Σ) = f (Y |Z) · p(Z|µ,Σ)

= [∏
j∈Jb

N

∏
i=1

h−1
j (Zi j)

Yi j (1−h−1
j (Zi j))

(1−Yi j)] · p(Z|µ,Σ)

= [∏
j∈Jb

N

∏
i=1

ηYi j
i j (1−ηi j)

(1−Yi j)] ·N(Z|µ,Σ),

where Jb is the index of effects that are binary and N(Z|µ,Σ) is
the probability density function (pdf) of the multivariate normal
distribution.

c. Priors: In this case study, the priors should come from
previous studies of the treatment in question or from clinical
judgment. If there was no such option, then it would be up to
us to decide on an appropriate prior. We use the following priors
for demonstration purposes:

µi ∼ N(0,10)

R ∼ LKJ(2)

σ j ∼ Cauchy(0,2) for j 6∈ Jb

Zi j ∼ N(0,1) for j ∈ Jb.

This will become more transparent in the next section, when we
come back to the choice of priors7. Let us note that our data
contain a lot of information, so the final outcome will be relatively
insensitive to the priors.

3) Generate synthetic data
To generate synthetic data, given some values for the pa-

rameters (µ,Σ) we only need to follow the recipe given by
the model. To fix the parameter values we could sample from
the priors we chose, or just choose some reasonable values.
Here we picked µ = (0.3,0.5,0.7), σ = (1.3,1,1), and R(1,2) =
−0.5, R(1,3) =−0.3, R(2,3) = 0.7. Then, as the model dictates,
we use these values to generate samples of underlying latent
variables Zi·∼N(µ,Σ)8. Each Zi· corresponds to a subject, here we
choose to generate 200 subjects. The observed synthetic data Yi j
are defined to be equal to Zi j for the effects that are continuous. For

7. On the LKJ distribution, see https://www.sciencedirect.com/science/
article/pii/S0047259X09000876.

A BAYESIAN’S JOURNEY TO A BETTER RESEARCH WORKFLOW 141

the binary effects, we sample Bernoulli variables with probability
equal to the inverse logit of the corresponding Zi j value.

Recall that a Bayesian model with proper informative priors,
such as the ones we use in this model, can also be used directly
to sample synthetic data. As explained in the previous section, we
can sample all the parameters according to the prior distributions.
The synthetic data can then be interpreted as our prior distribution
on the data.

4) Fit the model to the synthetic data
The Stan program encoding this model is the following:

1 data {
2 int<lower=0> N;
3 int<lower=0> K;
4 int<lower=0> Kb;
5 int<lower=0> Kc;
6 int<lower=0, upper=1> yb[N, Kb];
7 vector[Kc] yc[N];
8 }
9

10 transformed data {
11 matrix[Kc, Kc] I = diag_matrix(rep_vector(1, Kc));
12 }
13

14 parameters {
15 vector[Kb] zb[N];
16 cholesky_factor_corr[K] L_R;
17 vector<lower=0>[Kc] sigma;
18 vector[K] mu;
19 }
20

21 transformed parameters {
22 matrix[N, Kb] z;
23 vector[Kc] mu_c = head(mu, Kc);
24 vector[Kb] mu_b = tail(mu, Kb); {
25 matrix[Kc, Kc] L_inv = \
26 mdivide_left_tri_low(diag_pre_multiply(sigma, \
27 L_R[1:Kc, 1:Kc]), I);
28 for (n in 1:N) {
29 vector[Kc] resid = L_inv * (yc[n] - mu_c);
30 z[n,] = transpose(mu_b + tail(L_R * \
31 append_row(resid, zb[n]), Kb));
32 }
33 }
34 }
35

36 model {
37 mu ~ normal(0, 10);
38 L_R ~ lkj_corr_cholesky(2);
39 sigma~cauchy(0, 2.5);
40 yc ~ multi_normal_cholesky(mu_c, \
41 diag_pre_multiply(sigma, L_R[1:Kc, 1:Kc]));
42 for (n in 1:N) zb[n] ~ normal(0, 1);
43 for (k in 1:Kb) yb[, k] ~ bernoulli_logit(z[, k]);
44 }
45

46 generated quantities {
47 matrix[K, K] R = \
48 multiply_lower_tri_self_transpose(L_R);
49 vector[K] full_sigma = append_row(sigma, \
50 rep_vector(1, Kb));
51 matrix[K, K] Sigma = \
52 multiply_lower_tri_self_transpose(\
53 diag_pre_multiply(full_sigma, L_R));
54 }

Model Fit Checks
Figures 1, 2, and 3, we plot the posterior samples on top

of the true values (vertical black lines). We check visually that
the intervals containing 95% of samples (around their respective
means) cover the true values we used to generate the synthetic
data.

8. Both Zi· ∼ NK(µ,Σ) and Zi· ∼ N(µ,Σ) hold, since the ∼ symbol means
“is distributed as” and N(µ,Σ) is the pdf of NK(µ,Σ).

Fig. 1: Histogram of values sampled from the posterior mean of latent
variables.

Fig. 2: Histogram of values sampled from the posterior standard
deviation for Hemoglobin Level.

With Stan, we can also utilize the built-in checks to inspect the
correctness of the inference results. One of the basic tests is the
R̂ (Rhat), which is a general summary of the convergence of the
Hamiltonian Monte Carlo (HMC) chains. Another measure is the
number of effective samples, denoted by n_eff. Below, we show
an excerpt from Stan’s summary of the fit object, displaying
Rhat and n_eff, along with other metrics (mean and standard
deviation), for various parameters. We shall come back to the topic
of fit diagnostics in the next section.

Inference for Stan model:

Fig. 3: Histogram of values sampled from the posterior correlation of
effects.

142 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Fig. 4: Histogram of values sampled from the posterior predictive
distributions.

anon_model_389cd056347577840573e8f6df0e7636.
4 chains, each with iter=1000; warmup=500; thin=1;
post-warmup draws per chain=500,
total post-warmup draws=2000.

mean sd ... n_eff Rhat
mu[0] 0.36 0.09 ... 2000 1.0
mu[1] 0.56 0.18 ... 2000 1.0
mu[2] 0.67 0.18 ... 2000 1.0
R[0,0] 1.0 0.0 ... 2000 nan
R[1,0] -0.24 0.16 ... 2000 1.0
R[2,0] -0.38 0.16 ... 2000 1.0
R[0,1] -0.24 0.16 ... 2000 1.0
R[1,1] 1.0 9.3e-17 ... 1958 nan
R[2,1] 0.1 0.32 ... 550 1.0
R[0,2] -0.38 0.16 ... 2000 1.0
R[1,2] 0.1 0.32 ... 550 1.0
R[2,2] 1.0 7.8e-17 ... 2000 nan
sigma[0] 1.28 0.06 ... 2000 1.0

5. Fit the model to the real data
Once we have built confidence in our inference algorithm,

we are ready to fit our model to the real data and answer the
question of interest. Our goal is to use the data to predict the effect
of the treatment on a new patient, i.e., the posterior predictive
distribution.

In this case study, we may not share real data but, for demon-
stration purposes, we created two other sets of synthetic data, one
representing the control group and the other the treatment group.
For each posterior sample of parameters (µi,Σi), we generate a
latent variable Zi· ∼ N(µi,Σi). We then set Yi j = Zi j for j = 1,
whereas for j = {2,3}, we sample Yi j ∼ Bernoulli(logit−1(Zi j).
The resulting set of Yi· is the posterior predictive distribution. We
do this for the parameters learned from both groups, Y T and YC

separately, and plot the results in Figure 4.
Looking at the plots, we can visualize the effect of the drug

on a new patient by distinguishing the effects with the treatment
(green) versus without (blue). We observe that the Hemoglobin
levels are likely to decrease under the treatment by about 1 unit
on average. The probability of experiencing dyspepsia is slightly
lower under the treatment, contrary to that of nausea which
is the same in both groups. Note how the Bayesian approach
results in predictive distributions rather than point estimates, by
incorporating the uncertainty from the inference of the parameters.

Bayesian Inference with Stan

Stan is a powerful tool which “mitigates the challenges of pro-
gramming and tuning” HMC to do statistical inference. Stan is a
compiled language written in C++. It includes various useful tools
and integrations which make the researcher’s life easier. It can be
accessed from different languages via interfaces. This case study
was created with the Python interface, Pystan. Note that, at the
time of writing, the most developed interfaced is the R one, called
RStan. Although the underlying algorithm and speed is the same

throughout the different interfaces, differences in user experience
can be meaningful.

Stan requires a description of the basic ingredients of Bayesian
inference (i.e., the model, likelihood, priors, and data) and returns
samples from the posterior distribution of the parameters. The user
specifies these ingredients in separate code blocks called model
(lines 37–45), parameters (lines 14–20), and data (lines 1–8). Stan
code is passed in via a character string or a plain-text .stan file,
which is compiled down to C++ when the computation happens.
Results are returned to the interface as objects.

Choice of priors
Stan provides many distributions to choose from, which are

pre-implemented to maximize efficiency. The Stan team also
provides researchers with recommendations on default priors for
commonly used parameters, via the Stan manual [Tea17] and other
online materials. In our case study, we chose an LKJ prior (line
39) for the correlation matrix, one of the pre-implemented dis-
tributions in Stan. The LKJ prior has certain attractive properties
and is a recommended prior for correlation matrices in Stan (for
reasons beyond the scope of this paper). It has only one parameter
(we set it to 2) which pulls slightly the correlation terms towards
0. Another example is the half-Cauchy prior distribution for scale
parameters such as standard deviation (line 40). Half-Cauchy is
the recommended prior for standard deviation parameters because
its support is the positive real line but it has higher dispersion than
other alternatives such as the normal distribution. Note that it is
easy to truncate any pre-implemented distribution. Stan accepts
restrictions on parameters. For example, we restrict the parameter
for standard deviation to be positive (line 18). This restriction is
then respected when combined with the prior distribution defined
later (line 40) to yield a constrained half-Cauchy prior.

Fit diagnostics
HMC has many parameters that need to be tuned and can

have a big impact on the quality of the inference. Stan provides
many automated fit diagnostics as well as options to tune manually
the algorithm, if the default values do not work. For example, the
Gelman–Rubin convergence statistic, R̂, comes for free with a Stan
fit; effective sample size is another good way to evaluate the fit. In
most cases, R̂ values need to be very close to 1.0 (±0.01) for the
results of the inference to be trusted, although this on its own does
not guarantee a good fit. More advanced topics, such as divergent
transitions, step sizes and tree depths are examined in the Stan
manual, together with recommendations on how to use them.

Challenges
Stan, and HMC in general, is not perfect and can be challenged

in various ways. For example multimodal posterior distribution,
which are common in mixture models, are hard to explore9.

Another common issue is that mathematically equivalent pa-
rameterizations of a model can have vastly different performance
in terms of sampling efficiency10. Although finding the right
model parameterization does not admit a simple recipe, the Stan
manual [Tea17] provides recommendations to common problems.
For example, we can usually improve the sampling performance
for normally distributed parameters of the form x∼N(µ,σ2) if we
use the non-center parameterization x = µ +σz for z∼ N(0,1). In
our case study, we use this trick, or rather its multivariate version,
by targeting the non-centered parts of the latent variable Z (lines
15, 23, 31–32 and 43). Another cause of bad inference results
in regression models is correlation among covariates. The way
to improve the sampling efficiency of a regression model is to
parameterize it using the QR decomposition11. We note that these

A BAYESIAN’S JOURNEY TO A BETTER RESEARCH WORKFLOW 143

issues, among others, that a researcher will encounter when using
Stan stem from the difficulties of Bayesian inference, and HMC in
particular [BG13], not Stan. The biggest limitation of HMC is that
it only works for continuous parameters. As a result we cannot
use Stan, or HMC for that matter, to do inference on discrete
unknown model parameters. However, in some cases we are able
to circumvent this issue12.

Stan vs PyMC3
In this subsection, we provide a brief overview of the similari-

ties and differences between PyStan and PyMC3, which is another
state-of-the-art FLOSS13 implementation of automatic Bayesian
inference in Python. By ‘automatic,’ we mean that the user only
needs to specify the model and the data and the software takes care
of the Bayesian inference. Both PyStan and PyMC3 let users fit
highly complex Bayesian models, by using HMC under the hood.

Stan and PyMC3 are the same insofar as they serve exactly
the same purpose. They both are expressive languages and allow
flexible model specification in code. PyMC3 leverages Theano to
implement automatic differentiation, whereas Stan relies on its
own algorithm. Practitioners report that PyMC3 is easier to get
started with (hence, more suitable for prototyping), while Stan is
more robust (hence, more suitable for production). For example,
Prophet14 is a timeseries forecasting package by Facebook imple-
mented with Stan. Indeed, there is a rich ecosystem of packages
built on top of Stan. However, most of these are available in R only.
Most of RStan derived packages follow pre-existing conventions
to ease the transition of researchers who want to try Bayesian
modeling seamlessly. For example, R users are usually familiar
with the glm building block for fitting generalized linear models;
with the brms package15 users can insert a Bayesian estimates
in place of frequentist estimates with minimal changes to their
scripts. This way users can easily compare the estimates of the
two methods and judge whether the Bayesian approach works for
them.

Such packages can also be of use to more advanced users
of Bayesian inference as they typically implement the state-of-
the-art modeling choices such as default priors and expose the
generated Stan code to the user. Hence, interested researchers
can learn by essentially using them to generate a baseline Stan
code that they can tweak further according to their needs. At the
time of writing, PyStan users cannot directly benefit from the Stan
ecosystem of packages without leaving Python, at least briefly,
as most of the packages above are not available in Python. As a
result, we think that PyMC3 seems to be a more complete solution
from a Python perspective. PyMC3 is native to Python and hence
more integrated into Python than PyStan. PyMC3 also offers more
integrated plotting capabilities than PyStan16.

The value of Stan, in the authors’ view, should be considered
beyond the mere software implementation of HMC. Stan consists
of a dynamic research community that aims at making Bayesian

9. See https://github.com/betanalpha/knitr_case_studies/tree/master/
identifying_mixture_models.

10. See http://mc-stan.org/users/documentation/case-studies/mle-
params.html.

11. See http://mc-stan.org/users/documentation/case-studies/qr_regression.
html.

12. See http://elevanth.org/blog/2018/01/29/algebra-and-missingness/.
13. FLOSS stands for “Free/Libre and Open Source Software.”
14. See https://research.fb.com/prophet-forecasting-at-scale/.
15. This package makes it easy to fit models (https://github.com/paul-

buerkner/brms).

inference more accessible and robust. This is achieved through
open discussion of all Bayesian topics, many of which are areas
of active research. Interested users can learn more about Bayesian
inference in general, not just Stan, by reading online and partici-
pating in the discussion (see next subsection).

Further reading
The Stan manual [Tea17] is a comprehensive guide to Stan

but also includes guidance for Bayesian data analysis in general.
For a concise discussion on the history of Bayesian inference
programs and the advantages of HMC, see [McE17]. For examples
of other case studies and tutorials in Stan, see http://mc-stan.org/
users/documentation/. For active discussions and advice on how
to use Stan, see the Stan forum at http://discourse.mc-stan.org/.

Reproducibility

In this last section, we report on our experience of making
the case study more reproducible. We consider the definition of
reproducibility put forward by [KTD18]. Namely, reproducibility
is “the ability of a researcher to duplicate the results of a prior
study using the same materials as were used by the original
investigator” [RMS18]. To achieve it, we follow the guidance of
the three key practices of computational reproducibility [Kit18]:

1) Organizing the project into meaningful files and folders;
2) Documenting each processing step;
3) Chaining these steps together (into a processing pipeline).

We care about reproducibility for both high-level and low-
level reasons. In the big picture, we want to make the work more
shareable, reliable, and auditable. In the day-to-day, we want to
save time, catch mistakes, and ease collaboration. We are expe-
riencing these benefits already, having taken a few steps towards
computational reproducibility. Finally, let us borrow a quote which
is well-known in the reproducible research communities: “Your
most important collaborator is your future self.”

The case study presented earlier was not originally set up
according to the three practices outlined above. Notably, it used
to live in a variety of files (scripts, notebooks, figures, etc.) with
no particular structure. File organization is a common source of
confusion and frustration in academic research projects. So, the
first step we took was to create a clear, relatively standardized
directory structure. We went for the following:
|-- mixed-data/ <- Root (top-most) directory

for the project.
|-- README.md <- General information about

the project.
|-- environment.yml <- Spec. file for reproducing

the computing environment.
|-- data/
|-- raw/ <- The original, immutable

data dump.
|-- interim/ <- Intermediate outputs.

|-- models/

16. For additional sources on PyMC3 vs Stan comparisons, see:

• https://github.com/jonsedar/pymc3_vs_pystan
• http://discourse.mc-stan.org/t/jonathan-sedar-hierarchical-bayesian-

modelling-with-pymc3-and-pystan/3207
• http://andrewgelman.com/2017/05/31/compare-stan-pymc3-edward-

hello-world/
• https://towardsdatascience.com/stan-vs-pymc3-vs-edward-

1d45c5d6da77
• https://pydata.org/london2016/schedule/presentation/30/
• https://github.com/jonsedar/pymc3_vs_pystan

144 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

|-- modelcode.stan <- Model definition.
|-- notebooks/ <- <- Jupyter notebooks.
|-- rosi_py.ipynb
|-- rosi_py_files/ <- Subdirectory for temporary

outputs such as figures.
|-- README.md <- Documentation for this

subdirectory.

We have found this directory structure to be very helpful and use-
ful in the case of an exploratory data analysis project. Additionally,
there is value in reusing the same structure for other projects (given
a structure that works for us): By reducing unnecessary cognitive
load, this practice has made our day-to-day more productive and
more enjoyable. For further inspiration, we refer the interested
reader to [Tra17], [Dc] and references therein.

The second step we took was to set up the project as its own
Git repository17. Thus, we can track changes conveniently and
copy (‘clone’) the project on other machines safely (preserving
the directory structure and, hence, relative paths)18.

Reproducible research practitioners recommend licensing your
scientific work under a license which ensures attribution and
facilitates sharing [Sto09]. Raw data are not copyrightable, so it
makes no sense to license them. Code should be made available
under a FLOSS license. Licenses suitable for materials which are
neither software nor data (i.e., papers, reports, figures), and offer-
ing both attribution and ease of sharing, are the Creative Commons
Attribution (CC BY) licenses. The case study (notebook) has
been licensed under CC BY since the beginning. This practice
can indeed contribute to improving reproducibility, since other
researchers may then reuse the materials independently, without
having to ask the copyright holders for permission.

We were confronted with the issue of software portability in
real life, as soon as we (the authors) started collaborating. We
created an isolated Python 3 environment with conda, a cross-
platform package and environment manager19. As it turned out, the
conventional file environment.yml, which specifies package
dependencies, did not suffice: We run different operating systems
and some dependencies were not available for the other platform.
Therefore, we included a spec-file.txt as a specification file
for creating the conda environment on GNU/Linux. Admittedly,
this feels only mildly satisfying and we would welcome feedback
from the community.

At the moment, all the analysis takes place in one long Jupyter
notebook20. We could break it down into smaller notebooks
(and name them with number prefixes, for ordering). This way,
someone new to the project could identify the various modelling
and computing steps, in order, only by looking at the ‘self-
documenting’ file structure. If we ever take the project to a
production-like stage, we could further modularize the functional-
ity of each notebook into modules (.py files), which would contain
functions and would be organized into a project-specific Python
package. This would pave the way for creating a build file21 which
would chain all operations together and generate results for our
specific project. Reaching this stage is referred to as automation.

17. Git is a distributed version control system which is extremely popular in
software development (https://git-scm.com/).

18. The mixed-data project is hosted remotely at https://github.com/
bayesways/mixed-data.

19. See https://conda.io/docs/.
20. See https://github.com/bayesways/mixed-data/blob/

d2fc4ea72466a4884dc2a5c46510129fac602f1f/notebooks/rosi_py.ipynb.
21. See https://swcarpentry.github.io/make-novice/reference#build-file.

In data analysis, the first of these operations usually consists
in accessing the initial, raw dataset(s). This brings about the
question of data availability. In human subject research, such
as clinical trials, the raw data cannot, and should not, be made
publicly available. We ackowledge the tension existing between
reproducibility and privacy22. At the time of this writing and
as mentioned in the case study section, we are showcasing the
analysis only with synthetic input data.

REFERENCES

[Bar18] Pablo Barberá. The Trade-Off Between Reproducibility and Pri-
vacy in the Use of Social Media Data to Study Political Behavior.
University of California Press, Oakland, CA, 2018. URL: https://
www.practicereproducibleresearch.org/case-studies/barbera.html.

[BG13] Michael Betancourt and Mark Girolami. Hamiltonian monte carlo
for hierarchical models. 2013. arXiv:1312.0906v1.

[CG98] Siddhartha Chib and Edward Greenberg. Analysis of multivariate
probit models. Biometrika, 85(2):347–361, jun 1998. doi:10.
1093/biomet/85.2.347.

[Dc] DrivenData and contributors. The cookiecutter data science
project. Accessed on Wed, May 23, 2018. URL: http://drivendata.
github.io/cookiecutter-data-science/.

[GCS+13] Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson,
Aki Vehtari, and Donald B. Rubin. Bayesian Data Analysis. CRC
press, 2013.

[Kit18] Justin Kitzes. The Basic Reproducible Workflow Template,
chapter 3. University of California Press, Oakland, CA,
2018. URL: https://www.practicereproducibleresearch.org/core-
chapters/3-basic.html.

[KTD18] J. Kitzes, D. Turek, and F. Deniz, editors. The Practice of
Reproducible Research: Case Studies and Lessons from the Data-
Intensive Sciences. University of California Press, Oakland, CA,
2018. URL: https://www.practicereproducibleresearch.org/.

[McE15] Richard McElreath. Statistical rethinking : a Bayesian course with
examples in R and Stan. 2015.

[McE17] Richard McElreath. Markov chains: Why walk when you can
flow?, 2017. Accessed on Wed, May 23, 2018. URL: http:
//elevanth.org/blog/2017/11/28/build-a-better-markov-chain/.

[MR06] Jean-Michel Marin and Christian P. Robert. The bayesian core: a
practical approach for computational bayesian statistics, volume
102. Springer Texts in Statistics, 2006. doi:10.1016/j.
peva.2007.06.006.

[RMS18] Ariel Rokem, Ben Marwick, and Valentina Staneva. Assessing
Reproducibility, chapter 2. University of California Press, Oak-
land, CA, 2018. URL: https://www.practicereproducibleresearch.
org/core-chapters/2-assessment.html.

[Rob07] Christian P. Robert. The Bayesian choice: from decision-theoretic
foundations to computational implementation. Springer Science &
Business Media, 2007.

[Sto09] Victoria Stodden. Enabling reproducible research: Open licensing
for scientific innovation. International Journal of Communications
Law and Policy, 2009. doi:10.7916/D8N01H1Z.

[TDM12] Aline Talhouk, Arnaud Doucet, and Kevin Murphy. Efficient
bayesian inference for multivariate probit models with sparse
inverse correlation matrices. Journal of Computational and
Graphical Statistics, 21(3):739–757, jul 2012. doi:10.1080/
10618600.2012.679239.

[Tea17] Stan Development Team. Stan modeling language: User’s guide
and reference manual, 2017. URL: https://github.com/stan-dev/
stan/releases/download/v2.17.0/stan-reference-2.17.0.pdf.

[Tra17] Dustin Tran. A research to engineering workflow, 2017. Ac-
cessed on Wed, May 23, 2018. URL: http://dustintran.com/blog/a-
research-to-engineering-workflow.

[Woo15] Simon N. Wood. Core Statistics. Cambridge University
Press, 2015. URL: https://people.maths.bris.ac.uk/~sw15190/core-
statistics.pdf.

22. A case study in political science is discussed in this respect in [Bar18].
Some private communication with political scientists and various technologists
have led us to throw the idea of leveraging the blockchain to improve
reproducibility in human subject research: What if the raw datasets could live
as private data on a public blockchain, notably removing the possibility of
cherry-picking by design?

PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018) 145

Scalable Feature Extraction with Aerial and Satellite
Imagery

Virginia Ng‡∗, Daniel Hofmann‡

https://youtu.be/3AuRW9kq89g

F

Abstract—Deep learning techniques have greatly advanced the performance of
the already rapidly developing field of computer vision, which powers a variety
of emerging technologies—from facial recognition to augmented reality to self-
driving cars. The remote sensing and mapping communities are particularly
interested in extracting, understanding and mapping physical elements in the
landscape. These mappable physical elements are called features, and can
include both natural and synthetic objects of any scale, complexity and char-
acter. Points or polygons representing sidewalks, glaciers, playgrounds, entire
cities, and bicycles are all examples of features. In this paper we present a
method to develop deep learning tools and pipelines that generate features from
aerial and satellite imagery at large scale. Practical applications include object
detection, semantic segmentation and automatic mapping of general-interest
features such as turn lane markings on roads, parking lots, roads, water, building
footprints.

We give an overview of our data preparation process, in which data from
the Mapbox Satellite layer, a global imagery collection, is annotated with la-
bels created from OpenStreetMap data using minimal manual effort. We then
discuss the implementation of various state-of-the-art detection and semantic
segmentation systems such as the improved version of You Only Look Once
(YOLOv2), modified U-Net, Pyramid Scene Parsing Network (PSPNet), as well
as specific adaptations for the aerial and satellite imagery domain. We conclude
by discussing our ongoing efforts in improving our models and expanding their
applicability across classes of features, geographical regions, and relatively
novel data sources such as street-level and drone imagery.

Index Terms—computer vision, deep learning, neural networks, satellite im-
agery, aerial imagery

I. Introduction

Location data is built into the fabric of our daily experiences, and
is more important than ever with the introduction of new location-
based technologies such as self-driving cars. Mapping communi-
ties, open source or proprietary, work to find, understand and map
elements of the physical landscape. However, mappable physical
elements are continually appearing, changing, and disappearing.
For example, more than 1.2 million residential units were built in
the United States alone in 2017 [buildings]. Therefore, a major
challenge faced by mapping communities is maintaining recency
while expanding worldwide coverage. To increase the speed and
accuracy of mapping, allowing better pace-keeping with change

* Corresponding author: virginia@mapbox.com
‡ Mapbox

Copyright © 2018 Virginia Ng et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Fig. 1: Computer Vision Pipeline.

in the mappable landscape, we propose integrating deep neural
network models into the mapping workflow. In particular, we have
developed tools and pipelines to detect various geospatial features
from satellite and aerial imagery at scale. We collaborate with
the OpenStreetMap [osm] (OSM) community to create reliable
geospatial datasets, validated by trained and local mappers.

Here we present two use cases to demonstrate our workflow
for extracting street navigation indicators such as turn restrictions
signs, turn lane markings, and parking lots, in order to improve
our routing engines. Our processing pipelines and tools are de-
signed with open source libraries including Scipy, Rasterio, Fiona,
Osium, JOSM, Keras, PyTorch, and OpenCV, while our training
data is compiled from OpenStreetMap and the Mapbox Maps API
[mapbox_api]. Our tools are designed to be generalizable across
geospatial feature classes and across data sources.

II. Scalable Computer Vision Pipelines

The general design for our deep learning based computer vision
pipelines can be found in Figure 1, and is applicable to both
object detection and semantic segmantation tasks. We design
such pipelines with two things in mind: they must scale to
process petabytes worth of data; and they must be agile enough
to be repurposed for computer vision tasks on other geospatial
features. This requires tools and libraries that make up these
pipelines to be developed in modularized fashion. We present
turn lane markings as an example of an object detection pipeline,
and parking lots as an example of a semantic segmentation
pipeline. Code for Robosat [robosat], our end-to-end semantic
segmantion pipeline, along with all its tools, is made available
at: https://github.com/mapbox/robosat.

146 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Fig. 2: Left: Original satellite image. Right: Turn lane markings
detection.

1. Data

The data needed to create training sets depends on the type of
task: object detection or semantic segmentation. We first present
our data preparation process for object detection and then discuss
the data preperation process for semantic segmentation.

Data Preparation For Object Detection. Object detection is
the computer vision task that deals with locating and classifying a
variable number of objects in an image. Figure 2 demonstrates how
object detection models are used to classify and locate turn lane
markings from satellite imagery. There are many other practical
applications of object detection such as face detection, counting,
and visual search engines. In our case, detected turn lane markings
become valuable navigation assets to our routing engines when
determining the most optimal routes.

The turn lane marking training set is created by collecting im-
agery of various types of turn lane markings and manually drawing
a bounding box around each marking. We use Overpass Turbo1 to
query the OpenStreetMap database for streets containing turn lane
markings, i.e., those tagged with one of the following attributes:
“turn:lane=*”, “turn:lane:forward=*”, “turn:lane:backward=*” in
OpenStreetMap. The marked street segments, as shown in Figure
3, are stored as GeoJSON features clipped into the tiling scheme
[tile] of the Mapbox Satellite basemap [mapbox]. Figure 4 shows
how skilled mappers use this map layer as a cue to manually draw
bounding boxes around each turn lane marking using JOSM2, a
process called annotation. These bounding boxes are stored in
GeoJSON polygon format on Amazon S3 [s3] and used as labels
during training.

Mappers annotate over 54,000 turn lane markings, span-
ning six classes - “Left”, “Right”, “Through”, “ThroughLeft”,
“ThroughRight”, and “Other” in five cities. Turn lane markings
of all shapes and sizes, as well as ones that are partially covered
by cars and/or shadows are included in this training set. To ensure
a high-quality training set, we had a separate group of mappers
verify each of the bounding boxes drawn. We exclude turn lane
markings that are not visible, as seen in Figure 5.

Data Engineering Pipeline for Object Detection. Within the
larger object detection pipeline, sits a data engineering pipeline

1. JOSM [josm] is an extensible OpenStreetMap editor for Java 8+. At its
core, it is an interface for editing OSM, i.e., manipulating the nodes, ways,
relations, and tags that compose the OSM database. Compared to other OSM
editors, JOSM is notable for its range of features, such as allowing the user
to load arbitrary GPX tracks, background imagery, and OpenStreetMap data
from local and online sources. It is open source and licensed under GPL.

2. Overpass Turbo [overpass] is a web based data mining tool for Open-
StreetMap. It runs any kind of Overpass API query and shows the results on
an interactive map.

Fig. 3: A custom layer created by clipping the locations of roads
with turn lane markings to Mapbox Satellite. Streets with turn lane
markings are rendered in red.

Fig. 4: Annotating turn lane markings by drawing bounding boxes.

Fig. 5: Left: Examples of visible turn lane markings that are included
in the training set. Right: Defaced or obscured turn lane markings,
such as those covered by cars, are excluded from the training set.

SCALABLE FEATURE EXTRACTION WITH AERIAL AND SATELLITE IMAGERY 147

Fig. 6: Object Detection Data Engineering Pipeline: Annotated Open-
StreetMap GeoJSON features are converted to image pixel space,
stored as JSON image attributes and used as training labels. These
labels are then combined with each of their respective imagery tiles,
fetched from the Mapbox Maps API (Satellite), to create a training set
for turn lane marking detection.

Fig. 7: Left: Original satellite image. Right: Semantic segmentation
of roads, buildings and vegetation.

designed to create and process training data in large quantities.
This data engineering pipeline is capable of streaming any set of
prefixes off of Amazon S3 into prepared training sets. Several pre-
processing steps are taken to convert annotations to the appropriate
data storage format before combining them with real imagery. The
turn lane marking annotations are initially stored as GeoJSON
polygons grouped by class. Each of these polygons is streamed out
of the GeoJSON files on S3, converted to image pixel coordinates,
and stored as JSON image attributes to abstract tiles [tile]. The
pre-processed annotations are randomly assigned to training and
testing datasets with a ratio of 4:1. The abstract tiles are then
replaced by the corresponding real image tiles, fetched from the
Satellite layer of the Mapbox Maps API. At this point, each
training sample consisted of a photographic image paired with its
corresponding JSON image attribute. Finally, the training and test
sets are zipped and uploaded to Amazon S3. This process is scaled
up to run multiple cities in parallel on Amazon Elastic Container
Service3. This data engineering pipeline is shown in Figure 6.

Data Preparation for Semantic Segmentation. Semantic
segmentation is the computer vision task that partitions an image
into semantically meaningful parts, and classifies each part into
one of any pre-determined classes. This can be understood as
assigning a class to each pixel in the image, or equivalently
as drawing non-overlapping masks or polygons with associated
classes over the image. As an example of the polygonal approach,
in addition to distinguishing roads from buildings and vegetation,
we also delineate the boundaries of each object in Figure 7.

The parking lot training set is created by combining imagery
tiles collected from Mapbox Satellite with parking lots poly-
gons. Parking lot polygons are generated by querying the Open-
StreetMap database with Osmium [osmium] for OpenStreetMap
features with attributes “tag:amenity=parking=*” using the rs ex-

tract tool [rs-extract] in Robosat, our segmentation pipeline. These
parking lot polygons are stored as two-dimensional single-channel
numpy arrays, or binary mask clipped and scaled to the Mapbox
Satellite tiling scheme using the rs rasterize tool [rs-rasterize].
Each mask array is paired with its corresponding photographic
image tile. Conceptually, this can be compared to concatenating
a fourth channel, the mask, onto a standard red, green, and blue
image. 55,710 parking lots are annotated for the initial training set.
Our tools and processes can be generalized to any OpenStreetMap
feature and any data source. For example, we also experiment with
building segmentation in unmanned aerial vehicle (UAV) imagery
from the OpenAerialMap project in Tanzania [tanzania]. One can
generate training sets for any OpenStreetMap feature in this way
by writing custom Osmium handlers to convert OpenStreetMap
geometries into polygons.

2. Model

Fully Convolutional Neural Networks. Fully convolutional net-
works (FCNs) are neural networks composed only of convolu-
tional layers. They are contrasted with more conventional net-
works that typically have fully connected layers or other non-
convolutional subarchitectures as “decision-makers” just before
the output. For the purposes considered here, FCNs show several
significant advantages. First, FCNs can handle input images of
different resolutions, while most alternatives require input dimen-
sions to be of a certain size [FCN]. For example, architectures
like AlexNet can only work with input images sizes that are 224
x 224 x 3 [FCN]. Second, FCNs are well suited to handling
spatially dense prediction tasks like segmentation because one
would no longer be constrained by the number of object categories
or complexity of the scenes. Networks with fully connect layers, in
contrast, generally lose spatial information in these layers because
all output neurons are connected to all input neurons [FCN].

Object Detection Models. Many of our applications require
low latency prediction from their object detection algorithms.
We implement YOLOv2 [yolov2], the improved version of the
real-time object detection system You Only Look Once (YOLO)
[yolo], in our turn lane markings detection pipeline. YOLOv2
outperforms other state-of-the-art methods, like Faster R-CNN
with ResNet [resnet] and Single Shot MultiBox Detector (SSD)
[ssd], in both speed and detection accuracy [yolov2]. It works
by first dividing the input image into 13 × 13 grid cells (i.e.,
there are 169 total cells for any input image). Each grid cell is
responsible for generating 5 bounding boxes. Each bounding box
is composed of its center coordinates relative to the location of its
corresponding grid cell, its normalized width and height, a confi-
dence score for "objectness," and an array of class probabilities.
A logistic activation is used to constrain the network’s location
prediction to fall between 0 and 1, so that the network is more
stable. The objectness predicts the intersection over union (IOU)
of the ground truth and the proposed box. The class probabilities
predict the conditional probability of each class for the proposed
object, given that there is an object in the box [yolov2].

6 classes are defined for the turn lane markings detection
project. With 4 coordinates defining each box’s geometry, the

3. Osmium [osmium] is a fast and flexible C++ library for working with
OpenStreetMap data.

4. Amazon ECS [ecs] is a highly scalable, fast, container management
service that makes it easy to run, stop, and manage Docker containers on
specified type of instances

148 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Fig. 8: Clustering of box dimensions in the turn lane marking training
set. We run k-means clustering on the dimensions of bounding boxes
to get anchor boxes for our model. We used k = 5, as suggested by
the YOLOv2 authors, who found that this cluster count gives a good
tradeoff for recall v. complexity of the model.

"objectness" confidence, and 6 class probabilities, each bounding
box object is comprised of 11 numbers. Multiplying by boxes per
grid cell and grid cells per image, this project’s YOLOv2 network
therefore always yields 13 x 13 x 5 x 11 = 9,295 outputs per
image.

The base feature extractor of YOLOv2 is Darknet-19
[darknet], a FCN composed of 19 convolutional layers and 5
maxpooling layers. Detection is done by replacing the last convo-
lutional layer of Darknet-19 with three 3 × 3 convolutional layers,
each outputting 1024 channels. A final 1 × 1 convolutional layer
is then applied to convert the 13 × 13 × 1024 output into 13 ×
13 × 55. We follow two suggestions proposed by the YOLOv2
authors when designing our model. The first is incorporating
batch normalization after every convolutional layer. During batch
normalization, the output of a previous activation layer is nor-
malized by subtracting the batch mean and dividing by the batch
standard deviation. This technique stabilizes training, improves
the model convergence, and regularizes the model [yolov2_batch].
By including batch normalization, YOLOv2 authors saw a 2%
improvement in mAP on the VOC2007 dataset [yolov2] compared
to the original YOLO model. The second suggestion is the use
of anchor boxes and dimension clusters to predict the actual
bounding box of the object. This step is acheieved by running
k-means clustering on the turn lane marking training set bounding
boxes. As seen in Figure 8, the ground truth bounding boxes for
turn lane markings follow specific height-width ratios. Instead of
directly predicting bounding box coordinates, our model predicts
the width and height of the box as offsets from cluster centroids.
The center coordinates of the box relative to the location of filter
application is predicted by using a sigmoid function.

Our model is first pre-trained on ImageNet 224 × 224 res-
olution imagery. The network is then resized and fine-tuned for
classification on 448 × 448 turn lane marking imagery, to ensure
that the relatively small features of interest are still reliably
detected.

Segmentation Models. For parking lot segmentation, we
select an approach of binary segmentation (distinguishing parking
lots from the background), and found U-Net [unet] to be a suitable
architecture. The U-Net architecture can be found in Figure 9. It
consists of a contracting path, to capture context, and a symmetric
expanding path, which allows precise localization. This type of
network can be trained end-to-end with very few training images

Fig. 9: U-Net architecture.

and can yield more precise segmentations than prior state-of-the-
art methods such as sliding-window convolutional networks. The
first part of the U-Net network downsamples, and is similar in
design and purpose to the encoding part of an autoencoder. It
repeatedly applies convolution blocks followed by maxpool down-
samplings, encoding the input image into increasingly abstract
representations at successively deeper levels. The second part of
the network consists of upsampling and concatenation, followed
by ordinary convolution operations. Concatenation combines rela-
tively “raw” information with relatively “processed” information.
This can be understood as allowing the network to assign a class
to a pixel with sensitivity to small-scale, less-abstract information
about the pixel and its immediate neighborhood (e.g., whether it
is gray) and simultaneously with sensitivity to large-scale, more-
abstract information about the pixel’s context (e.g., whether there
are nearby cars aligned in the patterns typical of parking lots).
we gain a modest 1% improvement in accuracy by making two
additional changes. First we replace the standard U-Net encoder
with pre-trained ResNet50 [resnet] encoder. Then, we switch
out the learned deconvolutions with nearest neighbor upsampling
followed by a convolution for refinement.

We experiment with a Pyramid Scene Parsing Network (PSP-
Net) [pspnet] architecture for a 4-class segmentation task on
buildings, roads, water, and vegetation. PSPNet is one of the few
pixel-wise segmentation methods that focuses on global priors,
while most methods fuse low-level, high resolution features with
high-level, low resolution ones to develope comprehensive feature
representations. Global priors can be especially useful for objects
that have similar spatial features. For instance, runways and
freeways have similar color and texture features, but they belong
to different classes, which can be discriminated by adding car and
building information. PSPNet uses pre-trained ResNet to generate
a feature map that is 1/8 the size of the input image. The feature
map is then fed through the pyramid parsing module, a hierarchical
global prior that aggregates different scales of information. After
upsampling and concatenation, the final feature representatation is
fused with a 3 x 3 convolution to produce the final prediction map.
As seen in Figure 6, PSPNet produced good-quality segmentation
masks in our tests on scenes with complex features such as irreg-
ularly shaped trees, buildings and roads. For the 2-class parking
lot task, however, we found PSPNet unnecessarily complex and
time-consuming.

Hard Negative Mining. This is a technique we apply to
improve model accuracy [hnm] . We first train a model with an

SCALABLE FEATURE EXTRACTION WITH AERIAL AND SATELLITE IMAGERY 149

Fig. 10: A probability mask marking the pixels that our model believes
belong to parking lots.

initial subset of negative examples, and collect negative examples
that are incorrectly classified by this initial model to form a set of
hard negatives. A new model is then trained with the hard negative
examples and the process may be repeated a few times.

Figure 10 shows a model’s output as a probability mask
overlaid on Mapbox Satellite. Increasingly opaque red indicates
an increasingly high probability estimate of the underlying pixel
belonging to a parking lot. We use this type of visualization to find
representative falsely detected patches for use as hard negatives in
hard negative mining.

3. Post-Processing

Figure 11 shows an example of the raw segmentation mask derived
from our U-Net model. It cannot be used directly as input for
OpenStreetMap. We perform a series of post-processing steps to
refine and transform the mask until it met quality and format
requirements for OpenStreetMap consumption:

Noise Removal. Noise in the output mask is removed by two
morphological operations: erosion followed by dilation. Erosion
removes some positive speckle noise ("islands"), but it also shrinks
objects. Dilation re-expands the objects.

Fill in holes. The converse of the previous step, removing
"lakes" (small false or topologically inconvenient negatives) in the
mask.

Contouring. During this step, continuous pixels having same
color or intensity along the boundary of the mask are joined. The
output is a binary mask with contours.

Simplification. We apply Douglas-Peucker simplification
[DP], which takes a curve composed of line segments and gives a
similar curve with fewer vertexes. OpenStreetMap favors polygons
with the least number of vertexes necessary to represent the ground
truth accurately, so this step is important to increase the data’s
quality as percieved by its end users.

Transform Data. Polygons are converted from in-tile pixel
coordinates to GeoJSONs in geographic coordinates (longitude
and latitude).

Fig. 11: An example of border artifacts and holes in raw segmentation
masks produced by our U-Net model.

Fig. 12: Left: Polygons crossing tile boundaries, and other adjacent
polygons, are combined. Right: Combined polygons.

Merging multiple polygons. This tool combines polygons
that are nearly overlapping, such as those that represent a single
feature broken by tile boundaries, into a single polygon. See
Figure 12.

Deduplication. Cleaned GeoJSON polygons are compared
against parking lot polygons that already exist in OpenStreetMap,
so that only previously unmapped features are uploaded.

All post-processing tools can be found in our Robosat
[robosat] GitHub repository.

4. Conclusion

We demonstrated the steps to building deep learning-based com-
puter vision pipelines that can run object detection and segmen-
tation tasks at scale. With these pipeline designs, we are able
to create training data with minimal manual effort, experiment
with different network architectures, run inference, and apply post-
process algorithms to tens of thousands of image tiles in parallel
using Amazon ECS. The outputs of the processing pipelines
discussed are turn lane markings and parking lots in the form of
GeoJSON features suitable for adding to OpenStreetMap. Mapbox
routing engines then take these OpenStreetMap features into

150 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Fig. 13: Front-end UI for instant turn lane marking detection on
Mapbox Satellite layer, a global imagery collection.

account when calculating optimal navigation routes. As we make
various improvements to our baseline model and post-processing
algorithms (see below), we keep human control over the final
decision to add a given feature to OpenStreetMap. Figure 13
shows a front-end user interface (UI) created to allow users to
run instant turn lane marking detection and visualize the results
on top of Mapbox Satellite. Users can select a model, adjust the
level of confidence for the model, choose from any Mapbox map
styles [mapbox_style], and determine the area on the map to run
inference on [mapbox_zoom].

IV. Future Work

We are now working on making a few improvements to Robosat,
our segmentation pipeline, so that it becomes more flexible in
handling input image of different resolutions. First, our existing
post-processing handler is designed for parking lot features and is
specifically tuned with thresholds set for zoom level 18 imagery
[osm_zoom]. We are replacing these hard-coded thresholds with
generalized ones that are calculated based on resolution in meters
per pixel. We also plan to experiment with a feature pyramid-
based deep convolutional network called Feature Pyramid Net-
work (FPN) [FPN]. It is a practical and accurate solution to
multi-scale object detection. Similar to U-Net, the FPN has lateral
connections between the bottom-up pyramid (left) and the top-
down pyramid (right). The main difference is where U-net only
copies features and appends them, FPN applies a 1x1 convolution
layer before adding the features. We will most likely follow the
authors’ footsteps and use ResNet as the backbone of this network.

There two other modifications planned for the post-processing
steps. First, we want to experiment with a more sophisticated
polygon simplication algorithm besides Douglas-Peucker. Second,
we are rethinking the ordering of first performing simplication
then merging. The current post-process workflow performs simpli-
cation on individual extracted polygons and then merges polygons
that are across imagery tiles together. The resulting polygons,
according to this process, may no longer be in the simplest shape.

We design our tools and pipelines with the intent that other
practitioners would find it straightforward to adapt them to other
landscapes, landscape features, and imagery data sources. For in-
stance, we generated 184,000 turn restriction detections following
a similar process applying deep learning models on Microsoft’s
street-level imagery [streetside]. We released these turn restriction
detections located across 35,200 intersections and 23 cities for

the OpenStreetMap community [turn-restrict] in June 2018. For
future work we will continue to look for ways to bring different
sources and structures of data together to build better computer
vision pipelines.

REFERENCES

[buildings] Cornish, C., Cooper, S., Jenkins, S., & US Census Bu-
reau. (2011, August 23). US Census Bureau New Resi-
dential Construction. Retrieved from https://www.census.gov/
construction/nrc/index.html

[osm] OpenStreetMap Contributors. (2017). OpenStreetMap. Re-
trieved May 30, 2018, from https://www.openstreetmap.org/

[mapbox] Mapbox. (n.d.). About. Retrieved June 30, 2018, from https:
//www.mapbox.com/about/

[mapbox_api] Mapbox. (n.d.). Mapbox API Documentation. Retrieved May
30, 2018, from https://www.mapbox.com/api-documentation/
#maps

[osm-lanes] OpenStreetMap Contributors. (2018, February 27). Lanes.
Retrieved May 30, 2018, from https://wiki.openstreetmap.org/
wiki/Lanes

[overpass] Raifer, M. (2017, January). Overpass Turbo. Retrieved from
https://overpass-turbo.eu/

[josm] Scholz, I., & Stöcker, D. (2017, May). Java OpenStreetMap
Editor. Retrieved from https://josm.openstreetmap.de/

[osm-parking] OpenStreetMap Contributors. (2018, April). Tag:amenity=
parking. Retrieved from https://wiki.openstreetmap.org/wiki/
Tag:amenity%3Dparking

[rs-extract] Mapbox. (2018, June). Robosat. Retrieved from https://github.
com/mapbox/robosat#rs-extract

[rs-rasterize] Mapbox. (2018, June). Robosat. Retrieved from https://github.
com/mapbox/robosat#rs-rasterize

[osmium] Topf, J. (2018, April). Osmcode/libosmium. Retrieved May
11, 2018, from https://github.com/osmcode/libosmium

[tile] OpenStreetMap Contributors. (2018, June). Tile Scheme.
Retrieved from https://wiki.openstreetmap.org/wiki/Slippy_
map_tilenames

[tanzania] Hofmann, D. (2018, July 5). Daniel-j-h’s diary | RoboSat
loves Tanzania. Retrieved from https://www.openstreetmap.
org/user/daniel-j-h/diary/44321

[s3] Amazon. (n.d.). Cloud Object Storage | Store & Retrieve Data
Anywhere | Amazon Simple Storage Service. Retrieved from
https://aws.amazon.com/s3/

[ecs] Amazon. (n.d.). Amazon ECS - run containerized applications
in production. Retrieved from https://aws.amazon.com/ecs/

[yolo] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016,
June). You Only Look Once: Unified, Real-Time Object
Detection. 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). doi:10.1109/cvpr.2016.91

[ssd] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu,
C., & Berg, A. C. (2016, September 17). SSD: Single Shot
MultiBox Detector. Computer Vision – ECCV 2016 Lecture
Notes in Computer Science, 21-37. doi:10.1007/978-3-319-
46448-0_2

[darknet] Redmon, J. (2013-2016). Darknet: Open Source Neural Net-
works in C. Retrieved from https://pjreddie.com/darknet/

[yolov2] Redmon, J., & Farhadi, A. (2017, July). YOLO9000: Better,
Faster, Stronger. 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). doi:10.1109/cvpr.2017.690

[yolov2_batch] Ioffe, S., & Szegedy, C. (2015, February 11). Batch normaliza-
tion: Accelerating deep network training by reducing internal
covariate shift.arXiv:1502.03167

[FCN] Long, J., Shelhamer, E., & Darrell, T. (2015, June). Fully
Convolutional Networks for Semantic Segmentation. 2015
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). doi:10.1109/CVPR.2015.7298965

[unet] Ronneberger, O., Fischer, P., & Brox, T. (2015, May 18) U-
Net: Convolutional Networks for Biomedical Image Segmen-
tation. 2015 MICCAI. arXiv:1505.04597

[resnet] He, K., Zhang, X., Ren, S., & Sun, J. (2016, June). Deep
Residual Learning for Image Recognition. 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR).
doi:10.1109/cvpr.2016.90

[pspnet] Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017,
July). Pyramid Scene Parsing Network. 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR).
doi:10.1109/cvpr.2017.660

SCALABLE FEATURE EXTRACTION WITH AERIAL AND SATELLITE IMAGERY 151

[hnm] Dalal, N., & Triggs, B. (2005, June). Histograms of ori-
ented gradients for human detection. 2005 IEEE Con-
ference on Computer Vision and Pattern Recognition.
10.1109/CVPR.2005.177

[robosat] Mapbox. (2018, June). Robosat. Retrieved from https://github.
com/mapbox/robosat

[DP] Wu, S., & Marquez, M. (2003, October). A non-self-
intersection Douglas-Peucker algorithm. 16th Brazilian Sym-
posium on Computer Graphics and Image Processing (SIB-
GRAPI 2003). doi:10.1109/sibgra.2003.1240992

[mapbox_style] Mapbox. (n.d.). Styles. Retrieved from https://www.mapbox.
com/help/studio-manual-styles/

[mapbox_zoom] Mapbox. (n.d.). Zoom Level. Retrieved from https://www.
mapbox.com/help/define-zoom-level/

[osm_zoom] OpenStreetMap Contributors. (2018, June 20). Zoom Levels.
Retrieved June 30, 2018, from https://wiki.openstreetmap.org/
wiki/Zoom_levels

[FPN] Lin, T., Dollar, P., Girshick, R., He, K., Hariharan, B., &
Belongie, S. (2017, July). Feature Pyramid Networks for
Object Detection. 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). doi:10.1109/cvpr.2017.106

[streetside] Microsoft. (n.d.). Streetside. Retrieved from https://www.
microsoft.com/en-us/maps/streetside

[turn-restrict] Ng, V. (2018, June 14). virginiayung’s diary | Releasing
184K Turn Restriction Detections. Retrieved from https:
//www.openstreetmap.org/user/virginiayung/diary/44171

152 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

signac: A Python framework for data and workflow
management

Vyas Ramasubramani‡∗, Carl S. Adorf‡, Paul M. Dodd‡, Bradley D. Dice¶, Sharon C. Glotzer‡§¶‖

https://youtu.be/CCKQH1M2uR4

F

Abstract—Computational research requires versatile data and workflow man-
agement tools that can easily adapt to the highly dynamic requirements of
scientific investigations. Many existing tools require strict adherence to a par-
ticular usage pattern, so researchers often use less robust ad hoc solutions that
they find easier to adopt. The resulting data fragmentation and methodological
incompatibilities significantly impede research. Our talk showcases signac, an
open-source Python framework that offers highly modular and scalable solutions
for this problem. Named for the Pointillist painter Paul Signac, the framework’s
powerful workflow management tools enable users to construct and automate
workflows that transition seamlessly from laptops to HPC clusters. Crucially,
the underlying data model is completely independent of the workflow. The
flexible, serverless, and schema-free signac database can be introduced into
other workflows with essentially no overhead and no recourse to the signac
workflow model. Additionally, the data model’s simplicity makes it easy to parse
the underlying data without using signac at all. This modularity and simplicity
eliminates significant barriers for consistent data management across projects,
facilitating improved provenance management and data sharing with minimal
overhead.

Index Terms—data management, database, data sharing, provenance, compu-
tational workflow, hpc

Introduction

Streamlining data generation and analysis is a critical challenge
for science in the age of big data and high performance com-
puting (HPC). Modern computational resources can generate and
consume enormous quantities of data, but process automation
and data management tools have lagged behind. The highly file-
based workflows characteristic of computational science are not
amenable to traditional relational databases, and HPC applications
require that data is available on-demand, enforcing strict perfor-
mance requirements for any data storage mechanism. Building
processes acting on this data requires transparent interaction with
HPC clusters without sacrificing testability on personal computers,
and these processes must be sufficiently malleable to adapt to
changes in scientific inquiries.

* Corresponding author: vramasub@umich.edu
‡ Department of Chemical Engineering, University of Michigan, Ann Arbor
¶ Department of Physics, University of Michigan, Ann Arbor
§ Department of Materials Science and Engineering, University of Michigan,
Ann Arbor
|| Biointerfaces Institute, University of Michigan, Ann Arbor

Copyright © 2018 Vyas Ramasubramani et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

To illustrate the obstacles that must be overcome, we consider
a simple example in which we study the motion of an object
through a fluid medium. If we initially model the motion only
as a function of one parameter, an ad hoc solution for data
storage would be to store the trajectories in paths named for
the values of this parameter. If we then introduce some post-
processing step, we could run it on each of these files. However,
a problem arises if we realize that some additional parameter
is also relevant. A simple solution might be to just rename the
files to account for this parameter as well, but this approach
would quickly become intractable if the parameter space increased
further. A more flexible traditional solution involving the use of a
relational MySQL [Cor16] database, for instance, might introduce
undesirable setup costs and performance bottlenecks for file-based
workflows on HPC. Even if we do employ such a solution, we also
have to account for our workflow process: we need a way to run
analysis and post-processing on just the new data points without
performing unnecessary work on the old ones.

This paper showcases the signac framework, a data and
workflow management tool that addresses these issues in a simple,
powerful, and flexible manner (Fig. 1). The framework derives its
name from the painter Paul Signac, one of the early pioneers of
the Pointillist painting style. This style, in which paintings are
composed of individual points of color rather than brushstrokes,
provides an apt analogy for the underlying data model of the
signac framework in which a data space is composed of
individual data points that must be viewed together to make a
complete picture. By storing JSON-encoded [Ecm17] metadata
and the associated data together directly on the file system,
signac provides database functionality such as searching and
grouping data without the overhead of maintaining a server or
interfacing with external systems, and it takes advantage of the
high performance file systems common to HPC. Additionally,
a signac database is entirely contained within a single root
directory, making it compact and highly portable.

With signac, data space modifications like the one discussed
above are trivially achievable with just a few lines of Python code.
signac’s workflow component makes it just as easy to modify
the process of data generation by simply defining the steps as
Python functions. The workflow component of the framework,
signac-flow, will immediately enable the use of these func-
tions on the existing data space through a single command, and
it tracks which tasks are completed to avoid redundancy. The
resulting data can be accessed without reference to the workflow,
ensuring that it is immediately available to anyone irrespective of

SIGNAC: A PYTHON FRAMEWORK FOR DATA AND WORKFLOW MANAGEMENT 153

(a)

(c)

(b)

Job fb4

Job 3d5
Job c82

�nd(...)

index()

generate
calc2

calc1
compare

Project Work�ow

operation(job)
generate(fb4)
calc1(fb4)
calc2(fb4)
compare(fb4)
generate(3d5)
calc1(3d5)
calc2(3d5)
compare(3d5)
...

Status

Status Tracking

Index
• fb4
• 3d5
• c82
 ...

Job State PointsJob State Points

''foo'': 8''foo'': 8
fb4fb4

''foo'': 5,
"baz": 3.5
''foo'': 5,
"baz": 3.5

c82c82
''foo'': 3,
"bar": 'C8'
''foo'': 3,
"bar": 'C8'

3d53d5

...

Active Workspace

Fig. 1: The data in a signac project (a) is contained in its workspace (dark grey outline), which in turn is composed of individual data points
(grey points) that exist within some multidimensional parameter space (light grey background). Each data point, or job, is associated with a
unique hash value (e.g., 3d5) computed from its state point, the unique key identifying the job. Using signac, the data can be easily searched,
filtered, grouped, and indexed. To generate and act on this data space, signac can be used to define workflows (b), which are generically
represented as a set of operations composing a directed graph. Using a series of pre- and post-conditions defined on these operations, signac
tracks the progress of this workflow on a per-job basis (c) to determine whether a particular job is complete (greyed text, green check), eligible
(bold text, blue arrow), or blocked (normal text, universal no).

the tools they are using.

Overview and Examples

To demonstrate how signac works, we take a simple, concrete
example of the scenario described above. Consider an experiment
in which we want to find the optimal launch angle to maximize
the distance traveled by a projectile through air. Figure 2 shows
how we might organize the data associated with this study using
signac. The central object in the signac data model is the
project, which represents all the data associated with a particular
instance of a signac data space. All of the project’s data is
contained within the workspace directory (see also Fig. 1). The
workspace holds subdirectories corresponding to jobs, which are
the individual data points in the data space. Each job is uniquely
identified by its state point, which is an arbitrary key-value
mapping. Although we see that these objects are stored in files
and folders, we will show that these objects are structured in a
way that provides layers of abstraction, making them far more
useful than simple file system storage.

One could easily imagine interfacing existing scripts with this
data model. The only requirement is some concept of a unique key
for all data so that it can be inserted into the database. The unique
key is what enables the creation of the 32 character hash, or job
id, used to identify the job and its workspace folder (shown in Fig.
2). The uniqueness of this hash value is what enables signac’s
efficient indexing and searching functionality. Additionally, this
hash value is automatically updated to reflect any changes to

individual jobs, making them highly mutable. For example, if we
instead wanted to consider how changing initial velocity affects
the distance traveled for a particular angle, we can add the velocity
to the existing job state points by taking advantage of the fact that
the project object is an iterable:

for job in project:
job.sp.v = 1

In this case, we wanted to modify the entire workspace; more
generally, however, we might want to modify only some subset
of jobs. One way to accomplish this would be to apply a filter
within the loop using conditionals based on the job state point,
e.g. if job.sp.theta < 5: job.sp.v = 1. A more el-
egant solution, however, is to take advantage of signac’s query
API, which allows the user to find only the jobs of interest
using a dictionary as a filter. For example, in the above snippet
we could replace for job in project with for job in
project.find_jobs(), using an arbitrary dictionary as the
argument to find_jobs to filter on the state point keys. The job
finding functionality of signac is the entry point for its database
functionality, which includes advanced indexing, selection, and
grouping operations.

Having made the above change to our data space, we could
now easily add new data points to test:

from numpy import linspace
for v in [1, 2, 3]:

for theta in np.round(linspace(0, 1.57, 5), 2):
sp = {"v": v, "theta": theta}
project.open_job(sp).init()

154 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

In [1]: import signac
project = signac.init_project("Projectiles")
!ls

In [2]: job = project.open_job({"theta": 1.57})
job.init()
!find . -not -path '*/\.*'

In [3]: print(job.get_id())
print(job.statepoint())

Notebook.ipynb signac.rc

.

./Notebook.ipynb

./signac.rc

./workspace

./workspace/4f8a64741a09749ac1320f4b61292e0c

./workspace/4f8a64741a09749ac1320f4b61292e0c/signac_statepoint.json

4f8a64741a09749ac1320f4b61292e0c
{'theta': 1.57}

Fig. 2: A very simple example using signac to create the basics of a data space. Initializing the project creates a signac.rc file, a
configuration file identifying this folder as a signac project. The workspace directory is created when the first job is added to the project,
and all job data is then stored in a subdirectory of the workspace. This subdirectory is named according to the job id, which is computed as
the hash of the job state point. In this example, all work is conducted inside a Jupyter [PG07], [KRKP+16] notebook to indicate how easily
this can be done. Note how fewer than ten lines of code are required to initialize a database and add data.

Jobs that already exist in the data space will not be overwritten by
the init operation, so there is no harm in performing a loop like
this multiple times.

All of signac’s core functionality is not only available as a
Python library, but also as a command line tool. This tool uses
the Python setuptools console_scripts entry point, so
it is automatically installed with signac and ships with built-in
help information. This interface not only facilitates the integration
of signac with non-Python code bases and workflows, it is also
very useful for more ad hoc analyses of signac data spaces. For
example, searching the database using the command line can be
very useful for quick data inspection:
$ # Many simple queries are automatically
$ # translated into JSON
$ signac find theta 0.39
Interpreted filter arguments as '{"theta": 0.39}'.
d3012d490304c3c1171a273a50b653ad
1524633c646adce7579abdd9c0154d0f
22fa30ddf3cc90b1b79d19fa7385bc95

$ # Operators (e.g. less than) are available
$ # using a ".-operator" syntax
$ signac find v.\$lt 2
d61ac71a00bf73a38434c884c0aa82c9
00e5f0c36294f0eee4a30cabb7c6046c
585599fe9149eed3e2dced76ef246903
22fa30ddf3cc90b1b79d19fa7385bc95
9fa1900a378aa05b9fd3d89f11ef0e5b

$ # More complex queries can be constructed
$ # using JSON directly
$ signac find '{"theta": {"$in": [0, 0.78]}}'
2faf0f76bde3af984a91b5e42e0d6a0b
585599fe9149eed3e2dced76ef246903
03d50a048c0423bda80c9a56e939f05b
3201fd381819dde4329d1754233f7b76

d61ac71a00bf73a38434c884c0aa82c9
13d54ee5821a739d50fc824214ae9a60

The query syntax is based on the MongoDB [Mon16] syntax
and enables, for instance, logical and arithmetic operators. In
fact, signac natively supports export of its databases to Mon-
goDB. Although we can add support for integration with any
database management system, we started with MongoDB for
two reasons: first, because researchers are likely to prefer the
comparatively less rigid approach of NoSQL databases to table-
based relational databases; and second, because translation from
a signac database to another JSON-based database is relatively
straightforward. Due to the ease of export and shared query syntax,
switching between signac and MongoDB is quite easy.

At any point, we can also get an overview of what the implicit
data space schema looks like:

$ signac schema
{
'theta': 'float([0.0, ..., 1.57], 5)',
'v': 'int([1, 2, 3], 3)',
}

Keys with constant values across the entire data space can be
optionally omitted from the schema. Additionally, schema can be
filtered, nested keys can be compressed to specified depths, and the
number of entries shown in each range can be limited as desired.

Workflows

The signac database is intended to be usable as a drop-in
solution for data management issues. The signac framework,
however, is designed to simplify the entire process of data gener-
ation, which includes clearly defining the processes that generate

SIGNAC: A PYTHON FRAMEWORK FOR DATA AND WORKFLOW MANAGEMENT 155

and operate on the data cleanly and concisely. To manage work-
flows, the signac-flow component of the framework provides
the FlowProject class (not to be confused with the signac
Project class that interfaces with the data in a signac project).
The FlowProject encodes operations acting on signac data
spaces as well as the sequence information required to string
these operations together into a complete workflow. In Fig. 3,
we demonstrate how signac-flow can be used to automate our
projectile investigation.

In this script, we register a simple function calculate as an
operation with the FlowProject.operation decorator. We
store our output in the job document, a lightweight JSON storage
mechanism that signac provides, and we check the document
to determine when the operation has been completed using the
FlowProject.post decorator. Any function of a job can be
used as a pre- or post-condition. In this case, we simply look for
the tmax key in the job document using the complete function.
Note the FlowProject.label decorator for this function; we
will discuss this in further detail below.

Although this particular example is quite simple, in principle
any workflow that can be represented by a directed graph may
be encoded and executed using signac-flow. In the context of
signac-flow, individual operations are the nodes of a graph,
and the pre- or post-conditions associated with each operation
determine the vertices. To simplify running such workflows, by
default the project.py run interface demonstrated in Fig. 3
will automatically run the entire workflow for every job in the
workspace. When conditions are defined in the manner shown
above, signac-flow will ensure that only incomplete tasks are
run, i.e., in this example, once tmax has been calculated for a
particular job, the calculate operation will not run again for
that job. Rather than running everything at once, it is also possible
to exercise more fine-grained control over which operations to run
using signac-flow:

$ # Runs all outstanding operations for all jobs
$ python project.py run
$ # `exec` ignores the workflow and just runs a
$ # specific job-operation
$ python project.py exec ${OP} ${JOB_ID}
$ # Run up to two operations for a specific job
$ python project.py run -j ${JOB_ID} -n 2

A critical feature of the signac framework is its scalability
to HPC. The file-based data model is designed to leverage the
high performance file systems common on such systems, and
workflows designed locally are immediately executable on HPC
clusters. In particular, any operation that can be successfully
executed in the manner shown in Fig. 3 can also be immediately
submitted to cluster schedulers. The signac-flow package
achieves this by creating cluster job scripts that perform the above
operations:

$ # Print the script for one 12-hour job
$ # Additional scheduler directives are customizable
$ python project.py submit -n 1 -w 12 --pretend
Query scheduler...
Submitting cluster job 'Projectiles/d61...':
- Operation: calculate(d61...)
#PBS -N Projectiles/d61...
#PBS -l walltime=12:00:00
#PBS -l nodes=1
#PBS -V

set -e
set -u

cd /path/to/project

Operation 'calculate' for job 'd61...':
python project.py exec calculate d61

The workflow tracking functionality of signac-flow also ex-
tends to compute clusters. Users can always check the status
of particular jobs to see how far they have progressed in the
workflow, and when working on a system with a scheduler,
signac-flow will automatically provide information about the
status of jobs submitted to the scheduler. Depending on the desired
verbosity, this status information can be output in a variety of
formats. A relatively detailed version of the output is shown here:

$ # Submit 3 random jobs for 12 hours
$ python project.py submit -n 3 -w 12
$ # Status output has options to control detail
$ python project.py status -de
Overview:
Total # of jobs: 15

label ratio
------- -------
complete |#-----------------------------| 6.67%

Detailed View:

Labels:
job_id labels
-------------------------------- --------
00e5f0c36294f0eee4a30cabb7c6046c complete
d61ac71a00bf73a38434c884c0aa82c9
...

Operations:
job_id operation eligible cluster_status
------ ----------- ---------- ----------------
d61ac7 calculate Y Q
41dea8 calculate Y A
585599 calculate Y Q
2fc415 calculate Y I
...

In the overview section, we see that 6.67%, or 1
15 jobs have

completed, reflecting the job run locally in Fig. 3. The rows in
this section are populated by any function decorated with the
FlowProject.label decorator, with each row showing the
percentage of jobs that evaluate to True for that function. While
any callable, such as a lambda expression, could be used as a
pre- or post-condition, using a function decorated in this manner
makes it easy to track total progress through the workflow. The
labels section below the overview provides the same information
on a per-job basis, in this case showing which jobs have completed
and which have not.

Finally, the operations section indicates the progress of jobs on
a per-operation basis. In this particular view, the eligible col-
umn is redundant because we have omitted completed operations
for brevity; however, if we requested a complete listing, the job
marked as complete in the labels section would be listed here with
an N in the eligible column. In this instance, there are fourteen
jobs remaining that are eligible for the calculate operation, of
which three have been submitted to the cluster (and are therefore
marked as active). Of these three, one has actually begun running
(and is marked as [A]), while the other two indicate that they are
queued (marked as [Q]). The final job shown is inactive on the
cluster ([I]) as it has not yet been submitted.

The quick overview of this section highlights the core features
of the signac framework. Although the example demonstrated
here is quite simple, the data model scales easily to thousands of

156 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

In [4]: %%writefile project.py
import flow
from flow.project import FlowProject

@FlowProject.label
def complete(job):
 return 'tmax' in job.document

@FlowProject.operation
@FlowProject.post(complete)
def calculate(job):
 import numpy as np
 g = 9.81
 roots = np.roots([-g/2, np.sin(job.sp.theta), 0])
 tmax = roots[roots != 0][0]
 job.doc.tmax = tmax

if __name__ == "__main__":
 FlowProject().main()

In [5]: !python project.py run

In [6]: !find workspace
job.document()

Writing project.py

Execute operation 'calculate(4f8a64741a09749ac1320f4b61292e0c)'...

workspace
workspace/4f8a64741a09749ac1320f4b61292e0c
workspace/4f8a64741a09749ac1320f4b61292e0c/signac_job_document.json
workspace/4f8a64741a09749ac1320f4b61292e0c/signac_statepoint.json

Out[6]: {'tmax': 0.2038735337271834}

Fig. 3: The signac-flow module enables the easy automation of workflows operating on signac workspaces. Here we demonstrate such a
workflow operating on the data space defined in Fig. 2. In this case, the workspace consists only of one job; the real power of the FlowProject
arises from its ability to automatically handle an arbitrary sequence of operations on a large number of jobs. Note that in this figure we are
still assuming v=1 for simplicity.

data points and far more complex and nonlinear workflows. More
involved demonstrations can be seen in the documentation1, on
the signac website2, or in the original paper published in the
Journal of Computational Materials Science [ADRG18].

Design and Implementation

Having provided an overview of signac’s functionality, we will
now delve into the specifics of its implementation. The central
element of the framework is the signac data management
package, which provides the means for organizing data directly
on the filesystem. The primary requirement for using this database

1. http://signac.readthedocs.io
2. http://signac.io

is that every job (data point) in the data space must be uniquely
indexable by some set of key-value pairs, namely the job state
point. The hash of this state point defines the job id, which in turn
is used to define the directory where data associated with this job
is stored. To ensure that the state point associated with the job id
can be recovered, a JSON-encoded copy of the state point is stored
within this directory.

This storage mechanism enables O(1) access to the data
associated with a particular state point through its hash as well
as O(N) indexing of the data space. This indexing is performed by
traversing the data space and parsing the state point files directly;
other files may also be parsed along the way if desired. In general,
signac automatically caches generated indexes within a single
session where possible, but for better performance after start-up

SIGNAC: A PYTHON FRAMEWORK FOR DATA AND WORKFLOW MANAGEMENT 157

the indexes can also be stored persistently. These indexes then
allow efficient selection and searching of the data space, and
MongoDB-style queries can be used for complex selections.

This distributed mode of operation is well-suited to the high
performance filesystems common to high performance computing.
The explicit horizontal partitioning and distributed storage of data
on a per-job basis is well suited to HPC operations, which are
typically executed for multiple jobs in parallel. Since data is
accessed distributively, there is no inherent bottleneck posed by
funneling all data read and write operations through one or more
server applications. Further sharding across multiple filesystems,
for instance, could be accomplished by devising a scheme to
divide a project’s data into multiple workspaces that would then
be indexed independently.

From the Python implementation standpoint, the central com-
ponent to the signac framework is the Project class, which
provides the interface to signac’s data model and features. In
addition to the core index-related functionality previously men-
tioned, the signac Project also encapsulates numerous addi-
tional features, including, for example, the generation of human-
readable views of the hash-obfuscated workspace; the ability to
move, copy, or clone a full project; the ability to synchronize data
across projects; and the detection of implicit schema. We qualify
these schema as implicit because they are only defined by the
state points of jobs within the workspace, i.e there is nothing like
a table schema to enforce a particular structure for the state points
of individual jobs. Searching through or iterating over a Project
instance generates Job objects, which provide Python interfaces
to the jobs within the project and their associated data. In addition
to providing a Pythonic access point to the job state point and the
job document, a Job object can always be mapped to its location
on the filesystem, making it ideal for associating file-based data
with the appropriate data point.

The central object in the signac-flow package is the
FlowProject class, which encapsulates a set of operations
acting on a signac data space. There is a tight relationship
between the FlowProject and the underlying data space, be-
cause operations are in general assumed to act on a per-job basis.
Using the sequence of conditions associated with each operation,
a FlowProject also tracks workflow progress on per-job basis
to determine which operations to run next for a given job. Dif-
ferent HPC environments and cluster schedulers are represented
by separate Python classes that provide the means for querying
schedulers for cluster job statuses, writing out the job scripts, and
constructing the submission commands. Job scripts are created
using templates written in jinja2 [Ron], making them easily
customizable for the requirements of specific compute clusters or
users. This means that workflows designed on one cluster can
be easily ported to another, and that users can easily contribute
new environment configurations that can be used by others.
Currently, we support Slurm and TORQUE schedulers, along with
more specialized support for the following supercomputers (listed
along with their funding organizations): XSEDE Comet, XSEDE
Stampede, XSEDE Bridges, INCITE Titan, INCITE Eos, and the
University of Michigan Flux clusters.

The signac framework prioritizes modularity and interop-
erability over monolithic functionality, making it readily exten-
sible. One of the tools built on top of the core infrastructure is
signac-dashboard [Bra18], a web interface for visualizing
signac data spaces that is currently under active development.
All tools in the framework, including signac-flow, share the

signac database as a core dependency. Aside from that, however,
core signac and signac-flow avoid any hard dependencies
and are implemented as pure Python packages compatible with
Python 2.7 and 3.3+. In conjunction with the framework’s full-
featured command line interface, these features of the framework
ensure that it can be easily incorporated into any existing file-based
workflows, even those using primarily non-Python tools.

Comparisons

In recent years, many Python tools have emerged to address issues
with data provenance and workflow management in computational
science. While some are very similar to the signac framework
in their goals, a major distinction between signac and other
comparable tools is that the signac data management component
is independent of signac-flow, making it much easier to
interact with the data outside the context of the workflow. As
a result, while these packages solve problems similar to those
addressed by signac, they take different and generally less
modular approaches to doing so. Other packages have focused on
the distinct but related need for complete provenance management
for reproducibility. These tools are orthogonal to signac and
may be used in conjunction with it.

Workflow and Provenance Management

Two of the best-known, most comparable Python workflow
managers are Fireworks [JOC+15] and AiiDA [PCS+16]. Fire-
works and AiiDA are full-featured workflow managers that,
like signac-flow, interface with high performance compute
clusters to execute complex, potentially nonlinear workflows.
These tools in fact currently offer more powerful features than
signac-flow for monitoring the progress of jobs, features that
are supported by the use of databases on the back end. However,
maintaining a server for workflow management can be cumber-
some, and it introduces additional unnecessary complexities.

A more significant limitation of these other tools is that their
data representations are closely tied to the workflow execution,
making it much more challenging to access the data outside the
context of the workflow. Concretely, these software typically store
data in a specific location based on a particular instance of an
operation’s execution, so the data can only be found by looking
for that specific instance of the operation. Conversely, in signac
the data is identified by its own metadata, namely its state point,
so once it has been generated its access is no longer linked to a
specific instance of a signac-flow operation (assuming that
signac-flow is being used at all).

Of course, knowing exactly where and how data was gen-
erated and transformed, i.e., the data provenance, is also valu-
able information. Two tools that are specialized for this task
are Sacred [GKC+17] and Sumatra [Dav12]. Superficially, the
signac framework appears especially similar to Sacred. Both
use decorators to convert functions into executable operations, and
configurations can be injected into these functions (in signac’s
case, using the job object). Internally, Sacred and signac-flow
both depend on the registration of particular functions with some
internal API: in signac-flow, functions are stored as opera-
tions within the FlowProject, whereas Sacred tracks functions
through the Experiment class. However, the focus of Sacred is
not to store data or execute workflows, but instead to track when
an operation was executed, the configuration that was used, and
what output was generated. Therefore, in principle signac and

158 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Sacred are complementary pieces of software that could be used
in concert to achieve different benefits.

We have found that integrating Sacred with signac is in
fact quite simple. Once functions are registered with either a
Sacred Experiment or a signac-flow FlowProject, the
operations can be run either through Python or on the command
line. While both tools typically advocate using their command
line interfaces, the two can be integrated by using one from the
command line while having it internally call the other through
the corresponding Python interface. When used in concert with
signac, the primary purpose of the Sacred command line
interface, the ability to directly interact with the configuration,
is instead being managed by the underlying signac database;
in principle, the goal of this integration would be to have all
configuration information tracked using signac. Conversely,
signac-flow’s command line interface offers not only the
ability to specify which parts of the workflow to run, but also to
query status information or submit operations to a scheduler with
a particular set of script options. As a result, to optimally utilize
both tools, we advocate using the signac-flow command
line functionality and encoding a Sacred Experiment within a
signac-flow operation.

The Sumatra provenance tracking tool is an alternative to
Sacred. Although it is written in Python, it is primarily designed
for use as a command line utility, making it more suitable than
Sacred for non Python application. However, it does provide a
Python API that offers greater flexibility than the command line
tool, and this is the recommended mode for integration with
signac-flow operations.

Data Management

We have found fewer alternatives to direct usage of the signac
data model; as mentioned previously, most currently existing
software packages tightly couple their data representation with
the workflow model. The closest comparison that we have found
is datreant [DSL+16], which provides the means for interacting
with files on the file system along with some features for finding,
filtering, and grouping. There are two primary distinctions be-
tween datreant and signac: signac requires a unique key for
each data point, and signac offers a tightly integrated workflow
management tool. The datreant data model is even simpler than
signac’s, which provides additional flexibility at the cost of
signac’s database functionality. This difference is indicative of
datreant’s focus on more general file management problems than
the issues signac is designed to solve. The generality of the
datreant data model makes integrating it into existing workflows
just as easy as integrating signac, and the MDSynthesis package
[Dot15] is one example of a workflow tool built around a datreant-
managed data space. However, MDSynthesis is highly domain-
specific and it cannot be used for other types of computational
studies. Therefore, while the combination of MDSynthesis and
datreant is a comparable tool to the signac framework in the
field of molecular simulation, it does not generalize to other use-
cases.

Conclusions

The signac framework provides all the tools required for thor-
ough data and workflow management in scientific computing.
Motivated by the need for managing the dynamic, heterogeneous
data spaces characteristic in computational sciences, the tools are

tailored for the use-cases most commonly faced in this field. The
framework has strived to achieve high ease of use and interop-
erability by emphasizing simple interfaces, minimizing external
requirements, and employing open data formats like JSON. By
doing so, the framework aims to minimize the initial barriers for
new users, making it easy for researchers to begin using signac
with little effort. The framework frees computational scientists
from repeatedly solving common data and workflow problems
throughout their research, and at a higher level, reduces the
burden of data sharing and provenance tracking, both of which are
critical to accelerating the production of reproducible and reusable
scientific results.

Acknowledgments

We would like to thank all contributors to the development of
the framework’s components, J.A. Anderson, M.E. Irrgang and
P. Damasceno for fruitful discussion, feedback and support, and
B. Swerdlow for his contributions and feedback and coming up
with the name. We would also like to thank all early adopters
that provided feedback and thus helped in guiding and improving
the development process. Development and deployment supported
by MICCoM, as part of the Computational Materials Sciences
Program funded by the U.S. Department of Energy, Office of Sci-
ence, Basic Energy Sciences, Materials Sciences and Engineering
Division, under Subcontract No. 6F-30844. Project conceptual-
ization and implementation supported by the National Science
Foundation, Award # DMR 1409620.

REFERENCES

[ADRG18] Carl S. Adorf, Paul M. Dodd, Vyas Ramasubramani, and
Sharon C. Glotzer. Simple data and workflow management
with the signac framework. Computational Materials Science,
146:220 – 229, 2018. URL: http://www.sciencedirect.com/
science/article/pii/S0927025618300429.

[Bra18] Bradley D. Dice. signac-dashboard, 2018. URL: https://
bitbucket.org/glotzer/signac-dashboard/src/master/.

[Cor16] Oracle Corporation. Mysql, 2016. URL: https://www.mysql.
com.

[Dav12] Andrew P. Davison. Automated capture of experiment context
for easier reproducibility in computational research. Comput.
Sci. Eng., 14:48–56, 2012.

[Dot15] David L. Dotson. MDSynthesis: a Python package enabling data-
driven molecular dynamics research, July 2015.

[DSL+16] David L. Dotson, Sean L. Seyler, Max Linke, Richard J. Gowers,
and Oliver Beckstein. datreant: persistent, pythonic trees for
heterogeneous data. In S Benthall and S Rostrup, editors,
Proceedings of the 15th Python in Science Conference, pages
51–56, Austin, TX, 2016.

[Ecm17] Ecma. The JSON Data Interchange Syntax, December
2017. URL: http://www.ecma-international.org/publications/
files/ECMA-ST/ECMA-404.pdf.

[GKC+17] Klaus Greff, Aaron Klein, Martin Chovanec, Frank Hutter, and
Jürgen Schmidhuber. The sacred infrastructure for computational
research. In Katy Huff, David Lippa, Dillon Niederhut, and
M Pacer, editors, Proceedings of the 16th Python in Science
Conference, pages 49–56, Austin, TX, 2017.

[JOC+15] Anubhav Jain, Shyue Ping Ong, Wei Chen, Bharat Medasani,
Xiaohui Qu, Michael Kocher, Miriam Brafman, Guido Petretto,
Gian-Marco Rignanese, Geoffroy Hautier, Daniel Gunter, and
Kristin A. Persson. Fireworks: a dynamic workflow system de-
signed for high-throughput applications. Concurrency and Com-
putation: Practice and Experience, 27(17):5037–5059, 2015.

[KRKP+16] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez,
Brian Granger, Matthias Bussonnier, Jonathan Frederic, Kyle
Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul
Ivanov, Damián Avila, Safia Abdalla, and Carol Willing. Jupyter
notebooks – a publishing format for reproducible computational
workflows. In F. Loizides and B. Schmidt, editors, Positioning

SIGNAC: A PYTHON FRAMEWORK FOR DATA AND WORKFLOW MANAGEMENT 159

and Power in Academic Publishing: Players, Agents and Agen-
das, pages 87 – 90. IOS Press, 2016.

[Mon16] MongoDB, Inc. MongoDB, 2016. URL: https://www.mongodb.
com/.

[PCS+16] Giovanni Pizzi, Andrea Cepellotti, Riccardo Sabatini, Nicola
Marzari, and Boris Kozinsky. AiiDA: automated interactive
infrastructure and database for computational science. Comput.
Mater. Sci., 111:218–230, 2016.

[PG07] Fernando Pérez and Brian E. Granger. IPython: a system for
interactive scientific computing. Computing in Science and
Engineering, 9(3):21–29, May 2007. URL: http://ipython.org.

[Ron] Armin Ronacher. jinja2. Accessed on 2017/09/29. URL: http:
//jinja.pocoo.org/.

160 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Yaksh: Facilitating Learning by Doing

Prabhu Ramachandran§¶∗, Prathamesh Salunke‡, Ankit Javalkar‡, Aditya Palaparthy‡, Mahesh Gudi‡, Hardik
Ghaghada‡

https://youtu.be/ngrfZIgrnW4

F

Abstract—Yaksh is a free and open-source online evaluation platform. At its
core, Yaksh focuses on problem-based learning and lets teachers create prac-
tice exercises and quizzes which are evaluated in real-time. A large array of
question types like multiple choice, fill-in-the-blanks, assignment upload, and
assertion or standard I/O based programming questions are available. Yaksh
supports Python, C, C++, Java, Bash, and Scilab programming languages. In
addition, Yaksh allows teachers to create full-blown courses with video and/or
markdown text-based lessons. Yaksh is designed to be secure, easily deploy-
able, and can scale-up to 500+ users simultaneously.

Introduction

Yaksh is created by the FOSSEE Python team. The FOSSEE
project (http://fossee.in) based at IIT Bombay, is funded by
the Ministry of Human Resources and Development, MHRD
(http://mhrd.gov.in) of the Government of India. The goal of the
FOSSEE project is to increase the adoption of Free and Open
Source Software in Education in India. The project started in
2009 to develop and promote a variety of open source projects.
FOSSEE’s Python group attempts to promote the adoption of
Python in India. More details on the activities of the Python group
of FOSSEE have been presented earlier at SciPy 2016 [PR2016].
Yaksh was described briefly there. However, Yaksh has evolved
considerably in the last few years. It has been used for several
courses at IIT Bombay as well as online. In addition, Yaksh
provides a simple interface to host a MOOC and we discuss this
feature as well.

As part of FOSSEE’s efforts we have created learning material
for Python and have conducted hundreds of workshops on Python.
We find that to effectively train people to learn to program, it is
imperative to make them solve programming problems. Yaksh has
been created by FOSSEE for this purpose.

Overview of Yaksh

Since the emergence of learning management system (LMS) and
massive open online course (MOOC) providers, e-learning has
grown significantly. Despite the ever increasing adopters, major
platforms still use simple questions like multiple-choice questions

* Corresponding author: prabhu@aero.iitb.ac.in
§ Department of Aerospace Engineering
¶ IIT Bombay, Mumbai, India
‡ FOSSEE IIT Bombay, Mumbai, India

Copyright © 2018 Prabhu Ramachandran et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

and uploading of assignments from students as a means to evaluate
students’ performance. Yaksh seeks to improve on this.

It is well known that practice assignments and problem solving
improve understanding. In the case of programming languages,
this is especially so. Programming is a skill and to develop it, one
must necessarily write programs. Providing an interface where
users can attempt a question and immediately obtain feedback on
the correctness of their program would be very useful both to a
student and to a teacher. This same interface could also be used
to assess the performance of the student. This is useful for the
student to understand where they can improve and to the teacher
to identify which concepts are not properly understood by the
students. In the Indian context, a recent study [AM2017] found
that even though there are many graduates with a computer science
background, only 5% of the students are able to write programs
with the correct logic. Indeed, our own experience is that many
students learn computer science theoretically without writing too
many computer programs. It is therefore important to provide
a tool that facilitates practice programming and programming
assessment.

In 2011, the first version of Yaksh was developed to administer
programming quizzes for an online teacher training course that
FOSSEE conducted. More than 600 teachers were trained and
we wanted them to be able to write programs and have those
corrected automatically. This work was presented at SciPy India
2011 [PR11].

Yaksh is a free and open-source online evaluation software that
allows teachers to create courses and students to watch lessons and
attempt tests which are evaluated immediately. Yaksh is designed
to be used by a large number of users concurrently thereby making
it apt for use in schools, colleges and other educational institutes
for training a large number of students.

Yaksh is implemented in Python and uses Django (https:
//www.djangoproject.com/). It can be installed as a Django app
with the pip command, thus allowing other Django based web
projects to install the app within their project. The sources are
available from: https://github.com/FOSSEE/online_test

To use Yaksh, one could sign-up on the official https://yaksh.
fossee.in website or host it on one’s own servers. The most
standard and secure way to deploy Yaksh on a server is to build
separate docker images using docker compose. Instructions for
this are available in the Yaksh sources and are easy to setup.

For teachers, Yaksh provides a wide array of question types
which include the basic question types like multiple choice, fill-in-
the-blanks, assignment upload, etc. One can also add standard I/O
and assertion-based questions for simple and basic programming

YAKSH: FACILITATING LEARNING BY DOING 161

questions. For complex programs, teachers can add a hook-based
test case which enable them to take the student answer and
evaluate it in whatever way they want. Once the questions are
created, they can create a question paper that can be added to a
practice exercise or a quiz. The question paper can have a mixed
set of fixed questions or a random set of questions selected from
a pool of questions. In conjunction with quizzes, teachers can
also add video or markdown-based lessons. Teachers can also
monitor students in real-time during a test, as well as their overall
progress for the course, thereby gaining insight on how students
are performing.

Yaksh is designed to be easy-to-use by a student. All they
have to do is sign-up, enroll for a course and start. They could go
through the lessons, practice a few questions and then attempt the
quiz, on which their performance is rated. While doing so, they
get easy-to-understand feedback for any mistakes they make from
the interface, thereby improving their answers.

Yaksh is being used extensively by the FOSSEE team to teach
Python to many students all across India. Over 6000 students have
used the interface to learn Python. It has been used in several
courses taught at IIT Bombay and also for conducting recruitment
interviews internally.

There are a few other open source software packages that do
all or part of what Yaksh does.

nbgrader is a Jupyter Notebook plugin that can be used to
grade programming assignments. The student submits jupyter
notebooks containing code blocks which are then evaluated manu-
ally or automatically. nbgrader provides a very convenient Jupyter
based interface. Instead, Yaksh offers instant feedback and grad-
ing, supports a variety of different languages, and also allows one
to host a full course.

relate is similar to Yaksh in scope and goals. It allows a user
to create a web based course with a grading interface quite similar
to Yaksh. However, entering content into the software is based
largely on YAML which is great for developers but not all end-
users. Yaksh provides several question types and different ways to
evaluate students’ code.

Datacamp also provide several tools that are well suited for
hosting very attractive courses online. It provides an easy to
use and interactive interpreter for programming, which is also
pluggable. However, it is not necessarily designed from the ground
up for online assessment of students and live quizzes and exercise
programs.

In this paper we first discuss how Yaksh may be installed, its
features, and a high-level overview of its design and implementa-
tion. We then present some information on how Yaksh has been
used at FOSSEE for a variety of tasks.

Installation and setup

Deployment of a web application for developement or for pro-
duction purposes, should be as easy as possible. There are a few
different ways of setting up Yaksh:

• Trial instance with Docker
• Trial instance without Docker
• Production instance using Docker and Docker compose.

Yaksh can be deployed with a limited number of commands
using the invoke Python package to make the deployment as easy
as possible.

Yaksh is written in Python and depends on Django and a few
other Python dependencies. The dependencies can be installed

using the pip package manager tool. It is recommended to use
Yaksh along with Docker.

Yaksh can be cloned from the Github repository. To do this
one can run:

$ git clone https://github.com/FOSSEE/online_test.git

$ cd online_test

One can then install the required dependencies, for Python 2, by
running:

$ pip install -r requirements/requirements-py2.txt

or for Python 3, by running:

$ pip install -r requirements/requirements-py3.txt

It is recommended that one use Python 3 to run Yaksh.

Quickstart

The method discussed here allows a user to setup a local instance
of Yaksh to try the platform for a limited number of users. Yaksh
can be run within a demo instance on a local system to try the
platform for a limited number of users. To set up a demo instance
one can run:

$ invoke start

This command will start the code server within a docker environ-
ment.

In case docker is not available, the code server can also be run
without docker by running:

$ invoke start --unsafe

However, this is not recommended since this leaves the base
system potentially vulnerable to malicious code. In case one
wishes to use this method, all Python dependencies will have to
be installed using sudo.

In order to access the interface, one can run the web server
using:

$ invoke serve

This command will run the Django application server on the 8000
port and can be accessed using a browser.

Production Setup With Docker

In order to setup Yaksh on a Production server with docker
compose, one first needs to set certain environment variables. To
do so, one can create a .env file with the following details:

DB_ENGINE=mysql

DB_NAME=yaksh

DB_USER=root

DB_PASSWORD=db_password

DB_PORT=3306

The local system needs to have Docker Compose installed. Then,
one must navigate to the Docker directory:

$ cd /path/to/online_test/docker

Running the following commands will ensure that the platform is
setup:

$ invoke build

162 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

$ invoke begin

$ invoke deploy --fixtures

The build command builds the docker images, the begin com-
mand spwans the docker containers and the deploy command
runs the necessary migrations.

The demo course/exams

Since setting up a complete course with associated Modules,
Lessons, Quizzes and Questions can be a tedious process for a
first time user, Yaksh allows moderators to create a Demo Course
by clicking on the ’Create Demo Course’ button available on the
dashboard.

One can then click on the Courses tab and browse through the
Demo Course that has been just created.

One can read more about Courses, Modules, Lessons and
Quizzes in the sections below.

Basic features of Yaksh

Once Yaksh is installed and running, one can create a full fledged
course with lessons, practice, and evaluation based quizzes. Yaksh
supports following languages such as Python, Java, C, C++, and
Scilab. It provides several question types such as Single Correct
Choice (MCQ), Multiple Correct Choice (MCC), Programming,
Fill in the blanks, Arrange the options, Assignment upload. For
simple and complex questions several test case types are provided
such as standard input/output test case, Standard Assertion test
case, Hook based test case, MCQ based test case, etc. The
interface provides instant feedback for the student to improve their
submissions. While administering quizzes or practice sessions, one
can monitor the student’s progress in real-time. This is particularly
useful in practice sessions so as to help students who are not
doing well. Finally, a student gets a certificate after successful
completion of a course.

All the features are explained in detail in the workflow section.

Internal design

The two essential pieces of Yaksh are:

• Django Server
• Code server

Fig 1 shows the workflow for the evaluation of code submitted
by a student and how this relates to these two pieces.

Django Server

Django is a high-level Python web framework. Django makes it is
easy to create web applications, handles basic security issues, and
provides a basic authentication system.

Django makes it easy to store information in a database by
providing an object-relational mapping (ORM). This allows users
to define the database tables at a very high level without having to
write raw SQL queries.

Django provides a view controller to handle the requests sent
from the client side. A view then interacts with the database using
the ORM, retrieves data and pushes it to a template for rendering
into an HTML page.

Fig. 1: Flow diagram for code evaluation procedure

Fig. 2: The Yaksh application login screen

Authentication system

Yaksh uses the Django authentication system for handling basic
user authentication, cookie-based user sessions and permissions
for users and groups. Additionally, Yaksh uses email verification
to provide users with a second layer of security while creating
user accounts. To create an account on Yaksh, one can either go
to the website and sign-up or can sign-up via the OAuth system
provided for Google and Facebook accounts. By default the user is
logged-in as a student, although the user can become a moderator
if the user is added to the moderator group. Fig. 2 shows the login
screen for Yaksh.

Yaksh models

A Django model is a Python class that subclasses
django.db.models.Model representing the database table.
Each attribute of the model represents a database table field.

The models for Yaksh are as follows:

• User
This is the default model provided by Django for storing
the user name, first name, last name, password etc.

• Profile
This model is used for storing more information about a
user such as institute, department etc.

• Question
This model is used for storing question information such
as name, description etc. Once the questions are created
they are added in the question paper

• TestCase

YAKSH: FACILITATING LEARNING BY DOING 163

This model is used for storing question test cases.
Different test case models are available which subclass the
TestCase model. Some of these are -

– StandardTestCase
This model is used for test cases that use assertions
to test success or failure.

– StdIOBasedTestCase
This model is used for test cases based on the
standard output produced by a test.

– McqTestCase
This model is used for MCQ (single correct
choice) or MCC (multiple correct choice) type of
question.

– HookTestCase
This model is used for questions where there is a
need for more complex testing. This model comes
with a predefined function check_answer where
the student answer (path to user submitted files
for assignment uploads) is passed as an argument.
The question creator can hence scrutinise the user
answer in much more specific ways.

– Fill in the blanks Test case
This model supports integer, float, string types for
fill in the blanks questions.

– ArrangeTestCase
This model is used for creating a test case with
jumbled options which can be re-ordered by stu-
dents.

• Course
Is used for creating a course.

• Quiz
Is used for creating a quiz.

• QuestionPaper
Is used for creating a questionpaper for a quiz containing
all the questions for the quiz.

• AnswerPaper
Is used for storing the answer paper for a particular course
and quiz.

• Answer
Is used for storing the answer submitted by the user which
are added to the answer paper.

• Lesson
A lesson can be any markdown text which can have an
embedded video of a particular topic.

• LearningUnit
A learning unit can either be a lesson or a quiz.

• LearningModule
A learning module can be any markdown text which can
have an embedded video of a particular topic. A learning
module contains learning units.

Code Server

The Code Server is an important part of Yaksh. The evaluation
of any code is done through the code server. We have used the
Tornado web framework to manage the asynchronous process
generation. A settings.py file is provided which is used to
specify various parameters necessary for the code server.

This settings file contains information such as:

• number of code server processes required to process the
code.

Fig. 3: Dictionary mapping of Python code evaluator

• server pool port, a common port for accessing the Tornado
web server.

• server host name, a server host for accessing the Tornado
web server.

• a timeout to prevent infinite loops locking up a process.
• dictionary of code evaluators based on the programming

language.

A Tornado HTTP server is started with the specified server
hostname and pool port from the settings. The server takes the
following arguments -

• UID of an answer: This is the unique ID associated with
an answer submitted. This is specifically required to poll
the server for the status of the submitted answer.

• JSON Data: This contains all the data required for evalu-
ation of a code answer, namely, user answer, language of
the question, test cases associated with the question, and
files required by the code, if any.

• User directory Every user is allotted a user directory,
in which script files are executed. The path of this user
directory is passed to the server.

The aforementioned arguments are passed to the Tornado
server which takes the JSON data and sends it to a Grader
for unpacking. The Grader unpacks the data, selects a language
evaluator using a language registry and sends it to that language
evaluator for evaluation. The language evaluator takes the user
answer and evaulates it in the specified user directory. The eval-
uator then sends the output of the evaluation back to the Tornado
server through the Grader. The Django server, meanwhile, keeps
polling the Tornado server for the status of the evaluation. If the
evaluation is complete, the Tornado server hands over the data to
the Django server for saving and displaying.

Grader

Grader extracts the data such as language, test case type, test cases,
user directory path from json metadata sent to it. It then creates the
user directory from the path. Then it sends the test case type and
language information to the language registry to get the evaluator.
Once the evaluator is obtained, grader calls the evaluator and sends
the test cases, user answer to the evaluator and code execution
starts.

Language Registry

The language registry takes a programming language and test
case type and generates a evaluator instance using the dictionary
mapping in the settings file and returns the evaluator instance to
the Grader.

Dictionary mapping of evaluator is as shown in Fig 3
For example say Python language and standard assert test

case type are set during question creation, then Python assertion
evaluator is instantiated from the dictionary mapping and the
created instance is returned to grader.

164 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Evaluators

Evaluators are selected based on the programming language and
test case type set during the question creation.

For each programming language and test case type separate
evaluator classes are available.

Each evaluator class subclasses BaseEvaluator. The
BaseEvaluator class includes common functionality such as
running a command using a Python subprocess, creating a file, and
writing user code in the file, making a file executable etc.

There are several important aspects handled during code eval-
uation:

• Sandboxing
A user answer might be malicious i.e. it might contain
instructions which can access the system information and
can damage the system. To avoid such a situation, all the
code server process run as "nobody" so as to minimize the
damage due to malicious code.

• Handling infinite loops
There are chances that user answers contain infinte loops
and lock up a process. To avoid this, code is executed
within a specific time limit. If the code execution is not
finished in the specified time, a signal is triggered to
stop the code execution and sending a message to the
user that code might contain an infinite loop. We use
the signal module to trigger the SIGALARM with the
server timeout value. Unfortunately, this does make our
code server Linux/MacOS specific.

• Docker
To make the code evaluation more secure all the code eval-
uation is done inside a docker container. Docker containers
can also be used to limit the use of system resources such
as CPU utilization, memory utilization etc.

Workflow of Yaksh

Instructor workflow
An instructor (also called the moderator) has to first create a

course before creating a quiz, lesson or module. Before creating
a quiz, the instructor has to create some questions which can be
added to a quiz. The instuctor can create any number of questions
through the online interface. These can be either multiple-choice,
programming, assignment upload, fill in the blanks or arrange
option questions. All these question types must be accompanied
with several test cases. A sample Python question along with its
test case is shown in the Fig. 4 and Fig. 5. The instructor can set
minimum time for a question if it is part of an exercise. A question
can have partial grading which depends on a weightage assigned
to each test case. A question can have a solution which can be
either a video or any code. This allows us to pose a question, ask
the student to attempt it for a while and then show a solution.

A programming question can have test case types of standard
assert, standard I/O or a hook. Fig. 5 shows a sample test case of
standard assert type. In a similar way, the instructor can add test
cases for standard I/O. For simple questions, standard assert and
standard I/O type test cases can be used. For complex questions,
hook based test case is provided where the user answer is provided
to the hook code as a string and instructor can write some code
to check the user answer. For other languages assertions are not
easily possible but standard input/output based questions are easy
to create. The moderator can also create a question with jumbled
options and student has to arrange the options in correct order.

Fig. 4: Question interface

Fig. 5: Sample Test case

Detailed instructions on creating a question and test cases are
provided at (https://yaksh.readthedocs.io).

The moderator can also import and export questions. The
moderator then creates a quiz and an associated question paper.
A quiz can have a passing criterion. Quizzes have active durations
and each question paper will have a particular time within which
it must be completed. For example, one could conduct a 15
minute quiz with a 30 minute activity window. Questions are
automatically graded. A user either gets the full marks or zero if
the tests fail. If a question is allowed to have partial grading then
during evaluation the user gets partial marks based on passing test
cases.

The moderator can then create learning modules. A module
encapsulates learning units, i.e., lessons and quizzes. A lesson
can have description either as a markdown text or a video or
both. After lesson creation, the moderator can create modules. A
module can have its own description either as a markdown text or a

YAKSH: FACILITATING LEARNING BY DOING 165

Fig. 6: The moderator interface for monitoring a quiz on Yaksh.

Fig. 7: The interface showing a video lesson

video or both. All the lessons and quizzes are added to the created
module. The moderator can create any number of modules, lessons
and quizzes as desired. These modules are added to a course.

Fig. 6 shows a monitor page for a quiz from one of the courses
running on Yaksh. The instructors can also monitor students in
real time during a quiz thereby gaining insight on how students
are performing. The moderator can also view student progress
for overall course, such as the number and percent of completed
modules.

The moderator can regrade answerpapers using three ways:

• Answer paper can be regraded per quiz.
• Answer paper can be regraded per student.
• Answer paper can be regraded per question.

Student workflow
Working on the student side is relatively easy. After login,

a student can view all the open courses or search for a course.
Once the course is available, the student can enroll in a course. A
student has to complete the course within a specified time. After
enrolling, the student will be able to see all the modules and its
units (Lessons/Quizzes) for the course. A student can view all
the lessons and once the lessons are finished student can attempt
the quiz. Fig. 7 shows a video lesson from the monthly running
Python course.

Fig. 8 shows a MCQ question from a quiz. A student can select
any one of the option and submit the answer.

Fig. 9 shows a programming question from a quiz in Python
course. Once the student clicks on check answer, the answer is

Fig. 8: The interface for a multiple-choice question on Yaksh.

Fig. 9: The interface for a programming question on Yaksh.

sent to the code server for evaluation and the result from the
code server is shown. From the Fig. 9 we can see that there is
an indentation error in the code. Once the answer is submitted we
get an indentation error message as shown in the Fig. 10. After
submmiting the answer, if the answer does not pass the test case
then student gets an assertion error as shown in the Fig 11.

Fig. 12 shows an StdIO based question. Once the answer is
submitted we get the error output as shown in Fig 13. Fig 13
shows the user output and expected output separately, indicating

Fig. 10: Error output after submitting the code answer.

Fig. 11: Asserrtion Error output after submitting the code answer.

166 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Fig. 12: The interface for a stdio question type on Yaksh.

Fig. 13: Error output for stdio question type.

the line by line difference between user output and expected output
making it easy to trace where the error occured.

Students can submit the answer multiple times, thereby im-
proving their answers. Suppose a student is not able to solve a
question, that question can be skipped and attempted later. All the
submitted and skipped question’s answers are stored so that the
instructor can view all the attempts made by the student. Students
can view the answerpaper for a quiz after completion.

Students can take the practice exercises where each question
in the exercise is timed. Students must solve the question within
the specified time, if not done within time then the solution for the
question is shown and student can submit the answer once again.
This makes it easy for the student to understand the mistake and
correct it. These exercises run for infinite time and allows multiple
attempts.

Once the course is completed, the student can view the course
grades and download the certificate for that course which is
generated automatically.

Supporting a new language

Adding a new language is relatively easy. In the settings file one
needs to add a mapping for the evaluator corresponding to the
language. An example for adding new evaluator is shown in Fig
14.

In the given Fig 14, Python is the programming language,
standardtestcase, stdiobasedtestcase, hooktestcase are the test case
type which are mapped to corresponding evaluator class. Here the
values of the dictionary correspond to the full name of the Eval-
uator subclass, in this case PythonAssertionEvaluator is
the class which is responsible to evaluate the code.

Fig. 14: Dictionary mapping for new code evaluator

Separate evaluator files needs to be created for all the test case
types except the hook test case.

An evaluator class should define four methods __init__,
teardown, compile_code, and check_code.

• __init__ method is used to extract all the metadata
such as user answer, test cases, files (if any for file
based questions), weightage (float value), partial_grading
(boolean value).

• The teardown method is used to delete all the files that
are not relevant once the execution is done.

• All the code compilation tasks will be performed by the
compile_code method. There is no need to add this
method if there is no compilation procedure.

• The execution of the code is performed in the
check_code method.

The check_code method must return three values -

• success (bool) - indicating if code was executed success-
fully and the student answer is correct

• weight (float) - indicating total weightage of all suc-
cessful test cases

• error (str) - error message if success is false

Some experiences using Yaksh

During its inception in 2011, Yaksh was designed as an evalu-
ation interface with the idea that anyone can use Yaksh to test
and grade the programming skills of students. As an evaluation
interface, Yaksh was first used to evaluate 600 teachers. Since
then, Yaksh has been used for teaching students, especially for
courses at IIT Bombay and for conducting employment hiring
tests within FOSSEE. With the introduction of Python Workshops
(https://python-workshops.fossee.in/), an initiative of FOSSEE to
remotely train students and teachers across India, Yaksh has
since been refactored around the MOOC ideology, introducing
the ability to learn with an emphasis on hands-on programming.
We look at the various activities where Yaksh is used below.

Courses at IIT Bombay

Yaksh has been used as a online learning and testing tool for some
courses at IIT Bombay. Yaksh is used to teach Python to some
undergraduate students. These courses have served as a test-bed
for the software. Thus far, about 300 students from IIT Bombay
have been taught using Yaksh.

Usage for Python Workshops

In early 2017, FOSSEE started conducting remote Python work-
shops in technical colleges across India. These workshops consist
of several sessions spread through one or three days, depending
on the type of the course an institute chooses. A session typically

YAKSH: FACILITATING LEARNING BY DOING 167

Fig. 15: Male:Female ratio of visitors on Yaksh.

begins with screening a video tutorial inside the venue. The
tutorials are followed by a demanding set of exercises and quizzes,
both of which are conducted on Yaksh. This is followed by brief
Q&A sessions with the remote Python instructors from FOSSEE.
Finally a certificate is awarded to those students who successfully
finish the course. Apart from this, Yaksh also hosts a monthly, self
learning online course, consisting of the same workshop materials
and some bonus contents. Here are some statistics based on these
activities -

1) As of mid 2018, around 13,000 active users are on Yaksh,
with more expected to join by the end of the year.

2) Rapidly growing user base with about 730, 4500 and
7500 user registrations for year 2016, 2017 and mid-2018
respectively.

3) 100+ institutes have conducted the workshop with about
6000 students participating and about 3600 students ob-
taining a certificate.

4) For the first three months of the Python self learning
course, an estimate of 3500 students enrolled with 1200
completing the course within the time frame and 400
students obtaining a passing certificate.

5) An equal ratio of male to female participants with most
users from the age of 18-24 as seen in the Figures. 15 and
16.

6) Average time spent on the website by a user is around 30
minutes.

7) Major users are from tier 1 cities of India, regarded as
highly developed IT hubs like Hyderabad, Bengaluru,
Pune, and Mumbai.

Usage for hiring

One surprising use case for Yaksh has been as a tool for evaluating
employment candidates by conducting tests. Yaksh has been used
several times for hiring for teams functioning inside the FOSSEE
project.

Plans

The team behind Yaksh is devoted to further improving user ex-
perience for both moderators and students. This includes addition
of features like Instant Messaging (IM) service for moderators
and teachers to guide and solve students’ doubts in real time. The
team also plans to add support for more programming languages
to include a larger question base. Moderators will have facility to
do detailed analysis on student performance in future.

Fig. 16: Age breakdown of visitors on Yaksh.

Many colleges and schools in India do not have good internet
access. We are hoping to make it easy for such institutions to
locally host Yaksh using a bootable USB drive.

In addition, we are planning to make it easy for students to
download the course materials and any videos in order to view the
lectures offline.

For moderators, a stable web-API is being designed for other
websites to harness the power of Yaksh. With this API, moderators
could be able to embed lessons and quizzes available on Yaksh in
Jupyter notebooks.

Conclusions

As discussed in this paper, Yaksh is a free and open source tool can
be used effectively and extensively for testing programming skills
of students. The features provided by Yaksh facilitates teachers
to automate evaluation of students in almost real time, thereby
reducing the grunt work. With addition of MOOC like features,
students can learn, practice and test their programming abilities
within the same place. The Python team at FOSSEE continues to
promote and spread Python throughout India using Yaksh.

Acknowledgments

FOSSEE would not exist but for the continued support of MHRD
and we are grateful to them for this. This work would not be
possible without the efforts of the many FOSSEE staff members.
The past and present members of the project are listed here: http:
//python.fossee.in/about/ the authors wish to thank them all.

REFERENCES

[PR2016] Prabhu Ramachandran, Spreading the Adoption of
Python in India: the FOSSEE Python Project", Pro-
ceedings of the 15th Python in Science Confer-
ence (SciPy 2016), July 6-12, 2016, Austin, Texas,
USA. http://conference.scipy.org/proceedings/scipy2016/
prabhu_ramachandran_fossee.html

[kmm14] Kannan Moudgalya, Campaign for IT literacy through
FOSS and Spoken Tutorials, Proceedings of the 13th
Python in Science Conference, SciPy, July 2014.

[FOSSEE-Python] FOSSEE Python group website. http://python.fossee.in,
last seen on May 7 2018.

[PR11] Prabhu Ramachandran. FOSSEE: Python and Education,
Python for science and education, Scipy India 2011, 4th-
11th December 2011, Mumbai India.

[AM2017] 95% engineers in India unfit for software develop-
ment jobs, claims report. http://www.aspiringminds.com/
automata-national-programming-report

