
DRAFT

PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017) 113

NEXT: A system to easily connect crowdsourcing and
adaptive data collection

Scott Sievert‡†∗, Daniel Ross‡†, Lalit Jain¶†, Kevin Jamieson§, Rob Nowak‡, Robert Mankoff‖

https://www.youtube.com/watch?v=blPjDYCvppY

F

Abstract—Obtaining useful crowdsourcing results often requires more re-
sponses than can be easily collected. Reducing the number of responses re-
quired can be done by adapting to previous responses with "adaptive" sampling
algorithms, but these algorithms present a fundamental challenge when paired
with crowdsourcing. At UW–Madison, we have built a powerful crowdsourcing
data collection tool called NEXT (http://nextml.org) that can be used with arbi-
trary adaptive algorithms. Each week, our system is used by The New Yorker to
run their Cartoon Caption contest (http://www.newyorker.com/cartoons/vote). In
this paper, we will explain what NEXT is and it’s applications, architecture and
experimentalist use.

Index Terms—crowdsourcing, adaptive sampling, system

Introduction

The ubiquitousness of the Internet has enabled crowdsourcing,
which gives fast access to unprecedented amounts of human judg-
ment data. For example, millions of crowdsourcing participants
have been asked to determine the locations in an image that
contain a certain object (e.g., "select all image locations that
contain buildings") on many different images [DDS+09].

The cost of collecting crowdsourcing responses can be sig-
nificant – especially in problem domains where expert input is
required. Minimizing the number of queries required has large
practical benefits: higher accuracy with fewer responses, and
ultimately a shorter time to the result. To obtain these benefits,
a fundamental change in the method of data collection is required.

At UW–Madison, we have developed a crowdsourcing data
collection tool that efficiently collects crowdsourced data via
"adaptive" sampling algorithms [JJF+15]. In this paper, we will
focus on the use of NEXT rather than the applications of NEXT
and their results. We will mention the fundamental problem NEXT
addresses, its applications, and the interfaces NEXT presents to the
experimentalist and algorithm designer.

Problem statement

Supervised machine learning relies humans to label examples in
order to build a model to predict the response a human would

† These authors contributed equally.
* Corresponding author: stsievert@wisc.edu
‡ University of Wisconsin–Madison
¶ University of Michigan, Ann Arbor
§ University of California, Berkeley
|| The New Yorker

Copyright © 2017 Scott Sievert et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Fig. 1: As problem difficulty increases, fewer samples (e.g., labeled
images) are needed with adaptive sampling to reach a particular
quality (e.g., classification accuracy).

give [KZP07]. One example of this workflow is with the popular
ImageNet dataset [DDS+09]: humans have provided millions of
image labels, and there have been dozens of models to predict
labels for unseen images [SLJ+15], [HZRS15], [SZ14].

The collection of these data is passive and does not adapt
to previous responses: previous responses do not effect which
queries are presented. Adaptive data collection is a process which
selects the most useful data as quickly as possible to help achieve
some goal (e.g., classification accuracy) [Hol92]. Adaptive data
collection is done by an adaptive sampling algorithm that chooses
the next query to be labeled.

Adaptive data collection naturally requires fewer responses to
produce the same model as passive data collection: it’s adapting to
previous responses by choosing which query to present next. This
is most useful when many labels are needed unlabeled examples.
Adaptive algorithms do not require more responses than passive
algorithms [CWN05]. A representative depiction of gains obtained
by adaptive data collection is shown in Figure 1 [DHM08].

Applying adaptive data collection to crowdsourcing has the
potential to reduce the number of samples required. An simple
example that requires many human judgments is sorting n items
with pairwise comparisons (e.g., x < y). In the ideal case, an

https://www.youtube.com/watch?v=blPjDYCvppY
http://nextml.org
http://www.newyorker.com/cartoons/vote
mailto:stsievert@wisc.edu

DRAFT

114 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

adaptive algorithm requires O(n logn) comparisons on average
while passive algorithms requires O(n2) comparisons [Hoa62].

Adaptively collecting large-scale datasets is challenging and
time-consuming, as mentioned below. As such, the evaluation
of novel adaptive sampling algorithms resort to simulations that
use large passively collected datasets. These simulations do not
address the practical issues faced in crowdsourcing: adaptive
algorithm response time, human fatigue and differing label quality
among humans.

The problem that needs to be solved is to allow arbitrary
adaptive algorithms to collect crowdsourced data in real time
by experimentalists. Arguably, some of the deepest insights and
greatest innovations have come through experimentation. This is
only possible if adaptive data collection is easily accessible by
both

1) Machine learning researchers, to test and deploy adaptive
algorithms

2) Experimentalists, to use and test adaptive algorithms in
real-world applications

Easy use by both groups will enable feedback between exper-
imentalists and machine learning researchers to improve adaptive
data collection through crowdsourcing.

Challenges

Adaptive data collection is not possible without access to previous
responses, a fundamental change to data collection. This intro-
duces human feedback: the most useful queries are selected using
previously recorded human labels by some adaptive algorithm. If
a particular query has shown to be of little use, it doesn’t make
much sense to label the same query again.

Adaptive algorithms use previous responses to ask questions,
which means that they require

• receiving, storing and accessing responses
• delivering and selecting queries to be labeled
• updating some internal model which selects queries to be

presented.
• scaling to tens or hundreds of simultaneous users in an

online environment when applied to crowdsourcing

General crowdsourcing systems (e.g., Mechanical Turk, Psi-
Turk, Crowd Flower) were not designed with these requirements in
mind. Adaptive data collection requires a fundamentally different
interaction flow as show in Figure 2, which requires the data flow
in Figure 3 when applied to crowdsourcing.

Crowdsourcing adaptive data collection presents a variety of
challenges in mathematics, systems and software development.
These challenges stem from the storage and connection of re-
sponses to the adaptive sampling algorithm. Any such system
needs to process, store and receive crowdsourcing responses and
work crowdsourcing scale, meaning the development and mainte-
nance of such a system is involved. This has served as a barrier
to developing such a system for mathematicians, and lack of
knowledge on adaptive methods have hindered experimentalists.

One other system that addresses this challenge is the Microsoft
Decision Service [ABC+16], which can effectively evaluate the
collection of crowdsourced data with different adaptive algo-
rithms. However, design of this system involved different goals,
including working with exactly one problem formulation and
working well at very large scales.

Fig. 2: The data flows required to collect crowdsourcing data both
passively and adaptively. The primary difference is adaptive data
collection requires using previous responses in some way.

Fig. 3: The system required to use adaptive algorithm with crowd-
sourcing. The results are stored in the model, which may contain
additional information.

Our system

The system we have developed at the UW–Madison is called
NEXT12. It provides adaptive, crowdsourced data collection by
selecting which query to present next. NEXT provides

• easy implementation, selection, and evaluation of different
adaptive algorithms

• a web interface for crowdsourced experiment participation
• an HTTP-based API for experiment access (and for use in

other contexts)
• live experiment monitoring dashboards that update as

responses are received
• easy use and configuration by experimentalists in a wide

variety of fields and disciplines

Our design goals necessitate that NEXT be an end-to-end
system that is easily accessible. It is a web interface that can be
accessed by both experimentalists and crowdsourcing participants,
and a Python interface for the algorithm developer. We explain
use by experimentalists and algorithm developers in the following
sections. A block diagram representation of our system is in Figure
4.

In use of NEXT, mathematicians have implemented new
algorithms [Jun16] and UW–Madison psychologists have inde-
pendently used our system3. NEXT has been used by the New
Yorker and in the insurance industry. In at least one case, two

1. Homepage at http://nextml.org
2. Source available at https://github.com/nextml/NEXT

http://nextml.org
https://github.com/nextml/NEXT

DRAFT

NEXT: A SYSTEM TO EASILY CONNECT CROWDSOURCING AND ADAPTIVE DATA COLLECTION 115

Fig. 4: When and how different users interact with NEXT. Arrows
represent some form of communication between different system
components.

adaptive algorithms have been evaluated in the real world and one
required fewer samples as expected4.

In our usage, the system remains responsive to participants
even after receiving millions of responses from thousands of
participants. This is illustrated by the problem below, though it
also illustrates other features.

Applications of NEXT

NEXT applications control the presentation of queries for users to
consider.

There are three "built-in" applications shipped with NEXT,
geared to three different types of judgments a user can make.
These applications are

• Cardinal bandits, which asks participants to rate one object
[GGL12] as shown in Figure 5.

• Dueling bandits, which asks participants to select one of
two objects [YBKJ12] as shown in Figure 6.

• Triplets, which displays three objects and asks for triplet
responses of the form "object i is more similar to object j
than object k." [JJN16], as shown in Figure 7.

We will now describe each application in more detail.

Cardinal bandits

Each week, The New Yorker draws a cartoon and asks readers for
funny captions. They receive about 5,000 captions, of which they
have to find the funniest. NEXT runs this contest each week. The
interface NEXT provides is visible at http://www.newyorker.com/
cartoons/vote and in Figure 5.

The interface is presented every time a query is generated.
One caption is presented below the comic with buttons to rate the
caption as "unfunny", "somewhat funny" or "funny". Every time
one of these buttons is pressed, the adaptive algorithm processes
the response and generates a new query.

3. See http://concepts.psych.wisc.edu/index.php/next-tutorial/
4. With contest 559 of The New Yorker Cartoon Caption contest

Fig. 5: An example query shown in The New Yorker Caption Contest
(cartoon drawn by P. C. Vey)

Each week, we collect and record up to a million ratings from
over 10,000 users. All told, this dataset5 includes over 20 million
ratings on over 363,000 different captions. This dataset has been of
practical use in improving adaptive sampling algorithms [Jun16].

The New Yorker’s goal is to find the funniest caption from this
set of 5,000 captions6. To achieve this, the algorithms of choice
only sample captions that can possibly be the funniest. If a caption
has received only "unfunny" ratings, it is probably not the funniest
caption and should not be further sampled.

This system has enabled evaluation and improvement in al-
gorithm implementation. In initial contests, we verified that one
adaptive algorithm [JMNB14] saw gains over a random algorithm.
Later, we implemented an improved adaptive algorithm (KL-UCB
at [KK13]) and saw adaptive gains as expected.

This was one of the motivations for NEXT: enabling easy
evaluation of adaptive algorithms.

Dueling bandits

We also support asking the crowdsourcing participants to chose
the "best" of two items. We tried this method during the first
several caption contests we launched for The New Yorker. This
interface asks participants to select the funnier of two captions,
and is shown in Figure 6. This problem formulation has theoretic
guarantees on finding the best item in a set [AB10], but can also
be applied to ranking different objects [CBCTH13].

The early evaluation of dueling bandits in the Caption Contest
is again part of why we developed NEXT. After trying dueling
bandits for several contests, we decided using cardinal bandits is
preferable. Cardinal bandits works better at scale, and requires less
work by The New Yorker.

5. https://github.com/nextml/caption-contest-data
6. The top caption for the comic in Figure 5 was "Like you’ve never taken

anything from a hotel room"

http://www.newyorker.com/cartoons/vote
http://www.newyorker.com/cartoons/vote
http://concepts.psych.wisc.edu/index.php/next-tutorial/
https://github.com/nextml/caption-contest-data

DRAFT

116 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

Fig. 6: The dueling bandits interface, where two items are compared
and the "better" item is selected (cartoon drawn for The New Yorker
Caption Contest by Shannon Wheeler)

Fig. 7: An interface that asks the user to select the most similar bottom
object in relation to the top object.

Triplets

Finding a similarity measure between different objects is the goal
of this problem formulation. For example, it may be desired to
find the similarity between different facial expressions. Happy and
excited faces may be similar but are probably different from sad
faces.

Human attention span cannot handle the naive number of
comparisons (which is proportional to n2 with n items). Instead,
we ask the crowdsourcing participant to make a pairwise similarity
judgement, or a triplet response as shown in Figure 7. There are
theoretic guarantees on finding some similarity measure given
these responses [JJN16] and have been used in practice with
NEXT to compare visual representations of different molecules
[RMN16].

NEXT Architecture

The design goals of NEXT are to provide

• convenient default applications (which handle different
problem formulations by serving different types of queries;
e.g., one application involves the rating of exactly one
object)

• straightforward and modular algorithm implementation
• live experiment monitoring tools via a dashboard, which

must update as responses are received and provide some
sort of offline access

• easy experimentalist use, both in system launch and in
experiment launch

These different system components and their data flow is
shown in Figure 4. Complete system documentation is available
and addresses use cases seen by both algorithm developers and
experimentalists7.

Algorithm implementation

Required functions: To implement Figure 4, we must
implement four functions for each algorithm:

1) initExp, which initializes the algorithm when the ex-
periment is launched

2) getQuery, which generates a query to show one partic-
ipant

3) processAnswer, which processes the human’s answer
4) getModel, which gets the results and is shown on the

dashboard

These function handle various objects to displayed in each
query (e.g., the New Yorker displays one text object in every query
for a rating). By default, these objects or target are abstracted to
an integer index (though the other information is still accessible).
This means that a particular target is referred to only by index
(e.g., the user is seeing target i, not foo.png).

All these functions are implemented in Python, and we provide
easy access other tasks needed for adaptive algorithms (database
access, background jobs).

Arguments and returns: We treat each algorithm as a
black box – NEXT only needs each algorithm function to accept
and return specific values. These arguments and return values
for all algorithm functions are specified exactly in a YAML-
based schema. Every algorithm has to create a mapping from the
specified inputs to the specified outputs.

NEXT verifies the inputs and output to/from algorithms and
can also include a description of each parameter. This means that
YAML schema is always up to date and is self-documenting.
Changing this schema means different arguments are passed to
every algorithm, and we offer flexibility by allowing arguments of
any type to be passed.

This schema depends on Algs.yaml (e.g., in
apps/[application]/algs/Algs.yaml) and contains
four root level keys for each of initExp, getQuery,
processAnswer, and getModel. Each one of these sections
describes the input arguments and returns values by args
and rets respectively. These sections are filled with type
specifications that describe the name and type of the various
keyword arguments.

For example, a particular Algs.yaml may include
getQuery:

args:
participant_uid:

7. Documentation can be found at https://github.com/nextml/NEXT/wiki

https://github.com/nextml/NEXT/wiki

DRAFT

NEXT: A SYSTEM TO EASILY CONNECT CROWDSOURCING AND ADAPTIVE DATA COLLECTION 117

type: string
description: ID of the participant answering the query

rets:
description: The index of the target to ask about
type: num

The keyword argument participant_uid is specified in the
args key, and the return value must be a number. The corre-
sponding getQuery implementation would be
def getQuery(butler, participant_uid):

return 0 # for example

More complete documentation on these parameter spec-
ifications, which can be found at the API endpoint
assistant/doc/[application-name]/pretty.

Database access: We provide a simple database wrapper,
as algorithms need to store different values (e.g., the number of
targets, a list of target scores). We provide a variety of atomic
database operations through a thin wrappers to PyMongo8 and
Redis9, though we can support arbitrary databases10. Each "collec-
tion" in this wrapper mirrors a Python dictionary and has several
other atomic database operations. We provide

• get, set and {get, set}_many which provide
atomic operations to store values in the database

• append and pop, which atomically modify list values,
and return the result

• increment, which atomically increments a stored value
by a given amount

All these operations are atomic, and can be accessed
through an interface called butler which contains multi-
ple collections. The primary collection used by algorithms
(butler.algorithms) is specific to each algorithm and al-
lows for independent evaluation of different algorithms (though
other collections are available). The arguments to an algorithm
function are butler followed by the values in the schema.

Example: This example illustrates the interface we have
created for the algorithm developer and provides an example of
algorithm implementation. After implementation, this algorithm
can receive crowdsourcing responses through the web interface.
import numpy as np

def choose_target(butler):
Adaptive sampling hidden for brevity
n = butler.algorithms.get(key='n')
return np.random.choice(n)

class MyAlg:
def initExp(self, butler, n):

butler.algorithms.set(key='n', value=n)
scores = {'score'+ str(i): 0 for i in range(n)}
pulls = {'pulls' + str(i): 0 for i in range(n)}
butler.algorithms.set_many(

key_value_dict=scores
)
butler.algorithms.set_many(

key_value_dict=pulls
)

def getQuery(self, butler):
return choose_target(butler)

def processAnswer(self, butler,

8. http://api.mongodb.com/python/current
9. https://redis.io/
10. Which requires implementation of the Collection API found in

next.apps.Butler

target_id, reward):
butler.algorithms.increment(

key='score' + str(target_id),
value=reward

)
butler.algorithms.increment(

key='pulls' + str(target_id),
)

def getModel(self, butler):
n = butler.algorithms.get(key='n')
scores = [butler.algorithms.get(

'score' + str(i))
for i in range(n)]

pulls = [butler.algorithms.get(
'pulls' + str(i))

for i in range(n)]
mean_scores = [s/p if p != 0 else float('nan')

for s, p in zip(scores, pulls)]
return mean_scores

The Algs.yaml file for this algorithm would be
initExp:

args:
n:
description: Number of targets
type: num

getQuery:
rets:

type: num
description: The target to show

the user
processAnswer:

args:
target_id:

description: The target_id that was shown
to the user

type: num
reward:
description: The reward the user gave

the target
values: [1, 2, 3]
type: num

getModel:
rets:

type: list
description: The scores for each target ordered

by target_id.
values:
description: The mean score for a particular target
type: num

Experiment dashboards

NEXT can be monitored in real-time via dashboards for each
experiment, which include:

• experiment logs
• basic information (launch date, number of received re-

sponses, etc)
• the results, with current responses received (example in

Figure 8)
• client- and server-side timing information
• download links to the responses and the live results (which

allows processing of these data offline).

The dashboards include histograms for both human response
time and network delay (time taken for NEXT to respond to re-
quest), a measure of system responsiveness. An example is shown
in Figure 9. These dashboards also include timing information
for algorithm functions, a useful debugging tool for the algorithm
developer.

From the dashboard, we support the download of both experi-
ment results and participant response information.

http://api.mongodb.com/python/current
https://redis.io/

DRAFT

118 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

Fig. 8: The dashboard display of results from different algorithms for
the example in Figure 6.

Fig. 9: Timing histograms measured client-side in seconds for cartoon
caption contest 573. Network delay represents the total time NEXT
took to respond and response time measures human resposne time.

Experimentalist use

Below, we will refer to different NEXT features which are
available through different API endpoints. After NEXT has
launched, these are available via HTTP on port 8000 on the
hosting machine. In practice, this means the API endpoint
/home (for example) is available at [next-url]:8000/home
when [next-url] is one of ec2-...-amazonaws.com or
localhost.

Launching NEXT: The easiest way to launch NEXT is
through Amazon EC2 (which can provide the interface required
for crowdsourcing) and their AMI service. After launch, the main
NEXT interface is available at the API endpoint /home which
provides links to the list of dashboards, an experiment launching
interface and the associated documentation.

Launching can be done by selecting the "Launch instance"
button on Amazon EC2 and choosing the AMI "NEXT_AMI",
ami-36a00c56 which is available in the Oregon region. We rec-
ommend that production experiments be run on the EC2 instance-
type c4.8xlarge, a server large enough to provide the neces-
sary memory and compute power. A complete guide can be found
in the documentation at https://github.com/nextml/NEXT/wiki.

Experiment launch: Experiments are launched by pro-
viding two files to NEXT, either via a web interface or an
API endpoint. An experiment description file is required. The
other (optional) file enumerate the objects under consideration
("target"). These two files can be uploaded through the interface

available at /assistant/init.
The experiment description contains the information required

to launch and configure the experiment. The following experiment
description was used to generate the image in Figure 6:

app_id: CardinalBanditsPureExploration
args:

alg_list:
- {alg_id: KLUCB, alg_label: KLUCB}
algorithm_management_settings:
mode: fixed_proportions
params:
- {alg_label: KLUCB, proportion: 1.0}

context: # image URL, trimmed for brevity
context_type: image
failure_probability: 0.05
participant_to_algorithm_management: one_to_many
rating_scale:

labels:
- {label: unfunny, reward: 1}
- {label: somewhat funny, reward: 2}
- {label: funny, reward: 3}

These parameters are defined in schemes,
and are documented at the API endpoint
/assistant/doc/[application-id]/pretty in
the "initExp" section.

The other file necessary for experiment launch is a ZIP file
of targets (e.g., the images involved in each query). We support
several different formats for this ZIP file so images, text and
arbitrary URLs can be supported. If images are included in this
ZIP file, we upload all images to Amazon S3.

Experimentalist use with crowdsourcing: After experiment
launch, a link to the experiment dashboard and query page is
presented. We recommend distributing this query page link to
crowdsourcing participants, which typically happens via Mechan-
ical Turk or email.

Experiment persistence: We support saving
and restoring experiments on the experiment list at
/dashboard/experiment_list. This allows experiment
persistence even when Amazon EC2 machines are terminated.

Conclusion

At UW–Madison, we have created a system that is connecting
useful adaptive algorithms with crowdsourced data collection.
This system has been successfully used by experimentalists in a
wide variety of disciplines from the social sciences to engineering
to efficiently collect crowdsourced data; in effect, accelerating
research by decreasing the time to obtain results.

The development of this system is modular: sampling algo-
rithms are treated as black boxes, and this system is accessible
with other interfaces. NEXT provides useful experiment monitor-
ing tools that update as responses are received. This system has
shown to be cost effective in bringing decision making tools to
new applications in both the private and public sectors.

REFERENCES

[AB10] Jean-Yves Audibert and Sébastien Bubeck. Best arm identifi-
cation in multi-armed bandits. In COLT-23th Conference on
Learning Theory-2010, pages 13–p, 2010.

[ABC+16] Alekh Agarwal, Sarah Bird, Markus Cozowicz, Luong Hoang,
John Langford, Stephen Lee, Jiaji Li, Dan Melamed, Gal Oshri,
Oswaldo Ribas, et al. A multiworld testing decision service.
arXiv preprint arXiv:1606.03966, 2016.

https://github.com/nextml/NEXT/wiki

DRAFT

NEXT: A SYSTEM TO EASILY CONNECT CROWDSOURCING AND ADAPTIVE DATA COLLECTION 119

[CBCTH13] Xi Chen, Paul N Bennett, Kevyn Collins-Thompson, and Eric
Horvitz. Pairwise ranking aggregation in a crowdsourced setting.
In Proceedings of the sixth ACM international conference on Web
search and data mining, pages 193–202. ACM, 2013.

[CWN05] Rui Castro, Rebecca Willett, and Robert Nowak. Faster rates
in regression via active learning. In NIPS, volume 18, pages
179–186, 2005.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. Imagenet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 248–255. IEEE, 2009.

[DHM08] Sanjoy Dasgupta, Daniel J Hsu, and Claire Monteleoni. A
general agnostic active learning algorithm. In Advances in neural
information processing systems, pages 353–360, 2008.

[GGL12] Victor Gabillon, Mohammad Ghavamzadeh, and Alessandro
Lazaric. Best arm identification: A unified approach to fixed
budget and fixed confidence. In Advances in Neural Information
Processing Systems, pages 3212–3220, 2012.

[Hoa62] Charles AR Hoare. Quicksort. The Computer Journal, 5(1):10–
16, 1962.

[Hol92] John H Holland. Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and
artificial intelligence. MIT press, 1992.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delv-
ing deep into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pages 1026–1034, 2015.

[JJF+15] Kevin G Jamieson, Lalit Jain, Chris Fernandez, Nicholas J
Glattard, and Rob Nowak. Next: A system for real-world
development, evaluation, and application of active learning.
In Advances in Neural Information Processing Systems, pages
2656–2664, 2015.

[JJN16] Lalit Jain, Kevin G Jamieson, and Rob Nowak. Finite sample
prediction and recovery bounds for ordinal embedding. In Ad-
vances in Neural Information Processing Systems, pages 2711–
2719, 2016.

[JMNB14] Kevin Jamieson, Matthew Malloy, Robert Nowak, and Sébastien
Bubeck. lil’ucb: An optimal exploration algorithm for multi-
armed bandits. In Conference on Learning Theory, pages 423–
439, 2014.

[Jun16] Kwang-Sung Jun. Anytime exploration for multi-armed bandits
using confidence information. In Proceedings of The 33rd
International Conference on Machine Learning, pages 974–982,
2016.

[KK13] Emilie Kaufmann and Shivaram Kalyanakrishnan. Information
complexity in bandit subset selection. In COLT, pages 228–251,
2013.

[KZP07] Sotiris B Kotsiantis, I Zaharakis, and P Pintelas. Supervised
machine learning: A review of classification techniques, 2007.

[RMN16] Martina A Rau, Blake Mason, and Robert Nowak. How to
model implicit knowledge? similarity learning methods to assess
perceptions of visual representations. In Proceedings of the 9th
International Conference on Educational Data Mining, 2016.

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke,
and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–9, 2015.

[SZ14] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[YBKJ12] Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten
Joachims. The k-armed dueling bandits problem. Journal of
Computer and System Sciences, 78(5):1538–1556, 2012.

	Introduction
	Problem statement
	Challenges

	Our system
	Applications of NEXT
	Cardinal bandits
	Dueling bandits
	Triplets

	NEXT Architecture
	Algorithm implementation
	Experiment dashboards
	Experimentalist use

	Conclusion
	References

