
Proceedings of the 14th

Python in Science Conference

July 6 - 12 • Austin, Texas

Kathryn Huff
James Bergstra

PROCEEDINGS OF THE 14TH PYTHON IN SCIENCE CONFERENCE

Edited by Kathryn Huff and James Bergstra.

SciPy 2015
Austin, Texas
July 6 - 12, 2015

Copyright c© 2015. The articles in the Proceedings of the Python in Science Conference are copyrighted and owned by their
original authors

This is an open-access publication and is distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are
credited.

For more information, please see: http://creativecommons.org/licenses/by/3.0/

ISSN:2575-9752
https://doi.org/10.25080/Majora-95ae3ab6-01e

ORGANIZATION

Conference Chair
KELSEY JORDAHL, Enthought, Inc.

Program
NELLE VAROQUAUX, Nelle Varoquaux, Mines ParisTech, Institut Curie, INSERM
SERGE RAY, Arizona State University

Communications
COURTENAY GODSHALL, Enthought Inc.
IRMA KRAMER, PyLadies Austin

Birds of a Feather
KYLE MANDLI, University of Texas at Austin
MATT MCCORMICK, Kitware Inc.

Proceedings
JAMES BERGSTRA, University of Waterloo
KATHRYN HUFF, University of California at Berkeley

Financial Aid
BEN ROOT, University of Oklahoma
JOHN WIGGINS, XFEL

Tutorials
KRISTEN THYNG, Texas A&M University
JUSTIN VINCENT, Google Inc.

Sprints
DHARHAS POTHINA, US Army Corps of Engineers, ERDC
JONATHAN ROCHER, Enthought Inc.

Sponsors
JILL COWAN, Enthought Inc.

Financial
BILL COWAN, Enthought Inc.
JODI HAVRANEK, Enthought Inc.

Logistics
JILL COWAN, Enthought Inc.
LEAH JONES, Enthought Inc.

Program Committee
TOM ALDCROFT
FRANCESC ALTED
CHLOE AZENCOTT
CHRIS BARKER
MATTHIAS BUSSONNIER
HOWARD BUTLER
CHRIS CALLOWAY
GREG CAPORASO
ONDREJ CERTIK
AASHISH CHAUDHARY
JEAN CONNELLY
MATT DAVIS

MICHAEL DROETTBOOM
JUAN DUQUE
DANIEL DYE
PHILIP ELSON
DAVID FOLCH
CHRISTOPHER FONNESBECK
EMMANUELLE GOUILLART
PERRY GREENFIELD
MATT HALL
KATHRYN HUFF
KYLE KASTNER
JACKIE KAZIL
THOMAS KLUYVER
KARIN LAGESEN
JAY LAURA
NICHOLAS LEDERER
DANIEL LEWIS
GILLES LOUPPE
MATTHEW MCCORMICK
DAMON MCDOUGALL
MICHAEL MCKERNS
ANDREAS MUELLER
ANA NELSON
JUAN NUNEZ-IGLESIAS
PATRICIA FRANCIS-LYON
JEREMY PRICE
PRABHU RAMACHANDRAN
FLORIAN RATHGEBER
THOMAS ROBITAILLE
JONATHAN ROCHER
MATTHEW ROCKLIN
NICOLAS ROUGIER
DAN SCHULT
SKIPPER SEABOLD
JOHN STACHURSKI
PHILIP STEPHENS
ERIK TOLLERUD
STEFAN VAN DER WALT
GAEL VAROQUAUX
SHAUN WALBRIDGE
CHRISTOPHER WILMER
TONY YU
XIWEI ZHANG
TIZIANO ZITO
ALEX ZVOLEFF

Proceedings Reviewers

TOM ALDCROFT
ANKUR ANKAN
YOSHIKI VAZQUEZ BAEZA
KYLE BARBARY
ERIC BATTENBERG
JAMES BEDNAR
TREVOR BEKOLAY
SEBASTIAN BENTHALL
JAMES BERGSTRA
MATTHEW BRETT
MATTHIAS BUSSONNIER
AZALEE BOSTROEM
CHRIS CALLOWAY

AASHISH CHAUDHARY
CHRISTINE CHOIRAT
JEAN CONNELLY
ALLEN DOWNEY
MICHAEL DROETTBOOM
DAN ELLIS
ADINA CHUANG HOWE
ALMAR KLEIN
THOMAS KLUYVER
PASCAL LAMBLIN
HANS PETTER LANGTANGEN
NICHOLAS LEDERER
DAVID LIPPA
ANDREAS MUELLER
MICHAEL PACER
ABINASH PANDA
JOSEF PERKTOLD
COLLIN RAFFEL
MIN RAGAN-KELLEY
PRABHU RAMACHANDRAN
MATTHEW ROCKLIN
PHILIPP RUDIGER
SKIPPER SEABOLD
ASHTON SHORTRIDGE
NATHANIEL SMITH
WILLIAM SPOTZ
ERIK TOLLERUD
JAKE VANDERPLAS
STEFAN VAN DER WALT
ALEJANDRO WEINSTEIN
TIZIANO ZITO

Mini Symposium Committee
JAKE VANDERPLAS, Astronomy and Astrophysics
GREG CAPORASO, Computational Life and Medical Sciences
LORENA BARBA, Engineering
MATT HALL, Geophysics
CARSON FARMER, GIS
CHRIS BARKER, Oceanography and Meteorology
DAMON MCDOUGALL, Vision, Visualization, and Imaging

Tutorial Review Committee
SARA SAFAVI, Rackspace Inc.
JEREMY PRICE, Rackspace Inc.
DHARHAS POTHINA, US Army Engineer Research and Development Center
ARON AHMADIA, Continuum Analytics

Diversity Committee
PATRICIA FRANCIS-LYON, University of San Francisco
LEAH SILEN, NumFOCUS
CINDY SRIDHARAN,
MATT DAVIS, Autodesk
APRIL WRIGHT, University of Texas at Austin

SPONSORED ATTENDEES

AZALEE BOSTROEM, University of California - Davis
PILAR BRIST, University of Texas - Tyler
LUKE CAMPAGNOLA, VisPy
LESLEY CHAPMAN, University of Rochester Medical Center
ROBERTO COLISTETE JUNIOR, Federal University of Espirito Santo
YANNICK CONGO, EDSPI France
MELLISSA CROSS, University of Minnesota
FILIPE FERNANDES, SECOORA
GABRIEL GRANT, RepsWith.us
HARSH GUPTA, SymPy
IAN HENRIKSEN, Brigham Young University
JAIME HUERTA-CEPAS, European Molecular Biology Laboratory
KYLE KASTNER, Universite de Montreal
JULIANA LEONEL, Universidade Federal de Bahia
ERIC MA, Massachusetts Institute of Technology
SHAYLYN SCOTT, George Mason University
LIZ STRECKERT, PyLadies
JORDI TORRENTS, NetworkX
DAVID URBINA, University of Texas at Dallas
ALEXANDER VOSTRIKOV, University of Chicago
DAVID WARDE-FARLEY, Universite de Montreal
JOSHUA WARNER, Mayo Clinic
AVANI WILDANI, The Salk Institute for Biological Studies
LEVI WOLF, Arizona State University
CHUAN YANG, Shengjing Hospital of China Medical University
AMY PRAGER, Girl Scouts of Eastern Mass.
DANA ENGEBRETSON, University of Minnesota
LEENA P, PyLadies
NIKHIL HAAS, University of San Francisco

CONTENTS

Will Millennials Ever Get Married? 1
Allen B. Downey

pgmpy: Probabilistic Graphical Models using Python 6
Ankur Ankan, Abinash Panda

Python as a First Programming Language for Biomedical Scientists 12
Brian E. Chapman, Ph.D., Jeannie Irwin, Ph.D.

librosa: Audio and Music Signal Analysis in Python 18
Brian McFee, Colin Raffel, Dawen Liang, Daniel P.W. Ellis, Matt McVicar, Eric Battenberg, Oriol Nieto

PyEDA: Data Structures and Algorithms for Electronic Design Automation 25
Chris Drake

Scientific Data Analysis and Visualization with Python, VTK, and ParaView 31
Cory Quammen

Creating a Real-Time Recommendation Engine using Modified K-Means Clustering and Remote Sensing Signature Match-
ing Algorithms 39
David Lippa, Jason Vertrees

The James Webb Space Telescope Data Calibration Pipeline 43
Howard Bushouse, Michael Droettboom, Perry Greenfield

Circumventing The Linker: Using SciPy’s BLAS and LAPACK Within Cython 48
Ian Henriksen

Mesa: An Agent-Based Modeling Framework 51
David Masad, Jacqueline Kazil

HoloViews: Building Complex Visualizations Easily for Reproducible Science 59
Jean-Luc R. Stevens, Philipp Rudiger, James A. Bednar

Structural Cohesion: Visualization and Heuristics for Fast Computation with NetworkX and matplotlib 67
Jordi Torrents, Fabrizio Ferraro

Automated Image Quality Monitoring with IQMon 77
Josh Walawender

PyRK: A Python Package For Nuclear Reactor Kinetics 84
Kathryn Huff

VisPy: Harnessing The GPU For Fast, High-Level Visualization 91
Luke Campagnola, Almar Klein, Eric Larson, Cyrille Rossant, Nicolas Rougier

White Noise Test: detecting autocorrelation and nonstationarities in long time series after ARIMA modeling 97
Margaret Y Mahan, Chelley R Chorn, Apostolos P Georgopoulos

Signal Processing and Communications: Teaching and Research Using IPython Notebook 105
Mark Wickert

pyDEM: Global Digital Elevation Model Analysis 113
Mattheus P. Ueckermann, Robert D. Chambers, Christopher A. Brooks, William E. Audette III, Jerry Bieszczad

Widgets and Astropy: Accomplishing Productive Research with Undergraduates 121
Matthew Craig

Dask: Parallel Computation with Blocked algorithms and Task Scheduling 126
Matthew Rocklin

PySPLIT: a Package for the Generation, Analysis, and Visualization of HYSPLIT Air Parcel Trajectories 133
Mellissa Cross

TrendVis: an Elegant Interface for dense, sparkline-like, quantitative visualizations of multiple series using matplotlib 138
Mellissa Cross

Causal Bayesian NetworkX 144
Michael D. Pacer

Geodynamic simulations in HPC with Python 152
Nicola Creati, Roberto Vidmar, Paolo Sterzai

Qiita: report of progress towards an open access microbiome data analysis and visualization platform 158
The Qiita Development Team

Python in Data Science Research and Education 164
Randy Paffenroth, Xiangnan Kong

Relation: The Missing Container 171
Scott James, James Larkin

Testing Generative Models of Online Collaboration with BigBang 175
Sebastian Benthall

Visualizing physiological signals in real-time 182
Sebastián Sepúlveda, Pablo Reyes, Alejandro Weinstein

Building a Cloud Service for Reproducible Simulation Management 187
Faical Yannick Palingwende Congo

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 1

Will Millennials Ever Get Married?
Allen B. Downey‡∗

https://www.youtube.com/watch?v=XHYFNraQEEo

F

Abstract—Using data from the National Survey of Family Growth (NSFG), we
investigate marriage patterns among women in the United States We describe
and predict age at first marriage for successive generations based on decade of
birth. The fraction of women married by age 22 has dropped by 11 percentage
points per decade, from 69% for women born in the 1940s to 13% for women
born in the 90s. The fraction of women married by age 42 fell more slowly, from
93% for women born in the 40s to 82% for women born in the 70s. Projections
suggest that this fraction will be substantially lower for later generations, between
68% and 72%. Along with these results, this paper presents an introduction to
survival analysis methods and an implementation in Python.

Keywords—Survival analysis, marriage patterns, Python.

Introduction

A recent study from the Pew Research Center [Wan14] reports
that the fraction of adults in the U.S. who have never married
is increasing. Between 1960 and 2012, the fraction of men 25
and older who had never married increased from 10% to 23%.
The corresponding fraction of women increased from 8% to
17%. The Pew study focuses on the causes of these trends, but
does not address this question: is the fraction of people who
never marry increasing, are people marrying later, or both?
That is the subject of this paper.

To answer this question, we apply tools of survival anal-
ysis to data from the National Survey of Family Growth
(NSFG). Since 1973 the U.S. Centers for Disease Control
and Prevention (CDC) have conducted this survey, intended
to gather “information on family life, marriage and divorce,
pregnancy, infertility, use of contraception, and men’s and
women’s health.” See http://cdc.gov/nchs/nsfg.htm.

NSFG data is organized in cycles; during each cycle several
thousand respondents were interviewed, including women ages
14–44. Men were included starting with Cycle 6 in 2002, but
for this study we use only data from female respondents.

Table 1 shows the interview dates for each cycle, the number
of respondents, and the birth years of the respondents. We did
not use data from Cycles 1 and 2 because they included only
married women. The total sample size for this study is 52 789.

* Corresponding author: allen.downey@olin.edu
‡ Olin College of Engineering

Copyright © 2015 Allen B. Downey. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Cycle Interview Number of Birth
dates respondents years

3 1982–83 7 969 1937–68
4 1988–88 8 450 1943–73
5 1995 10 847 1950–80
6 2002–03 7 643 1957–88
7 2006–10 12 279 1961–95
8 2011–13 5 601 1966–98

TABLE 1: NSFG Survey Cycles

For each respondent we have date of birth (year and month),
date of interview, and date of first marriage, if applicable.
So we can compute with resolution of one month each re-
spondent’s age at interview, age, and age at first marriage,
agemarry.

To study changes in marriage patterns over time, we group
the respondents into cohorts by decade of birth. For each co-
hort, Table 2 reports the number of respondents, range of ages
when they were interviewed, number who had been married
at least once at time of interview, and the number of married
respondents whose date of marriage was not ascertained.

Cohort 30 includes women born in the 1930s, and so on
for the other cohorts. One goal of this paper is to describe
and predict marriage patterns for the Millennial Generation,
defined here to include women born in the 1980s and 90s.

Another goal of this paper is to present survival analysis and
its implementation in Python to an audience that may not be
familiar with it. We also describe the resampling methods we
use to deal with the stratified sampling design of the NSFG.

The code and data for this project are available in
a public Git repository at https://github.com/AllenDowney/
MarriageNSFG.

Cohort Number of Age at Number Number with
respondents interview married missing data

30 325 42–44 310 0
40 3 608 32–44 3275 0
50 10 631 22–44 8658 10
60 14 484 15–44 8421 27
70 12 083 14–43 5908 25
80 8 536 14–33 2203 8
90 3 122 15–23 93 0

TABLE 2: NSFG Birth Cohorts

2 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Methodology

Survival analysis

Survival analysis is a powerful set of tools with applications in
many domains, but it is often considered a specialized topic.

Survival analysis is used to study and predict the time until
an event: in medicine, the event might be the death of a patient,
hence “survival”; but more generally we might be interested
in the time until failure of a mechanical part, the lifetimes of
civilizations, species, or stars; or in this study the time from
birth until first marriage.

The result of survival analysis is often a survival function,
which shows the fraction of the population that survives after
t, for any time, t. If T is a random variable that represents
the time until an event, the survival function, S(t), is the
probability that T exceeds t:

S(t)≡ Pr(T > t)

If the distribution of T is known, or can be estimated from
a representative sample, computing S(t) is simple: it is the
complement of the cumulative distribution function (CDF):

S(t) = 1−CDFT (t)

In Python we can compute the survival function like this:

from collections import Counter
import numpy as np

def MakeSurvivalFunction(values):
counter = Counter(values)
ts, fs = zip(*sorted(counter.items()))
ts = np.asarray(ts)
ps = np.cumsum(fs, dtype=np.float)
ps /= ps[-1]
ss = 1 - ps
return SurvivalFunction(ts, ss)

values is a sequence of observed lifetimes. Counter makes a
map from each unique value to the number of times it appears,
which we split into a sorted sequence of times, ts, and their
frequencies, fs.

We convert ts to a NumPy array [Wal11]. Then ps is the
cumulative sum of the frequencies, normalized to go from 0 to
1, so it represents the CDF of the observed values. ss, which
is the complement of ps, is the survival function.
SurvivalFunction is defined in marriage.py, a

Python module we wrote for this project.
Given a survival curve, we can compute the hazard func-

tion, which is the instantaneous death rate at time t; that is,
the fraction of people who survive until time t and then die at
time t. When t is continuous, the hazard function, λ (t), is

λ (t) =−S′(t)/S(t)

Where S′(t) is the derivative of S(t). Since the survival function
decreases monotonically, its derivative is nonpositive, so the
hazard function is nonnegative.

Fig. 1: Survival and hazard functions for 1930s cohort.

With a survival function represented by discrete ts and ss,
we can compute the hazard function like this:
import pandas as pd

class SurvivalFunction
def MakeHazardFunction(self):

lams = pd.Series(index=self.ts)
prev = 1.0
for t, s in zip(self.ts, self.ss):

lams[t] = (prev - s) / prev
prev = s

return HazardFunction(lams)

MakeHazardFunction is a method of
SurvivalFunction, which provides attributes ts
and ss. The result, lams, is a Pandas Series [McK10] object
that maps from the same set of ts to the estimated hazard
function, λ (t).

Figure 1 shows the survival and hazard functions for women
born in the 1930s. These women were interviewed when they
were 42–44 years old. At that point more than 95% of them had
been married; for the others we set age at marriage to infinity
(np.inf). In this cohort, the hazard function is highest at
ages 18–22, and lower as age increases.

This example demonstrates the simple case, where the
respondents are the same age and most events are complete.
But for most applications of survival analysis, the sample also
includes incomplete events. For example, the 1960s cohort
includes women from ages 14–44; for the ones that are not
married, we don’t know when they will marry, if ever. These
missing data are said to be “censored”.

It might be tempting to ignore unmarried women and com-
pute the survival function for women whose ages at marriage

WILL MILLENNIALS EVER GET MARRIED? 3

are known. But that would discard useful information and
seriously bias the results.

For women who are not married yet, their age at interview
is a lower bound on their age at marriage. We can use both
groups to estimate the hazard function, then compute the
survival function. One common way to do that is Kaplan-Meier
estimation.

The fundamental idea is that at each time, t, we know the
number of events that occurred and the number of respondents
who were “at risk”; that is, known to to be unmarried. The ratio
of these factors estimates the hazard function.

Initially, the entire sample is considered at risk. At each time
step, we subtract people who got married at age t as well as
people who were interviewed at age t (and therefore no longer
in the observation pool at the next time step). The following
function implements this algorithm:
def EstimateHazardFunction(complete, ongoing):

hist_complete = Counter(complete)
hist_ongoing = Counter(ongoing)

ts = list(hist_complete | hist_ongoing)
ts.sort()

at_risk = len(complete) + len(ongoing)

lams = pd.Series(index=ts)
for t in ts:

ended = hist_complete[t]
censored = hist_ongoing[t]

lams[t] = ended / at_risk
at_risk -= ended + censored

return HazardFunction(lams)

complete is a sequence of lifetimes for complete events,
in this case age at marriage. ongoing is a sequence of
lower bounds for incomplete observations, in this case age
at interview.
hist_complete counts how many respondents were

married at each age; hist_ongoing counts how many
unmarried respondents were interviewed at each age.
ts is a sorted list of observation times, which is the union

of unique values from complete and ongoing.
at_risk is the number of respondents at risk; initially it

is the total number of respondents.
lams is a Pandas Series that maps from each observation

time to the estimated hazard rate.
For each value of t we look up ended, which is the number

of people married for the first time at t, and censored,
which is the number of never married people interviewed at
t. The estimated hazard function at t is the ratio of ended
and at_risk.

At the end of each time step, we update at_risk by
subtracting off ended and censored.

The result is a HazardFunction object that contains the
Series lams and provides methods to access it.

With this estimated HazardFunction, we can compute the
SurvivalFunction. The hazard function, λ (t), is the probability
of ending at time t conditioned on surviving until t. Therefore,
the probability of surviving until t is the cumulative product

of the complementary hazard function:

S(t) = ∏
ti<t

[1−λ (ti)]

Here’s the Python implementation:

class HazardFunction
def MakeSurvival(self):

series = (1 - self.series).cumprod()
ts = series.index.values
ss = series.values
return SurvivalFunction(ts, ss)

We wrote our own implementation of these methods in order
to demonstrate the methodology, and also to make them
work efficiently with the resampling methods described in the
next section. But Kaplan-Meier estimation and other survival
analysis algorithms are also available in a Python package
called Lifelines [Dav15].

Resampling

The NSFG is intended to be representative of the adult
U.S. population, but it uses stratified sampling to systemati-
cally oversample certain subpopulations, including teenagers
and racial minorities. Our analysis takes this design into
account to generate results that are representative of the
population.

As an example of stratified sampling, suppose there are
10 000 people in the population you are studying, and you
sample 100. Each person in the sample represents 100 people
in the population, so each respondent has the same “sampling
weight”.

Now suppose there are two subgroups, a minority of 1 000
people and a majority of 9 000. A sample of 100 people will
have 10 members of the minority group, on average, which
might not be enough for reliable statistical inference.

In a stratified sample, you might survey 40 people from
the minority group and only 60 from the majority group. This
design improves some statistical properties of the sample, but
it changes the weight associated with each respondent. Each
of the 40 minorities represents 1000/40 = 25 people in the
population, while each of the 60 others represents 9000/60 =
150 people. In general, respondents from oversampled groups
have lower weights.

The NSFG includes a computed weight for each respondent,
which indicates how many people in the U.S. population she
represents. Some statistical methods, like regression, can be
extended to take these weights into account, but in general it
is not easy.

However, bootstrapping provides a simple and effective
approach. The idea behind bootstrapping is to use the actual
sample as a model of the population, then simulate the results
of additional experiments by drawing new samples (with
replacement) from the actual sample.

4 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

With stratified sampling, we can modify the bootstrap pro-
cess to take sampling weights into account. The following
function performs weighted resampling on the NSFG data:
import thinkstats2

def ResampleRowsWeighted(df):
weights = df.finalwgt
cdf = thinkstats2.Cdf(dict(weights))
indices = cdf.Sample(len(weights))
sample = df.loc[indices]
return sample

df is a Pandas DataFrame with one row per respondent;
it includes a column that contains sampling weights, called
finalwgt.
weights is a Series that maps from respondent index

to sampling weight. cdf represents a cumulative distribution
function that maps from each index to its cumulative prob-
ability. The Cdf class is provided by thinkstats2.py, a
module that accompanies the second edition of Think Stats
[Dow14]. We use it here because it provides an efficient imple-
mentation of random sampling from an arbitrary distribution.
Sample generates a random sample of indices based on

the sampling weights. The return value, sample, is a Pandas
DataFrame that contains the selected rows. Since the sample
is generated with replacement, some respondents might appear
more than once; others might not appear at all.

After resampling, we jitter the data by adding Gaussian
noise (mean 0, standard deviation 1 year) to each respondent’s
age at interview and age at marriage. Jittering contributes some
smoothing, which makes the figures easier to interpret, and
some robustness, making the results less prone to the effect of
a small number of idiosyncratic data points.

Jittering also makes sense in the context of bootstrapping.
Each respondent in the sample represents several thousand
people in the population; it is reasonable to assume that there
is variation within each represented subgroup.

Finally, we discretize age at interview and age at marriage,
rounding down to integer values.

Results
Figure 2 shows the estimated survival curve for each cohort
(we omit the 1930s cohort because it only includes people
born after 1936, so it is not representative of the decade). The
lines show the median of 101 resampling runs; the gray regions
show 90% confidence intervals.

Two trends are apparent in this figure: women are getting
married later, and the fraction of women who remain unmar-
ried is increasing.

Table 3 shows the percentage of married women in each
cohort at ages 22, 32, and 42 (which are the last observed
ages for cohorts 90, 80, and 70).

Two features of this data are striking:
• By age 22, only 13% of the 90s cohort have been

married, contrasted with 69% of the 40s cohort. Between
these cohorts, the fraction of women married by age 22
dropped more than 11 percentage points per decade.

• By age 32, only 60% of the 80s cohort is married, and
their survival curve seems to have gone flat. In this

Fig. 2: Survival functions by birth cohort.

Cohort % married by age
22 32 42

40 69 90 92
50 57 85 90
60 41 79 87
70 32 75 82
80 23 60 –
90 13 – –

TABLE 3: Marriage rates by birth cohort and age.

cohort, 259 were at risk at age 30, and only 9 were
married that year; 155 were at risk at age 31, and none
were married; 63 were are risk at age 32, and again
none were married. These low hazard rates are strange,
but they are based on sample sizes large enough that it
is hard to dismiss them.

Projection
Predicting these kinds of social trends is nearly futile. We can
use current trends to generate projections, but in general there
is no way to know which trends will continue and which will
decrease or reverse.

As we saw in the previous section, the 80s cohort seems
to be on strike, with unprecedented low marriage rates in
their early thirties. Visual extrapolation of their survival curve
suggests that 40% of them will remain unmarried, more than
double the fraction of previous generations.

At the same time the number of women getting married
at ages 35–45 has been increasing for several generations, so
we might expect that trend to continue. In that case the gap
between the 80s and 70s cohorts would close.

These prediction methods provide a rough upper and lower
bound on what we might expect. A middle ground is to assume
that the hazard function from the previous generation will
apply to the next.

This method predicts higher marriage rates than extrapo-
lating the survival curves because it takes into account the
structure of the model: because fewer women married young,
more are at risk at later ages, so we expect more late marriages.

WILL MILLENNIALS EVER GET MARRIED? 5

Fig. 3: Survival functions with projections.

To make these projections, we extend each HazardFunction
using data from the previous cohort:
class HazardFunction
def Extend(self, other):

last_t = self.series.index[-1]
other_ts = other.series.index
hs = other.series[other_ts > last_t]
self.series = pd.concat([self.series, hs])

Then we convert the extended hazard functions to survival
functions using HazardFunction.MakeSurvival.

Figure 3 shows the results. Again, the gray regions show
90% confidence intervals. For the 80s cohort, the median
projection is that 72% will marry by age 42, down from 82%
in the previous cohort.

For the 90s cohort, the median projection is that only 68%
will marry by age 42. This projection assumes that this cohort
will also go on a “marriage strike” in their early thirties, but
this event might not be repeated.

Discussion

The previous section addresses the title question of this paper,
"Will Millennials Ever Get Married?" Our projections suggest
that the fraction still unmarried at age 42 will be higher than
in previous generations, by about 10 percentage points, unless
there is a substantial increase in the hazard rate after age 30.

We also investigate how much of the change in marriage
rates is driven by two factors: people getting married later, or
never getting married at all. Up through the 70s cohort, people
were getting married later, but the fraction who never married
was increasing only slowly. Among Millennials (women born
in the 80s and 90s), the fraction of people marrying young is
continuing to fall, but we also see indications that the fraction
of people who never marry is increasing more quickly.

Future work

This work is preliminary, and there are many avenues for future
investigation:

• The NSFG includes data from male respondents, starting
with Cycle 6 in 2002. We plan to repeat our analysis for
these men.

• There are many subgroups in the U.S. that would be
interesting to explore, including different regions, edu-
cation and income levels, racial and religious groups.

• We have data from the Canadian General Social Sur-
vey, which will allow us to compare marriage patterns
between countries (see http://tinyurl.com/canadagss).

• We are interested in finding similar data from other
countries.

Acknowledgment

Many thanks to Lindsey Vanderlyn for help with data ac-
quisition, preparation, and analysis. And thanks to the SciPy
reviewers who made many helpful suggestions.

REFERENCES

[Dow14] Allen Downey, Think Stats: Exploratory Data Analysis, 2nd edi-
tion, O’Reilly Media, October 2014. http://thinkstats2.com

[Dav15] Cameron Davidson-Pilon, Lifelines, (2015), Github repository,
https://github.com/CamDavidsonPilon/lifelines

[McK10] Wes McKinney. "Data Structures for Statistical Computing in
Python", Proceedings of the 9th Python in Science Conference,
51-56 (2010) http://pandas.pydata.org.

[Wal11] Stéfan van der Walt, S. Chris Colbert and Gaël Varoquaux. "The
NumPy Array: A Structure for Efficient Numerical Computation",
Computing in Science & Engineering, 13, 22-30 (2011) http:
//www.numpy.org

[Wan14] Wendy Wang and Kim Parker, “Record Share of Americans Have
Never Married”, Washington D.C.: Pew Research Center’s Social
and Demographic Trends project, September 2014. http://tinyurl.
com/wang14pew

6 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

pgmpy: Probabilistic Graphical Models using Python
Ankur Ankan∗, Abinash Panda

https://www.youtube.com/watch?v=Vcmjqx7lht0

F

Abstract—Probabilistic Graphical Models (PGM) is a technique of compactly
representing a joint distribution by exploiting dependencies between the random
variables. It also allows us to do inference on joint distributions in a computation-
ally cheaper way than the traditional methods. PGMs are widely used in the field
of speech recognition, information extraction, image segmentation, modelling
gene regulatory networks.

pgmpy [pgmpy] is a python library for working with graphical models. It al-
lows the user to create their own graphical models and answer inference or map
queries over them. pgmpy has implementation of many inference algorithms like
VariableElimination, Belief Propagation etc.

This paper first gives a short introduction to PGMs and various other python
packages available for working with PGMs. Then we discuss about creating and
doing inference over Bayesian Networks and Markov Networks using pgmpy.

Index Terms—Graphical Models, Bayesian Networks, Markov Networks, Vari-
able Elimination

Introduction

Probabilistic Graphical Model (PGM) is a technique of represent-
ing Joint Distributions over random variables in a compact way by
exploiting the dependencies between them. PGMs use a network
structure to encode the relationships between the random variables
and some parameters to represent the joint distribution.

There are two major types of Graphical Models: Bayesian
Networks and Markov Networks.

Bayesian Network: A Bayesian Network consists of a directed
graph and a conditional probability distribution associated with
each of the random variables. A Bayesian network is used mostly
when there is a causal relationship between the random vari-
ables. An example of a Bayesian Network representing a student
[student] taking some course is shown in Fig 1.

Markov Network: A Markov Network consists of an undi-
rected graph and a few Factors are associated with it. Unlike
Conditional Probability Distributions, a Factor does not represent
the probabilities of variables in the network; instead it represents
the compatibility between random variables that is how much
a particular state of a random variable likely to agree with the
another state of some other random variable. An example of
markov [markov] network over four friends A, B, C, D agreeing
to some concept is shown in Fig 2.

There are numerous open source packages available in Python
for working with graphical models. eBay’s bayesian-belief-

* Corresponding author: ankurankan@gmail.com

Copyright © 2015 Ankur Ankan et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

networks [bbn] mostly focuses on Bayesian Models and has im-
plementation of a limited number of inference algorithms. Another
package pymc [pymc] focuses mainly on Markov Chain Monte
Carlo (MCMC) method. libpgm [libpgm] also mainly focuses on
Bayesian Networks.

pgmpy tries to be a complete package for working with
graphical models and gives the user full control on designing
the model. The source code is very well documented with proper
docstrings and doctests for each method so that users can quickly
get upto speed. Furthermore, pgmpy also provides easy extensi-
bility allowing users to write their own inference algorithms or
elimination order algorithms without any additional effort to get
familiar with the source code.

Getting Source Code and Installing

pgmpy is released under MIT Licence and is hosted on github. We
can simply clone the repository and install it:

git clone https://github.com/pgmpy/pgmpy
cd pgmpy
[sudo] python3 setup.py install

Dependencies: pgmpy runs only on python3 and is dependent on
networkx, numpy, pandas and scipy which can be installed using
pip or conda as:

pip install -r requirements.txt

or:

conda install --file requirements.txt

Creating Bayesian Models using pgmpy

A Bayesian Network consists of a directed graph where nodes
represents random variables and edges represent the the relation
between them. It is parameterized using Conditional Probability
Distributions(CPD). Each random variable in a Bayesian Network
has a CPD associated with it. If a random varible has parents
in the network then the CPD represents P(var|Parvar) i.e. the
probability of that variable given its parents. In the case, when
the random variable has no parents it simply represents P(var) i.e.
the probability of that variable.

For example, we can take the case of student model repre-
sented in Fig 1. A possible CPD for the random variable grade is
shown in Table 1.

We can represent the CPD shown in Table 1 in pgmpy as
follows:

from pgmpy.factors import TabularCPD
grade_cpd = TabularCPD(

PGMPY: PROBABILISTIC GRAPHICAL MODELS USING PYTHON 7

Fig. 1: Student Model: A simple Bayesian Network.

Fig. 2: A simple Markov Model

8 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Intelligence (I) i0 i0 i1 i1

Difficulty (D) d0 d1 d0 d1

g0 0.3 0.05 0.9 0.5
g1 0.4 0.25 0.08 0.3
g2 0.3 0.7 0.02 0.2

TABLE 1: Conditional Probability Table.

variable='G',
variable_card=3,
values=[[0.3, 0.05, 0.9, 0.5],

[0.4, 0.25, 0.08, 0.3],
[0.3, 0.7, 0.02, 0.2]],

evidence=['I', 'D'],
evidence_card=[2, 2])

Now, coming back to defining a model using pgmpy. The general
workflow for defining a model in pgmpy is to first define the
network structure and then add the parameters to it. We can create
the student model shown in Fig 1 in pgmpy as follows:

from pgmpy.models import BayesianModel
from pgmpy.factors import TabularCPD
student_model = BayesianModel([('D', 'G'),

('I', 'G'),
('G', 'L'),
('I', 'S')])

grade_cpd = TabularCPD(
variable='G',
variable_card=3,
values=[[0.3, 0.05, 0.9, 0.5],

[0.4, 0.25, 0.08, 0.3],
[0.3, 0.7, 0.02, 0.2]],

evidence=['I', 'D'],
evidence_card=[2, 2])

difficulty_cpd = TabularCPD(
variable='D',
variable_card=2,
values=[[0.6, 0.4]])

intel_cpd = TabularCPD(
variable='I',
variable_card=2,
values=[[0.7, 0.3]])

letter_cpd = TabularCPD(
variable='L',
variable_card=2,
values=[[0.1, 0.4, 0.99],

[0.9, 0.6, 0.01]],
evidence=['G'],
evidence_card=[3])

sat_cpd = TabularCPD(
variable='S',
variable_card=2,
values=[[0.95, 0.2],

[0.05, 0.8]],
evidence=['I'],
evidence_card=[2])

student_model.add_cpds(grade_cpd, difficulty_cpd,
intel_cpd, letter_cpd,
sat_cpd)

The network structure of a Graphical Model encodes the inde-
pendence conditions between the random variables. pgmpy also
has methods to determine the local independencies, D-Separation,
converting to a markov model etc. A few example are shown
below:

student_model.get_cpds()
[<TabularCPD representing P(G:3 | I:2, D:2)

at 0x7f196c0b27b8>,
<TabularCPD representing P(D:2) at 0x7f196c0b2828>,

A B φ(A,B)

a0 b0 30
a0 b1 5
a1 b0 1
a1 b1 10

TABLE 2: Factor over variables A and B.

<TabularCPD representing P(I:2) at 0x7f196c0b2908>,
<TabularCPD representing P(L:2 | G:3)

at 0x7f196c0b2978>,
<TabularCPD representing P(S:2 | I:2)

at 0x7f196c0b27f0>]

student_model.active_trail_nodes('D')
{'D', 'G', 'L'}

student_model.local_independencies('G')
(G _|_ S | D, I)

student_model.get_independencies()
(S _|_ I, G, L | D)
(S _|_ D, I | G)
(S _|_ D, I, G | L)
(D _|_ G, L | S)
(D _|_ I, S | G)
(D _|_ G, L | I)
(D _|_ G, I, S | L)
(G _|_ D, I, L | S)
(G _|_ I, L, S | D)
(G _|_ D, L | I)
(G _|_ D, I, S | L)
(I _|_ G, L | S)
(I _|_ G, S, L | D)
(I _|_ D, S | G)
(I _|_ D, G, S | L)
(L _|_ D, G, I | S)
(L _|_ G, I, S | D)
(L _|_ D, G | I)

student_model.to_markov_model()
<pgmpy.models.MarkovModel.MarkovModel

at 0x7f196c0b2470>

Creating Markov Models in pgmpy

A Markov Network consists of an undirected graph which con-
nects the random variables according to the relation between them.
A markov network is parameterized by factors which represent the
likelihood of a state of one variable to agree with some state of
other variable.

We can take the example of a Factor over variables A and B
in the network shown in Fig 2. A possible Factor over variables A
and B is shown in Table 2.

We can represent this Factor in pgmpy as follows:

from pgmpy.factors import Factor
phi_a_b = Factor(varibales=['A', 'B'],

cardinality=[2, 2],
value=[100, 5, 5, 100])

Assuming some other possible factors as in Table 3, 4 and 5,
we can define the complete markov model as:

from pgmpy.models import MarkovModel
from pgmpy.factors import Factor
model = MarkovModel([('A', 'B'), ('B', 'C'),

('C', 'D'), ('D', 'A')])
factor_a_b = Factor(variables=['A', 'B'],

PGMPY: PROBABILISTIC GRAPHICAL MODELS USING PYTHON 9

C φ(B,C)

b0 c0 100
b0 c1 1
b1 c0 1
b1 c1 100

TABLE 3: Factor over variables B and C.

C D φ(C,D)

c0 d0 1
c0 d1 100
c1 d0 100
c1 d1 1

TABLE 4: Factor over variables C and D.

cardinality=[2, 2],
value=[100, 5, 5, 100])

factor_b_c = Factor(variables=['B', 'C'],
cardinaity=[2, 2],
value=[100, 3, 2, 4])

factor_c_d = Factor(variables=['C', 'D'],
cardinality=[2, 2],
value=[3, 5, 1, 6])

factor_d_a = Factor(variables=['D', 'A'],
cardinality=[2, 2],
value=[6, 2, 56, 2])

model.add_factors(factor_a_b, factor_b_c,
factor_c_d, factor_d_a)

Similar to Bayesian Networks, pgmpy also has the feature for
computing independencies, converting to Bayesian Network etc in
the case of Markov Networks.

model.get_local_independencies()
(D _|_ B | C, A)
(C _|_ A | D, B)
(A _|_ C | D, B)
(B _|_ D | C, A)

model.to_bayesian_model()
<pgmpy.models.BayesianModel.BayesianModel

at 0x7f196c084320>

model.get_partition_function()
10000

Doing Inference over models

pgmpy support various Exact and Approximate inference algo-
rithms. Generally, to perform inference over models, we need
to first create an inference object by passing the model to the
inference class. Once an inference object is instantiated, we can

D A φ(D,A)

d0 a0 100
d0 a1 1
d1 a0 1
d1 a1 100

TABLE 5: Factor over variables D and A.

call either query method to find the probability of some variable
given evidence, or else map_query method to know the state of
the variable having maximum probability. Let’s perform inference
on the student model (Fig 1) using variable elimination :

from pgmpy.inference import VariableElimination
student_infer = VariableElimination(student_model)
prob_G = student_infer.query(variables='G')
print(prob_G['G'])
G phi(G)
G_0 0.4470
G_1 0.2714
G_2 0.2816

prob_G = student_infer.query(
variables='G',
evidence=[('I', 1), ('D', 0)])

print(prob_G['G'])
G phi(G)
G_0 0.0500
G_1 0.2500
G_2 0.7000

student_infer.map_query(variables='G')
{'G': 0}

student_infer.map_query(
variables='G',
evidence=[('I', 1), ('D', 0)])

{'G': 2}

Fit and Predict Methods

In a general machine learning task we are given some data from
which we want to compute the parameters of the model. pgmpy
simplifies working on these problems by providing fit and predict
methods in the models. fit method accepts the given data as a
pandas DataFrame object and learns all the parameters from it.
The predict method also accepts a pandas DataFrame object and
predicts values of all the missing variables using the model. An
example of fit and predict over the student model using some
randomly generated data:

from pgmpy.models import BayesianModel
import pandas as pd
import numpy as np

Considering that each variable have only 2 states,
we can generate some random data.
raw_data = np.random.randint(low=0,

high=2,
size=(1000, 5))

data = pd.DataFrame(raw_data,
columns=['D', 'I', 'G',

'L', 'S'])
data_train = data[: int(data.shape[0] * 0.75)]

student_model = BayesianModel([('D', 'G'),
('I', 'G'),
('I', 'S'),
('G', 'L')])

student_model.fit(data_train)
student_model.get_cpds()
[<TabularCPD representing P(C:2) at 0x7f195ee5e400>,
<TabularCPD representing P(A:2) at 0x7f195ee5e518>,
<TabularCPD representing P(D:2) at 0x7f195ee5e2b0>,
<TabularCPD representing P(F:2) at 0x7f195ee5e320>,
<TabularCPD representing P(P:2 | F:2, A:2, L:2)

at 0x7f195ed620f0>,
<TabularCPD representing P(L:2 | C:2, D:2)

at 0x7f195ed62048>]

data_test = data[0.75 * data.shape[0] : data.shape[0]]

10 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

data_test.drop('P', axis=1, inplace=True)
student_model.predict(data_test)

P
750 0
751 0
752 1
753 0
.. ..
996 0
997 0
998 0
999 0

[250 rows x 1 columns]

Extending pgmpy

One of the main features of pgmpy is its extensibility. It has been
built in a way so that new algorithms can be directly written
without needing to get familiar with the code base.

For example, for writing any new inference algorithm we
can simply inherit the Inference class. Inheriting this base in-
ference class exposes three variables to the class: self.variables,
self.cardinalities and self.factors; using these variables we can
write our own inference algorithm. An example is shown:

from pgmpy.inference import Inference
class MyNewInferenceAlgo(Inference):

def print_variables(self):
print('variables: ', self.variables)
print('cardinality: ', self.cardinalities)
print('factors: ', self.factors)

infer = MyNewInferenceAlgo(
student_model).print_variables()

variables: ['S', 'D', 'G', 'I', 'L']
cardianlity: {'D': 2, 'G': 3, 'I': 2,

'S': 2, 'L': 2}
factors: defaultdict(<class 'list'>,
{'D': [<Factor representing phi(D:2)

at 0x7f195ed61c18>,
<Factor representing phi(G:3, D:2, I:2)

at 0x7f195ed61cf8>],
'I': [<Factor representing phi(S:2, I:2)

at 0x7f195ed61a58>,
<Factor representing phi(G:3, D:2, I:2)

at 0x7f195ed61cf8>,
<Factor representing phi(I:2)

at 0x7f195ed61e10>],
'G': [<Factor representing phi(G:3, D:2, I:2)

at 0x7f195ed61cf8>,
<Factor representing phi(L:2, G:3)

at 0x7f195ed61e48>],
'S': [<Factor representing phi(S:2, I:2)

at 0x7f195ed61a58>],
'L': [<Factor representing phi(L:2, G:3)

at 0x7f195ed61e48>]})

Similarly, for adding any new variable elimination order algorithm
we can simply inherit from BaseEliminationOrder and define
a method named cost(self, variable) which returns the cost of
eliminating that variable. Inheriting this class also exposes two
variables: self.bayesian_model and self.moralized_graph. We can
then call the get_elimination_order method to get the elimination
order. Below is an example for returning an elimination order in
which the variables are sorted alphabetically.

from pgmpy.inference import BaseEliminationOrder
class MyEliminationAlgo(EliminationOrder):

def cost(self, variable):
return variable

order = MyEliminationAlgo(
student_model).get_elimination_order()

['D', 'G', 'I', 'L', 'S']

Comparing pgmpy to other libraries

Starting with defining the model, pgmpy provides a very sim-
ple to use API. A model can be instantiated simply by using
the __init__ method and the structure can be modified using
add_node, add_edge etc methods. After the model is created, we
can simply add the CPDs using the add_cpds method. In the case
of eBay’s bayesian belief network, we have to create a separate
function for each CPD. And each of these function has a dict of
CPD values and logic to return the value when the states are passed
as arguments [example_bbn]. Similarly in case of libpgm we have
the option to read the data from files defined in a specific format
[example_libpgm] but doesn’t provide any methods for making
changes to the network. For changing the structure we will need
to modify the internal variables storing the network information.
We have tried to keep pgmpy as modular as possible. We can take
the example of creating a model. We define a network structure
and separately define different CPDs and then simply associate the
CPDs to the structure. At any time we can modify these CPDs,
unassociate or associate another CPD to the network.

Other than providing the features to easily create models,
pgmpy also supports 4 standard file formats: pomdpX [pomdpX],
ProbModelXML [ProbModel], XMLBeliefNetwork [XMLBelief]
and XMLBIF [XMLBIF]. Using pgmpy we can read as well as
write networks in these formats. Also there’s an ongoing GSoC
project for adding support for more file formats so hopefully we
will be having support for many more formats soon.

There are many more benefits of using networkx to represent
the graph structure. For example we can directly run various graph
related algorihtms implemented in networkX on our networks.
Also we can use networkX’s plotting functionality to visualize
our networks.

pgmpy also implements methods for getting independencies,
D-Separation etc which would help a lot to people who are still
new to Graphical Models. These features are not available in most
of the other libraries.

We have tried to keep pgmpy as uniform as possible. For
example we have fit and predict methods with each of the
models which can automatically learn the parameters and struc-
ture and you can control the learning by simply passing ar-
guments to these methods. Whereas in the case of libpgm, it
has multiple methods for learning like lg_mle_estimateparams,
lg_constraint_estimatesstruct, discrete_estimatebn etc. Similarly
for each inference algorithm pgmpy prodives query and
map_query methods.

Another area in which pgmpy excels is its extensibility. As we
have discussed earlier, we can easily add new algorithms to pgmpy
without even getting familiar with the code base. We have to tried
to build pgmpy in such a way that new components can be easily
added which will really help researchers working on new ideas to
quickly prototype. Also, since pgmpy is documented very well it
is very easy to understand the code base.

Performance wise pgmpy is a bit slower than a few libraries but
we are currently actively working on improving the performance
so hopefully we will be seeing a major improvement in the coming
months.

PGMPY: PROBABILISTIC GRAPHICAL MODELS USING PYTHON 11

Conclusion and future work

The pgmpy library provides an easy to use API for working with
Graphical Models. It is also modular enough to provide separate
classes for most commonly used graphical models like Naive
Bayes, Hidden Markov Model etc. so that the user can directly
use these special cases instead of contructing them from the base
models. For machine learning problems the fit method can be
used to learn parameters and predict can be used to predict values
for newer data points. pgmpy’s easy extensibility allows users to
quickly prototype and test their ideas.

pgmpy is in a state of rapid development and some soon to
come features are:

• Sampling Algorithms
• Dynamic Bayesian Networks
• Hidden Markov Models
• Support for more file formats
• Structure Learning

REFERENCES

[pgmpy] pgmpy github page https://github.com/pgmpy/pgmpy
[student] Koller, D.; Friedman, N. Probabilistic Graphical Models.

Massachusetts: MIT Press, 2009, pp. 103-106.
[markov] Koller, D.; Friedman, N. Probabilistic Graphical Models.

Massachusetts: MIT Press, 2009, pp. 53-54.
[bbn] bayesian-belief-networks github page https://github.com/

eBay/bayesian-belief-networks
[pymc] pymc home page https://pymc-devs.github.io/pymc/
[libpgm] libpgm github page https://github.com/CyberPoint/libpgm
[pomdpX] http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.

php?n=Main.PomdpXDocumentation
[ProbModel] http://www.probmodelxml.org/
[XMLBelief] http://xml.coverpages.org/xbn-MSdefault19990414.html
[XMLBIF] http://www.cs.cmu.edu/~fgcozman/Research/

InterchangeFormat/
[example_bbn] bayesian belief network examples for creating mod-

els https://github.com/eBay/bayesian-belief-networks/tree/
master/bayesian/examples/bbns

[example_libpgm] https://github.com/CyberPoint/libpgm/tree/master/
examples

12 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Python as a First Programming Language for
Biomedical Scientists

Brian E. Chapman, Ph.D.§∗, Jeannie Irwin, Ph.D.‡

https://www.youtube.com/watch?v=kP_glnbesJ4

F

Abstract—We have been involved with teaching Python to biomedical scientists
since 2005. In all, seven courses have been taught: 5 at the University of
Pittsburgh, as a required course for biomedical informatics graduate students.
Students have primarily been biomedical informatics graduate students with
other students coming from human genetics, molecular biology, statistics, and
similar fields. The range of prior computing experience has been wide: the
majority of students had little or no prior programming experiences while a few
students were experienced in other languages such as C/C++ and wanted to
learn a scripting language for increased productivity. The semester-long courses
have followed a procedural first approach then an introduction to object-oriented
programming. By the end of the course students produce an independent
programming project on a topic of their own choosing.

The course has evolved as biomedical questions have evolved,
as the Python language has evolved, and as online resources have
evolved. Topics of primary interest now focus on biomedical
data science with analysis and visualization using tools such
as Pandas, scikit-learn, and Bokeh. Class format has evolved
from traditional slide-based lectures supplemented with IDLE
programming demonstrations to flipped-classrooms with IPython
notebooks with an interactive learning emphasis. Student evalua-
tions indicate that students tend to find the class challenging but
also empowering. The most difficult challenge for most students
has been working with their computers (installing software, setting
environment variables, etc.) Tools such as Canopy, Anaconda, and
the IPython notebook have significantly reduced the extraneous
cognitive burden on the students as they learn programming.

In addition to reviewing the nature of the course, we will
review the long-term impact the course has had on the students, in
terms of their retrospective evaluation of the course and the current
nature of their computational toolbox. We will also discuss how
our experience with these courses has been leveraged in designing
a Python-centric summer school for biomedical data science.

Index Terms—education, biomedical informatics, biomedical sciences

Introduction

Python has become the most popular language for majors at the
top computer science departments (Philip Guo, "Python is Now
the Most Popular Introductory Teaching Language at Top U.S.

* Corresponding author: brian.chapman@utah.edu
§ Department of Radiology, University of Utah
‡ Unaffiliated

Copyright © 2015 Brian E. Chapman, Ph.D. et al. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

Universities"). Motivations for Python as the first language are
its simple semantics and syntax [Stefik2013], leading to students
making fewer mistakes, feeling more confidence, and having a
better grasp of programming concepts relative to peers taught
with more traditional, lower-level languages such as C or Java
[Koulouri2014]. Since Python is a multi-paradigm programming
language, it offer great pedagogical flexibility. Python is also an
active language with many open source projects and employers
looking for Python programmers ("Is Python Becoming the King
of the Data Science Forest?", "The RedMonk Programming Lan-
guage Rankings: January 2015").

These same characteristics make Python well-suited for teach-
ing programming to students without a computational background.
The biomedical sciences are increasingly becoming computation-
ally oriented. The installation of electronic medical records, digital
public health registries, and the rise of -omics (e.g., genomics, pro-
teomics, biomics) means biological discovery and healthcare de-
livery increasingly require the storage and analysis of digital data.
However, students in biomedical sciences largely arrive in gradu-
ate school without computational skills. For example, biomedical
informatics graduate students have diverse backgrounds including
medicine, nursing, library science, psychology, and linguistics. In
order to be successful in their graduate studies, the students must
quickly pick up programming skills relevant to the biomedical
problems they are addressing in their graduate studies.

Rather than asking students to take multiple undergraduate
computer science courses, we have designed a one-semester
Python programming course that allows the students to develop
programming skills for their graduate studies. In this paper we first
provide a brief summary of the course. Using both our personal
observations and surveys of past teaching assistants and students,
we then summarize our experiences with this course over the past
ten years. Finally, we provide suggestions for future teaching of
biomedical graduate students.

Course Objectives

The course we describe here was originally created as a required
programming course for biomedical informatics students at the
University of Pittsburgh. Most recently it has been offered at the
University of Utah as a required course for an applied genomics
certificate and as an elective for a variety of biomedical science
graduate programs, including biomedical informatics, biology,
human genetics, and oncological science. One of us (BEC) has
seven years’ experience as the course designer and instructor, the

PYTHON AS A FIRST PROGRAMMING LANGUAGE FOR BIOMEDICAL SCIENTISTS 13

other (JI) has one year’s experience as a student (with a prior
instructor) and four years’ experience as a TA with BEC at the
University of Pittsburgh.

As we conceive the course, it has two intended purposes.
First, the course is intended to provide the students sufficient
programming experience that they can use programming in their
graduate studies, meaning they should be able to

a. continue to learn and improve their Python programming
skills on their own,

b. successfully use Python in other programming-oriented
courses during their graduate studies,

c. use Python in their thesis or dissertation work,
d. use their experience with the Python course to teach

themselves another programming language, as needed.

Second, the course is intended to introduce students to the
nature of biomedical data: what it looks like, what some of the
standards associated with it are, and how to represent and model
the data. For example, with clinical lab values, students would
be asked to address whether integers, floating point numbers, or
strings would be most appropriate for representing the depicted
values, what type of meta-data should be associated with the
value (e.g., units, method of measurements), and what sort of data
structure would be most appropriate to store the data and meta-
data (e.g., list, tuple, or dictionary).

Simultaneously, the course tries to illustrate biomedical prob-
lems that researchers are currently addressing so that students are
not learning programming in a vacuum or purely abstractly but in
the context of problems in their fields.

The course is described to students as a “boot camp” to get
students with little or no programming experience up to speed
for starting their graduate work. Consequently, as a "boot camp"
the students should expect to spend more time than in an average
three-credit course. Because this course is viewed as a foundation
for subsequent graduate classes, we assume the students are self
motivated and are consequently more interested in learning than
in the grade received in the course.

The course is taught with a more empirical than theoretical
approach, using the Python (and IPython [Perez2007]) shell to try
out code snippets and see what happens. We occasionally quote
Ms. Frizzle from The Magic School Bus: "Take chances, make
mistakes, and get messy!" (http://magicschoolbus.wikia.com/wiki/
Ms._Frizzle)

First taught in 2005, the nature of the course has trans-
formed as the available computational and pedagogical tools
have expanded. For example, learning how to read files with
Pandas [McKinney2010] (http://pandas.pydata.org/) has replaced
exercises in reading and parsing comma-separated files using
low-level Python functionality. Similarly, static slides have been
replaced by interactive IPython/Jupyter notebooks (http://ipython.
org/notebook.html) and YouTube videos.

Course Structure

The course is structured around weekly homework assignments
and a course project. Additional features have included quizzes
(scheduled and pop), in-class and take-home exams, peer code-
review, and in-class individual, pair, group, and class-wide pro-
gramming assignments. Homeworks are designed to both reinforce
topics that were covered in class and to require students to learn
additional material on their own, primarily in the form of finding

and using modules within the Python standard library. Course
projects are intended to allow students to focus on an area of
interest, to require them to learn additional tools, and to require
them to integrate various topics covered in class. For example,
they must define a base class and inherited class, interface with
a database (e.g., SQLite), and have some sort of graphical user
interface (e.g., IPython notebook, TKinter (https://docs.python.
org/2/library/tkinter.html), Flask (http://flask.pocoo.org/), Django
(https://www.djangoproject.com/)).

The semester class is roughly split in half. In the first half-
semester, the course covers the fundamentals of imperative pro-
gramming including numeric and string manipulation, if/else,
while/for, functions, and classes. Homework assignments become
progressively more demanding. In the second half-semester, topics
learned in the first half are reinforced through exploration and
illustration of various Python packages. Homeworks are decreased
to allow the students more time to focus on their term projects.
Because the illustrative applications are somewhat arbitrary, the
students can request/select which topics are covered.

In-class lectures are minimized in favor of interactive program-
ming assignments, either in the form of class-wide, small group,
or individual programming projects, code reviews, or discussions
about sticking points encountered during the homework. To ensure
that students are motivated to be prepared for class, a "random
student selector" is used to determine who will be at the podium
for the next explanation or problem.

Students are encouraged to work together on homeworks and
optionally can work together on term projects.

Evaluation Methods

We reviewed previous course materials and end-of-course stu-
dent evaluations. Course evaluation formats varied across years
and institutions making quantitative analysis difficult, but were
valuable for qualitative information. In addition, we solicited
input from past teaching assistants and sent a questionnaire to
previous students to better assess the long-term usefulness of the
course. The questionnaire was generated using SurveyMonkey
and consisted of a combination of multiple-choice, Likert scale,
and free-response questions. Past course lists were obtained from
the University of Pittsburgh and the University of Utah. Where
current e-mails were not known from the University, connections
were sought through LinkedIn and other social media. Previous
teaching assistants for the courses were e-mailed directly. Course
materials were reviewed to observe changes in content over the
years. Previous teaching assistants for the course were solicited
for their analysis of the course. Twenty-seven previous students
responded to the survey. However, one of the responses was blank
on all questions, and so our results are based on 26 responses.

Results

Instructors’ Perceived Successes and Challenges

All in all, we believe that the course has been very successful. The
vast majority of students enrolling in the class achieve a functional
proficiency in Python by the end of the semester. Frequently, the
term project for the class has expanded into thesis or dissertation
projects. At least one student with little prior programming ex-
perience started taking on "moonlighting" Python programming
projects for other students and faculty. The personally commu-
nicated responses of two students remain memorable. The first
student who took the course later in her graduate studies referred

14 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

to the course as "liberating." Specifically, she felt liberated from
dependency on her advisor’s programming staff for conducting her
own graduate work. She ultimately changed course and completed
a programming-centric dissertation project. The second student,
a physician who attended the course as part of a short-term fel-
lowship, referred to the class as "life changing." After completing
the fellowship, he left his medical practice, received a graduate
degree in biomedical informatics from Stanford University, and
is currently employed by a company recently named as one of
the 50 smartest companies of 2015 by MIT Technology Review
(http://www.technologyreview.com/lists/companies/2015/).

The greatest challenge we have observed in teaching pro-
gramming to the biomedical science graduate students is the
lack of basic computer skills among students. Students have
had difficulty using a shell, installing Python and an appropri-
ate code editor and/or an integrated development environment,
getting environment variables set, etc. These challenges have
been substantially diminished by the use of third-party, complete
Python installations, such as Anaconda or Canopy. The use of
the IPython notebook has also simplified getting started for the
students. However, the notebook has in some ways become a long-
term detriment to some students as they are slower to adopt more
powerful code editors or debugging tools.

Another challenge that we have observed repeatedly is a lack
of general problem solving skills among students. This is immedi-
ately manifested in the difficulty students have in learning how to
debug their programs, but lack of problem solving skills has also
been manifested in tackling open-ended problems. Students have
struggled with how to break a problem into small parts, and how
to start with a partial solution, test it, and then move on to a more
complete solution.

A final challenge with the course has been keeping the class
relevant to each student. This challenge can be broken down
into three parts. First, a common pedagogical problem is the
breadth of prior programming experience of the students. With
the limited teaching support available in most health sciences
settings, it is not feasible to have multiple courses where skill
levels can better match student backgrounds. Consequently, we
must continually strive to not drown the weaker students while
not boring the more advanced students. We believe the course
evaluations indicate that we generally achieve this balance, but the
balance always feels unstable. Further, we have observed that as
we make the classroom more interactive, there is more opportunity
for students to become frustrated with each other. Second, as the
computational fields within biomedical sciences expand, it is more
difficult to fashion a single course in which the instructor can
meaningfully match the increasingly diverse needs of the students.
Third, and perhaps most important, it has been difficult to provide
relevant data sets for the students to explore. This is particularly
true for students interested in clinical informatics, where privacy
rules severely restrict access to data. Thankfully, federally funded
efforts to increase data sharing have resulted in many relevant
publicly available medical data sets. The NCI Biomedical Imaging
Archive (https://imaging.nci.nih.gov/ncia/login.jsf), MT Samples
(http://www.mtsamples.com/), MIMIC II [Goldberger2000]. A
variety of -omic datasets (see for example http://www.ncbi.nlm.
nih.gov/guide/all/ for a partial list) are now publicly available,
largely due to NIH data sharing requirements connected to fund-
ing. Nonetheless, availability of large, rich data sets remains a
limitation for the dual purpose of the class.

Students’ Retrospective Assessment of the Course

Overall Assessment: We assessed the students’ overall
retrospective assessment of the course value with four Likert-scale
(1: Strongly Disagree, 2: Disagree, 3: Neither Disagree or Agree,
4: Agree, 5: Strongly Agree) questions:

The responses to these questions are tabulated in Table 1.
In addition to these Likert-scale questions, we asked two open-

ended questions:

• "What weaknesses and strengths do you perceive Python
as having related to your work? What other programming
languages (if any) do you now use? Please comment on
how and why you chose them with respect to Python."

• "Please provide a short paragraph describing your retro-
spective analysis of the usefulness (or lack thereof) of the
course. Please comment on how difficult it was for your
to learn, how well you feel you still remember what you
learned in the class, and whether what you learned in the
class seemed relevant and up to date.

In response to our first open-ended question, reasons people
listed for not using Python after the class included not program-
ming at all, limitations of the language (memory management,
speed), not considering it a statistical language (as compared to
R), and collaborators using other languages (Java, Perl).

Responses to the second question were primarily positive and
were similar to comments made in course evaluations. "Because I
had only brief programming experience prior, the course made me
much more comfortable with not only my own work and trying
to incorporate automation or analysis, but also with understanding
the work of others." "For me- being a novice at programming.
Understanding the basics of Object Oriented Programming how to
read code and think logically within a program was the best part
which continues to help me today." "I thought this was a great
course and perfect way to introduce OOP. I left the course feeling
confident of taking on most programming challenges. Initially is
was difficult to learn, but once you start thinking that way the
learning accelerates."

Negative comments primarily addressed the work load of the
class. "The class was too time-consuming." "I was behind on day
one and was drowning in information pretty much the whole time."
Similar comments can be found in course evaluation. For example,
in one recent evaluation a student commented, "I felt like the
class was preparing to take the mid-term on the second day of
class. A fire house [hose] of information." In another evaluation
a student wrote "way too much homework. I cannot stress this
enough....Spending 12+hrs on homework is not conducive to a
graduate student." Some negative comments indicate that we could
do better in scaffolding the learning process for the students.

Prior Programming Experience of Students: We asked the
students to assess their own programming experience at the time
they enrolled in the class. Responses are shown in Figure 1. For
students with prior programming experience, most of that prior
experience was with Java (9 students) or C/C++ (9 students) with
a few students reporting experience with BASIC (2), Perl (2), and
JavaScript (1).

Although these responses are anonymous, and we do not know
which responses correspond to which students, as an instructor
BEC did not see a noticeable difference in class performance be-
tween students with no and with some prior experience. However,
at least one TA felt strongly that prior experience was necessary for
success in the course. Acknowledging that the course is certainly

PYTHON AS A FIRST PROGRAMMING LANGUAGE FOR BIOMEDICAL SCIENTISTS 15

Question 1 2 3 4 5

Learning Python was valuable for helping me subsequently
learn additional programming language(s)

1 1 3 12 9

Learning Python was valuable for my career development 0 1 1 10 14
Programming is an integral part of my professional work 2 3 4 12 5
Python is my primary programming tool 3 4 5 9 5

TABLE 1: Students’ retrospective evaluation of course value

Fig. 1: Figure 1. Prior programming experience

easier for someone with prior programming experience, it was not
uncommon for a student with no prior programming experience
to be the top performing student in the course. Responses from
students with some programming experience indicate that they
thought the class could be difficult for a student with no prior
programming experience.

Several students have suggested breaking the class into two
parts: one class where the very basics of programming were
covered and a second course that assumed basic knowledge of
programming and covered most of the materials in the present
course.

Application Areas and Valued Skill Sets: Students reported
what their focus area was when they enrolled in the class and what
it is currently (Figure 2). Related to this we asked them to report
what topics covered in class were most valuable for them (Figure
3).

As mentioned previously, we view it as a challenge to keep
the course relevant to all students. Responses indicate that we
are doing reasonably well in this. Most topics covered in the
class are broadly valued by the students, with web programming
being less valued. However, free responses indicate that we are
not covering all the topics students would have liked to learn (e.g.,
Biopython, scikit-learn). Some responses demonstrate a lack of
understanding by students about why certain topics were covered,
indicating a need for better explanation of motivation for a topic
by the instructors. We concur with the following critique: "I didn’t
see the usefulness of some of the material while I was taking the
class. Now, I wish I had continued learning some of the material
after the class had ended. As a result, I am re-learning some of the

Fig. 2: Figure 2. Student areas of focus when they enrolled in class
and currently.

Fig. 3: Figure 3. Topics most valuable to the students.

16 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 4: Figure 4.

scientific tools so that I can apply them to data science concepts.
Perhaps a stronger emphasis on motivating the subject would be
good."

Suggested Pre-course Preparation: In the retrospective
student survey, ten respondents said they would like to have
been taught how to work in computer shells prior to beginning
instruction in programming. In a related response, six would have
liked to have been taught UNIX/Linux skills prior to beginning
instruction in Python.

These responses affirm our own experience that the greatest
barrier to the students’ success is lack of basic computer skills. It
should also be noted that the survey was only sent to students who
had completed the course. Anecdotally a large number of students
dropped the class before programming really began simply out
of frustration with trying to install Python and text editors, set
environment variables, etc. (In the most recent course, about one-
third of the students dropped the course within the first month.)
This was especially true of Windows users. In the most recent
class, we used git for homework, and Windows users almost all
adopted the git shell as their default shell rather than the Windows
terminal. Anecdotally, the adoption of the git shell and the survey
responses showing interest in learning UNIX/Linux occurs in the
context of students (primarily bioinformatics focused) becoming
familiar with a wide variety of Linux-based tools being used in
their field as well as learning the power of such UNIX/Linux tools
as grep, awk, and sed.

Some of our peers insist that all instruction be done in Linux
and provide Linux virtual machines for their students. We concur
in the value of learning the value of Linux, since it is arguably the
primary scientific programming platform. However, in this class,
we have opted to emphasize the platform-independent nature of
Python and have let students use their own platform, particularly
since clinical environments are dominated by Windows. BEC has
always taught with a Mac while JI was a Windows user. Platform
independence is, however, only an approximation, and there were
frequent problems with the variety of platforms being used in the
class. In one course evaluation a student wrote, "The instructor
used a different platform (mac) but many many times there were
differences between mac & windows which is what the students

used. This led to annoying delays/struggles. The instructor should
have done all the homework in advance on windows before
assignments were given to class as well as in class examples too."
In another evaluation, a student complained, "Use of Mac OS by
the instructor created problems in teaching and homework, etc."

With the interest in UNIX/Linux expressed by the students,
the nuisance of teaching across platforms, the acknowledged role
of Linux in scientific programming, and the availability of cross-
platform virtualization tools (e.g., VirtualBox, Vagrant, Docker),
we believe the course would be best run using a common Linux
platform.

One-third of survey respondents requested being taught gen-
eral problem solving skills prior to starting programming. Two of
the respondents to our survey touched upon this in their open
responses. One student wrote "it did take some time to work
in that problem-solving mindset," and the other wrote, "Since I
came from the natural sciences it was a challenge to approach
programming abstraction tasks."

Summary and Conclusion

Based on our experience over the last decade, we believe that
Python is an excellent choice for teaching programming to gradu-
ate students in biomedical sciences, even when they have no prior
programming experience. In the course of a semester, students
were able to progress from absolute beginners to students tackling
fairly complex and often useful term projects. Student responses
to our survey and course evaluations support this conclusion.
While including a range of responses, these survey responses
and end-of-course evaluations primarily reflect the fact that our
Python course is challenging but useful. We acknowledge that
there might be biases in our responses in that we only e-mailed
people who completed the course (not all those who enrolled in
the class) and for students enrolled at the University of Pittsburgh,
we were limited to contacting students for whom the Department
of Biomedical Informatics had current contact information (thus
excluding students from outside of the department who had
enrolled) or with whom we had maintained professional contact
with.

In open responses to our survey, former students expressed a
variety of ways Python has helped them. The majority of students
continue to use Python, and even those who do not describe Python
as an important current tool, valued taking the course. In addition
to expected comments about increased personal productivity and
confidence, one former student who does not program as part of
his professional responsibilities noted how valuable the class was
for their future work supervising programmers.

The Python course has primarily been seen as a stand-alone
course. However, our past experience indicates that the program-
ming with Python course should be part of a larger series of
courses. First, the students need to be introduced to working
with the shell, preferably Linux. To avoid requiring students to
learn another skill before class (virtualization), we are building
an on-line, computational learning environment based on Git-
Lab, Docker, and the Jupyter notebook. The Terminado emulator
(https://github.com/takluyver/terminado) in the IPython notebook
will be used to help students learn Linux shells. Thus the students
can be exposed to the shell, Linux, and programming with no
prior technical skill other than running a web browser. We believe
the students would also benefit from a primer in problem solving
heuristics. The classic text on this is George Pólya’s How to

PYTHON AS A FIRST PROGRAMMING LANGUAGE FOR BIOMEDICAL SCIENTISTS 17

Solve It [Pólya1971]. We are interested in whether this has been
generalized to problem solving outside of mathematics.

In addition to developing prelude courses, we also believe
the programming instruction would be improved by breaking
the course into smaller, sub-semester (quarter) pieces. In some
sense, our habit of teaching 3-credit courses has shaped the course
structure more than the needs of the students. By breaking the
course into smaller pieces that take part of a semester (or quarter)
and that the students can step into (or out of) as appropriate would
better serve the students.

These ideas are being implemented for a summer biomedical
data science boot camp for clinicians and others without a com-
putational background. Python will be used as the programming
language. As discussed here, the Python programming course,
similar to what is described here, will be preceded by mini courses
on working with Linux shells and problem solving. Following the
programming course, there will be short courses on visualization,
statistics, and machine learning, also using Python. The plan is
for the boot camp to feed into various computationally-oriented
biomedical graduate programs.

A final question related to this course might be, "Why teach a
beginning course when there are many excellent on-line resources
for learning Python (or other programming languages)?" We
have tried to create not just another programming class, but a
programming class for a specific subset of graduate students. We
try to incorporate as much as possible these excellent resources
into our course, but try to add to them the context of the students’
academic focus. We also believe value remains for traditional face-
to-face classes. Students especially valued in-class programming
illustrations. And, as one student reported, "one of the not so
obvious benefit of the class is the connection you made with other
students who now know python. Creating a user / support group."

REFERENCES

[Koulouri2014] T. Koulouri, et al. Teaching Introductory Programming:
A Quantitative Evaluation of Different Approaches, Trans.
Comput. Educ., 14(4):1---26, December 2014.

[Stefik2013] A. Stefik and S. Siebert. An Emperical Investigation
into Programming Language Syntax, Trans. Com-
put. Educ., 13(4):1---19, November 2013.

[McKinney2010] Wes McKinney. Data Structures for Statistical Computing
in Python, Proceedings of the 9th Python in Science Con-
ference, 51-56 (2010)

[Perez2007] Fernando Pérez and Brian E. Granger. IPython: A
System for Interactive Scientific Computing, Comput-
ing in Science & Engineering, 9, 21-29 (2007),
DOI:10.1109/MCSE.2007.53

[Pólya1971] George Pólya. How to Solve it: A New Aspect of Math-
ematical Method, Princeton University Press, 1971. pub-
lisher={Princeton University Press}

[Goldberger2000] Goldberger AL, et al. PhysioBank, PhysioToolkit, and
PhysioNet: Components of a New Research Resource for
Complex Physiologic Signals. Circulation 101(23):e215-
e220

18 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

librosa: Audio and Music Signal Analysis in Python

Brian McFee¶§∗, Colin Raffel‡, Dawen Liang‡, Daniel P.W. Ellis‡, Matt McVicar∗∗, Eric Battenberg‖, Oriol Nieto§

https://www.youtube.com/watch?v=MhOdbtPhbLU

F

Abstract—This document describes version 0.4.0 of librosa: a Python pack-
age for audio and music signal processing. At a high level, librosa provides
implementations of a variety of common functions used throughout the field of
music information retrieval. In this document, a brief overview of the library’s
functionality is provided, along with explanations of the design goals, software
development practices, and notational conventions.

Index Terms—audio, music, signal processing

Introduction

The emerging research field of music information retrieval (MIR)
broadly covers topics at the intersection of musicology, digital
signal processing, machine learning, information retrieval, and
library science. Although the field is relatively young—the first
international symposium on music information retrieval (ISMIR)1

was held in October of 2000—it is rapidly developing, thanks in
part to the proliferation and practical scientific needs of digital
music services, such as iTunes, Pandora, and Spotify. While the
preponderance of MIR research has been conducted with custom
tools and scripts developed by researchers in a variety of languages
such as MATLAB or C++, the stability, scalability, and ease of use
these tools has often left much to be desired.

In recent years, interest has grown within the MIR community
in using (scientific) Python as a viable alternative. This has
been driven by a confluence of several factors, including the
availability of high-quality machine learning libraries such as
scikit-learn [Pedregosa11] and tools based on Theano
[Bergstra11], as well as Python’s vast catalog of packages for
dealing with text data and web services. However, the adoption of
Python has been slowed by the absence of a stable core library that
provides the basic routines upon which many MIR applications
are built. To remedy this situation, we have developed librosa:2 a
Python package for audio and music signal processing.3 In doing
so, we hope to both ease the transition of MIR researchers into
Python (and modern software development practices), and also

* Corresponding author: brian.mcfee@nyu.edu
¶ Center for Data Science, New York University
§ Music and Audio Research Laboratory, New York University
‡ LabROSA, Columbia University
** Department of Engineering Mathematics, University of Bristol
|| Silicon Valley AI Lab, Baidu, Inc.

Copyright © 2015 Brian McFee et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

to make core MIR techniques readily available to the broader
community of scientists and Python programmers.

Design principles

In designing librosa, we have prioritized a few key concepts. First,
we strive for a low barrier to entry for researchers familiar with
MATLAB. In particular, we opted for a relatively flat package
layout, and following scipy [Jones01] rely upon numpy data
types and functions [VanDerWalt11], rather than abstract class
hierarchies.

Second, we expended considerable effort in standardizing
interfaces, variable names, and (default) parameter settings across
the various analysis functions. This task was complicated by the
fact that reference implementations from which our implemen-
tations are derived come from various authors, and are often
designed as one-off scripts rather than proper library functions
with well-defined interfaces.

Third, wherever possible, we retain backwards compatibility
against existing reference implementations. This is achieved via
regression testing for numerical equivalence of outputs. All tests
are implemented in the nose framework.4

Fourth, because MIR is a rapidly evolving field, we recognize
that the exact implementations provided by librosa may not
represent the state of the art for any particular task. Consequently,
functions are designed to be modular, allowing practitioners to
provide their own functions when appropriate, e.g., a custom onset
strength estimate may be provided to the beat tracker as a function
argument. This allows researchers to leverage existing library
functions while experimenting with improvements to specific
components. Although this seems simple and obvious, from a
practical standpoint the monolithic designs and lack of interop-
erability between different research codebases have historically
made this difficult.

Finally, we strive for readable code, thorough documenta-
tion and exhaustive testing. All development is conducted on
GitHub. We apply modern software development practices, such
as continuous integration testing (via Travis5) and coverage (via
Coveralls6). All functions are implemented in pure Python, thor-
oughly documented using Sphinx, and include example code
demonstrating usage. The implementation mostly complies with

1. http://ismir.net
2. https://github.com/bmcfee/librosa
3. The name librosa is borrowed from LabROSA : the LABoratory for the

Recognition and Organization of Speech and Audio at Columbia University,
where the initial development of librosa took place.

4. https://nose.readthedocs.org/en/latest/

LIBROSA: AUDIO AND MUSIC SIGNAL ANALYSIS IN PYTHON 19

PEP-8 recommendations, with a small set of exceptions for vari-
able names that make the code more concise without sacrificing
clarity: e.g., y and sr are preferred over more verbose names such
as audio_buffer and sampling_rate.

Conventions

In general, librosa’s functions tend to expose all relevant parame-
ters to the caller. While this provides a great deal of flexibility to
expert users, it can be overwhelming to novice users who simply
need a consistent interface to process audio files. To satisfy both
needs, we define a set of general conventions and standardized
default parameter values shared across many functions.

An audio signal is represented as a one-dimensional numpy
array, denoted as y throughout librosa. Typically the signal y is
accompanied by the sampling rate (denoted sr) which denotes
the frequency (in Hz) at which values of y are sampled. The
duration of a signal can then be computed by dividing the number
of samples by the sampling rate:
>>> duration_seconds = float(len(y)) / sr

By default, when loading stereo audio files, the
librosa.load() function downmixes to mono by averaging
left- and right-channels, and then resamples the monophonic
signal to the default rate sr=22050 Hz.

Most audio analysis methods operate not at the native sampling
rate of the signal, but over small frames of the signal which are
spaced by a hop length (in samples). The default frame and hop
lengths are set to 2048 and 512 samples, respectively. At the
default sampling rate of 22050 Hz, this corresponds to overlapping
frames of approximately 93ms spaced by 23ms. Frames are
centered by default, so frame index t corresponds to the slice:

y[(t * hop_length - frame_length / 2):
(t * hop_length + frame_length / 2)],

where boundary conditions are handled by reflection-padding the
input signal y. Unless otherwise specified, all sliding-window
analyses use Hann windows by default. For analyses that do not
use fixed-width frames (such as the constant-Q transform), the
default hop length of 512 is retained to facilitate alignment of
results.

The majority of feature analyses implemented by librosa pro-
duce two-dimensional outputs stored as numpy.ndarray, e.g.,
S[f, t] might contain the energy within a particular frequency
band f at frame index t. We follow the convention that the final
dimension provides the index over time, e.g., S[:, 0], S[:,
1] access features at the first and second frames. Feature arrays
are organized column-major (Fortran style) in memory, so that
common access patterns benefit from cache locality.

By default, all pitch-based analyses are assumed to be relative
to a 12-bin equal-tempered chromatic scale with a reference
tuning of A440 = 440.0 Hz. Pitch and pitch-class analyses
are arranged such that the 0th bin corresponds to C for pitch class
or C1 (32.7 Hz) for absolute pitch measurements.

Package organization

In this section, we give a brief overview of the structure of the li-
brosa software package. This overview is intended to be superficial
and cover only the most commonly used functionality. A complete
API reference can be found at https://bmcfee.github.io/librosa.

5. https://travis-ci.org
6. https://coveralls.io

Core functionality

The librosa.core submodule includes a range of commonly
used functions. Broadly, core functionality falls into four cate-
gories: audio and time-series operations, spectrogram calculation,
time and frequency conversion, and pitch operations. For conve-
nience, all functions within the core submodule are aliased at the
top level of the package hierarchy, e.g., librosa.core.load
is aliased to librosa.load.

Audio and time-series operations include functions
such as: reading audio from disk via the audioread
package7 (core.load), resampling a signal at a desired
rate (core.resample), stereo to mono conversion
(core.to_mono), time-domain bounded auto-correlation
(core.autocorrelate), and zero-crossing detection
(core.zero_crossings).

Spectrogram operations include the short-time Fourier trans-
form (stft), inverse STFT (istft), and instantaneous fre-
quency spectrogram (ifgram) [Abe95], which provide much
of the core functionality for down-stream feature analysis. Ad-
ditionally, an efficient constant-Q transform (cqt) implementa-
tion based upon the recursive down-sampling method of Scho-
erkhuber and Klapuri [Schoerkhuber10] is provided, which pro-
duces logarithmically-spaced frequency representations suitable
for pitch-based signal analysis. Finally, logamplitude pro-
vides a flexible and robust implementation of log-amplitude scal-
ing, which can be used to avoid numerical underflow and set an
adaptive noise floor when converting from linear amplitude.

Because data may be represented in a variety of time or
frequency units, we provide a comprehensive set of convenience
functions to map between different time representations: seconds,
frames, or samples; and frequency representations: hertz, constant-
Q basis index, Fourier basis index, Mel basis index, MIDI note
number, or note in scientific pitch notation.

Finally, the core submodule provides functionality to estimate
the dominant frequency of STFT bins via parabolic interpolation
(piptrack) [Smith11], and estimation of tuning deviation (in
cents) from the reference A440. These functions allow pitch-based
analyses (e.g., cqt) to dynamically adapt filter banks to match the
global tuning offset of a particular audio signal.

Spectral features

Spectral representations—the distributions of energy over a
set of frequencies—form the basis of many analysis tech-
niques in MIR and digital signal processing in general. The
librosa.feature module implements a variety of spectral
representations, most of which are based upon the short-time
Fourier transform.

The Mel frequency scale is commonly used to repre-
sent audio signals, as it provides a rough model of hu-
man frequency perception [Stevens37]. Both a Mel-scale spec-
trogram (librosa.feature.melspectrogram) and the
commonly used Mel-frequency Cepstral Coefficients (MFCC)
(librosa.feature.mfcc) are provided. By default, Mel
scales are defined to match the implementation provided by
Slaney’s auditory toolbox [Slaney98], but they can be made to
match the Hidden Markov Model Toolkit (HTK) by setting the
flag htk=True [Young97].

While Mel-scaled representations are commonly used to cap-
ture timbral aspects of music, they provide poor resolution of

7. https://github.com/sampsyo/audioread

20 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

0

2756

5512

8268

11025
H

z
STFT log power

-60 dB
-54 dB
-48 dB
-42 dB
-36 dB
-30 dB
-24 dB
-18 dB
-12 dB
-6 dB
 0 dB

0

799

1905

4462

10453

H
z

Mel spectrogram log power

-60 dB
-54 dB
-48 dB
-42 dB
-36 dB
-30 dB
-24 dB
-18 dB
-12 dB
-6 dB
 0 dB

C

D

E
F

G

A

B

Pi
tc

h
cl

as
s

Chroma

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

25.00s 27.86s 30.72s 33.58s 36.44s 39.30s 42.16s 45.02s

5x

5y

m3x

m3y

M3x

M3y

To
nn

et
z

Tonnetz

0.45
0.30
0.15

0.00
0.15
0.30
0.45
0.60

Fig. 1: First: the short-time Fourier transform of a
20-second audio clip (librosa.stft). Second: the
corresponding Mel spectrogram, using 128 Mel bands
(librosa.feature.melspectrogram). Third: the
corresponding chromagram (librosa.feature.chroma_cqt).
Fourth: the Tonnetz features (librosa.feature.tonnetz).

pitches and pitch classes. Pitch class (or chroma) representations
are often used to encode harmony while suppressing variations
in octave height, loudness, or timbre. Two flexible chroma imple-
mentations are provided: one uses a fixed-window STFT analysis
(chroma_stft)8 and the other uses variable-window constant-
Q transform analysis (chroma_cqt). An alternative represen-
tation of pitch and harmony can be obtained by the tonnetz
function, which estimates tonal centroids as coordinates in a
six-dimensional interval space using the method of Harte et
al. [Harte06]. Figure 1 illustrates the difference between STFT,
Mel spectrogram, chromagram, and Tonnetz representations, as
constructed by the following code fragment:9

>>> filename = librosa.util.example_audio_file()
>>> y, sr = librosa.load(filename,
... offset=25.0,
... duration=20.0)
>>> spectrogram = np.abs(librosa.stft(y))
>>> melspec = librosa.feature.melspectrogram(y=y,
... sr=sr)
>>> chroma = librosa.feature.chroma_cqt(y=y,
... sr=sr)
>>> tonnetz = librosa.feature.tonnetz(y=y, sr=sr)

In addition to Mel and chroma features, the
feature submodule provides a number of spectral
statistic representations, including spectral_centroid,
spectral_bandwidth, spectral_rolloff [Klapuri07],

8. chroma_stft is based upon the reference implementation provided at
http://labrosa.ee.columbia.edu/matlab/chroma-ansyn/

9. For display purposes, spectrograms are scaled by
librosa.logamplitude. We refer readers to the accompanying
IPython notebook for the full source code to recontsruct figures.

and spectral_contrast [Jiang02].10

Finally, the feature submodule provides a few functions
to implement common transformations of time-series features in
MIR. This includes delta, which provides a smoothed estimate
of the time derivative; stack_memory, which concatenates an
input feature array with time-lagged copies of itself (effectively
simulating feature n-grams); and sync, which applies a user-
supplied aggregation function (e.g., numpy.mean or median)
across specified column intervals.

Display

The display module provides simple interfaces to visually
render audio data through matplotlib [Hunter07]. The first
function, display.waveplot simply renders the amplitude
envelope of an audio signal y using matplotlib’s fill_between
function. For efficiency purposes, the signal is dynamically down-
sampled. Mono signals are rendered symmetrically about the
horizontal axis; stereo signals are rendered with the left-channel’s
amplitude above the axis and the right-channel’s below. An exam-
ple of waveplot is depicted in Figure 2 (top).

The second function, display.specshow wraps mat-
plotlib’s imshow function with default settings (origin and
aspect) adapted to the expected defaults for visualizing spectro-
grams. Additionally, specshow dynamically selects appropriate
colormaps (binary, sequential, or diverging) from the data type
and range.11 Finally, specshow provides a variety of acousti-
cally relevant axis labeling and scaling parameters. Examples of
specshow output are displayed in Figures 1 and 2 (middle).

Onsets, tempo, and beats

While the spectral feature representations described above capture
frequency information, time information is equally important for
many applications in MIR. For instance, it can be beneficial to
analyze signals indexed by note or beat events, rather than absolute
time. The onset and beat submodules implement functions to
estimate various aspects of timing in music.

More specifically, the onset module provides two
functions: onset_strength and onset_detect. The
onset_strength function calculates a thresholded spectral
flux operation over a spectrogram, and returns a one-dimensional
array representing the amount of increasing spectral energy at each
frame. This is illustrated as the blue curve in the bottom panel
of Figure 2. The onset_detect function, on the other hand,
selects peak positions from the onset strength curve following
the heuristic described by Boeck et al. [Boeck12]. The output of
onset_detect is depicted as red circles in the bottom panel of
Figure 2.

The beat module provides functions to estimate the global
tempo and positions of beat events from the onset strength func-
tion, using the method of Ellis [Ellis07]. More specifically, the
beat tracker first estimates the tempo, which is then used to set the
target spacing between peaks in an onset strength function. The
output of the beat tracker is displayed as the dashed green lines in
Figure 2 (bottom).

10. spectral_* functions are derived from MATLAB reference imple-
mentations provided by the METLab at Drexel University. http://music.ece.
drexel.edu/

11. If the seaborn package [Waskom14] is available, its version of
cubehelix is used for sequential data.

LIBROSA: AUDIO AND MUSIC SIGNAL ANALYSIS IN PYTHON 21

y (mono signal)

0

452

1098

2196

11025

H
z

STFT log power

25.00s 27.87s 30.73s 33.60s 36.46s 39.33s 42.20s 45.06s

Onset strength
Detected note onsets
Detected beats

Fig. 2: Top: a waveform plot for a 20-second audio clip y, generated by librosa.display.waveplot. Middle: the log-power short-time
Fourier transform (STFT) spectrum for y plotted on a logarithmic frequency scale, generated by librosa.display.specshow. Bottom:
the onset strength function (librosa.onset.onset_strength), detected onset events (librosa.onset.onset_detect), and
detected beat events (librosa.beat.beat_track) for y.

Tying this all together, the tempo and beat positions for
an input signal can be easily calculated by the following code
fragment:

>>> y, sr = librosa.load(FILENAME)
>>> tempo, frames = librosa.beat.beat_track(y=y,
... sr=sr)
>>> beat_times = librosa.frames_to_time(frames,
... sr=sr)

Any of the default parameters and analyses may be overridden.
For example, if the user has calculated an onset strength envelope
by some other means, it can be provided to the beat tracker as
follows:

>>> oenv = some_other_onset_function(y, sr)
>>> librosa.beat.beat_track(onset_envelope=oenv)

All detection functions (beat and onset) return events as frame
indices, rather than absolute timing. The downside of this is that
it is left to the user to convert frame indices back to absolute
time. However, in our opinion, this is outweighed by two prac-
tical benefits: it simplifies the implementations, and it makes
the results directly accessible to frame-indexed functions such as
librosa.feature.sync.

Structural analysis

Onsets and beats provide relatively low-level timing cues for
music signal processing. Higher-level analyses attempt to detect
larger structure in music, e.g., at the level of bars or functional
components such as verse and chorus. While this is an active area
of research that has seen rapid progress in recent years, there are
some useful features common to many approaches. The segment
submodule contains a few useful functions to facilitate structural
analysis in music, falling broadly into two categories.

First, there are functions to calculate and ma-
nipulate recurrence or self-similarity plots. The
segment.recurrence_matrix constructs a binary k-
nearest-neighbor similarity matrix from a given feature array
and a user-specified distance function. As displayed in Figure 3
(left), repeating sequences often appear as diagonal bands in the
recurrence plot, which can be used to detect musical structure. It
is sometimes more convenient to operate in time-lag coordinates,
rather than time-time, which transforms diagonal structures into
more easily detectable horizontal structures (Figure 3, right)
[Serra12]. This is facilitated by the recurrence_to_lag (and
lag_to_recurrence) functions.

Second, temporally constrained clustering can be used to
detect feature change-points without relying upon repetition. This
is implemented in librosa by the segment.agglomerative
function, which uses scikit-learn’s implementation of
Ward’s agglomerative clustering method [Ward63] to par-
tition the input into a user-defined number of contigu-
ous components. In practice, a user can override the
default clustering parameters by providing an existing
sklearn.cluster.AgglomerativeClustering object
as an argument to segment.agglomerative().

Decompositions

Many applications in MIR operate upon latent factor represen-
tations, or other decompositions of spectrograms. For example,
it is common to apply non-negative matrix factorization (NMF)
[Lee99] to magnitude spectra, and analyze the statistics of the
resulting time-varying activation functions, rather than the raw
observations.

The decompose module provides a simple interface to factor
spectrograms (or general feature arrays) into components and
activations:

22 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

25.00s 27.86s 30.72s 33.58s 36.44s 39.30s 42.16s 45.02s

25.00s

27.86s

30.72s

33.58s

36.44s

39.30s

42.16s

45.02s
Recurrence plot

25.00s 27.86s 30.72s 33.58s 36.44s 39.30s 42.16s 45.02s

0.00s

9.98s

19.99s

-10.01s

0.00s

La
g

Lag plot

Fig. 3: Left: the recurrence plot derived from the chroma features displayed in Figure 1. Right: the corresponding time-lag plot.

harmonic
percussive

0

799

1905

4462

10453

H
z

Harmonic mel spectrogram

25.00s 27.86s 30.72s 33.58s 36.44s 39.30s 42.16s 45.02s

0

799

1905

4462

10453

H
z

Percussive mel spectrogram

Fig. 4: Top: the separated harmonic and percussive waveforms.
Middle: the Mel spectrogram of the harmonic component. Bottom:
the Mel spectrogram of the percussive component.

>>> comps, acts = librosa.decompose.decompose(S)

By default, the decompose() function constructs
a scikit-learn NMF object, and applies its
fit_transform() method to the transpose of S. The
resulting basis components and activations are accordingly
transposed, so that comps.dot(acts) approximates S. If the
user wishes to apply some other decomposition technique, any
object fitting the sklearn.decomposition interface may be
substituted:

>>> T = SomeDecomposer()
>>> librosa.decompose.decompose(S, transformer=T)

In addition to general-purpose matrix decomposition tech-
niques, librosa also implements the harmonic-percussive source
separation (HPSS) method of Fitzgerald [Fitzgerald10] as
decompose.hpss. This technique is commonly used in MIR
to suppress transients when analyzing pitch content, or suppress
stationary signals when detecting onsets or other rhythmic ele-
ments. An example application of HPSS is illustrated in Figure
4.

Effects

The effects module provides convenience functions for ap-
plying spectrogram-based transformations to time-domain signals.

For instance, rather than writing

>>> D = librosa.stft(y)
>>> Dh, Dp = librosa.decompose.hpss(D)
>>> y_harmonic = librosa.istft(Dh)

one may simply write

>>> y_harmonic = librosa.effects.harmonic(y)

Convenience functions are provided for HPSS (retaining the
harmonic, percussive, or both components), time-stretching and
pitch-shifting. Although these functions provide no additional
functionality, their inclusion results in simpler, more readable
application code.

Output

The output module includes utility functions to save the
results of audio analysis to disk. Most often, this takes the
form of annotated instantaneous event timings or time intervals,
which are saved in plain text (comma- or tab-separated values)
via output.times_csv and output.annotation, respec-
tively. These functions are somewhat redundant with alternative
functions for text output (e.g., numpy.savetxt), but provide
sanity checks for length agreement and semantic validation of
time intervals. The resulting outputs are designed to work with
other common MIR tools, such as mir_eval [Raffel14] and
sonic-visualiser [Cannam10].

The output module also provides the write_wav
function for saving audio in .wav format. The write_wav
simply wraps the built-in scipy wav-file writer
(scipy.io.wavfile.write) with validation and optional
normalization, thus ensuring that the resulting audio files are
well-formed.

Caching

MIR applications typically require computing a variety of features
(e.g., MFCCs, chroma, beat timings, etc) from each audio signal
in a collection. Assuming the application programmer is content
with default parameters, the simplest way to achieve this is to call
each function using audio time-series input, e.g.:

>>> mfcc = librosa.feature.mfcc(y=y, sr=sr)
>>> tempo, beats = librosa.beat.beat_track(y=y,
... sr=sr)

However, because there are shared computations between the
different functions—mfcc and beat_track both compute log-
scaled Mel spectrograms, for example—this results in redundant

LIBROSA: AUDIO AND MUSIC SIGNAL ANALYSIS IN PYTHON 23

(and inefficient) computation. A more efficient implementation of
the above example would factor out the redundant features:

>>> lms = librosa.logamplitude(
... librosa.feature.melspectrogram(y=y,
... sr=sr))
>>> mfcc = librosa.feature.mfcc(S=lms)
>>> tempo, beats = librosa.beat.beat_track(S=lms,
... sr=sr)

Although it is more computationally efficient, the above example
is less concise, and it requires more knowledge of the implemen-
tations on behalf of the application programmer. More generally,
nearly all functions in librosa eventually depend upon STFT
calculation, but it is rare that the application programmer will
need the STFT matrix as an end-result.

One approach to eliminate redundant computation is to decom-
pose the various functions into blocks which can be arranged in
a computation graph, as is done in Essentia [Bogdanov13]. How-
ever, this approach necessarily constrains the function interfaces,
and may become unwieldy for common, simple applications.

Instead, librosa takes a lazy approach to eliminating redun-
dancy via output caching. Caching is implemented through an
extension of the Memory class from the joblib package12,
which provides disk-backed memoization of function outputs.
The cache object (librosa.cache) operates as a decorator on
all non-trivial computations. This way, a user can write simple
application code (i.e., the first example above) while transparently
eliminating redundancies and achieving speed comparable to the
more advanced implementation (the second example).

The cache object is disabled by default, but can be activated
by setting the environment variable LIBROSA_CACHE_DIR prior
to importing the package. Because the Memory object does not
implement a cache eviction policy (as of version 0.8.4), it is
recommended that users purge the cache after processing each
audio file to prevent the cache from filling all available disk
space13. We note that this can potentially introduce race conditions
in multi-processing environments (i.e., parallel batch processing of
a corpus), so care must be taken when scheduling cache purges.

Parameter tuning

Some of librosa’s functions have parameters that require some
degree of tuning to optimize performance. In particular, the
performance of the beat tracker and onset detection functions can
vary substantially with small changes in certain key parameters.

After standardizing certain default parameters—sampling rate,
frame length, and hop length—across all functions, we optimized
the beat tracker settings using the parameter grid given in Table
1. To select the best-performing configuration, we evaluated the
performance on a data set comprised of the Isophonics Beatles
corpus14 and the SMC Dataset2 [Holzapfel12] beat annotations.
Each configuration was evaluated using mir_eval [Raffel14],
and the configuration was chosen to maximize the Correct Metric
Level (Total) metric [Davies14].

Similarly, the onset detection parameters (listed in Table 2)
were selected to optimize the F1-score on the Johannes Kepler
University onset database.15

12. https://github.com/joblib/joblib
13. The cache can be purged by calling librosa.cache.clear().
14. http://isophonics.net/content/reference-annotations
15. https://github.com/CPJKU/onset_db

Parameter Description Values

fmax Maximum frequency value (Hz) 8000, 11025
n_mels Number of Mel bands 32, 64, 128
aggregate Spectral flux aggregation function np.mean,

np.median
ac_size Maximum lag for onset autocorre-

lation (s)
2, 4, 8

std_bpm Deviation of tempo estimates
from 120.0 BPM

0.5, 1.0, 2.0

tightness Penalty for deviation from esti-
mated tempo

50, 100, 400

TABLE 1: The parameter grid for beat tracking optimization. The
best configuration is indicated in bold.

Parameter Description Values

fmax Maximum frequency value
(Hz)

8000, 11025

n_mels Number of Mel bands 32, 64, 128
aggregate Spectral flux aggregation

function
np.mean,
np.median

delta Peak picking threshold 0.0--0.10 (0.07)

TABLE 2: The parameter grid for onest detection optimization. The
best configuration is indicated in bold.

We note that the "optimal" default parameter settings are
merely estimates, and depend upon the datasets over which they
are selected. The parameter settings are therefore subject to change
in the future as larger reference collections become available. The
optimization framework has been factored out into a separate
repository, which may in subsequent versions grow to include
additional parameters.16

Conclusion

This document provides a brief summary of the design consid-
erations and functionality of librosa. More detailed examples,
notebooks, and documentation can be found in our development
repository and project website. The project is under active de-
velopment, and our roadmap for future work includes efficiency
improvements and enhanced functionality of audio coding and file
system interactions.

Citing librosa

We request that when using librosa in academic work, authors cite
the Zenodo reference [McFee15]. For references to the design of
the library, citation of the present document is appropriate.

Acknowledgements

BM acknowledges support from the Moore-Sloan Data Science
Environment at NYU. Additional support was provided by NSF
grant IIS-1117015.

REFERENCES

[Pedregosa11] Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort,
Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu
Blondel et al. Scikit-learn: Machine learning in Python.
The Journal of Machine Learning Research 12 (2011):
2825-2830.

16. https://github.com/bmcfee/librosa_parameters

24 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

[Bergstra11] Bergstra, James, Frédéric Bastien, Olivier Breuleux, Pascal
Lamblin, Razvan Pascanu, Olivier Delalleau, Guillaume
Desjardins et al. Theano: Deep learning on gpus with
python. In NIPS 2011, BigLearning Workshop, Granada,
Spain. 2011.

[Jones01] Jones, Eric, Travis Oliphant, and Pearu Peterson. SciPy:
Open source scientific tools for Python. http://www.scipy.
org/ (2001).

[VanDerWalt11] Van Der Walt, Stefan, S. Chris Colbert, and Gael Varo-
quaux. The NumPy array: a structure for efficient numeri-
cal computation. Computing in Science & Engineering 13,
no. 2 (2011): 22-30.

[Abe95] Abe, Toshihiko, Takao Kobayashi, and Satoshi Imai. Har-
monics tracking and pitch extraction based on instanta-
neous frequency. International Conference on Acoustics,
Speech, and Signal Processing, ICASSP-95., Vol. 1. IEEE,
1995.

[Schoerkhuber10] Schoerkhuber, Christian, and Anssi Klapuri. Constant-Q
transform toolbox for music processing. 7th Sound and
Music Computing Conference, Barcelona, Spain. 2010.

[Smith11] Smith, J.O. "Sinusoidal Peak Interpolation", in Spectral
Audio Signal Processing, https://ccrma.stanford.edu/~jos/
sasp/Sinusoidal_Peak_Interpolation.html , online book,
2011 edition, accessed 2015-06-15.

[Stevens37] Stevens, Stanley Smith, John Volkmann, and Edwin B.
Newman. A scale for the measurement of the psychological
magnitude pitch. The Journal of the Acoustical Society of
America 8, no. 3 (1937): 185-190.

[Slaney98] Slaney, Malcolm. Auditory toolbox. Interval Research Cor-
poration, Tech. Rep 10 (1998): 1998.

[Young97] Young, Steve, Evermann, Gunnar, Gales, Mark, Hain,
Thomas, Kershaw, Dan, Liu, Xunying (Andrew), Moore,
Gareth, Odell, Julian, Ollason, Dave, Povey, Dan, Valtchev,
Valtcho, and Woodland, Phil. The HTK book. Vol. 2. Cam-
bridge: Entropic Cambridge Research Laboratory, 1997.

[Harte06] Harte, C., Sandler, M., & Gasser, M. (2006). Detecting
Harmonic Change in Musical Audio. In Proceedings of
the 1st ACM Workshop on Audio and Music Computing
Multimedia (pp. 21-26). Santa Barbara, CA, USA: ACM
Press. doi:10.1145/1178723.1178727.

[Jiang02] Jiang, Dan-Ning, Lie Lu, Hong-Jiang Zhang, Jian-Hua Tao,
and Lian-Hong Cai. Music type classification by spectral
contrast feature. In ICME’02. vol. 1, pp. 113-116. IEEE,
2002.

[Klapuri07] Klapuri, Anssi, and Manuel Davy, eds. Signal processing
methods for music transcription. Springer Science & Busi-
ness Media, 2007.

[Hunter07] Hunter, John D. Matplotlib: A 2D graphics environment.
Computing in science and engineering 9, no. 3 (2007): 90-
95.

[Waskom14] Michael Waskom, Olga Botvinnik, Paul Hobson, John B.
Cole, Yaroslav Halchenko, Stephan Hoyer, Alistair Miles,
et al. Seaborn: v0.5.0 (November 2014). ZENODO, 2014.
doi:10.5281/zenodo.12710.

[Boeck12] Böck, Sebastian, Florian Krebs, and Markus Schedl. Evalu-
ating the Online Capabilities of Onset Detection Methods.
In 11th International Society for Music Information Re-
trieval Conference (ISMIR 2012), pp. 49-54. 2012.

[Ellis07] Ellis, Daniel P.W. Beat tracking by dynamic programming.
Journal of New Music Research 36, no. 1 (2007): 51-60.

[Serra12] Serra, Joan, Meinard Müller, Peter Grosche, and Josep
Lluis Arcos. Unsupervised detection of music boundaries
by time series structure features. In Twenty-Sixth AAAI
Conference on Artificial Intelligence. 2012.

[Ward63] Ward Jr, Joe H. Hierarchical grouping to optimize an objec-
tive function. Journal of the American statistical association
58, no. 301 (1963): 236-244.

[Lee99] Lee, Daniel D., and H. Sebastian Seung. Learning the parts
of objects by non-negative matrix factorization. Nature 401,
no. 6755 (1999): 788-791.

[Fitzgerald10] Fitzgerald, Derry. Harmonic/percussive separation using
median filtering. 13th International Conference on Digital
Audio Effects (DAFX10), Graz, Austria, 2010.

[Cannam10] Cannam, Chris, Christian Landone, and Mark Sandler.
Sonic visualiser: An open source application for viewing,
analysing, and annotating music audio files. In Proceedings

of the international conference on Multimedia, pp. 1467-
1468. ACM, 2010.

[Holzapfel12] Holzapfel, Andre, Matthew E.P. Davies, José R. Zapata,
João Lobato Oliveira, and Fabien Gouyon. Selective sam-
pling for beat tracking evaluation. Audio, Speech, and
Language Processing, IEEE Transactions on 20, no. 9
(2012): 2539-2548.

[Davies14] Davies, Matthew E.P., and Boeck, Sebastian. Evaluating
the evaluation measures for beat tracking. In 15th Interna-
tional Society for Music Information Retrieval Conference
(ISMIR 2014), 2014.

[Raffel14] Raffel, Colin, Brian McFee, Eric J. Humphrey, Justin Sala-
mon, Oriol Nieto, Dawen Liang, and Daniel PW Ellis. mir
eval: A transparent implementation of common MIR met-
rics. In 15th International Society for Music Information
Retrieval Conference (ISMIR 2014), pp. 367-372. 2014.

[Bogdanov13] Bogdanov, Dmitry, Nicolas Wack, Emilia Gómez, Sankalp
Gulati, Perfecto Herrera, Oscar Mayor, Gerard Roma,
Justin Salamon, José R. Zapata, and Xavier Serra. Essentia:
An Audio Analysis Library for Music Information Retrieval.
In 12th International Society for Music Information Re-
trieval Conference (ISMIR 2013), pp. 493-498. 2013.

[McFee15] Brian McFee, Matt McVicar, Colin Raffel, Dawen Liang,
Oriol Nieto, Josh Moore, Dan Ellis, et al. Librosa: v0.4.0.
Zenodo, 2015. doi:10.5281/zenodo.18369.

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 25

PyEDA: Data Structures and Algorithms for Electronic
Design Automation

Chris Drake‡∗

https://www.youtube.com/watch?v=cljDuK0ouRs

F

Abstract—This paper introduces PyEDA, a Python library for electronic design
automation (EDA). PyEDA provides both a high level interface to the repre-
sentation of Boolean functions, and blazingly-fast C extensions for fundamental
algorithms where performance is essential. PyEDA is a hobby project which has
the simple but audacious goal of improving the state of digital design by using
Python.

Introduction

Chip design and verification is a complicated undertaking. You
must assemble a large team of engineers with many different
specialties: front-end design entry, logic verification, power op-
timization, synthesis, place and route, physical verification, and
so on. Unfortunately, the tools, languages, and work flows offered
by the electronic design automation (EDA) industry are, in this
author’s opinion, largely a pit of despair. The languages most
familiar to chip design and verification engineers are Verilog
(now SystemVerilog), C/C++, TCL, and Perl. Flows are patched
together from several proprietary tools with incompatible data rep-
resentations. Even with Python’s strength in scientific computing,
it has largely failed to penetrate this space. In short, EDA needs
more Python!

This paper surveys some of the features and applications
of PyEDA, a Python library for electronic design automation.
PyEDA provides both a high level interface to the representation
of Boolean functions, and blazingly-fast C extensions for funda-
mental algorithms where performance is essential.

PyEDA is a hobby project, but in the past year it has seen
some interesting adoption from University students. For example,
students at Vanderbilt University used it to model system reliabil-
ity [Nan14], and students at Saarland University used as part of a
fast DQBF Refutation tool [Fin14].

Even though the name "PyEDA" implies that the library is
specific to EDA, it is actually general in nature. Some of the
techniques used for designing and verifying digital logic are
fundamental to computer science. For example, we will discuss
applications of Boolean satisfiability (SAT), the definitive NP-
complete problem.

PyEDA’s repository is hosted at https://github.com/cjdrake/
pyeda.git, and its documentation is hosted at http://pyeda.rtfd.org.

* Corresponding author: cjdrake@gmail.com
‡ Drake Enterprises

Copyright © 2015 Chris Drake. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Note About Code Blocks

This document contains several Python code blocks. For the sake
of simplicity, we assume you have PyEDA installed, and have
prepared an interactive terminal by executing:

>>> from pyeda.inter import *

Boolean Variables and Functions

At its core, PyEDA provides a powerful API for creating and
manipulating Boolean functions.

First, let us provide the standard definitions.
A Boolean variable is an abstract numerical quantity that can

take any value in the set {0,1}. A Boolean function is a rule that
maps points in an N-dimensional Boolean space to an element
in {0,1}. Formally, f : BN ⇒ B, where BN means the Cartesian
product of N sets of type {0,1}. For example, if you have three
input variables, a,b,c, each defined on {0,1}, then B3 = {0,1}3 =
{(0,0,0),(0,0,1), ...,(1,1,1)}. B3 is the domain of the function
(the input part), and B = {0,1} is the range of the function (the
output part). The set of all input variables a function depends on
is called its support.

There are several ways to represent a Boolean function, and
different data structures have different tradeoffs. In the following
sections, we will give a brief overview of PyEDA’s API for
logic expressions, truth tables, and binary decision diagrams. In
addition, we will provide implementation notes for several useful
applications.

Logic Expressions

Logic expressions are a powerful and flexible way to represent
Boolean functions. They are implemented as a graph, with atoms
at the branches, and operators at the leaves. Atomic elements
are literals (variables and complemented variables), and constants
(zero and one). The supported algebraic operators are Not, Or,
And, Xor, Equal, Implies, and ITE (if-then-else).

For general purpose use, symbolic logic expressions are
PyEDA’s central data type. Since release 0.27, they have been
implemented using a high performance C library.

Expressions are fast, and reasonably compact. On the other
hand, they are generally not canonical, and determining expression
equivalence is NP-complete. Conversion to a canonical expression
form can result in exponential size.

26 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Name OR AND

Commutativityx+ y = y+ x x · y = y · x
Associativity x+(y+ z) = (x+ y)+ z x · (y · z) = (x · y) · z
Identity x+0 = x x ·1 = x
Domination x+1 = 1 x ·0 = 0
Idempotence x+ x = x x · x = x
Inverse x+ x′ = 1 x · x′ = 0

TABLE 1: Boolean OR/AND Identities

Construction

To construct a logic expression, first start by defining some
symbolic variables of type Expression:
>>> a, b, c, d = map(exprvar, 'abcd')

By overloading Python’s logical operators, you can build expres-
sion algebraically:
>>> F = a | ~b & c ^ ~d

Use methods from the Function base class to explore the
function’s basic properties:
>>> F.support
frozenset({a, b, c, d})
>>> list (F.iter_relation())
[({a: 0, b: 0, c: 0, d: 0}, 0),
({a: 1, b: 0, c: 0, d: 0}, 1),
({a: 0, b: 1, c: 0, d: 0}, 0),
...
({a: 0, b: 1, c: 1, d: 1}, 0),
({a: 1, b: 1, c: 1, d: 1}, 1)]

There are also several factory functions that offer more power than
Python’s built-in binary operators. For example, operators such as
Or, And, and Xor allow you to construct N-ary expressions:
>>> a ^ b ^ c
Xor(Xor(a, b), c)
>>> Xor(a, b, c)
Xor(a, b, c)

Also, functions such as OneHot, and Majority implement
powerful, higher order functions:
>>> OneHot(a, b, c)
And(Or(~a, ~b), Or(~a, ~c), Or(~b, ~c), Or(a, b, c))
>>> Majority(a, b, c)
Or(And(a, b), And(a, c), And(b, c))

Simplification

The laws of Boolean Algebra can be used to simplify expressions.
For example, Table 1 enumerates a partial list of Boolean identities
for the Or and And operators.

Most laws are computationally easy to apply. PyEDA allows
you to construct unsimplified Boolean expressions, and provides
the simplify method to perform such inexpensive transforma-
tions.

For example:
>>> F = ~a | a
>>> F
Or(~a, a)
>>> F.simplify()
1
>>> Xor(a, ~b, Xnor(~a, b), c)
~c

Performing simplification can dramatically reduce the size and
depth of your logic expressions.

Fig. 1: Majority expression rendered by Graphviz

Transformation

PyEDA also supports a growing list of expression transformations.
Since expressions are not a canonical form, transformations can
help explore tradeoffs in time and space, as well as convert an
expression to a form suitable for a particular algorithm.

For example, in addition to the primary operators Not,
Or, and And, expressions also natively support the secondary
Xor, Equal, Implies, and ITE (if-then-else) operators. By
transforming all secondary operators into primary operators, and
pushing all Not operators down towards the leaf nodes, you arrive
at what is known as "negation normal form".
>>> F = Xor(a >> b, c.eq(d))
>>> F.to_nnf()
And(Or(And(Or(c, d), Or(~c, ~d)), And(a, ~b)),

Or(~a, b, And(~c, ~d), And(c, d)))

Currently, expressions also support conversion to the following
forms:

• Binary operator (only two args per Or, And, etc)
• Disjunctive Normal Form (DNF)
• Conjunctive Normal Form (CNF)

DNF and CNF expressions are "two-level" forms. That is, the
entire expression is either an Or of And clauses (DNF), or an And
of Or clauses (CNF). DNF expressions are also called "covers",
and are important in both two-level and multi-level logic mini-
mization. CNF expressions play an important role in satisfiability.
We will briefly cover both of these topics in subsequent sections.

Visualization

Boolean expressions support a to_dot() method, which can be
used to convert the graph structure to DOT format for consumption
by Graphviz. For example, Figure 1 shows the Graphviz output on
the majority function in three variables:
>>> F = Majority(a, b, c)
>>> F.to_dot()

The expr Function

The expr function is a factory function that attempts to transform
any input into a logic expression. It does the obvious thing when
converting inputs that look like Boolean values:
>>> expr(False)
0
>>> expr(1)

PYEDA: DATA STRUCTURES AND ALGORITHMS FOR ELECTRONIC DESIGN AUTOMATION 27

1
>>> expr("0")
0

But it also implements a full top-down parser of expressions. For
example:
>>> expr("a | b ^ c & d")
Or(a, Xor(b, And(c, d)))

See the documentation for a complete list of supported operators
accepted by the expr function.

Boolean Satisfiability

One of the most interesting questions in computer science is
whether a given Boolean function is satisfiable, or SAT. That is,
for a given function F , is there a set of input assignments that will
produce an output of 1?

PyEDA Boolean functions implement two functions for this
purpose, satisfy_one, and satisfy_all. The former an-
swers the question in a yes/no fashion, returning a satisfying input
point if the function is satisfiable, and None otherwise. The latter
returns a generator that will iterate through all satisfying input
points.

SAT has all kinds of applications in both digital design and
verification. In digital design, it can be used in equivalence check-
ing, test pattern generation, model checking, formal verification,
and constrained-random verification, among others. SAT finds its
way into other areas as well. For example, modern package man-
agement systems such as apt and yum might use SAT to guarantee
that certain dependencies are satisfied for a given configuration.

The pyeda.boolalg.picosat module provides an in-
terface to the modern SAT solver PicoSAT [Bie08]. When a
logic expression is in conjunctive normal form (CNF), calling the
satisfy_* methods will invoke PicoSAT transparently.

For example:
>>> F = OneHot(a, b, c)
>>> F.is_cnf()
True
>>> F.satisfy_one()
{a: 0, b: 0, c: 1}
>>> list(F.satisfy_all())
[{a: 0, b: 0, c: 1},
{a: 0, b: 1, c: 0},
{a: 1, b: 0, c: 0}]

When an expression is not a CNF, PyEDA will resort to a
standard, backtracking algorithm. The worst-case performance of
this implementation is exponential, but is acceptable for many
real-world scenarios.

Tseitin Transformation

The worst case memory consumption when converting to CNF
is exponential. This is due to the fact that distribution of M Or
clauses over N And clauses (or vice-versa) requires M×N clauses.
>>> Or(And(a, b), And(c, d)).to_cnf()
And(Or(a, c), Or(b, c), Or(a, d), Or(b, d))

Logic expressions support the tseitin method, which perform’s
Tseitin’s transformation on the input expression. For more infor-
mation about this transformation, see [Tse68].

The Tseitin transformation does not produce an equivalent
expression, but rather an equisatisfiable CNF, with the addition
of auxiliary variables. The important feature is that it can convert
any expression into a CNF, which can be solved using PicoSAT.

>>> F = Xor(a, b, c, d)
>>> soln = F.tseitin().satisfy_one()
>>> soln
{a: 0,
aux[0]: 1,
aux[1]: 1,
...
b: 0,
c: 0,
d: 1}

You can safely discard the aux variables to get the solution:
>>> {k: v for k, v in soln.items() if k.name != 'aux'}
{a: 0, b: 0, c: 0, d: 1}

Truth Tables

The most straightforward way to represent a Boolean function is to
simply enumerate all possible mappings from input assignment to
output values. This is known as a truth table, It is implemented as a
packed list, where the index of the output value corresponds to the
assignment of the input variables. The nature of this data structure
implies an exponential size. For N input variables, the table will
be size 2N . It is therefore mostly useful for manual definition and
inspection of functions of reasonable size.

To construct a truth table from scratch, use the truthtable
factory function. For example, to represent the And function:
>>> truthtable([a, b], [False, False, False, True])
This also works
>>> truthtable([a, b], "0001")

You can also convert expressions to truth tables using the
expr2truthtable function:
>>> expr2truthtable(OneHot0(a, b, c))
c b a
0 0 0 : 1
0 0 1 : 1
0 1 0 : 1
0 1 1 : 0
1 0 0 : 1
1 0 1 : 0
1 1 0 : 0
1 1 1 : 0

Partial Definitions

Another use for truth tables is the representation of partially
defined functions. Logic expressions and binary decision diagrams
are completely defined, meaning that their implementation imposes
a complete mapping from all points in the domain to {0,1}. Truth
tables allow you to specify some function outputs as "don’t care".
You can accomplish this by using either "-" or "X" with the
truthtable function.

For example, a seven segment display is used to display
decimal numbers. The codes "0000" through "1001" are used
for 0-9, but codes "1010" through "1111" are not important, and
therefore can be labeled as "don’t care".
>>> X = ttvars('x', 4)
>>> F1 = truthtable(X, "0000011111------")
>>> F2 = truthtable(X, "0001111100------")

To convert a table to a two-level, disjunctive normal form (DNF)
expression, use the truthtable2expr function:
>>> truthtable2expr(F1)
Or(And(x[0], ~x[1], x[2], ~x[3]),

And(~x[0], x[1], x[2], ~x[3]),
And(x[0], x[1], x[2], ~x[3]),
And(~x[0], ~x[1], ~x[2], x[3]),
And(x[0], ~x[1], ~x[2], x[3]))

28 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Two-Level Logic Minimization

When choosing a physical implementation for a Boolean function,
the size of the logic network is proportional to its cost, in terms of
area and power. Therefore it is desirable to reduce the size of that
network.

Logic minimization of two-level forms is an NP-complete
problem. It is equivalent to finding a minimal-cost set of subsets
of a set S that covers S. This is sometimes called the "paving
problem", because it is conceptually similar to finding the cheapest
configuration of tiles that cover a floor. Due to the complexity of
this operation, PyEDA uses a C extension to the Berkeley Espresso
library [Bra84].

After calling the espresso_tts function on the F1 and F2
truth tables from above, observe how much smaller (and therefore
cheaper) the resulting DNF expression is:
>>> F1M, F2M = espresso_tts(F1, F2)
>>> F1M
Or(x[3], And(x[0], x[2]), And(x[1], x[2]))

Binary Decision Diagrams

A binary decision diagram is a directed acyclic graph used to
represent a Boolean function. They were originally introduced by
Lee, and later by Akers. In 1986, Randal Bryant introduced the
reduced, ordered BDD (ROBDD).

The ROBDD is a canonical form, which means that given an
identical ordering of input variables, equivalent Boolean functions
will always reduce to the same ROBDD. This is a desirable prop-
erty for determining formal equivalence. Also, it means that un-
satisfiable functions will be reduced to zero, making SAT/UNSAT
calculations trivial. Due to these auspicious properties, the term
BDD almost always refers to some minor variation of the ROBDD
devised by Bryant.

The downside of BDDs is that certain functions, no matter
how cleverly you order their input variables, will result in an
exponentially-sized graph data structure.

Construction

Like logic expressions, you can construct a BDD by starting with
symbolic variables and combining them with operators.

For example:
>>> a, b, c = map(bddvar, 'abc')
>>> F = a & b & c
>>> F.support
frozenset({a, b, c})
>>> F.restrict({a: 1, b: 1})
c
>>> F & 0
0

The expr2bdd function can also be used to convert any expres-
sion into an equivalent BDD:
>>> expr2bdd(expr("(s ? d1 : d0) <=> (s & d1 | ~s & d0)"))
1

Equivalence

As we mentioned before, BDDs are a canonical form. This makes
checking for SAT, UNSAT, and formal equivalence trivial.
>>> ~a & a
0
>>> ~a & ~b | ~a & b | a & ~b | a & b
1
>>> F = a ^ b

Fig. 2: Majority BDD rendered by Graphviz

>>> G = ~a & b | a & ~b
>>> F.equivalent(G)
True
>>> F is G
True

PyEDA’s BDD implementation uses a unique table, so F and G
from the previous example are actually just two different names
for the same object.

Visualization

Like expressions, binary decision diagrams also support a
to_dot() method, which can be used to convert the graph struc-
ture to DOT format for consumption by Graphviz. For example,
Figure 2 shows the Graphviz output on the majority function in
three variables:

>>> expr2bdd(expr("Majority(a, b, c)")).to_dot()

Future Directions for Function Data Structures

The implementation of Boolean functions is a vast field, and
PyEDA is really only scratching the surface. In this section we
will describe several directions for improvement.

Due to their fundamentally exponential size, truth tables have
limited application. It is more common for tabular function rep-
resentations to use an implicant table, sometimes referred to as
a "cover". PyEDA has some support for implicant tables in the
Espresso C extension, but this functionality is not exposed to the
user interface.

PyEDA’s current implementation of BDDs is written in pure
Python. Given that BDDs are memory limited, the PyObject
data type imposes a hefty overhead on the size of the DAG. Also,
there are currently no complemented edges or automatic variable
reordering, features that more complete decision diagram libraries
implement. One solution is to implement a Python C extension to
a more complete and high performance library such as [CUDD].

PYEDA: DATA STRUCTURES AND ALGORITHMS FOR ELECTRONIC DESIGN AUTOMATION 29

There are several function representations left for considera-
tion. Within the realm of decision diagrams, we have not con-
sidered algebraic decision diagrams (ADDs), or zero-suppressed
decision diagrams (ZDDs). Within the realm of graph-based struc-
tures primarily for logic synthesis, we have not considered the
and-inverter-graph (AIG), or the majority-inverter-graph (MIG).

Function Arrays

When dealing with several related Boolean functions, it is usually
convenient to index the inputs and outputs. For this purpose,
PyEDA includes a multi-dimensional array (MDA) data type,
called an farray (function array).

The most pervasive example is computation involving any
numeric data type. For example, let’s say you want to add two
numbers A, and B. If these numbers are 32-bit integers, there are
64 total inputs, not including a carry-in. The conventional way of
labeling the input variables is a0,a1, . . . ,a31, and b0,b1, . . . ,b31.

Furthermore, you can extend the symbolic algebra of Boolean
functions to arrays. For example, the element-wise XOR of A and
B is also an array.

In this section, we will briefly discuss farray construction,
slicing operations, and algebraic operators. Function arrays can
be constructed using any Function implementation, but for
simplicity we will restrict the discussion to logic expressions.

Construction

The farray constructor can be used to create an array of
arbitrary expressions.

>>> a, b, c, d = map(exprvar, 'abcd')
>>> F = farray([a, b, And(a, c), Or(b, d)])
>>> F.ndim
1
>>> F.size
4
>>> F.shape
((0, 4),)

As you can see, this produces a one-dimensional array of size 4.
The shape of the previous array uses Python’s conventional,

exclusive indexing scheme in one dimension. The farray con-
structor also supports multi-dimensional arrays:

>>> G = farray([[a, b],
[And(a, c), Or(b, d)],
[Xor(b, c), Equal(c, d)]])

>>> G.ndim
2
>>> G.size
6
>>> G.shape
((0, 3), (0, 2))

Though arrays can be constructed from arbitrary functions in
arbitrary shapes, it is far more useful to start with arrays of
variables and constants, and build more complex arrays from them
using operators.

To construct arrays of expression variables, use the
exprvars factory function:

>>> xs = exprvars('x', 8)
>>> xs
farray([x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7]])
>>> ys = exprvars('y', 4, 4)
farray([[y[0,0], y[0,1], y[0,2], y[0,3]],

[y[1,0], y[1,1], y[1,2], y[1,3]],
[y[2,0], y[2,1], y[2,2], y[2,3]],
[y[3,0], y[3,1], y[3,2], y[3,3]]])

Use the uint2exprs and int2exprs function to convert inte-
gers to their binary encoding in unsigned, and twos-complement,
respectively.

>>> uint2exprs(42, 8)
farray([0, 1, 0, 1, 0, 1, 0, 0])
>>> int2exprs(-42, 8)
farray([0, 1, 1, 0, 1, 0, 1, 1])

Note that the bits are in order from LSB to MSB, so the con-
ventional bitstring representation of -42 in eight bits would be
"11010110".

Slicing

PyEDA’s function arrays support numpy-style slicing operators:

>>> xs = exprvars('x', 4, 4, 4)
>>> xs[1,2,3]
xs[1,2,3]
>>> xs[2,:,2]
farray([x[2,0,2], x[2,1,2], x[2,2,2], x[2,3,2]])
>>> xs[...,1]
farray([[x[0,0,1], x[0,1,1], x[0,2,1], x[0,3,1]],

[x[1,0,1], x[1,1,1], x[1,2,1], x[1,3,1]],
[x[2,0,1], x[2,1,1], x[2,2,1], x[2,3,1]],
[x[3,0,1], x[3,1,1], x[3,2,1], x[3,3,1]]])

A special feature of PyEDA farray slicing that is useful for
digital logic is the ability to multiplex (mux) array items over a
select input. For example, to create a simple, 4:1 mux:

>>> X = exprvars('x', 4)
>>> S = exprvars('s', 2)
>>> X[S]
Or(And(x[0], ~s[0], ~s[1]),

And(x[1], s[0], ~s[1]),
And(x[2], ~s[0], s[1]),
And(x[3], s[0], s[1]))

Algebraic Operations

Function arrays are algebraic data types, which support the fol-
lowing symbolic operators:

• unary reductions (uor, uand, uxor, ...)
• bitwise logic (~ | & ^)
• shifts (<< >>)
• concatenation (+)
• repetition (*)

Combining function and array operators allows us to imple-
ment a reasonably complete domain-specific language (DSL) for
symbolic Boolean algebra in Python.

Consider, for example, the implementation of the xtime
function, which is an integral part of the AES algorithm.

The Verilog implementation, as a function:

function automatic logic [7:0]
xtime(logic [7:0] b, int n);

xtime = b;
for (int i = 0; i < n; i++)

xtime = {xtime[6:0], 1'b0}
^ (8'h1b & {8{xtime[7]}});

endfunction

And the PyEDA implementation:

def xtime(b, n):
for _ in range(n):

b = (exprzeros(1) + b[:7]
^ uint2exprs(0x1b, 8) & b[7]*8)

return b

30 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Practical Applications

Arrays of functions have many practical applications. For exam-
ple, the pyeda.logic.addition module contains implemen-
tations of ripple-carry, brent-kung, and kogge-stone addition logic.
Here is the digital logic implementation of 2+2 = 4:

>>> from pyeda.logic.addition import kogge_stone_add
>>> A = exprvars('a', 8)
>>> B = exprvars('b', 8)
>>> S, C = kogge_stone_add(A, B)
>>> S.vrestrict({A: "01000000", B: "01000000"})
farray([0, 0, 1, 0, 0, 0, 0, 0])

Related Work

It is truly an exciting time for Python in digital logic. There are
several available libraries implementing features that are competi-
tive with PyEDA’s.

SymPy was an early influence for PyEDA’s design [Sympy].
It features a logic module that implements symbolic logic expres-
sions. SymPy is implemented in 100% pure Python, and therefore
will have some trouble competing with the raw performance of
PyEDA’s C extensions.

Another tremendous influence was Ilan Schnell’s pycosat
module [Pycosat]. It implements a similar Python interface to the
PicoSAT SAT solver [Bie08], but does not delve into the area of
symbolic Boolean algebra.

Steve Haynal and others at the University of California Santa
Barbara have implemented PyCUDD, a Python binding to the
well-known [CUDD] library.

The Sage Math project implements logic and sat modules with
similar features to PyEDA’s.

Lastly, there are a few notable Python bindings to other SAT
libries. python-minisat, and pycryptosat implement Python wrap-
pers around MiniSAT and CryptoMiniSAT, respectively. Also,
Microsoft recently open sourced the truly excellent Z3 theorem
prover library, which has its own SMT SAT solver and Python
bindings.

REFERENCES

[Ake78] S.B. Akers, Binary Decision Diagrams, IEEE Transactions on
Computers, Vol. C-27, No. 6, June 1978, pp. 509-516.

[Bah93] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii,
A. Pardo, and F. Somenzi. Algebraic Decision Diagrams and
Their Applications, Proceedings of the International Conference
on Computer-Aided Design, pages 188-191, Santa Clara, CA,
November 1993.

[Bie08] A. Biere. PicoSAT Essentials, Journal on Satisfiability, Boolean
Modeling and Computation (JSAT), vol. 4, pages 75-97, Delft
University, 2008.

[Bra84] R. Brayton, G. Hatchel, C. McMullen, and A. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis,
Kluwer Academic Publishers, Boston, MA, 1984.

[Bry86] R.E. Bryant. Graph-based algorithms for Boolean function ma-
nipulation, IEEE Transactions on Computers, C-35(8):677-691,
August 1986. http://www.cs.cmu.edu/~bryant/pubdir/ieeetc86.pdf

[Dec04] J. Decaluwe. MyHDL: A Python-based Hardware Description
Language, Linux Journal, November 2004. http://www.myhdl.org

[Fin14] B. Finkbeiner, L. Tentrup, Fast DQBF Refutation, SAT 2014 https:
//www.react.uni-saarland.de/tools/bunsat/

[Graphviz] Graphviz - Graph Visualization Software http://www.graphviz.
org/

[Loc14] D. Lockhart, G. Zibrat, C. Batten. PyMTL: A Unified Frame-
work for Vertically Integrated Computer Architecture Research,
Int’l Symp. on Microarchitecture (MICRO-47), December 2014.
http://csl.cornell.edu/~cbatten/pdfs/lockhart-pymtl-micro2014.pdf

[Min93] S.I. Minato. Zero-suppressed BDDs for set manipulation in com-
binatorial problems, In Proceedings of the Design Automation
Conference, pages 272-277, Dallas, TX, June 1993.

[Nan14] S. Nannapaneni, et al. A Model-Based Approach for
Reliability Assessment in Component-Based Systems,
https://www.phmsociety.org/sites/phmsociety.org/files/phm_
submission/2014/phmc_14_025.pdf

[Pycosat] Ilan Schnell https://github.com/ContinuumIO/pycosat/
[Ros03] K. Rosen. Discrete Mathematics and its Applications McGraw

Hill, 2003.
[CUDD] F. Somenzi. CUDD: CU Decision Diagram Package, http://vlsi.

colorado.edu/~fabio/CUDD/
[Sympy] Sympy - Python library for symbolic mathematics http://docs.

sympy.org
[Lee59] C.Y. Lee, Representation of Switching Circuits by Binary-Decision

Programs, Bell System Technical Journal, Vol. 38, July 1959, pp.
985-999.

[Tse68] G.S. Tseitin, On the complexity of derivation in propositional cal-
culus, Slisenko, A.O. (ed.) Structures in Constructive Mathematics
and Mathematical Logic, Part II, Seminars in Mathematics pp.
115–125. Steklov Mathematical Institute, 1968.

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 31

Scientific Data Analysis and Visualization with Python,
VTK, and ParaView

Cory Quammen‡∗

https://www.youtube.com/watch?v=8ugmkKaYKxM

F

Abstract—VTK and ParaView are leading software packages for data analysis
and visualization. Since their early years, Python has played an important role
in each package. In many use cases, VTK and ParaView serve as modules
used by Python applications. In other use cases, Python modules are used to
generate visualization components within VTK. In this paper, we provide an
overview of Python integration in VTK and ParaView and give some concrete
examples of usage. We also provide a roadmap for additional Python integration
in VTK and ParaView in the future.

Index Terms—data analysis, scientific visualization, VTK, ParaView

Introduction

The Visualization Toolkit (VTK) is an open-source, freely avail-
able software system for 3D visualization. It consists of a set of
C++ class libraries and bindings for Python and several other
languages. VTK supports a wide variety of visualization algo-
rithms for 2D and 3D scalar, vector, tensor, and volumetric data,
as well as advanced algorithms such as implicit modeling, polygon
reduction, mesh smoothing, cutting, contouring, and Delaunay
triangulation. VTK has an extensive information visualization
framework and a suite of 3D interaction widgets. The toolkit sup-
ports parallel processing and integrates with various GUI toolkits
such as Qt. Python bindings expose nearly all VTK classes and
functions, making it possible to write full VTK-based applications
exclusively in Python. VTK also includes interfaces to popular
Python packages such as NumPy and matplotlib. Support for
writing custom VTK algorithms in Python is also available.

ParaView is a scalable visualization tool based on VTK that
runs on a variety of platforms ranging from PCs to some of
the largest supercomputers in the world. The ParaView package
consists of a suite of executables for generating data visualizations
using the techniques available in VTK. ParaView executables
interface with Python in a number of ways: data sources, filters,
and plots can be defined via Python code, data can be queried
with Python expressions, and several executables can be controlled
interactively with Python commands. Batch processing via Python
scripts that are written either by hand or generated as a trace of
events during an interactive visualization session is available for
offline visualization generation.

* Corresponding author: cory.quammen@kitware.com
‡ Kitware, Inc.

Copyright © 2015 Cory Quammen. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

This paper is organized into two main sections. In the first
section, I introduce basic VTK usage, describe the relationship
between VTK and Python, and describe interfaces between the
two. In the second section, I detail the relationship between
ParaView and Python. Examples of Python usage in VTK 6.2 and
ParaView 4.3 are provided throughout. I also provide a roadmap
for additional Python support in VTK and ParaView.

Python and VTK

VTK Data Model

To understand Python usage in VTK, it is important to understand
the VTK data and processing models. At the most basic level, data
in VTK is stored in a data object. Different types of data objects
are available including graphs, trees, and data sets representing
spatially embedded data from sensors or simulations such as uni-
form rectilinear grids, structured/unstructured grids, and Adaptive
Mesh Refinement (AMR) data sets. This paper focuses on spatially
embedded data sets.

Each spatially embedded data set consists of cells, each of
which defines a geometric entity that defines a volume of space,
and points that are used to define the vertices of the cells.
Data values that represent a quantity, e.g. pressure, temperature,
velocity, may be associated with both cells and points. Each
quantity might be a scalar, vector, tensor, or string value. Vectors
and tensors typically have more than one numerical component,
and the quantity as a whole is known as a tuple.

The full collection of a quantity associated with points or cells
is known by a number of names including "attribute", "field",
"variable", and "array". VTK stores each attribute in a separate
data array. For a point-associated array (point array), the number
of tuples is expected to match the number of points. Likewise, for
cell-associated arrays (cell array) the number of tuples is expected
to match the number of cells.

VTK Pipeline

Data processing in VTK follows the data-flow paradigm. In this
paradigm, data flows through a sequence of processing algorithms.
These algorithms are chained together in a pipeline. At the
beginning of a pipeline, a source generates a VTK data set. For
example, an STL file reader source reads an STL file and produces
a polygonal VTK data set as an output. A filter can be connected to
the file reader to process the raw data from the file. For example, a
smoothing filter may be used to smooth the polygonal data read by
the STL reader. The output of the smoothing filter can be further

32 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

processed with a clipping filter to cut away part of the smoothed
data set. Results from this operation can then be saved to a file
with a file writer.

An algorithm in a pipeline produces one or more VTK data
sets that are passed to the next algorithm in the pipeline. Algo-
rithms need only update when one of their properties changes
(e.g., smoothing amount) or when the algorithm upstream of it has
produced a new data set. These updates are handled automatically
by an internal VTK pipeline executive whenever an algorithm is
updated.

Because VTK is intended to produce 3D interactive visualiza-
tions, output from the final algorithm in a pipeline is typically
connected to a mapper object. A mapper is responsible for
converting a data set into a set of rendering instructions. An actor
represents the mapper in a scene, and has some properties that
can modify the appearance of a rendered data set. One or more
actors can be added to a renderer which executes the rendering
instructions to generate an image.

Python Language Bindings for VTK

Since 1997, VTK has provided language bindings for Python.
Over the years, Python has become increasingly important to
VTK, both as a route to using VTK, as well as to the development
of VTK itself.

The Python binding support in VTK has evolved so that today
nearly every semantic feature of C++ used by VTK has a direct
semantic analog in Python. C++ classes from VTK are wrapped
into Python equivalents. The few classes that are not wrapped are
typically limited to classes that are meant for internal use in VTK.

Python Wrapping Infrastructure

Python classes for VTK classes and special types are generated
using a shared lex/yacc-based parser tailored for VTK program-
ming conventions and custom code generation utilities for Python
wrapping. VTK is organized into a number of C++ modules.
When built with shared libraries enabled, a library containing C++
classes is generated at build time for each C++ module. Each
Python-wrapped source file is likewise compiled into a shared
library corresponding to the C++ module. All wrapped VTK C++
modules are provided in a single vtk Python package.

VTK Usage in Python

For convenience, an executable named vtkpython is provided
in VTK binaries. This is the standard Python executable with
environment variables set to make it simple to import the vtk
package. It is also possible to use VTK in the same python
executable from the Python installation against which VTK was
built by prepending the location of VTK’s shared libraries and the
location of the parent directory of the file vtk/__init__.py to
the PYTHONPATH environment variable, but using vtkpython
avoids the need to do this.

To access VTK classes, you simply import vtk:
import vtk

VTK is somewhat unusual for a Python package in that all
modules are loaded by this import statement.

Creation of VTK objects is straightforward:
contourFilter = vtk.vtkContourFilter()

Each Python object references an underlying VTK object. Objects
in VTK are reference counted and automatically deleted when

no longer used. The wrapping interface updates the underlying
VTK object’s reference count and alleviates the need for explicit
memory management within Python.

One particularly nice semantic equivalence between VTK’s
C++ and Python interfaces involves member functions that accept
a pointer to a C++ array representing a small tuple of elements.
Such functions are common in VTK to do things like set a 3D
Cartesian coordinate as a property of a class. In Python, the
corresponding function accepts a tuple or list object. This works
well as long as the list or tuple has the expected number of
elements.
sphere = vtk.vtkSphereSource()

Express point as list
sphere.SetCenter([0, 1, 0])

Express point as tuple
sphere.SetCenter((0, 1, 0))

Member functions that return pointers to arrays with a fixed
number of elements are also supported. Such functions require a
hint to the wrapping infrastructure indicating how many elements
are in the tuple that is returned.
>>> center = sphere.GetCenter()
>>> print center
(0, 1, 0)

For VTK classes that have operators <, <=, ==, >=, > defined,
equivalent Python operators are provided.

Some functions in VTK return information via parameters
passed by reference. For example, in the following code block,
the parameter t is a return parameter from the member function
IntersectWithLine.
double t, x[3]
plane->IntersectWithLine(point1, point2, t, x);

In Python, the equivalent is
t = vtk.mutable(0.0)
plane.IntersectWithLine(point1, point2, t, x)

Class and function documentation is processed by the wrapping
infrastructure to make it available via Python’s built-in help
system.
>>> help(vtk.vtkSphereSource)

The above shows the full documentation of the
vtkSphereSource class (too extensive to list here), while the
code below produces help for only the SetCenter member
function.
>>> help(vtk.vtkSphereSource.SetCenter)

Help on built-in function SetCenter:

SetCenter(...)
V.SetCenter(float, float, float)
C++: void SetCenter(double, double, double)
V.SetCenter((float, float, float))
C++: void SetCenter(double a[3])

Some less often used mappings between C++ and Python
semantics, as well as limitations, are described in the file
VTK/Wrapping/Python/README_WRAP.txt in the VTK
source code repository in versions 4.2 and above.

A full example below shows how to create a VTK pipeline
in Python that loads an STL file, smooths it, and displays the
smoothed result in a 3D render window.
import vtk

SCIENTIFIC DATA ANALYSIS AND VISUALIZATION WITH PYTHON, VTK, AND PARAVIEW 33

reader = vtk.vtkSTLReader()
reader.SetFileName('somefile.stl')

smoother = vtk.vtkLoopSubdivisionFilter()
smoother.SetInputConnection(reader.GetOutputPort())

mapper = vtk.vtkPolyDataMapper()
mapper.SetInputConnection(smoother.GetOutputPort())

actor = vtk.vtkActor()
actor.SetMapper(mapper)

renderer = vtk.vtkRenderer()
renderer.AddActor(actor)

renWin = vtk.vtkRenderWindow
renWin.AddRenderer(renderer)

interactor = vtk.vtkRenderWindowInteractor()
interactor.SetRenderWindow(renWin)
interactor.Initialize()
renWin.Render()
iren.Start()

Many additional examples of VTK usage in Python are available
in the VTK/Examples/Python wiki page [Wik15].

Integration with NumPy

There are limited functions within VTK itself to process or analyze
point and cell arrays. Since 2008, a low-level interface layer
between VTK arrays and NumPy arrays has been available in
VTK. This interface layer can be used to map VTK arrays to
NumPy arrays and vice versa, enabling the full power of NumPy
operations to be used on VTK data. For example, suppose that we
have a data set from a computational fluid dynamics simulation
that we can load with a VTK reader class, and suppose further
that the data set has a point array representing pressure. We can
find several properties of this array using NumPy, e.g.,
import numpy as np
import vtk.util.numpy_support as nps

Load data with a VTK reader instantiated earlier
reader.Update()

ds = reader.GetOutput()
pd = ds.GetPointData()
pressure = pd.GetArray('pressure')
np_pressure = nps.vtk_to_numpy(pressure)

min_p = np.min(np_pressure)
max_p = np.max(np_pressure)

This interface can also be used to add data arrays to loaded data
sets that can be handed off to VTK for visualization:
norm_pressure = (np_pressure - min_pressure) / \

(max_pressure - min_pressure)
vtk_norm_pressure = np.numpy_to_vtk(norm_pressure, 1)
vtk_norm_pressure.SetName('normalized pressure')
pd.AddArray(vtk_norm_pressure)

The second argument to np.numpy_to_vtk indicates that the
NumPy array should be deep copied to the VTK array. This is
necessary if no reference to the NumPy array will otherwise be
kept. If a reference to the numpy array will be kept, then the
second argument can be omitted and the NumPy array will be
shallow copied instead, saving memory and time because the array
data does not need to be copied. Note that the Python interpretter
might crash if a NumPy array reference is not held and the data is
shallow copied.

More recently, a higher-level NumPy-like interface layer has
been added to VTK. This numpy_interface was designed to

combine the ease of use of NumPy with the distributed memory
parallel computing capabilities and broad data set type support
of VTK. The straightforward interface between VTK data arrays
and NumPy described above works only when the entire data
set is available on one node. However, data sets in VTK may
be distributed across different computational nodes in a parallel
computer using the Message Passing Interface [Sni99]. In this sce-
nario, global reduction operations using NumPy are not possible.
For this reason, a NumPy-like interface has been added to VTK
that properly handles distributed data sets [Aya14].

A key building block in VTK’s numpy_interface is a set
of classes that wrap VTK data set objects to have a more Pythonic
interface.

import vtk
from vtk.numpy_interface import dataset_adapter as dsa

reader = vtk.vtkXMLPolyDataReader()
reader.SetFileName(filename)
reader.Update()
ds = dsa.WrapDataObject(reader.GetOutput())

In this code, ds is an instance of a
dataset_adapter.PolyData that wraps the
vtkPolyData output of the vtkXMLPolyDataReader.
Point and cell arrays are available in member variables
PointData and CellData, respectively, that provide the
dictionary interface.

>>> ds.PointData.keys()
['pressure']

>>> pressure = ds.PointData['pressure']

Note that the pressure array here is an instance of VTKArray
rather than a wrapped VTK data array. VTKArray is a
wrapper around the VTK array object that inherits from
numpy.ndarray. Hence, all the standard ndarray operations
are available on this wrapped array, e.g.,

>>> pressure[0]
0.112

>>> pressure[1:4]
VTKArray([34.2432, 47.2342, 38.1211], dtype=float32)

>>> pressure[1:4] + 1
VTKArray([35.2432, 48.2342, 39.1211], dtype=float32)

>>> pressure[pressure > 40]
VTKArray([47.2342], dtype=float32)

The numpy_interface.algorithms module also provides
NumPy-like functionality:

import vtk.numpy_interface.algorithms as algs

>>> algs.min(pressure)
VTKArray(0.1213)

>>> algs.where(pressure > 38)
(array([2, 3], dtype=int64),)

In addition to providing most of the ufuncs provided by NumPy,
the algorithms interface provides some functions to access
quantities that VTK can compute in the wide variety of data set
types available in VTK. This can be used to compute, for instance,
the total volume of cells in an unstructured grid:

>>> cell_volumes = algs.volume(ds)
>>> algs.sum(cell_volumes)
VTKArray(847.02)

34 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

This example illustrates nicely the power of combining a NumPy-
like interface with VTK’s uniform API for computing various
quantities on different types of data sets.

Another distinct advantage of the
numpy_interface.algorithms module is that all
operations are supported in parallel when data sets are distributed
across computational nodes. [Aya14] describes this functionality
in more detail.

Integration with matplotlib

While VTK excels at interactive 3D rendering of scientific data,
matplotlib excels at producing publication-quality 2D plots. VTK
leverages each toolkit’s strengths in two ways.

First, as described earlier, convenience functions
for exposing VTK data arrays as NumPy arrays are
provided in the vtk.util.numpy_support and
numpy_interface.algorithms modules. These arrays
can be passed to matplotlib plotting functions to produce
publication-quality plots.

Second, VTK itself incorporates some of matplotlib’s ren-
dering capabilities directly when possible. When VTK Python
wrapping is enabled and matplotlib is available, VTK uses the
matplotlib.mathtext module to render LaTeX math ex-
pressions to either vtkImageData objects that can be dis-
played as images or to paths that may be rendered to a
vtkContextView object, VTK’s version of a canvas. The
vtkTextActor, a class for adding text to visualizations, uses
this module to support rendering complex LaTeX math expres-
sions.

Qt applications with Python

Python support in VTK is robust enough to create full-featured
applications without writing a single line of C++ code. PyQt
[PyQt15] (or PySide [PyS15]) provide Python bindings for Qt. A
simple PyQt example adapted from an example by Michka Popoff
is provided below:
import sys
import vtk
from PyQt4 import QtCore, QtGui
from vtk.qt4.QVTKRenderWindowInteractor \

import QVTKRenderWindowInteractor

class MainWindow(QtGui.QMainWindow):

def __init__(self, parent = None):
QtGui.QMainWindow.__init__(self, parent)

self.frame = QtGui.QFrame()

layout = QtGui.QVBoxLayout()
self.vtkWidget = \

QVTKRenderWindowInteractor(self.frame)
layout.addWidget(self.vtkWidget)

self.renderer = vtk.vtkRenderer()
rw = self.vtkWidget.GetRenderWindow()
rw.AddRenderer(self.renderer)
self.interactor = rw.GetInteractor()

cylinder = vtk.vtkCylinderSource()
mapper = vtk.vtkPolyDataMapper()
mapper.SetInputConnection(\

cylinder.GetOutputPort())
actor = vtk.vtkActor()
actor.SetMapper(mapper)

self.renderer.AddActor(actor)

self.renderer.ResetCamera()

self.frame.setLayout(layout)
self.setCentralWidget(self.frame)

self.show()
self.interactor.Initialize()

if __name__ == "__main__":
app = QtGui.QApplication(sys.argv)
window = MainWindow()
sys.exit(app.exec_())

This simple application does little besides what is possible with
pure VTK code alone. However, this example can easily be
expanded to provide interaction through UI elements such as a
menu bar, buttons, text entries, sliders, etc.

VTK filters defined in Python

While VTK sources and filters are available in Python, they
cannot be subclassed to create new sources or filters be-
cause the virtual function table defined in C++ cannot dis-
patch to member functions defined in Python. Instead, one
can subclass from a special VTKAlgorithm class defined in
vtk.util.vtkAlgorithm. This class specifies the inter-
face for classes that interact with vtkPythonAlgorithm,
a C++ class that delegates the primary VTK pipeline update
functions to equivalent pipeline update functions in the Python
VTKAlgorithm class. Subclasses of VTKAlgorithm can (and
usually should) override these functions. By doing this, it is
possible to implement complex new sources and filters using
Python alone. For more details on the VTKAlgorithm class,
see [Gev2014].

Python integration in VTK tests

As a project that follows a quality software process, VTK has
many regression tests. At present, 26% of tests (544 out of
2046) are written in Python. This integration of Python in VTK’s
testing infrastructure shows how important Python is in VTK’s
development.

Obtaining VTK

VTK and its Python bindings are available on many Linux distri-
butions including Ubuntu, Debian, OpenSUSE. It is also available
in Anaconda and Enthought Canopy. Binary installers and source
code for the most recent versions are available on the VTK web
site [VTK15] for Windows, Mac, and Linux.

Python and ParaView

ParaView is a suite of scalable parallel visualization executables
that use VTK to read data, process it, and create visualizations.
One of the executables includes a graphical user interface (GUI)
to make it possible to create visualizations without programming
(when ParaView is mentioned in this section, it is the executable
with a GUI unless otherwise specified). Data processing in Par-
aView follows the same data-flow paradigm that VTK follows. In
ParaView, sources and filters are chained together in a Pipeline
Browser as shown in Figure 1. Visualization controls are modified
with user interaction widgets provided by Qt.

While ParaView can be used to make visualizations without
programming, it is also possible to use Python scripting to au-
tomate certain operations or even create entire visualizations. In
this section, I describe how Python scripting is integrated into

SCIENTIFIC DATA ANALYSIS AND VISUALIZATION WITH PYTHON, VTK, AND PARAVIEW 35

Fig. 1: The ParaView GUI with an example visualization of a data
set from a simulation of airflow past a blunt fin. The Pipeline
Browser (upper left) shows the sources and filters used to create the
visualization. Filter and visualization parameters are shown in the
Property window (lower left).

ParaView at several different levels. At a high level, Python
commands are issued via a console to change properties of a
visualization. At a lower level, Python commands are used to set
up entire visualizaion pipelines. At an even lower level, Python is
used to create custom sources and filters to provide additional data
analysis and visualization functionality.

Python Console

ParaView includes a Python console available under the Tools
-> Python Console menu item. This console is a fully-
featured Python console with the environment set up so that the
vtk package and a paraview package are available. When first
started, the command
from paraview.simple import *

is automatically executed to import the paraview.simple
module. This layer is described in more detail later.

Running commands in ParaView’s Python console is identical
to running commands in other Python consoles. The key difference
is that commands can be used to change the state of the ParaView
application. This provides a similar experience to using a Python
console to change matplotlib plots.

The Python console also provides a button to load and execute
a Python script with ParaView commands from a file. This feature
is ideal for iterative Python script development.

pvpython and pvbatch

The ParaView suite of tools includes two Python-based utili-
ties for both interactive and batch generation of visualizations.
pvpython is an interactive Python shell that provides the same
access to the vtk and paraview packages as provided by
the Python console in ParaView. The key difference between
ParaView and pvpython is that no GUI controls are available
to modify pipeline or visualization state. pvbatch is a non-
interactive executable that runs a Python script and is intended
to perform offline data processing and visualization generation.

Python Tracing and State Files

While documentation is available to learn how to write Python
scripts for ParaView, it can take some time to find the function
calls needed to replicate a sequence of actions performed through

the GUI. To reduce script development time, ParaView supports
tracing of user interactions where the generated trace is in the form
of a Python script. Running the resulting trace script through the
ParaView Python console, pvpython or pvbatch reproduces
the effects of the user interactions with the GUI.

Python tracing is implemented by instrumenting the ParaView
application with Python generation code at various user event
handlers. The tracing mechanism can record either the entire state
of ParaView objects or just modifications of state to non-default
values to reduce the trace size. Traces can be started and stopped
at any time - they do not need to record the full user interaction
history.

An application where tracing is useful is the batch conversion
of data files. If ParaView can read the source file format and write
the destination file format, it is easy to perform the conversion
manually one time with the ParaView GUI. For a large list of files,
though, a more automated approach is useful. Creating a trace
of the actions needed to perform the conversion of a single file
produces most of the script that would be needed to convert a list
of files. The trace script can then be changed to apply to a list of
files.

In addition to saving a trace of user interaction sequences,
a Python state file may also be produced. Like a Python trace,
the state file contains Python commands that set up the pipeline
and visualization settings, but unlike a trace, it does not record
interaction events as they happen but rather the final state of
ParaView.

Simple Python Interface

Much of ParaView is implemented in C++ as VTK classes. These
classes are wrapped in Python with the same mechanism that
wraps VTK classes. As such, they are accessible within the Python
console, pvpython, and pvbatch. However using these classes
directly is often unwieldy. The example below illustrates how to
use the direct ParaView API to create a sphere source with radius
2.
from paraview import servermanager as sm

pm = sm.vtkSMProxyManager.GetProxyManager()
controller = \

sm.vtkSMParaViewPipelineControllerWithRendering()

ss = pm.NewProxy('sources', 'SphereSource')
ss.GetProperty('Radius').SetElement(0, 2.0)
controller.RegisterPipelineProxy(ss)

view = pm.GetProxy('views', 'RenderView1')
rep = view.CreateDefaultRepresentation(ss, 0)
controller.RegisterRepresentationProxy(rep)
rep.GetProperty('Input').SetInputConnection(0, ss, 0)
rep.GetProperty('Visibility').SetElement(0, 1)

controller.Show(ss, 0, view)
view.ResetCamera()
view.StillRender()

Note in this example the various references to proxies. A proxy
here refers to the proxy programming design pattern where one
object provides an interface to another object. Proxies are central
to ParaView’s design. In a number of the various client/server
configuration in which ParaView can be run, the client software
running on a local workstation connects to a remote server running
one or more processes on different nodes of a high-performance
computing resource. Proxies for each pipeline object exist on the
ParaView client, and they provide the interface for communicating
state to all the VTK objects in each client and server process.

36 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

In the example above, a new proxy for a vtkSphereSource
object is created. This proxy has a property named ’Radius’
that is modified to the value 2.0. Changes to the ’Radius’ prop-
erty are forwarded to the ’Radius’ property of the underlying
vtkSphereSource.

As this example demonstrates, creating a new data source, a
representation for it (how it is rendered), and adding the represen-
tation to the view (where it is rendered), is an involved process
when using the paraview.servermanager module directly.
Fortunately, ParaView provides a simplified Python interface that
hides most of these details, making Python scripting much more
accessible.

The paraview.simple layer provides simpler Python
functions to create pipelines and modify filter and visual-
ization properties. The same example above expressed with
paraview.simple functions is reduced to
from paraview import simple

Sphere(Radius=2.0)
Show()
Render()

ParaView traces and Python state files are expressed in terms of
paraview.simple module functions. For more information on
how to use this module, see [Kit15].

Python Programmable Filter

ParaView provides many data filters for transforming data and
performing analysis tasks. There are, however, an infinite number
of operations one may want to perform on a data set. To address
the need for custom filters, ParaView supports a rich plugin
architecture that makes it possible to create additional filters in
C++. Unfortunately, creating a plugin this way is a relatively
involved process.

Aside from the C++ plugin architecture, ParaView provides a
Programmable Filter that enables a potentially faster development
path. The Programmable Filter has a text property that stores a
Python script to execute when the filter is updated. Inputs to the
Programmable Filter are available within this script. Complete
specification of the output data set is possible within the script,
including setting the output data type, the data set toplogy (i.e.,
type and number of cells), as well as point and cell arrays.

At its core, the Programmable Filter is de-
fined by the VTK-derived C++ class named
vtkPythonProgrammableFilter. Using the Python
C API, the vtkPythonProgrammableFilter passes a
reference to itself to the Python environment in which the script
executes so that it is available within the script itself. This makes
it possible to access the inputs and outputs to the filter via:
input = self.GetInput()
output = self.GetOutput()

Arbitrarily complex Python scripts can be executed to generate
the filter’s output. The following example moves points in an
input vtkPointSet along normals associated with the points
if available.
ipd = self.GetInput()
opd = self.GetOutput()

Output is shallow-copied by default
Deep copy the points so that we are not modifying
the input points.
opd.DeepCopy(ipd)

na = ipd.GetPointData().GetArray('Normals')
if na != None:

for i in xrange(ipd.GetNumberOfPoints()):
pt = ipd.GetPoint(i)
n = na.GetTuple(i)
newPt = (pt[0]+n[0], pt[1]+n[1], pt[2]+n[2])
opd.GetPoints().SetPoint(i, newPt)

The Programmable Filter also uses the
vtk.numpy_interface.dataset_adapter module
to wrap the inputs to the filter. All of the wrapped inputs are
added to a list named inputs, and the single output is wrapped
in an object named output. By using the wrapped inputs and
outputs, the filter above becomes simply
ipts = inputs[0].Points
normals = inputs[0].PointData['Normals']

output.Points = ipts + normals

It is important to note that Python scripts in the Programmable
Filter may use only VTK classes and other Python modules,
but not any of the modules in the paraview package. If those
modules are imported, the behavior is undefined.

Python Programmable Source

Within ParaView it is also possible to define Python script that
defines data sources using the Python Programmable Source. This
source functions much like the Python Programmable Filter, but
does not require any input data sets.

Python Calculator

ParaView’s Python Calculator filter is a light-weight alternative to
the Programmable Filter used to compute additional point or cell
arrays using NumPy or the numpy_interface.algorithms
module. The following expression computes the areas of polygons
in a surface mesh:
algs.area(inputs[0])

Note that the numpy_interface.algorithms is imported
with the name algs in the Python environment in which the
expression is evaluated. In the Python Calculator, the prop-
erty ’Array Association’, which indicates whether the output
array should be a point or cell array, must be set to ’Cell
Data’ because one area value is produced per cell. Note that
like the Programmable Filter, the inputs are wrapped with
the vtk.numpy_interface.dataset_adapter module
functions and stored in an inputs list.

Python Annotation

It is often desirable to annotate visualizations with numerical
values taken either directly from the data set or computed from
the data. The Python Annotation filter in ParaView provides
this capability in a convenient way. The filter takes a Python
expression that is evaluated when the filter is executed and the
value returned by the expression is displayed in the render view.
Importantly, these annotations can come from data analysis results
from NumPy or numpy_interface.algorithms. Figure 2
shows an example using the Python Annotation filter.

Python View

While ParaView’s roots are in the loading and display of tradi-
tional 3D scientific visualizations, it has grown over the years
to support more data set types and different displays of those
data set types. These different displays, or "Views" in ParaView

SCIENTIFIC DATA ANALYSIS AND VISUALIZATION WITH PYTHON, VTK, AND PARAVIEW 37

Fig. 2: Three annotations filters in the scene show the minimum,
maximum, and total areas of polygons in the sphere source.

parlance, include a 3D interactive rendering view, a histogram
view, a parallel coordinates view, and a large number of others.

One of these other view types is the Python View. This view
is similar to the programmable filter in that the user supplies a
Python script that generates some data. In the case of the Python
View, the data that is generated is an image to display in the
ParaView window. This makes it possible to use Python plotting
packages, such as matplotlib, to generate plots to be displayed
directly in ParaView.

Scripts used in the Python view are required to define two
functions, a setup_data function and a render function.
Rendering in the Python view is done on the local client, so data
that resides on remote server processes must first be brought over
to the client. Because data sets may be larger than the client’s
RAM, only a subset of the data arrays in a data set are copied to the
client. By default, no arrays are copied. Arrays can be requested
using functions available in the vtkPythonView class instance
that is passed in as an argument to the setup_data function,
e.g.,
def setup_data(view):

view.SetAttributeArrayStatus(0, \
vtkDataObject.POINT, "Density", 1)

The actual generation of the plot image is expected to be done in
the render function. This function is expected to take the same
view object as is passed to the setup_data function. It also
takes a width and height parameter that tells how large the plotted
image should be in terms of pixels. This function is expected to
return an instance of vtkImageData containing the plot image.
A few utilities are included in the paraview.python_view
module to convert Python arrays and images to vtkImageData.
An example that creates a histogram of an array named "Density"
is provided here:
def render(view, width, height):

from paraview \
import python_view.matplotlib_figure

figure = matplotlib_figure(width, height)

ax = figure.add_subplot(1,1,1)
ax.minorticks_on()
ax.set_title('Plot title')
ax.set_xlabel('X label')
ax.set_ylabel('Y label')

Process only the first visible object in the
pipeline browser
do = view.GetVisibleDataObjectForRendering(0)

dens = do.GetPointData().GetArray('Density')

Convert VTK data array to numpy array
from paraview.numpy_support import vtk_to_numpy

ax.hist(vtk_to_numpy(dens), bins=10)

return python_view.figure_to_image(figure)

For more information on the Python View, see Section 4.11 in
[Aya15] or [Qua13].

ParaViewWeb

ParaViewWeb is a framework for remote VTK and ParaView
processing and visualization via a web browser. The framework
on the server side is based on the Autobahn, Twisted, Six, and
ZopeInterface Python libraries. On the client side, ParaViewWeb
provides a set of JavaScript libraries that use WebGL, JQuery, and
Autobahn.js. Images are typically generated on the server and sent
to the client for display, but if the visualized geometry is small
enough, geometry can be sent to the client and rendered with
WebGL.

A nice feature of ParaViewWeb is that the server component
can be launched with pvpython. No separate web server is
needed. For example, on Linux, the following command launches
the ParaViewWeb server from the ParaView installation directory
./bin/pvpython \

lib/paraview-4.1/site-packages/paraview/\
web/pv_web_visualizer.py --port 8080 \

--content ./share/paraview-4.1/www \
--data-dir /path-to-share/ & \

Once the server is running, it can be accessed through a web
browser at the URL http://localhost:8080/apps/Visualizer. This
is one example application that comes with the framework. It
has much of the same functionality as the ParaView desktop
application. ParaViewWeb can also be used to display images
within an iPython notebook. For additional information about
using and extending the ParaViewWeb framework, see [Pvw15].

Fig. 3: The ParaViewWeb Visualizer application web interface.

Unified Server Bindings

As previously discussed, ParaView uses proxies to manage state
among VTK class instances associated with pipeline objects on
distributed process. For example, when the proxy for a cross-
section filter has its cutting plane property changed, the underlying
VTK filter on each process is updated so that is has the same

38 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

cutting plane. These instances are updated via a client/server com-
munication layer that is generated automatically using a wrapping
mechanism. The client/server layer consists of one communication
class per VTK class that serializes and deserializes state in the
VTK class.

As discussed, a similar wrapping process is also performed to
generate Python bindings for VTK classes and ParaView classes.
Each of these wrappings adds to the size of the executable files and
shared libraries. On very large scale parallel computing resources,
the amount of RAM available per node can be relatively limited.
As a result, when running ParaView on such a resource, it is
important to reduce the size of the executables as much as possible
to leave room for the data. One way to do this is to use the Python
wrapping to communicate among processes instead of using the
client/server communication class. Indeed, when this option is
enabled, the process of creating the special communication classes
is skipped. Instead, communication is performed by sending
strings with Python expressions to destination processes. These
expressions are then evaluated on each process to change the
state of local VTK classes. In this approach, we get the same
functionality as the custom client/server communication layer
wrapping, but with smaller executables.

Conclusions

Python has been integrated into VTK and ParaView for many
years. The integration continues to mature and expand as Python
is used in an increasing number of ways in both software pack-
ages. As Python continues to grow in popularity among the
scientific community, so too does the need for providing easy-
to-use Pythonic interfaces to scientific visualization tools. As
demonstrated in this paper, VTK and ParaView are well-positioned
to continue adapting to the future needs of scientific Python
programmers.

Future Work

VTK and ParaView currently support Python 2.6 and 2.7. Support
for Python 3 is targeted for sometime in 2016.

Acknowledgements

Contributions to Python support in VTK and ParaView have come
from many VTK community members. Deserving special recog-
nition are key contributors David Gobbi, Prabhu Ramachandran,
Ken Martin, Berk Geveci, Utkarsh Ayachit, Ben Boeckel, Andy
Cedilnik, Brad King, David Partyka, George Zagaris, Marcus
Hanwell, and Mathieu Malaterre.

REFERENCES

[Aya14] U. Ayachit, B. Geveci, Scientific data analysis and visualization
at scale in VTK/ParaView with NumPy, 4th Workshop on Python
for High Performance and Scientific Computing PyHPC 2014,
November, 2014.

[Aya15] U. Ayachit, The ParaView Guide: A Parallel Visualization Applica-
tion, Kitware, Inc. 2015, ISBN 978-1930934306.

[Gev14] B. Geveci, vtkPythonAlgorithm is great, Kitware Blog, September
10, 2014. http://www.kitware.com/blog/home/post/737

[Kit15] simple Module, http://www.paraview.org/ParaView/Doc/Nightly/
www/py-doc/paraview.simple.html

[Pvw15] ParaViewWeb, http://paraviewweb.kitware.com/#!/guide
[PyQt15] PyQt4 Reference Guide, http://pyqt.sourceforge.net/Docs/PyQt4/
[PyS15] PySide 1.2.2, https://pypi.python.org/pypi/PySide
[Qua13] C. Quammen. ParaView: Python View is now more versatile, http:

//www.kitware.com/blog/home/post/704

[Sch04] W. Schroeder, K. Martin, and B. Lorensen, The Visualization
Toolkit: An Object-Oriented Approach to 3D Graphics, 4th ed.
Kitware, Inc., 2004, ISBN 1-930934-19-X.

[Sni99] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra,
MPI - The Complete Reference: Volume 1, The MPI Core, 2nd ed.,
MIT Press, 1999, ISBN 0-262-69215-5.

[VTK15] VTK - The Visualization Toolkit, http://www.vtk.org/
[Wik15] VTK/Examples/Python, http://www.vtk.org/Wiki/VTK/Examples/

Python

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 39

Creating a Real-Time Recommendation Engine using
Modified K-Means Clustering and Remote Sensing

Signature Matching Algorithms

David Lippa‡∗, Jason Vertrees‡

F

Abstract—Built on Google App Engine (GAE), RealMassive encountered chal-
lenges while attempting to scale its recommendation engine to match its
nationwide, multi-market expansion. To address this problem, we borrowed
a conceptual model from spectral data processing to transform our domain-
specific problem into one that the GAE’s search engine could solve. Rather
than using a more traditional heuristics-based relevancy ranking, we filtered and
scored results using a modified version of a spectral angle. While this approach
seems to have little in common with providing a recommendation based on
similarity, there are important parallels: filtering to reduce the search space;
independent variables that can be resampled into a signature; a signature
library to identify meaningful similarities; and an algorithm that lends itself to
an accurate but flexible definition of similarity. We implemented this as a web
service that provides recommendations in sub-second time. The RealMassive
platform currently covers over 4.5 billion square feet of commercial real estate
inventory and is expanding quickly.

Index Terms—algorithms, clustering, recommendation engine, remote sensing

Introduction

RealMassive helps tenants and their representatives locate com-
mercial real estate (CRE) space to lease or buy. Finding suitable
space in a market can be difficult. Each tenant has specific
requirements, and often, the knowledge of the current market
lives exclusively in the memory of domain experts. Automated
recommendation tools have substantial value, provided that they
operate in real time on an ever-increasing dataset and provide
similar or better accuracy to the judgment of domain experts. Our
initial recommendation engine attempted to use a variance-based
calculation that could not scale to match our growing database
of CRE listings, which now covers more than 30 US markets
and 4.5 billion square feet. We set out to create a new real-time
recommendation engine to meet these needs while negotiating the
restrictions of our platform, Google App Engine (GAE). This is
a classic problem of pattern matching and information retrieval
adapted to a specific domain of expertise coupled with engineering
restrictions and product requirements.

GAE is a powerful platform built to scale, yet it brings
along certain challenges that make implementing algorithms, such

* Corresponding author: david.lippa@realmassive.com
‡ RealMassive, Inc.

Copyright © 2015 RealMassive, Inc. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

as a recommendation engine, more difficult. Several of these
constraints are particularly difficult to overcome. Instances are
outfitted with at most 1 GB of memory and prohibited from
executing native code with the exception of a few provided
libraries, such as numpy [Goo15]. Though fast for relevance-based
search operations, the GAE search engine trades speed for limited
functionality: only a small subset of mathematical functions (ad-
dition, subtraction, multiplication, division, minimum, maximum,
geographical distance, natural logarithm, and absolute value) are
available [Goo15]. Implementing algorithms via the GAE search
infrastructure keeps memory usage low, provided that the only
functionality needed is a very limited math toolbox.

We set out to implement our recommendation engine using
GAE search to produce a solution that fits within the constraints
of our platform. The search results are ordered not by search term
relevance, but by a modified version of a spectral angle—a simple
computation borrowed from the domain of linear algebra and
spectral analysis. The Spectral Angle Mapper (SAM) algorithm
treats each pixel of an image as an n-dimensional vector ~vi j
and computes the angle θ between ~vi j and a vector ~s for all

rows i and all columns j: cos−1
(

~s·~vi j

|~s||~vi j|

)
. A potential candidate

match usually has an angle between 5 and 10 degrees, while a
collinear match has an angle of 0. For remote sensing applica-
tions, SAM has a roughly 83% accuracy rate when predicting
exact signature matches [Pet11] in a variety of applications and
domains including: determining the chemical composition of stars
[Ric15], analyzing the health of vegetation [Zha09], measuring
the quality of an RGB image, and detecting camouflage in times
of war [Lan05]. Unfortunately, one of the weaknesses of the SAM
algorithm is that a collinear match can show up as a false positive1,
requiring additional algorithmic steps that takes vector magnitude
into account.

We can draw some important parallels between the recommen-
dation algorithm and SAM. The "pixels" of an image are similar
to the pool of candidates to match against. User inputs, which
in our case are spaces added to a CRE survey, can represent
a library of "signatures," with the intensity of each signature
component taking its value from each item’s orthogonal attributes.
The dependence between variables, such as cost per unit, number

1. A signature whose vector is (1,2,3) is an exact match when compared
against a candidate pixel of (10,20,30), since they are collinear and therefore
the angle between them is 0.

40 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 1: Clustering of 50 Spaces from across the US [Rea15].

of units, and total cost, are "within the same wavelength range,"
comparable to a spectral sensor’s center frequency and full-width
half maximum2. The attributes contained within an object are
like the wavelengths of a spectral signature, provided each vector
component is independent3 of all others. Furthermore, the false
positives observed from using SAM in remote sensing applications
translates into an asset when used as a recommendation score:
an angle of 0, regardless of vector magnitude, is indicative of
similarity.

Method

The implementation of our recommendation engine transforms a
domain-specific problem into a modified version of SAM. This
expands the potential use of Google App Engine to solve a subset
of linear algebra based problems using its search engine. There are
three phases of the algorithm: dynamically clustering user data to
produce signatures, applying fixed filters to limit search results,
and scoring those results based on a signature match instead of
search term relevance. Each are necessary to overcome one or
more constraints imposed by GAE: clustering reduces the length
of query strings and sort expressions, which are restricted to 2,000
and 5,000 characters respectively, and filtering keeps the results
within the 10,000 hit sort limit [Goo15].

The first phase starts with k-means clustering: the process of
breaking up n data points into k discrete clusters. Traditionally, one
divides the n data points into an initial set of clusters, whose new
center points are calculated as an unweighted average, causing the
clusters to shift in response to the distribution of their contents.
Iteratively, clusters are merged and center points are re-calculated
until no cluster intersects any other [Vat11]. We chose not to use
an iterative approach which has a worst-case complexity of 2Ω(n)

even in 2 dimensions [Vat11]. Though the worst case scenario

2. The full-width half maximum value for a band expresses the difference
between the extreme values that the center frequency could detect. For exam-
ple, QuickBird detects blue in the range of 446-512, whose center frequency
is 478 [War09].

3. When attributes are not independent of each other, some elements of the
signature are over-represented, skewing results. Mixing different types of units,
such as rates and values, is another form of variable dependence.

4. Since GAE restricts external libraries to be purely implemented in Python,
we have stripped out functionality from kdtree.py [Git15] that depends on
native code. Since the building KDTree is limited in size, we maintain a
KDTree singleton that periodically updates, following GAE’s guidelines of
eventual consistency.

5. The maximum number of iterations is determined by dlog2
(402.5

x

)
e,

where x is the starting radius.

doesn’t seem to arise in practice, we use a quick guess-and-
check method that has good asymptotic complexity and converges
quickly, even though other algorithms may produce better results.
The algorithm takes advantage of a few known attributes of the
data: there is a limited amount of overlap between data points
because they represent physical objects in 3-dimensional space;
the data points have a limited range since they are latitude and
longitude coordinates; and since we use the clusters as a geofence
in our search parameters, using a global KDTree of all building
coordinates in our datastore allows us to make a good estimation
of the initial cluster sizes. The algorithm executes as follows:

1) Create a set P of points p1, p2, . . . , pn, each representing
an office space.

2) Create a KDTree K using the set P.
3) Iterating while P is not empty, take the first point pi

and compute the radius ri of the circle containing the
nearest 50 neighboring buildings using a pre-built SciPy
KDTree4 with a starting maximum distance d = 0.082◦ ≈
9 km. Using K, find all nearest neighbors within ri, adding
them to cluster ci and removing them from P. Merge ci if
it intersects any other cluster.

4) If the number of clusters is greater than k, recursively
perform the previous step with the original set P and
2d as the new maximum distance. Otherwise, merge
intersecting clusters and compute a weighted centroid and
radius for each cluster.

The maximum number of recursive calls is determined by the
maximum distance between latitude and longitude points, which
if treated as cartesian coordinates, is

√
1802 +3602 ≈ 402.5, and

would have at most 26 calls5 when starting with an initial radius
of 1 meter ≈ 9 · 10−6 degrees. This never happens in practice,
since we take the nearest 50 buildings to compute the starting
radius. At worst, the radius, at its smallest, falls between 0.5 and
1 km, which would result in at most 17 recursive calls. The worst
case has a high constant, but is still asymptotically acceptable at
O(kn logk n). Since building the KDTree takes O(kn logk n) time
[Man01] and the clustering algorithm requires at most 26 passes,
each computing at most n lookups in the KDTree per pass at a total
cost of 26n logk n operations, the overall asymptotic complexity is
unchanged. The final result is similar to the mapless representation
of clusters shown in Fig 1. Once the spaces have been clustered, it
is trivial to compute each cluster’s aggregated characterization,
such as an average of each vector component, to produce its
signature ~sk.

The next part of the algorithm involves applying fixed filters
informed by domain expertise. For commercial real estate, this
includes the building type (such as "office", "industrial", etc.) and
location, along with any necessary exclusions6. These constraints
produce a reasonably sized subset of no more than 10,000 results
that can be matched against the signatures generated during the
clustering phase.

Executing the SAM algorithm on a reduced dataset of 10,000
items is comparable to performing material identification on a 115
x 87 pixel data collection7 from a 3-band multi-spectral sensor,
easily accomplished in sub-second time. The sample Python code
below illustrates the process of executing SAM on a 2-dimensional
array of pixels in R3:
from math import acos
import numpy as np

CREATING A REAL-TIME RECOMMENDATION ENGINE USING MODIFIED K-MEANS CLUSTERING AND REMOTE SENSING SIGNATURE MATCHING ALGORITHMS 41

def SAM(img, sig):
"""
>>> sig = [2, 2, 2]
>>> img = np.array([[(1, 2, 3), (1, 1, 0)],

[(4, 3, 2), (0, 1, 1)],
[(1, 1, 1), (4, 4, 1)]])

>>> SAM(img, sig)
"""
matches = []
sig_norm = sig/np.linalg.norm(sig)
for r in range(len(img)):
for c in range(len(img[r])):
pix = img[r][c]
cos_t = pix.dot(sig_norm)/np.linalg.norm(pix)
theta = acos(round(cos_t, 7))
if theta < .1745329: # 10 degrees, in radians
matches.append((r, c, theta))

return sorted(
matches,
cmp=lambda x, y: cmp(x[-1], y[-1]))

This solution fails our speed requirement, since it requires loading
the subset of candidates into memory and sorting the results.
GAE’s search service provides a faster mechanism in the form of
a sort expression, but it lacks the inverse cosine function [Goo15].
Our solution uses the cosine ratio as a proxy for the angle.
Since the components s1,s2, . . . ,sn of a signature vector ~s and
the components of all of the candidate vectors ~v1, ~v2, . . . , ~vn are all
non-negative, the cosine ratio between~s and ~vi =

~s·~vi
|~s||~vi| ∈ [0,1] and

is monotonically increasing. From this, we can deduce θ ∈ [0, π
2]

and is monotonically decreasing8. This means that sorting by
the cosine ratio in descending order is functionally equivalent to
sorting by the angle θ in ascending order to find the best match.

Results

From design to production, the recommendation engine took 3
weeks to complete, and in practice, has been performant, execut-
ing on every page view of a space [Rea15] and on-demand in
the survey view. To date, it has generated more than 302,925
recommendations, sifting through over 80,000 spaces at sub-
second speeds. The workload averaged in the thousands per
work day, with loads peaking at 18,327 per day and 1,407 per
minute9. These speeds were reached when deployed as part of
the RealMassive API10 on F4_1G instances, each outfitted with
a 2.4 Ghz proecssor, 1 GB RAM, and configured with automatic
scaling on a per-request basis [Goo15]. Benchmarks of the GAE
search service showed that search queries limited to 100 results
clocked in between 6-600 ms depending on caching and query
complexity. The clustering and SAM algorithm added up to
200 ms, mostly in the form of reads from the datastore prior to
building clusters. At 6-800 ms, GAE performed nearly 8 times
slower than consumer hardware11 but scaled well during traffic
spikes. Recently, we performed a stress test outside of a standard
use case: 80+ recommendations generated from 100+ user inputs
lagged at an unacceptable 3 seconds—a performance hit caused by
returning entire objects rather than utilizing a projection query, an

6. Some reasons to exclude are items that have insufficient data to be a valid
comparison or have been declined by a user.

7. For a 4:3 image: 4
√

10000
12 ≈ 115×3

√
10000

12 ≈ 87

8. This can easily be proven graphically or by contradiction: if the angle
θ > π

2 , at least one component of ~vi < 0 or one component of~s < 0.

optimization that would lower response time back to sub-second
speeds.

Future Work

There are three improvements that we can make to the recom-
mendation algorithm. First, we can use a 3-dimensional projection
for the geo-coordinates rather than cartesian coordinates. Earth-
Centered Earth-Fixed coordinates would make nearest-neighbor
calculations in the KDTree more accurate, especially with extreme
coordinates that are adjacent, but do not appear to be so when
represented in 2 dimensions. Second, we can consider generating
the clusters in parallel using a tasklet [Goo15]. And lastly, we
may investigate other cluster signature calculations, though aver-
aging vector components works well in practice and is simple to
implement.

Conclusions

Google App Engine provides a scalable infrastructure with an
advanced search engine that can be utilized for purposes beyond
typical search use cases. In this paper, we present a novel ap-
proach to recommendation systems by drawing parallels between
domain-specific recommendation matching and material identifi-
cation processes used in remote sensing. Remapping independent
object attributes into vectors allows for sub-second scoring and
sorting. This implementation enables RealMassive to scale its
recommendation engine and continue to innovate in an industry
that is currently hampered by closed data and its dependence upon
a select few domain experts.

Though our specific problem is a case of pattern matching, the
strategy of leveraging, rather than fighting, constraints can produce
innovations that prefer satisficing over optimizing [Bra00]. Rather
than simply considering only the input dataset, we used a related
dataset to inform initial cluster sizes, sacrificing some speed
in the average case to put an upper bound on the worst-case.
Instead of continuing to use a variance-based approach to signature
matching, the simpler Spectral Angle Mapper suffices for positive
vectors whose magnitude are irrelevant. The seemingly restrictive
toolbox provided by Google App Engine became a catalyst for
a mathematically simpler solution that yielded the speed and
accuracy required. Our experience with implementing a recom-
mendation engine on Google’s App Engine platform shows that
the structure, and not just the content, of a problem is significant,
and may be the key to a new breed of solutions.

Acknowledgments

The authors would like to thank Fatih Akici, Natalya Shelburne,
and Hannah Kocurek for providing suggestions and edits for this
paper.

Appendix

For a demonstration of RealMassive’s clustering service used by
the recommendation engine, you may use the search query lan-
guage described in our Apiary documentation with the clustering
endpoint https://www.realmassive.com/api/v1/spaces/cluster, such
as this.

9. Results were calculated as of Jun 27, 2015 from KeenIO event data.
10. http://docs.realmassive.apiary.io
11. Benchmarks were performed with the Opticks toolkit [Opt15] on a 614

x 512 pixels x 224 band AVARIS spectral data cube [AVA15], courtesy of
NASA/JPL-Caltech. Processing time was no larger than 3 seconds using a
memory-mapped file.

42 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

REFERENCES

[AVA15] AVARIS Home page. (2015, June 26). Retrieved from http://aviris.
jpl.nasa.gov/data/free_data.html

[Bra00] Bradley, P. S., Bennett, K. P., & Demiriz, A. (2000). Constrained
k-means clustering. Microsoft Research, Redmond, 1-8.

[DeC00] De Carvalho, O. A., & Meneses, P. R. (2000, February). Spectral
correlation mapper (SCM): an improvement on the spectral angle
mapper (SAM). In Summaries of the 9th JPL Airborne Earth Science
Workshop, JPL Publication 00-18 (Vol. 9). Pasadena, CA: JPL
Publication.

[Git15] Github. (2015, June 11). SciPy source code. Retrieved from https:
//github.com/scipy/scipy/blob/master/scipy/spatial/kdtree.py

[Goo15] Google. (2015, June 11). Google App Engine for Python 1.9.21 Doc-
umentation. Retrieved from https://cloud.google.com/appengine/
docs/python

[Lan05] Landgrebe, David A (2005). Signal Theory Methods in Multispectral
Remote Sensing. Hoboken, NJ: John Wiley & Sons.

[Man01] Maneewongvatana, S., & Mount, D. M. (2001). On the efficiency of
nearest neighbor searching with data clustered in lower dimensions
(pp. 842-851). Springer Berlin Heidelberg.

[Opt15] Opticks. (2015, June 26). Opticks remote sensing toolkit. Retrieved
from https://opticks.org

[Pet11] G. Petropoulos, K. Vadrevu, et. al. A Comparison of Spectral Angle
Mapper and Artificial Neural Network Classifiers Combined with
Landsat TM Imagery Analysis for Obtaining Burnt Area Mapping,
Sensors. 10(3):1967-1985. 2011.

[Rea15] RealMassive. (2015, June 10). Retrieved from https://www.
realmassive.com

[Ric15] M. Richmond. Licensed under Creative Commons. Re-
trieved from http://spiff.rit.edu/classes/phys301/lectures/
comp/comp.html

[Vat11] A. Vattani. k-means Requires Exponentially Many Iterations
Even in the Plane, Discrete Comput Geom. 45(4): 596–616.
2011.

[War09] T. Warner, G. Foody, M. Duane Nellis (2009). The SAGE
Handbook of Remote Sensing. Thousand Oaks, CA: SAGE
Publications Inc.

[Zha09] H. Zhang, Y. Lan, R. Lacey, W. Hoffmann, Y. Huang. Analysis
of vegetation indices derived from aerial multispectral and ground
hyperspectral data, International Journal of Agricultural and Bio-
logical Engineering. 2(3): 33. 2009.

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 43

The James Webb Space Telescope Data Calibration
Pipeline

Howard Bushouse‡∗, Michael Droettboom‡, Perry Greenfield‡

https://www.youtube.com/watch?v=o-D4TpRFza4

F

Abstract—The James Webb Space Telescope (JWST) is the successor to the
Hubble Space Telescope (HST) and is currently expected to be launched in late
2018. The Space Telescope Science Institute (STScI) is developing the software
systems that will be used to provide routine calibration of the science data
received from JWST. The calibration operations use a processing environment
provided by a Python module called stpipe that provides many common
services to each calibration step, relieving step developers from having to imple-
ment such functionality. The stpipe module provides common configuration
handling, parameter validation and persistence, and I/O management.

Individual steps are written as Python classes that can be invoked individ-
ually from within Python or from the stpipe command line. Any set of step
classes can be configured into a pipeline, with stpipe handling the flow of
data between steps. The stpipe environment includes the use of standard
data models. The data models, defined using json schema, provide a means of
validating the correct format of the data files presented to the pipeline, as well
as presenting an abstract interface to isolate the calibration steps from details of
how the data are stored on disk.

Index Terms—pipelines, astronomy

Introduction

Data coming from the electronic detectors in scientific instruments
attached to telescopes (both on the ground and in space) look
nothing like the end product on which astronomers do their
analysis or the pictures that show up in the media. Raw images
and spectra contain artifacts and extra signals that are intrinsic to
the instrumentation itself, rather than the source being observed.
These artifacts include things like dead detector pixels, pixel-to-
pixel variations in sensitivity, background signal from the detector
and instrument, non-linear detector response, anomalous signals
due to impacts of cosmic-rays, and spatial distortions due to the
optics. All anomalies must be removed or corrected before the data
are suitable for scientific analysis. In addition, processing such as
combining the data from multiple exposures and extracting one-
dimensional spectra from the two-dimensional detector format in
which they were recorded must also be performed. This is the job
of astronomical data reduction and calibration pipelines.

The Space Telescope Science Institute (STScI), which is the
science operations center for the Hubble Space Telescope (HST),
has developed and maintained data calibration pipelines for all

* Corresponding author: bushouse@stsci.edu
‡ Space Telescope Science Institute

Copyright © 2015 Howard Bushouse et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

of the HST scientific instruments and is now in the process of
developing the pipelines that will be used for the James Webb
Space Telescope (JWST) after it is launched in late 2018. The HST
pipelines for the different scientific instruments on the telescope
were developed over a span of more than 20 years and hence show
an evolution in both software languages and design. The pipelines
for each instrument, which now number 11 over the 25 year history
of HST, were all written independently of one another and used
an assortment of programming languages, including the Subset
Preprocessor (SPP) language [Tody83], which is unique to the
astronomical community, Fortran, C, and Python. This assortment
of languages made maintenance and enhancement rather difficult,
and precluded any code sharing between instruments. The HST
calibration pipelines also used monolithic, procedural designs,
with very little modularity. This approach worked as long as data
were allowed to flow uninterrupted from beginning to end, but
made it very difficult, if not impossible, to start or stop processing
midstream, skip one or more steps, or insert additional steps.
Customizing the processing in this way is often necessary for an
astronomer to get the most out of their particular observations.

The JWST calibration pipelines are being developed from
scratch using a completely new design approach and using almost
nothing but Python. There is a common framework for all 4 of
the scientific instruments, with extensive sharing of routines and
a common code base. The new design allows for flexibility in
swapping in and out specific processing steps, easily changing the
ordering of steps within pipelines, and the ability for astronomers
to plug-in custom processing. This flexibility is necessary due to
the fact that the knowledge of the science instruments and the
intricacies of the data they produce is constantly evolving, often
over the entire lifetime of the mission. The calibration pipelines
will be used not only in the production environment at STScI,
which will apply an initial round of processing to all data coming
from JWST and archiving the results, but will also be distributed
to astronmers to run at their home institutions. This gives the
users the ability to rerun and refine the processing applied to their
observations. The highly modular and flexible nature of the design
will allow them to even add in their own custom processing steps,
either as part of the pipeline itself or as standalone routines that
are run on the data and then reinserted back into the pipeline flow.

Before continuing, a clarification of exactly what we mean by
the term "pipeline" is in order. A high-level workflow management
system is used to guide the entire flow of data processing. This
end-to-end process includes the receipt of telemetry downlinks
from the telescope, reformatting the raw telemetry packets into

44 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

useful data file formats, integrating meta data from various
database systems, reducing and calibrating the raw data read
out from the detectors in order to remove instrumental artifacts,
storing the fully reduced data into an archive, and automaticlly
notifying the astronomers who obtained the observations that the
data are available. The calibration pipelines reported on here
concern only the middle step of reducing and calibrating the
raw images and spectra so that they are ready for scientific
analysis. As such, the calibration pipelines do not provide any
kind of high-level process management functions, interfaces to
databases, and so on. The calibration pipelines are strictly devoted
to applying a series of operations to the pixel values that comprise
an image in order to remove instrumental artifacts and place the
data values onto scales involving physical units. The particular
series of such steps varies according to the observation modes
used by the different instruments on the telescope. The calibration
pipelines define and control the data flow within these different
series of processing steps. The calibration pipelines, therefore,
don’t require a large, high-level task scheduling and workflow
management system (e.g. Luigi [BF12]). A separate high-level
process management system is used to control the execution of all
the pieces involved in the end-to-end system described above, of
which the calibration pipelines are one small part.

A primary goal for the JWST calibration pipelines is to have
the system distributable to astronomers to execute on their own
systems at their home institutions. It’s often necessary for an
astronomer to tailor or modify the details of the processing that’s
applied to their particular observations in order to get the greatest
scientific return. The calibration pipeline package has therefore
been designed to be as light-weight and self-contained as possible
in order to make it as easy as possible for users to install and
run themselves. The only external interface required is to our
Calibration Reference Data System (CRDS), which is used to
supply reference data needed by some of the calibration steps.
The CRDS server at STScI will accept requests for reference files
from the client on an astronomer’s home system and automatically
download the requested files to their systems for use locally.

stpipe

The heart - or perhaps more appropriately, the nervous system - of
the JWST calibration pipeline environment is a Python module
called stpipe. stpipe manages individual processing steps
that can be combined into pipelines. The stpipe environment
provides functionality that is common to all steps and pipelines so
that they behave in a consistent manner. It provides:

• running steps and pipelines from the command line
• parsing of configuration settings
• composing steps into pipelines
• file management and data I/O between pipeline steps
• interface to the Calibration Reference Data System

(CRDS)
• logging

Each pipeline step is embodied as a Python class, with a
pipeline being composed of multiple steps. Pipelines can in turn be
strung together, just like steps, to compose an even higher-order
flow. Steps and pipelines can be executed from the command-
line using stpipe, which is the normal mode of operations in
the production environment that processes data in real-time as it
is downlinked from the telescope. The step and pipeline classes

can also be instantiated and executed from within a Python shell,
which provides a lot of flexibility for developers when testing the
code and to astronomers who may need to occasionally tweak or
otherwise customize the processing of their particular data sets.

When run from the command line, stpipe handles the
parsing of configuration parameters that can be provided either as
arguments on the command line or within configuration files. Con-
figuration files use the well-known ini-file format and stpipe
uses the ConfigObj library to parse them. stpipe handles all of
the file I/O for each step and the passing of data between pipeline
steps, as well as providing access within each step to a common
logging facility. It also provides a common interface for all steps
to reference data files that are stored in the STScI Calibration
Reference Data System (CRDS). Having all of these functions
handled by the stpipe environment relieves developers from
having to include these features in each step or pipeline and
provides a consistent interface to users as well.

Command-line Execution

stpipe can be used from the command line to execute a
step or pipeline by providing either the class name of the
desired step/pipeline or a configuration file that references the
step/pipeline class and provides optional argument values. An
example that directly calls a class is:

> strun jwst_pipeline.SloperPipeline input.fits
--output_file="myimage.fits"

The same thing can be accomplished by specifying a config file,
e.g.:

> strun sloper.cfg input.fits

where sloper.cfg contains:

name = "SloperPipeline"
class = "jwst_pipeline.SloperPipeline"
output_file = "myimage.fits"
save_calibrated_ramp = True

Note that in the absence of the user explicitly specifying an output
file name for saving the results, stpipe includes a mechanism
for constructing an output file name that is composed of the input
root file name and the name of the pipeline or step class that has
been applied to produce the output.

Python Execution

Steps and pipelines can also be called from within Python using
the class "call" method:

>>> from jwst_pipeline import SloperPipeline
>>> SloperPipeline.call('input.fits',

config_file='sloper.cfg')

Logging

The stpipe logging mechanism is based on the standard Python
logging framework. The framework has certain built-in things
that it automatically logs, such as the step and pipeline start/stop
times, as well as platform information. Steps can log their own
specific items and every log entry is time-stamped. Every log
message that’s posted has an associated level of severity, including
DEBUG, INFO, WARN, ERROR, and CRITICAL (the same
levels provided in the Python stdlib). The user can control how
verbose the logging is via arguments in the config file or on the
command line.

THE JAMES WEBB SPACE TELESCOPE DATA CALIBRATION PIPELINE 45

Steps and Pipelines

Steps define the parameters that are available, their data types
(specified in "configspec" format), and their default values. As
mentioned earlier, users can override the default parameter values
by supplying values in configuration files or on the command-line.
Steps can be combined into pipelines, and pipelines are themselves
steps, allowing for arbitrary levels of nesting.

Simple linear pipelines can be constructed as a straight se-
quence of steps, where the output of each step feeds into the
input of the next. These linear pipelines can be started and
stopped at arbitrary points, via arguments supplied by the user,
with all of the status saved to disk and then resumed later if
desired. More complex (non-linear) pipelines can be defined using
a Python function, so that the flow between steps is completely
flexible. This is useful, for example, when the output of a step
is multiple products that need to be looped over by subsequent
steps. Because of their non-linear nature, these more complex
types of pipeline can not be started or stopped mid-stream. Both
types of pipelines, however, allow the user to skip certain steps by
supplying configuration overrides.

Step configuration files can also specify pre- and post-hooks,
to introduce custom processing into the pipeline. The hooks can
be Python functions or shell commands. This allows astronomers
to examine or modify data, or insert a custom correction, at any
point along the pipeline without needing to write their own Python
code.

A hypothetical pipeline is shown below. In this example, the
input data is modified in-place by each processing step and the
results passed along from one step to the next. The final result is
saved to disk by the stpipe environment. Each pipeline subclass
inherits from the Pipeline class. The subclass defines the Steps that
will be used so that the framework can configure parameters for
the individual Steps. This is done with the step_defs member,
which is a dictionary that maps step names to step classes. This
dictionary defines what the Steps are, but says nothing about
their order or how data flows from one Step to the next. That
is defined in Python code in the Pipeline’s process method. By
the time the Pipeline’s process method is called, the Steps in
step_defs will be instantiated as member variables.

from jwst_lib.stpipe import Pipeline

pipeline step imports
from jwst_pipeline.dq import dq_step
from jwst_pipeline.ipc import ipc_step
from jwst_pipeline.bias import bias_step
from jwst_pipeline.reset import reset_step
from jwst_pipeline.frame import frame_step
from jwst_pipeline.jump import jump_step
from jwst_pipeline.ramp import ramp_step

setup logging
import logging
log = logging.getLogger()
log.setLevel(logging.DEBUG)

the pipeline class
class SloperPipeline(Pipeline)

spec = """
save_cal = boolean(default=False)

"""

step definitions
step_defs = {"dq" : dq_step.DQInitStep,

"ipc" : ipc_step.IPCStep,
"bias" : bias_step.SuperBiasStep,

"reset" : reset_step.ResetStep,
"frame" : frame_step.LastFrameStep,
"jump" : jump_step.JumpStep,
"ramp_fit" : ramp_step.RampFitStep,
}

the pipeline process
def process(self, input):

log.info("Starting calwebb_sloper ...")

input = self.dq(input)
input = self.ipc(input)

don’t apply superbias to MIRI data
if input.meta.instrument.name != "MIRI":

input = self.bias(input)

only apply reset and lastframe to MIRI data
if input.meta.instrument.name == "MIRI":

input = self.reset(input)
input = self.frame(input)

input = self.jump(input)

save the results so far
if save_cal:

input.save(product_name(self, "cal"))

input = self.ramp_fit(input)

log.info("... ending calwebb_sloper")
return input

Another example listed below shows how a pipeline can be in-
cluded within a pipeline, just like a step, using all the same means
to declare the pipeline and receiving all the same configuration
handling from stpipe. In this example an existing pipeline is
first applied to the input, followed by two more individual steps.

from jwst_lib.stpipe import Pipeline

pipeline and step imports
from jwst_pipeline.pipeline import sloper_pipe
from jwst_pipeline.wcs import wcs_step
from jwst_pipeline.flat import flat_step

setup logging
import logging
log = logging.getLogger()
log.setLevel(logging.DEBUG)

the pipeline class
class MyPipeline(Pipeline)

step definitions
step_defs = {"sloper": sloper_pipe.SloperPipe,

"wcs" : wcs_step.WcsStep,
"flat" : flat_step.FlatStep,
}

the pipeline process
def process(self, input):

slope_model = self.sloper(input)
slope_model = self.wcs(slope_model)
result = self.flat(slope_model)

return result

Data Models

For nearly 35 years most astronomers, observatories, and astro-
nomical data processing packages have used a common data file
format known as the Flexible Image Transport System (FITS).

46 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

While a common file format has made it very easy to share data
across groups of people and software, the format is used in many
different ways to store the unique aspects of different types of
observational data (e.g. images versus spectra). The burden of
loading, parsing, and interpreting the contents of any particular
FITS file has always fallen to the processing code that’s trying
to do something to the data. For the JWST calibration pipelines,
the stpipe environment takes care of all the file I/O, leaving the
developers of steps and pipelines to concentrate on processing the
data itself.

This has been implemented through the use of software data
models in stpipe, through which it performs all the necessary
I/O between files on disk and the data models. The data models
allow the on-disk representation of the data to be abstracted from
the pipeline steps via the I/O mechanisms built into stpipe.
The use of software data models in the processing steps also
has the benefit of eliminating or at least being able to manage
dependencies between the various steps. Because all of the actual
science data and its associated meta data are completely self-
contained within a model, each step has all of the information
it needs to do its work. For example, if one of the final steps in a
particular pipeline gets modified in some way, there’s no need to
restart the processing for a particular data set from the beginning.
The results from the step immediately preceding the change can
be reloaded and the modified step executed from that point. If a
particular processing step changes the overall format or content of
the data set in some way, the result is saved in a different type
of data model. Each step can perform a check to ensure that the
input it’s been given conforms to the type of data model expected
in that step. Any inconsistencies will be detected immediately and
the process will shutdown with a warning to the user, rather than
the undesirable behavior of having a step crash because the input
data were not compatible with that step.

The stpipe models interface currently reads and writes FITS
files, but will soon also support the Advanced Scientific Data
Format (ASDF) file format being developed by STScI [DB15].
The interface provides the same methods of access within the
pipeline steps whether the data is on disk or already in memory.
Futhermore, the stpipe interface can decide the best way to
manage memory, rather than leaving it up to the code in individual
steps. The use of the data models isolates the processing code from
future changes in file formats or keywords.

Each model is a bundle of array or tabular data, along with
metadata. The structure of the data and metadata for any model
is defined using JSON Schema [Dro14]. JSON Schema works
with any structured data, such as YAML and XML. The data
model schemas are modular, such that a core schema that contains
elements common to all models can also include any number of
additional sub-schema that are unique to one or more particular
models.

An example is the simple "ImageModel", shown below, which
contains a total of three 2-dimensional data arrays. The schema
defines the name of each model attribute, its data type, array
dimensions (in the case of data arrays), and default values.
Attributes can also be designated as required or optional. The
"core.schema.json" and "sens.schema.json" files contain additional
definitions of metadata attributes.

{ "allOf": [
{"$ref": "core.schema.json"},
{"type" : "object",

"properties" : {

"data" :
{"type" : "data",
"title" : "The science data",
"fits_hdu" : "SCI",
"default" : 0.0,
"ndim" : 2,
"dtype" : "float32"
},

"dq" :
{"type" : "data",
"title" : "Data quality array",
"fits_hdu" : "DQ",
"default" : 0,
"dtype" : "uint32"
},

"err" :
{"type" : "data",
"title" : "Error array",
"fits_hdu" : "ERR",
"default" : 0.0,
"dtype" : "float32"
},
"sens" : {"$ref": "sens.schema.json"}

}
}

]
}

Within the pipeline or step code the developer loads a data model
using simple statements like:

from jwst_lib.stpipe import Step, cmdline
from jwst_lib import models

class FlatFieldStep(Step):

def process(self, input):

with models.ImageModel(input) as im:
result = flat_field.correct(im)

return result

In a case like this, stpipe takes care of determining whether
"input" is a model already loaded into memory or a file on disk. If
the latter, it opens and loads the file contents into an ImageModel.
The step code then has direct access to all the attributes of the
ImageModel, such as the data, dq, and err arrays defined in the
ImageModel schema above. If this is the only step being executed,
stpipe will save the returned data model to disk. If this step
is part of a pipeline, on the other hand, stpipe will pass the
returned data model in memory to the next step. At the end of the
pipeline the final model will be saved to disk.

Conclusions

We are in the process of building the data calibration pipelines
that will be used to remove instrumental artificats from images
and spectra obtained by the James Webb Space Telescope. The
calibration pipelines rely on the stpipe environment developed
at STScI, which handles all data I/O and configuration hanlding
for the individual calibration steps. The entire package is designed
to be relatively light-weight and self-contained so that it can be
easily distributed to and run by individual astronomers at their
home institutions. Calibration steps and pipelines can be executed
from the command line, or their classes can be instantiated and
called from with an interactive Python environment. This latter
feature in particular allows for great flexibility to tweak or enhance
the processing that’s applied to a given data set. A user can, for

THE JAMES WEBB SPACE TELESCOPE DATA CALIBRATION PIPELINE 47

example, invoke a standard pipeline or a set of individual steps
from within Python and at any point during the processing apply
their own custom processing to the resulting data model in an
interactive way. The ability to interact in real time with the data as
it proceeds through the processing is new to the JWST calibration
environment and did not exist at all for users of Hubble Space
Telescope data.

REFERENCES

[BF12] E. Bernhardsson and E. Freider. The Luigi Python module, https:
//github.com/spotify/luigi

[Dro14] M. Droettboom. JSON Schema, http://json-schema.org
[DB15] M. Droettboom and E. Bray. The ASDF Standard, http://asdf-

standard.readthedocs.org/en/latest/
[Tody83] D. Tody. A Reference Manual for the IRAF Subset Preprocessor

Language, 1983

48 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Circumventing The Linker: Using SciPy’s BLAS and
LAPACK Within Cython

Ian Henriksen‡∗

https://www.youtube.com/watch?v=R4yB-8tB0J0

F

Abstract—BLAS, LAPACK, and other libraries like them have formed the un-
derpinnings of much of the scientific stack in Python. Until now, the standard
practice in many packages for using BLAS and LAPACK has been to link each
Python extension directly against the libraries needed. Each module that calls
these low-level libraries directly has had to link against them independently.
The task of finding and linking properly against the correct libraries has, in the
past, been a substantial obstacle in the development and distribution of Python
extension modules.

Cython has existing machinery that allows C-level declarations to be shared
between Cython-compiled extension modules without linking against the original
libraries. The Cython BLAS and LAPACK API in SciPy uses this functionality to
make it so that the same BLAS and LAPACK libraries that were used to compile
SciPy can be used in Python extension modules via Cython. This paper will
demonstrate how to create and use these APIs for both Fortran and C libraries
in a platform-independent manner.

Index Terms—Cython, BLAS, LAPACK, SciPy

Introduction

Many of the primary underpinnings of the scientific Python stack
rely on interfacing with lower-level languages, rather than working
with code that is exclusively written in Python. SciPy [SciPy], for
example, is a collection of algorithms and libraries implemented
in a variety of languages that are wrapped to provide convenient
and usable APIs within Python. Because programmers often need
to call low-level libraries, F2PY [F2PY], Cython [Cython], and
a variety of similar tools have been introduced to simplify that
process.

In spite of the large number of tools for automatically wrap-
ping low-level libraries, interfacing with low-level languages can
still present a significant challenge. If performance bottlenecks
depend on any third party algorithms, developers are faced with
the daunting task of rewriting their algorithms to interface with
completely different packages and adding large dependencies on
existing low-level libraries. Adding these dependencies to an
existing project can complicate the build process and expose
the project to a much wider variety of bugs. When developers
distribute code meant to work reliably with a variety of compilers
in a variety of environments, low-level dependencies become a

* Corresponding author: iandh@byu.edu
‡ Brigham Young University Math Department

Copyright © 2015 Ian Henriksen. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

never-ending source of trouble. The problems caused by these
dependencies are further complicated by the fact that, currently,
each Python module must shoulder the burden of distributing or
finding the libraries it uses.

For example, consider the case of a simple tridiagonal matrix
solve. This sort of solve can be done easily within Python.

import numpy as np
def pytridiag(a, b, c, x):

""" Solve the system A y = x for y
where A is the square matrix with subdiagonal
'a', diagonal 'b', and superdiagonal 'c'. """
A = np.zeros((b.shape[0], b.shape[0]))
np.fill_diagonal(A[1:], a)
np.fill_diagonal(A, b)
np.fill_diagonal(A[:,1:], c)
return np.linalg.solve(A, x)

This function works fine for small problems, but, if it needs to
be called frequently, a more specialized algorithm could provide
major improvements in both speed and accuracy. An ideal candi-
date for this sort of optimization is LAPACK’s [LAPACK] routine
dgtsv. That routine can be used within Cython to solve the same
problem more quickly and with fewer numerical errors.

cython: wraparound = False
cython: boundscheck = False

cdef extern from "lapacke.h" nogil:
void dgtsv "LAPACK_dgtsv"(int *n, int *nrhs,

double *dl, double *d,
double *du, double *b,
int *ldb, int *info)

cpdef tridiag(double[::1] a, double[::1] b,
double[::1] c, double[::1] x):

cdef int n=b.shape[0], nrhs=1, info
Solution is written over the values in x.
dgtsv(&n, &nrhs, &a[0], &b[0], &c[0], &x[0],

&n, &info)

Though this process for calling an external function from a library
is not particularly difficult, the setup file for the Python module
now must find a proper LAPACK installation. If there are several
different versions of LAPACK present, a suitable one must be
chosen. The proper headers and libraries must be found, and, if at
all possible, binary incompatibilities between compilers must be
avoided. If the desired routine is not a part of one of the existing
C interfaces, then it must be called via the Fortran ABI and the
name mangling schemes used by different Fortran compilers must
be taken into account. All of the code needed to do this must also
be maintained so that it continues to work with new versions of the

CIRCUMVENTING THE LINKER: USING SCIPY’S BLAS AND LAPACK WITHIN CYTHON 49

different operating systems, compilers, and BLAS and LAPACK
libraries.

An effective solution to this unusually painful problem is to
have existing Python modules provide access to the low-level
libraries that they use. NumPy has provided some of this sort
of functionality for BLAS and LAPACK by making it so that
the locations of the system’s BLAS and LAPACK libraries can
be found using NumPy’s distutils module. Unfortunately, the
existing functionality is only usable at build time, and does little
to help users that do not compile NumPy and SciPy from source.
It also does not include the various patches used by SciPy to
account for bugs in different BLAS and LAPACK versions and
incompatibilities between compilers.

Cython has provided similar functionality that allows C-level
APIs to be exported between Cython modules without linking.
In the past, these importing systems have been used primarily
to share Cython-defined variables, functions and classes between
Cython modules. If used carefully, however, the existing machin-
ery in Cython can be used to expose functions and variables from
existing libraries to other extension modules. This makes it so that
other Python extension modules can use the functions it wraps
without having to build, find, or link against the original library.

The Cython API for BLAS and LAPACK

Over the last year, a significant amount of work has been devoted
to exposing the BLAS and LAPACK libraries within SciPy at the
Cython level. The primary goals of providing such an interface
are twofold: first, making the low-level routines in BLAS and
LAPACK more readily available to users, and, second, reducing
the dependency burden on third party packages.

Using the new Cython API, users can now dynamically load
the BLAS and LAPACK libraries used to compile SciPy without
having to actually link against the original BLAS and LAPACK
libraries or include the corresponding headers. Modules that use
the new API also no longer need to worry about which BLAS
or LAPACK library is used. If the correct versions of BLAS and
LAPACK were used to compile SciPy, the correct versions will
be used by the extension module. Furthermore, since Cython uses
Python capsule objects internally, C and C++ modules can easily
access the needed function pointers.

BLAS and LAPACK proved to be particularly good candidates
for a Cython API, resulting in several additional benefits:

• Python modules that use the Cython BLAS/LAPACK
API no longer need to link statically to provide binary
installers.

• The custom ABI wrappers and patches used in SciPy
to provide a more stable and uniform interface across
different BLAS/LAPACK libraries and Fortran compilers
are no longer needed for third party extensions.

• The naming schemes used within BLAS and LAPACK
make it easy to write type-dispatching versions of BLAS
and LAPACK routines using Cython’s fused types.

In providing these low-level wrappers, it was simplest to
follow the calling conventions of BLAS and LAPACK as closely
as possible, so all arguments are passed as pointers. Using the
new Cython wrappers, the tridiagonal solve example shown above
can be implemented in Cython in nearly the same way as before,
except that all the needed library dependencies have already been
resolved within SciPy.

cython: wraparound = False
cython: boundscheck = False

from scipy.linalg.cython_lapack cimport dgtsv

cpdef tridiag(double[::1] a, double[::1] b,
double[::1] c, double[::1] x):

cdef int n=b.shape[0], nrhs=1, info
Solution is written over the values in x.
dgtsv(&n, &nrhs, &a[0], &b[0], &c[0], &x[0],

&n, &info)

Since Cython uses Python’s capsule objects internally for the
cimport mechanism, it is also possible to extract function pointers
directly from the module’s __pyx_capi__ dictionary and cast
them to the needed type without writing the extra shim.

Exporting Cython APIs for Existing C Libraries

The process of exposing a Cython binding for a function or
variable in an existing library is relatively simple. First, as an
example, consider the following C file and the corresponding
header.
// myfunc.c
double f(double x, double y){

return x * x - x * y + 3 * y;
}

// myfunc.h
double f(double x, double y);

This library can be compiled by running clang -c myfunc.c
-o myfunc.o.

This can be exposed at the Cython level and exported as a
part of the resulting Python module by including the header in
the pyx file, using the function from the C file to create a Cython
shim with the proper signature, and then declaring the function
in the corresponding pxd file without including the header file. A
similar approach using function pointers is also possible. Here’s a
minimal example that demonstrates this process:
cy_myfunc.pyx
Use a file-level directive to link
against the compiled object.
distutils: extra_link_args = ['myfunc.o']
cdef extern from 'myfunc.h':

double f(double x, double y) nogil
Declare both the external function and
the Cython function as nogil so they can be
used without any Python operations
(other than loading the module).
cdef double cy_f(double x, double y) nogil:

return f(x, y)

cy_myfunc.pxd
Don't include the header here.
Only give the signature for the
Cython-exposed version of the function.
cdef double cy_f(double x, double y) nogil

cy_myfunc_setup.py
from distutils.core import setup
from Cython.Build import cythonize
setup(ext_modules=cythonize('cy_myfunc.pyx'))

From here, once the module is built, the Cython wrapper for the
C-level function can be used in other modules without linking
against the original library.

Exporting a Cython API for an existing Fortran library

When working with a Fortran library, the name mangling scheme
used by the compiler must be taken into account. The simplest

50 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

way to work around this would be to use Fortran 2003’s ISO
C binding module. Since, for the sake of platform/compiler
independence, such a recent version of Fortran cannot be used
in SciPy, an existing header with a small macro was used to
imitate the name mangling scheme used by the various Fortran
compilers. In addition, for this approach to work properly, all the
Fortran functions in BLAS and LAPACK were first wrapped as
subroutines (functions without return values) at the Fortran level.
! myffunc.f
! The function to be exported.

double precision function f(x, y)
double precision x, y
f = x * x - x * y + 3 * y

end function f

! myffuncwrap.f
! A subroutine wrapper for the function.

subroutine fwrp(out, x, y)
external f
double precision f
double precision out, x, y
out = f(x, y)

end

// fortran_defs.h
// Define a macro to handle different
// Fortran naming conventions.
// Copied verbatim from SciPy.
#if defined(NO_APPEND_FORTRAN)
#if defined(UPPERCASE_FORTRAN)
#define F_FUNC(f,F) F
#else
#define F_FUNC(f,F) f
#endif
#else
#if defined(UPPERCASE_FORTRAN)
#define F_FUNC(f,F) F##_
#else
#define F_FUNC(f,F) f##_
#endif
#endif

// myffuncwrap.h
#include "fortran_defs.h"
void F_FUNC(fwrp, FWRP)(double *out, double *x,

double *y);

cyffunc.pyx
cdef extern from 'myffuncwrap.h':

void fort_f "F_FUNC(fwrp, FWRP)"(double *out,
double *x,
double *y) nogil

cdef double f(double *x, double *y) nogil:
cdef double out
fort_f(&out, x, y)
return out

cyffunc.pxd
cdef double f(double *x, double *y) nogil

Numpy’s distutils package can be used to build the Fortran
libraries and compile the final extension module. The interoper-
ability between NumPy’s distutils package and Cython is limited,
but the C file resulting from the Cython compilation can still be
used to create the final extension module.
cyffunc_setup.py
from numpy.distutils.core import setup
from numpy.distutils.misc_util import Configuration
from Cython.Build import cythonize
def configuration():

config = Configuration()
config.add_library('myffunc',

sources=['myffunc.f',

'myffuncwrap.f'])
config.add_extension('cyffunc',

sources=['cyffunc.c'],
libraries=['myffunc'])

return config
Run Cython to get the needed C files.
Doing this separately from the setup process
causes any Cython file-specific distutils
directives to be ignored.
cythonize('cyffunc.pyx')
setup(configuration=configuration)

There are many routines in BLAS and LAPACK, and creating
these wrappers currently still requires a large amount of boilerplate
code. When creating these wrappers, it was easiest to write Python
scripts that used F2PY’s existing functionality for parsing Fortran
files to generate a set of function signatures that could, in turn, be
used to generate the needed code.

Since SciPy supports several versions of LAPACK, it was also
necessary to determine which routines should be included as a
part of the new Cython API. In order to support all currently used
versions of LAPACK, we limited the functions in the Cython API
to include only those that had a uniform interface from version 3.1
through version 3.5.

Conclusion

The new Cython API for BLAS and LAPACK in SciPy helps
to alleviate the substantial packaging burden imposed on Python
packages that use BLAS and LAPACK. It provides a model for
including access to lower-level libraries used within a Python
package. It makes BLAS and LAPACK much easier to use for
new and expert users alike and makes it much easier for smaller
modules to write platform and compiler independent code. It
also provides a model that can be extended to other packages
to help fight dependency creep and reduce the burden of package
maintenance. Though it is certainly not trivial, it is still fairly easy
to add new Cython bindings to an existing library. Doing so makes
the lower-level libraries vastly easier to use.

Going forward, there is a great need for similar APIs for a
wider variety of libraries. Possible future directions for the work
within SciPy include using Cython’s fused types to expose a
more type-generic interface to BLAS and LAPACK, writing better
automated tools for generating wrappers that expose C, C++,
and Fortran functions automatically, and making similar interfaces
available in ctypes and CFFI.

REFERENCES

[SciPy] Stéfan van der Walt, S. Chris Colbert and Gaël Varoquaux. The
NumPy Array: A Structure for Efficient Numerical Computa-
tion, Computing in Science & Engineering, 13, 22-30 (2011),
DOI:10.1109/MCSE.2011.37

[Cython] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin,
Dag Sverre Seljebotn and Kurt Smith. Cython: The Best of Both
Worlds, Computing in Science and Engineering, 13, 31-39 (2011),
DOI:10.1109/MCSE.2010.118

[F2PY] Pearu Peterson. F2PY: a tool for connecting Fortran and Python
programs, International Journal of Computational Science and En-
gineering, 4 (4), 296-305 (2009), DOI:10.1504/IJCSE.2009.029165

[LAPACK] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, D. Sorensen. LAPACK Users’ Guide Third
Edition, Society for Industrial and Applied Mathematics,
1999.

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 51

Mesa: An Agent-Based Modeling Framework

David Masad‡∗, Jacqueline Kazil‡

https://www.youtube.com/watch?v=lcySLoprPMc

F

Abstract—Agent-based modeling is a computational methodology used in so-
cial science, biology, and other fields, which involves simulating the behavior
and interaction of many autonomous entities, or agents, over time. There is
currently a hole in this area in Python’s robust and growing scientific ecosys-
tem. Mesa is a new open-source, Apache 2.0 licensed package meant to fill
that gap. It allows users to quickly create agent-based models using built-in
core components (such as agent schedulers and spatial grids) or customized
implementations; visualize them using a browser-based interface; and analyze
their results using Python’s data analysis tools. Its goal is to be a Python 3-
based alternative to other popular frameworks based in other languages such
as NetLogo, Repast, or MASON. Since the framework is being built from scratch
it is able to incorporate lessons from other tools. In this paper, we present Mesa’s
core features and demonstrate them with a simple example model.1

Index Terms—agent-based modeling, multi-agent systems, cellular automata,
complexity, modeling, simulation

Introduction

Agent-based modeling involves simulating the behavior and inter-
action of many autonomous entities, or agents, over time. Agents
are objects that have rules and states, and act accordingly with each
step of the simulation [Axtell2000]. These agents may represent
individual organisms, humans, entire organizations, or abstract
entities. Robert Axtell, one of the early scholars of agent-based
models (ABMs), identified the following advantages [Axtell2000]:

1) Unlike other modeling approaches, ABMs capture the
path as well as the solution, so one can analyze the
system’s dynamic history.

2) Most social processes involve spatial or network at-
tributes, which ABMs can incorporate explicitly.

3) When a model (A) produces a result (R), one has estab-
lished a sufficiency theorem, meaning R if A.

To understand the utility of agent-based modeling, consider
one of the earliest and best-known models, created by Thomas
Schelling. Schelling wanted to test the theory that segregated
neighborhoods can arise not just by active racism, but due
to only a mild preference for neighbors of the same ethnic-
ity [Schelling1971]. The model consists of majority-group and
minority-group agents living on a grid, who have a preference for

* Corresponding author: david.masad@gmail.com, jackiekazil@gmail.com
‡ Department of Computational Social Science, George Mason University

Copyright © 2015 David Masad et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

1. Mesa is available on GitHub at https://github.com/projectmesa/mesa

only several neighbors of the same group. When that preference is
not met, they move to a different grid cell. The model demonstrates
that even a mild preference for same-group neighbors leads to
a dramatic degree of segregation. This is an example of the
emergence of a higher-order phenomena from the interactions
of lower-level entities, and demonstrates the link between agent-
based modeling and complexity theory, and complex adaptive
systems in particular [Miller2009].

There are currently several tools and frameworks in wide use
for agent-based modeling2, particularly NetLogo [Wilensky1999],
Repast [North2013], and MASON [Luke2005]. From our per-
spective, all of these share a key weakness: they do not use
Python. This is not just a matter of parochial preference. In
recent years, Python has become an increasingly popular language
for scientific computing [Perez2011], supported by a mature and
growing ecosystem of tools for analysis and modeling. Python is
widely considered a more natural, easy-to-use language than Java,
which is used for Repast and MASON; and unlike NetLogo’s
custom scripting language, Python is a general purpose pro-
gramming language. Furthermore, unlike the other frameworks,
Python allows interactive analysis of model output data, through
the IPython Notebook [Perez2007] or similar tools. Despite these
advantages, and despite several partial efforts (e.g. [Zvoleff2013],
[Sayama2013]), a Python agent-based modeling framework does
not yet exist. Mesa is intended to fill this gap.

Mesa is a new open-source, Apache 2.0 licensed Python
package that allows users to quickly create agent-based models
using built-in core components (such as agent schedulers and
spatial grids) or customized implementations; visualize them using
a browser-based interface; and analyze their results using Python’s
data analysis tools.

Designing a new framework from the ground up also allows us
to implement features not found in existing frameworks. For ex-
ample, as we explain in more detail below, other ABM frameworks
tend to use a single agent activation regime by default; in Mesa,
we implement several agent schedulers and require the modeler to
specify which one is being used. We also implement several useful
tools to accelerate common model analysis tasks: a data collector
(present only in Repast) and a batch runner (available in Repast
and NetLogo only via menu-driven systems), both of which can
export their results directly to pandas [McKinney2011] data frame
format for immediate analysis.

2. Throughout this paper, and in Mesa’s documentation more broadly, we
use the term ’agent-based model’ to encompass a wide range of related
computational models as well, such as multi-agent systems, cellular automata
and individual-based model.

52 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 1: A Mesa implementation of the Schelling segregation model,
being visualized in a browser window and analyzed in an IPython
notebook.

While interactive data analysis is important, direct visual-
ization of every model step is also a key part of agent-based
modeling, both for debugging, and for developing an intuition
of the dynamics that emerge from the model. Mesa facilitates
such live visualization as well. It avoids issues of system-specific
GUI dependencies by using the browser as a front-end, giving
framework and model developers access to the full range of
modern JavaScript data visualization tools.

In the remainder of this paper, we will present Mesa’s architec-
ture and core features. To illustrate their use, we will describe and
build a simple agent-based model, drawn from econophysics and
presenting a statistical mechanics approach to wealth distribution
[Dragulescu2002]. The core of the model is as follows: there are
some number of agents, all of whom begin with 1 unit of money. At
every step of the model, an agent gives 1 unit of money (if they have
it) to some other agent. Despite its simplicity, this model yields
results that are often unexpected to those not familiar with it. For
our purposes, it also easily demonstrates Mesa’s core features.

Architecture

Overview

The guiding principle of Mesa’s architecture is modularity. Mesa
makes minimal assumptions about the form a model will take.
For example, while many models have spatial components, many
others do not, while some may involve multiple separate spaces.
Similarly, visualizations which display each step of a model may
be a critical component of some models and completely unneces-
sary for others. Thus Mesa aims to offer a set of components that
can be easily combined and extended to build different kinds of
models.

We divide the modules into three overall categories: modeling,
analysis and visualization. The modeling components are the core
of what’s needed to build a model: a Model class to store model-
level parameters and serve as a container for the rest of the
components; one or more Agent classes which describe the model
agents; most likely a scheduler which controls the agent activation
regime, and handles time in the model in general, and components
describing the space and/or network the agents are situated in.
The analysis components are the data collectors used to record
data from each model run, and batch runners for automating
multiple runs and parameter sweeps. Finally, the visualization
components are used to map from a model object to one or more
visual representations via a server interface to a browser window.
Figure 2 shows a simple UML diagram of a typical Mesa model.

Fig. 2: Simplified UML diagram of Mesa architecture.

To begin building the example model described above, we first
create two classes: one for the model object itself, and one the
model agents. The model’s one parameter is the number of agents,
and each agent has a single variable: how much money it currently
has. Each agent also has only a single action: give a unit of money
to another agent. (The numbers in comments of the code below
correspond to notes under the code block).

from mesa import Model, Agent

class MoneyAgent(Agent):
""" An agent with fixed initial wealth."""
def __init__(self, unique_id):
self.unique_id = unique_id # 1.
self.wealth = 1

class MoneyModel(Model):
"""A model with some number of agents."""
def __init__(self, N):
self.num_agents = N
The scheduler will be added here
self.create_agents()

def create_agents(self):
"""Method to create all the agents."""
for i in range(self.num_agents):
a = MoneyAgent(i)
Now what? See below.

1) Each agent should have a unique identifier, stored in the
unique_id field.

Scheduler

The scheduler is a model component which deserves special
attention. Unlike systems dynamics models, and dynamical sys-
tems more generally, time in agent-based models is almost never
continuous; ABMs are, at bottom, discrete-event simulations.
Thus, scheduling the agents’ activation is particularly important,
and the activation regime can have a substantial effect on the
behavior of a simulation [Comer2014]. Many ABM frameworks
do not make this easy to change. For example, NetLogo defaults
to a random activation system, while MASON’s scheduler is
uniform by default. By separating out the scheduler into a separate,
extensible class, Mesa both requires modelers to specify their
choice of activation regime, and makes it easy to change and

MESA: AN AGENT-BASED MODELING FRAMEWORK 53

observe the results. Additionally, the scheduler object serves as
the model’s storage structure for active agents.

Many models distinguish between a step (sometimes called a
tick) of the model, and an activation of a single agent. A step of
the model generally involves the activation of one or more agents,
and frequently of all of the agents. There are numerous possible
scheduling regimes used in agent-based modeling, including:

• Synchronous or simultaneous activation,
where all agents act simultaneously. In practice,
this is generally implemented by recording each
agent’s decision one at a time, but not altering the
state of the model until all agents have decided.

• Uniform activation, where all agents are activated
in the same order each step of the model.

• Random activation, where each agent is activated
each step of the model, but the order in which
they are activated is randomized for each step.

• Random interval activation, where the interval
between each activation is drawn from a random
distribution (most often Poisson). In this regime,
there is no set model step; instead, the model
maintains an internal ’clock’ and schedule which
determines which agent will be activated at which
time on the internal clock.

• More exotic activation regimes may be used as
well, such as agents needing to spend resources
to activate more frequently.

All scheduler classes share a few standard method conven-
tions, in order to make them both simple to use and seamlessly
interchangeable. Schedulers are instantiated with the model object
they belong to. Agents are added to the schedule using the add
method, and removed using remove. Agents can be added at the
very beginning of a simulation, or any time during its run -- e.g.
as they are born from other agents’ reproduction.

The step method runs one step of the model, activating
agents accordingly. It is here that the schedulers primarily differ
from one another. For example, the uniform BaseScheduler
simply loops through the agents in the order they were added,
while RandomActivation shuffles their order prior to looping.

Each agent is assumed to have a step method of its own,
which receives the model state as its sole argument. This is the
method that the scheduler calls in order to activate each agent.

The scheduler maintains two variables determining the model
clock. steps counts how many steps of the model have occurred,
while time tracks the model’s simulated clock time. Many mod-
els will only utilize steps, but a model using Poisson activation,
for example, will track both separately, with steps counting in-
dividual agent activations and time the scheduled model time of
the most recent activation. Some models may implement particular
schedules simulating real time: for example, time may attempt
to simulate real-world time, where agent activations simulate them
as they engage in different activities of different durations based
on the time of day.

Now, let’s implement a schedule in our example model. We
add a RandomActivation scheduler to the model, and add
each created agent to it. We also need to implement the agents’
step method, which the scheduler calls by default. With these
additions, the new code looks like this:

from mesa.time import RandomActivation

class MoneyAgent(Agent):
...

def step(self, model):
"""Give money to another agent."""
if self.wealth > 0:
Pick a random agent
other = random.choice(model.schedule.agents)
Give them 1 unit money
other.wealth += 1
self.wealth -= 1

class MoneyModel(Model):

def __init__(self, N):
self.num_agents = N
Adding the scheduler:
self.schedule = RandomActivation(self) # 1.
self.create_agents()

def create_agents(self):
"""Method to create all the agents."""
for i in range(self.num_agents):
a = MoneyAgent(i)
self.schedule.add(a)

def step(self):
self.schedule.step() # 2.

def run_model(self, steps):
for _ in range(steps): # 3.
self.step()

1) Scheduler objects are instantiated with their Model ob-
ject, which they then pass to the agents at each step.

2) The scheduler’s step method activates the step meth-
ods of all the agents that have been added to it, in this
case in random order.

3) Because the model has no inherent end conditions, the
user must specify how many steps to run it for.

Space

Many agent-based models have a spatial element. In spatial mod-
els, agents may have fixed positions or move around, and interact
with their immediate neighbors or with agents and other objects
nearby. The space may be abstract (as in many cellular automata),
or represent many possible scales, from a single building to a
region to the entire world. The majority of models use two-
dimensional spaces, which is how Mesa’s current space mod-
ules are implemented. Many abstract model spaces are toroidal
(doughnut-shaped), meaning that the edges ’wrap around’ to the
opposite edge. This prevents model artifacts from arising at the
edges, which have fewer neighbors than other locations.

Mesa currently implements two broad classes of space: grid,
and continuous. Grids are discrete spaces, consisting of rectangu-
lar cells; agents and other objects may only be in a particular cell
(or, with some additional coding, potentially span multiple cells),
but not between cells. In continuous space, in contrast, agents can
have any arbitrary coordinates. Both types of space assume by
default that agents store their location as an (x, y) tuple named
pos.

There are several specific grid classes, all of which inherit from
a root Grid class. At its core, a grid is a two-dimensional array
with methods for getting the neighbors of particular cells, adding
and removing agents, etc. The default Grid class does not enforce
what each cell may contain. However, SingleGrid ensures
that each cell contains at most one object, while MultiGrid

54 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 3: Grid topology. Moore and Von Neumann neighborhoods of
radius 1; in a torus, lettered edges connect to one another.

explicitly makes each cell be a set of 0 or more objects. There
are two kinds of cell neighborhoods: The first is a cell’s Moore
neighborhood that is the 8 cells surrounding it, including the
diagonals; the second is the Von Neumann neighborhood which
is only the 4 cells immediately above, below, and to its left and
right. Which neighborhood type to use will vary based on the
specifics of each model, and are specified in Mesa by an argument
to the various neighborhood methods.

The ContinuousSpace class also inherits from Grid, and
uses the grid as a way of speeding up neighborhood lookups; the
number of cells and the arbitrary limits of the space are provided
when the space is created, and are used internally to map between
spatial coordinates and grid cells. Neighbors here are defined as
all agents within an arbitrary distance of a given point. To find the
neighbors of a given point, ContinuousSpace only measures
the distance for agents in cells intersecting with a circle of the
given radius.

To add space to our example model, we can have the agents
wander around a grid; instead of giving a unit of money to any
random agent, they pick an agent in the same cell as themselves.
This means that multiple agents are allowed in each cell, requiring
a MultiGrid.

from mesa.space import MultiGrid

class MoneyModel(Model):
def __init__(self, N, width, height, torus):
self.grid = MultiGrid(height, width, torus) # 1.
... everything else

def create_agents(self):
for i in range(self.num_agents):
... everything above
x = random.randrange(self.grid.width)
y = random.randrange(self.grid.width)
self.grid.place_agent(a, (x, y)) # 2.

class MoneyAgent(Agent):
...
def move(self, model):
"""Take a random step."""
grid = model.grid
x, y = self.pos
possible_steps = grid.get_neighborhood(x, y,
moore=True, include_center=True) # 3.

choice = random.choice(possible_steps)
grid.move_agent(self, choice) # 4.

def give_money(self, model):
grid = model.grid
pos = [self.pos]
others = grid.get_cell_list_contents(pos) # 5.
if len(others) > 1:

other = random.choice(others)
other.wealth += 1
self.wealth -= 1

def step(self, model):
self.move(model)
if self.wealth > 0:
self.give_money(model)

1) The arguments needed to create a new grid are its width,
height, and a boolean for whether it is a torus or not.

2) The place_agent method places the given object in
the grid cell specified by the (x, y) tuple, and assigns
that tuple to the agent’s pos property.

3) The get_neighborhood method returns a list of co-
ordinate tuples for the appropriate neighbors of the given
coordinates. In this case, it’s getting the Moore neighbor-
hood (including diagonals) and includes the center cell.
The agent decides where to move by choosing one of
those tuples at random. This is a good way of handling
random moves, since it still works for agents on an edge
of a non-toroidal grid, or if the grid itself is hexagonal.

4) the move_agent method works like place_agent,
but removes the agent from its current location before
placing it in its new one.

5) This is a helper method which returns the contents
of the entire list of cell tuples provided. It’s not
strictly necessary here; the alternative would be: x, y
= self.pos; others = grid[y][x] (note that
grids are indexed y-first).

Once the model has been run, we can create a static visu-
alization of the distribution of wealth across the grid using the
coord_iter iterator, which allows us to loop over the contents
and coordinates of all cells in the grid, with output shown in figure
4.

wealth_grid = np.zeroes(model.grid.width,
model.grid.height)

for cell in model.grid.coord_iter():
cell_content, x, y = cell
cell_wealth = sum(a.wealth for a in cell_content)
wealth_grid[y][x] = cell_wealth

plt.imshow(wealth_grid, interpolation='nearest')

Data Collection

An agent-based model is not particularly useful if there is no
way to see the behaviors and outputs it produces. Generally
speaking, there are two ways of extracting these: visualization,
which allows for observation and qualitative examination (and
which we will discuss later in this paper), and quantitative data
collection. In order to facilitate the latter option, we provide a
generic DataCollector class, which can store and export data
from most models without needing to be subclassed.

The data collector stores three categories of data: model-level
variables, agent-level variables, and tables which are a catch-all
for everything else. Model- and agent-level variables are added
to the data collector along with a function for collecting them.
Model-level collection functions take a model object as an input,
while agent-level collection functions take an agent object as
an input. Both then return a value computed from the model
or each agent at their current state. When the data collector’s
collect method is called, with a model object as its argument,
it applies each model-level collection function to the model, and

MESA: AN AGENT-BASED MODELING FRAMEWORK 55

Fig. 4: Example of spatial wealth distribution across the grid.

stores the results in a dictionary, associating the current value
with the current step of the model. Similarly, the method applies
each agent-level collection function to each agent currently in
the schedule, associating the resulting value with the step of
the model, and the agent’s unique ID. The data collector may
be placed within the model class itself, with the collect method
running as part of the model step; or externally, with additional
code calling it every step or every N steps of the model.

The third category, tables, is used for logging by the model or
the agents rather than fixed collection by the data collector itself.
Each table consists of a set of columns. The model or agents can
then append records to a table according to their own internal
logic. This can be used to log specific events (e.g. every time an
agent is killed), and data associated with them (e.g. agent lifespan
at destruction), particularly when these events do not necessarily
occur every step.

Internally, the data collector stores all variables and tables in
Python’s standard dictionaries and lists. This reduces the need for
external dependencies, and allows the data to be easily exported
to JSON or CSV. However, one of the goals of Mesa is facili-
tating integration with Python’s larger scientific and data-analysis
ecosystems, and thus the data collector also includes methods for
exporting the collected data to pandas data frames. This allows
rapid, interactive processing of the data, easy charting, and access
to the full range of statistical and machine-learning tools that are
compatible with pandas.

To continue our example, we use a data collector to collect the
wealth of each agent at the end of every step. The additional code
this requires can look like this:

from mesa.datacollection import DataCollector

class MoneyModel(Model):

def __init__(self, N):
... everything above
ar = {"Wealth": lambda a: a.wealth}
self.dc = DataCollector(agent_reporters=ar)

def step(self):
self.dc.collect(self)

Fig. 5: Example of model output histogram, with labels added.

self.schedule.step()

We now have enough code to run the model, get some data out of
it, and analyze it.

Create a model with 100 agents on a torus 10x10 grid
model = MoneyModel(100, 10, 10, True)
Run it for 1,000 steps:
model.run_model(1000)
Get the data as a DataFrame
wealth_history = model.dc.get_agent_vars_dataframe()
wealth_history indexed on Step and AgentID, and...
...has Wealth as one data column
wealth_history.reset_index(inplace=True)
Plot a histogram of final wealth
wealth_history[wealth_history.Step==999].\
Wealth.hist(bins=range(10))

An example of the output of this code is shown in Figure 5. Notice
that this simple rule, where agents give one another 1 unit of
money at random, produces an extremely skewed wealth distri-
bution -- in fact, this is approximately a Boltzmann distribution,
which characterizes at least some real-world wealth distributions
[Dragulescu2001].

Batch Runner

Since most ABMs are stochastic, a single model run gives us
only one particular realization of the process the model describes.
Furthermore, the questions we want to use ABMs to answer are
often about how a particular parameter drives the behavior of
the entire system -- requiring multiple model runs with different
parameter values. In order to facilitate this, Mesa provides the
BatchRunner class. Like the DataCollector, it does not need
to be subclassed in order to conduct parameter sweeps on most
models.

BatchRunner is instantiated with a model class, and a
dictionary mapping names of model parameters to either a single
value, or a list or range of values. Like the data collector, it is
also instantiated with dictionaries mapping model- and agent-level
variable names to functions used to collect them. The batch runner
uses the product combination generator included in Python’s
itertools library to generate all possible combinations of
the parameter values provided. For each combination, the batch
collector instantiates a model instance with those parameters, and

56 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 6: Example of batch run scatter-plot, with labels added.

runs the model until it terminates or a set number of steps has
been reached. Once the model terminates, the batch collector runs
the reporter functions, collecting data on the completed model run
and storing it along with the relevant parameters. Like the data
collector, the batch runner can then export the resulting datasets to
pandas data frames.

Suppose we want to know whether the skewed wealth dis-
tribution in our example model is dependent on initial starting
wealth. To do so, we modify the model code to allow for variable
starting wealth, and implement a get_gini method to compute
the model’s Gini coefficient. (In the interest of space, these
modifications are left as an exercise to the reader, or are available
in the full model code online). The following code sets up and
runs a BatchRunner testing starting wealth values between 1
and 9, with 10 runs at each. Each run continues for 1,000 steps, as
above.

param_values = {"N": 100,
"starting_wealth": range(1,10)}

model_reporter={"Gini": compute_gini}
batch = BatchRunner(MoneyModel, param_values,

10, 1000, model_reporter)
batch.run_all()
out = batch.get_model_vars_dataframe()
plt.scatter(df.starting_wealth, df.Gini)

Output from this code is shown in Figure 6.

Visualization

Mesa uses a browser window to visualize its models. This avoids
both the developers and the users needing to deal with cross-
system GUI programming; more importantly, perhaps, it gives
us access to the universe of advanced JavaScript-based data
visualization tools. The entire visualization system is divided into
two parts: the server side, and the client side. The server runs the
model, and at each step extracts data from it to visualize, which
it sends to the client as JSON via a WebSocket connection. The
client receives the data, and uses JavaScript to actually draw the
data onto the screen for the user. The client front-end also includes
a GUI controller, allowing the user to start a model run, pause it,
advance it by one step, reset the model, and set the desired frame-
rate.

Fig. 7: Example of the browser visualization.

Mesa already includes a set of pre-built visualization elements
which can be deployed with minimal setup. For example, to create
a visualization of the example model which displays a live chart
of the Gini coefficient at each step, we can use the included
ChartModule.

from mesa.visualization.ModularVisualization \
import ModularServer

from mesa.visualization.modules import ChartModule

The Chart Module gets a model-level variable
from the model's data collector
chart_element = ChartModule([{"Label": "Gini",

"Color": "Black"}],
data_collector_name='dc') # 1.

Create a server to visualize MoneyModel
server = ModularServer(MoneyModel, # 2.

[chart_element],
"Money Model", 100)

server.launch()

1) We instantiate a visualization element object: ChartMod-
ule, which plots model-level variables being collected by
the model’s data collector as specified by the "Labels"
provided. data_collector_name is the name of
the actual DataCollector variable, so the module knows
where to find the values.

2) The server is instantiated with the model class; a list of
visualization elements (in this case, there’s only the one
element), a model name, and model arguments (in this
case, just the agent count).

Running this code launches the server. To access the actual
visualization, open your favorite browser (ideally Chrome) to http:
//127.0.0.1:8888/ . This displays the visualization, along with the
controls used to reset the model, advance it by one step, or run it at
the designated frame-rate. After several ticks, the browser window
will look something like Figure 7.

The actual visualization is done by the visualization modules.
Conceptually, each module consists of a server-side and a client-
side element. The server-side element is a Python object imple-
menting a render method, which takes a model instance as an
argument and returns a JSON-ready object with the information
needed to visualize some part of the model. This might be as
simple as a single number representing some model-level statistic,
or as complicated as a list of JSON objects, each encoding the
position, shape, color and size of an agent on a grid.

The client-side element is a JavaScript class, which imple-
ments a render method of its own. This method receives the
JSON data created by the Python element, and renders it in the
browser. This can be as simple as updating the text in a particular
HTML paragraph, or as complicated as drawing all the shapes

MESA: AN AGENT-BASED MODELING FRAMEWORK 57

described in the aforementioned list. The object also implements
a reset method, used to reset the visualization element when
the model is reset. Finally, the object creates the actual necessary
HTML elements in its constructor, and does any other initial setup
necessary.

Obviously, the two sides of each visualization must be de-
signed in tandem. They result in one Python class, and one
JavaScript .js file. The path to the JavaScript file is a property of
the Python class, meaning that a particular object does not need to
include it separately. Mesa includes a variety of pre-built elements,
and they are easy to extend or add to.

The ModularServer class manages the various visual-
ization modules, and is meant to be generic to most mod-
els and modules. A visualization is created by instantiating
a ModularServer object with a model class, one or more
VisualizationElement objects, and model parameters (if
necessary). The launch() method then launches a Tornado
server, using templates to insert the JavaScript code specified
by the modules to create the client page. The application uses
Tornado’s coroutines to run the model in parallel with the server
itself, so that the model running does not block the serving of
the page and the WebSocket data. For each step of the model,
each module’s render method extracts the visualization data
and stores it in a list. That list item is then sent to the client
via WebSocket when the request for that step number is received.

Let us create a simple histogram, with a fixed set of bins,
for visualizing the distribution of wealth as the model runs. It
requires JavaScript code, in HistogramModule.js and a Python
class. Below is an abbreviated version of both.

var HistogramModule = function(bins) {
// Create the appropriate tag, stored in canvas
$("body").append(canvas); // 1.
// ... Chart.js boilerplate removed
var chart = new Chart(context).Bar(data, options);

this.render = function(data) { // 2.
for (var i in data)
chart.datasets[0].bars[i].value = data[i];

chart.update();
};

this.reset = function() { // 3.
chart.destroy();
chart = new Chart(context).Bar(data, options);
};

};

1) This block of code functions as the object’s constructor.
It adds and saves a canvas element to the HTML page
body, and creates a Chart.js bar chart inside of it.

2) The render method takes a list of numbers as an
input, and assigns each to the corresponding bar of the
histogram.

3) To reset the histogram, this code destroys the chart and
creates a new one with the same parameters.

Next, the Python class tells the front-end to include
Chart.min.js (included with the Mesa package) and the new
HistogramModule.js file we created above, which is located
in the same directory as the Python code3. In this case, our
module’s render method is extremely specific for this model

alone. The code looks like this.

class HistogramModule(VisualizationElement):
package_includes = ["Chart.min.js"]
local_includes = ["HistogramModule.js"]

def __init__(self, bins):
self.bins = bins
new_element = "new HistogramModule({})" # 1.
new_element = new_element.format(bins)
self.js_code = "elements.push(" # 2.
self.js_code += new_element +");"

def render(self, model):
wealth_vals = [a.wealth

for a in model.schedule.agents]
hist = np.histogram(wealth_vals,

bins=self.bins)[0]
return [int(x) for x in hist]

1) This line, and the line below it, prepare the code for
actually inserting the visualization element; creating a
new element, with the bins as an argument.

2) js_code is a string of JavaScript code to be run by the
front-end. In this case, it takes the code for creating a
visualization element and inserts it into the front-end’s
elements list of visualization elements.

Finally, we can add the element to our visualization server
object:

histogram_element = HistogramModule(range(10))
server = ModularServer(MoneyModel,

[histogram_element],
"MoneyModel", 100)

server.launch()

Conclusions and Future Work

Mesa provides a versatile framework for building, analyzing and
visualizing agent-based models. It seeks to fill the ABM-shaped
hole in the scientific Python ecosystem, while bringing together
powerful features found in other modeling frameworks and intro-
ducing some of its own. Both Mesa’s schedule architecture and
in-browser visualization are, to the best of our knowledge, unique
among major ABM frameworks.

Despite this, Mesa is very much a work in progress. We intend
to implement several key features in the near future, including
inter-agent networks and the corresponding visualization, a better
system to set model runs’ random seed, and tools for reading
and writing model states to disk. The server-side visualization is
also structured so as to allow video-style scrubbing forwards and
backwards through a model run, and we hope to implement this
feature soon as well. In the longer term, we hope to add tools for
geospatial simulations, and for easier distribution of a batch run or
even a single model run across multiple cores or in a cluster. We
also intend to iteratively continue to add to Mesa’s documentation,
increase its efficiency, and improve the visualization quality.

We also hope to continue to leverage Mesa’s open-source
nature. As more researchers utilize Mesa, they will identify
opportunities for improvement and additional features, hopefully

3. While the best practice in web development is to host static files (e.g.
JavaScript) separately, Mesa is not set up to this way, as the models are
currently small and run only locally. As we scale the Mesa framework, we
expect that the ability to pull in external javascript files to be part of the
optimization process.

58 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

contribute them to the main repository. More models will generate
reference code or additional stand-alone modules, which in turn
will help provide a larger library of reusable modeling components
that have been validated both in terms of their code and scientific
assumptions.

We are happy to introduce Mesa to the world with this paper;
it marks not the end of a research effort, but the beginning of an
open, collaborative process to develop and expand a new tool in
Python’s scientific ecosystem.

Acknowledgements

Mesa is an open-source project, and we are happy to acknowledge
major code contributors Kim Furuya, Daniel Weitzenfeld, and
Eugene Callahan.

REFERENCES

[Axtell2000] Axtell, Robert. “Why agents?: on the varied motivations
for agent computing in the social sciences.” Center on
Social and Economic Dynamics. The Brookings Institution.
(2000).

[Comer2014] Comer, Kenneth W. “Who Goes First? An Examination
of the Impact of Activation on Outcome Behavior in
Agent-Based Models.” George Mason University, 2014.
http://gradworks.umi.com/36/23/3623940.html.

[Dragulescu2001] Drăgulescu, Adrian, and Victor M. Yakovenko. “Exponen-
tial and Power-Law Probability Distributions of Wealth and
Income in the United Kingdom and the United States.”
Physica A: Statistical Mechanics and Its Applications 299,
no. 1 (2001): 213–21.

[Dragulescu2002] Drăgulescu, Adrian A., and Victor M. Yakovenko. “Sta-
tistical Mechanics of Money, Income, and Wealth: A
Short Survey.” arXiv Preprint Cond-mat/0211175, 2002.
http://arxiv.org/abs/cond-mat/0211175.

[Luke2005] Luke, Sean, Claudio Cioffi-Revilla, Liviu Panait, Keith Sul-
livan, and Gabriel Balan. “Mason: A Multiagent Simulation
Environment.” Simulation 81, no. 7 (2005): 517–27.

[McKinney2011] McKinney, Wes. “Pandas: A Foundational Python Library
for Data Analysis and Statistics.” Python for High Perfor-
mance and Scientific Computing, 2011, 1–9.

[Miller2009] Miller, John H., and Scott E. Page. “Complex Adaptive
Systems: An Introduction to Computational Models of
Social Life.” Princeton University Press, 2009.

[North2013] North, Michael J., Nicholson T. Collier, Jonathan Ozik,
Eric R. Tatara, Charles M. Macal, Mark Bragen, and
Pam Sydelko. “Complex Adaptive Systems Modeling with
Repast Simphony.” Complex Adaptive Systems Modeling
1, no. 1 (March 13, 2013): 3. doi:10.1186/2194-3206-1-3.

[Perez2007] Fernando Pérez, Brian E. Granger. “IPython: A System for
Interactive Scientific Computing.” Computing in Science
and Engineering, vol. 9, no. 3, pp. 21-29, May/June 2007,
doi:10.1109/MCSE.2007.53. URL: http://ipython.org

[Perez2011] Pérez, Fernando, Brian E. Granger, and John D. Hunter.
“Python: An Ecosystem for Scientific Computing.” Com-
puting in Science & Engineering 13, no. 2 (March 1, 2011):
13–21. doi:10.1109/MCSE.2010.119.

[Sayama2013] Sayama, Hiroki. “PyCX: A Python-Based Simulation Code
Repository for Complex Systems Education.” Complex
Adaptive Systems Modeling 1, no. 1 (March 13, 2013):
1–10. doi:10.1186/2194-3206-1-2.

[Schelling1971] Schelling, Thomas C. “Dynamic models of segregation.”
Journal of Mathematical Sociology 1.2 (1971): 143-186.

[Wilensky1999] Wilensky, Uri. “NetLogo.” Evanston, IL: Center for Con-
nected Learning and Computer-Based Modeling, North-
western University, 1999.

[Zvoleff2013] Zvoleff, Alex. “PyABM Toolkit." http://azvoleff.com/
pyabm.html.

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 59

HoloViews: Building Complex Visualizations Easily for
Reproducible Science

Jean-Luc R. Stevens‡†∗, Philipp Rudiger‡†, James A. Bednar‡

https://www.youtube.com/watch?v=hNsR2H7Lrg0

F

Abstract—Scientific visualization typically requires large amounts of custom
coding that obscures the underlying principles of the work and makes it difficult
to reproduce the results. Here we describe how the new HoloViews Python
package, when combined with the IPython Notebook and a plotting library,
provides a rich, interactive interface for flexible and nearly code-free visualization
of your results while storing a full record of the process for later reproduction.

HoloViews provides a set of general-purpose data structures that allow
you to pair your data with a small amount of metadata. These data structures
are then used by a separate plotting system to render your data interactively,
e.g. within the IPython Notebook environment, revealing even complex data in
publication-quality form without requiring custom plotting code for each figure.

HoloViews also provides powerful containers that allow you to organize
this data for analysis, embedding it whatever multidimensional continuous or
discrete space best characterizes it. The resulting workflow allows you to focus
on exploring, analyzing, and understanding your data and results, while leading
directly to an exportable recipe for reproducible research.

Index Terms—reproducible, interactive, visualization, notebook

Introduction

Scientific research alternates between stretches of speculative,
exploratory investigation and periods where crucial findings are
distilled and disseminated as publications or reports. The ex-
ploratory phase typically involves running many different analyses
with interactive plotting tools before the important aspects of
the data are determined. The final results are then typically
prepared as static figures for dissemination, often putting together
many subfigures into a complicated figure that reveals multiple
interrelated aspects of the results.

Current software tools provide relatively poor support for this
dual exploring/reporting nature of scientific research, severely
limiting scientific progress. On the one hand, developing new ex-
ploratory visualizations typically requires large amounts of custom
software coding, which is slow, error-prone, and distracts from the
actual scientific analysis. Moreover, this process typically involves
a large amount of trial and error, generating transitory code and
analyses that make it difficult to later reproduce the steps that
led to any particular result [Cro13]. Switching to different tools
for final, non-interactive, publication-quality figures exacerbates

† These authors contributed equally.
* Corresponding author: jlstevens@ed.ac.uk
‡ Institute for Adaptive and Neural Computation, University of Edinburgh

Copyright © 2015 Jean-Luc R. Stevens et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

this problem, further disconnecting the reported results from the
process by which they were created. This lack of reproducibility is
a serious handicap both for progress within a single lab and for the
community as a whole, making it nearly impossible for researchers
to build on each others’ work even for purely computational
projects [Cro13].

Here we will describe a new Python software package built
to address these problems directly, by providing simple tools
for gradually building elaborate visualizations and analyses in-
teractively yet reproducibly. HoloViews supports immediate ex-
ploration of data as it is obtained, without requiring custom
coding, and then supports incrementally revealing more complex
relationships between datasets, culminating in the final publication
of fully reproducible scientific results.

In this paper we will focus on the high-level design principles
that allow HoloViews to achieve these goals and we encourage the
reader to visit holoviews.org for concrete examples. As detailed
below, we show how this is achieved by enforcing a strict separa-
tion in the declaration of the semantic properties of the data and the
specification of plotting options, allowing the user to declaratively
specify their intent and let HoloViews handle the visualization.

The interactive interpreter

To understand this approach, we need to consider the history
of how we interact with computational data. The idea of an
interactive programming session originated with the earliest LISP
interpreters in the late 1950s and remains a popular way to interact
with dynamic languages such as Python.

However, like most such command prompts, the standard
Python prompt is a text-only environment. Commands are entered
by the user, parsed, and executed, with results displayed as text.
This offers immediate feedback and works well for data that is
naturally expressed in a concise textual form. Unfortunately, this
approach begins to fail when the data cannot be usefully visualized
as text, as is typical for the large datasets now commonplace.
In such instances, a separate plotting package offering a rich
graphical display would normally be used to present the results
outside the environment of the interpreter, via a graphical user
interface.

This disjointed approach reflects history: text-only environ-
ments, where interactive interpreters were first employed, ap-
peared long before any graphical interfaces. To this day, text-only
interpreters are standard due to the relative simplicity of working
with text. Proprietary attempts to overcome these limitations,

60 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

such as the Mathematica Notebook [Wol03], have remained con-
strained by limited interoperability and a lack of standardized open
formats. Other approaches focusing explicitly on reproducibility
involve building a recipe for reproducing results only at the end of
the scientific project [knitr], when it is often too late to capture the
important steps involved. Here we consider how graphical output
can be integrated fully into an interactive workflow, addressing
both exploration and reproducibility simultaneously.

Fixing the disconnect between data and representation

At the same time as text-based interpreters have failed to overcome
the inherent limitations of working with rich data, the web browser
has emerged as a ubiquitous means of interactively working with
rich media documents. In addition to being universally available,
web browsers have the benefit of being based on open standards
that remain supported almost indefinitely. Although early versions
of the HTML standard only allowed passive page viewing, the
widespread adoption of HTML5 has made it possible for anyone
to interact with complex, dynamic documents in a bi-directional
manner.

The emergence of the web browser as a platform has been ex-
ploited by the Python community and the scientific community at
large with tools such as the IPython Notebook [Per07] and SAGE
MathCloud [Ste05]. These projects offer interactive computation
sessions in a notebook format instead of a traditional text prompt.
Although similar in design to the traditional text-only interpreters,
these notebooks allow embedded graphics or other media (such as
video) while maintaining a record of useful commands in a rich
document that supports the gradual development of a document
with interleaved code, results, and exposition.

Yet despite the greatly improved interactive capabilities of
these tools, the spirit of the original interpreter has not yet
been restored: there is still an ongoing disconnect between data
and its representation. This artificial distinction is a lingering
consequence of text-only displays, forcing a strict split between
how we conceptualize "simple" and "complex" data. Although the
IPython notebook now offers the means to give objects rich media
representations, few packages have so far embraced this and none
have supported easy composition of related figures. As a result
the most common way to visualize complex data remains for the
user to specify a detailed list of steps to get subfigures using an
external plotting package such as Matplotlib [Hun07], then often
combining subfigures using a GUI-based image editor.

Here we introduce HoloViews, a library of simple classes
designed to provide an immediately available representation for
even complex data in notebooks, analogous to the way simple
datatypes are displayed in interactive sessions. HoloViews is
not a plotting package; instead, it offers a set of useful data
structures paired with rich, customizable visual representations
that display effortlessly in the IPython Notebook environment. The
result is research that is more interactive, concise, declarative, and
reproducible. Figure 1 shows a self-contained example of building
a complex visualization showing the declaration of an Image
object followed by an example of how to compose HoloViews
objects together.

Design principles

The core design principle of HoloViews is to automatically and
transparently return and display declarative data structures to the
user for immediate feedback without requiring additional code.

Although this concept is familiar and intuitive when interactively
working with simple data types, it is worth reviewing explicitly
what is going on so that the appropriate graphical extension of
these ideas is clear.

When executing an addition operation like 1 + 2.5 at a
Python prompt, the expression is parsed, converted into bytecode,
and then executed, resulting in the float value 3.5. This floating-
point value is immediately returned to the user in the appropriate
displayable representation, giving the user immediate feedback.
Of course, this representation is not the float itself, but the
string "3.5". Such strings are automatically generated by the
interpreter, via the displayed object’s __repr__ method.

The Python interpreter also provides such automatic, immedi-
ate feedback for more complex data types like large NumPy arrays,
but for such data the displayed string has very little utility because
it is either incomplete or impractical. In a terminal, this restriction
is a result of the __repr__ method only supporting a text-based
display value. Using HoloViews in the IPython Notebook, you
can give your array a more useful, interpretable default visual
representation as an image, curve, or similar plot according to the
following principles:

• It must be easy to assign a useful and understandable
default representation to your data. The goal is to keep
the initial barrier to productivity as low as possible -- data
should simply reveal itself.

• These atomic data objects (elements) should be almost
trivially simple wrappers around your data, acting as
proxies for the contained arrays along with a small amount
of semantic metadata (such as whether the user thinks of
some particular set of data as a continuous curve or as a
discrete set of points).

• Any metadata included in the element must address issues
of content and not be concerned with display issues --
elements should hold essential information only.

• There are always numerous aesthetic alternatives associ-
ated with rich visual representations, but such option set-
tings should be stored and implemented entirely separately
from the content elements, so that elements can be gener-
ated, archived, and distributed without any dependencies
on the visualization code.

• As the principles above force the atomic elements to be
simple, they must then be compositional in order to build
complex data structures that reflect the interrelated plots
typical of publication figures.

The outcome of these principles is a set of compositional
data structures that contain only the essential information un-
derlying potentially complex, publication-quality figures. These
data structures have an understandable, default visualization that
transparently reveals their contents, making them a useful proxy
for the data itself, just as the text 3.5 is a proxy for the
underlying floating-point value. This default visualization may
then be customized declaratively to achieve the desired aesthetics,
without complicating the objects themselves.

In the next section we will discuss the data structures that
hold the important content. Starting with the simple primitive
elements, we examine how they can be composed into complex
figures and embedded in high-dimensional spaces for exploration.
Along the way we will discover how our implementation realizes
the design principles outlined and manages to keep the state of the
data separate from its visual representation.

HOLOVIEWS: BUILDING COMPLEX VISUALIZATIONS EASILY FOR REPRODUCIBLE SCIENCE 61

imdata = np.load('mandelbrot.npy')

image = hv.Image(imdata, kdims=['Re', 'Im'], label='Mandelbrot Set', bounds=(-0.25, 1.12, 0.03, 0.84))

image * hv.HLine(y=1) + image.sample(Im=1).relabel('Cross section')

In [2]:

Out[2]:

Fig. 1: Example of a composite HoloViews data structure and how it is displayed in an IPython Notebook session. The imdata array loaded
using Numpy corresponds to the displayed portion of the Mandelbrot set. A. The Image element displays imdata overlaid via the * operator
with a horizontal line element (HLine). B. A Curve element generated via the .sample() method of the image, showing a cross-section of
the fractal along the indicated blue horizontal line. The curve is concatenated with the Overlay in A via the + operation.

Data Structures

In this section we discuss the data structures that hold the raw
data and the essential semantic content of interest. The Elements
section introduces each of the primitives, and the Collections
section explains how they can be combined. Finally, we will
discuss working with Elements embedded in high-dimensional
continuous or discrete spaces.

Elements

The atomic classes that wrap raw data are the Element prim-
itives. These classes are named by the natural representation
they suggest for the supplied data, with Image, Curve, and
Scatter being some simple examples. These elements are easily
constructed as they only require the raw data (such as a NumPy
array) to display.

In Figure 1, we have some examples of the Element primitives.
On the left, in subfigure A, we see the Image primitive containing
a two-dimensional NumPy array. This Image is declared by
supplying the NumPy array imdata along with the optional
metadata, including a suitable label and a declaration of the bound-
ing region in the complex plane. The visual output is automatically
generated and shows that the array is a part of the Mandelbrot set.
Our object merely holds the supplied NumPy array, which remains
easily accessed via the .data attribute. In part B of Figure 1 we
have an example of a Curve containing a horizontal cross section
of the image, as computed by the sample method.

Although the names of the Elements suggest that these
objects are about visualization, they are primarily concerned with
content and not display. The visually meaningful class names offer
a convenient way to intuitively understand the dimensionality of
the data in terms of an appropriate visual representation. For
instance, in Figure 1 A, the name Image conveys the notion that
the contained data is in the form of a two-dimensional NumPy
array that can be meaningfully displayed as an image.

The particular Image shown in Figure 1 A was constructed
as a visualization of the Mandelbrot Set, defined in the complex
plane. In particular, the kdims argument declares that the x-axis
is along the real axis and that the y-axis is along the imaginary

axis. This information is then reflected in the visual output by
assigning the appropriate axis labels. This semantic information is
also passed to the Curve object generated by sampling the image
using image.sample(Im=1).

This Curve object is also able to pass on this semantic
information to other Elements with different visual representations
so that they faithfully reflect the space in which the Mandelbrot
Set is defined. For instance, you can pass the curve directly to the
constructor of the Scatter or Histogram elements and a new
visual representation of the resulting object will retain the original
semantic dimension labels. This type of operation merely changes
the representation associated with the supplied data.

Note that in the declarations of Image, the dimensions of the
axes are declared as key dimensions (kdims). Key dimensions
correspond to the independent dimensions used to index or slice
the element, with the remaining dimensions called value dimen-
sions (vdims). In the case of this image, there is a single value
dimension, for the values in the supplied NumPy array, which are
then visualized using the default colormap of the Image elements
(the ’hot’ color map).

As key dimensions are indexable and sliceable, we can slice
the Image to select a different subregion of the Mandelbrot
Set. Continuous values are supported when slicing an Image
and the result is then a new Image containing the portion
of the original NumPy array appropriate to the specified slice.
The mapping between continuous space and the discrete array
samples is specified by the bounds, allowing us to apply the slice
[-0.2:0,0.85:1.05] to select the corresponding part of the
complex plane. The first component of this slice selects the first
key dimension (the real axis 'Re') from -0.2 to 0.0 while the
second component of the slice selects the second key dimension
(the imaginary axis 'Im') from 0.85 to 1.05. You can apply a
similar slice along the real axis to select a portion of the curve
object shown in Figure 1 B.

There are many additional element classes, one for each of the
common visual representations for data. These elements form an
extensible library of primitives that allow the composition of data
structures with complex, meaningful visualizations. Within the set

62 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

of all elements, you can cast your data between representations so
long as the number of key and value dimensions is consistent. You
can then index and slice your elements along their respective key
dimensions to get new elements holding the appropriately sliced
data of interest.

Collections

The elements are simple wrappers that hold the supplied data
and allow a rich, meaningful default representation. An individual
element is therefore a data structure holding the semantic contents
corresponding to a simple visual element of the sort you may see in
a publication. Although the elements are sufficient to cover simple
cases such as individual graphs, raster images, or histogram, they
are not sufficient to represent more complex figures.

A typical published figure does not present data using a
single representation, but allows comparison between related data
items in order to illustrate similarities or differences. In other
words, a typical figure is an object composed of many visual
representations combined together. HoloViews makes it trivial to
compose elements in the two most common ways: concatenating
representations into a single figure, or overlaying visual elements
within the same set of axes.

These types of composition are so common that both have
already been used in Figure 1 as our very first example. The +
operation implements concatenation, and * implements overlaying
elements together. When you compose an object using the + oper-
ator, a default four-column layout is used but you can specify the
desired number of columns using the .cols method. Layouts are
easily specified but also support multiple options for customizing
the position and sizing of elements.

When we refer to subfigures 1 A and 1 B, we are making use
of labels generated by HoloViews for representing a composite
data structure called a Layout. Similarly, subfigure 1 A is itself
a composite data structure called an Overlay which, in this
particular case, consists of an Image element overlaid by the
HLine element.

The overall data structure that corresponds to Figure 1 is
therefore a Layout which itself contains another composite
collection in the form of an Overlay. The object in Figure 1 is
in fact a highly flexible, compositional tree-based data structure:
intermediate nodes correspond either to Layout nodes (+) or
Overlay nodes (*), with element primitives at the leaf nodes.
Even in this potentially complex tree, all the raw data correspond-
ing to every visual element is conveniently accessible via key or
attribute access by selecting a leaf element using its path through
the tree, and then inspecting the .data attribute, making it simple
to declare which part of a complex dataset you want to work with
at a given time.

As any element may be a leaf of such a tree, there needs to be
an easy way to select subtrees or leaf elements. This is achieved
with a semantic, two-level labeling system using "group" and
"label" strings supported throughout HoloViews. We have seen
an example of a label string in Figure 1, where it was used to
title the image "Mandelbrot Set". The textual representation of
the layout in Figure 1 (see Out[6] of Figure 4) shows how the
supplied label is used in the attribute-based indexing scheme of
the layout. The strings "Image", "Overlay", "HLine" and "Curve"
are default group names, but you can supply your own names to
define semantic groupings for your data. To illustrate this system,
you can access the sampled data (a NumPy array) in Figure 4
using content.Curve.Cross_Section.data.

With the ability to overlay or concatenate any element with any
other, there is great flexibility to declare complex relationships
between elements. Whereas a single element primitive holds
semantic information about a particular piece of data, trees en-
code semantic information between elements. The composition of
visual elements into a single visual representation expresses some
underlying semantic value in grouping these particular chunks of
data together. This is what composite trees capture; they represent
the overall semantic content of a figure in a highly composable and
flexible way that always preserves both the raw data and associated
metadata for further interactive analysis and reproduction.

Spaces

A single plot can represent at most a few dimensions before it
becomes visually cluttered. Since real-world datasets often have
higher dimensionality, we face a tradeoff between representing the
full dimensionality of our data, and keeping the visual representa-
tion intelligible and therefore effective. In practice we are limited
to two or at most three spatial axes, in addition to attributes such
as the color, angle, and size of the visual elements. To effectively
explore higher dimensional spaces we therefore have to find other
solutions.

One way of dealing with this problem is to lay out multiple
plots spatially. Plotting packages like ggplot [Wic09] and seaborn
[Was14] have shown how this can be done easily using vari-
ous grid-based layouts. Another solution is to present the data
sequentially over time as an animation. A third solution is to
provide interactive control, allowing the user to reveal further
dimensionality by interacting with the plots using various widgets.

HoloViews provides support for all three of these ap-
proaches, via composable data structures that embed collections
of Element objects in any arbitrarily dimensioned space. Funda-
mentally, this set of data structures (subclasses of NdMapping)
are multi-dimensional dictionaries that allow the user to declare
the dimensionality of the space via a list of key dimensions
(kdims).

The list of supported NdMapping classes includes:

• HoloMaps: The most flexible high-dimensional data
structure in HoloViews, allowing Element instances to
be embedded in an arbitrarily high-dimensional space, to
be rendered either as a video animation or as an interactive
plot that allows exploration via a set of widgets.

• GridSpaces: A data structure for generating spatial
layouts with either a single row (1D) or a two-dimensional
grid. Each overall grid axis corresponds to a key dimen-
sion.

• NdLayouts/NdOverlays: Similar to Layout or
Overlay objects, where the contained objects vary over
one or more dimensions.

To explore a high-dimensional space of height as a function
of age across different countries and years, you could declare
space=HoloMap(kdims=['Country', 'Year']). Now
we can treat space as a dictionary and insert instances of classes
such as Curve or Scatter with the appropriate (country,
year) keys. For instance, the age and height Curve for the USA
in 1988 (usa) can be inserted using space['USA', 1988] =
usa. Note that the order of the indexing corresponds to the order
of the declared key dimensions.

All of the above classes are simply different ways to package
and view a high-dimensional dataset. Just as with Elements, it is

HOLOVIEWS: BUILDING COMPLEX VISUALIZATIONS EASILY FOR REPRODUCIBLE SCIENCE 63

phases = np.arange(100)
holomap = hv.HoloMap(kdims=['Frequency', 'Amplitude', 'Function'])
for freq in [0.01, 0.05, 0.1]:
 for amp in range(1,4):
 for name, fn in [('sin', np.sin), ('cos', np.cos)]:
 cdata = fn(phases*freq*np.pi)*amp
 holomap[freq, amp, name] = hv.Curve(cdata, kdims=['Phase'], vdims=['Amplitude'])
holomap.grid(['Amplitude', 'Frequency']) + holomap

In [3]:

Out[3]:

A B

Fig. 2: Example of a Layout object containing two different representations of a multi-dimensional space. Both representations contain Curve
objects embedded in three dimensions (Frequency, Amplitude, Function), but not all of these dimensions can be visualized at once. In
A, two of the dimensions are mapped onto the rows and columns of a grid, and the remaining Function dimension can be selected using the
widget at the right. In B, only a single curve is shown, with the three sliders at the right together selecting the appropriate curve from the 3D
HoloMap space. When two HoloMaps are joined in a Layout like this, it will automatically find the joint set of dimensions the HoloMaps
can be varied over. In this way HoloMaps allow users to explore data naturally and conveniently even when its dimensionality exceeds what
can be sensibly displayed on the screen at once.

possible to cast between these different spaces via the constructor.
In addition, they can all be tabularized into a HoloViews Table
element or a pandas DataFrame [McK10], a feature that is also
supported by the Element primitives.

To get a sense of how composing data and generating complex
figures works within this framework, we explore some artificial
data in Figure 2. Here we vary the frequency and amplitude of
sine and cosine waves, demonstrating how we can quickly embed
this data into a multi-dimensional space. First, we declare the
dimensions of the space we want to explore as the key dimensions
(kdims) of the HoloMap. Next, we populate the space iterating
over the frequencies, amplitudes, and the two trigonometric func-
tions, generating each Curve element individually and assigning
to the HoloMap at the correct position in the space.

We can immediately go ahead and display this HoloMap either
as an animation or using the default widgets, as in Figure 2 B.
Visualizing individual curves in isolation is not very useful, of
course; instead we probably want to see how the curves vary across
Frequency and Amplitude in a single plot. A GridSpace
provides such a representation and by using the space conversion
method .grid() we can easily transform our three-dimensional
HoloMap into a two-dimensional GridSpace (which then allows
the remaining dimension, the choice of trigonometric function, to
be varied via the drop-down menu). Finally, after composing a
Layout together with the original HoloMap, we let the display
system handle the plotting and rendering.

If we decide that a different representation of the data would be
more appropriate, it is trivial to rearrange the dimensions without
needing to write new plotting code. Even very high-dimensional
spaces can be condensed into an individual plot or expressed as
an interactive plot or animation, by simply specifying which part
of the data we are interested in rather than writing new brittle and
error-prone custom plotting code.

Customizing the visual representation

In this section we show how HoloViews achieves a total separation
of concerns, keeping the composable data structures introduced
above completely separate from both customization options and
the plotting code. This design is much like the separation of
content and presentation in HTML and CSS, and provides the
same benefits of making the content easily maintainable while the
presentation is easily controllable.

The only required connection between the above data struc-
tures and the custom display options is a single, automatically
managed integer. Using this integer attribute we can make the data
structures behave as if they were rich, stateful, and individually
customizable objects, without actually storing anything to do with
visualization on the objects. We will show how this separation
is useful and extensible so that the user can quickly and easily
customize almost every aspect of their plot. For instance, it is easy
to change the font size of text, change the subfigure label format,
change the output format (e.g. switch from PNG to SVG) and
even alter the plotting backend (currently defaulting to Matplotlib)
without changing any part of the underlying object being rendered.

Figure 3 provides an overall summary of how the different
components in the display system interact. The declarative data
structures define what will be plotted, specifying the arrangements
of the plots, via Layouts, Overlays, and spaces. The connection
between the data structure and the rendered representation is made
according to the object type, the aforementioned integer attribute,
and optionally specified group and label strings. By collecting
the display options together and associating them with particular
objects via these attributes, the visual representation of the content
may be easily customized, e.g. to tweak aesthetic details such as
tick marks, colors and normalization options. Once the user has
specified both content and optionally customized the display the
rendering system looks up the appropriate plot type for the object

64 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

PlottingData Display options

type
group
label
id

Input Options

Type

Group

Label

(Element/Container)

HTML

Content

Rendering

Output

Fig. 3: This view of the HoloViews display and customization systems
illustrates the complete separation between the content (data) to be
displayed, the display options, and the rendering/plotting system. The
display options are stored entirely separately from the content as a
tree structure, with the appropriate options being selected with user-
controllable levels of specificity: general options for all objects of a
given type, more specific options controlled by user-definable group
and label strings, or arbitrarily specific options based on the integer
id assigned to each content object. Plotting and rendering happens
automatically through the use of IPython display formatters. These
combine the content with the specified display options, call an external
plotting library, which returns an HTML representation that can then
be rendered in the notebook.

in a global registry, which then processes the object and looks
up the specified options in order to display it appropriately. This
happens transparently without any input from the user. Once the
plotting backend has rendered the plot in the appropriate format,
it will be wrapped in HTML for display in the notebook.

The default display options are held on a global tree structure
similar in structure to the composite trees described in the previous
section, but with nodes holding custom display options in the
form of arbitrary keywords. In fact, these option trees also use
labels and groups the same way as composite trees except they
additionally support type-specific customization. For instance, you
may specify colormap options on the Image node of the tree that
will then be applied to all Images. If this chosen colormap is
not always suitable, you can declare that all Image elements
belonging to a group (e.g. group='Fractal') should use a
different colormap by overriding it on the Image.Fractal
node of the tree. This form of inheritance allow you to specify
complex yet succinct style specifications, applying to all objects
of a particular type or just to specific subsets of them.

To explore how option setting works in practice, Figure 4
shows an example of customizing Figure 1 with some basic
display options. Here we use an optional but highly succinct
method for setting the options, an IPython cell magic %%opts, to
specify aspect ratios, line widths, colormaps, and sublabel formats.
By printing the string representation of the content (Out[6]) and
the options (Out[7]), we can see immediately that each entry
in the options tree matches a corresponding object type. Finally,
in the actual rendered output, we can see that all these display
options have taken effect, even though the actual data structure
differs from the object rendered in Figure 1 only by a single integer

attribute.
A major benefit of separating data and customization options

in this way is that all the options can be gathered in one place.
There is no longer any need to dig deep into the documentation
of a particular plotting package for a particular option, as all the
options are easily accessible via a tab-completable IPython magic
and are documented via the help function. This ease of discovery
enables a workflow where the visualization details of a plot can be
easily and quickly iteratively refined once the user has found data
of interest.

The options system is also inherently extendable. New options
may be added at any time, and will immediately become available
for tab-completion. In fact, the plotting code for each element and
container type may be switched out completely and independently,
and the options system will automatically reflect the changes in the
available customization options. This approach lets the user work
with a variety of plotting backends at the same time, without even
having to worry about the different plotting APIs.

The separation between content, options and plotting explicitly
supports the workflows that are common in science, repeatedly
switching between phases of exploration and periods of writing
up. Interesting data can be collected and curated over time, where
each step is instantly and transparently visualizable without any
custom code cluttering up the notebook. Visualizations of data
that are worth keeping can be customized through an interactive
and iterative process, and the final set of plotting options can
then be expressed as a single data structure separate from the
actual displayed data, ready to be applied to the next batch of
data from a subsequent measurement or experiment. Throughout,
the scientist curates the data of interest, as revealed in associated
visual representations, along with the visualization options and a
separate codebase of general-purpose plots (mostly included in
HoloViews, but potentially extended locally for specific domains).
Each of these three aspects of the process (data, options, and
code) can be developed, maintained, archived, and improved
independently, providing comprehensive support for the natural
process of exploration and dissemination common to all scientific
disciplines.

Discussion

This paper demonstrates a succinct, flexible, and interac-
tive approach for data exploration, analysis, and visualization.
HoloViews restores the immediate feedback cycle that is char-
acteristic of working with simple data in an interpreter. This is
achieved by having declarative objects display themselves with
good defaults allowing the user to immediately understand their
data. In the majority of cases this eliminates the need to write plot-
ting code and allows the user to keep a concise and reproducible
recipe of their work, from exploration to the final publication.
HoloViews thus allows scientists to capture the entire workflow
involved in a research project.

Without a strictly enforced separation of concerns, workflow
stages often end up mixing both data processing and visualization.
Although a displayed representation is always necessary for un-
derstanding, it has been a dead end for further data processing.
Because HoloViews objects represent themselves visually but
also contain the raw data, the ability to continue processing is
never terminated and exploration can continue. Furthermore, the
chosen representation can easily be changed, turning what used
to be a highly disjointed workflow into a open-ended process

HOLOVIEWS: BUILDING COMPLEX VISUALIZATIONS EASILY FOR REPRODUCIBLE SCIENCE 65

%%opts Layout [aspect_weight=1 sublabel_format='{roman}.'] Image (cmap='Blues') Curve [aspect=1.25] (linewidth=3)

image = hv.Image(imdata, kdims=['Re', 'Im'], label='Mandelbrot Set', bounds=(-0.25, 1.12, 0.03, 0.84))

content = image * hv.HLine(y=1) + image.sample(Im=1).relabel('Cross section')

content

In [5]:

Out[5]:

In [6]: print(repr(content)) In [7]: options = hv.Store.custom_options()[content.id]
print(repr(options))

:Layout
 .Overlay.Mandelbrot_Set :Overlay
 .Image.Mandelbrot_Set :Image [Re,Im] (z)
 .HLine.I :HLine [x,y]
 .Curve.Cross_section :Curve [Re] (z)

Out[6]:
OptionTree(groups=['plot', 'style', 'norm'],
 plot={'Curve ' : dict(aspect=1.25),
 'Layout' : dict(aspect_weight=1,
 sublabel_format='{Roman}')},
 style={'Curve' : dict(linewidth=3),
 'Image' : dict(cmap='Blues')})

Out[7]:

Fig. 4: An example of customizing the display of Figure 1’s data using the default Matplotlib backend. In[5] is color coded according to the
components in Figure 3, where red is the content, blue is the display options (using an optional IPython-specific succinct syntax), and green is
what triggers the the rendering. Out[5] shows how the supplied options have affected the final plots, compared to Figure 1. Finally, Out[6]
and Out[7] show the textual representations of the content and the style specification respectively, demonstrating how the two are separate
yet linked.

concerned with the semantics of the data. Only once results worth
disseminating are attained does it become necessary to consider
the details of visualization.

The compositionality of HoloViews is superficially reminis-
cent of systems such as the Grammar of Graphics [Wil05] for the
R language, but the aim of HoloViews is quite different. Instead
of expressing all the complexities of graphics, the declarative data
structures in HoloViews define a language for the semantics of
the actual data. This language focuses on how the researcher
conceptualizes it, independent of the exact details of plotting. The
need for an automatic and useful visual representation is driven by
the need to immediately present the data in a meaningful format.

HoloViews is one of many packages designed for working with
large, multidimensional datasets, but it differs from each of these
in important ways. For instance, Python’s seaborn [Was14]
and R’s ggplot2 [Wic09] library support laying out high-
dimensional data into subplots and grids, while Python’s Bokeh
library and R’s shiny [shiny] web application framework provide
widgets for interactive data exploration. While each of these pack-
ages can provide extremely polished interactive graphics, getting
them set up for specific sets of data requires significant additional
effort and custom code, placing a barrier to their primary use
case, the interactive exploration of data. HoloViews instead tries
to avoid custom coding altogether as far as possible, with users
instead supplying metadata to declare the properties of the data
and option settings to control its visual appearance.

Although HoloViews is a general purpose library for working
with data at every stage, it actually represents a significant advance
over previous approaches focused only on achieving reproducibil-
ity of the final result. Simply by keeping specifications for figures
succinct, HoloViews allows the entire recipe to be preserved in
the notebook, not scattered over separately imported plotting code
files. Secondly, because HoloViews can directly express the com-

plex relationships between different bits of data as subfigures, it
can capture entire figures within notebooks that would previously
have required unreproducible work in external drawing programs.
Lastly, HoloViews exports the actual data alongside published
figures, allowing it to be tested automatically (as is done for
the project web site) without conflating it with arbitrary display
choices. HoloViews makes it possible to reproduce results from
every step of the project, up to and including the final published
figures, in a way that has not previously been practical.

Although HoloViews aims to provide good default behavior,
scientific work often requires highly specialized visualizations.
For that reason we have made it easy to extend the defaults and
integrate new visualizations. Firstly, as many plotting and styling
options as possible are exposed in an easily accessible manner,
while providing a powerful, inheritance-based system for changing
these options when required. Secondly, the options system has
been designed to work well with the compositional data structures
provided by HoloViews. Thirdly, HoloViews makes it trivial to
add completely novel types of Elements with corresponding plots
(or to override specific code in existing plots) using custom
code when needed, and these custom plots will then combine
seamlessly with other objects to make composite figures. Finally,
not only is it possibly to implement new plot classes but entire
plotting backends may be added and exposed to the user, such
as the prototype Bokeh backend, which is well suited to live
interaction and large datasets. Thus default plots are simple and
straightforward, but even complex figures are easily achievable.
Many such examples, ranging from simple to complex, can be
found in the Tutorials and Examples sections of holoviews.org.

In this paper, we have focused on how a user can quickly build
data structures for their content of interest. An even more powerful
approach is for a developer to integrate HoloViews directly into
a library, analysis tool, or simulator. By returning HoloViews

66 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

objects (which do not depend on any plotting library), any Python
package can immediately have access to flexible, compositional
data structures that automatically double as a visualization sys-
tem. This is exactly the approach taken by the ImaGen image
generation library and the Topographica neural simulator, two very
different projects that both output data wrapped in HoloViews data
structures.

Conclusion

Based on the key principles of: (1) making data immediately and
transparently visualizable, (2) associating data directly with its
semantic description, (3) keeping display option settings separate
from the data, (4) keeping display code separate from both data
and display options, (5) explicitly expressing the relationships
between data elements compositionally, and (6) keeping the orig-
inal data accessible even in complex visualizations, Holoviews
supports the entire life cycle of scientific research, from initial
exploration, to dissemination and publication, to eventual repro-
duction of the work and new extensions. Existing approaches for
achieving some of these goals individually have been very limiting
and only partially successful, each adding significant new costs
along with the benefits they offer. HoloViews instead addresses the
underlying problems fundamental to current methods for scientific
research, solving seemingly intractable issues like reproducibility
almost as a side effect of properly supporting the basic process of
doing science.

Acknowledgments

This work was funded in part by grant 1R01-MH66991 to the
University of Texas at Austin from the USA National Institute
of Mental Health, by grant EP/F500385/1 from the UK EPSRC
and MRC research councils, and by the Institute for Adaptive and
Neural Computation at the University of Edinburgh.

REFERENCES

[Cro13] Crook et al., "Learning from the Past: Approaches for Reproducibility
in Computational Neuroscience", 20 Years of Computational Neuro-
science, J.M. Bower, ed., Springer, 9:73-102, 2013.

[Wol03] Stephen Wolfram, The Mathematica Book, Fifth Edition, Wolfram
Media/Cambridge University Press, 2003.

[knitr] Foundation for Open Access Statistics, knitr, http://yihui.name/knitr,
2015.

[Per07] Fernando Perez and Brian E. Granger, IPython: a System for Inter-
active Scientific Computing, Computing in Science and Engineering,
9:21-19, 2007.

[Ste05] William Stein and David Joyner. SAGE: System for Algebra and
Geometry Experimentation. ACM SIGSAM Bulletin, 39:61-64, 2005.

[Hun07] John D. Hunter, Matplotlib: A 2D graphics environment, Computing
In Science & Engineering, 9(3):90-95, 2007.

[Wic09] Hadley Wickham, ggplot2: elegant graphics for data analysis,
Springer New York, 2009.

[Was14] Michael Waskom et al.. seaborn: v0.5.0, Zenodo. 10.5281/zen-
odo.12710, November 2014.

[McK10] Wes McKinney, Data Structures for Statistical Computing in
Python, Proceedings of the 9th Python in Science Conference, 51-
56, 2010.

[Wil05] Leland Wilkinson, The Grammar of Graphics, Springer-Verlag New
York, 2005.

[shiny] RStudio, Inc, shiny: Easy web applications in R., http://shiny.rstudio.
com, 2014.

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 67

Structural Cohesion: Visualization and Heuristics for
Fast Computation with NetworkX and matplotlib

Jordi Torrents§∗, Fabrizio Ferraro‡

https://www.youtube.com/watch?v=K8RFIdG3g9Y

F

Abstract—The structural cohesion model is a powerful sociological conception
of cohesion in social groups, but its diffusion in empirical literature has been
hampered by computational problems. We present useful heuristics for comput-
ing structural cohesion that allow a speed-up of one order of magnitude over
the algorithms currently available. Both the heuristics and the exact algorithm
have been implemented on NetworkX by the first author. Using as examples
three large collaboration networks (co-maintenance of Debian packages, co-
authorship in Nuclear Theory, and co-authorship in High-Energy Theory) we
illustrate our approach to measure structural cohesion in relatively large net-
works. We also introduce a novel graphical representation of the structural
cohesion analysis to quickly spot differences across networks. It is implemented
using matplotlib.

Index Terms—Network Analysis, Sociology, Structural Cohesion, NetworkX,
matplotlib

Introduction

Group cohesion is a central concept that has a long and illustrious
history in sociology and organization theory, although its precise
characterization has remained elusive. Its use in most sociological
research has been ambiguous at best. This is largely because,
as [moody2003] argued, it is often based on sloppy definitions
of cohesion, grounded mostly in intuition and common sense.
Network analysis has provided a large number of solutions to this
problem. From classical work in the graph-theoretic sociological
tradition on cliques, clans, clubs, k-plexes, k-cores and lambda sets
[wasserman1994], to the more recent contribution of physicists
and computer scientists on community analysis [fortunato2010],
network theorists have provided researchers with a wide range of
measures of cohesion in social networks.

However, neither the classical approaches nor new develop-
ments in community analysis are well-enough suited to address
many of the common uses of group cohesion in the sociological
literature, and thus fall short when used in empirical analysis. The
structural cohesion model ([white2001], [moody2003]) has strong
mathematical foundations, and captures many of the features of
the concept group cohesion. Despite this, it has not been widely
used in empirical analysis because it is not possible to perform

* Corresponding author: jordi.t21@gmail.com
§ University of Barcelona
‡ IESE Business School

Copyright © 2015 Jordi Torrents et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

the required computations for networks with more than a few
thousands nodes and edges in a reasonable time frame. Moreover,
there are very few implementations available to researchers.

In this paper we present a set of heuristics to compute
the connectivity structure of a given network. We implemented
them, along with the exact algorithm, on top of NetworkX
[hagberg2008], a Python Library for Network Analysis. We also
suggest a novel graphical representation of the results, imple-
mented using Matplotlib [hunter2007]. The rest of the paper is
organized as follows: we start by discussing the main features
which a cohesive subgroup formalization should have from a
sociological perspective, and then discuss in depth the structural
cohesion model. We then describe the exact algorithm and intro-
duce our proposed heuristics. We go on to report our findings
from applying the structural cohesion analysis to three large
collaboration networks, which allows us to illustrate the novel
graphical representation of the connectivity structure. Finally we
conclude with some implications for future research.

Cohesion in social networks

[doreian1998] argue that group cohesion can be divided ana-
lytically into an ideational component, which is based on the
members’ identification with a collectivity, and a relational com-
ponent, which is based on connections among members. These
connections are, at least in part, observable, and thus the rela-
tional approach seems more appropriate for theory building and
empirical research. But, despite its attractiveness, the relational
component has received much less attention than the ideational
component in sociological literature. Social network analysis has
been the exception, and since the beginning, its proponents for-
malized group cohesion in relational terms, that is, they defined
the boundaries of subgroups in a community starting from the
patterns of relations among actors.

Unfortunately most of the existing formalizations of cohesive
subgroups do not capture some key properties of the concept of
cohesive groups. First, a cohesive subgroup should be robust, in
the sense that its qualification as a group should not be dependent
on the actions of a single individual, or any small set of individuals
that belong to the group. This implies, on the one hand, that no
actor, or small set of actors, should be able to dissolve the cohesive
subgroup by abandoning it; while, on the other hand, all actors in
a group should be related to all other actors by multiple direct
or indirect connections in order to pull it together [moody2003].
Therefore, cohesive subgroups should also be relatively invariant
to changes outside the group [brandes2005].

68 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Second, actual social groups tend to overlap in the sense that
some actors are likely to be part of more than one cohesive
subgroup. As [freeman1992] notes, formalizations of subgroups
that overlap a lot are not well suited to capturing the concept of
groups because their sociological use is not focused on individuals
but on contexts, such as productive relations, friendship relations,
or family ties, to name a few. Thus if groups are defined around a
highly specific context the overlap is likely to be small. Therefore
the formalization of subgroups often assumed non-overlapping
subgroups. However, there is always overlap among cohesive
subgroups in actual social groups; and this overlap might be both
empirically and theoretically relevant.

Third, following a typical distinction in the social network
literature, cohesive groups have both a structural and a positional
dimension. In the former, cohesive subgroups are defined in terms
of the global patterns of relations, and the focus is on the groups
and the network as a whole. In the latter, the focus is on the
identification of actors who, because of their network position,
obtain preferential access to information or resources that flow
through the network. Cohesive subgroup formalizations should
help address both structural and positional questions.

Last but by no means least, cohesive subgroups are likely to
display a hierarchical structure in the sense that highly cohesive
subgroups are nested inside less cohesive ones. This notion of
hierarchy is grounded on Simon’s definition: a system that is
composed of interrelated subsystems, each of the latter being, in
turn, hierarchic in structure until we reach some lowest level of
elementary subsystem [simon1962]. A hierarchical conception of
cohesive subgroups implies that there is a relevant organization at
all scales of the network, and that cohesive groups are a mesolevel
structure that is not reducible to neither macro nor micro level
phenomena and dynamics.

The structural cohesion model

Structural cohesion is a powerful explanatory factor for a wide
variety of interesting empirical social phenomena. It can be used
to explain, for instance: the likelihood of building alliances and
partnerships among biotech firms [powell2005]; how positions
in the connectivity structure of the Indian inter-organizational
ownership network are associated with demographic features
(age and industry); and differences in the extent to which firms
engage in multiplex and high-value exchanges [mani2014]. Social
cohesion can also help us understand degrees of school attach-
ment and academic performance in young people, as well as the
tendency of firms to enroll in similar political activity behaviors
[moody2003]. It offers insight, also, into emerging trust relations
among neighborhood residents or the hiring relations among top
level US graduate programs [grannis2009]. In addition to social
solidarity and group cohesion, the model can equally fit many
relevant theoretical issues, such as conceptualizing structural dif-
ferences among fields and organizations [white2004], explaining
the role of highly connected subgroups in boosting diffusion in
social networks without a high rate of decay [moody2004], or
highlighting the complexity and diversity of the structure of real
world markets beyond stylized one-dimensional characterizations
of the market [mani2014].

The structural cohesion approach to subgroup cohesion
([white2001], [moody2003]) is grounded on two mathematically
equivalent definitions of cohesion that are based on commonly
used concepts of cohesion in the sociological literature. On the one

hand, the ability of a collectivity to hold together independently
of the will of any individual. As set out by the formal definition,
a group’s structural cohesion is equal to the minimum number
of actors who, if removed from the group, would disconnect the
group. Yet, on the other hand, a cohesive group has multiple inde-
pendent relational paths among all pairs of members. According
to the formal definition a group’s structural cohesion is equal to
the minimum number of independent paths linking each pair of
actors in the group [moody2003]. These two definitions are math-
ematically equivalent in terms of the graph theoretic concept of
node connectivity1 as defined by Menger’s Theorem [white2001],
which can be formulated locally: The minimum node cut set κ(u,v)
separating a nonadjacent u,v pair of nodes equals the maximum
number of node-independent u− v paths; and globally: A graph
is k-connected if and only if any pair of nodes u,v is joined by
at least k node-independent u− v paths. Thus Menger’s theorem
links with an equivalence relation the connectivity based on cut
sets with the number of node independent paths among pairs of
different nodes. This equivalence relation has a deep sociological
meaning because it allows for the definition of structural cohesion
in terms of the difficulty to pull a group apart by removing actors
and, at the same time, in terms of multiple relations between actors
that keep a group together.

The starting point of cohesion in a social group is a state
where every actor can reach every other actor through at least
one relational path. The emergence of a giant component --a
large set of nodes in a network that have at least one path that
links any two nodes-- is a minimal condition for the develop-
ment of group cohesion and social solidarity. [moody2003] argue
that, in this situation, the removal of only one node can affect
the flow of knowledge, information and resources in a network
because there is only one single path that links some parts of
the network. Thus, if a network has actors who are articulation
points2, their role in keeping the network together is critical; and
by extension the network can be disconnected by removing them.
[moody2003] convincingly argue that biconnectivity provides a
baseline threshold for strong structural cohesion in a network
because its cohesion does not depend on the presence of any
individual actor and the flow of information or resources does
not need to pass through a single point to reach any part of the
network. Therefore, the concept of robustness is at the core of the
structural cohesion approach to subgroup cohesion.

Note that the bicomponent structure of a graph is an exact
partition of its edges, which means that each edge belongs to
one, and only one, bicomponent; but this is not the case for
nodes because k-components can overlap in k− 1 nodes. In the
case of bicomponents, articulation points belong to all bicom-
ponents that they separate. Thus, this formalization of subgroup
cohesion allows limited horizontal overlapping over k-components
of the same k. On the other hand, the k-component structure of
a network is inherently hierarchical because k-components are
nested in terms of connectivity: a connected graph can contain
several 2-components, each of which can contain one or more
tricomponents, and so forth.

However, one shortcoming of classifying cohesive subgroups
only in terms of node connectivity is that k-components of the
same k are always considered equally cohesive despite the fact

1. See http://networkx.readthedocs.org/en/latest/reference/generated/
networkx.algorithms.connectivity.connectivity.node_connectivity.html .

2. See http://networkx.readthedocs.org/en/latest/reference/generated/
networkx.algorithms.components.biconnected.articulation_points.html .

STRUCTURAL COHESION: VISUALIZATION AND HEURISTICS FOR FAST COMPUTATION WITH NETWORKX AND MATPLOTLIB 69

that one of them might be very close to the next connectivity
level, while the other might barely qualify as a component of
level k (i.e. removing a few edges could reduce the connectivity
level to k− 1). To deal with this shortcoming, we propose using
another connectivity-based metric to obtain a continuous and more
granular measure of cohesion. [beineke2002] propose the measure
of average node connectivity of G3, denoted κ̄(G), defined as the
sum of local node connectivity between all pairs of different nodes
of G divided by the number of distinct pairs of nodes. Or put more
formally:

κ̄(G) =
∑u,v κG(u,v)(n

2

)

Where n is the number of nodes of G. In contrast to node
connectivity κ , which is the minimum number of nodes whose
removal disconnects some pairs of nodes, the average connectivity
κ̄(G) is the expected minimal number of nodes that must be
removed in order to disconnect an arbitrary pair of nodes of G. For
any graph G it holds that κ̄(G) ≥ κ(G). As [beineke2002] show,
average connectivity does not increase only with the increase in
the number of edges: graphs with the same number of nodes
and edges, and the same degree for each node can have different
average connectivity.

Despite all its merits, the structural cohesion model has
not been widely applied to empirical analysis because it is not
practical to compute it for networks with more than a few
thousands nodes and edges due to its computational complexity.
What’s more, it is not implemented in most popular network
analysis software packages. In the next section, we will review
the existing algorithm to compute the k-component structure for a
given network, before introducing our heuristics to speed up the
computation.

Existing algorithms for computing k-component structure

[moody2003] provide an algorithm for identifying k-components
in a network4, which is based on the [kanevsky1993] algorithm for
finding all minimum-size node cut-sets of a graph5; i.e. the set (or
sets) of nodes of cardinality k that, if removed, would break the
network into more connected components. The algorithm consists
of 4 steps:

1) Identify the node connectivity, k, of the input graph using
flow-based connectivity algorithms.

2) Identify all k-cutsets at the current level of connectivity
using the Kanevsky’s algorithm.

3) Generate new graph components based on the removal of
these cutsets (nodes in the cutset belong to both sides of
the induced cut).

4) If the graph is neither complete nor trivial, return to 1;
otherwise end.

As the authors note, one of the main strengths of the structural
cohesion approach is that it is theoretically applicable to both
small and large groups, which contrasts with the historical focus of
the literature on small groups when dealing with cohesion. But the

3. See http://networkx.readthedocs.org/en/latest/reference/generated/
networkx.algorithms.connectivity.connectivity.average_node_connectivity.
html .

4. See http://networkx.readthedocs.org/en/latest/reference/generated/
networkx.algorithms.connectivity.kcomponents.k_components.html .

5. See http://networkx.readthedocs.org/en/latest/reference/generated/
networkx.algorithms.connectivity.kcutsets.all_node_cuts.html .

fact that this concept and the algorithm proposed by the authors,
are theoretically applicable to large groups does not mean that this
would be a practical approach for analyzing the structural cohesion
on large social networks.

The equivalence relation established by Menger’s theorem
between node cut sets and node independent paths can be useful
to compute connectivity in practical cases but both measures are
almost equally hard to compute if we want an exact solution.
However, [white2001b] proposed a fast approximation algorithm
for finding good lower bounds of the number of node independent
paths between two nodes6. This algorithm is based on the idea of
searching paths between two nodes, marking the nodes of the path
as used and searching for more paths that do not include nodes
already marked. But instead of trying all possible paths without
order, this algorithm considers only the shortest paths: it finds
node independent paths between two nodes by computing their
shortest path, marking the nodes of the path found as used and
then searching other shortest paths excluding the nodes marked
as used until no more paths exist. Because finding the shortest
paths is faster than finding other kinds of paths, this algorithm
runs quite fast, but is not exact because a shortest path could use
nodes that, if the path were longer, may belong to two different
node independent paths [white2001b].

Heuristics for computing k-components and their average con-
nectivity

The logic of the heuristics presented here is based on repeatedly
applying fast algorithms for k-cores7 [batagelj2011] and bicon-
nected components8 [tarjan1972] in order to narrow down the
number of pairs of different nodes over which we have to compute
their local node connectivity for building the auxiliary graph in
which two nodes are linked if they have at least k node indepen-
dent paths connecting them. We follow the classical insight that,
:math:‘k‘-cores can be regarded as seedbeds, within which we
can expect highly cohesive subsets to be found [seidman1983].
More formally, our approach is based on Whitney’s theorem
[white2001], which states an inclusion relation among node con-
nectivity κ(G), edge connectivity λ (G) and minimum degree
δ (G) for any graph G:

κ(G)≤ λ (G)≤ δ (G)

This theorem implies that every k-component is nested inside a
k-edge-component, which in turn, is contained in a k-core. This
approach does not require computing node independent paths for
all pairs of different nodes as a starting point, thus saving an
important amount of computation. Moreover it does not require
recursively applying the same procedure over each subgraph. In
our approach we only have to compute node independent paths
among pairs of different nodes in each biconnected part of each
k-core, and repeat this procedure for each k from 3 to the maximal
core number of a node in the input network.

The aim of the heuristics presented here is to provide a fast
and reasonably accurate way of analyzing the cohesive structure
of empirical networks of thousands of nodes and edges. As we

6. See http://networkx.readthedocs.org/en/latest/reference/generated/
networkx.algorithms.approximation.connectivity.node_connectivity.html .

7. See http://networkx.readthedocs.org/en/latest/reference/generated/
networkx.algorithms.core.k_core.html .

8. See http://networkx.readthedocs.org/en/latest/reference/generated/
networkx.algorithms.components.biconnected.biconnected_components.html .

70 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

have seen, k-components are the cornerstone of structural cohesion
analysis. But they are very expensive to compute. Our approach
consists of computing extra-cohesive blocks of level k for each
biconnected component of a k-core. Extra-cohesive blocks are
a relaxation of the k-component concept in which not all node
independent paths among pairs of different nodes have to run
entirely inside the subgraph. Thus, there is no guarantee that an
extra-cohesive block of level k actually has node connectivity k.
We introduce an additional constraint to the extra-cohesive block
concept in order to approximate k-components: our algorithm
computes extra-cohesive blocks of level k that are also k-cores
by themselves in G. Furthermore, extra-cohesive blocks maintain
high requirements in terms of multiconnectivity and robustness,
thus conserving the most interesting properties from a sociological
perspective on the structure of social groups.

Combining this logic with three observations about the aux-
iliary graph H allows us to design a new algorithm9 for finding
extra-cohesive blocks in each biconnected component of a k-core,
that can either be exact but slow ---using flow-based algorithms for
local node connectivity [brandes2005] --- or fast and approximate,
giving a lower bound with certificate of the composition and
the connectivity of extra-cohesive blocks ---using [white2001b]
approximation for local node connectivity. Once we have a fast
way to compute extra-cohesive blocks, we can approximate k-
components by imposing that the induced subgraph of the nodes
that form an extra-cohesive block of G have to also be a k-core in
G.

Let H be the auxiliary graph in which two nodes are linked
if they have at least k node independent paths connecting them
in each of the biconnected components of the core of level k of
original graph G (for k > 2). The first observation is that complete
subgraphs in H (Hclique) have a one to one correspondence with
subgraphs of G in which each node is connected to every other
node in the subgraph for at least k node independent paths. Thus,
we have to search for cliques in H in order to discover extra-
cohesive blocks in G.

The second observation is that an Hclique of order n is also a
core of level n− 1 (all nodes have core number n− 1), and the
degree of all nodes is also n−1. The auxiliary graph H is usually
very dense, because we build a different H for each biconnected
part of the core subgraph of level k of the input graph G. In this
kind of network big clusters of almost fully connected nodes are
very common. Thus, in order to search for cliques in H we can do
the following:

1) For each core number value cvalue in each biconnected
component of H:

2) Build a subgraph Hcandidate of H induced by the nodes
that have exactly core number cvalue. Note that this is
different than building a k-core, which is a subgraph
induced by all nodes with core number greater or equal
than cvalue.

3) If Hcandidate has order cvalue + 1 then it is a clique and
all nodes will have degree n− 1. Return the clique and
continue with the following candidate.

4) If this is not the case, then some nodes will have degree
< n− 1. Remove all nodes with minimum degree from
Hcandidate.

9. See http://networkx.readthedocs.org/en/latest/reference/generated/
networkx.algorithms.approximation.kcomponents.k_components.html .

5) If the graph is trivial or empty, continue with the follow-
ing candidate. Or otherwise recompute the core number
for each node and go to 3.

Finally, the third observation is that if two k-components of
different order overlap, the nodes that overlap belong to both
cliques in H and will have core numbers equal to all other nodes
in the bigger clique. Thus, we can account for possible overlap
when building subgraphs Hcandidate (induced by the nodes that
have exactly core number cvalue) by also adding to the candidate
subgraph the nodes in H that are connected to all nodes that
have exactly core number cvalue. Also, if we sort the subgraphs
Hcandidate in reverse order (starting from the biggest), we can skip
checking for possible overlap for the biggest.

Based on these three observations, our heuristics for approx-
imating the cohesive structure of a network and the average
connectivity of each individual block, consists of:

Let G be the input graph. Compute the core number of each
node in G. For each k from 3 to the maximum core number build
a k-core subgraph Gk−core with all nodes in G with core level ≥ k.

For each biconnected component of Gk−core:

1) Compute local node connectivity κ(u,v) between all pairs
of different nodes. Optionally store the result for each
pair. Either use a flow-based algorithm (exact but slow)
or White and Newman’s approximation for local node
connectivity (approximate but a lot faster).

2) Build an auxiliary graph H with all nodes in this bi-
component of Gk−core with edges between two nodes if
κ(u,v)≥ k. For each biconnected component of H:

3) Compute the core number of each node in Hbicomponent ,
sort the values in reverse order (biggest first), and for
each value cvalue:

a) Build a subgraph Hcandidate induced by nodes
with core number exactly equal to cvalue plus
nodes in H that are conected with all nodes with
core number equal to cvalue.

i) If Hcandidate has order cvalue + 1 then it is a
clique and all nodes will have degree n−1.
Build a core subgraph Gcandidate of level k
of G induced by all nodes in Hcandidate that
have core number ≥ k in G.

ii) If this is not the case, then some nodes
will have degree < n−1. Remove all nodes
with minimum degree from Hcandidate. Build
a core subgraph Gcandidate of level k of G
induced by the remaining nodes of Hcandidate
that have core number ≥ k in G.

A) If the resultant graph is trivial or empty,
continue with the following candidate.

B) Else recompute the core number for
each node in the new Hcandidate and go
to (i).

b) The nodes of each biconnected component of
Gcandidate are assumed to be a k-component of
the input graph if the number of nodes is greater
than k.

c) Compute the average connectivity of each de-
tected k-component. Either use the value of

STRUCTURAL COHESION: VISUALIZATION AND HEURISTICS FOR FAST COMPUTATION WITH NETWORKX AND MATPLOTLIB 71

κ(u,v) computed in step 1 or recalcualte κ(u,v)
in the induced subgraph of candidate nodes.

Notice that because our approach is based on computing node
independent paths between pairs of different nodes, we are able
to use these computations to calculate both the cohesive structure
and the average node connectivity of each detected k-component.
Of course, computing average connectivity comes with a cost:
either more space to store κ(u,v) in step 1, or more computation
time in step 3.c if we did not store κ(u,v). This is not possible
when applying the exact algorithm for k-components proposed by
[moody2003] because it is based on repeatedly finding k-cutsets
and removing them, thus it does not consider node independent
paths at all.

The output of these heuristics is an approximation to k-
components based on extra-cohesive blocks. We find extra-
cohesive blocks and not k-components because we only build the
auxiliary graph H one time on each bicoennected component of
a core subgraph of level k from the input graph G. Local node
connectivity is computed in a subgraph that might be larger than
the final Gcandidate and thus some node independent paths that
shouldn’t could end up being counted.

Accuracy can be improved by rebuilding H from the pairwise
node connectivity in Gcandidate and following the remaining steps
of the heuristics at the cost of slowing down the computation.
There is a trade-off between speed and accuracy. After some tests
we decided to compute H only once and lean towards the speed
pole of the trade-off. Our goal is to have an usable procedure for
analyzing networks of thousands of nodes and edges in which
we have substantive interests. Following this goal, the use of
[white2001b] approximation algorithm for local node connectivity
in step 3.b is key. It is almost on order of magnitude faster than the
exact flow-based algorithms. As usual, speed comes with a cost in
accuracy: [white2001b] algorithm provides a strict lower bound
for the local node connectivity. Thus, by using it we can miss an
edge in H that should be there.

Our tests reveal that the use of [white2001b] approximation
does indeed underestimate the order of some k-components, par-
ticularly in not very sparse networks. One approach to mitigate this
problem is to relax the strict cohesion requirement of Hcandidate
being a clique. Following the network literature on cliques, we can
relax its cohesion requirements in terms of degree, coreness and
density. We did some experiments and found that a good relaxation
criteria is to set a density threshold of 0.95 for Hcandidate.

Case study: Structural cohesion in collaboration networks

The structural cohesion model can be used to explain cooperation
in different kinds of collaboration networks; for instance, co-
authorship networks ([moody2004] , [white2004]) and collab-
oration among biotech firms [powell2005]. Most collaboration
networks are modeled as bipartite graphs, in which nodes can
be divided in two disjoin sets, and edges only connect nodes from
opposite sets. In the case of co-authorship networks, one node set
represents authors and the other papers. Each author has edges
that link her to all papers she authored. The usual practice to deal
with bipartite networks is focus the analysis only on unipartite
projections. That is, a new network only with the nodes that
represent authors from the original bipartite network, where two
authors are linked by an edge if they co-authored a paper together.

However, recent literature on bipartite networks strongly sug-
gests that it is necessary to analyze bipartite networks directly to

get an accurate picture ([uzzi2007], [opsahl2011], [latapy2008]).
We show that this is also the case for the k-component structure of
collaboration networks. This kind of analysis has been conducted
very rarely on bipartite networks, and only on very small ones
[white2004]. Its limited diffusion can be readily explained by the
fact that bipartite networks are usually quite a lot bigger than their
unipartite counterparts, and the computational requirements, once
again, stifled empirical research in this direction.

The heuristics for structural cohesion presented here allow us
to analyze relatively large networks (up to tens of thousands of
nodes and edges) quickly enough to be practical. To illustrate this
we use data on collaboration among software developers in one
organization (the Debian project) and scientists publishing papers
in the arXiv.org electronic repository in two different scientific
fields: High Energy Theory and Nuclear Theory. We built the
Debian collaboration network by linking each software developer
with the packages (i.e. programs) that she uploaded to the package
repository of the Debian Operating System during a complete
release cycle. We analyze the Debian Operating System version
5.0, codenamed Lenny, which was developed from April 8, 2007,
to February 1, 2009. Scientific networks are built using all the
papers uploaded to the arXiv.org preprint repository from January
1, 2006, to December 31, 2010, for High Energy Physics Theory
and Nuclear Theory. In these networks each author is linked to
the papers that she has authored during the time period analyzed.
Unipartite projections consist of scientists linked together if they
have co-authored a paper, and developers linked together if they
have worked on the same program. Table 1 presents some details
on those networks (which are available, see10).

In the remaining part of this section we perform two kinds of
analysis to illustrate how the structural cohesion model can help us
understand the structure and dynamics of collaboration networks.
First, we present a tree representation of the k-component structure
---which is also named cohesive blocks structure in the literature
([white2001], [moody2003], [white2004], [mani2014])--- for our
bipartite networks and their unipartite projections, both for actual
networks and for their random counterparts. Finally, we present
a novel graphic representation of the structural cohesion of a
network, based on three-dimensional scatter plot, using average
node connectivity as a fine-grained measure of cohesion of each
k-component.

For the first analysis we do need to generate null models in
order to discount the possibility that the observed structure of
actual networks is just the result of randomly mixing papers and
scientists or packages and developers. The null models used in this
paper are based on a bipartite configuration model [newman2003],
which consists of generating networks by randomly assigning
papers/programs to scientists/developers but maintaining constant
the distribution of papers per scientists and scientists by paper
observed in the actual networks. For unipartite projections, we
generated bipartite random networks, and then performed the
unipartite projection.

10. You can download the networks used in this section in graphml for-
mat. Nodes have an attribute named bipartite, with values 0 and 1, which
indicates the node set to which each node belongs. Note that this is the
convention used in NetworkX’s bipartite package (see https://networkx.github.
io/documentation/latest/reference/algorithms.bipartite.html):

• Debian Lenny: http://dx.doi.org/10.6084/m9.figshare.1472938
• Nuclear Theory: http://dx.doi.org/10.6084/m9.figshare.1472940
• High Energy Theory: http://dx.doi.org/10.6084/m9.figshare.1472939

72 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Bipartite Unipartite
Network # nodes # edges Av. degree Time(s) # nodes # edges Av. degree Time(s)

Debian Lenny 13,121 20,220 3.08 1,105.2 1,383 5,216 7.54 204.7
High Energy (theory) 26,590 37,566 2.81 3,105.7 9,767 19,331 3.97 7,136.0

Nuclear Theory 10,371 15,969 3.08 1,205.2 4,827 14,488 6.00 3,934.1

TABLE 1: Collaboration networks analyzed from science and from software development. See text for details on their content. Time refers to
the execution of our heuristics on each network expressed in seconds.

So let’s start with the tree representation of the cohesive blocks
structure. As proposed by [white2004], we can represent the k-
component structure of a network by drawing a tree whose nodes
are k-components; two nodes are linked if the k-component of
higher level is nested inside the k-component of lower level (see
pp. 1643, 1651 from [mani2014] for this kind of analysis on
the Indian firm ownership network). This representation of the
connectivity structure can be built during the run time of the
exact algorithm. However, because our heuristics are based on
finding node independent paths, we have to compute first the k-
components hierarchy, and then construct the tree that represents
the connectivity structure of the network.

Figures 1 (a) and 1 (c) show the connectivity structure of
Nuclear Theory collaboration networks represented as a tree, the
former for the bipartite network and the latter for the unipartite
one. As we can see, both networks display non-trivial structure.
The bipartite network has up to an 8-component, but most nodes
are in k-components with k < 6. Up to k = 3 most nodes are
in giant k-components, but for k = {4,5} there are many k-
components of similar order. Figure 1 (c), which corresponds to
the unipartite projection, has a lot more connectivity levels. In this
network, the maximum connectivity level is 46; the four long legs
of the plot correspond to 4 cliques with 47, 31, 27 and 25 nodes.
Notice that each one of these 4 cliques are already a separated
k-component at k = 7 It is at this level of connectivity (k = {7,8})
where the giant k-components start to dissolve and many smaller
k-components emerge.

In order to be able to assess the significance of the results
obtained, we have to compare the connectivity structure of actual
networks with the connectivity structure of a random network that
maintains some constraints observed in the empirical networks.
In this case, we compare actual networks with only one random
network. We obtained it by generating 1000 random networks
and choosing one randomly. Figures 1 (b) and 1 (d) show the
connectivity structure of the random counterparts for Nuclear
Theory collaboration networks. For the bipartite network, instead
of the differentiated connectivity structure displayed by the actual
bipartite network, there is a flatter connectivity structure, where the
higher level k-component is a tricomponent. Moreover, instead of
many small k-components at high connectivity levels, the random
bipartite network has only giant k-components where all nodes
with component number k are. In this case, the unipartite network
is also quite different from its random counterpart. There are
only giant k-components up until k = 15, where the four cliques
observed in the actual network separate from each other to form
distinct k-components.

Going one step beyond classical structural cohesion analysis,
as proposed above, we can deepen our analysis by also considering
the average connectivity of the k-components of these networks.
By analogy with the k-component number of each node, which
is the maximum value k of the deepest k-component in which
that node is embedded, we can establish the average k-component

number of each node as the value of average connectivity of the
deepest k-component in which that node is embedded. Notice
that, unlike plain node connectivity, average node connectivity is a
continuous measure of cohesion. Thus it provides a more granular
measure of cohesion because we can rank k-components with the
same k according to their average node connectivity.

Figure 2 graphically represent the three networks with three-
dimensional scatter plots produced with the powerful Matplotlib
library [hunter2007]. In these graphs, each dot corresponds to a
node of the network, for bipartite networks nodes represent both
scientists/developers and papers/programs. The Z axis (the vertical
one) is the average k-component number of each node, and the X
and Y axis are the result of a 2 dimensional force-based layout
algorithm implemented by the neato program of Graphviz. The
two dimensional layout is computed by constructing a virtual
physical model and then using an iterative solver procedure to
obtain a low-energy configuration. Following [kamada1989], an
ideal spring is placed between each pair of nodes (even if they
are not connected in the network). The length of each spring
corresponds to the geodesic distance between the pair of nodes
that it links. The final node positioning in the layout approximates
the path distance among pairs of nodes in the network.

This novel graphic representation of cohesion structure is in-
spired by the approximation technique developed by [moody2004]
for plotting the approximate cohesion contour of large networks
to which is not practical to apply Moody & White (2003) exact
algorithm for k-components. Moody’s technique is based on the
fact that force-based layouts algorithms tend to draw nodes within
highly cohesive subgroups near each other. Then we have to divide
the surface of the two-dimensional plane in squares of equal areas
and compute node independent paths on a sample of pairs of nodes
inside each square so as to obtain an approximation for the node
connectivity in that square. Then we can draw a surface plot using
a smoothing probability density function. However, in order to
obtain a nice smooth surface plot, we have to use heavy smoothing
in the probability density function, and carefully choose the area
of the squares (mostly by trial and error). Moreover, this technique
strongly relies on the force-based layout algorithm to put nodes in
highly cohesive subgroups near each other ---something which is
not guaranteed because they are usually based in path distance and
not directly on node connectivity. Because we are able to compute
the k-component structure with our heuristics for large networks,
the three-dimensional scatter plot only relies on the layout algo-
rithm for setting the X and Y positions of the nodes, while the
Z position (average node connectivity) is computed directly from
the network. Moreover, we don’t have to use a smoothed surface
plot because we have a value of average connectivity for each
node, and thus we can plot each node as a dot on the plot. This
gives a more accurate picture of the actual cohesive structure of a
network.

This representation of cohesive structures can help researchers
visualize the presence of different organizational mechanisms in

STRUCTURAL COHESION: VISUALIZATION AND HEURISTICS FOR FAST COMPUTATION WITH NETWORKX AND MATPLOTLIB 73

(a) Actual bipartite network (b)
Random
bipartite
network

(c) Actual unipartite net-
work

(d) Random
unipartite
network

Fig. 1: Cohesive blocks for bipartite and unipartite Nuclear Theory collaboration networks, and for their random counterparts. Random
networks were generated using a bipartite configuration model. We built 1000 random networks and chose one randomly, see text for details.
For lower connectivity levels we have removed some small k-components to improve the readability: we do not show 1-components with less
than 20 nodes, 2-components with less than 15 nodes, or tricomponents with less than 10 nodes.

74 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

X

500
1000

1500
2000

2500
3000

3500

Y

500
1000

1500
2000

2500
3000

3500

A
v
e
ra

g
e
 c

o
n
n
e
ct

iv
it

y
 ̄(

)

1

2

3

4

5

6

1

2

3

4

5

6

(a) Bipartite Debian Lenny network

X

200
400

600
800

1000
1200

1400

Y

200
400

600
800

1000
1200

1400

A
v
e
ra

g
e
 c

o
n
n
e
ct

iv
it

y
 ̄(

)

0

5

10

15

20

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

(b) Unipartite Debian Lenny network

X

1000
2000

3000
4000

5000

Y

1000
2000

3000
4000

5000

A
v
e
ra

g
e
 c

o
n
n
e
ct

iv
it

y
 ̄(

)

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

(c) Bipartite Nuclear Theory network

X

500
1000

1500
2000

2500
3000

3500

Y

500
1000

1500
2000

2500
3000

3500

A
v
e
ra

g
e
 c

o
n
n
e
ct

iv
it

y
 ̄(

)

0

10

20

30

40

12
34
56
78
910111213141516171819202122232425262728293031323334353637383940414243444546

(d) Unipartite Nuclear Theory network

X

2000
4000

6000
8000

Y
2000

4000

6000

8000

A
v
e
ra

g
e
 c

o
n
n
e
ct

iv
it

y
 ̄(

)

1

2

3

4

5

6

7

1

2

3

4

5

6

7

(e) Bipartite High Energy Theory network

X

1000
2000

3000
4000

5000

Y

1000
2000

3000
4000

5000

A
v
e
ra

g
e
 c

o
n
n
e
ct

iv
it

y
 ̄(

)

0

5

10

15

20

25

12
34
56
78
910111213141516171819202122232425

(f) Bipartite High Energy Theory network

Fig. 2: Average connectivity three-dimensional scatter plots. X and Y are the positions determined by the Kamada-Kawai layout algorithm.
The vertical dimension is average connectivity. Each dot is a node of the network and bipartite networks contain both papers/programs and
scientists/developers.

STRUCTURAL COHESION: VISUALIZATION AND HEURISTICS FOR FAST COMPUTATION WITH NETWORKX AND MATPLOTLIB 75

different kinds of collaboration networks. The difference between
the Debian and the scientific collaboration networks is striking.
In figure 2 (a) we can see the scatter plot for a Debian bipartite
network. We can observe a clear vertical separation among nodes
in different connectivity levels. This is because almost all nodes in
each connectivity level are in a giant k-component and thus they
have the same average connectivity. In other words, developers
in Debian show different levels of engagement and contribution,
with a core group of developers deeply nested at the core of the
community. This pattern is the result of formal and informal rules
of collaboration that evolved over the years [ferraro2007] into a
homogeneous hierarchical structure, where there is only one core
of highly productive individuals at the center. Not surprisingly,
perhaps, the Debian project has been particularly resilient to
developers’ turnover and splintering factions.

Scientific collaboration networks show a rather different struc-
ture of collaboration. The bipartite science collaboration networks
(figures 2 (c) and 2 (e)) display a continuous hierarchical structure
in which there are nodes at different levels of average connectivity
for each discrete plain connectivity level. This is because science
collaboration networks have a complex cohesive block structure
where there are a lot of independent k-components in each plain
connectivity level, for k ≥ 3. Each small cohesive block has a
different order, size and average connectivity; thus, when we
display them in this three-dimensional scatter plot we observe a
continuous hierarchical structure that contrasts with the almost
discrete structure of Debian collaboration networks.

One explanation why we observe this heterogeneous connec-
tivity structure is that scientific collaborations cluster around a
variety of different aims, methods, projects, and institutional envi-
ronments. Therefore as the most productive scientists collaborate
with each other, hierarchies naturally emerge. However, we are
less likely to observe one single hierarchical order as we did in
the Debian network, as more than one core of highly productive
scientists is likely to emerge.

If we compare the bipartite networks with their unipartite
projections using this graphical representation (see figures 2 (b), 2
(d), and 2 (f)) we can see that, again, they look quite different.
While bipartite average connectivity structure for the Debian
network is characterized by clearly defined and almost discrete
hierarchical levels, its unipartite counterpart shows a continuous
hierarchical structure. However, this is not caused by the presence
of many small k-components at the same level k, as in the case
of bipartite science networks discussed above, but by the close
succession of hierarchy levels with almost the same number of
nodes in a chain-like structure.

For collaboration science networks, the three-dimensional
scatter plots of unipartite projections are also quite different than
their original bipartite networks. They have a lot more hierarchy
levels than bipartite networks but most nodes are at lower connec-
tivity levels. Only a few nodes are at top levels of connectivity,
and they all form part of some clique, which are the groups in
the long legs of the cohesive block structure depicted in figure
1 (c). Thus, the complex hierarchical connectivity structure of
bipartite collaboration networks gets blurred when we perform
unipartite projection. An important consequence of the projection
is that only a few nodes embedded in big cliques appear at
top connectivity levels and all other nodes are way down in the
connectivity structure. This could lead the risk of overestimating
the importance of those nodes in big cliques and to underestimate
the importance of nodes that, despite being at high levels of the

bipartite connectivity structure, appear only at lower levels of the
unipartite connectivity structure.

Conclusions

We developed heuristics to compute the k-components structure,
along with the average node connectivity for each k-component,
based on the fast approximation to compute node independent
paths [white2001b]. These heuristics allow for the computing of
the approximate value of group cohesion for moderately large net-
works in a reasonable time frame. We showed that these heuristics
can be applied to networks at least one order of magnitude bigger
than the ones manageable by the exact algorithm proposed by
[moody2003]. To ensure reproducibility and facilitate diffusion of
these heuristics we provided an implementation of both the exact
algorithm and the heuristics on top of NetworkX [hagberg2008].
These implementations are included in the recently released 1.10
version of NetworkX.

We analyzed three large collaboration networks and showed
that the heuristics and the novel visualization technique for cohe-
sive network structure help us capture important differences in the
way collaboration is structured. Future research could leverage
the tools we provide to systematically measure those structures.
For instance, sociologists of science often compare scientific
disciplines in terms of their collaborative structures [moody2004]
and their level of controversies [bearman2010]. The measures
and the visualization technique we proposed could nicely capture
these features and compare them across scientific disciplines.
This would make it possible to further our understanding of the
social structure of science, and its impact in terms of productiv-
ity, novelty and impact. Social network researchers interested in
organizational robustness would also benefit from leveraging the
structural cohesion measures to detect sub-groups that are more
critical to the organization’s resilience, and thus prevent factional-
ization. Exploring the consequences of different forms of cohesive
structures will eventually help us further our understanding of
collaboration and the role that cohesive groups play in linking
micro-level dynamics with macro-level social structures.

REFERENCES

[batagelj2011] Batagelj, V. and M. Zaveršnik (2011). Fast algorithms for
determining (generalized) core groups in social networks.
Advances in Data Analysis and Classification 5(2), 129–145.

[bearman2010] Shwed, U. and P. Bearman (2010). The temporal structure of
scientific consensus formation. American sociological review
75(6), 817–840.

[beineke2002] Beineke, L., O. Oellermann, and R. Pippert (2002). The
average connectivity of a graph. Discrete mathematics 252(1-
3), 31–45.

[brandes2005] Brandes, U. and T. Erlebach (2005). Network analysis:
methodological foundations, Volume 3418. Springer Verlag.

[doreian1998] Doreian, P. and T. Fararo (1998). The problem of solidarity:
theories and models. Routledge.

[freeman1992] Freeman, L. (1992). The sociological concept of “group”: An
empirical test of two models. American Journal of Sociology,
152–166.

[fortunato2010] Fortunato, S. (2010). Community detection in graphs. Physics
Reports, 486(3), 75-174.

[grannis2009] Grannis, R. (2009). Paths and semipaths: reconceptualizing
structural cohesion in terms of directed relations. Sociological
Methodology 39(1), 117–150.

[hagberg2008] Hagberg, A., Schult, D. A., & Swart, P. (2008). Exploring
network structure, dynamics, and function using NetworkX.
In Proceedings of the 7th Python in Science Conferences
(SciPy 2008) (Vol. 2008, pp. 11-16).

76 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

[hunter2007] Hunter, J. D. (2007). Matplotlib: A 2d graphics environment.
Computing In Science & Engineering 9(3), 90–95.

[kamada1989] Kamada, T. and S. Kawai (1989). An algorithm for draw-
ing general undirected graphs. Information processing letters
31(1), 7–15.

[kanevsky1993] Kanevsky, A. (1993). Finding all minimum-size separating
vertex sets in a graph. Networks 23(6), 533–541.

[latapy2008] Latapy, M., C. Magnien, and N. Vecchio (2008). Basic
notions for the analysis of large two mode networks. Social
Networks 30(1), 31–48.

[mani2014] Mani, D. and J. Moody (2014). Moving beyond stylized
economic network models: The hybrid world of the indian
firm ownership network. American Journal of Sociology
119(6), pp. 1629–1669.

[moody2004] Moody, J. (2004). The structure of a social science collab-
oration network: Disciplinary cohesion from 1963 to 1999.
American Sociological Review 69(2), 213–238.

[moody2003] Moody, J., & White, D. R. (2003). Structural cohesion
and embeddedness: A hierarchical concept of social groups.
American Sociological Review, 103-127.

[newman2003] Newman, M. (2003). The structure and function of complex
networks. SIAM Review 45, 167.

[ferraro2007] O’Mahony, S. and F. Ferraro (2007). The emergence of
governance in an open source community. The Academy of
Management Journal 50(5), 1079–1106.

[opsahl2011] Opsahl, T. (2011). Triadic closure in two-mode networks:
Redefining the global and local clustering coefficients. Social
Networks 34.

[powell2005] Powell, W., D. White, K. Koput, and J. Owen-Smith (2005).
Network dynamics and field evolution: The growth of in-
terorganizational collaboration in the life sciences. American
Journal of Sociology 110(4), 1132–1205.

[simon1962] Simon, H. A. (1962). The architecture of complexity. Pro-
ceedings of the American philosophical society 106(6),
467–482.

[seidman1983] Seidman, S. (1983). Network structure and minimum degree.
Social networks 5(3), 269–287.

[tarjan1972] Tarjan, R. (1972). Depth-first search and linear graph al-
gorithms. In Switching and Automata Theory, 1971., 12th
Annual Symposium on, pp. 114–121. IEEE.

[uzzi2007] Uzzi, B., L. Amaral, and F. Reed-Tsochas (2007). Small-
world networks and management science research: a review.
European Management Review 4(2), 77–91.

[wasserman1994] Wasserman, S., & Faust, K. (1994). Social network analy-
sis: Methods and applications (Vol. 8). Cambridge university
press.

[white2004] White, D., J. Owen-Smith, J. Moody, and W. Powell (2004).
Networks, fields and organizations: micro-dynamics, scale
and cohesive embeddings. Computational & Mathematical
Organization Theory 10(1), 95–117.

[white2001b] White, D. and M. Newman (2001). Fast approximation algo-
rithms for finding node-independent paths in networks. Santa
Fe Institute Working Papers Series.

[white2001] White, D. R., & Harary, F. (2001). The cohesiveness of
blocks in social networks: Node connectivity and conditional
density. Sociological Methodology, 31(1), 305-359.

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 77

Automated Image Quality Monitoring with IQMon

Josh Walawender‡∗

https://www.youtube.com/watch?v=dGLkDOvYOHA

F

Abstract—Automated telescopes are capable of generating images more
quickly than they can be inspected by a human, but detailed information on
the performance of the telescope is valuable for monitoring and tuning of their
operation. The IQMon (Image Quality Monitor) package1 was developed to
provide basic image quality metrics of automated telescopes in near real time.

Index Terms—astronomy, automated telescopes, image quality

Introduction

Using existing tools such as astropy [Astropy2013], astrome-
try.net [Lang2010], source extractor [Bertin1996], [Bertin2010a],
SCAMP [Bertin2006], [Bertin2010b], and SWARP [Bertin2010c],
IQMon analyzes images and provides the user with a quick way
to determine whether the telescope is performing at the required
level.

For projects which need to monitor the operation of an imaging
telescope, IQMon is meant to provide a middle ground solution
between simply examining the operations logs (e.g. those output
by the control system) and a full data analysis pipeline. IQMon
provides more information than typical operations logs while also
giving a "ground truth" analysis since it looks at the actual data and
not just what the system intended to do. While not as powerful as a
full data pipeline, it is designed to provide operational information
instead of scientific data products and thus its output is tuned to
the task of examining the quality of the data and evaluating it for
common problems.

IQMon can provide a determination of whether the telescope
is focused (from the typical Full Width at Half Maximum, or
FWHM, of stars in the image), whether it is pointing accurately
(obtained from a comparison of the target coordinates with the
astrometrically solved coordinates), whether the tracking or guid-
ing is adequate (from the typical ellipticity of stars in the image),
and whether the night is photometric (obtained from the typical
photometric zero point of stars in the image). For wide field
systems which detect many stars in each image, these metrics
can be spatially resolved allowing for more detailed analysis such
as differentiating between tracking error, focus error, and optical
aberration or determining if the dome is partially obscuring the
telescope aperture.

* Corresponding author: joshwalawender@me.com
‡ Subaru Telescope, National Astronomical Observatory of Japan

Copyright © 2015 Josh Walawender. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

1. Source code at https://github.com/joshwalawender/IQMon

To date, IQMon has been deployed on three disparate optical
systems. Two for the VYSOS Project which performs photometric
monitoring of young stars: a 735mm focal length wide field
imager with a monochrome CCD camera which undersamples
the point spread function (PSF) and an 0.5 meter f/8 telescope
with a monochrome CCD camera with well sampled PSF. It has
also been deployed on the prototype unit for the PANOPTES2

Project: an 85mm focal length camera lens and DSLR camera
(with Bayer color array) designed for very wide field photometry.
PANOPTES aims to create a global network of low-cost, robotic
observatories for citizen science projects. IQMon has provided
valuable diagnostic information about system performance in all
cases.

Structure and Example Use

IQMon operates by using Telescope and Image classes.
The Telescope object contains basic information about the
telescope which took the data. When a Telescope object is
instantiated, a configuration file is read which contains information
on the telescope and controls various user-configurable parameters
and preferences for IQMon. The configuration file is a YAML
document and is read using the pyyaml3 module.

An Image object is instantiated with a path to a file with
one of the supported image formats and with a reference to a
Telescope object. The image analysis process is simply a series
of calls to methods on the Image object.

At the most basic level, IQMon is a sequencing tool which
calls other programs (e.g. SExtractor, Astronometry.net) and tracks
their output. These calls are all made using the subprocess32
module, so all of these dependencies need to be installed and
visible in the path for IQMon to function properly.

The IQMon philosophy is to never operate on the raw
file itself, but instead to create a "working file" (using the
read_image method) and store it in a temporary directory. If
the raw image file is a FITS file, then read_image simply
copies the raw file to the temporary directory and records this
file name and path in the working_file property. If the file
is a raw image file from a DSLR (e.g. .CR2 or .dng format),
then read_image will call dcraw4 using the subprocess32
module5 to convert the file to .ppm. The file is then converted
to FITS format using either pamtofits or pnmtofits tools
from the netpbm6 package. IQMon then operates on the green
channel of that resulting FITS file. For full functionality, the user
should populate the header of this FITS file with appropriate FITS

2. http://projectpanoptes.org/v1/
3. http://pyyaml.org

78 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

keywords (e.g. RA, DEC, EXPTIME, DATE-OBS, etc.). To date,
IQMon has only been tested with FITS and .CR2 files, but should
in principle work with numerous DSLR raw format images.

IQMon has been tested with Python 2.7.X, testing with Python
3.X is pending. Python 3.X compatibility notes will be posted to
the readme file on the git repository. IQMon runs successfully on
both Mac OS X and linux. Windows compatibility is untested, but
will be limited by the availability of dependencies (astrometry.net,
SExtractor, etc.).

Because the system is designed to do quick evaluations of
image quality, the primary concept is an object representing a
single image. IQMon does not do any image stacking or other
processing which would be applied to more than one image at a
time nor is it built around other organizational concepts such as
targets or visits. It is not intended to supplant a full data reduction
and analysis package. The output of IQMon, however, can be
stored in a MongoDB7 database making it potentially useful for
collecting information on observing concepts which span multiple
images such as targets, nights, or visits. It might also be useful as
a preprocessing step for a more complex data pipeline.

The time to process an image varies depending on many
factors. It has been well studied for two of the systems mentioned
in the Introduction. Both of these systems are analyzed by the
same computer (a 2.3GHz Quad-Core Intel Core i7 with 8GB of
RAM), so they share the system resources during the night.

In both cases the full image analysis takes tens of seconds per
image, but depends on the number of stars in the image. The total
analysis time for these systems is dominated by the SCAMP solve
(roughly one third of the total time) and the generation of two
JPEG images (also roughly one third of the total time). IQMon
itself is single threaded, but many of the programs it calls, such as
SCAMP, are multi threaded and so will take advantage of multiple
cores.

In the following sections, I will describe a simple example
of evaluating image quality for a single image. A more complex
example which is updated in concert with IQMon can be found
in the measure_image.py script at the git repository for the
VYSOS project8. That process can then be wrapped in a simple
program to monitor a directory for images and analyze them as
they are written to disk (see the watch_directory.py script
in the same VYSOS repository for an example). This enables
automatic near real time analysis.

Configuration and Reading the Image In

After importing IQMon, the first step would be to instantiate the
Telescope object which takes a configuration file as its input.
The next step is to instantiate an Image object with the path to the
image file and the Telescope object representing the telescope
which took that image.
tel = IQMon.Telescope('~/MyTelescope.yaml')
im = IQMon.Image('~/MyImage.fits', tel)

IQMon writes a log which is intended to provide useful informa-
tion to the user (not just the developer) and shows the progress of

4. http://www.cybercom.net/~dcoffin/dcraw/
5. The subprocess32 module "is a backport of the subprocess standard

library module from Python 3.2 & 3.3 for use on Python 2.4, 2.5, 2.6 and
2.7" (from https://pypi.python.org/pypi/subprocess32). It is used instead of the
standard subprocess module due to its support for timeout functionality.

6. http://netpbm.sourceforge.net
7. http://www.mongodb.org
8. https://github.com/joshwalawender/VYSOStools

the analysis. We can either pass in a logger object from Python’s
logging module, or ask IQMon to create one:

create a new logger object
im.make_logger(verbose=False)
print('Logging to file {}'.format(im.logfile))
im.logger.info('This is a log entry')

The first step for any image analysis is likely to be to call the
read_image method. After calling read_image, the FITS
header is read and various Image object properties are populated
by calling the read_header method.

Generate working file copy of the raw image
im.read_image()
Read the fits header
im.read_header()

Once the image has been read in and a working file created,
IQMon uses various third party tools to perform image analysis.
The following sections describe some of the analysis steps which
are available.

PSF Size Measurements with Source Extractor

Source Extractor (SExtractor) [Bertin1996], [Bertin2010a] is
a program which builds a catalog of sources (stars, galax-
ies, etc.) detected in an image. SExtractor is called using the
run_SExtractor method which invokes the command us-
ing the subprocess32 module. Customization parameters can be
passed to Source Extractor using the telescope configuration file.

The output file of SExtractor is read in and stored as an astropy
table object. Stars with SExtractor generated flags are removed
from the table and the table is stored as a property of the image
object.

Determining the PSF size from the SExtractor results is done
with the determine_FWHM method. The full width at half
maximum (FWHM) and ellipticity values for the image are a
weighted average of the FWHM and ellipticity values for the
individual stars.

These steps not only provide the typical FWHM (which can
indicate if the image is in focus), they can also be used to guess at
whether the image is "blank" (i.e. very few stars are visible either
because of cloud cover or other system failure). For example:

im.run_SExtractor()
Consider the image to be blank if <10 stars
if im.n_stars_SExtracted < 10:

im.logger.warning('Only {} stars found.'
.format(im.n_stars_SExtracted))

im.logger.warning('Image may be blank.')
else:

im.determine_FWHM()

Pointing Determination and Pointing Error

IQMon also contains a solve_astrometry method to invoke
the solve-field command which is part of the astrometry.net
software. The call to solve-field is only intended to deter-
mine basic pointing and orientation and so IQMon does not use
the SIP polynomial fit of distortion in the image.

Once a world coordinate system (WCS) is present in the image
header, then the determine_pointing_error method can
be called which compares the right ascension (RA) and declination
(DEC) values read from the RA and DEC keywords in the header
(which are presumed to be the telescope’s intended pointing) to the
RA and DEC values of the center pixel which are calculated using
the astropy.wcs module. The separation between the two

AUTOMATED IMAGE QUALITY MONITORING WITH IQMON 79

coordinates is determined using the separation method avail-
able in the SkyCoord object of the astropy.coordinates
module. The magnitude of the separation between the two is
reported as the pointing error.
If WCS is not present, solve with astrometry.net,
if not im.image_WCS:

im.solve_astrometry()
Determine pointing error by comparing telescope
pointing coordinates from the header with WCS.
im.determine_pointing_error()

Astrometric Distortion Correction

In order to make an accurate comparison of the photometry of
stars detected in the image and stars present in a chosen stellar
catalog, many optical systems require distortion coefficients to be
fitted as part of the astrometric solution. IQMon uses the SCAMP
software to fit distortions.

SCAMP is invoked with the run_SCAMP method. Once a
SCAMP solution has been determined, the image can be remapped
to new pixels without distortions using the SWARP tool with the
run_SWARP method.
If the image has a WCS and a SExtractor catalog,
run SCAMP to determine a WCS with distortions.
if im.image_WCS and im.SExtractor_results:

im.run_SCAMP()
if im.SCAMP_successful:

Remap the pixels to a rectilinear grid
im.run_SWarp()

A Note on Astrometry.net and SCAMP

In principle, Astrometry.net can solve for distortions. The -t
option on solve-field allows the user to specify the order
of the SIP polynomial which the program should fit. This is
available in IQMon by calling the solve_astrometry method
with the SIP keyword set to the polynomial order to pass to
solve-field.

In my experience working with the first two systems IQMon
was used on, I found that high order solves were not necessarily
reliable or timely. The solve-field operation would some-
times fail to solve or would process for a very long time which
would cause the analysis system to fail to keep up with the data
rate from the two telescopes.

This is why SCAMP is also available in IQMon and is the
recommended astrometric solution if you want full distortion cor-
rection. By defining a SCAMP "ahead" file, you can incorporate
previous knowledge of the optical system’s distortion characteris-
tics rather then solving blindly. With a proper ahead file, SCAMP
was a more reliable solution.

SWarp is used because (at the time) astropy.wcs did not
handle the distortion coefficients as written by SCAMP. To solve
this, SWarp remaps the pixels to de-distort the image which means
that the WCS is properly described by a very basic set of header
keywords (CRPIXn, CRVALn, PCn_m, etc.) which almost every
analysis program supports.

Estimating the Photometric Zero Point

With a full astrometric solution, SExtractor photometry, and a
catalog of stellar magnitude values, we can estimate the zero
point for the image and use that as an indicator of clouds or other
aperture obscurations.

The get_catalog method can be used to download a
catalog of stars from VizieR using the astroquery9 module.

Alternatively, support for a local copy of the UCAC4 catalog is
available using the get_local_UCAC4 method.

Once a catalog is obtained, the run_SExtractor method
is invoked again, this time with the assoc keyword set to True.
This will limit the resulting catalog of detected stars to stars which
both exist in the catalog and also are detected in the image.
This may significantly decrease the number of stars used for the
FWHM and ellipticity calculation, but may also remove spurious
detections of image artifacts which would improve the reliability
of the measured values.
Retrieve catalog defined in config file
im.get_catalog()
im.run_SExtractor(assoc=True)
im.determine_FWHM()
im.measure_zero_point()

In the above example code, determine_FWHM is invoked again
in order to use the new SExtractor catalog for the calculation.

The measure_zero_point method determines the zero
point by taking the weighted average of the difference between the
measured instrumental magnitude from SExtractor and the catalog
magnitude in the same filter.

It should be noted that unless custom code is added to handle
reduction steps such as dark/bias subtraction and flat fielding, the
zero point result will be influenced by systematics due to those
effects. In addition, the choice of catalog and the relative response
curve of the filter in use and the filter defined by the catalog’s
photometric system will also introduce systematic offsets. For
many systems (especially typical visible light CCDs), the zero
point value from IQMon can be used to compare throughput from
image to image, but should not be used to compare different
equipment configurations.

Analysis Results and Mongo Database Integration

Results of the IQMon measurements for each image
are stored as properties of the Image object as
astropy.units.Quantity. For example, the FWHM
value is in units of pixels, but can be converted to arcseconds
using the equivalency which is automatically defined by the
Telescope object (tel.pixel_scale_equivalency)
for this purpose.
Results are typically astropy.units quantities
and can be manipulated as such. For example:
print('Image FWHM = {:.1f}'.format(im.FWHM))
print('Image FWHM = {:.1f}'.format(\

im.FWHM.to(u.arcsec, equivalencies=\
im.tel.pixel_scale_equivalency)))

print('Zero Point = {:.2f}'.format(im.zero_point))
print('Pointing Error = {:.1f}'.format(\

im.pointing_error.to(u.arcmin)))

These results can also be stored for later use. Meth-
ods exist to write them to an astropy.Table (the
add_summary_entry method) and to a YAML document (the
add_yaml_entry method), but the preferred storage solution is
to use a mongo database as that is compatible with the tornado
web application included with IQMon (see below).

The address, port number, database name, and collection
name to use with pyMongo to add the results to an existing
mongo database are set by the Telescope configuration file. The
add_mongo_entry method adds a dictionary of values with the
results of the IQMon analysis.

9. http://dx.doi.org/10.6084/m9.figshare.805208

80 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Flags

For the four primary measurements (FWHM, ellipticity, pointing
error, and zero point), the configuration file may contain a thresh-
old value. If the measured value exceeds the threshold (or is below
the threshold in the case of zero point), then the image is "flagged"
as an indication that there may be a potential problem with the
data. The flags property of an Image object stores a dictionary
with the flag name and a boolean value as the dictionary elements.

This can be useful when summarizing results. For example, the
Tornado web application provided with IQMon (see the Tornado
Web Application section) lists images and will color code a field
red if that field is flagged. In this way, a user can easily see when
and where problems might have occurred.

Images and Plots

In addition to generating single values for FWHM, ellipticity, and
zero point to represent the image, IQMon can also generate more
detailed plots with additional information.

A plot with PSF quality information can be generated when
determine_FWHM is called by setting the plot=True key-
word. This generates a .png file (see Fig. 1) using matplotlib [mat-
plotlib] which shows detailed information about the point spread
function (FWHM and ellipticity metrics) including histograms of
individual values, a spatial map of FWHM and ellipticity over the
image, and plots showing the ellipticity vs. radius within the image
(which can be used to show whether off axis aberrations influence
the ellipticity measure) and the correlation between the measured
PSF position angle and the position angle of the star within the
image (which can be used to differentiate between tracking error
and off axis aberrations).

In the example plot (Fig. 1), we can see several different
effects. First, from the spatial distribution of FWHM and ellip-
ticity, as well as the ellipticity vs. radius plot, we see that image
quality is falling off at large radii. This image is from a wide
field imaging system and we are seeing the signature of off axis
aberrations. This is also suggested in the plot of the correlation
between the measured PSF position angle and the position angle of
the star within the image which shows strong diagonal components
indicating that position within the image influences the PSF. There
is also, however, a vertical component in that plot at PA ∼ 0
which is suggestive of image drift perhaps due to slight polar
misalignment or flexure.

A plot with additional information on the zero point can be
generated when calling measure_zero_point by setting the
plot keyword to True. This generates a .png file (see Fig. 2)
using matplotlib which shows plots of instrumental magnitude vs.
catalog magnitude, a histogram of zero point values, a plot of
magnitude residuals vs. catalog magnitude, and a a spatial map of
zero point over the image.

JPEG versions of the image can be generated using the
make_JPEG method. The jpeg can be binned or cropped using
the binning or crop keyword arguments and various overlays
can be generated showing, for example, the pointing error and
detected and catalog stars.

The JPEG overlays can be useful in evaluating the performance
of SExtractor and SCAMP. In the example shown in Fig. 3, the
stars marked as detected by SExtractor (which was run with the
assoc keyword set to True) show that there are no stars detected
in the very corners of the image. This indicates that the SCAMP
distortion solution did not accurately fit the WCS in the corners

and could be improved. Poor SCAMP solutions can also show up
even more dramatically when entire radial zones of the image have
no matched stars.

Tornado Web Application

IQMon comes with a tornado web application which, while it
can be run stand alone, is intended to be used as a template
for adding IQMon results to a more customized web page. The
web application (web_server.py) contains two tornado
web handlers: ListOfNights and ListOfImages. The first
generates a page which lists UT dates and if there are image results
associated with a date, then it provides a link to a page with the
list of image results for that date. The second handler (see Fig.
4) produces the page which lists the images for a particular UT
date (or target name) and provides a table formatted list of the
IQMon measurement results for each image with flagged values
color coded red, along with links to jpegs and plots generated for
that image.

This web application is intended to be the primary interface
for users. It provides three levels of interaction to the user. First,
a custom plot of IQMon results over the course of a night is easy
to generate from the mongo database entries and represents the
highest level of interaction. Using such a plot, serious problems
which affect many images can be detected at a glance. Users
can then drill down to see a list of images for that UT date
and see system performance as a table of IQMon results with
flagged values highlighted in red. Finally an individual image can
be examined as a jpeg with overlays or by using the PSF quality
plots or zero point plots to examine detailed performance.

Conclusions

IQMon provides a way to evaluate the performance of automated
telescopes. It allows the user to build a customized analysis for
their particular application by assembling a script which includes
only those steps which are required. Using the included tornado
web application, a user can quickly and easily view the results and
determine whether the observatory is performing acceptably or if
it needs attention.

Over roughly two years of routine operation with two tele-
scopes, it has enabled quick alerting of problems including stuck
focus drives, poorly aligned dome rotation, and poor tracking
model correction. Previously, some of these problems would have
gone unnoticed until a spot check of the data downloaded from the
site revealed them or they would have required a time consuming
reading of the nightly system logs to reveal. Use of IQMon has
resulted in greater uptime and improved data quality for both
telescopes.

REFERENCES

[Astropy2013] Astropy Collaboration, Robitaille, T.~P., Tollerud, E.~J., et al.
Astropy: A community Python package for astronomy 2013,
A&A, 558, A33

[Bertin1996] Bertin, E., & Arnouts, S. SExtractor: Software for source
extraction, 1996, A&AS, 117, 393

[Bertin2006] Bertin, E. Automatic Astrometric and Photometric Calibration
with SCAMP, 2006, Astronomical Data Analysis Software and
Systems XV, 351, 112

[Bertin2010b] Bertin, E. SCAMP: Automatic Astrometric and Photomet-
ric Calibration, 2010, Astrophysics Source Code Library,
1010.063

[Bertin2010a] Bertin, E., & Arnouts, S. SExtractor: Source Extractor, 2010,
Astrophysics Source Code Library, 1010.064

AUTOMATED IMAGE QUALITY MONITORING WITH IQMON 81

Fig. 1: An example of the plot which can be produced using the determine_FWHM method. The plot shows histograms of the FWHM and
ellipticity values (upper left and upper right respectively), the spatial distribution of FWHM and ellipticity values (middle left and middle
right), ellipticity vs. radius within the image (lower left), and the correlation between the measured PSF position angle and the position angle
of the star within the image (lower right).

82 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 2: An example of the plot which can be produced using the
measure_zero_point method. The plot shows the correlation
between instrumental magnitude and catalog magnitude (upper left),
a histogram of zero point values (upper right), a plot of the residuals
vs. catalog magnitude (lower left), and a spatial distribution of the
residuals (lower left).

Fig. 3: An example jpeg generated by the make_JPEG method using
the mark_detected_stars and mark_pointing options. In
this example, pointing error has placed the target (marked by the
cyan crosshair) to the lower right (southwest) of the image center
(marked by the yellow lines). Stars from the UCAC4 catalog which
were detected in the image are marked with green circles.

[Bertin2010c] Bertin, E. SWarp: Resampling and Co-adding FITS Images
Together 2010, Astrophysics Source Code Library, 1010.068

[Lang2010] Lang, D., Hogg, D. W., Mierle, K., Blanton, M., & Roweis,
S., Astrometry.net: Blind astrometric calibration of arbitrary
astronomical images 2010, AJ, 137, 1782–1800

[matplotlib] Hunter, J. D., Matplotlib: A 2D graphics environment 2007,
Computing In Science & Engineering, 9, 90-95

AUTOMATED IMAGE QUALITY MONITORING WITH IQMON 83

Fig. 4: An example of the ListOfImages handler of the tornado web application. In this example, a user can easily determine that the first
few images of the night had a problem (indicated by the red flagged values). Based on examination of the JPEGs, this turns out to have been
due to the dome rotation being misaligned and partially blocking the telescope aperture leading to large FWHM and ellipticity values (image
elongation due to "glints" of the dome edge) and low zero point values (due to aperture obscuration). The problem resolved itself without
human intervention as can be seen by the green, un-flagged images which follow and which continued for the rest of the night.

84 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

PyRK: A Python Package For Nuclear Reactor
Kinetics

Kathryn Huff‡∗

https://www.youtube.com/watch?v=2HToG61wMWI

F

Abstract—In this work, a new python package, PyRK (Python for Reactor Kinet-
ics), is introduced. PyRK has been designed to simulate, in zero dimensions, the
transient, coupled, thermal-hydraulics and neutronics of time-dependent behav-
ior in nuclear reactors. PyRK is intended for analysis of many commonly studied
transient scenarios including normal reactor startup and shutdown as well as
abnormal scenarios including Beyond Design Basis Events (BDBEs) such as
Accident Transients Without Scram (ATWS). For robustness, this package em-
ploys various tools within the scientific python ecosystem. For additional ease of
use, it employs a reactor-agnostic, object-oriented data model, allowing nuclear
engineers to rapidly prototype nuclear reactor control and safety systems in the
context of their novel nuclear reactor designs.

Index Terms—engineering, nuclear reactor, package

Introduction

Time-dependent fluctuations in neutron population, fluid flow, and
heat transfer are essential to understanding the performance and
safety of a reactor. Such transients include normal reactor startup
and shutdown as well as abnormal scenarios including Beyond
Design Basis Events (BDBEs) such as Accident Transients With-
out Scram (ATWS). However, no open source tool currently exists
for reactor transient analysis. To fill this gap, PyRK (Python for
Reactor Kinetics) [Huff2015], a new python package for nuclear
reactor kinetics, was created. PyRK is the first open source tool
capable of:

• time-dependent,
• lumped parameter thermal-hydraulics,
• coupled with neutron kinetics,
• in 0-dimensions,
• for nuclear reactor analysis,
• of any reactor design,
• in an object-oriented context.

As background, this paper will introduce necessary concepts
for understanding the PyRK model and will describe the differ-
ential equations representing the coupled physics at hand. Next,
the implementation of the data model, simulation framework, and
numerical solution will be described. This discussion will include
the use, in PyRK [Huff2015], of many parts of the scientific

* Corresponding author: katyhuff@gmail.com
‡ University of California, Berkeley

Copyright © 2015 Kathryn Huff. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

python software ecosystem such as NumPy [vanderWalt2011]
for array manipulation, SciPy [Milman2011] for ODE and PDE
solvers, nose [Pellerin2015] for testing, Pint [Grecco2014] for
unit-checking, Sphinx [Brandl2009] for documentation, and Mat-
plotlib [Hunter2007] for plotting.

Background

Fundamentally, nuclear reactor transient analyses must character-
ize the relationship between neutron population and temperature.
These two characteristics are coupled together by reactivity, ρ
, which characterizes the departure of the nuclear reactor from
criticality:

ρ =
k−1

k
(1)

where

ρ = reactivity (2)

k = neutron multiplication factor (3)

=
neutrons causing fission

neutrons produced by fission
. (4)

The reactor power is stable (critical) when the effective multipli-
cation factor, k, equals 1. For this reason, in all power reactors, the
scalar flux of neutrons determines the power. The reactor power,
in turn, affects the temperature. Reactivity feedback then results
due to the temperature dependence of geometry, material densities,
the neutron spectrum, and reaction probabilities [Bell1970]. This
concept is captured in the feedback diagram in Figure 1.

One common method for approaching these transient sim-
ulations is a zero-dimensional approximation which results in
differential equations called the Point Reactor Kinetics Equations
(PRKE). PyRK provides a simulation interface that drives the
solution of these equations in a modular, reactor design agnostic
manner. In particular, PyRK provides an object oriented data
model for generically representing a nuclear reactor system and
provides the capability to exchange solution methods from one
simulation to another.

The Point Reactor Kinetics Equations can only be understood
in the context of neutronics, thermal-hydraulics, reactivity, delayed
neutrons, and reactor control.

Neutronics

The heat produced in a nuclear reactor is due to nuclear fission
reactions. In a fission reaction, a neutron collides inelastically with

PYRK: A PYTHON PACKAGE FOR NUCLEAR REACTOR KINETICS 85

Fig. 1: Reactivity feedback couples neutron kinetics and thermal
hydraulics

a ’fissionable’ isotope, which subsequently splits. This reaction
emits both heat and neutrons. When the emitted neutrons go on to
collide with another isotope, this is called a nuclear chain reaction
and is the basis of power production in a nuclear reactor. The
study of the population, speed, direction, and energy spectrum of
neutrons in a reactor as well as the related rate of fission at a
particular moment is called neutronics or neutron transport. Neu-
tronics simulations characterize the production and destruction
of neutrons in a reactor and depend on many reactor material
properties and component geometries (e.g., atomic densities and
design configurations).

Thermal-Hydraulics

Reactor thermal hydraulics describes the mechanics of flow and
heat in fluids present in the reactor core. As fluids are heated or
cooled in a reactor core (e.g. due to changes in fission power)
pressure, density, flow, and other parameters of the system re-
spond accordingly. The fluid of interest in a nuclear reactor is
typically the coolant. The hydraulic properties of this fluid depend
primarily on its intrinsic properties and the characteristics of the
cooling system. Thermal hydraulics is also concerned with the
heat transfer between the various components of the reactor (e.g.,
heat generation in the reactor fuel heat removal by the coolant).
Heat transfer behavior depends on everything from the moderator
density and temperature to the neutron-driven power production in
the fuel.

Reactivity

The two physics (neutronics and thermal-hydraulics) are coupled
by the notion of reactivity, which is related to the probability of
fission. The temperature and density of materials can increase or
decrease this probability. Fission probability directly impacts the
neutron production and destruction rates and therefore, the reactor
power. The simplest form of the equations dictating this feedback
are:

ρ(t) = ρ0 +ρ f (t)+ρext

where

ρ(t) = total reactivity

ρ f (t) = reactivity from feedback

ρext(t) = external reactivity insertion

and where

ρ f (t) = ∑
i

αi
δTi

δ t

Ti = temperature of component i

αi = temperature reactivity coefficient of i.

The PRKE

The Point Reactor Kinetics Equations (PRKE) are the set of
equations that capture neutronics and thermal hydraulics when the
time-dependent variation of the neutron flux shape is neglected.
That is, neutron population is captured as a scalar magnitude (a
point) rather than a geometric distribution. In the PRKE, neutron-
ics and thermal hydraulics are coupled primarily by reactivity, but
have very different characteristic time scales, so the equations are
quite stiff.

d
dt

p
ζ1

.

.

.

ζ j

.

.

.

ζJ

ω1

.

.

.

ωk

.

.

.

ωK

Ti

.

.

.

TI

=

ρ(t,Ti,···)−β
Λ p+

j=J

∑
j=1

λd, jζ j

β1
Λ p−λd,1ζ1

.

.

.
β j
Λ p−λd, jζ j

.

.

.
βJ
Λ p−λd,JζJ

κ1 p−λFP,1ω1

.

.

.

κk p−λFP,kωk

.

.

.

κkp−λFP,kωk

fi(p,Cp,i,Ti, · · ·)
.

.

.

fI(p,Cp,I ,TI , · · ·)

(5)

86 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

In the above matrix equation, the following variable definitions are
used:

p = reactor power (6)

ρ(t,Tf uel ,Tcool ,Tmod ,Tre f l) = reactivity (7)

β = fraction of neutrons that are delayed (8)

β j = fraction of delayed neutrons from precursor group j (9)

ζ j = concentration of precursors of group j (10)

λd, j = decay constant of precursor group j (11)

Λ = mean generation time (12)

ωk = decay heat from FP group k (13)

κk = heat per fission for decay FP group k (14)

λFP,k = decay constant for decay FP group k (15)

Ti = temperature of component i (16)

The PRKE in equation 5 can be solved in numerous ways, using
either loose or tight coupling. Operator splitting, loosely coupled
in time, is a stable technique that neglects higher order nonlinear
terms in exchange for solution stability. Under this approach, the
system can be split clearly into a neutronics sub-block and a
thermal-hydraulics sub-block which can be solved independently
at each time step, combined, and solved again for the next time
step.

Un =

[
Nn

T n

]
(17)

Nn+1 = Nn + k f (Un) (18)

U∗ =

[
Nn+1

T n

]
(19)

T n+1 = T n + k f (U∗) (20)

PyRK Implementation

Now that the premise of the problem is clear, the implementation
of the package can be discussed. Fundamentally, PyRK is object
oriented and modular. The important object classes in PyRK are:

• SimInfo: Reads the input file, manages the solution ma-
trix, Timer, and communication between neutronics and
thermal hydraulics.

• Neutronics : Calculates dP
dt , dζ j

dt , and dω j
dt , based on dTi

dt and
the external reactivity insertion.

• THSystem : Manages various THComponents and facil-
itates their communication during the lumped parameter
heat transfer calculation.

• THComponent : Represents a single thermal volume, made
of a single material, (usually a volume like "fuel" or
"coolant" or "reflector" with thermal or reactivity feedback
behavior distinct from other components in the system.

• Material : A class for defining the intensive properties of a
material (cp, ρ , kth). Currently, subclasses include FLiBe,
Graphite, Sodium, SFRMetal, and Kernel.

A reactor is made of objects, so an object-oriented data model
provides the most intuitive user experience for describing a reactor
system, its materials, thermal bodies, neutron populations, and
their attributes. In PyRK, the system, comprised by those objects
is built up by the user in the input file in an intuitive fashion.

Each of the classes that enable this object oriented model will be
discussed in detail in this section.

SimInfo

PyRK has implemented a casual context manager pattern by
encapsulating simulation information in a SimInfo object. This
class keeps track of the neutronics system and its data, the thermal
hydraulics system (THSystem) and its components (THCompo-
nents), as well as timing and other simulation-wide parameters.

In particular, the SimInfo object is responsible for capturing
the information conveyed in the input file. The input file is a
python file holding parameters specific to the reactor design and
transient scenario. However, a more robust solution is anticipated
for future versions of the code, relying on a json input file rather
than python, for more robust validation options.

The current output is a plain text log of the input, runtime mes-
sages, and the solution matrix. The driver automatically generates
a number of plots. However, a more robust solution is anticipated
for v0.2, relying on an output database backend in hdf5, via the
pytables package.

Neutronics

The neutronics object holds the first 1+j+k equations in the right
hand side of the matrix equation in 5. In particular, it takes
ownership of the vector of 1+ j + k independent variables and
their solution. It also customizes the equations based on paramters
noted in the user input file. The parameters customizing these
equations for a particular reactor include αi for each component,
j, Λ, k, and the fissionable nuclide.

The Neutronics class has three attributes that are sufficiently
complex as to warrant their own classes: PrecursorData, Decay-
Heat, and ReactivityInsertion.

A Neutronics object can own one PrecursorData object. In
this class, the input parameters J and the fissionable nuclide are
used to select, from a database supplied by PyRK, standardized
data representing delayed neutron precursor concentrations and
the effective decay constants of those precursors (λd, j,β j,ζ j. That
nuclear data is stored in the PrecursorData class, and is made
available to the Neutronics class through a simple API.

A Neutronics object can also own one DecayHeat object. In
this class, the input parameters K, and the fissionable nuclide are
used to select, the fission product decay data (λFP,k,ωk,κk. The
DecayHeat class provides a simple API for accessing those decay
constants, fission product fractions, and weighting factors.

Finally, a Neutronics object can own one ReactivityInsertion
object. This defines the external reactivity, rhoext, resulting from
control rods, external neutron sources, etc. With this ReactivityIn-
sertion object, the Neutronics class is equipped to drive a reactivity
insertion accident scenario. That is, an accident scenario can be
driven by an insertion of reactivity (e.g. the removal of a control
rod). In PyRK, this reactivity insertion capability is captured in
the ReactivityInsertion class, from which reactivity insertions can
be selected and customized as in Figure 2.

THSystem

A reactor is made up of many material structures which, in
addition to their neutronic response, vary in their temperature
response. These structures may include fuel, cladding, coolant,
reflectors, or other components. In PyRK, a heat transfer model of
the changing temperatures and material properties of those com-
ponents has been implemented as a lumped capacitance model.

PYRK: A PYTHON PACKAGE FOR NUCLEAR REACTOR KINETICS 87

Fig. 2: The reactivity insertion that can drive the PyRK simulator can
be selected and customized from three models.

Mode Heat Transfer Rate Thermal Resistance
Conduction Q̇ = T1−T2

(L
kA)

L
kA

Convection Q̇ =
Tsur f−Tenvr(

1
hconvAsur f

) 1
hconvAsur f

Radiation Q̇ =
Tsur f−Tsurr(

1
hr Asur f

) 1
hrA

hr = εσ(T 2
sur f +T 2

surr)(Tsur f +Tsurr)

This model approximates heat transfer into discrete components,
approximating the effects of geometry for "lumps" of material.

In this model, heat transfer through a system of components is
modeled analogously to current through a resistive circuit. Table 1
describes the various canonical forms of lumped capacitance heat
transfer modes.

Based on the modes in Table 1, we can formulate a model
for component temperatures specific to to the geometry of a
particular reactor design. This might include fuel pellets, particles,
or pebbles, cladding, coolant, reflectors or other structures in the
design.

Fundamentally, to determine the temperature change in a ther-
mal body of the reactor, we rely on relations between temperature,
heat capacity, and thermal resistance. As in Table 1, the heat flow
out of body i is the sum of surface heat flow by conduction,
convection, radiation, and other mechanisms to each adjacent
body, j [Lienhard2011]:

Q = Qi +∑
j

Qi j

= Qi +∑
j

Ti−Tj

Rth,i j

where

Q̇ = total heat flow out of body i [J · s−1]

Qi = other heat transfer, a constant [J · s−1]

Ti = temperature of body i [K]

Tj = temperature of body j [K]

j = adjacent bodies [−]
Rth = thermal resistence of the component [K · s · J−1].

Note also that the thermal energy storage and release in the body
is accordingly related to the heat flow via capacitance:

dTi

dt
=
−Q+ Ṡi

Ci

TABLE 1: Lumped Capacitance for various heat transfer modes
[Lienhard2011]

where

C = heat capacity of the object [J ·K−1]

= (ρcpV)i

Ṡi = source term, thermal energy conversion [J · s−1]

Together, these form the equation:

dTi

dt
=
−
[
Qi +∑ j

Ti−Tj
Rth,i j

]
+ Ṡi

(ρcpV)i

THComponent

The THSystem class is made up of THComponent objects, linked
together at runtime by heat transfer interfaces selected by the user
in the input file:
fuel = th.THComponent(name="fuel",

mat=Kernel(name="fuelkernel"),
vol=vol_fuel,
T0=t_fuel,
alpha_temp=alpha_f,
timer=ti,
heatgen=True,
power_tot=power_tot)

cool = th.THComponent(name="cool",
mat=Flibe(name="flibe"),
vol=vol_cool,
T0=t_cool,
alpha_temp=alpha_c,
timer=ti)

clad = th.THComponent(name="clad",
mat=Zirconium(name="zirc"),
vol=vol_clad,
T0=t_clad,
alpha_temp=alpha_clad,
timer=ti)

components = [fuel, clad, cool]

The fuel conducts to the cladding
fuel.add_conduction('clad', area=a_fuel)
clad.add_conduction('fuel', area=a_fuel)

The clad convects to the coolant
clad.add_convection('cool', h=h_clad, area=a_clad)
cool.add_convection('clad', h=h_clad, area=a_clad)

In the above example, the mat argument must include a Material
object.

Material

The PyRK Material class allows for materials of any kind to be
defined within the system. This class represents a generic material
and daughter classes inheriting from the Material class describe
specific types of material (water, graphite, uranium oxide, etc.).
The attributes of a material object are intrinsic material properties
(such as thermal conductivity, kth) as well as material-specific
behaviors.

Given these object classes, the burden of the user is then
confined to:

• defining the simulation information (such as duration or
preferred solver)

• defining the neutronic parameters associated with each
thermal component

• defining the materials of each component
• identifying the thermal components
• and connecting those components together by their domi-

nant heat transfer mode.

88 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Quality Assurance

For robustness, a number of tools were used to improve robustness
and reproducibility in this package. These include:

• GitHub : for version control hosting [GitHub2015]
• Matplotlib : for plotting [Hunter2007]
• Nose : for unit testing [Pellerin2015]
• NumPy : for holding and manipulating arrays of floats

[vanderWalt2011]
• Pint : for dimensional analysis and unit conversions

[Grecco2014]
• SciPy : for ode solvers [Oliphant2007], [Milman2011]
• Sphinx : for automated documentation [Brandl2009]
• Travis-CI : for continuous integration [Travis2015]

Together, these tools create a functional framework for distri-
bution and reuse.

Unit Validation

Of particular note, the Pint package[Grecco2014]_ is used for
keeping track of units, converting between them, and throwing
errors when unit conversions are not sane. For example, in the
code below, the user is able to initialize the material object with
kth and cp in any valid unit for those quantities. Upon initialization
of those member variables, the input values are converted to SI
using Pint.
def __init__(self, name=None,

k=0*units.watt/units.meter/units.kelvin,
cp=0*units.joule/units.kg/units.kelvin,
dm=DensityModel()):

"""Initalizes a material

:param name: The name of the component
:type name: str.
:param k: thermal conductivity, :math:`k_{th}`
:type k: float, pint.unit.Quantity
:param cp: specific heat capacity, :math:`c_p`
:type cp: float, pint.unit.Quantity
:param dm: The density of the material
:type dm: DensityModel object
"""
self.name = name
self.k = k.to('watt/meter/kelvin')
validation.validate_ge("k", k,

0*units.watt/units.meter/units.kelvin)
self.cp = cp.to('joule/kg/kelvin')
validation.validate_ge("cp", cp,

0*units.joule/units.kg/units.kelvin)
self.dm = dm

The above code employs a validation utility written for PyRK
and used throughout the code to confirm (at runtime) types, units,
and valid ranges for parameters of questionable validity. Those
validators are simple, but versatile, and in combination with the
Pint package, provide a robust environment for users to experiment
with parameters in the safe confines of dimensional accuracy.

Minimal Example : SFR Reactivity Insertion

To demonstrate the use of this simulation framework, we give a
minimal example. This example approximates a 1-second impulse-
reactivity insertion in a sodium cooled fast reactor. This type of
simulation is common, as it represents the instantaneous removal
and reinsertion of a control rod. The change in reactivity results
in a slightly delayed change in power and corresponding increases
in temperatures throughout the system. For simplicity, the heat
exchanger outside of the reactor core is assumed to be perfectly
efficient and the inlet coolant temperature is accordingly held
constant throughout the transient.

Minimal Example: Input Parameters

The parameters used to configure the simulation were retrieved
from ?? and ??. The detailed input is listed in the full input file
with illuminating comments as follows:

import math
from ur import units
import th_component as th
from timer import Timer
from sfrmetal import SFRMetal
from sodium import Sodium

###
#
User Workspace
#
###

Timing: t0=initial, dt=step, tf=final
t0 = 0.00*units.seconds
dt = 0.005*units.seconds
tf = 5.0*units.seconds

Temperature feedbacks of reactivity (Ragusa2009)
Fuel: Note Doppler model not implemented
alpha_f = (-0.8841*units.pcm/units.kelvin)
Coolant
alpha_c = (0.1263*units.pcm/units.kelvin)

Initial Temperatures
t_fuel = 737.033*units.kelvin
t_cool = 721.105*units.kelvin
t_inlet = units.Quantity(400.0, units.degC)
t_inlet.ito(units.kelvin)

Neglect decay heating
kappa = 0.00

Geometry
fuel pin radius
r_fuel = 0.00348*units.meter
active core height
h_core = 0.8*units.meter
surface area of fuel pin
a_fuel = 2*math.pi*r_fuel*h_core
volume of a fuel pin
vol_fuel = math.pi*pow(r_fuel, 2)*h_core
hydraulic area per fuel pin
a_flow = 5.281e-5*pow(units.meter, 2)
volume of coolant per pin
vol_cool = a_flow*h_core
velocity of coolant
v_cool = 5.0*units.meter/units.second

constant heat transfer approximation
h_cool = 1.0e5*(units.watt/

units.kelvin/
pow(units.meter, 2))

power density
omega = 4.77E8*units.watt/pow(units.meter, 3)
total power, watts, thermal, per 1 fuel pin
power_tot = omega*vol_fuel

###
#
Required Input
#
###

maximum number of ode solver internal steps
nsteps = 1000

Timer instance, based on t0, tf, dt
ti = Timer(t0=t0, tf=tf, dt=dt)

Number of precursor groups
n_pg = 6

PYRK: A PYTHON PACKAGE FOR NUCLEAR REACTOR KINETICS 89

Number of decay heat groups
n_dg = 0

Fissioning Isotope
fission_iso = "sfr"

Spectrum
spectrum = "fast"

False to turn reactivity feedback off.
feedback = True

External Reactivity
from reactivity_insertion \

import ImpulseReactivityInsertion as pulse
rho_ext = pulse(timer=ti,

t_start=1.0*units.seconds,
t_end=2.0*units.seconds,
rho_init=0.0*units.delta_k,
rho_max=0.05*units.delta_k)

fuel = th.THComponent(name="fuel",
mat=SFRMetal(name="sfrfuel"),
vol=vol_fuel,
T0=t_fuel,
alpha_temp=alpha_f,
timer=ti,
heatgen=True,
power_tot=power_tot)

cool = th.THComponent(name="cool",
mat=Sodium(name="sodiumcoolant"),
vol=vol_cool,
T0=t_cool,
alpha_temp=alpha_c,
timer=ti)

inlet = th.THComponent(name="inlet",
mat=Sodium(name="sodiumcoolant"),
vol=vol_cool,
T0=t_inlet,
alpha_temp=0.0*units.pcm/units.K,
timer=ti)

The clad convects with the coolant
fuel.add_convection('cool', h=h_cool, area=a_fuel)
cool.add_convection('fuel', h=h_cool, area=a_fuel)

The coolant flows
cool.add_mass_trans('inlet', H=h_core, u=v_cool)

components = [fuel, cool, inlet]

Minimal Example Results

The results of this simulation are a set of plots, the creation and
labelling of which are enabled by matplotlib. In the first of these
plots, the transient, beginning at time t = 1s, is driven by a step
reactivity insertion of 0.5 "dollars" of reactivity as in Figure 3.

The power responsds accordingly as in Figure 4.
Finally, the temperatures in the key components of the system

follow the trends in Figure 5.
These are typical of the kinds of results nuclear engineers seek

from this kind of analysis and can be quickly re-parameterized in
the process of prototyping nuclear reactor designs. This particular
simulation is not sufficiently detailed to represent a benchmark, as
the effect of the cladding on heat transfer is neglected, as is the
Doppler model controlling fuel temperature feedback. However, it
presents a sufficiently interesting case to demonstrate the use of
the PyRK tool.

Fig. 3: A prompt reactivity insertion, with a duration of 1 second
and a magnitude of 0.05δk/k drives the simulation. It represents the
prompt partial removal and reinsertion of a control rod.

Fig. 4: The power in the reactor closely follows the reactivity
insertion, but is magnified as expected.

Conclusions and Future Work

The PyRK library provides a modular simulation environment
for a common and essential calculation in nuclear engineering.
PyRK is the first freely distributed tool for neutron kinetics. By
supplying and API for ANSI standard precursor data, a modular
material definition framework, and coupled lumped parameter
thermal hydraulics with zero-dimensional neutron kinetics in
an object-oriented modeling paradigm, PyRK provides design-
agnostic toolkit for accident analysis potentially useful to all
nuclear reactor designers and analysts.

Acknowledgements

The author would like to thank the contributions of collaborators
Xin Wang, Per Peterson, Ehud Greenspan, and Massimiliano
Fratoni at the University of California Berkeley. This research
was performed using funding received from the U.S. Department

90 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 5: While the inlet temperature remains constant as a boundary
condition, the temperatures of fuel and coolant respond to the reac-
tivity insertion event.

of Energy Office of Nuclear Energy’s Nuclear Energy University
Programs through the FHR IRP. Additionally, this material is
based upon work supported by the Department of Energy Na-
tional Nuclear Security Administration under Award Number: DE-
NA0000979 through the Nuclear Science and Security Consor-
tium.

REFERENCES

[Andreades2014] C. Andreades, A. T. Cisneros, J. K. Choi, A. Y.
. Chong, D. L. Krumwiede, L. Huddar, K. D.
Huff, M. D. Laufer, M. Munk, R. O. Scar-
lat, J. E. Seifried, N. Zwiebaum, E. Greenspan,
and P. F. Peterson, "Technical Description of
the ’Mark 1’ Pebble-Bed, Fluoride-Salt-Cooled,
High-Temperature Reactor Power Plant," Univer-
sity of California, Berkeley, Department of Nu-
clear Engineering, Berkeley, CA, Thermal Hy-
draulics Group UCBTH-14-002, Sep. 2014.

[Bell1970] G. I. Bell and S. Glasstone, Nuclear Reactor The-
ory. New York: Van Nostrand Reinhold
Company, 1970.

[Brandl2009] G. Brandl, Sphinx: Python Documentation Genera-
tor. URL: http://sphinx. pocoo. org/index. html
(13.8. 2012), 2009.

[GitHub2015] GitHub, "GitHub: Build software better, together," GitHub,
2015. [Online]. Available: https://github.com. [Accessed:
17-Jun-2015].

[Grecco2014] H. E. Grecco, Pint: a Python Units Library. https:
//github.com/hgrecco/pint. 2014.

[Huff2015] K. Huff, PyRK: Python for Reactor Kinetics. https:
//pyrk.github.io. 2015.

[Hunter2007] J. D. Hunter, "Matplotlib: A 2D Graphics Envi-
ronment," Computing in Science & Engi-
neering, vol. 9, no. 3, pp. 90–95, 2007.

[Lienhard2011] Lienhard V and J. H. Lienhard IV, A Heat Transfer
Textbook: Fourth Edition, Fourth Edition edition. Mineola,
N.Y: Dover Publications, 2011.

[Milman2011] K. J. Millman and M. Aivazis, "Python for Scien-
tists and Engineers," Computing in Science
& Engineering, vol. 13, no. 2, pp. 9–12, Mar.
2011.

[Oliphant2007] T. E. Oliphant, "Python for Scientific Comput-
ing," Computing in Science & Engineering,
vol. 9, no. 3, pp. 10–20, 2007.

[Pellerin2015] J. Pellerin, nose. https://pypi.python.org/pypi/nose/
1.3.7. 2015.

[Ragusa2009] J. C. Ragusa and V. S. Mahadevan, "Consistent
and accurate schemes for coupled neutron-
ics thermal-hydraulics reactor analysis," Nu-
clear Engineering and Design, vol. 239, no.
3, pp. 566–579, Mar. 2009.

[Sofu2011] T. Sofu, "A review of inherent safety characteristics
of metal alloy sodium-cooled fast reactor fuel
against postulated accidents," Nuclear Engineer-
ing and Technology, vol. 47, no. 3, pp. 227–239,
Apr. 2015.

[Travis2015] Travis, “travis-ci/travis-api,” GitHub repository. Avail-
able: https://github.com/travis-ci/travis-api. Accessed: 04-
Jul-2015.

[vanderWalt2011] S. van der Walt, S. C. Colbert, and G. Varoquaux,
"The NumPy Array: A Structure for Efficient
Numerical Computation," Computing in Science
& Engineering, vol. 13, no. 2, pp. 22–30, Mar.
2011.

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 91

VisPy: Harnessing The GPU For Fast, High-Level
Visualization

Luke Campagnola§∗, Almar Klein‡, Eric Larson¶, Cyrille Rossant‖, Nicolas Rougier∗∗

https://www.youtube.com/watch?v=_3YoaeoiIFI

F

Abstract—The growing availability of large, multidimensional data sets has cre-
ated demand for high-performance, interactive visualization tools. VisPy lever-
ages the GPU to provide fast, interactive, and beautiful visualizations in a high-
level API. Here we introduce the main features, architecture, and techniques
used in VisPy.

Index Terms—graphics, visualization, plotting, performance, interactive, opengl

Motivation

Despite the rapid growth of the scientific Python stack, one
conspicuously absent element is a standard package for high-
performance visualization. The de facto standard for plotting is
Matplotlib [matplotlib]; however, this package is designed for
publication graphics and is not optimized for visualizations that
require real-time, interactive performance, or that incorporate large
data volumes. Several packages in the Python ecosystem are
capable of high-performance visualization: VTK [vtk] provides
an extensive set of 3D visualization tools with Python bindings,
Chaco [chaco] offers efficient 2D plotting, PyQtGraph [pyqtgraph]
is a scientific GUI library with fast plotting, Glumpy [glumpy] im-
plements high-quality plotting primitives in OpenGL, and VisVis
[visvis] and Galry [galry] both provide high-performance 2D/3D
OpenGL visualization. Each of these packages has its particular
strengths and weaknesses and, although the Python community
benefits from such a rich ecosystem, at the same time it suffers
from the lack of a focused, collaborative effort.

In recognition of this problem and the potential benefit to the
Python community, VisPy [vispy] was created as a collaborative
effort to succeed several of these projects—visvis, galry, glumpy,
and the visualization components of pyqtgraph. VisPy has quickly
grown an active community of developers and is approaching beta
status.

What is VisPy

VisPy is a scientific visualization library based on OpenGL
and NumPy [numpy]. Its primary purpose is to deliver high-

* Corresponding author: luke.campagnola@gmail.com
§ University of North Carolina at Chapel Hill
‡ Continuum Analytics
¶ University of Washington
|| University College London
** French National Institute for Research in Computer Science and Control

Copyright © 2015 Luke Campagnola et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

performance rendering under heavy load, but at the same time we
aim to provide publication-quality graphics, a high-level 2D and
3D plotting API, and portability across many platforms. VisPy’s
main design criteria are:

• High-performance for large data sets. By making use
of the modern, shader-based OpenGL pipeline, most of
the graphical rendering cost is offloaded to the graphics
processor (GPU). This allows real-time interactivity even
for data on the order of tens of millions of samples, and at
the same time minimizes CPU overhead.

• High-level visualization tools. Most Python developers are
not graphics experts. Getting from raw data to interactive
visualization should require as little code as possible, and
should require no knowledge of OpenGL or the underlying
graphics hardware.

• Publication quality output. Commodity graphics hardware
and the modern OpenGL shader pipeline have made
it possible to render moderately large data sets with-
out sacrificing quality in primitive shapes or antialiasing
[rougier2013a], [rougier2013b]. VisPy is also designed to
enable vector graphics output, although this feature is not
yet implemented.

• Flexibility. VisPy strives to make common tasks
easy—most basic plot types can be generated with just a
few lines of code. At the same time, VisPy makes complex
and niche tasks possible through a flexible and extensible
architecture. VisPy’s library of graphical components can
be reconfigured and recombined to build complex, interac-
tive scenes.

• Portability. VisPy’s reliance on commodity graphics hard-
ware for optimization reduces its reliance on CPU-
optimized code or numerous external dependencies; VisPy
is pure-Python and depends only on NumPy and a suitable
GUI library. This makes VisPy easy to distribute and
install across many platforms, including WebGL-enabled
browsers.

VisPy’s Architecture

VisPy’s functionality is divided into a layered architecture, with
each new layer providing higher-level primitives. The top layers
provide a powerful system for quickly and easily visualizing data,
whereas the lower layers provide greater flexibility and control
over OpenGL’s features.

92 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Layer 1: Object-Oriented GL

The OpenGL API, although very powerful, is also somewhat
verbose and unwieldy. VisPy’s lowest-level layer, vispy.gloo,
provides an object-oriented OpenGL wrapper with a clean, com-
pact, and Pythonic alternative to traditional OpenGL programming
(Figure 1). Developers unfamiliar with OpenGL are encouraged to
work from the scenegraph and plotting layers instead. Objects that
typically require several GL calls to instantiate, such as textures,
vertex buffers, frame buffers, and shader programs, are instead
encapsulated in simple Python classes. The following example
demonstrates creating a shader program and assigning a value to
one of its uniform variables:
program = Program(vert_code, frag_code)
program['color'] = (1, 0.5, 0, 1)

The equivalent code using the OpenGL API is somewhat more
verbose:
prg = glCreateProgram()
vsh = glCreateShader(GL_VERTEX_SHADER)
glShaderSource(vsh, vert_code)
fsh = glCreateShader(GL_FRAGMENT_SHADER)
glShaderSource(fsh, vert_code)
for shader in (vsh, fsh):

glCompileShader(shader)
assert glGetShaderParameter(shader,

GL_COMPILE_STATUS) == 1
glAttachShader(prg, shader)

glLinkProgram(prg)
assert glGetProgramParameter(prg,GL_LINK_STATUS) == 1
nunif = glGetProgramParameter(prg,GL_ACTIVE_UNIFORMS)
uniforms = {}
for i in range(nunif):

name, id, typ = glGetActiveAttrib(prg, i)
uniforms[name] = id

glUseProgram(prg)
glUniform4fv(uniforms['color'], 1, (1, 0.5, 0, 1))

Most OpenGL commands cannot be invoked until a con-
text, provided by the GUI toolkit, has been created and acti-
vated. This requirement imposes design limitations that can make
OpenGL programs more awkward. To circumvent this restriction,
vispy.gloo uses a context management system that queues
all OpenGL commands until the appropriate context has become
active. The direct benefit is that the end user is free to interact
with vispy.gloo however makes sense for their program.
Most notably, vispy.gloo objects can be instantiated when the
program starts up, before any context is available.

The command queues used by vispy.gloo are also de-
signed to be serializable such that commands generated in one
process or thread can be executed in another. In this way, a stream
of GL commands could be sent to a web browser such as the
IPython notebook, recorded to disk to be replayed later, or shared
between processes to take advantage of multi-core systems.

Another purpose of vispy.gloo is to hide many of the
differences between various versions and implementations of
OpenGL. We currently target OpenGL versions 2.1 for desktop
systems and ES2.0 for embedded and WebGL systems, which are
available on virtually all commodity hardware today. Systems that
lack a modern GPU may still run VisPy code using a software
OpenGL implementation such as Mesa [mesa3d]. Notably, this
is used by Travis CI [travisci] to run our unit tests. However,
OpenGL versions older than 2.1 are not supported. VisPy also
supports some features from OpenGL 3+ but these currently
depend on pyopengl [pyopengl].

A closely related system, vispy.app, abstracts the differ-
ences between the various supported GUI backends, which include

Fig. 1: A selection of demos written with vispy.gloo. This layer
provides low-level access to OpenGL with a simple and Pythonic API.
It is primarily used to implement visual classes; however, developers
who are familiar with OpenGL may find this a suitable starting point
for some visualization tasks.

PyQt4/5, PySide, IPython, SDL, GLFW, and several others. This
system provides uniform access to user input, timers, and window
features across all backends, and allows VisPy to be incorporated
into most existing applications. VisPy can be used as a Qt widget,
embedded in IPython notebook, or run on a headless server with
almost no code differences. This support, combined with VisPy’s
pure-python and low-dependency approach, helps to ensure that
VisPy will run on most platforms with minimal effort from users
and developers alike.

Layer 2: Visuals

The core of VisPy is its library of Visual classes that provide
the primitive graphical objects used to build more complex visu-
alizations. These objects range from very simple primitives (lines,
points, triangles) to more powerful primitives (text, volumes, im-
ages), to high-level visualization tools (histograms, surface plots,
spectrograms, isosurfaces). Figure 2 shows several examples of
visuals implemented in VisPy.

Internally, visuals upload their data to graphics memory
and implement a shader program [glsl] that is executed on the
GPU. Because all OpenGL implementations since 2.0 include
an OpenGL shader language (GLSL) compiler, this allows the
most computationally intensive operations to run in compiled,
parallelized code without adding any build dependencies. Visuals
can be reconfigured and updated in real time by simply uploading
new data or shaders to the GPU. Before drawing, each visual also
configures the necessary OpenGL global state such as blending
and depth testing. These state parameters may be reconfigured for
each visual to select different compositing modes.

Visuals may also be modified by applying arbitrary coordinate
transformations and filters such as opacity, clipping, and lighting.
To support this flexibility, it is necessary to be able to recom-
bine smaller chunks of shader code. VisPy implements a shader
management system that allows independent GLSL functions to

VISPY: HARNESSING THE GPU FOR FAST, HIGH-LEVEL VISUALIZATION 93

Fig. 2: A selection of VisPy’s visuals. These span the range from
simple 2D and 3D primitives to more advanced visualization tools like
contour plots, surface plots, and volume renderings. More complex
visualizations can be built from combinations of these visuals.

be attached together in a single shader program. This enables
the insertion of arbitrary coordinate transformations and color
modification into each visual’s shader program.

VisPy implements a collection of coordinate transformation
classes that are used to map between a visual’s raw data and its
output coordinate system (screen, image, svg, etc.). By offloading
coordinate transformations to the GPU along with drawing op-
erations, VisPy makes it possible to stream data directly from its
source to the GPU without any modification in Python. Most trans-
forms affect the location, orientation, and scaling of visuals and
can be chained together to produce more complex adjustments.
Transforms may also be nonlinear, as in logarithmic, polar, and
Mercator projections, and custom transforms can be implemented
easily by defining the forward and inverse mapping functions in
both Python and GLSL.

The following example summarizes the code that produces
the logarithmically-scaled image in Figure 3. It combines a
scale/translation, followed by log base 2 along the y axis, followed
by a second scale/translation to set the final position on screen.
The resulting chained transformation maps from the image’s pixel
coordinates to the window’s pixel coordinates:
from vispy import visuals
from vispy.visuals.transforms import (STTransform,

LogTransform)

Create an image from a (h, w, 4) array
image = visuals.ImageVisual(image_data)

Assign a chain of transforms to stretch the image
logarithmically and set its placement in the window
tr1 = STTransform(scale=(1, -0.01),

translate=(-50, 1.3))
tr2 = LogTransform((0, 2, 0))
tr3 = STTransform(scale=(3, -150),

translate=(200, 100))
image.transform = tr3 * tr2 * tr1

Fig. 3: One image viewed using four different coordinate transforma-
tions. VisPy supports linear transformations such as scaling, trans-
lation, and matrix multiplication (bottom left) as well as nonlinear
transformations such as logarithmic (top left) and polar (top right).
Custom transform classes are also easy to construct (bottom right).

Quality and Optimization in Visuals

One of VisPy’s main challenges is to implement visuals that
simultaneously satisfy three major design constraints: high per-
formance, high quality, flexibility, and portability. In reality, no
single visualization algorithm can cover all of the possible use
cases for a single visual. For example, algorithms that provide
the highest quality may impact performance, techniques that
improve performance may not be available on all platforms, and
some combinations of techniques naturally require an inflexible
implementation.

In VisPy’s approach, each visual implements multiple render-
ing algorithms that share the same API. The user may then select
for different performance and quality targets and the visual will
gracefully fall back to safer techniques if the platform requires
it. For example, drawing a surface plot with lighting requires a
normal vector to be calculated for each location on the surface.
If the surface vertex positions are specified in a floating point
texture, then the normal calculation can be performed on the GPU.
However, older OpenGL versions (and current WebGL implemen-
tations) lack the necessary texture support. For these cases, extra
effort is required to either encode the vertex positions in a different
type of texture, or to perform the normal calculation on the CPU.
Alternatively, the surface can be rendered with a lower quality
method that does not require normal vector calculation.

More generally, optimizing for performance often requires
consideration for two different targets: data volume and data
throughput. In the former case, a large but static data set is
uploaded to the GPU once but subsequently viewed or modified
interactively. This case is typically limited by the efficiency of
the shader programs, and thus it may help to pre-process the data
once on the CPU to lighten the recurring load on the GPU. In

94 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 4: A large collection of scrolling plots rendered with a specialized
visual (examples/demo/scene/scrolling_plots.py).
There are 10,000 plots, each containing 2,000 data points for a
total of 20 million points drawn per frame. The plots are scrolled
continuously as new data is streamed to the GPU, and still render at
35 fps on the author’s laptop. A region of the plot is enlarged using a
nonlinear transform.

the latter case, data is being rapidly streamed to the GPU and is
typically displayed only once before being discarded. This case
tends to be limited by the per-update CPU overhead, and thus may
be optimized by offloading more effort to the GPU. Intertwined
with these optimization targets are quality considerations—often
performance can be improved by sacrificing rendering quality, but
the true performance gain of each sacrifice can be unpredictable.

By wrapping multiple rendering techniques within a single
API, the user is freed from the burden of restructuring their ap-
plication for each technique. Some cases, however, are too unique
to fit comfortably in a generic API. For example, Figure 4 uses a
specialized visual to draw a 100x100 grid of scrolling plots, each
containing 2,000 data points. This example could be implemented
using the basic line visual techniques, but independently updating
each of the 10,000 lines as they scroll would be prohibitively slow.
The example is able to run over 30 fps by organizing the data
in memory as a 2D circular buffer, which allows all plots to be
updated in a single operation. The essential lines of this example
are summarized below:

lines = ScrollingLines(n_lines=10e3, line_size=2e3,
columns=100, dt=4e-4,
cell_size=(1, 8))

def update(ev):
add 10 samples to each plot
data = np.random.normal(size=(N, 10), scale=0.3)
data[data > 1] += 4 # random spikes
lines.roll_data(data)

timer = app.Timer(connect=update, interval=0)
timer.start()

Layer 3: Scenegraph

Layer 3 implements common features required for interactive
visualization, and is the first layer that requires no knowledge
of OpenGL. This is the main entry point for most users who
build visualization applications. Although the majority of VisPy’s
graphical features can be accessed by working directly with its
Visual classes (layer 2), it can be confusing and tedious to manage
the visuals, coordinate transforms, and filters for a complex scene.
To automate this process, VisPy implements a scenegraph—a

standard data structure used in computer graphics that organizes
visuals into a hierarchy. Each node in the hierarchy inherits
coordinate transformations and filters from its parent. VisPy’s
scenegraph allows visuals to be easily arranged in a scene and,
in automating control of the system of transformations, it is able
to handle some common interactive visualization requirements:

• Picking. User input from the mouse and touch devices
are delivered to the objects in the scene that are clicked
on. This works by rendering the scene to an invisible
framebuffer, using unique colors for each visual; thus the
otherwise expensive ray casting computation is carried out
on the GPU.

• Interactive viewports. These allow the user to interactively
pan, scale, and rotate data within the view, and the visuals
inside the view are clipped to its borders.

• Cameras. VisPy contains a variety of camera classes,
each implementing a different mode of visual perspec-
tive or user interaction. For example, PanZoomCamera
allows panning and scaling for 2D plot data, whereas
ArcballCamera allows data to be rotated in 3D like
a trackball.

• Lighting. The user may add lights to the scene and shaded
objects will react automatically.

• Export. Any portion of the scene may be rendered to an
image at any resolution. We also plan to add support for
exporting a scenegraph to SVG.

• Layouts. These automatically partition window space into
grids allowing multiple visualizations to be combined in a
single window.

• High-resolution displays. The scenegraph automatically
corrects for high-resolution displays to ensure visuals are
scaled correctly on all devices.

The example below is a simple demonstration of creating a
scenegraph window and adding visuals to its scene:
import vispy.scene as vs

Create a window with a grid layout inside
window = vs.SceneCanvas()
grid = window.central_widget.add_grid()

Create a view with a 2D line plot inside
view1 = grid.add_view(row=0, col=0, camera='panzoom')
plot = vs.PlotLine(data1, parent=view1.scene)

Create a second view with a 3D surface plot
view2 = grid.add_view(row=0, col=1,

camera='turntable')
surf = vs.SurfacePlot(data2, parent=view2.scene)

Adjust the position and orientation of
the surface plot
surf.transform = vs.AffineTransform()
surf.transform.translate(2, 1, 0)
surf.transform.rotate(30, 0, 1, 0)

start UI event loop
window.app.run()

Adding mouse interaction requires the ability to determine which
visuals are under the mouse cursor and to map between the
coordinate systems of the canvas and the visual. In the example
below, the coordinate system mapping corrects for the scale and
translation of a 2D interactive view box:
@window.connect
def on_mouse_press(event):

VISPY: HARNESSING THE GPU FOR FAST, HIGH-LEVEL VISUALIZATION 95

Fig. 5: Mouse interaction example
(examples/demos/scene/picking.py). In this example,
mouse press events are captured and a list of visuals near the mouse
is generated using canvas.visuals_at(pos, radius=10).
The list of visuals is returned in order of proximity to the mouse,
allowing the nearest line to be selected. Mouse movement events are
captured in a separate callback and used to update the plot cursor.
The location along the plot line and the cursor placement are all
determined by mapping the mouse position into the local coordinate
system of the selected visual.

get the visual under the click
vis = window.visual_at(event.pos)

map the click position to the coordinate
system of the visual
tr = window.scene.node_transform(vis)
pos = tr.map(event.pos)

print("Clicked on %s at %s" % (vis, pos))

A more complete mouse interaction example is described in Figure
5.

Layer 4: Plotting

VisPy’s plotting layer allows quick and easy access to advanced
data visualization, such as plotting, image display, volume render-
ing, histograms, and spectrograms. This layer is intended for use
in simple analysis scripts or in an interactive session, and is similar
in principle to Matplotlib’s pyplot API. The following example
creates a window displaying a plot line and a spectrogram of the
same data:
import numpy as np
from vispy import plot as vp

Create a logarithmic chirp
fs = 1000.
N = 1000000
t = np.arange(N) / float(fs)
f0, f1 = 1., 500.
phase = ((t[-1] / np.log(f1 / f0)) * f0 *

(pow(f1 / f0, t / t[-1]) - 1.0))
data = np.cos(2 * np.pi * phase)

Create a figure in a new window and add a
spectrogram and line in separate sub-plots.
fig = vp.Fig(size=(800, 400))
fig[0:2, 0].spectrogram(data, fs=fs, clim=(-100, -20))
fig[2, 0].plot(np.array((t, data)).T, marker_size=0)

The output of this code is shown in Figure 6.
Despite the large volume of data, the resulting views can

be immediately panned and zoomed in real-time. As a rough

Fig. 6: Example vispy.plot output (from
examples/basics/plotting/spectrogram.py). This
figure requires only three lines to generate, excluding the data
generation: one to create the figure window, and one each for the
spectrogram and line plots. The plot areas can be zoomed and panned
with the mouse. Despite containing 1e6 samples, the plots update
smoothly.

performance comparison, the same plot data can be redrawn at
about 0.2 Hz by Matplotlib, 2 Hz by PyQtGraph, and over 30 Hz
by VisPy on the author’s machine.

Each function in vispy.plot generates scenegraph (layer
3) objects to allow lower level control over the visual output.
This makes it possible to begin development with the simplest
vispy.plot calls and iteratively refine the output as needed.
VisPy also includes an experimental wrapper around mplexporter
[mplexporter] that allows it to act as a drop-in replacement for
Matplotlib in existing projects. This approach, however, is not
always expected to have the same performance benefits as using
the native vispy.plot API.

The vispy.plot interface is currently the highest-level and
easiest layer VisPy offers. Consequently, it is also the least mature.
We expect this layer to grow quickly in the coming months as we
add more plot types and allow the API to settle.

Future Work

Our immediate goal for vispy is to stabilize the visual, scenegraph,
and plotting APIs, and implement the most pressing basic features.
We are continuously testing for performance under different use
cases and ensuring that behavior is consistent across all platforms.
In the long term, we plan to implement more advanced features:

• Add more plot types. The scope of vispy.plot encom-
passes a very broad range of high-level visualizations, only
a few of which are currently implemented. Expanding this
library of visualizations will be an ongoing process. In
the future we expect to support vector fields, flow charts,
parametric surfaces, bar charts, and many more.

• Add more interactive tools. With VisPy it should be sim-
ple to select, manipulate, and slice many different kinds
of data. The scenegraph makes this easier by providing
support for picking, but we would like to add a set of
higher level tools such as region of interest boxes, rotation
gimbals, contrast and colormap controls, etc. We also plan
to allow picking individual vertices within a single visual.

96 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

• SVG export. This is a must-have feature for any visu-
alization library that targets publication graphics, and a
high priority for VisPy. Most 2D visuals will be simple
to implement as they have direct analogs in the SVG
standard. Other visuals, however, may simply be rendered
as an image in the export process.

• Backend and OpenGL support. VisPy currently supports
most desktop platforms and has preliminary support for
IPython notebook. We are working to add support for
mobile devices and embedded systems like the Raspberry
Pi, as well as a wider range of web backends. We would
also like to expand support for newer GPU features such
as geometry and tesselation shaders and general purpose
GPU computing libraries like Cuda [cuda] and OpenCL
[opencl].

• Collections. This system will allow many visuals to be
joined together and drawn with a single call to OpenGL.
This is expected to greatly improve performance when
many static visuals are displayed in the scene. This will
allow efficiently drawing complex shapes such as maps,

• Order-independent blending. This technique will allow
translucent visuals to be correctly blended without the need
to sort the visuals by depth first. This will greatly improve
the rendering quality of many 3D scenes.

With the base plotting API almost settled, VisPy is rapidly
approaching beta status when it will become more useful to a
broader audience. In the long term we hope VisPy will continue
to flourish and expand its community of developers.

REFERENCES

[vispy] VisPy: OpenGL-based interactive visualization in Python http:
//vispy.org

[matplotlib] J. D. Hunter. Matplotlib: A 2D graphics environment, Comput-
ing In Science & Engineering, 9(3):90-95, IEEE COMPUTER
SOC, 2007.

[vtk] Kitware. VTK - The Visualization Toolkit, http://www.vtk.org/
[chaco] Enthought, Inc. Chaco, http://code.enthought.com/projects/

chaco/
[pyqtgraph] L. Campagnola. PyQtGraph. Scientific Graphics and GUI

Library for Python, http://www.pyqtgraph.org/
[glumpy] N. Rougier. Glumpy: fast, scalable and beautiful scientific

visualization, https://glumpy.github.io/
[visvis] A. Klein. visvis - The object oriented approach to visualiza-

tion. https://code.google.com/p/visvis/
[galry] C. Rossant. Galry: high performance interactive visualization

package in Python, https://github.com/rossant/galry
[numpy] S. van der Walt, S.C. Colbert and G. Varoquaux, The NumPy

Array: A Structure for Efficient Numerical Computation, Com-
puting in Science & Engineering, 13, 22-30, 2011.

[mesa3d] The Mesa 3D Graphics Library http://www.mesa3d.org/
[travisci] Travis CI https://travis-ci.org/
[pyopengl] PyOpenGL http://pyopengl.sourceforge.net/
[glsl] OpenGL Shading Language https://www.opengl.org/

documentation/glsl/
[rougier2013a] Nicolas P. Rougier, Higher Quality 2D Text Rendering, Journal

of Computer Graphics Techniques (JCGT), vol. 2, no. 1, 50-
64, 2013. Available online http://jcgt.org/published/0002/01/
04/

[rougier2013b] Nicolas P. Rougier, Shader-Based Antialiased, Dashed,
Stroked Polylines, Journal of Computer Graphics Techniques
(JCGT), vol. 2, no. 2, 105--121, 2013 Available online
http://jcgt.org/published/0002/02/08/

[mplexporter] mpld3, mplexporter - A general scraper/exporter for mat-
plotlib plots https://github.com/mpld3/mplexporter

[opencl] Khronos Group, OpenCL - The open standard for parallel
programming of heterogeneous systems, https://www.khronos.
org/opencl/

[cuda] nVidia, CUDA - Paallel Programming and Computing Plat-
form, http://www.nvidia.com/object/cuda_home_new.html

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 97

White Noise Test: detecting autocorrelation and
nonstationarities in long time series after ARIMA

modeling

Margaret Y Mahan‡∗, Chelley R Chorn‡, Apostolos P Georgopoulos‡

F

Abstract—Time series analysis has been a dominant technique for assess-
ing relations within datasets collected over time and is becoming increasingly
prevalent in the scientific community; for example, assessing brain networks by
calculating pairwise correlations of time series generated from different areas
of the brain. The assessment of these relations relies, in turn, on the proper
calculation of interactions between time series, which is achieved by rendering
each individual series stationary and nonautocorrelated (i.e., white noise, or to
“prewhiten” the series). This ensures that the relations computed subsequently
are due to the interactions between the series and do not reflect internal depen-
dencies of the series themselves. An established method for prewhitening time
series is to apply an Autoregressive (AR, p) Integrative (I, d) Moving Average
(MA, q) model (ARIMA) and retain the residuals. To diagnostically check whether
the model orders (p, d, q) are sufficient, both visualization and statistical tests
(e.g., Ljung-Box test) of the residuals are performed. However, these tests are
not robust for high-order models in long time series. Additionally, as dataset
size increases (i.e., number of time series to model) it is not feasible to visually
inspect each series independently. As a result, there is a need for robust
alternatives to diagnostic evaluations of ARIMA modeling. Here, we demonstrate
how to perform ARIMA modeling of long time series using Statsmodels, a library
for statistical analysis in Python. Then, we present a comprehensive procedure
(White Noise Test) to detect autocorrelation and nonstationarities in prewhitened
time series, thereby establishing that the series does not differ significantly
from white noise. This test was validated using time series collected from
magnetoencephalography recordings. Overall, our White Noise Test provides a
robust alternative to diagnostic checks of ARIMA modeling for long time series.

Index Terms—Time series, Statsmodels, ARIMA, statistics

Introduction

Time series are discrete, stochastic realizations of underlying
data generating processes [Yaffee]. In other words, a time series
is a set of consecutive samples collected over a time interval,
such as temperature recordings at regular intervals. They are
ubiquitous in any field where monitoring of data is involved. For
example, time series can be environmental, economic, or medical.
In addition, time series can provide information about trends (e.g.,
broad fluctuations in values) and cycles (e.g., systematic, periodic
fluctuations in values). Time series analysis are also used to predict

* Corresponding author: mahan027@umn.edu
‡ Brain Sciences Center, Minneapolis VA Health Care System & University of
Minnesota

Copyright © 2015 Margaret Y Mahan et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

the next value in the series, given some model of its history. This
is of special importance in environmental and econometric studies
where forecasting the next set of values (e.g., the weather or a
stock price) may have serious practical consequences. In other
fields, time series provide crucial information about an evolving
process (e.g., rate of spread of a disease or changing pollution
levels) with implications about the effect of interventions. Finally,
time series can provide fundamental information about the process
that generates them, leading to a scientific understanding of that
process (e.g., brain network analysis).

In time series analysis, there are two main investigative meth-
ods: frequency-domain and time-domain. In this paper, only anal-
ysis in the time-domain is considered. Within the time-domain,
typically crosscorrelation analysis is utilized as a measure of the
relation between two time series. Now, it is commonly the case
that a time series contains some autocorrelation, meaning that val-
ues in the time series are influenced by previous values. It is also
common for a time series to exhibit nonstationarities, such as drifts
or trends over time. In either case, the crosscorrelation function
calculated between two series containing either autocorrelation or
nonstationarities will give misleading results, such as an inflated
correlation between two series where there is none. To circumvent
this, time series are modeled to remove such effects, as in the case
of prewhitening.

Prewhitening

A white noise process is a continuous time series of random
values, with a constant mean and variance, normally and inde-
pendently distributed, and nonautocorrelated. If after modeling
a time series the residuals are practically white noise, then we
say the series has been prewhitened. An established method for
prewhitening time series is to apply an Autoregressive (AR)
Integrative (I) Moving Average (MA) model (ARIMA) and retain
the residuals [Box]. The full specification of an ARIMA model
comprises the orders of each component, (p, d, q), where p is the
number of preceding values in the autoregressive component, d
is the number of differencing, and q is the number of preceding
values in the moving average component. An ARIMA model with
orders p, d, and q, is a discrete time linear equations with noise of
the form:

(1−
p

∑
k=1

φkLk)(1−L)dXt = (1+
q

∑
k=1

θkLk)εt

98 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

where L is the time lag operator, Lxt = xt−1.
In ARIMA modeling, the I component is addressed first,

followed by jointly addressing the AR and MA components. Most
importantly, the ARIMA method requires the input time series
to be: (1) equally spaced over time, (2) of sufficient length,
(3) continuous (i.e., no missing values), and, specifically for
the ARMA portion, (4) stationary in the second or weak sense,
meaning the mean and variance remain constant over time and the
autocovariance is only lag-dependent.

Prewhitening using ARIMA modeling takes three main steps.
First, identify and select the model, by detecting factors that
influence the time series, such as nonstationarities or periodic-
ities, and identifying the AR and MA components (i.e., model
orders). Second, estimate parameter values, by using an estimation
function to optimize the parameter values for the desired model.
Third, evaluate the model, by checking the model’s adequacy
through establishing that the series has been rendered stationary
and nonautocorrelated. This time series modeling is iterative,
successively refining the model until stationary and nonauto-
correlated residuals are obtained. Overall, a good model serves
three purposes: providing the background information for further
research on the process that generated the time series; enabling
accurate forecasting of future values in the series; and yielding the
stationary and nonautocorrelated residuals necessary to evaluate
accurately associations between time series, since they are devoid
of any dependencies stemming from within the series themselves.

Here, we implement two complementary tests to establish sta-
tionarity, which determines the value of the I(d) order. Using these
stationary series, we use median correlation values at each lag
of the autocorrelation (ACF) and partial autocorrelation (PACF)
functions to identify a range of AR(p) and MA(q) orders to im-
plement combinatorially. Then we utilize the Statsmodels package
to find the method-solver combination that provides good metrics
for long time series. Finally, we present a novel approach (White
Noise Test) to diagnostic checking of ARIMA modeling for long
time series, which evaluates residual series based on stationarity
and nonautocorrelation. Using our approach, an investigator can
perform ARIMA modeling and evaluate candidate models with
ease for large datasets and datasets containing long time series.

Model Identification and Selection

There are several factors that can influence a value in a time
series, which arise from previous values in the series, variability in
these values, or nonstationarities (trend, drift, changing variance,
or random walk). It is important to properly remove the effects of
these factors by modeling the time series and taking the residuals.
To identify the model orders for an ARIMA(p, d, q), the ACF and
PACF are used.

First, nonstationarities need to be removed before ARMA
modeling. A nonstationary process is identified by an ACF that
does not tail away to zero quickly or cut-off after a finite number
of steps. If the time series is nonstationary, then a first differencing
of the series is computed. This process is repeated until the time
series is stationary, which determines the value of d (i.e., the value
of d is the number of times the derivative of the series is taken
to achieve stationarity). Two of the most frequently used tests
for detecting nonstationarities are the augmented Dickey-Fuller
(ADF) test [Said] and the Kwiatkowski–Phillips–Schmidt–Shin
(KPSS) test [Kwiatkowski]. The ADF is a unit root test for the
null hypothesis that a time series is I(1) while the KPSS is a
stationarity test for the null hypothesis that a time series is I(0).

Since these tests are complementary, we use them together to
determine whether a series is stationary. In our case, a series
taken to be nonstationary, if the ADF null hypothesis is accepted
and the KPSS null is rejected. We implement the ADF test using
Statsmodels and the KPSS test using the Arch Python package.

Once nonstationarities have been removed, ARMA modeling
can begin. To choose the p and q orders, the ACF and PACF of the
stationary (differenced) series will show patterns based on which
tentative ARMA model can be postulated. There are three main
patterns. A pure MA(q) process will have an ACF that cuts off
after q lags and a PACF that tails off with exponential or oscillating
decay. A pure AR(p) process will have an ACF that tails off with
exponential or oscillating decay and a PACF that cuts off after p
lags. For a mixed-model ARMA(p, q) process, both the ACF and
PACF will tail off with exponential or oscillating decay. Using
these patterns, the model selection begins by using the minimum
orders to achieve stationary and nonautocorrelated residuals.

Parameter Value Estimation

ARIMA modeling has been implemented in Python with the
Statsmodels package [McKinney], [Seabold]. It includes param-
eter value estimation and model evaluation procedures. We import
the Statsmodels and Numpy packages as:
import statsmodels.api as sm
import numpy as np

After the model orders have been selected, the
model parameter values can be estimated with the
sm.tsa.arima_model.ARIMA.fit() function to
maximize the likelihood that these parameter values (i.e.,
coefficients) describe the data, as follows. First, initial estimates
of the parameter values are used to get close to the desired
parameter values. Second, optimization functions are applied
to adjust the parameter values to maximize the likelihood by
minimizing the negative log-likelihood function. If adequate initial
parameter value estimates were selected, a local optimization
algorithm will find the local log-likelihood minimum near the
parameter value estimates, which will be the global minimum.

In Statsmodels, default starting parameter value estimations are
calculated using the Hannan-Rissanen method [Hannan] and these
parameter values are checked for stationarity and invertibility
(these concepts are discussed in further detail in the next section).
If method is set to css-mle, starting parameter values are
estimated further with conditional sum of squares methods. How-
ever, parameter values estimated in this way are not guaranteed to
be stationary; therefore, we advise specifying starting parameter
values as an input variable (start_params) to ARIMA.fit().
A custom starting parameter value selection method may be built
upon a copy of sm.tsa.ARMA._fit_start_params_hr,
which forces stationarity and invertibility on the estimated
start_params when necessary. For example,
if not np.all(np.abs(np.roots(np.r_

[1, -start_params[k:k + p]])) < 1) or
not np.all(np.abs(np.roots(np.r_

[1, start_params[k + p:]])) < 1):
start_params = np.array(start_params[0:k]

+ [1./(p+1)] * p + [1./(q+1)] * q)

In addition, the Hannan-Rissanen method uses an initial AR
model with an order selected by minimizing Bayesian Information
Criterion (BIC); then it estimates ARMA using the residuals from
that model. This initial AR model is required to be larger than
max(p, q) of the desired ARIMA model, which is not guaranteed

WHITE NOISE TEST: DETECTING AUTOCORRELATION AND NONSTATIONARITIES IN LONG TIME SERIES AFTER ARIMA MODELING 99

with an AR selected by BIC criterion. We have implemented a
method similar to Hannan-Rissanen, the long AR method, which
is equivalent to Hannan-Rissanen except the initial AR model
is set to be large (AR = 300). This results in an initial AR
model order which is guaranteed to be larger than max(p, q),
and starting parameter value selection is more time efficient since
fitting multiple AR model orders to optimize BIC is not required.

To fit ARIMA models, Statsmodels has options for meth-
ods and solvers. The chosen method will determine the type
of likelihood for estimation, where mle is the exact likelihood
maximization (MLE), css is the conditional sum of squares
(CSS) minimization, and css-mle involves first estimating the
starting parameter values with CSS followed by an MLE fit. The
solver variable in ARIMA.fit() designates the optimizer from
scipy.optimize for minimizing the negative loglikelihood
function. Optimization solvers nm (Nelder-Mead) and powell
are the most time efficient because they do not require a score,
gradient, or Hessian. The next fastest solvers, lbfgs (limited
memory Broyden-Fletcher-Goldfarb-Shanno), bfgs (Broyden-
Fletcher-Goldfarb-Shanno), cg (conjugate gradient), and ncg
(Newton conjugate-gradient), require a score or gradient, but no
Hessian. The newton (Newton-Raphson) solver requires a score,
gradient, and Hessian. Lastly, a global solver basinhopping,
displaces parameter values randomly before minimizing with
another local optimizer. For more information about these solvers,
see sm.base.model.GenericLikelihoodModel.

Model Evaluation

There are two components in evaluating an ARIMA model,
namely, model stability and model adequacy. For the model to
be stable, the roots of the characteristic equations

1−φ1L−·· ·−φpLp = 0

where φi are the estimated AR parameter values, L is the time lag
operator, and

1+θ1L+ · · ·+θqLq = 0

where θi are the estimated MA parameter values, should lie
outside the unit circle, i.e., within bounds of stationarity (for
the p parameter values) and invertibility (for the q parameter
values) [Pankratz]. For the model to be adequate, the residual time
series should not be significantly different from white noise; in
other words, the series should have constant mean and variance,
and each value in the series should be uncorrelated with other
realizations up to k lags. If either model stability or adequacy
have not been established, then model identification and selection
should be revised, and the diagnostic cycle continued, iteratively,
until established.

Inspecting the p and q parameter values for being within
the bounds of stationarity and invertibility checks model stabil-
ity. Typically, this will be accomplished during parameter value
estimation. The model adequacy is checked by examining the
time-varying mean of the residuals (should be close to zero),
their variance (should not differ appreciably along time), and their
autocorrelation (should not be different from chance). Finally, the
ACF and PACF of the residuals should not contain statistically
significant terms more than the number expected by chance. This
number depends on the number of lags; for example, if k = 40 lags,
one would expect 2 values (5% of 40) to exceed their standard
error. Under the assumption that the process is white noise and
when the length (N) of the series is long, the standard error of

the sample autocorrelation (and partial autocorrelation) [Bartlett]
approximates to:

Standard Error = 1/
√

N

Several statistical tests are available to detect autocorrelation.
Most notable is the Ljung-Box test [Ljung], which is applied
to residuals to detect whether they exhibit autocorrelation. The
test statistic is calculated for each of h lags being tested. Another
common test to detect autocorrelation is the Durbin-Watson test
[Durbin]; however, unlike the Ljung-Box test which is calculated
for h lags, the Durbin-Watson test is calculated only for lag 1.
Therefore, any autocorrelation beyond lag 1 will not be detected
by this test. Similar to the Ljung-Box test is the Breusch-Godfrey
Lagrange multiplier test [Breusch], [Godfrey]. This test also aims
to detect autocorrelation up to h lags tested. We compare our
model evaluation, namely the White Noise Test, to both the Ljung-
Box and Breusch-Godfrey tests.

White Noise Test

The White Noise Test (Figure 1) calculates multiple attributes
on residuals. Inclusively, the attributes characterize an individual
residual series by its “whiteness”. To change the degree of “white-
ness”, the thresholds in the red boxes of Figure 1 may be made
more or less conservative.

Excluded data: Channels that could not be modeled with the
given model order were excluded from further analysis. Addition-
ally, channels with extreme values beyond a threshold of 5 per
channel, calculated on the residuals for each model order, were
also excluded from further analysis (xVAL in Table 1 and 5).
Extreme values are calculated as follows. For each raw series, the
interquartile range (IQR) is calculated.

IQR = 75th percentile−25th percentile

Using the IQR, Tukey’s outer fences are calculated [Tukey].

Fenceupper = 75th percentile+3× IQR

Fencelower = 25th percentile−3× IQR

Then, the values below the lower fence and above the upper fence
are counted as extreme values. If this count is greater than 5, the
series is removed from further consideration when selecting model
orders.

Normality: Each residual series was tested for normality using
the Kolmogorov–Smirnov test. Residual series not significantly
different from normal (α = 0.01) were retained.

Constant mean: Each residual series was split into 10%
nonoverlapping windows (i.e., 10% of 50000 time points = 10
windows of 5000 time points). For each window, a one-sample
t-test was calculated (α = 0.001). A count of the number of
windows with means significantly different from zero was retained
for each residual series (maximum value = 10). Residual series
with > 1 section containing means significantly different from zero
were excluded (cMEAN in Table 1, 3 and 5).

Constant variance: For each residual series, the 10% nonover-
lapping windows were also tested for equal variances using
Bartlett’s test (α = 0.001). Each window was compared to the
variance of the full residual series. A count of the number of
windows with unequal variances was retained for each residual
series (maximum value = 10). Residual series with > 1 section
containing significantly different unequal variances were excluded
(cVAR in Table 1, 3 and 5).

100 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 1: White Noise Test Procedure.

Uncorrelated with other realizations: The ACF and PACF
were calculated up to AR lags and the number of lags exceeding
statistical significance were counted. To determine this, the

tstatistic =
|ACFk|

StandardError

is calculated at each lag, k, and evaluated against the null hypothe-
sis that ACFk using a two-tailed test with N-2 degrees of freedom.
A cumulative count of those exceeding

αc =
0.01
AR

(1)

are retained (note: αc incorporates a Bonferroni correction, 1
AR ,

and is rounded to the nearest integer). The result is a conservative
threshold for detecting a significant autocorrelation or partial
autocorrelation. We set a threshold for the cumulative count to
be greater than 5% of the AR order (round to nearest integer) for
either the ACF or PACF for each channel (tACF and tPACF in
Table 1, 3 and 5).

To determine whether our thresholding levels are within what
is expected by chance, we apply the White Noise Test procedure

Count xVAL tACF tPACF cMEAN cVAR

0 531 593 594 597 596
1 67 0 0 3 4
≥ 2 2 7 6 0 0

TABLE 1: White Noise Attributes, listed as extreme values (xVAL),
thresholded ACF and PACF (tACF, tPACF), constant mean (cMEAN)
and constant variance (cVAR), and the count column is the number of
randomly generated series failing a given attribute.

(Figure 1) to 600 randomly generated white noise series. Attributes
calculated on these series are shown in Table 1.

Magnetoencephalography (MEG) Dataset

To evaluate the functional brain, MEG is a useful technique be-
cause it measures magnetic fluctuations generated by synchronized
neural activity in the brain noninvasively and at high temporal
resolution. For the applications below, MEG recordings were
collected using a 248-channel axial gradiometer system (Magnes
3600WH, 4-D Neuroimaging, San Diego, CA) sampled at ~1
kHz from 50 cognitively healthy women (40 - 93 years, 70.58
± 14.77, mean ± std dev) in a task-free state (i.e., resting state).
The data were time series consisting of 50,000 values per subject
and channel. Overall, the full MEG dataset contains 50 samples x
248 channels x 50,000 time points.

Performing ARIMA Modeling

Here, we first determine which method-solver combination from
Statsmodels provides the most reliable and valid residuals, while
also maintaining a respectable processing time for the MEG
dataset. Then, using this method-solver, investigations into iden-
tifying and selecting model orders are performed, followed by
parameter value estimations on a range of model orders. Residuals
from these models are processed to detect autocorrelation and
nonstationarities using our White Noise Test. Finally, these models
are compared and evaluated.

Implementing Method-Solvers

The length and quantity of time series have a direct impact on the
ease of modeling. Therefore, we aim to implement an iterative
approach to ARIMA modeling while keeping focus on model
reliability and validity of residuals, along with incorporating an
efficiency cost (i.e., constraints on allowed processing time).
The goal for this stage is to determine which method-solver in
Statsmodels is most appropriate for the application dataset.

To accomplish this, we randomly select 5% (round to nearest
integer) of the channels from each sample in the full MEG dataset
(i.e., 5% of 248 channels with 50 samples gives N = 600) to
construct the test dataset. Next, we select a range of model orders:
AR = {10, 20, 30, 40, 50, 60}, I = {1}, MA = {1, 3, 5}. Using
each method-solver group (N = 16) and model order combinations
(N = 18), we now have 288 testing units. For each of the testing
units, ARIMA modeling is performed on each channel in the test
dataset.

If 2% of the test dataset channels have a processing time >
5 minutes per channel, the testing unit is withdrawn from further
analysis and deemed inefficient. Otherwise, for each channel, four
measures are retained. The first measure is the AICc (Akaike

WHITE NOISE TEST: DETECTING AUTOCORRELATION AND NONSTATIONARITIES IN LONG TIME SERIES AFTER ARIMA MODELING 101

Fig. 2: MEG CDF Ranks

Information Criterion with correction), which reflects the quality
of the statistical model’s performance. The second and third
measures are the cumulative counts of tACF and tPACF. The
final measure is the processing time, which is measured on each
channel and is the time, in seconds, for the ARIMA modeling
process to produce residuals. For all four measures, lower values
indicate better performance. After calculating the measures, for
each channel and model order, ranks for the first three measures
are calculated across the method-solver groups, with tied ranks
getting the same rank number.

For the 16 method-solver combinations tested, 7 were
inefficient at all tested model orders (css-basinhopping,
mle-bfgs, mle-newton, mle-cg, mle-ncg,
mle-powell, mle-basinhopping). The cumulative
distribution functions (CDFs) of each method-solver group
ranks are calculated and plotted in Figure 2. In this plot, larger
area under the curve indicates better performance. Thus, the
css-lbfgs has the best performance.

In Table 2, the mean time per channel for each method,
except withdrawn methods, is given, along with the highest order
able to be modeled by the given method-solver group. Mean
ranks were calculated for each method-solver, shown in Table
2, and used for the final rank calculation. In the test dataset,
the css-lbfgs method-solver outperformed all others while
maintaining a reasonable time per channel (91.47 seconds). The
results also show that the CSS methods generally outperform the
MLE methods, for long time series. The css-lbfgs method-
solver was retained for all further analysis.

Identifying and Selecting Model Orders

Before selecting the differencing model order, d, each series is
inspected for extreme values. To determine the model orders,
channels with greater than five extreme values are excluded.
As discussed previously, if a series is deemed nonstationary,
then a first differencing of the series is computed. To determine
nonstationarity, examine the ACF plot. A clear indication of
nonstationarity will be if the ACF does not tail away to zero
quickly or cut-off after a finite number of steps, which is the case
with MEG raw time series. Therefore, the MEG time series are
first differenced (d = 1).

Next we check the series for stationarity; recall, an appro-
priately differenced process should be stationary. Both the KPSS

Method-
Solver

Mean
Time (s)

Highest
Model

Mean
Ranks

Final
Rank

css-lbfgs 91.47 60-1-3 1.32 1
css-bfgs 115.22 60-1-3 2.23 2
css-powell 54.47 60-1-5 3.25 3
css-cg 132.78 50-1-1 3.77 4
css-nm 39.55 60-1-3 4.29 5
css-ncg 138.97 20-1-3 6.90 6
mle-nm 85.71 30-1-5 7.31 7
mle-lbfgs 57.7 10-1-5 8.29 8
css-newton 235.11 20-1-1 8.36 9

TABLE 2: Ranking Method-Solvers for ARIMA modeling of MEG
data.

Fig. 3: Stationarity (KPSS) and Unit Root (ADF) Tests

stationarity test and ADF unit root test are calculated for 60 lags.
Their values plotted against each other are shown in Figure 3.
The KPSS statistic ranges from 0 to 0.28; since all KPSS test
statistics calculated are less than the critical value (CV) of 0.743
at α = 0.01, the null hypothesis of stationarity cannot be rejected.
The ADF statistic ranges from -16.19 to -58.32; since all ADF
test statistics calculated are more negative than the CV of -3.43
at α = 0.01, the null hypothesis of a unit root is rejected. Taken
together, we have established lack of nonstationaritiy for our test
dataset.

Taking the differenced series, the ACF and PACF are calcu-
lated for 60 lags. The median correlation value for each lag is
plotted in Figure 4. From this figure, a mixed-model ARMA(p,
q) process is seen since both the ACF and PACF tail off with
oscillating decay. To decide on the p and q orders, we look at
Figure 4 and see the highly AR nature of the PACF plot up to
about 30 lags; we also see the MA component expressed in the
ACF up to about 10 lags. Using this, we decide to implement
a range of model orders. For the AR component, we choose to
begin with AR = 20 and end with AR = 60 in increments of 5.
For the MA component, we choose to begin with MA = 1 and
end with MA = 9 in increments of 2. We implement all possible
combinations of these ARMA orders (N = 45).

102 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 4: ACF and PACF of MEG data after first differencing

Final Model Order Selection

For each of the 45 model order combinations, the White Noise
Test was calculated on the residuals. In the case of the test dataset,
there were 4 channels that could not be modeled in each of the
model order combinations. Channels with greater than 5 extreme
values, and thus excluded, were relatively consistent across model
order combinations with a range of 26-29 channels (mean = 27.24,
~5% of the test dataset) per combination. Additionally, residual
series were not significantly different from normal (α = 0.01).
The remaining attributes are shown in Table 3 for up to AR = 50
(AR = 55 and 65 showed similar patterns). In the table, unique
channels is the count of unique channels across the tACF, tPACF,
cMEAN, and cVAR attributes.

The results in Table 3, show multiple model order combina-
tions provide low counts on several attributes, indicating more
than one usable model order combination. However, there are two
important patterns that emerge. First, as the AR increases (holding
the MA constant), the ACF and PACF counts generally decrease.
Second, as the MA increases (holding the AR constant), the ACF
and PACF counts generally decrease. Taken together, there exists
an ideal candidate model, namely ARIMA(30,1,3). This model
order exhibits two qualities to use in evaluating model orders: it
is within the lowest on all attribute counts as compared to other
model orders, and among those with the lowest attribute values, it
has the lowest model orders.

From an analyst perspective, an ideal candidate model is
informed by the future analysis to be performed. Basically, when
choosing the ideal candidate model, the next stage of analysis
needs to be considered and used to identify the ideal candidate
model. For instance, if the next stage of analysis is to calculate
all possible pairwise partial correlation coefficients between each
channel for ±50 lags, then the model order of choice should have
an AR ≥ 50 or at a minimum, the tACF and tPACF attributes
of the residuals need to be examined up to 50 lags. In general,
choosing an ideal candidate model will be based on several factors
including, but not limited to, the choice of method-solver, future
analytic needs, and degree of “whiteness” desired.

We compare our ACF thresholding to two autocorrelation tests,
the Ljung-Box and Breusch-Godfrey statistics for up to AR lags,

Model
Orders

tACF tPACF cMEAN cVAR Unique
Channels

1 20-1-1 570 570 0 12 570
2 20-1-3 54 54 7 12 70
3 20-1-5 31 31 6 12 49
4 20-1-7 27 27 7 12 46
5 20-1-9 15 15 8 12 34
6 25-1-1 569 569 0 12 569
7 25-1-3 16 16 7 10 33
8 25-1-5 31 31 6 12 49
9 25-1-7 10 10 9 12 31
10 25-1-9 3 3 10 12 24
11 30-1-1 569 569 6 11 569
12 30-1-3 5 5 8 13 26
13 30-1-5 7 7 8 11 26
14 30-1-7 3 3 10 12 25
15 30-1-9 3 3 10 12 23
16 35-1-1 563 563 2 11 563
17 35-1-3 8 8 9 12 28
18 35-1-5 3 3 8 12 23
19 35-1-7 6 6 8 12 26
20 35-1-9 0 0 7 12 19
21 40-1-1 529 529 8 11 530
22 40-1-3 30 30 7 12 47
23 40-1-5 1 1 7 12 20
24 40-1-7 8 8 8 12 27
25 40-1-9 1 1 7 11 19
26 45-1-1 222 222 7 10 234
27 45-1-3 6 6 9 11 26
28 45-1-5 0 0 8 12 20
29 45-1-7 3 3 7 12 22
30 45-1-9 2 2 7 12 21
31 50-1-1 15 15 7 11 33
32 50-1-3 0 0 7 11 18
33 50-1-5 0 0 7 12 19
34 50-1-7 0 0 7 12 19
35 50-1-9 0 0 9 12 21

TABLE 3: Attributes for the White Noise Test shown for incre-
menting model order combinations, listed as thresholded ACF and
PACF (tACF, tPACF), constant mean (cMEAN) and constant variance
(cVAR), and the number of unique channels across the attributes.

tested at α = 0.001, for each residual series. Figure 5 shows a bar
graph of the Ljung-Box and ACF counts. The Ljung-Box statistic
is calculated at three levels, with degrees of freedom (df) equalling
AR, min(20, N-1) as suggested by [Box], and ln(N) as suggested
by [Tsay]. Each bar is for one model order combination with the
same labeling as in the first column of Table 3. The bar length is
the sum of the elements in the model order combination for the
given statistic. Each bar shows different colors for each statistic
and the relative contribution each statistic makes to the total sum
for that model order combination. The Breusch-Godfrey, in place
of the Ljung-Box, showed similar results. It can be seen that the
Ljung-Box corresponds well to our ACF thresholding when the df
equal the AR order but fails to identify autocorrelation using either
of the suggested df. Finally, the Breusch-Godfrey and Ljung-Box
statistics are compared in terms of the percent of residual series
failing each statistic (Table 4).

WHITE NOISE TEST: DETECTING AUTOCORRELATION AND NONSTATIONARITIES IN LONG TIME SERIES AFTER ARIMA MODELING 103

Fig. 5: ACF and Ljung-Box Attributes Compared

df % = % 6= by 1 % 6= by > 1

AR 55.6 20.0 24.4
20 77.8 6.7 15.6
ln(N) 84.4 11.1 4.4

TABLE 4: Breusch-Godfrey test compared to Ljung-Box test

MEG Dataset Evaluation

Finally, using ARIMA(30,1,3), we apply the White Noise Test
procedure to the full MEG dataset. One channel at each stage of
modeling is shown in Figure 6. Descriptive statistics on each of
the attributes for the full MEG data are shown in Table 5 and the
overall percent of channels removed per subject is shown in Figure
7. One subject had over 200 channels removed, likely due to errors
within the recording, and was excluded from Table 5.

Conclusion

In this paper, we presented an expansion on the Box-Jenkins
methodology to ARIMA modeling. First, during model identi-
fication and selection, we implement two complementary tests
(KPSS and ADF) to establish stationarity. Using these stationary
series, we use median correlation values at each lag of the ACF
and PACF across 600 channels to identify a range of AR(p) and
MA(q) order to implement combinatorially. This methodology
allows for examining multiple time series simultaneously to de-
termine a valid model order for the majority of time series in a
dataset. Second, during parameter value estimation, we utilize the
Statsmodels package to find the method-solver combination that
provides good metrics (model reliability, validity of residuals, and

Step Min Max Median Mean Std Dev

xVAL 0 60 1 9.67 16.63
Normal 0 0 0 0.00 0.00
tACF 0 51 0 2.53 8.12
tPACF 0 0 0 0.00 0.00
cMEAN 0 8 0 0.20 1.15
cVAR 0 40 4 7.24 9.05
Channels
Removed

1 85 10 20.55 21.34

TABLE 5: Results of White Noise Test on full dataset, with the steps
listed as extreme values (xVAL), normality, thresholded ACF and
PACF (tACF, tPACF), constant mean (cMEAN) and constant variance
(cVAR), and the number of channels removed as a result.

time efficient) for long time series. We found the css-lbfgs to
outperform all other method-solver combinations on these metrics.
Third, during model evaluation, we present a novel approach
(White Noise Test: Figure 1) to diagnostic checking of ARIMA
modeling for long time series, which evaluates residual series
based on stationarity and nonautocorrelation (i.e., “whiteness”).
Using this approach, we identify the ideal candidate model for
our dataset to be ARIMA(30,1,3). Applying this model to the full
MEG dataset, we find an average of 20.55 channels removed from
the White Noise Test (i.e., fail to establish “whiteness”), which
is about 8.3% of the dataset. Overall, using our approach, an
investigator can perform ARIMA modeling and evaluate candidate
models with ease for large datasets and datasets containing long
time series.

REFERENCES

[Bartlett] Bartlett, M.S. 1946. "On the theoretical specification and
sampling properties of autocorrelated time-series." Journal of
the Royal Statistical Society, 8.1, 27-41.

[Box] Box, G. and Jenkins, G. 1976. "Time series analysis: forecast-
ing and control." Holden Day, San Francisco, 2nd edition.

[Breusch] Breusch, T.S. 1978. “Testing for autocorrelation in dynamic
linear models”, Australian Economic Papers, 17, 334–355.

[Durbin] Durbin, J. and Watson, G.S. 1971. "Testing for serial correla-
tion in least squares regression III”, Biometrika, 58.1, 1–19.

[Godfrey] Godfrey, L.G. 1978. “Testing against general autoregressive
and moving average error models when the regressors include
lagged dependent variables”, Econometrica, 49, 1293–1302.

[Hannan] Hannan, E.J. and Rissanen, J. 1985. "Recursive estimation
of mixed autoregressive-moving average order". Biometrika,
69.1, 81-94.

[Kwiatkowski] Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., Shin, Y. 1992.
"Testing the null hypothesis of stationarity against the alterna-
tive of a unit root", Journal of Econometrics, 54, 159ñ178

[Ljung] Ljung, G.M. and Box, G.P. 1978. "On a Measure of a Lack of
Fit in Time Series Models”, Biometrika, 65.2, 297–303.

[McKinney] McKinney, W., Perktold, J., Seabold, S. 2011. "Time series
analysis in python with statsmodels", Proceedings of the 10th
Python in Science Conference, 96-102.

[Pankratz] Pankratz, A. 1991. "Forecasting with dynamic regression
models", John Wiley and Sons, New York.

[Said] Said, S.E. and Dickey, D. 1984. "Testing for unit roots in
autoregressive moving-average models with unknown order",
Biometrika, 71, 599-607.

[Seabold] Seabold, S. and Perktold J. 2010. "Statsmodels: econometric
and statistical modeling with python", Proceedings of the 9th
Python in Science Conference, 57-61.

[Tsay] Tsay, R.S. 2005. “Analysis of Financial Time Series”, John
Wiley & Sons, Inc., Hoboken, NJ.

[Tukey] Tukey, J.W. 1977. "Exploratory data analysis", Addison-
Wesley, Reading, MA.

104 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 6: Raw, differenced, and ARIMA(30,1,3) series with corresponding ACF and PACF.

Fig. 7: Percent of channels removed per subject.

[Yaffee] Yaffee, R.A. and McGee, M. 2000. "Introduction to time series
analysis and forecasting: with applications of SAS and SPSS",
Academic Press.

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 105

Signal Processing and Communications: Teaching
and Research Using IPython Notebook

Mark Wickert‡∗

https://www.youtube.com/watch?v=xWREmn7EajM

F

Abstract—This paper will take the audience through the story of how an elec-
trical and computer engineering faculty member has come to embrace Python,
in particular IPython Notebook (IPython kernel for Jupyter), as an analysis and
simulation tool for both teaching and research in signal processing and com-
munications. Legacy tools such as MATLAB are well established (entrenched)
in this discipline, but engineers need to be aware of alternatives, especially in
the case of Python where there is such a vibrant community of developers.
In this paper case studies will also be used to describe domain specific code
modules that are being developed to support both lecture and lab oriented
courses going through the conversion from MATLAB to Python. These modules
in particular augment scipy.signal in a very positive way and enable rapid
prototyping of communications and signal processing algorithms. Both student
and industry team members in subcontract work, have responded favorably to
the use of Python as an engineering problem solving platform. In teaching,
IPython notebooks are used to augment lecture material with live calculations
and simulations. These same notebooks are then placed on the course Web Site
so students can download and tinker on their own. This activity also encourages
learning more about the language core and Numpy, relative to MATLAB. The stu-
dents quickly mature and are able to turn in homework solutions and complete
computer simulation projects, all in the notebook. Rendering notebooks to PDF
via LaTeX is also quite popular. The next step is to get other signals and systems
faculty involved.

Index Terms—numerical computing, signal processing, communications sys-
tems, system modeling

Introduction

This journey into Python for electrical engineering problem solv-
ing began with the writing of the book Signals and Systems for
Dummies [Wic2013], published summer 2013. This book features
the use of Python (Pylab) to bring life to the mathematics
behind signals and systems theory. Using Python in the Dummies
book is done to make it easy for all readers of the book to
develop their signals and system problem solving skills, without
additional software tools investment. Additionally, the provided
custom code module ssd.py [ssd], which is built on top of
numpy, matplotlib, and scipy.signal, makes it easy to
work and extend the examples found in the book. Engineers love
to visualize their work with plots of various types. All of the plots
in the book are created using Python, specifically matplotlib.

* Corresponding author: mwickert@uccs.edu
‡ University of Colorado Colorado Springs

Copyright © 2015 Mark Wickert. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

The next phase of the journey, focuses on the research and
development side of signals and systems work. During a recent
sabbatical1 Python and IPython notebook (IPython kernel for
Jupyter) served as the primary digital signal processing modeling
tools on three different projects. Initially it was not clear which
tool would be best, but following discussions with co-workers2

Python seemed to be the right choice. Note, for the most part,
the analysis team was new to Python, all of us having spent
many years using MATLAB/Octave [MATLAB]/[Octave]. A nice
motivating factor is that Python is already in the workflow in the
real-time DSP platform used by the company.

The third and current phase of the Python transformation
began at the start of the 2014-2015 academic year. The move
was made to push out Python to the students, via the IPython
Notebook, in five courses: digital signal processing, digital com-
munications, analog communications, statistical signal processing,
and real-time signal processing. Four of the courses are traditional
lecture format, while the fifth is very hands-on lab oriented, involv-
ing embedded systems programming and hardware interfacing.
IPython Notebook works very well for writing lab reports, and
easily allows theoretical and experimental results to be integrated.
A notebook interface is not a new concept in scientific computing
tool sets3. Both of these tools are very powerful for specific
problem classes.

The remainder of this paper is organized into the follow-
ing sections: arriving at Python for communications and signal
processing modeling, describing IPython notebook usage, case
studies, and conclusions.

Arriving at Python for Communications and Signal Processing
Modeling

About three years ago while working on a study contract for
a small business, I started investigating the use of open-source
alternatives over MATLAB. I initially homed in on using Octave
[Octave] for its syntax compatibility with MATLAB. Later I
started to explore Python and became fascinated by the ease of
use offered by the IPython (QT) console and the high quality
of matplotlib 2D plots. The full power of Python/IPython

1. Academic year 2013-2014 was spent working for a small engineering
firm, Cosmic AES.

2. Also holding the Ph.D. and/or MS in Electrical Engineering, with empha-
sis in communications and signal processing.

3. See for example Mathematica [Mathematica] (commercial) and wxMax-
ima [Maxima] (open source).

106 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

for engineering and scientific computing gradually took hold as
I learned more about the language and the engineering problem
capabilities offered by pylab.

When I took on the assignment of writing the Signals and
Systems for Dummies book [Wic2013] Python seemed like a good
choice because of the relative ease with which anyone could obtain
the tools and then get hands-on experience with the numerical
examples I was writing into the book. The power of numpy
and the algorithms available in scipy are very useful in this
discipline, but I immediately recognized that enhancements to
scipy.signal are needed to make signals and systems tinker-
ing user friendly. As examples were written for the book, I began
to write support functions that fill in some of the missing details
not found in scipy. This is the basis for the module ssd.py, a
constant work in progress to make open source signals and systems
software more accessible to the engineering community.

Modules Developed or Under Development

As already briefly mentioned, the first code module I developed
is ssd.py4. This module contains 61 functions supporting signal
generation, manipulation, and display, and system generation and
characterization. Some of the functions implement subsystems
such as a ten band audio equalization filter or the model of an
automobile cruise control system. A pair of wrapper functions
to_wav() and from_wav() make it easy for students to write
and read 1D ndarrays from a wave file. Specialized plotting
functions are present to make it easy to visualize both signals and
systems. The collection of functions provides general support for
both continuous and discrete-time signals and systems, as well
as specific support for examples found in [Wic2013]. Most all
of functions are geared toward undergraduate education. More
modules have followed since then.

The second module developed, digitalcom.py, focuses
on the special needs of digital communications, both modulation
and demodulation. At present this module contains 32 functions.
These functions are focused on waveform level simulation of con-
temporary digital communication systems. When I say simulation
I specifically mean Monte Carlo techniques which involve the use
of random bit streams, noise, channel fading, and interference.
Knowledge of digital signal processing techniques plays a key
role in implementation of these systems. The functions in this
module are a combination of communcation waveform generators
and specialized signal processing building blocks, such as the
upsampler and downsampler, which allow the sampling rate of
a signal to be raised or lowered, respectively. More functions
are under development for this module, particularly in the area
of orthogonal frequency division multiplexing (OFDM), the key
modulation type found in the wireless telephony standard, long
term evolution (LTE).

A third module, fec_conv.py, implements a rate 1/2 con-
volutional encoding and decoding class [Zie2015]. In digital com-
munications digital information in the form of bits are sent from
the transmitter to the receiver. The transmission channel might
be wired or wireless, and the signal carrying the bits may be at
baseband, as in say Ethernet, or bandpass on a carrier frequency,
as in WiFi. To error protect bits sent over the channel forward
error correction (FEC) coding, such as convolutional codes, may
be employed. Encoding is applied before the source bits are mod-
ulated onto the carrier to form the transmitted signal. With a rate

4. http://www.eas.uccs.edu/wickert/SSD/docs/python/

1/2 convolutional code each source bit is encoded into two channel
bits using a shift register of length K (termed constraint length)
with excusive or logic gate connections. The class allows arbitrary
constraint length codes and allows puncturing and depuncturing
patterns. With pucturing/depuncturing certain code bits are erased,
that is not sent, so as to increase the code rate from 1/2 to say 3/4
(4 channel bits for every three source bits).

For decoding the class implements the Viterbi algorithm (VA),
which is a dynamic programming algorithm. The most likely path
the received signal takes through a trellis structure is how the
VA recovers the sent bits [Zie2015]. Here the cost of traversing a
particular trellis branch is established using soft decision metrics,
where soft decision refers to how information in the demodulated
radio signal is converted metric values.

The class contains seven methods that include two graphical
display functions, one of which shows the survivor traceback
paths through the trellis back in time by the decoder decision
depth. The traceback paths, one for each of the 2K−1 trellis states,
give students insight into the operation of the VA. Besides the
class, fec_conv also contains four functions for computing error
probability bounds using the weight structure of the code under
both hard and soft branch metric distance calculations [Zie2015].

A fourth module, synchronization.py, was developed
while teaching a phase-locked loops course, Summer 2014. Syn-
chronization is extremely important is all modern communications
communications schemes. Digital communication systems fail
to get data bits through a wireless link when synchronization
fails. This module supplies eight simulation functions ranging
from a basic phase-locked loop and both carrier and symbol
synchronization functions for digital communications waveforms.
This module is also utilized in an analog communications course
taught Spring 2015.

Describing IPython Notebook Use Scenarios

In this section I describe how Python, and in particular the IPython
notebook, has been integrated into teaching, graduate student
research, and industry research and development.

Teaching

To put things into context, the present lecturing style for all
courses I teach involves the use of a tablet PC, a data projector, a
microphone, and audio/video screen capture software. Live Python
demos are run in the notebook, and in many cases all the code
is developed in real-time as questions come from the class. The
notebook is more than just a visual experience. A case in point is
the notebook audio control which adds sound playback capability.
A 1D ndarray can be saved as a wave file for playback. Simply
put, signals do make sounds and the action of systems changes
what can be heard. Students enjoy hearing as well as seeing
results. By interfacing the tablet lineout or headphone output to
the podium interface to the classroom speakers, everyone can
hear the impact of algorithm tweaks on what is being heard.
This is where the fun starts! The modules scipy.signal
and ssd.py, described earlier, are imported at the top of each
notebook.

For each new chapter of lecture material I present on the tablet
PC, a new IPython notebook is created to hold corresponding
numerical analysis and simulation demos. When appropriate,
starter content is added to the notebook before the lecture. For
example I can provide relevant theory right in the notebook to

SIGNAL PROCESSING AND COMMUNICATIONS: TEACHING AND RESEARCH USING IPYTHON NOTEBOOK 107

transition between the lecture notes mathematics and the notebook
demos. Specifically, text and mathematics are placed in markdown
cells. The notebook theory is however very brief compared to
that of the course lecture notes. Preparing this content is easy,
since the lecture notes are written in LaTeX I drop the selected
equations right into mark down cells will minimal rework. Sample
calculations and simulations, with corresponding plots, are often
generated in advance, but the intent is to make parameter changes
during the lecture, so the students can get a feel for how a
particular math model relates to real-word communications and
signal processing systems.

Computer projects benefit greatly from the use of the note-
book, as sample notebooks with starter code are easily posted to
the course Web Site. The sample notebook serves as a template for
the project report document that the student will ultimately turn in
for grading. The ability to convert the notebook to a LaTeX PDF
document works for many students. Others used screenshots of
selected notebook cells and pasted them into a word processor
document. In Spring 2015 semester students turned in printed
copies of the notebook and as backup, supplied also the notebook
file. Marking on real paper documents is still my preference.

Graduate Student Research

In working with graduate students on their research, it is normal to
exchange code developed by fellow graduate students working on
related problems. Background discussions, code implementations
of algorithms, and worked examples form a perfect use case for
IPython notebook. The same approach holds for faculty interaction
with their graduate students. In this scenario the faculty member,
who is typically short on free time, gains a powerful advantage in
that more than one student may need to brought up to speed on the
same code base. Once the notebook is developed it is shared with
one or more students and often demoed in front the student(s) on
a lab or office computer. The ability to include figures means that
system block diagrams can also be placed in the notebook.

As the student makes progress on a research task they docu-
ment their work in a notebook. Faculty member(s) are briefed on
the math models and simulation results. Since the notebook is live,
hypothetical questions can be quickly tested and answered.

Industry Research and Development

With the notebook engineers working on the same team are able
to share analytical models and development approaches using
markdown cells. The inclusion of LaTeX markup is a welcome
addition and furthers the establishment of notational conventions,
during the development of signal processing algorithms.

Later, prototype algorithm development is started using code
cells. Initially, computer synthesized signals (waveforms) are used
to validated the core functionality of an algorithm. Next, signal
captures (date files) from the actual real-time hardware are used
as a source of test vectors to verify that performance metrics are
being achieved. Notebooks can again be passed around to team
members for further algorithm testing. Soon code cell functions
can be moved to code modules and the code modules distributed
to team members via git [git] or some other distributed revi-
sion control system. At every step of the way matplotlib
[matpltlib] graphics are used to visualize performance of a par-
ticular algorithm, versus say a performance bound.

Complete subsystem testing at the Python level is the final step
for pure Python implementations. When Python is used to con-
struct a behavioral level model, then more testing will be required.

In this second case the code is moved to a production environment
and recoding to say C/C++. It might also be that the original
Python model is simply an abstraction of real electronic hardware,
in which case a hardware implementer uses the notebook (maybe
just a PDF version) to create a hardware prototype, e.g., a field
programable gate array (FPGA) or custom integrated circuit.

Live From the Classroom

Here live from the classroom means responding to questions
using on-the-fly IPython notebook demos. This is an excellent
way to show off the power of Python. Sometimes questions
come and you feel like building a quick model right then and
there during a lecture. When successful, this hopefully locks in a
solid understanding of the concepts involved for the whole class.
The fact that the lecture is being recorded means that students
can recreate the same demo at their leisure when they watch
the lecture video. The notebook is also saved and posted as a
supplement/companion to the lecture. As mentioned earlier, there
is a corresponding notebook for each chapter of lecture material5.
I set the goal of re-posting the chapter notebooks each time a new
lecture video is posted. This way the students have something to
play with as they work on the current homework assignment.

Case Studies

In this section I present case studies that present the details on
one or more of the IPython notebook use cases described in the
previous section of this paper. Case studies from industry R&D
are not included here due to the propriety nature of the work.

In all of the case studies you see that graphical results are
produced using the pylab interface to matplotlib. This is
done purposefully for two reasons. The first stems from the fact
that currently all students have received exposure to MATLAB in
a prior course, and secondly, I wish to augment, and not replace,
the students’ MATLAB knowledge since industry is still lagging
when it comes to using open source tools.

Digital Signal Processing

As a simple starting point this first case study deals with the
mathematical representation of signals. A step function sequence
u[n] is defined as

u[n] =

{
1, n≥ 0
0, otherwise

(1)

Here I consider the difference between two step sequences starting
at n = 0 and the other starting at n = 5. I thus construct in Python

x3[n] = x1[n]− x2[n] = u[n]−u[n−5], (2)

which forms a pulse sequence that turns on at n = 0 and turns off
at n = 5. A screen capture from the IPython notebook is shown in
Fig. 1.

Of special note in this case study is how the code syntax for
the generation of the sequences follows closely the mathematical
form. Note to save space the details of plotting x2[n] and x3[n] are
omitted, but the code that generates and plots x3[n] is simply:

stem(n,x1 - x2)

5. Notebook postings for each course at http://www.eas.uccs.
edu/wickert/

108 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

(...Repeat for two more plots)

u n[]

u n 5–[]

u n[] u n 5–[]–

Notebook Screen Capture

Fig. 1: Discrete-time signal generation and manipulation.

Convolution Integral and LTI Systems

A fundamental signal processing result states that the signal output
from a linear and time invariant (LTI) system is the convolution
of the input signal with the system impulse response. The impulse
response of a continuous-time LTI system is defined as the system
output h(t) in response to the input δ (t), where δ (t) is the dirac
delta function. A block diagram of the system model is shown in
Fig. 2.

x t() y t()h t()

LTI System

Fig. 2: Simple one input one output LTI system block diagram.

In mathematical terms the output y(t) is the integral

y(t) =
∫ ∞

−∞
h(λ)x(t−λ)dλ (3)

Students frequently have problems setting up and evaluating the
convolution integral, yet it is an important concept to learn. The
waveforms of interest are typically piecewise continuous, so the
integral must be evaluated over one or more contiguous intervals.
Consider the case of x(t) = u(t)−u(t−T), where u(t) is the unit
step function, and h(t) = ae−atu(t), where a > 0. To avoid careless
errors I start with a sketch of the integrand h(λ)x(t−λ), as shown
in Fig. 3. From there I can discover the support intervals or cases
for evaluating the integral.

x t()

0 T
t

h t()

0
t

ae at–

λ
0t T– t

x t λ–()
h λ()increasing t

Integrand of Convolution Integral

1 a

Fig. 3: Sketches of x(t), h(t), and h(λ)x(t−λ).

A screen capture of a notebook that details the steps of solving
the convolution integral is given in Fig. 4. In this same figure we
see the analytical solution is easily plotted for the case of T = 1
and a = 5.

Notebook Screen Capture

Fig. 4: Solving the convolution integral in the notebook .

To bring closure to the tedious analytical solution develop-
ment, I encourage students check their work using computer
simulation. The function ssd.conv_integral() performs
numerical evaluation of the convolution integral for both finite
and semi-infinite extent limits. I simply need to provide an array of
signal/impulse response sample values over the complete support
interval. The screen capture of Fig. 5 shows how this is done
in a notebook. Parameter variation is also explored. Seeing the
two approaches provide the same numerical values is rewarding
and a powerful testimony to how the IPython notebook improves
learning and understanding.

SIGNAL PROCESSING AND COMMUNICATIONS: TEACHING AND RESEARCH USING IPYTHON NOTEBOOK 109

(...Repeat for two more plots with a = 5 and 10)

Generate x(t) and h(t)
then numerically convolve
with scipy.signal.convolve
used in the core calculation

Notebook Screen Capture

Fig. 5: Plotting y(t) for a = 1,5, and 10.

Convolutional Coding for Digital Communications

In this case study the coding theory class contained in
fec_conv.py is exercised. Here the specific case is taken from
a final exam using a rate 1/2, K = 5 code. Fig. 6 shows the
construction of a fec_conv object and a plot of one code symbol
of the trellis.

Notebook Screen Capture

Note: 2K-1 = 16
states.
Blue transitions
for ‘0’ input bit
Green transitions
for ‘1’ input bit

Fig. 6: Construction of a fec_conv object and the corresponding
trellis structure for the transmission of one code symbol.

At the digital communications receiver the received signal is
demodulated into soft decision channel bits. The soft values are
used to calculate branch metrics, which then are used to update
cumulative metrics held in each of the 16 states of the trellis. There
are two possible paths arriving at each state, but the surviving path
is the one producing the minimum cumulative metric.

Fig. 7 shows the survivor traceback paths in the 16-state
trellis while sending random bits through the encoding/decoding
process. Additive noise in the communications channel introduces
confusion in the formation of the traceback paths. The channel
signal-to-noise ratio (SNR), defined as the ratio of received signal

Notebook Screen Capture

Traceback paths
correspond to
the minimum
cumulative metric
from each of the
16 trellis states

Traceback shows a common
path early on (good). The corresponding
‘0’ and ‘1’ bit at the decision depth
transition (here 25) is the decoded bit.

Fig. 7: Passing random bits through the encoder/decoder and plotting
an instance of the survivor paths.

power to background noise power, sets the operating condition for
the system. In Fig. 7 the SNR, equivalently denoted by Eb/N0), is
set at 7 dB. At a decision depth of 25 code symbols, all 16 paths
merge to a common path, making it very likely that the probability
of a bit error, is very very small. At lower a SNR, not shown here,
the increased noise level makes it take longer to see a traceback
merge and this is indicative of an increase in the probability of
making a bit error.

Real-Time Digital Signal Processing

In the real-time digital signal processing (DSP) course C-code
is written for an embedded processor. In this case the processor
is an ARM Cortex-M4. The objective of this case study is to
implement an equal-ripple finite impulse response (FIR) lowpass
filter of prescribed amplitude response specifications. The filter is
also LTI. Python (scipy.signal) is used to design the filter
and obtain the filter coefficients, b1[n], n = 0, . . . ,M, in float64
precision. Here the filter order turns out to be M = 77. As in
the case of continuous-time LTI systems, the relation between the
filter input and output again involves a convolution. Since a digital
filter is a discrete-time system, the convolution sum now appears.
Furthermore, for the LTI system of interest here, the convolution
sum can be replaced by a difference equation representation:

y[n] =
M

∑
k=0

x[n]b[n− k], −∞ < n < ∞ (4)

In real-time DSP (4) becomes an algorithm running in real-time
according to the system sampling rate clock. The processor is
working with int16 precision, so once the filter is designed the
coefficients are scaled and rounded to 16 bit signed integers as
shown in Fig. 8. The fixed-point filter coefficients are written to a
C header file using a custom function defined in the notebook (not
shown here).

110 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Notebook Screen Capture

Fig. 8: Designing an equal-ripple lowpass filter using
scipy.signal.remez for real-time operation.

The filter frequency response magnitude is obtained using a
noise source to drive the filter input (first passing through an
analog-to-digital converter) and then the filter output (following
digital-to-analog conversion) is processed by instrumentation to
obtain a spectral estimate. Here the output spectrum estimate cor-
responds to the filter frequency response. The measured frequency
response is imported into the notebook using loadtxt(). Fig.
9 compares the theoretical frequency response, including quanti-
zation errors, with the measured response. The results compare
favorably. Comparing theory with experiment is something stu-
dents are frequently asked to do in lab courses. The fact that the
stopband response is not quite equal-ripple is due to coefficient
quantization. This is easy to show right in the notebook by
overlaying the frequency response using the original float64
coefficients b1, as obtained in Fig. 8, with the response obtained
using the b1_fix coefficients as also obtained in Fig. 8 (the plot
is not shown here).

An important property of the equal-ripple lowpass is that
the filter coefficients, b[n], have even symmetry. This means that
b1[M− n] = b1[n] for 0 ≤ n ≤M. Taking the z-transform of both
sides of (4) using the convolution theorem [Opp2010] results in
Y (z) = H(z)X(z), where Y (z) is the z-transform of y[n], X(z) is the
z-transform of x[n], and H(z), known as the system function, is the
z-transform of the system impulse response. The system function
H(z) takes the form

H(z) =
M

∑
n=0

bnz−n also
=

1
zM

M

∏
n=1

(
z− zn

)
, (5)

In general H(z) = N(z)/D(z) is a rational function of z or z−1. The
roots of N(z) are the system zeros and roots of D(z) are the system
poles. Students are taught that a pole-zero plot gives much insight
into the frequency response of a system, in particular a filter.
The module ssd.py provides the function ssd.zplane(b,a)

Notebook Screen Capture

Fig. 9: Comparing the theoretical fixed-point frequency response with
the measured.

where b contains the coefficients of N(z) and a contains the
coefficients of D(z); in this case a = [1]. The even symmetry
condition constrains the system zeros to lie at conjugate reciprocal
locations [Opp2010] as seen in Fig. 10.

Fig. 10: Pole-zero plot of the equal-ripple lowpass which confirms
that H(z) is linear phase.

With real filter coefficients the zeros must also occur in
conjugate pairs, or on the real axis. When the student sees the pole-
zero plot of Fig. 10 whats jumps off the page is all of the zeros
on the unit circle for the filter stopband. Zeros on the unit circle
block signals from passing through the filter. Secondly, you see
conjugate reciprocal zeros at angles over the interval [−π/4,π/4]
to define the filter passband, that is where signals pass through
the filter. As a bit of trivia, zeros not on the unit circle or real
axis must occur as quadruplets, and that is indeed what is seen in

SIGNAL PROCESSING AND COMMUNICATIONS: TEACHING AND RESEARCH USING IPYTHON NOTEBOOK 111

Fig. 10. Note also there are 77 poles at z = 0, which is expected
since M = 77. The pole-zero plot enhances the understanding to
this symmetrical FIR filter.

Statistical Signal Processing

This case study is taken from a computer simulation project in
a statistical signal processing course taken by graduate students.
The problem involves the theoretical calculation of the probability
density function of a random variable (RV) w where

w = xy+ z

is a function of the three RVs x, y, and z. Forming a new RV that
is a function of three RV as given here, requires some serious
thinking. Having computer simulation tools available to check
your work is a great comfort.

The screenshot of Fig. 11 explains the problem details, includ-
ing the theoretical results written out as the piecewise function
pdf_proj1_w(w).

Notebook Screen Capture

Fig. 11: One function of three random variables simulation problem.

Setting up the integrals is tedious and students are timid
about pushing forward with the calculus. To build confidence a
simulation is constructed and the results are compared with theory
in Fig. 12.

Conclusions and Future Work

Communications and signal processing, as a discipline that sits
inside electrical computer engineering, is built on a strong math-
ematical modeling foundation. Undergraduate engineering stu-
dents, despite having taken many mathematics courses, are often
intimidated by the math they find in communications and signals
processing course work. I cannot make the math go away, but
good modeling tools make learning and problem solving fun
and exciting. I have found, and hopefully this paper shows, that

Notebook Screen Capture

Fig. 12: The simulation of random variable w and the a comparison
plot of theory versus a scaled histogram.

IPython notebooks are valuable mathematical modeling tools.
The case studies show that IPython notebook offers a means for
students of all levels to explore and gain understanding of difficult
engineering concepts.

The use of open-source software is increasing and cannot
be overlooked in higher education. Python is readily accessible
by anyone. It is easy to share libraries and notebooks to foster
improved communication between students and faculty members;
between researchers, engineers, and collaborators. IPython and the
IPython notebook stand out in large part due to the enthusiasm of
the scientific Python developer community.

What lies ahead is exciting. What comes to mind immediately
is getting other faculty on-board. I am optimistic and look forward
to this challenge as tutorial sessions are planned over summer
2015. Other future work avenues I see are working on more code
modules as well as enhancements to the existing modules. In
particular in the convolutional coding class both the encoder and
especially the Viterbi decoder, are numerically intensive. Speed
enhancements, perhaps using Cython, are on the list of things
to do. Within the notebook I am anxious to experiment with
notebook controls/widgets so as to provide dynamic interactivity
to classroom demos.

Acknowledgments

The author wishes to thank the reviewers for their helpful com-
ments on improving the quality of this paper.

REFERENCES

[Wic2013] M.A. Wickert. Signals and Systems for Dummies, Wiley, 2013.
[ssd] http://www.eas.uccs.edu/wickert/SSD/.
[MATLAB] http://www.mathworks.com/.
[Octave] https://en.wikipedia.org/wiki/GNU_Octave.
[Mathematica] https://en.wikipedia.org/wiki/Mathematica.
[Maxima] http://andrejv.github.io/wxmaxima/.

112 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

[Zie2015] R.E. Ziemer and W.H. Tranter Principles of Communications,
seventh edition, Wiley, 2015.

[git] https://git-scm.com/
[matpltlib] http://matplotlib.org/
[Opp2010] Alan V. Oppenheim and Ronald W. Schafer, Discrete-Time

Signal Processing (3rd ed.), Prentice Hall, 2010.

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 113

pyDEM: Global Digital Elevation Model Analysis

Mattheus P. Ueckermann‡∗, Robert D. Chambers‡, Christopher A. Brooks‡, William E. Audette III‡, Jerry Bieszczad‡

https://www.youtube.com/watch?v=bGulPZh_-Mo

F

Abstract—Hydrological terrain analysis is important for applications such as
environmental resource, agriculture, and flood risk management. It is based
on processing of high-resolution, tiled digital elevation model (DEM) data for
geographic regions of interest. A major challenge in global hydrological terrain
analysis is addressing cross-tile dependencies that arise from the tiled nature of
the underlying DEM data, which is too large to hold in memory as a single array.
We are not aware of existing tools that can accurately and efficiently perform
global terrain analysis within current memory and computational constraints.
We solved this problem by implementing a new algorithm in Python, which uses
a simple but robust file-based locking mechanism to coordinate the work flow
between an arbitrary number of independent processes operating on separate
DEM tiles.

We used this system to analyze the conterminous US’s terrain at 1 arc-
second resolution in under 3 days on a single compute node, and global terrain
at 3 arc-second resolution in under 4 days. Our solution is implemented and
made available as pyDEM, an open source Python/Cython library that enables
global geospatial terrain analysis. We will describe our algorithm for calculating
various terrain analysis parameters of interest, our file-based locking mechanism
to coordinate the work between processors, and optimization using Cython. We
will demonstrate pyDEM on a few example test cases, as well as real DEM data.

Index Terms—digital elevation model, hydrology, terrain analysis, topographic
wetness index

Introduction

The aspect (or flow direction), magnitude of the slope, upstream
contributing area (UCA), and topographic wetness index (TWI),
shown in Figure 1, are important quantities in hydrological terrain
analysis. These quantities are used to determine, for example, the
flow path of water, sediment, and pollutants for applications in
environmental resource, agricultural, and flood risk management.
These quantities are calculated from gridded digital elevation
models (DEM), which describe the topography of a region. DEMs
are often stored as raster arrays, where the value of an element in
the array gives the elevation of that point (usually in meters). The
(i, j) coordinates of the array are also related to (latitude, longitude)
coordinates through a geotransform. The aspect is calculated from
DEM data and gives the angle (in radians) at each element. The
aspect is important for determining the direction that water will
flow, and is also important for solar radiation (for example, a
north-facing slope is more shaded than a south-facing slope in

* Corresponding author: mpu@creare.com
‡ Creare LLC, Hanover, NH

Copyright © 2015 Mattheus P. Ueckermann et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

the northern hemisphere). The slope (meters / meters) can also be
calculated, and gives the change in elevation over the change in
horizontal distance, quantifying the steepness of the topography.
UCA captures the effect of water draining down a slope along
particular routes by keeping track of the amount of runoff that is
funneled through a point. UCA is defined as the total horizontal
area that is up-slope of a point or contour [moore91], and unlike
aspect and slope, the UCA at each element depends on more
than just the immediately surrounding, or adjacent elements in
the array. TWI (κ) is derived from UCA (a) and slope (tanβ),
where κ = ln a

tanβ , and was developed by Beven and Kirkby
[beven79] within the runoff model TOPMODEL (see [beven95]).
TWI represents the steady-state soil moisture due to topographic
effects. Regions with large TWI (flat slopes with large UCA) are
generally wetter than regions with small TWI (steep slopes and
small UCA).

With the improving availability of large, high quality DEM
data, the hydrology of increasingly large regions can be analyzed.
For example, in the US, the National Elevation Dataset provides
1 × 1 arc second (approximately 30 × 30 m) resolution DEM
data for the conterminous US. This data is available as over 3500
files spanning 1o×1o latitude × longitude with over 3600 × 3600
pixels per file for 45 gigapixels of data. Analyzing such large data-
sets presents unique challenges including:

• Accurately handling grid projections where the data is non-
uniformly spaced

• Robustly dealing with no-data and flat regions
• Efficiently calculating the required quantities
• Breaking data up into computable tiles and dealing with

the resulting edge effects (see Figure 2).

DEM datasets can be supplied in various coordinate frames
where the data is not uniformly spaced. Over large regions and
higher latitudes, assuming that the data is uniformly spaced can
result in large errors, and accurate algorithms need to take into
account this grid anisotropy. Additionally, DEM data often con-
tains no-data values where the elevation could not be determined
because of noise in the raw data or other effects. DEM data can
also contain regions where the elevation appears to be flat, that
is, there is no change in elevation from one pixel to the next. In
that case, the aspect is not defined, and the slope is zero, which
leads to an undefined TWI. These situations need to be dealt
with robustly in order to successfully and automatically process
large data-sets. The size of these data-sets can also make analysis
intractable because of limited computational resources and slow
algorithms. Finally, the discrete nature of the tiles can result in
edge effects. Figure 2 shows an example of UCA calculated with

114 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 1: pyDEM calculates the aspect, slope, upstream contributing area (UCA), and topographic wetness index (TWI) from digital elevation
model data. The aspect and slope are calculated directly from the elevation data, the UCA is calculated from the aspect, and the TWI is
calculated from the UCA and the slope.

Fig. 2: pyDEM can correctly follow the UCA calculation across tile
boundaries.

and without edge correction, where the edge artifact is visible as
a vertical line.

pyDEM was developed to address these challenges. pyDEM
is an open source Python/Cython library that has been used to
calculate TWI for the conterminuous US at 30m resolution, and
the globe at 90m resolution. In the following sections we will
describe our new algorithm for calculating UCA, our file-based
locking mechanism to coordinate work between processors, and
optimization using Cython. Using pyDEM, we will then show
TWI calculated using test elevations, and realistic elevations from
the National Elevation Dataset.

Algorithm Design

To calculate the aspect and slope, pyDEM uses the D∞ method
[tarboton97]. This method calculates the aspect and slope based

on an 8-point stencil around a pixel. The UCA is calculated from
the aspect, and it requires more than just an 8-point stencil around
a pixel. In Tarboton 1997, a recursive algorithm to calculate the
UCA is also presented, but we developed a new algorithm that han-
dles no-data and flat areas differently, while also allowing area up-
dates based on new information at edges of the tile. The recursive
algorithm [tarboton97] starts at down-slope pixels and recursively
calculates its up-slope area. Our algorithm follows the opposite
strategy, and starts at up-slope pixels, then progressively calculates
the UCA of down-slope pixels. Next, we will describe the main
data-structure used for our approach, then present pseudo-code
for the basic algorithm, describe modifications needed to update
edges, and explain modifications to deal with flats.

Data Structures: The main data-structure used by the UCA
algorithm is an adjacency (or connectivity) matrix, A. For the
example in Figure 3 (top), we have a 3×3 elevation array with a
total of 9 pixels. Each row in matrix A (Figure 3, bottom) repre-
sents a pixel in the raster array that receives an area contribution
from another pixel. The columns represents the pixels that drain
into a pixel represented as a row. The value in row i column j
represent the fraction of pixel j’s area that drains into pixel i. For
example, pixel 6 drains completely into pixel 7, so A7,6 = 1.0. On
the other hand, only 30% of the area in pixel 0 drains into pixel 3,
so A3,0 = 0.3.

The algorithm also requires a data structure: ac_pix to keep
track of the "active pixels" which can be computed, ac_pix_old
to record which pixels were computed last round, done to mark
which pixels have finished their computations, and uca to contain
the UCA for each pixel. The ac_pix vector is initialized by
summing over the columns of A to select pixels that do not receive
an area contribution from another pixel. This would happen for

PYDEM: GLOBAL DIGITAL ELEVATION MODEL ANALYSIS 115

Fig. 3: The UCA calculation takes a raster of elevation data (top) and constructs an adjacency (or connectivity) matrix.

pixels at the top of mountains or hills, where the surrounding
elevation is lower, and on pixels on the edges of tiles that do not
receive contributions from the interior. The indices ac_pix of these
pixels are stored in a boolean array.

Algorithm: The pseudo-code for our algorithm is given be-
low using Python syntax. Lines 1-5 initialize the working data-
structures, and assumes that the adjacency matrix was constructed
and elevation_data is an array with the shape of the raster DEM
data. The UCA should be initialized with the geographic area of
a tile, but for simplicity consider 1m×1m pixels. The calculation
is iterative and the exit condition on line 7 ensures that the loop
will terminate, even if there are circular dependencies. Circular
dependencies should not occur for usual DEM data, but for
robustness (in the face of randomly distributed no-data values)
this exit condition was chosen.

If a pixel is marked as active, its area will be distributed down-
slope, executing lines 15-25. The column of the active pixel is
looped over, and the fraction of the area in each row is distributed
to the pixel in that row of the adjacency matrix. For example, in
Figure 3, pixel 0 will be marked as active in the first loop (sum of
elements in the row is zero). Line 17 will then update uca[3] and
uca[4] with f=0.3 and 0.7 times the area in pixel 0, respectively.

Next, lines 21-25 will check to see if the pixel just drained into
is ready to become active. A pixel is allowed to become active
once it has received all of its upstream area contributions. This
condition for becoming active is crucial for preventing double-
accounting. Continuing the example, once uca[3] was updated
with the contribution from pixel 0, we will loop through the entries
of A in row 3. If the entry is non-zero and not marked as done,
we know that pixel 3 will receive a contribution from an upstream
pixel in a later round. In our example, pixel 0 is the only upstream
pixel for pixel 3, and it is done. So, in the next round we can drain
from pixel 3.

In the worst case, this algorithm appears to be O(n4), where
n is the number of elements in the DEM array. Each of the loops,
the while and three for loops all could be executed n times. In
practice, the sparsity of A can be exploited to obtain an algorithm
close to O(n) (see the optimization section).
1 # Initialize
2 ac_pix = A.sum(1) == 0
3 ac_pix_old = zeros_like(ac_pix)

4 done = zeros_like(ac_pix)
5 uca = ones(elevation_data.shape) # Approximately
6

7 while any(ac_pix != ac_pix_old):
8 done[ac_pix] = True
9 ac_pix_old = ac_pix.copy()

10 ac_pix[:] = False
11

12 for i in range(ac_pix.size):
13 if ac_pix[i] is False:
14 continue # to next i. Otherwise...
15 for j, f in enumerate(A[:, i]):
16 # update area
17 uca[j] += uca[i] * f
18

19 # Determine if pixel is done
20 for k, f2 in enumerate(A[j, :]):
21 if not done[k] and f2:
22 break
23 else:
24 # Drain this pixel next round
25 ac_pix[j] = 1

Modification for Edges Update: A fortunate aspect of the UCA
calculation is its linearity, which lends itself well to the principle
of superposition. That is, the UCA within a tile can be calculated
and later adjusted with new contributions from the edges. In our
Figure 3 example, we have a single DEM tile, but this tile might be
one of many tiles. Considering only this one tile, we can calculate
pixel 0’s area contribution to the other pixels within a tile, but we
do not know if pixel 0 is on a ridge, or if there is another pixel
that would drain into it from another tile in the data-set. Similarly,
pixel 8 might need to drain its area downstream to pixels in a
downstream tile in the data-set. Ultimately, there will be a tile
that has the most up-slope pixel, which has no edge dependencies.
Similarly, for realistic data, the UCA of most pixels within a tile
does not depend on the edge. Consider Figure 2 which shows that
the difference in UCA between the tiles does not extend far past
the edge, which indicates that the UCA calculation is relatively
local, except for rivers. This means that the edge update can be
efficient: we only have to update pixels near the edges, and rivers.
Since rivers have a proportionally much smaller area, the edge
update requires much fewer computations compared to the initial
UCA calculation for a tile.

Our strategy of starting at the up-slope pixels and contributing

116 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

area to down-slope pixels is a key algorithmic choice to allow for
the edge correction. Edge pixels that receive area contributions
from neighboring tiles always need to distribute that area down-
slope. It may be possible for every interior pixel to calculate and
store its edge dependencies using the recursive strategy that starts
at down-slope pixels, but in the worst case, each of these pixels
will need to store its dependency on every edge pixel. This results
in a large storage structure, or a complex one that compresses
the information. Alternatively, every pixel will need to be re-
calculated for every edge correction. With our strategy of starting
with up-slope pixels, only the interior pixels that are affected by
information from the edge needs to be recalculated.

To handle edges, the major modifications to the basic algo-
rithm are: initializing the active pixels (ac_pix) based on edge
information/dependencies, initializing the done pixels, and adding
data-structures to keep track of edge dependencies. The main
challenge is careful bookkeeping to ensure that edge information
is communicated to neighboring tiles. pyDEM does this book-
keeping both within a tile, which can be broken up into multiple
chunks, and across tiles, which is described in greater detail under
the Parallel Processing section.

Modification for Flats: pyDEM considers no-data regions
to also be flats. To handle flats, a small adjustment is made to
the adjacency matrix. Without modification, the adjacency matrix
will allow pixels next to flats to drain their area contributions
into the flat, but these contributions never leave. The adjacency
matrix is adjusted by adding the black and green arrows depicted
in Figure 4. The total area contributions that drain into a flat
are collected, for convenience, at a random point within the flat
(black arrows). This total area contribution to the flat is then
proportionally distributed to pixels at the edge of a flat. The
proportions depend on the difference in elevation of the pixels
around the flat. The pixel with the lowest elevation around the
flat always receives a distribution. If a pixel’s elevation satisfies
elocal < min(~elocal)+

√
2∆x, where elocal is the pixel’s elevation,

~elocal are the elevations of the pixels around the flat and ∆x
is the approximate grid spacing, then it is also included in the
area distribution. This relationship comes from a Taylor series
expansion of the grid discretization error, and the

√
2 appears

because the maximum error occurs along the diagonal direction.
The proportion of the distribution is calculated as p =

e f lat−~elocal
∑e f lat−~elocal

,
where e f lat is the elevation of the flat. This distributes the UCA
evenly to pixels with the same elevation surrounding the flat,
or slightly more to pixels with a lower elevation (within the
calculated error tolerance).

Parallel Processing

The majority of the processing on a tile can be done independent
of every other tile. This means it is simple to spawn multiple
processes on a machine or cluster to churn through a large number
of elevation tiles. There are various packages that automate this
process. However, in our case, the edge correction step cannot be
done efficiently on a tile-by-tile basis, so existing packages did not
meet our needs.

The calculation proceeds in three stages. In the first stage, the
tile-local quantities, aspect and slope, are calculated in parallel.
Then the first pass UCA calculation is performed in parallel,
where the initial edge data is written to files. Finally, the UCA
is corrected in parallel to eliminate edge effects. This final stage
does have an order-dependency, and the parallelism is not as

Fig. 4: To correctly calculate drainage over flat or no-data regions,
the total area that drains into the flat (bottom red arrows) are collected
at a single point within the flat (middle black arrows) and then
redistributed to lower-lying regions (top green arrows).

efficient. In each of these stages, separate pyDEM processes can be
launched. If a process terminates unexpectedly, it does not affect
the remaining processes.

In order to prevent multiple processes from working on the
same file, a simple file locking mechanism is used. When a process
claims a DEM tile, it creates an empty .lck file with the same name
as the elevation file. Subsequent processes will then skip over this
file and sequentially process the next available DEM tile. Once
a process is finished with a DEM tile, the .lck file is removed.
Subsequent processes also check to see if the outputs are already
present, in which case it will also skip that DEM tile, moving on
to the next available file. This works well for the first two stages
of the processing, although future implementations plan to use a
cross-platform operating-system-level file locking package such as
lockfile.

In the second and third stages, numpy’s .npz format is used
to save files which communicate edge information. The following
three files are saved for every edge of a tile after calculating the
UCA:

1) the current UCA value at each pixel on the edge,
2) whether the UCA calculation on the edge pixel is done,

and does not still depend on information from neighbor-
ing tiles,

3) whether the edge needs to receive information from
neighboring tiles and has not yet received it.

The first two quantities are populated by neighboring tiles,
while the last quantity is self-calculated by a tile. That is, after
calculating the UCA, a tile will set the pixel value and whether
an edge is done on its neighbors, and update whether an edge
needs information on its own edge data file. To explain why this
is needed, the second and third quantities are illustrated in Figure
5. The first row represents three DEM tiles with edges in the state
after the second calculation stage. The left tile is at the top of
a hill, and all of its edges contribute area downstream. This tile
does not expect any information to enter from adjacent tiles, so
it sets the "to do" value (third quantity) on its edges as False.
The left tile also communicates to the middle tile that this edge
is "done" and can be calculated next round. Still on the top row,
the middle tile determines that area will enter from the left edge,
and sets the "to do" value on its left edge as True. Following this
dependency along, it calculates that none of its other edges are

PYDEM: GLOBAL DIGITAL ELEVATION MODEL ANALYSIS 117

Fig. 5: To correct edges across DEM tiles, the edge information
is communicated to neighboring tiles, which can then update UCA
internally to its edges and communicate that information to the next
tile.

done, and communicates this to the tile on the right. The second
row in Figure 5 shows what happens during the first round of
stage 3. In the first round, the middle tile is selected and the UCA
is updated. Since it received finished edge data from the left tile, it
now marks the left edge’s "to do" status as False, and propagates
the updated area through the tile. It communicates this information
to the right tile, which will be updated in subsequent rounds in
the stage 3 calculation. Note that the calculation on the right tile
could not proceed until the left tile was calculated, which means
that this computation had to be performed serially and could not
be paralellized.

In the example illustrated in Figure 5, the middle tile only
needed one correction. However, in general a tile may require
multiple corrections. This can happen when a river meanders be-
tween two tiles, crossing the tile edge multiple times. In this case,
the two adjacent tiles will be updated sequentially and multiple
times to fully correct the UCA. This situation is specifically tested
in the bottom left (c-1) test-case in Figure 6. There the water flow
path spirals across multiple tiles multiple times. At each crossing,
the UCA needs to be corrected.

During each round of the second stage, we heuristically select
the best tile to correct first. This best tile is selected by looking at
what percentage of edge pixels on that tile will be done after the
correction. In the case of ties, the tile with the higher maximum
elevation is used. In case another process is already using that tile,
the next best tile is selected. As such, the calculation proceeds in
a semi-parallel fashion for large data-sets.

Optimization

The first implementation of the UCA algorithm was much more
vectorized than the code presented above. This pure-Python vec-
torized version aimed to take advantage of the underlying libraries
used by numpy and scipy. However, this earlier version of the
algorithm was not efficient enough to analyze a large data-set
using a single compute node. The analysis would have taken over
a year using 32 CPU cores.

Initial attempts to re-write the algorithm in Cython were not
fruitful, only yielding minor speed improvements. The primary

issue causing the poor performance was the adjacency matrix A.
This matrix was stored as a sparse array, because it had very
few entries. The initial Python and Cython implementations used
scipy’s underlying sparse matrix implementation, along with linear
algebra operations to perform the calculations. These implemen-
tations failed to use the underlying sparse matrix storage structure
to their full advantage.

Consequently, we re-implemented the algorithm with the ad-
jacency matrix was stored in both the Compressed Sparse Column
(CSC) and Compressed Sparse Row (CSR) formats. The CSC
format stores three arrays: data, row_ind, and col_ptr. The data
stores the actual floating point values of the elements in the array,
while the row_ind stores the row number of the data in each
column (same size as data), and col_ptr stores the locations in
the data vector that start a new column (size is 1 + the number of
columns, where the last entry in col_ptr is the total number of data
elements). For example, the A in Figure 3 is stored in CSC as:

data = [0.3,0.7,1.0,1.0,1.0,0.4,0.6,1.0,1.0,1.0]

row_ind = [3, 4, 4, 5, 4, 5, 8, 8, 7, 8]

col_ptr = [0, 2, 3, 4, 5, 7, 8, 9, 10, 10]

The CSR format, which stores col_ind, row_ptr, and a re-arranged
data vector instead, is more computationally efficient for some
aspects of the algorithm, which is why both formats are used.

In particular, looping over the rows for a specific column in
A to update the UCA (lines 15-17 of algorithm) can be efficiently
done using the CSC format. Determining if a pixel is done, which
loops over the columns for a specific row in A (lines 19-25) can
be efficiently done using the CSR format.

Nested for loops in Python are generally known to be in-
efficient and was not implemented. The Cython implementation
yielded excellent results, giving approximately a 3× speed-up
for smaller problems, and a 1000× speedup for larger problems.
These numbers are approximate because the actual values are
highly dependent on the DEM data.

The computational complexity for this improved implemen-
tation is O(n). The for loop on line 12 will continue past lines
13-14 only n times, regardless of how many times the while loop
is executed. Since each pixel can only drain to two neighbors,
the for loop in line 15 only loops over 2 elements when using
CSC. The for loop in line 20 only loops over a maximum of 8
elements for non-flats (since a pixel can only receive contributions
from 8 neighboring pixels) when using CSR. While additional
optimization is potentially possible, the present implementation
efficiently computes the UCA.

Applications

To verify that pyDEM’s core algorithms work as expected, a
collection of test cases were created, and a subset is shown
in Figure 6. pyDEM was also used to calculate TWI for the
conterminous US. Next we will describe the purpose and results
of the each of the test cases, and then we will present the results
over the conterminous US.

To ensure that the [tarboton97] D∞ method was correctly
implemented, we created a number of linearly sloping elevations
to test each quadrant of the 8-element stencil used for the slope and
magnitude calculation (Figure 6 a-1, b-1, b-2). All of the possible
angles are tested in the a-3 case. Notice that the TWI is higher
along the diagonals of this case, and this is an artifact of the D∞
method which is expected to be small for real DEM data. The

118 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 6: To verify that pyDEM’s core algorithms work as expected,
a collected of test elevations (top) were created to cover anticipated
issues in calculating TWI (bottom). This shows that TWI is correctly
calculated. In particular, TWI is larger where the elevation is lower
(as expected), it is evenly distributed around flats (2nd and 3rd rows,
3rd column), and it is concentrated in rivers or outlets (4th column).

c-2 case is a trough that tests to make sure that water will drain
along the diagonal, which would not happen if a central difference
method was used instead of the D∞ method. The a-2 case tests if
pyDEM correctly handles no-data values along the edge of a tile.
Cases b-3, c-3, and those in column 4 all test pyDEM’s handling
of flat regions. In case b-3, notice that pyDEM correctly distributes
the area that drains into the top of the flat to the pixels at the edge
of the flat instead of draining all of the area to a single pixel,
or a few pixels. However, when a pixel that has a much lower
elevation is present at the edge of a flat (a-4 and b-4), pyDEM
drains preferentially along those pixels.

The c-1 case was used to test the third stage of processing,
the edge correction stage. This is a challenging case because the
drainage pattern is a spiral that crosses a single tile boundary
multiple times. Without the edge correction, the UCA builds up in
channels along a tile, but never reach the full value required (see
Figure 7 right). Figure 7 also shows that pyDEM’s edge correction
algorithms are working correctly. The left UCA calculation is
performed on a single tile using tauDEM, and it does not need
edge corrections from adjoining tiles. The middle UCA calculation
is performed using pyDEM over chunks of elevation sections
forming a 7 by 7 grid. For this middle calculation, 316 rounds of

the stage 3 edge correction was performed in serial, which means
that every tile required multiple corrections as new information
became available on the edges. Except for the edge pixels, the
tauDEM and pyDEM results agree to withing 0.02%, which is
reasonable considering how different the algorithms are.

pyDEM was also verified against tauDEM using all of the
above test cases (not shown). In all cases without flats the results
agreed as well as in the spiral case. For the cases with flats,
tauDEM and pyDEM do not agree because they treat flat regions
differently. Also, for cases with non-uniform grids, tauDEM and
pyDEM do not agree. To illustrate the difference, consider the case
of a conical topography with some added noise. On a uniform grid,
the tauDEM and pyDEM solutions agree very well (Figure 8): the
difference between the two UCA calculations is on the order of
10−7, which is excellent given the vast differences between the
UCA algorithms. However, Figure 9 shows that on a non-uniform
grid only pyDEM correctly captures the shape of the geometry
(note that the diagonal artifacts are from the D∞ method). This is
because pyDEM does not assume that the DEM data is uniformly
gridded, but takes into account the geospatial coordinates when
calculating the Aspect using the D∞ method.

Finally, to verify that pyDEM is efficient, robust, and accurate
for real data-sets, we calculated TWI over the conterminous US
(Figure 10). In the figure, the spurious black areas are due to the
interpolation of no data-values of our geoTiff viewer. The full
calculation took approximately 3 days on a 32 core AWS compute
node. Figure 2 (left) shows the UCA for a small region in Austin,
TX from this calculation.

Summary

To solve our problem of analyzing the hydrology of large DEM
data-sets spanning national and global scales, we designed, imple-
mented, optimized, parallelized, and tested a new Python package,
pyDEM. pyDEM implements the D∞ method [tarboton97] to
calculate the aspect and slope, and it uses a novel algorithm to
calculate the upstream contributing area.

pyDEM enables the efficient, accurate, and robust analysis of
large data-sets, while correcting for edge effects. pyDEM has been
tested and agrees well with tauDEM.

Availability

The pyDEM package is available from the Python package index
or through pip install pydem. Note this package is still in alpha
and has not been tested on a wide range of operating systems. The
source code is also hosted on GitHub (https://github.com/creare-
com/pydem), and is free to modify, change, and improve under the
Apache 2.0 license.

Acknowledgments

The authors are grateful to the Cold Regions Research and Engi-
neering Laboratory for support under the SBIR grant W913E5-14-
C-0002.

REFERENCES

[beven79] Beven, K.J.; Kirkby, M. J.; Seibert, J. (1979). "A physically
based, variable contributing area model of basin hydrology".
Hydrolological Science Bulletin 24: 43–69

[beven95] Beven, K., Lamb, R., Quinn, P., Romanowicz, R., Freer, J., &
Singh, V. P. (1995). Topmodel. Computer models of watershed
hydrology., 627-668.

PYDEM: GLOBAL DIGITAL ELEVATION MODEL ANALYSIS 119

Fig. 7: UCA for the spiral test case calculated over a single tile (left), multiple tiles with edge correction (middle) and multiple tiles without
edge correction (right).

Fig. 8: For a noisy cone (left), the UCA calculated using pyDEM (middle) and tauDEM (right) agree well when the DEM data is on a uniform
grid.

Fig. 9: For a noisy cone (left), the UCA calculated using pyDEM (middle) and tauDEM (right) do not agree well when the DEM data is on a
non-uniform grid. pyDEM correctly captures the shape of the geometry.

[moore91] Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital
terrain modelling: a review of hydrological, geomorphological,
and biological applications. Hydrological processes, 5(1), 3-30.

[tarboton97] Tarboton, D. G. (1997). A new method for the determination of
flow directions and upslope areas in grid digital elevation models.
Water Resources Research, 33(2), 309-319.

120 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 10: To verify pyDEM’s performance over a large data set, TWI was calculated for the 1 arc-second resolution US National Elevation
Database (shown with hill-shading overlay) and 3 arc-second SRTM globally (shown in inset).

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 121

Widgets and Astropy: Accomplishing Productive
Research with Undergraduates

Matthew Craig‡∗

https://www.youtube.com/watch?v=hyxCDdBH1Mg

F

Abstract—This paper describes a tool for astronomical research implemented
as an IPython notebook with a widget interface. The notebook uses Astropy, a
community-developed package of fundamental tools for astronomy, and Astropy
affiliated packages, as the back end. The widget interface makes Astropy a
much more useful tool to undergraduates or other non-experts doing research in
astronomy, filling a niche for software that connects beginners to research-grade
code.

Index Terms—astronomy

Introduction

Incoming students interested in majoring in Physics at Minnesota
State University Moorhead are often interested in doing astro-
nomical research. The department encourages students to become
involved in research as early as possible to foster their interest
in science and because research experiences are correlated with
successful completion of a degree [Lopatto2004].

The students typically have no programming experience, but
even the smallest project requires calibrating and taking measure-
ments from a couple of hundred images. To the extent possible,
analysis needs to be automated. Roughly half of the students use
Windows, the rest Mac OSX.

The problem, described in more detail below, is that the GUI-
based software most accessible to these students is expensive,
often available only on Windows, not clearly documented and does
not leave a record of the choices made in calibrating the images
so that future researchers can use the images with confidence. The
free options largely require programming.

The proposed solution is a widget-based IPython note-
book [Pérez2007] for calibrating astronomical images, called
reducer.1 A widget-based interface was chosen because stu-
dents at this level are more comfortable with a GUI than with
programming. An IPython notebook was chosen because of its
rich display format, the ability to save both code and text, and the
persistence of output in the notebook, which provides a record of
the work done.

The back end of reducer is built on the Astropy project
[Astropy2013], a community-driven effort to develop high-quality,

* Corresponding author: mcraig@mnstate.edu
‡ Department of Physics and Astronomy, Minnesota State University Moor-
head

Copyright © 2015 Matthew Craig. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

open source tools for Python in astronomy, and on Astropy
affiliated projects.2 Astropy was chosen because it has a large
developer community of professional astronomers.

Section Background: Image analysis in optical stellar astron-
omy provides background on the science of image calibration. In
the following section the problem is discussed more completely,
including a review of some of the available options for astronomi-
cal image processing. The section “reducer package and notebook
discusses the use of reducer, while “reducer“ widget structure
presents its implementation. The widget classes in reducer are
potentially useful in other applications.

Background: Image analysis in optical stellar astronomy

While a detailed description of astronomical data analysis is
beyond the scope of this paper, some appreciation of the steps
involved is useful for understanding its motivation.

An image from a CCD camera on a telescope is simply an
array of pixel values. Several sources contribute to the brightness
of an individual pixel in a raw image:

• Light from stars and other astronomical objects.
• Light from the nighttime sky; even a “dark” sky is not

perfectly black.
• Noise that is related to the temperature of the camera and

to the electronics that transfer the image from the detector
chip in the camera to a computer.

• A DC offset to prevent negative pixel values.

The first stage of calibration is to remove the noise and offset
from each image. The second stage is to correct for imperfections
in the optical system that affect how much light gets to each pixel
in the camera. An example of this sort of imperfection is dust on
the camera itself.

A series of images is taken and then combined to perform each
type of calibration. Bias images correct for the DC offset, dark
images correct for thermal noise and flats correct for non-uniform
illumination. One combines several frames of each type to reduce
the electronic read noise present in the calibration images.

After calibration, the brightness of a pixel in the image is
directly proportional to the amount of light that arrived at that
pixel through the telescope. Note that light includes both starlight
and light from the atmosphere.

1. Source code is at: https://github.com/mwcraig/reducer
2. http://www.astropy.org/affiliated/

122 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Extraction of the brightness of individual stars is called pho-
tometry. There are several techniques for performing photometry,
all of which estimate and eliminate the sky background.

The problem

Several software packages can calibrate astronomical images and
perform photometry, so why write another one?

Ideally, such software would:

1) Be easily usable by an undergraduate with limited or no
programming experience.

2) Work on Windows and Mac.
3) Have its operation well tested in published articles and/or

be open source so that the details of its implementation
can be examined.

4) Leave behind a record of the settings used by the software
in calibrating the images and measuring star brightness.

5) Be maintained by a large, thriving community of devel-
opers.

Commercial software, like MaxIm DL3, typically meets the
first criteria. Past MSUM students were able to learn the software
quickly. However, it leaves behind almost no record of how
calibration was done: a fully calibrated image has one keyword
added to its metadata: CALSTAT='BDF'. While this does in-
dicate which corrections have been made4, it omits important
information like whether cosmic rays were removed from the
calibration images and how the individual calibration images were
combined.

The most extensively-tested and widely-used professional-
grade package for calibration and photometry is IRAF
[IRAF1993]. IRAF is both a scripting language and a set of pre-
defined scripts for carrying out common operations. It is certainly
widely used, with approximately 450 citations of the paper, and,
because IRAF scripts store settings in text files, there is a record
of what was done.

However, there are several challenges to using IRAF. It is
easiest to install in Linux, though distributions exist for Mac
and it is possible to use on Windows with Cygwin5. The IRAF
command language (CL) is difficult to learn; undergraduates who
have worked with it in summer REU programs report spending 3-
4 weeks learning IRAF. That makes it infeasible to use as part of
a one-semester research project. It is also no longer maintained6.

One option that comes close to meeting all of the criteria is
AstroImageJ7, a set of astronomy plug-ins for the Java-based Im-
ageJ [ImageJ2012]. It has a nice graphical interface that students
in both an introductory astronomy course for non-majors and an
upper-level course for majors found easy to use, is open source,
free, and available on all platforms. It has a rich set of features,
including both image calibrating and aperture photometry, and
very flexible configuration. Its two weaknesses are that it leaves
an incomplete record of the settings used in calibrating data and
measuring brightness and it does not have an extensive support
community.

3. http://www.cyanogen.com/
4. The bias offset and dark current were subtracted and the result divided by

a flat frame to correct for non-uniform illumination.
5. http://www.cygwin.com/
6. The last update was in 2012 according to the IRAF web site, http://iraf.

noao.edu
7. http://www.astro.louisville.edu/software/astroimagej/

The solution, broadly

Two relatively recent developments suggest the broad outlines of
a solution that is sustainable in the long run:

• Initiation of the Astropy project in 2011, which unified
what had previously been several independent effort to
develop python software for astronomy. In addition to
developing the core Astropy package, the Astropy orga-
nization gives affiliate status to packages that request it
and meet its documentation, testing and coding standards8

• Addition of widgets to IPython notebooks in IPython,
version 2. From the developer perspective, widgets are
helpful because the Python API for widgets is rich enough
to allow construction of complicated interfaces. There is
no need to learn JavaScript to use the widgets effectively.

It is the combination of high-quality python packages for both
the back-end and front-end that made development of reducer
relatively straightforward.

A notebook-based solution offers a couple of other advantages
over even the strongest of the GUI tools discussed in the previous
section. The first is that exposure to programming broadly is useful
to both the few students who become professional astronomers
and the ones who do not. Though no programming is required to
use reducer, there is code in several of the notebook cells. It
represents something intermediate between a fully GUI applica-
tion and script-only interface. Another is that exposure to Python
programming is useful to both students who work immediately
after graduation and those who go on to become scientists.

The reducer package and notebook

reducer is a pure Python package available on PyPI and as a
conda package9. The user-facing part of the package is a single
script, also called reducer. When invoked, it creates an IPython
notebook, called reduction.ipynb, in the directory in which
it is invoked.

The notebook will not overwrite images. The intent is that the
raw, uncalibrated images are stored in a directory separate than the
one containing the notebook. The calibrated images are saved, by
default, in the same directory as the notebook, leaving a human-
readable record with the images describing the choices made in
calibration.

The notebook also does not provide an easy way to re- run the
calibration short of deleting any calibrated files in the directory
with the notebook and starting fresh. In discussions with students
while developing reducer it became clear that it would be
difficult or impossible to ensure that the state of the notebook
reflected the state of the calibrated files, since it is possible for
some notebook cells to be re-executed without all cells being re-
executed.

That design decision simplified the package, allowed the
notebook to refuse to overwrite files in the directory in which
it is stored, and led to a focus on making sure a human could
read the record of what was done. The package itself makes it
easy to re-run the calibration with different settings should a later
researcher choose to do so.

8. See http://www.astropy.org/affiliated for a list of affiliated packages and
criteria.

9. Use channel mwcraig to get the conda package.

WIDGETS AND ASTROPY: ACCOMPLISHING PRODUCTIVE RESEARCH WITH UNDERGRADUATES 123

Image calibration

All of the calibration steps in reducer are performed by ccdproc,
an Astropy affiliated package for astronomical image reduction
[ccdproc]. Some of the reducer widgets contain some logic for
automatically grouping and selecting images based on metadata in
the image headers, described in more detail below.

This section begins with examples of the individual widgets
that appear and the notebook, followed by an outline of the
structure of the notebook as a whole.

Most of the widgets in reduction.ipynb are geared
towards image calibration. There are two broad types, one for
applying calibrations to a set of images, the other for combining
calibration images.

Each widget has four states:

• Unselected; the widget is a simple button.
• Activated, but with incorrect or incomplete settings, shown

in Fig. 1 for a CombinerWidget.
• Activated and ready for action, with settings that enable

the action to be completed, shown in Fig. 2.
• Locked, after execution of calibration step in the widget,

shown in Fig. 3. Note that the IPython notebook does not
store the widget state in the notebook.10 When a reducer
notebook is re-opened the only record guaranteed to be
preserved is the printed text below the widget.

Fig. 1: Example widget for combining images before settings have
been set in a self-consistent way. Compare to Fig. 2

Fig. 2: Same widget as Fig. 1 after consistent settings have been
chosen. Note that the style of the top button changes and a "Go"
button appears when settings are sensible; in this case the user needs
to at least select a combination method. The additional options under
"Combine images" are presented when the checkbox is selected.

A few features of the CombinerWidget illustrate the logic
used in reducer to semi-automatically select the images on

Fig. 3: Same widget as Fig. 2, after executing the calibration step.
Note that a record of the settings is printed into the notebook cell
below the widget to ensure a record remains in the notebook after
reopening it.

which it should act. An apply_to argument to the initializer
controls which calibrated images the widget will act on; in this
case its value is {'imagetyp': 'flat'}, which selects the
calibration images used to correct non-uniform illumination. A
group_by argument to the widget initializer controls controls
how the images selected by apply_to are combined. In the
example shown, all images with the same filter and exposure time
will be combined by averaging, after each image has been scaled
to the same median value.

Each image, including the images used in the calibration itself,
is processed by a ReductionWidget, like that shown in Fig.
4. That examples is for a "light" image, an image that contains
the objects of interest. Each of the calibration images has some of
these steps applied also, though some of the calibration steps are
not displayed for some of the calibration images.

As with the CombinerWidget, an apply_to argument to
the widget constructor determines which images are processed by
the widget.

The calibration part of the notebook is composed of four pairs
of widgets, one pair for calibrating and combining bias images,
and additional pairs for darks, flats, and science images. One of the
strengths of widget-based notebooks is that they are user- editable
applications. If there is a particular calibration step that is not
needed, the cells that create those widgets can simply be deleted.

Image browser

Reducer also contains a basic image browser, which organizes the
images based on a table of metadata, and displays, when an image
is selected, the image and all of the metadata in that image in
separate tabs in the widget. An example is shown in Fig. 5.

10. In IPython 2.x it is impossible to easily save the widget state, and the
widget is not part of the DOM, so it is not stored when the notebook is saved.
In 3.x the widget is preserved, but saving the state takes additional developer
work.

124 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 4: Widget that applies calibrations to a set of images. Display of
some of the individual steps (e.g. subtracting bias) can be suppressed
with optional arguments when the widget object is created. Red
borders are drawn around each instance of the base widget class
described in the section "reducer widget structure".

Fig. 5: The image display widget arranges images nested by image
metadata values. In this case the two keywords used for grouping
the images were imagetyp and exposure. When an file name is
selected, either the image or its metadata can be displayed.

reducer widget structure

At the base of the reducer widget structure is an ex-
tension of a container widget from IPython. This class,
ToggleContainerWidget, adds a toggle to control display
of the contents of the container, and a list of child widgets dis-
played in the container.11 Since a ToggleContainerWidget
can have another ToggleContainerWidget as a child, this
immediately provides an interface for presenting a user with a
nested list of options. Fig. ?? has a thin red border drawn around
each element that is a subclass of“ToggleContainerWidget“

In IPython 2 it is not possible to preserve the state of widgets
between sessions, and in IPython 3 it remains difficult, so the
ToggleContainerWidget class defines a __str__ method
to facilitate printing the contents of the widget. The purpose of this
is not to provide a way to progammatically rebuild the widget; it
is to provide a human reader of the notebook a history of what
was done in the notebook.

The code below implements a basic
ToggleContainerWidget called MyControl. The widget
it produces is shown in Fig. 6.

from reducer.gui import ToggleContainerWidget
from reducer.astro_gui import override_str_factory
from IPython.html.widgets import CheckboxWidget

class MyControl(ToggleContainerWidget):
"""
Straightforward reducer-widget subclass.
"""
def __init__(self, *arg, **kwd):

super(MyControl, self).__init__(*arg, **kwd)

b_box is a plain IPython checkbox with a more
meaningful string representation.
b_box = override_str_factory(\

CheckboxWidget(description='Check me'))

Another plain check box, but with the default
string representation.
c_box = CheckboxWidget(description="Don't check me")

These children are contained in the
MyControl widget
self.add_child(b_box)
self.add_child(c_box)

The is_sane property of a ToggleContainerWidget can
be overridden by subclasses to indicate that the settings in the
widget are sensible. This provides some minimal validation of user
input. The code below implements is_sane for MyControl.
@property
def is_sane(self):

"""
Settings are correct when the "Check me" box is
checked and the "Don't check me" box is unchecked.
"""
return (self.container.children[0].value and

not self.container.children[1].value)

The widget also has an action method. This method must be
overridden by subclasses to do anything useful. It is used in some
cases to set up an environment for acting on data files and to invoke
the action of each child widget on each data file, in the order the
children are listed in the widget. In other cases, the action simply
invokes a function that acts on the data file.

The action method for this example is below.
def action(self):

"""
A simple action, one for each child.
"""
import time

for child in self.container.children:
time.sleep(0.5)

One subclass of ToggleContainerWidget, a
ToggleGoWidget, styles the toggle as a button instead
of a checkbox, and adds a "Start" button that is displayed only
when the settings of the widget and all of its children is "sane"
as defined by the is_sane method. What the "Start" button is
pushed it invokes the action method of the ToggleGoWidget
and displays a progress bar while working. In Fig. 4, the outermost
container is a ToggleGoWidget.

The code below creates a ToggleGoWidget, adds an in-
stance of MyControl to it, and displays it, creating the widget
in Fig. 6.
from reducer.gui import ToggleGoWidget
go_widget = ToggleGoWidget(description='Sample widget',

toggle_type='button')
control = MyControl(description='Activate me')
go_widget.add_child(control)
go_widget.display()

WIDGETS AND ASTROPY: ACCOMPLISHING PRODUCTIVE RESEARCH WITH UNDERGRADUATES 125

Fig. 6: The widget produced by the sample code in the section
“reducer“ widget structure. Note the string output of the checkbox
"Don’t check me", whose __str__ method has not been overridden.

Use with students

This package has been used with 8 undergraduate physics majors
ranging from first-semester freshman to seniors; it was also used
in an astronomical imaging course that included two non-physics
majors. It typically took one 1-hour session to train the students to
use the notebook. The other graphical tool used in the course took
considerably longer for the students to set up and left no record
the steps and settings the students followed in calibrating the data.

Conclusion

IPython widgets provide a convenient glue for connecting novice
users with expert-developed software. The notebook interface
preserves a bare-bones record of the actions taken by the user,
sufficient for another user to reproduce the calibration steps taken.

Appendix: Bootstrapping a computing environment for stu-
dents

While the goal of this work is to minimize the amount of
programming new users need to do, there are a few things that
cannot be avoided: installing Python and the SciPy [scipy2001]
stack, and learning a little about how to use a terminal.

Students find the Anaconda Python distribution12 easy to
install and it is available for all platforms. From a developer
point of view, it also provides a platform for distributing binary
packages, particularly useful to the students on Windows.

Students also need minimal familiarity with the terminal to
install the reducer package, generate a notebook for analyzing
their data and launching the notebook. The Command Line Crash
Course from Learn Code the Hard Way13 is an excellent intro-
duction, has tracks for each major platform, and is very modular.

REFERENCES

[Astropy2013] Astropy Collaboration, Robitaille, T.~P., Tollerud, E.~J., et
al., Astropy: A community Python package for astronomy,
Astronomy & Astrophysics, 558: A33, October 2013.

[scipy2001] Jones, E., Oliphant, T., Peterson, P. et al, SciPy: Open source
scientific tools for Python, http://scipy.org/ 2001

11. Classes in the current version of reducer use IPython 2-style class
names ending in "Widget". Part of upgrading the package to IPython 3 widgets
will be removing that ending.

12. https://store.continuum.io/cshop/anaconda/
13. http://cli.learncodethehardway.org/book/

[Pérez2007] Pérez, F. and Granger, B.E. IPython: A System for Interactive
Scientific Computing, Computing in Science and Engineering,
9(3):21-29, May/June 2007

[ccdproc] Crawford, S and Craig, M., https://github.com/ccdproc
[Lopatto2004] Lopatto, D. Survey of undergraduate research experiences

(SURE): First findings. Cell biology education 3.4 (2004).
[IRAF1993] Tody, D., IRAF in the Nineties, Astronomical Data Analysis

Software and Systems II, A.S.P. Conference Series, Vol. 52,
1993

[ImageJ2012] Schneider, C.A., Rasband, W.S., Eliceiri, K.W. NIH Image to
ImageJ: 25 years of image analysis, Nature Methods 9, 671-
675, 2012.

126 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Dask: Parallel Computation with Blocked algorithms
and Task Scheduling

Matthew Rocklin‡∗

https://www.youtube.com/watch?v=1kkFZ4P-XHg

F

Abstract—Dask enables parallel and out-of-core computation. We couple
blocked algorithms with dynamic and memory aware task scheduling to achieve
a parallel and out-of-core NumPy clone. We show how this extends the effective
scale of modern hardware to larger datasets and discuss how these ideas can
be more broadly applied to other parallel collections.

Index Terms—parallelism, NumPy, scheduling

Introduction

The Scientific Python stack [Oli07] rarely leverages parallel com-
putation. Code built off of NumPy [vdW11] or Pandas [McK10]
generally runs in a single thread on data that fits comfortably in
memory. Advances in hardware in the last decade in multi-core
processors and solid state drives provide significant and yet largely
untapped performance advantages.

However, the Scientific Python stack consists of hundreds of
software packages, papers, PhD theses, and developer-years. This
stack is a significant intellectual and financial investment that, for
the most part, does not align well with modern hardware. We
seek software solutions to parallelize this software stack without
triggering a full rewrite.

This paper introduces dask, a specification to encode par-
allel algorithms, using primitive Python dictionaries, tuples, and
callables. We use dask to create dask.array a parallel N-
dimensional array library that copies the NumPy interface, uses
all of the cores in a modern processor, and manages data well
from disk. Dask.array serves both as a general library for parallel
out-of-core ndarrays and also as a demonstration that we can
parallelize complex codebases like NumPy in a straightforward
manner using blocked algorithms and task scheduling.

We first define dask graphs and give a trivial example of
their use. We then share the design of dask.array a parallel
ndarray. Then we discuss dynamic task scheduling and policies
to minimize memory footprint. We then give two examples using
dask.array on computational problems. We then briefly dis-
cuss dask.bag and dask.dataframe, two other collections
in the dask library. We finish with thoughts about extension of
this approach into the broader Scientific Python ecosystem.

* Corresponding author: mrocklin@gmail.com
‡ Continuum Analytics

Copyright © 2015 Matthew Rocklin. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Modern Hardware

Hardware has changed significantly in recent years. The average
personal notebook computer (the bulwark of most scientific de-
velopment) has roughly four physical cores and a solid state drive
(SSD). The four physical cores present opportunities for linear
speedup of computationally bound code. We refer to algorithms
that use multiple cores simultaneously as parallel. The solid state
drives have high read bandwidths and low seek times which
enables them to serve as large and cheap extensions of physical
memory. We refer to systems that efficiently use disk as extensions
of memory as out-of-core.

Modern workstations extend these trends to include sixteen
to sixty-four cores, hundreds of gigabytes of RAM, and RAID
arrays of SSDs offering 2GB/s read bandwidths. These systems
rival small clusters in scale but continue to offer the convenience
of single-machine administration and shared-memory computing.
This system rivals the performance of massively parallel dis-
tributed systems up to a surprisingly large scale while maintaining
a low maintenance and programming cost.

Dask Graphs

Normally humans write programs and then compilers/interpreters
interpret them (e.g. python, javac, clang). Sometimes hu-
mans disagree with how these compilers/interpreters choose to
interpret and execute their programs. In these cases humans often
bring the analysis, optimization, and execution of code into the
code itself.

Commonly a desire for parallel execution causes this shift of
responsibility from compiler to human developer. In these cases
we often represent the structure of our program explicitly as data
within the program itself.

Dask is a specification that encodes task schedules with
minimal incidental complexity using terms common to all Python
projects, namely dicts, tuples, and callables. Ideally this minimum
solution is easy to adopt and understand by a broad community.

We define a dask graph as a Python dictionary mapping keys
to tasks or values. A key is any Python hashable, a value is any
Python object that is not a task, and a task is a Python tuple with
a callable first element.

Example

Consider the following simple program
def inc(i):

return i + 1

DASK: PARALLEL COMPUTATION WITH BLOCKED ALGORITHMS AND TASK SCHEDULING 127

Fig. 1: A simple dask dictionary

def add(a, b):
return a + b

x = 1
y = inc(x)
z = add(y, 10)

We encode this as a dictionary below:
d = {'x': 1,

'y': (inc, 'x'),
'z': (add, 'y', 10)}

While less pleasant than our original code this representation
can be analyzed and executed by other Python code, not just
the CPython interpreter. We don’t recommend that users write
code in this way, but rather that it is an appropriate target for
automated systems. Also, in non-toy examples the execution times
are likely much larger than for inc and add, warranting the extra
complexity.

Specification

We represent a computation as a directed acyclic graph of tasks
with data dependencies. Dask is a specification to encode such a
graph using ordinary Python data structures, namely dicts, tuples,
functions, and arbitrary Python values.

A dask graph is a dictionary mapping identifying keys to
values or tasks. We explain these terms after showing a complete
example:
{'x': 1,
'y': 2,
'z': (add, 'x', 'y'),
'w': (sum, ['x', 'y', 'z'])}

A key can be any hashable value that is not a task.
'x'
('x', 2, 3)

A task is a tuple with a callable first element. Tasks represent
atomic units of work meant to be run by a single worker.
(add, 'x', 'y')

We represent a task as a tuple such that the first element is a
callable function (like add), and the succeeding elements are
arguments for that function.

An argument may be one of the following:

1) Any key present in the dask like 'x'
2) Any other value like 1, to be interpreted literally
3) Other tasks like (inc, 'x')
4) List of arguments, like [1, 'x', (inc, 'x')]

So all of the following are valid tasks
(add, 1, 2)
(add, 'x', 2)
(add, (inc, 'x'), 2)
(sum, [1, 2])
(sum, ['x', (inc, 'x')])
(np.dot, np.array([...]), np.array([...]))

The dask spec provides no explicit support for keyword arguments.
In practice we combine these into the callable function with
functools.partial or toolz.curry.

Dask Arrays

The dask.array submodule uses dask graphs to create a
NumPy-like library that uses all of your cores and operates on
datasets that do not fit in memory. It does this by building up a
dask graph of blocked array algorithms.

The dask.array submodule is not the first library to imple-
ment a "Big NumPy Clone". Other partial implementations exist
including Biggus an out-of-core ndarray specialized for climate
science, Spartan [Pow14] a distributed memory ndarray, and
Distarray a distributed memory ndarray that interacts well with
other distributed array libraries like Trillinos. There have also
been numerous projects in traditional high performance computing
space including Elemental [Pou13], High Performance Fortran,
etc.. Finally Theano [Ber10], an array compiler in Python with
powerful optimizations and GPU support, statically schedules and
reasons about array computations and has proven particularly
valuable in machine learning applications.

Each of these implementations focuses on a particular ap-
plication or problem domain. Dask.array distinguishes itself in
that it focuses on a very general class of NumPy operations and
streaming execution through dynamic task scheduling.

Blocked Array Algorithms

Blocked algorithms compute a large result like "take the sum of
these trillion numbers" with many small computations like "break
up the trillion numbers into one million chunks of size one million,
sum each chunk, then sum all of the intermediate sums." Through
tricks like this we can evaluate one large problem by solving very
many small problems.

Blocked algorithms have proven useful in modern numerical
linear algebra libraries like Flame [Gei08] and Plasma [Agu09]
and more recently in data parallel systems like Dryad [Isa07]
and Spark [Zah10]. These compute macroscopic operations with
a collection of related in-memory operations.

Dask.array takes a similar approach to linear algebra libraries
but focuses instead on the more pedestrian ndarray operations,
like arithmetic, reductions, and slicing common in interactive use.

Example: arange

Dask array functions produce Array objects that hold on to dask
graphs. These dask graphs use several numpy functions to achieve
the full result. In the following example one call to da.arange
creates a graph with three calls to np.arange
>>> import dask.array as da
>>> x = da.arange(15, chunks=(5,))

128 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 2: A dask array

>>> x # Array object metadata
dask.array<x-1, shape=(15,), chunks=((5, 5, 5)), dtype=int64>
>>> x.dask # Every dask array holds a dask graph
{('x', 0): (np.arange, 0, 5),
('x', 1): (np.arange, 5, 10),
('x', 2): (np.arange, 10, 15)}

Further operations on x create more complex graphs
>>> z = (x + 100).sum()
>>> z.dask
{('x', 0): (np.arange, 0, 5),
('x', 1): (np.arange, 5, 10),
('x', 2): (np.arange, 10, 15),
('y', 0): (add, ('x', 0), 100),
('y', 1): (add, ('x', 1), 100),
('y', 2): (add, ('x', 2), 100),
('z', 0): (np.sum, ('y', 0)),
('z', 1): (np.sum, ('y', 1)),
('z', 2): (np.sum, ('y', 2)),
('z',): (sum, [('z', 0), ('z', 1), ('z', 2)])}

Dask.array also holds convenience functions to execute this graph,
completing the illusion of a NumPy clone
>>> z.compute()
1605

Array metadata

In the example above x and z are both dask.array.Array
objects. These objects contain the following data

1) A dask graph, .dask
2) Information about shape and chunk shape, called

.chunks
3) A name identifying which keys in the graph correspond

to the result, .name
4) A dtype

The second item here, chunks, deserves further explanation.
A normal NumPy array knows its shape, a dask array must
know its shape and the shape of all of the internal NumPy blocks
that make up the larger array. These shapes can be concisely
described by a tuple of tuples of integers, where each internal
tuple corresponds to the lengths along a single dimension.

In the example above we have a 20 by 24 array cut into
uniform blocks of size 5 by 8. The chunks attribute describing
this array is the following:
chunks = ((5, 5, 5, 5), (8, 8, 8))

Where the four fives correspond to the heights of the blocks along
the first dimension and the three eights correspond to the widths
of the blocks along the second dimension. This particular example

has uniform sizes along each dimension but this need not be the
case. Consider the chunks of the following example operations
>>> x[::2].chunks
((3, 2, 3, 2), (8, 8, 8))

>>> x[::2].T.chunks
((8, 8, 8), (3, 2, 3, 2))

Every dask.array operation, like add, slicing, or
transpose must take the graph and all metadata, add
new tasks into the graph and determine new values for each piece
of metadata.

Capabilities and Limitations

Adding subgraphs and managing metadata for most of NumPy is
difficult but straightforward. At present dask.array is around
5000 lines of code (including about half comments and doc-
strings). It encompasses most commonly used operations includ-
ing the following:

• Arithmetic and scalar mathematics, +, *, exp, log,
...

• Reductions along axes, sum(), mean(), std(),
sum(axis=0), ...

• Tensor contractions / dot products / matrix multiply,
tensordot

• Axis reordering / transpose, transpose
• Slicing, x[:100, 500:100:-2]
• Fancy indexing along single axes with lists or NumPy

arrays, x[:, [10, 1, 5]]
• A variety of utility functions, bincount, where,

...

However dask.array is unable to handle any operation
whose shape can not be determined ahead of time. Consider for
example the following common NumPy operation
x[x > 0] # can not determine shape of output

The shape of this array depends on the number of positive
elements in x. This shape is not known given only metadata; it
requires knowledge of the values underlying x, which are not
available at graph creation time. Note however that this case is
fairly rare; for example it is possible to determine the shape of the
output in all other cases of slicing and indexing, e.g.
x[10::3, [1, 2, 5]] # can determine shape of output

Dynamic Task Scheduling

We now discuss how dask executes task graphs. How we execute
these graphs strongly impacts performance. Fortunately we can
tackle this problem with a variety of approaches without touching
the graph creation problem discussed above. Graph creation and
graph execution are separable problems. The dask library contains
schedulers for single-threaded, multi-threaded, multi-process, and
distributed execution.

Current dask schedulers all operate dynamically, meaning that
execution order is determined during execution rather than ahead
of time through static analysis. This is good when runtimes are not
known ahead of time or when the execution environment contains
uncertainty. However dynamic scheduling does preclude certain
clever optimizations.

Dynamic task scheduling has a rich literature and numerous
projects, both within the Python ecosystem with projects like

DASK: PARALLEL COMPUTATION WITH BLOCKED ALGORITHMS AND TASK SCHEDULING 129

Spotify’s Luigi for bulk data processing and projects without the
ecosystem like DAGuE [Bos12] for more high performance task
scheduling. Additionally, data parallel systems like Dryad or Spark
contain their own custom dynamic task schedulers.

None of these solutions, nor much of the literature in dynamic
task scheduling, suited the needs of blocked algorithms for shared
memory computation. We needed a lightweight, easily installable
Python solution that had latencies in the millisecond range and
was mindful of memory use. Traditional task scheduling literature
usually focuses on policies to expose parallelism or chip away at
the critical path. We find that for bulk data analytics these are
not very relevant as parallelism is abundant and critical paths are
comparatively short relative to the depth of the graph.

The logic behind dask’s schedulers reduces to the following
situation: A worker reports that it has completed a task and that it
is ready for another. We update runtime state to record the finished
task, mark which new tasks can be run, which data can be released,
etc.. We then choose a task to give to this worker from among the
set of ready-to-run tasks. This small choice governs the macro-
scale performance of the scheduler.

Instead of these metrics found in the literature we find that for
out-of-core computation we need to choose tasks that allow us to
release intermediate results and keep a small memory footprint.
This lets us avoid spilling intermediate values to disk which
hampers performance significantly. After several other policies we
find that the policy of last in, first out is surprisingly effective. That
is we select tasks whose data dependencies were most recently
made available. This causes a behavior where long chains of
related tasks trigger each other, forcing the scheduler to finish
related tasks before starting new ones. We implement this with a
simple stack, which can operate in constant time.

We endeavor to keep scheduling overhead low at around 1ms
per task. Updating executing state and deciding which task to run
must be made very quickly. To do this we maintain a great deal
of state about the currently executing computation. The set of
ready-to-run tasks is commonly quite large, in the tens or hundreds
of thousands in common workloads and so in practice we must
maintain enough state so that we can choose the right task in
constant time (or at least far sub-linear time).

Finally, power users can disregard the dask schedulers and
create their own. Dask graphs are completely separate from the
choice of scheduler and users may select the right scheduler for
their class of problem or, if no ideal scheduler exists, build one
anew. The default single-machine scheduler is about three hundred
significant lines of code and has been adapted to single-threaded,
multi-threaded, multi-processing, and distributed computing vari-
ants.

Example: Matrix Multiply

We benchmark dask’s blocked matrix multiply on an out-of-core
dataset. This demonstrates the following:

1) How to interact with on-disk data
2) The blocked algorithms in dask.array achieve similar per-

formance to modern BLAS implementations on compute-
bound tasks

We set up a trivial input dataset
import h5py
f = h5py.File('myfile.hdf5')
A = f.create_dataset(name='/A',

shape=(200000, 4000), dtype='f8',

Performance
(GFLOPS)

NumPy Dask.array

ATLAS BLAS 6 18
OpenBLAS (one) 11 23
OpenBLAS (four) 22 11

TABLE 1: Matrix Multiply GigaFLOPS for NumPy/Dask.array and
for ATLAS and OpenBLAS with one and four threads

chunks=(250, 250), fillvalue=1.0)
B = f.create_dataset(name='/B',

shape=(4000, 4000), dtype='f8',
chunks=(250, 250), fillvalue=1.0)

out = f.create_dataset(name='/out',
shape=(4000, 4000), dtype='f8',
chunks=(250, 250))

The Dask convenience method, da.from_array, creates a
graph that can pull data from any object that implements NumPy
slicing syntax. The da.store function can then store a large
result in any object that implements NumPy setitem syntax.
import dask.array as da
a = da.from_array(A, chunks=(1000, 1000))
b = da.from_array(B, chunks=(1000, 1000))

c = a.dot(b) # another dask Array, not yet computed
c.store(out) # Store result into output space

Results: We do this same operation in different settings.
We use either use NumPy or dask.array:

1) Use NumPy on a big-memory machine
2) Use dask.array in a small amount of memory, pulling data

from disk, using four threads

We compare different BLAS implementations:

1) ATLAS BLAS, single threaded, unblocked
2) OpenBLAS, single threaded
3) OpenBLAS, multi-threaded

For each configuration we compute the number of floating
point operations per second.

We note the following

1) Compute-bound tasks are computationally bound by
memory; we don’t experience a slowdown

2) Dask.array can effectively parallelize and block ATLAS
BLAS for matrix multiplies

3) Dask.array doesn’t significantly improve when using an
optimized BLAS, presumably this is because we’ve al-
ready reaped most of the benefits of blocking and multi-
core

4) One should not mix multiple forms of multi-threading.
Four dask.array threads each spawning multi-threaded
OpenBLAS DGEMM calls results in worse performance.

Example: Meteorology

Performance is secondary to capability. In this example we use
dask.array to manipulate climate datasets that are larger than
memory. This example shows the following:

1) Use concatenate and stack to manage large piles
of HDF5 files (a common case)

2) Use reductions and slicing to manipulate stacks of arrays

130 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 3: We use typical NumPy slicing and reductions on a large volume
of data to show the average temperature difference between noon and
midnight for year 2014

3) Interact with other libraries in the ecosystem using the
__array__ protocol.

We start with a typical setup, a large pile of NetCDF files.:

$ ls
2014-01-01.nc3 2014-03-18.nc3 2014-06-02.nc3
2014-01-02.nc3 2014-03-19.nc3 2014-06-03.nc3
2014-01-03.nc3 2014-03-20.nc3 2014-06-04.nc3
2014-01-04.nc3 2014-03-21.nc3 2014-06-05.nc3
...

Each of these files contains the temperature at two meters above
ground over the earth at quarter degree resolution, every six hours.

>>> from netCDF4 import netCDF4
>>> t = Dataset('2014-01-01.nc3').variables['t2m']
>>> t.shape
(4, 721, 1440)

We can collect many of these files together using
da.concatenate, resulting in a single large array.

>>> from glob import glob
>>> filenames = sorted(glob('2014-*.nc3'))
>>> temps = [Dataset(fn).variables['t2m']
... for fn in filenames]

>>> import dask.array as da
>>> arrays = [da.from_array(t, blockshape=(4,200,200))
... for t in temps]
>>> x = da.concatenate(arrays, axis=0)

>>> x.shape
(1464, 721, 1440)

We can now play with this array as though it were a NumPy
array. Because dask.arrays implement the __array__ proto-
col we can dump them directly into functions of other li-
braries. These libraries will trigger computation when they call
np.array(...) on their input.

>>> from matplotlib import imshow
>>> imshow(x[::4].mean(axis=0) - x[2::4].mean(axis=0)
... , cmap='RdBu_r')

This computation took about a minute on an old notebook com-
puter. It was bound by disk access. Meteorological cases tend to
be I/O bound rather than compute bound, taking more advantage
of dask’s memory-aware schedulers rather than parallel compu-
tation. In other cases, such as parallel image processing, this trend
is reversed.

Other Collections

The dask library contains parallel collections other than
dask.array. We briefly describe dask.bag and
dask.dataframe

• dask.array = numpy + threading
• dask.bag = toolz + multiprocessing
• dask.dataframe = pandas + threading

Bag

A bag is an unordered collection with repeats. It is like a Python
list but does not guarantee the order of elements. Because we
typically compute on Python objects in dask.bag we are bound
by the Global Interpreter Lock and so switch from using a multi-
threaded scheduler to a multi-processing one.

The dask.bag API contains functions like map and
filter and generally follows the PyToolz API. We find that it is
particularly useful on the front lines of data analysis, particularly
in parsing and cleaning up initial data dumps like JSON or
log files because it combines the streaming properties and solid
performance of projects like cytoolz with the parallelism of
multiple processes.

>>> import dask.bag as db
>>> import json
>>> b = db.from_filenames('2014-*.json.gz')
... .map(json.loads)

>>> alices = b.filter(lambda d: d['name'] == 'Alice')
>>> alices.take(3)
({'name': 'Alice', 'city': 'LA', 'balance': 100},
{'name': 'Alice', 'city': 'LA', 'balance': 200},
{'name': 'Alice', 'city': 'NYC', 'balance': 300},

>>> dict(alices.pluck('city').frequencies())
{'LA': 10000, 'NYC': 20000, ...}

DataFrame

The dask.dataframe module implements a large dataframe
out of many Pandas DataFrames. The interface should be familiar
to users of Pandas.

>>> import dask.dataframe as dd
>>> df = dd.read_csv('nyc-taxi-*.csv.gz')

>>> g = df.groupby('medallion')
>>> g.trip_time_in_secs.mean().head(5)
medallion
0531373C01FD1416769E34F5525B54C8 795.875026
867D18559D9D2941173AD7A0F3B33E77 924.187954
BD34A40EDD5DC5368B0501F704E952E7 717.966875
5A47679B2C90EA16E47F772B9823CE51 763.005149
89CE71B8514E7674F1C662296809DDF6 869.274052
Name: trip_time_in_secs, dtype: float64

Currently dask.dataframe uses the threaded scheduler but
does not achieve the same parallel performance as dask.array
due to the GIL. We are enthusiastic about ongoing work in Pandas
itself to release the GIL.

The dask dataframe can compute efficiently on partitioned
datasets where the different blocks are well separated along an
index. For example in time series data we may know that all of
January is in one block while all of February is in another. Join,
groupby, and range queries along this index are significantly faster
when working on partitioned datasets.

DASK: PARALLEL COMPUTATION WITH BLOCKED ALGORITHMS AND TASK SCHEDULING 131

Dask.dataframe benefits users by providing trivial access to
larger-than-memory datasets and, where Pandas does release the
GIL, parallel computation.

Dask for General Computing

The higher level collections dask.array/bag/dataframe
demonstrate the flexibility of the dask graph specification to
encode sophisticated parallel algorithms and the capability of the
dask schedulers to execute those graphs intelligently on a multi-
core machine. Opportunities for parallel execution extend beyond
beyond ndarrays and dataframes.

In the beginning of this document we gave the following toy
example to help define dask graphs.

d = {'x': 1,
'y': (inc, 'x'),
'z': (add, 'y', 10)}

While this example of dask graphs is trivial it represents a broader
class of free-form computations that don’t fit neatly into a single
high-level abstraction like arrays or dataframes but are instead just
a bunch of related Python functions with data dependencies. In this
context Dask offers a lightweight spec and range of schedulers
as well as excellent error reporting and diagnostic facilities. In
private projects we have seen great utility and performance from
using the dask threaded scheduler to refactor and execute existing
processing pipelines on large multi-core computers.

Low Barrier to Entry

The simplicity of dask graphs (no classes or frameworks) presents
a very low barrier to entry. Users only need to understand basic
concepts common to Python (or indeed most modern languages)
like dictionaries, tuples, and functions as variables. As an example
consider the work in [Tep15] in which the authors implement
out-of-core parallel non-negative matrix factorizations on top of
dask.array without significant input from dask core developers.
This demonstrates that algorithmic domain experts can implement
complex algorithms with dask and achieve good results with a
minimum of framework investment.

To demonstrate complexity we present the graph of an out-of-
core singular value decomposition contributed by those authors to
the dask.array.linalg library.

>>> import dask.array as da
>>> x = da.ones((5000, 1000), chunks=(1000, 1000))
>>> u, s, v = da.svd(x)

This algorithm is complex enough without having to worry about
software frameworks. Mathematical experts were able to imple-
ment this without having to simultaneously develop expertise in a
complex parallel programming framework.

Final Thoughts

Extend the Scale of Convenient Data: The dask collections
(array, bag, dataframe) provide reasonable access to par-
allelism and out-of-core execution. These significantly extend the
scale of data that is convenient to manipulate.

Low Barrier to Entry: More importantly these collections
demonstrate the feasibility of dask graphs to describe parallel
algorithms and of the dask schedulers to execute those algorithms
efficiently in a small space. The lack of a more baroque framework
drastically reduces the barrier to entry and the ability of developers
to use dask within their own libraries.

Fig. 4: Out-of-core parallel SVD

Administratriva and Links

Dask is available on github, PyPI, and is now included in the
Anaconda distribution. It is BSD licensed, runs on Python 2.6 to
3.4 and is tested against Linux, OSX, and Windows.

This document was compiled from numerous blogposts that
chronicle dask’s development and go more deeply into the com-
putational concerns encountered during dask’s construction.

Dask is used on a daily basis, both as a dependency in other
projects in the SciPy ecosystem (xray, scikit-image, ...) and also
in production in private business.

• http://dask.pydata.org/en/latest
• http://github.com/ContinuumIO/dask
• http://matthewrocklin.com/blog
• http://pypi.python.org/pypi/dask/

Acknowledgements

Dask has had several contributors, both in terms of code and
in terms of active use and reporting. Some notable contributions
follow (roughly ordered by chronological involvement):

• Stephan Hoyer - Patiently used and bug-fixed
dask.array

• Erik Welch - Implemented many of the graph optimiza-
tions

• Mariano Tepper - Implemented the
dask.array.linalg module

• Wesley Emeneker - Worked on some of slicing
• Peter Steinberg - Worked on some of rechunking
• Jim Crist - Implemented rewrite rule optimizations
• Blake Griffith - Integrated dask.array with

scikit-image and has done a variety of bug-fixing,
particularly around dask.distributed

132 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

• Min Regan-Kelley - Provided guidance around ZeroMQ
during the construction of dask.distributed

• Phillip Cloud - Improved dask.dataframe

REFERENCES

[Oli07] Travis E. Oliphant. Python for Scientific Computing,
Computing in Science & Engineering, 9, 10-20 (2007),
DOI:10.1109/MCSE.2007.58

[vdW11] Stéfan van der Walt, S. Chris Colbert and Gaël Varoquaux. The
NumPy Array: A Structure for Efficient Numerical Computation,
Computing in Science & Engineering, 13, 22-30 (2011)

[McK10] Wes McKinney. Data Structures for Statistical Computing in
Python, Proceedings of the 9th Python in Science Conference, 51-
56 (2010)

[Isa07] Isard, Michael, et al. "Dryad: distributed data-parallel programs from
sequential building blocks." ACM SIGOPS Operating Systems Re-
view. Vol. 41. No. 3. ACM, 2007.

[Zah10] Zaharia, Matei, et al. "Spark: cluster computing with working sets."
Proceedings of the 2nd USENIX conference on Hot topics in cloud
computing. Vol. 10. 2010. APA

[But09] Buttari, Alfredo, et al. "A class of parallel tiled linear algebra algo-
rithms for multicore architectures." Parallel Computing 35.1 (2009):
38-53. APA

[Bos12] Bosilca, George, et al. "DAGuE: A generic distributed DAG engine
for high performance computing." Parallel Computing 38.1 (2012):
37-51. APA

[Van08] Van De Geijn, Robert A., and Enrique S. Quintana-Ortí. "The science
of programming matrix computations." (2008). APA

[Pou13] Poulson, Jack, et al. "Elemental: A new framework for distributed
memory dense matrix computations." ACM Transactions on Mathe-
matical Software (TOMS) 39.2 (2013): 13. APA

[Tep15] Mariano Tepper and Guillermo Sapiro, "Compressed Nonnegative
Matrix Factorization is Fast and Accurate", 2015.

[Agu09] Agullo, Emmanuel, et al. "Numerical linear algebra on emerging
architectures: The PLASMA and MAGMA projects." Journal of
Physics: Conference Series. Vol. 180. No. 1. IOP Publishing, 2009.
APA

[Gei08] Van De Geijn, Robert A., and Enrique S. Quintana-Ortí. "The science
of programming matrix computations." (2008). APA

[Ber10] Bergstra, James, et al. "Theano: A CPU and GPU math compiler in
Python." Proc. 9th Python in Science Conf. 2010. APA

[Pow14] Power, Russell. Abstractions for In-memory Distributed Computa-
tion. Diss. New York University, 2014. APA

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 133

PySPLIT: a Package for the Generation, Analysis, and
Visualization of HYSPLIT Air Parcel Trajectories

Mellissa Cross‡∗

https://www.youtube.com/watch?v=2mzhTC4Kp-Y

F

Abstract—The National Oceanic and Atmospheric Administration (NOAA) Air
Resources Laboratory’s HYSPLIT (HYbrid Single Particle Lagrangian Transport)
model [Drax98], [Drax97] uses a hybrid Langrangian and Eulerian calculation
method to compute air parcel trajectories and particle dispersion and deposition
simulations. Air parcels are hypothetical small volumes of air with uniform
characteristics. The HYSPLIT model outputs air parcel paths projected forwards
or backwards in time (trajectories) and is used in a variety of scientific contexts.
Here we present the first package in the mainstream scientific Python ecosystem
designed to facilitate HYSPLIT trajectory analysis workflow by providing an
intuitive API for generating, inspecting, and plotting trajectory paths and data.

Index Terms—HYSPLIT, trajectory analysis, matplotlib Basemap

Introduction

Government agencies and researchers use the HYSPLIT sys-
tem, particularly the particle dispersion simulations, for academic
and emergency response purposes such as monitoring nuclear
fallout, the dispersion of volcanic aerosols, and dust storms.
Trajectory simulations are also applied to a variety of tasks,
including visualizing regional atmospheric circulation patterns,
investigating meteorological controls on the isotopic composition
of precipitation, and calculating moisture uptake and transport.
HYSPLIT can also be applied to non-academic uses, such as
ballooning. The HYSPLIT model is available online via the Real-
time Environmental Applications and Display sYstem (READY)
interface [Rolph03] - and has been since the late 1990s - or as a
downloadable version compatible with PC or Mac [Drax03].

A key component of air parcel trajectory research problems
is the along-trajectory data that HYSPLIT outputs. Although the
PC and Mac versions allow for greater batch processing than
is available via the online READY interface, neither interface
provides users with a means to inspect, sort, or analyze trajectories
on the basis of along-trajectory data. Users are left with limited
options: write their own scripts for performing the desired data
analysis, or manage trajectory data by hand via spreadsheet and
GIS programs. Both options are inefficient and error-prone. Addi-
tionally, HYSPLIT ships with limited inbuilt options for trajectory
visualization, though it does provide a shapefile/KML output tool.
Using a non-Python based workflow, a figure similar to the third

* Corresponding author: cros0324@umn.edu, mellissa.cross@gmail.com
‡ Department of Earth Sciences, University of Minnesota

Copyright © 2015 Mellissa Cross. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

panel in Figure 2 took approximately three weeks to generate.
This process involved manually generating a couple hundred
trajectories, sorting out the rainy trajectories and importing their
data into Excel, calculating moisture flux, and arranging the data
for a third party program to convert to a KML file to view on
Google Earth. In contrast, after two nights of letting PySPLIT
generate trajectories (totalling 60,000 trajectories), the complete
Figure 2 was made in a single afternoon.

PySPLIT is a Python-based tool for HYSPLIT trajectory
analysis available on Github under a modified BSD license. This
package’s key aim is to provide an open source, reusable, re-
producible, flexible system for a Python-based trajectory analysis
workflow. Though a Python-based HYSPLIT frontend (physplit)
is available on Google Code, this code is poorly documented and
organized, and is incomplete, unmaintained, an not reusable, as it
contains hard-coded variables specific to particular workstations.

PySPLIT depends on NumPy [NumPy], matplotlib
[matplotlib], and the matplotlib Basemap toolkit; and comprises
five classes and a trajectory generation toolkit. The scope of this
package is currently bulk trajectory generation, trajectory data
analysis and management, and path and data visualizations.

The API

The current PySPLIT API comprises five classes, four of which
deal with trajectory data. The fundamental class of PySPLIT
is the Trajectory; each Trajectory instance represents
one HYSPLIT air parcel trajectory. Three of the other classes,
TrajectoryGroup, Cluster, and ClusterGroup, are es-
sentially variations on a Trajectory container. The fifth data
type is MapDesign, which is not a Trajectory-related class,
but holds map construction information and draw a map, using the
matplotlib Basemap toolkit command. This class was included to
enable the user to quickly create attractive maps without detracting
focus from the trajectory analysis workflow.

Trajectory Generation

Typically the first step in a HYSPLIT workflow is trajectory
generation. This can be accomplished via the online READY
interface, or the HYSPLIT GUI, or command line, but bulk gener-
ation is inefficient. Additionally, READY users are limited to 500
trajectories per day. PySPLIT includes a method for generating
large numbers of trajectories of a particular length in hours at
various times of day and at several different altitudes in a single
call, allowing the user to set up a comprehesive batch to run
overnight without constant user monitoring or action:

134 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

generate_trajectories(
'example', r'C:/hysplit4/working',
r'C:/traj_dir', r'E:/meteorology',
[2007, 2008, 2009], [6, 7], [5, 11, 17, 23],
[500, 1500], (32.29, 119.05), -120,
meteo_type='gdas1')

In this example, 120-hour trajectories are launched at 500 and
1500 meters above ground level at 32.39 N and 119.05 E four
times daily ([5, 11, 17, 23]]) throughout June and July of
2007-2009. All HYSPLIT trajectory files created with this method
have the same basename of 'example', followed by the altitude,
season, and year, month, day, and hour in the format YYM-
MDDHH, for example: example1500winter09063105. The
trajectory files are extensionless and live in the specified output
directory ('C:/traj_dir').

pysplit.generate_trajectories() currently only
supports gdas1 data, which refers to the 1 x 1 degree Global
Data Assimilation System 3-hour meteorology product from the
National Weather Service’s National Centers for Environmental
Prediction (NCEP) archived in a packed format appropriate for
HYSPLIT (referred to as ARL-packed). Archived gdas1 data is
available from 2005 onwards; registered HYSPLIT users may also
access forecast data (see HYSPLIT use agreement for more infor-
mation concerning publishing and the redistribution of HYSPLIT
model results using forecast data). Future versions of PySPLIT
will support other datasets, for example ARL-packed ERA-interim
data, for which decades of data are available; and other user-
defined ARL-packed data sources.

PySPLIT comes with two additional features not available in
the READY interface or directly through HYSPLIT. One feature
enables an estimation of integration error. This error is estimated
by comparing the distance between where an original trajectory
begins and where a trajectory run in the opposite direction starting
at the endpoint of the original trajectory ends. We expect the
paths of the trajectories to be identical, but HYSPLIT uses finite-
precision arithmetic, so there is some deviation. Low integration
error is indicated by a short distance between the original tra-
jectory start and the reverse trajectory end points relative to the
total distance covered by the trajectory pair. During trajectory
generation (unless disabled), PySPLIT automatically opens a new
trajectory file, reads in the altitude, longitude, and latitude of the
last time point, and initializes the reverse trajectory. Then in the
Trajectory class, discussed below, a method is available to
estimate integration error.

The second feature facilitates HYSPLIT clustering. HYSPLIT
trajectory data files are plaintext with a limited number of charac-
ters per line. Typically, each timepoint is recorded on a single line.
However, there are nine possible along-trajectory meteorological
output variables, and if more than seven are selected, each time-
point overflows onto a second line. Timepoints will span multiple
lines, however, if more than seven of nine possible available output
variables are selected. HYSPLIT’s clustering method fails given
files with multi-line timepoints, but PySPLIT can account for this
when it occurs. pysplit.clip_traj() opens a trajectory
file, copies the trajectory header and path (latitude, longtitude,
altitude) data, and outputs the header and path to a new file that
HYSPLIT will readily use to perform clustering, as HYSPLIT
clusters solely on the basis of path. The clipped and reverse
trajectories live in subdirectories inside the output directory.

Trajectory

The Trajectory class is the fundamental unit in PySPLIT, de-
signed to manage and promote the analysis of air parcel trajectory
data in an intuitive manner. Each object represents one air parcel
trajectory calculated by HYSPLIT, containing latitude, longitude,
altitude (meters above ground level or meters above sea level),
along-path data, file location, path start information, and summary
data. Trajectory instances are intialized as follows:
traj = Trajectory(data, header, fullpath)

where data is the 2D array of along-trajectory data
read by PySPLIT from the HYSPLIT output file (using
pysplit.load_hysplitfile()), header is a list of
strings indicating the information present in each column, and
fullpath is the location of the output file. However, the user
will typically not initialize individual Trajectories, but will
instead initialize a TrajectoryGroup that contains them.

The 2D data array of a Trajectory is parsed into separate
attributes as 1D NumPy arrays of floats, readily exposing the data.
The data and header are also kept as attributes, and can be
reloaded into the corresponding 1D attributes at any time, wiping
out changes.

Most Trajectory analysis methods live in or are accessed
directly by the Trajectory class. These include calculations of
along-trajectory and overall great-circle distance, mean trajectory
vector, humidity data conversions, and along-trajectory moisture
flux. The results of most of these calculations are stored as
new attributes in 1D NumPy arrays of floats of identical size.
Additionally, the Trajectory class contains the methods for
loading forward trajectories and estimating trajectory integration
error in both horizontal and vertical dimensions.

The Trajectory class also includes a flexible implementa-
tion of the moisture uptake calculation from back trajectories from
Sodeman et al. [Sod08].
moistureuptake(self, rainout_threshold,

evap_threshold, uptake_window=6,
window_overlap=0,
vertical_criterion='pbl',
pressure_threshold=900.0,
mixdepth_factor=1,
q_type='specific_humidity')

Using this method, humidity is compared at the beginning and end
of a period of time with length uptake_window, repeated over
the whole back trajectory, from the earliest timepoint to the most
recent time point. A good uptake window is 6 hours, since it is a
short enough period of time that evaporation or precipitation will
dominate, and long enough that performing this calculation over
120-hour trajectories is not particularly onerous.

The purpose of this algorithm is to find moisture sources on
the Earth’s surface that contribute to the moisture received at the
starting location of the backwards trajectory. So, a criterion to dis-
tinguish surficial from atmospheric moisture sources is required.
In Sodeman’s original paper, which did not use HYSPLIT, uptakes
that occurred below the planetary boundary level were regarded
as uptakes from the Earth’s surface. In other works that have
used this algorithm but employed HYSPLIT, a particular pressure
level, often 900.0 hPa, is as the boundary between uptake from
the surface and uptake from the atmosphere. In PySPLIT, the user
can choose for their boundary the mixing depth, a pressure level,
or both.

For each window, PySPLIT records the coordinates of the
midpoint, the mean pressure, mixing depth (if available), and

PYSPLIT: A PACKAGE FOR THE GENERATION, ANALYSIS, AND VISUALIZATION OF HYSPLIT AIR PARCEL TRAJECTORIES 135

altitude; the change in humidity; and the fraction of current
humidity levels taken up below or above the vertical criteria or due
to unknown sources. Change in humidity and humidity fractions in
previous windows are also adjusted to reflect rainout and the fact
that early sources of moisture become less important as moisture
is acquired further along in the trajectory. The result is a 2D array
of moisture uptake data where each row represents a time window
and each column a variable. The array and header are stored as
Trajectory attributes.

TrajectoryGroup

The TrajectoryGroup is the basic container for PyS-
PLIT Trajectory objects, and is initialized simply by pro-
viding a list of Trajectory objects. Typically the first
TrajectoryGroup in a PySPLIT workflow is initialized upon
loading Trajectory objects from file as discussed above:
trajgroup, _ = make_trajectorygroup(signature)

In this method, HYSPLIT output files sharing a Bash-style
signature (with wildcards supported) are read, initialized as
Trajectorys and appended to a list, which is then used
to initialize a TrajectoryGroup. These containers are fully
iterable, returning a Trajectory when indexed and a new
TrajectoryGroup when sliced.

Once the initial TrajectoryGroup is created, a
typical PySPLIT workflow involves cycling through the
TrajectoryGroup (umn in the example workflow below),
initializing and inspecting attributes of the member Trajectory
instances. Trajectorys that meet certain criteria are then sorted
into new TrajectoryGroups.
Trajectories with integration error better than 10%
good_traj = []

for traj in umn:
traj.load_reversetraj(r'C:/traj/reversetraj')
traj.integration_error()

if self.integ_error_xy < 10:
good_traj.append(traj)

Sort out rain-bearing traj starting at 1700 UTC
(local noon) and 1500 m
umn_trajls=[]

for traj in good_traj:
traj.set_rainstatus()
if (traj.rainstatus and traj.hour[0] == 17 and

traj.altitude[0] == 1500):
umn_trajls.append(traj)

Create new TrajectoryGroup:
umn_noon = pysplit.TrajectoryGroup(umn_trajls)

And perform more calculations:
for traj in umn_noon:
traj.set_vector()
traj.set_specifichumidity()
traj.calculate_moistureflux()

Repeating sorting and analysis as necessary.
Using the visualization defaults as described in the Data

Plotting and MapDesign section below, we can quickly look at
the Trajectory paths, as seen in Figure 1.
mapd = pysplit.MapDesign([40.0, -15.0, 170.0, 60.0],

[100.0, 20.0, 30.0, 10.0])

umap = mapd.make_basemap()

Fig. 1: Simple visualization of trajectory paths using MapDesign
defaults (see Data Plotting and MapDesign section) . Red indicates
June trajectories, blue indicates July trajectories.

for traj in umn_noon:
if traj.month[0] == 6:
traj.trajcolor == 'blue'

else:
traj.trajcolor == 'red'

umn_noon.map_data_line(umap)

The TrajectoryGroup class also has additional capabilities
for organizing Trajectory instances and Trajectory data.
TrajectoryGroup instances are additive: two instances are
checked for duplicte trajectories (determined by examining the
filename and path) and can be combined into a new group of
unique trajectories. The TrajectoryGroup also comes with
methods for assembling particular member Trajectory at-
tributes and moisture uptake arrays into a single array to facilitate
scatter plotting and for interpolating along-path and moisture
uptake data to a grid. The procedure is given below and the results
are shown in These are discussed below in the Data Plotting and
MapDesign section.

Cluster and ClusterGroup

To investigate the dominant flow patterns in a set of trajectories,
HYSPLIT includes a clustering procedure. PySPLIT includes
several methods to expedite this process.

The first step is to generate a list of trajectories to be
clustered. Once the user has created a TrajectoryGroup
with trajectories that meet their specifications, then they can use
the TrajectoryGroup method make_infile() to write
member Trajectory full paths to an extensionless file called
’INFILE’ that HYSPLIT requires to perform clustering. PySPLIT
will attempt to write the full paths of the clipped versions of
the trajectories to INFILE, if available, otherwise the full paths
of the regular trajectories will be used. Clipped trajectories are
usually generated during trajectory generation, as discussed above.
However, as clipping does not actually require calculating a new
trajectory this can be performed later:

for traj in trajgroup:
clip_traj(traj.folder, traj.filename)

However, the TrajectoryGroup (trajgroup) and its mem-
ber Trajectories must be reloaded for the clipped trajectory
files to become available for clustering.

Once the INFILE is created, the user must open HYSPLIT to
run the cluster analysis and assign trajectories to clusters. Advice

136 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 2: Visualization of seasonal moisture flux. Place labels are
generated with the labeller in MapDesign , discussed in Data
Plotting and MapDesign section.

concerning the determination of the number of clusters (along
with all other HYSPLIT aspects) is available in the HYSPLIT
manual [Drax97]. Assigning trajectories to clusters will create a
file called ’CLUSLIST_3’ or some other number corresponding to
the number of clusters specified by the user. This file indicates the
distribution of Trajectory in the TrajectoryGroup among
clusters, and is used to create Cluster instances contained in a
ClusterGroup:

clusgroup = spawn_clusters(trajgroup, traj_distrib,
clusterpath_dir)

The Cluster class is a specialized subclass of
TrajectoryGroup. In addition to a list of member
Trajectorys (indicated by the distribution file), initialization
requires the cluster mean path data and cluster index. Like
TrajectoryGroups, Clusters are additive, but adding
Clusters creates a regular TrajectoryGroup, not a new

Cluster. As a Cluster has an associated path, some
Trajectory-like methods (distance, vector calculations) are
available.

A ClusterGroup is a container of Clusters produced in
a single clustering procedure. Iterating over a ClusterGroup
returns member Clusters.

Data Plotting and MapDesign

As visualization and figure creation is a key part of the scientific
process, a major focus of PySPLIT is exposing data and enabling
the user to create attractive maps and plots.

One part of this equation is the MapDesign class. A
MapDesign instance holds the information necessary to create an
attractive matplotlib Basemap. The user provides the coordinates
of the lower left and upper right corners of the map, as well as
a few standard parallels and meridians. From there, the defaults
are sufficient to produce a professional-looking map as shown in
Figure 1. Users can also choose between two additional neutral
color-schemes, as shown in Figures 2, and 3.

MapDesign also encompasses more complex formatting like
labelling, as shown in Figure 2. During the initialization of
MapDesign, or later using MapDesign.edit_labels(),
the user can generate a text file with example labels in defined
label categories at a given file location. The user can then edit the
example labels for their needs, and select which groups are placed
on the map, once MapDesign.make_basemap() is called and
a Basemap is generated.

Although MapDesign was created to expedite the process
of creating an attractive Basemap and let users focus on the
trajectory analysis rather than figure-tweaking, PySPLIT plot-
ting functions accept any Basemap instance, allowing users to
incorporate PySPLIT into their existing workflow. Additionally,
as all Trajectory, Cluster, TrajectoryGroup, and
ClusterGroup attributes are exposed, users are free to cre-
ate their own visualization routines beyond what is provided in
PySPLIT.

Among the Trajectory attributes are linewidth and path
color. A user can incorporate these into their plotting workflow,
setting linewidth and path color to correspond to Trajectory
instances with particular characteristics, as shown in Figure
1. Plotting the paths of a TrajectoryGroup’s member
Trajectorys is performed one-by-one on the given map. To
facilitate scatter plotting, the TrajectoryGroup assembles
Trajectory latitude, longtitude, the variable plotted as a color
change, and, if selected, the variable plotted as a size change each
into single arrays. Trajectory data, as well as moisture uptake
data, can also be interpolated onto a grid and plotted.

Prior to being passed to Basemap.plot() and
Basemap.scatter(), scatter plot data passes through
traj_scatter(). This exposes Normalize instances and other
methods of normalization (square root, natural log), allowing
users to normalize both color and size data. Square root and
natural log normalizations require the user to edit tick labels on
colorbars (or incorporate into the colorbar label itself, as in Figure
2). After plotting, wrappers around matplotlib’s colorbar creation
methods with attractive default options are available to initialize
colorbars.

As a Cluster is a specialized TrajectoryGroup,
member Trajectorys can be plotted similarly. Additionally,
Cluster mean paths can also be plotted, either individually or all

PYSPLIT: A PACKAGE FOR THE GENERATION, ANALYSIS, AND VISUALIZATION OF HYSPLIT AIR PARCEL TRAJECTORIES 137

Fig. 3: Left: Winter back trajectories arriving at Nanjing, colored to match the cluster they belong to. Right: Plot of ClusterGroup in
which member Clusters have randomly-chosen colors and linewidths corresponding to their Trajectory counts.

together in the ClusterGroup. Cluster linewdiths can either
be determined by an absolute Trajectory count or the fraction
of total Trajectorys in the ClusterGroup belonging to the
Cluster. Both Cluster and Trajectory paths shown in
Figure 3.

The Future of PySPLIT

PySPLIT provides an intuitive API for extremely efficient HYS-
PLIT trajectory data processing and for creating visualizations
using matplotlib and the matplotlib Basemap toolkit. The goal
of PySPLIT is to provide users with a powerful, flexible Python-
oriented HYSPLIT trajectory analysis workflow, and in the long-
term to become the toolkit of choice for research using HYSPLIT.
Features in the pipeline include HYSPLIT clustering process
entirely accessible via the PySPLIT interface, and a greater va-
riety of statistical, moisture uptake, and other methods available
for trajectory analysis. Additionally, there are several areas for
improvement within the trajectory generation portion of PySPLIT,
notably support for meteorologies besides gdas1, more granular
trajectory generation, and generation on pressure and condensation
levels.

Acknowledgments

I gratefully thank the reviewers for their patience, comments,
and suggestions; and the NOAA ARL for the provision of the
HYSPLIT transport and dispersion model.

REFERENCES

[Sod08] H. Sodeman, C. Schwierz, and H. Wernli. Interannual Variability
of Greenland winter precipitation sources: Lagrangian moisture
diagnostic and North Atlantic Oscillation influence, Journal of
Geophysical Research, 113:D03107, February 2008.

[Drax98] R.R. Draxler and G.D. Hess. An overview of the HYSPLIT_4
modeling system of trajectories, dispersion, and deposition, Aust.
Meteor. Mag., 47:295-308, 1998.

[Drax97] R.R. Draxler and G.D. Hess. Description of the HYSPLIT_4
modeling system, NOAA Technical Memorandum ERL ARL-
230, NOAA Air Resources Laboratory, Silver Spring, MD, 1997.

[Drax03] R.R. Draxler and G.D. Rolph. HYSPLIT (HYbrid Single-Particle
Lagrangian Integrated Trajectory) Model access via NOAA ARL
READY Website (http://www.arl.noaa.gov/ready/hysplit4.html).
NOAA Air Resources Laboratory, Silver Spring, MD, 2003.

[Rolph03] G.D. Rolph. Real-time Environmental Applications and Dis-
play sYstem (READY) Website (http://www.arl.noaa.gov/ready/
hysplit4.html). NOAA Air Resources Laboratory, Silver Spring,
MD, 2003.

[NumPy] S. van der Walt et al. The NumPy Array: A Structure for Efficient
Numerical Computation, Computing in Science & Engineering,
13:22-30, 2011.

[matplotlib] J. D. Hunter. Matplotlib: A 2D Graphics Environment*, Comput-
ing in Science & Engineering, 9:90-95, 2007.

138 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

TrendVis: an Elegant Interface for dense,
sparkline-like, quantitative visualizations of multiple

series using matplotlib

Mellissa Cross‡∗

https://www.youtube.com/watch?v=tklAFsce7eg

F

Abstract—TrendVis is a plotting package that uses matplotlib to create
information-dense, sparkline-like, quantitative visualizations of multiple dis-
parate data sets in a common plot area against a common variable. This plot
type is particularly well-suited for time-series data. We discuss the rationale
behind and the challenges associated with adapting matplotlib to this particular
plot style, the TrendVis API and architecture, and various features available for
users to customize and enhance the readability of their figures while walking
through a sample workflow.

Index Terms—time series visualization, matplotlib, plotting

Introduction

Data visualization and presentation is a key part of scientific
communication, and many disciplines depend on the visualization
of multiple time-series or other series datasets. The field of pale-
oclimatology (the study of past climate and climate change), for
example, relies heavily on plots of multiple time-series or "depth
series", where data are plotted against depth in an ice core or
stalagmite, for example. These plots are critical to place new data
in regional and global contexts and they facilitate interpretations of
the nature, timing, and drivers of climate change. Figure 1, created
using TrendVis, compares stalagmite records of climate and hy-
drological changes that occurred during the last two deglaciations,
or "terminations". Ice core records of carbon dioxide (black) and
methane (pink) [Petit] concentrations and Northern Hemisphere
summer insolation (the amount of solar energy received on an
area, gray) are also included.

Creating such plots can be difficult, however. Many scientists
depend on expensive software such as SigmaPlot and Adobe
Illustrator. With pure matplotlib [matplotlib], users have two
options: display data in a grid of separate subplots or overlaid
using twinned axes. This works for two or three traces, but does
not scale well. The ideal style in cases with larger datsets is the
style shown in Figure 1: a densely-plotted figure that facilitates
direct comparison of curve features. The key aim of TrendVis,
available on GitHub, is to enable the creation and readability of

* Corresponding author: cros0324@umn.edu, mellissa.cross@gmail.com
‡ Department of Earth Sciences, University of Minnesota

Copyright © 2015 Mellissa Cross. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Fig. 1: A TrendVis figure illustrating the similarities and differ-
ences among climate records from Israel [BarMatthews], China
[Wang], [Dykoski], [Sanbao]; Italy [Drysdale], the American South-
west [Wagner], [Asmerom], and Great Basin region [Winograd0],
[Winograd1], [Lachniet], [Shakun] between the last deglaciation and
the penultimate deglaciation (respectively known as Termination I and
Termination II). Most of these records are stalagmite oxygen isotope
records - oxygen isotopes, depending on the location, may record
temperature changes, changes in precipitation seasonality, or other
factors. All data are available online as supplementary materials or
through the National Climatic Data Center.

TRENDVIS: AN ELEGANT INTERFACE FOR DENSE, SPARKLINE-LIKE, QUANTITATIVE VISUALIZATIONS OF MULTIPLE SERIES USING MATPLOTLIB 139

Fig. 2: In XGrid, stackdim refers to number of rows of y axes
and maindim indicates the number of columns. This is reversed in
YGrid. Both dimension labels begin in XGrid.axes[0][0].

these plots in the scientific Python ecosystem using a matplotlib-
based workflow. Here we discuss how TrendVis interfaces with
matplotlib to construct and format this complex plot type as well
as several challenges faced while we walk through the creation of
Figure 1.

The TrendVis Figure Framework

The backbone of TrendVis is the Grid class, in which the figure,
basic attributes, and orientation-agnostic methods are initialized.
Grid should only be initialized through one of its two subclasses,
XGrid and YGrid. As a common application of these types
of plots is time-series data, we will examine TrendVis from the
perspective of XGrid. In XGrid, the x axis is shared among all
the datasets, and y axes are individual - in the terminology of
TrendVis, x axes are the main axes, and y axes are the stacked
axes. This is reversed for YGrid. A graphical representation of
XGrid is shown in Figure 2.

TrendVis figures appear to consist of a common plot space.
This, however, is an illusion carefully crafted via a framework of
axes and a mechanism to systematically hide extra axes spines,
ticks, and labels. This framework is created when the figure is
initialized:

1 paleofig = XGrid([7, 8, 8, 6, 4, 8], xratios=[1, 1],
2 figsize=(6,10))

First, let’s examine the construction of this framework. The overall
area of the figure is determined by figsize, which is passed
to matplotlib. The relative sizes of the rows (ystack_ratios,
the first argument), however, is determined by the contents
of ystack_ratios and the sum of ystack_ratios
(self.gridrows), which in this case is 41. Similarly, the
contents and sum of xratios (self.gridcols) determine
the relative sizes of the columns. So, all axes in paleofig are
initialized on a 41 row, 2 column grid within the 6 x 10 inch
space set by figsize. The axis in position 0,0, (2) spans 7/41
unit rows (0 through 6) and the first unit column; the next axis
created spans the same unit rows and the second unit column,
finishing the first row of paleofig. The next row spans 8 unit
rows, numbers 7 through 15, and so on. All axes in the same row
share a y axis, and all axes in the same column share an x axis.
This axes creation process, shown in the code below, is repeated
for all the values in ystack_ratios and xratios, yielding
a figure with 6 rows and 2 columns of axes. The code below and
all other unnumbered snippets indicate an internal process rather
than part of the paleofig workflow.

xpos = 0
ypos = 0

Create axes row by row
for rowspan in self.yratios:

row = []

for c, colspan in enumerate(self.xratios):
sharex = None
sharey = None

All ax in row share y with first ax in row
if xpos > 0:

sharey = row[0]

All ax in col share x with first ax in col
if ypos > 0:

sharex = self.axes[0][c]

ax = plt.subplot2grid((self.gridrows,
self.gridcols),
(ypos, xpos),
rowspan=rowspan,
colspan=colspan,
sharey=sharey,
sharex=sharex)

ax.patch.set_visible(False)

row.append(ax)
xpos += colspan

self.axes.append(row)

Reset x position to left, move to next y pos
xpos = 0
ypos += rowspan

Axes are stored in paleofig.axes as a nested list, where the
sublists contain axes in the same rows. Next, two parameters that
dictate spine visibility are initialized:

paleofig.dataside_list
This list indicates where each row’s y axis spine,
ticks, and label are visible. This by default alternates
sides from left to right (top to bottom in YGrid),
starting at left, unless indicated otherwise during the

140 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

initialization of paleofig, or changed later on by
the user.

paleofig.stackpos_list
This list controls the x (main) axis visibility. Each
row’s entry is based on the physical location of the
axis in the plot; by default only the x axes at the top
and bottom of the figure are shown and the x axes
of middle rows are invisible. Each list is exposed and
can be user-modified, if desired, to meet the demands
of the particular figure.

These two lists serve as keys to TrendVis formatting dictio-
naries and as arguments to axes (and axes child) methods. At any
point, the user may call:
3 paleofig.cleanup_grid()

and this method will systematically adjust labelling
and limit axis spine and tick visibility to the posi-
tions indicated by paleofig.dataside_list and
paleofig.stackpos_list, transforming the mess in
Figure 3 to a far clearer and more readable format in Figure 2.

Creating Twinned Axes

Although for large datasets, using twinned axes as the sole plotting
tool is unadvisable, select usage of twinned axes can improve data
visualization. In the case of XGrid, a twinned axis is a new axis
that shares the x axis of the original axis but has a different y axis
on the opposite side of the original y axis. Using twins allows the
user to directly overlay datasets. TrendVis provides the means to
easily and systematically create and manage entire rows (XGrid)
or columns (YGrid) of twinned axes.

In our paleofig, we need four new rows:
4 paleofig.make_twins([1, 2, 3, 3])
5 paleofig.cleanup_grid()

This creates twinned x axes, one per column, across the
four rows indicated and hides extraneous spines and
ticks, as shown in Figure 4. As with the original axes,
all twinned axes in a column share an x axis, and all
twinned axes in the twin row share a y axis. The twin row
information is appended to paleofig.dataside_list
and paleofig.stackpos_list and twinned axes are
stored at the end of the list of axes, which previously
contained only original rows. If the user decides to
get rid of twin rows (paleofig.remove_twins()),
paleofig.axes, paleofig.dataside_list, and
paleofig.stackpos_list are returned to their state prior
to adding twins.

Accessing Axes

Retrieving axes, especially when dealing with twin axes in a
figure with many hapazardly created twins, can sometimes be
non-straightforward. The following means are available to return
individual axes from a TrendVis figure:

paleofig.fig.axes[axes index]
Matplotlib stores axes in a 1D list in Figure in the
order of creation. This method is easiest to use when
dealing with an XGrid of only one column.

paleofig.axes[row][column]
An XGrid stores axes in a nested list in the order
of creation, no matter its dimensions. Each sublist

Fig. 3: Freshly initialized XGrid. After running
XGrid.cleanup_Grid() (and two formatting calls adjusting the
spinewidth and tick appearance), the structure of Figure 2 is left,
in which stack spines are staggered, alternating sides according to
XGrid.dataside_list, starting at left.

contains all axes that share the same y axis- a row.
The row index corresponds to the storage position in
the list, not the actual physical position on the grid,
but in original axes (those created when paleofig
was initialized) these are the same.

paleofig.get_axis()
Any axis can be retrieved from paleofig by provid-
ing its physical row number (and if necessary, column
position) to paleofig.get_axis(). Twins can
be parsed with the keyword argument is_twin,
which directs paleofig.twin_rownum() to find
the index of the sublist containing the twin row.

In the case of YGrid, the row, column indices are
flipped: YGrid.axes[column][row]. Sublists correspond to
columns rather than rows.

Plotting and Formatting

The original TrendVis procedurally generated a simple, 1-column
version of XGrid. Since the figure was made in a single function

TRENDVIS: AN ELEGANT INTERFACE FOR DENSE, SPARKLINE-LIKE, QUANTITATIVE VISUALIZATIONS OF MULTIPLE SERIES USING MATPLOTLIB 141

Fig. 4: The results of paleofig.make_twins(), performing
another grid cleanup and some minor tick/axis formatting.

call, all data had to be provided at once in order, and it all
had to be line/point data, as only Axes.plot() was called.
TrendVis still provides convenience fuctions make_grid() and
plot_data() to enable easy figure initialization and quick
line plotting on all axes with fewer customization options. The
regular object-oriented API is designed to be a highly flexible
wrapper around matplotlib. Axes are readily exposed via the
matplotlib and TrendVis methods described above, and so the user
can determine the most appropriate plotting functions for their
figure. The author has personally used Axes.errorbar(),
Axes.fill_betweenx(), and Axes.plot() on two pub-
lished TrendVis figures (see figures 3 and 4 in [Cross]), which
required the new object-oriented API. Rather than make individual
calls to plot on each axis, we will use the convenience function
plot_data. The datasets have been loaded from a spreadsheet
into individual 1D NumPy [NumPy] arrays containing age infor-
mation or climate information:

6 plot_data(paleofig,[[(sorq_age, sorq, '#008080')],
7 [(hu_age, hu, '#00FF00',[0]),
8 (do_age, do, '#00CD00', [0]),
9 (san_age, san, 'green', [1])],

10 [(co2age, co2, 'black')],
11 [(cor_age, cor, 'maroon', [1])],
12 [(dh_age, dh, '#FF6103')],

13 [(gb_age, gb, '#AB82FF'),
14 (leh_age, leh, 'red', [1])],
15 [(insol_age, insol, '0.75')],
16 [(ch4_age, ch4, 'orchid')],
17 [(fs_age, fs, 'blue')],
18 [(cob_age, cob, '#00BFFF')]],
19 marker=None, lw=2, auto_spinecolor=False)

Using plot_data, simple line plotting only requires a tuple of
the x and y values and the color in a sublist in the appropriate
row order. Some tuples have a fourth element that indicates which
column the dataset should be plotted on. Without this element, the
dataset will be plotted on all, or in this case both columns. Setting
different x axis limits for each column will mask this fact.

Although plots individualized on a per axis basis may be im-
portant to a user, most aspects of axis formatting should generally
be uniform. In deference to that need and to potentially the sheer
number of axes in play, TrendVis contains wrappers designed to
expedite these repetitive axis formatting tasks, including setting
major and minor tick locators and dimensions, axis labels, and
axis limits.

20 paleofig.set_ylim([(3, -7, -2), (4, 13.75, 16),
21 (5, -17, -9),
22 (6, 420, 520, (7, 300, 725),
23 (8, -11.75, -5))])
24

25 paleofig.set_xlim([(0, 5, 24), (1, 123.5, 142.5)])
26

27 paleofig.reverse_yaxis([0, 1, 3])
28

29 paleofig.set_all_ticknums([(5, 2.5), (5, 2.5)],
30 [(2,1),(2,1),(40,20),(2,1),
31 (1,0.5), (2,1),(40,20),
32 (100,25),(2,1),(2,1)])
33

34 paleofig.set_ticks(major_dim=(7, 3), labelsize=11,
35 pad=4, minor_dim=(4, 2))
36

37 paleofig.set_spinewidth(2)
38

39 # Special characters for axis labels
40 d18o = r'$\delta^{18}\!O$'
41 d13c = r'$\delta^{13}\!C$'
42 d234u = r'$\delta^{234}\!U_{initial}$'
43 co2label = r'CO_{2}'
44 ch4label = r'CH_{4}'
45 mu = ur'$\u03BC$'
46 vpdb = ' ' + ur'$\u2030$'+ ' (VPDB)'
47 vsmow =' ' + ur'$\u2030$'+' (VSMOW)'
48

49 paleofig.fig.suptitle('Age (kyr BP)', y=0.065,
50 fontsize=16)
51 paleofig.set_ylabels([d18o + vpdb, d18o + vpdb,
52 co2label +' (ppmv)',
53 d18o + vpdb,
54 d18o + vsmow, d18o + vpdb,
55 r'W/m^{2}',
56 ch4label + ' (ppmv)', '',
57 d18o + vpdb, d13c + vpdb],
58 fontsize=13)

In this plot style, there are two other formatting features that are
particularly useful: moving data axis spines, and automatically
coloring spines and ticks. The first involves the lateral movement
of data axis (y axis in XGrid, x axis in YGrid) spines into or
out of the plot space. Although the default TrendVis behavior is
alternating the data axis spines from left to right, resulting in space
between data axis spines, adding twin rows disrupts this pattern
and spacing, as shown in Figure 5. This problem is exacerbated
when compacting the figure, which is a typical procedure in this
plot type, to improve both the look of the figure and its readability.
The solution in XGrid plots is to move spines laterally- along the

142 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 5: Figure after plotting paleoclimate time series records, editing
the axes limits, and setting the tick numbering and axis labels. At this
point it is difficult to see which dataset belongs to which axis and to
clearly make out the twin axis numbers and labels.

x dimension- out of the way of each other, into or out of the plot
space. TrendVis provides means to expedite the process of moving
spines:

59 # Make figure more compact:
60 paleofig.fig.subplots_adjust(hspace=-0.4)
61

62 # Move spines
63 # Shifts are in fractions of figure
64 # Absolute position calc as 0 - shift (ax at left)
65 # or 1 + shift (for ax at right)
66 paleofig.move_spines(twin_shift=[0.45, 0.45,
67 -0.2, 0.45])

In the above code, all four of the twinned visible y axis spines
are moved by an individual amount; the user may set a universal
twin_shift or move the y axis spines of the original axes in
the same way. Alternatively, all TrendVis methods and attributes
involved in paleofig.move_spines() are exposed, and the
user can edit the axis shifts manually and then see the results via
paleofig.execute_spineshift(). As the user-provided
shifts are stored, if the user changes the arrangement of visi-
ble y axis spines (via paleofig.set_dataside() or by
directly altering paleofig.dataside_list), then all the
user needs to do to get the old relative shifts applied to the
new arrangement is get TrendVis to calculate new spine posi-
tions (paleofig.absolute_spineshift()) and perform
the shift (paleofig.execute_spineshift()).

Fig. 6: Although the plot is very dense, the lateral movement of spines
and coloring them to match the curves has greatly improved the
readability of this figure relative to Figure 5. The spacing between
subplots has also been decreased.

Although the movement of y axis spines allows the user to
read each axis, there is still a lack of clarity in which curve belongs
with which axis, which is a common problem for this plot type.
TrendVis’ second useful feature is automatically coloring the data
axis spines and ticks to match the color of the first curve plotted
on that axis. As we can see in Figure 6, this draws a visual link
between axis and data, permitting most viewers to easily see which
curve belongs against which axis.

68 paleofig.autocolor_spines()

Visualizing Trends

Large stacks of curves are overwhelming to viewers. In compli-
cated figures, it is critical to not only keep the plot area tidy and
link axes with data, as we saw above, but also to draw the viewer’s
eye to essential features. This can be accomplished with shapes
that span the entire figure, highlighting areas of importance or
demarcating particular spaces. In paleofig, we are interested
in the glacial terminations. Termination II coincided with a North
Atlantic cold period, while during Termination I there were two
cold periods interrupted by a warm interval:

69 # Termination I needs three bars, get axes that will
70 # hold the lower left, upper right corners of bar
71 ll = paleofig.get_axis(5)
72 ur = paleofig.get_axis(0)
73 alpha = 0.2
74

75 paleofig.draw_bar(
76 ll, ur, (11, 12.5), alpha=alpha,
77 edgecolor='none', facecolor='green')
78 paleofig.draw_bar(
79 ll, ur, (12.5, 14.5), alpha=alpha,
80 edgecolor='none', facecolor='yellow')

TRENDVIS: AN ELEGANT INTERFACE FOR DENSE, SPARKLINE-LIKE, QUANTITATIVE VISUALIZATIONS OF MULTIPLE SERIES USING MATPLOTLIB 143

81 paleofig.draw_bar(
82 ll, ur, (129.5, 136.5), alpha=alpha,
83 edgecolor='none', facecolor='green')
84

85 # Draw bar for Termination II, in column 1
86 paleofig.draw_bar(paleofig.get_axis(5, xpos=1),
87 paleofig.get_axis(0, xpos=1),
88 (129.5, 136.5), alpha=alpha,
89 facecolor='green',
90 edgecolor='none')
91

92 # Label terminations
93 ax2 = paleofig.get_axis(0, xpos=1)
94 paleofig.ax2.text(133.23, -8.5, 'Termination II',
95 fontsize=14, weight='bold',
96 horizontalalignment='center')
97

98 ax1 = paleofig.get_axis(0)
99 paleofig.ax1.text(14, -8.5, 'Termination I',

100 fontsize=14, weight='bold',
101 horizontalalignment='center')

The user provides the axes containing the lower left corner of the
bar and the upper right corner of the bar. In the vertical bars of
paleofig the vertical limits consist of the upper limit of the
upper right axis and the lower limit of the lower left axis. The
horizontal upper and lower limits are provided in data units, for
example (11, 12.5). The default zorder is -1 in order to place the
bar behind the curves, preventing data from being obscured.

As these bars typically span multiple axes, they must be
drawn in Figure space rather than on the axes. This presents
two challenges. The first is converting data coordinates to figure
coordinates. In the private function _convert_coords(), we
transform data coordinates (dc) into axes coordinates, and then
into figure coordinates:
ac = ax.transData.transform(dc)

fc = self.fig.transFigure.inverted().transform(ac)

The figure coordinates are then used to determine the width,
height, and positioning of the Rectangle in figure space.

TrendVis strives to be as order-agnostic as possible. However,
a patch drawn in Figure space is completely divorced from the
data the patch is supposed to highlight. If axes limits are changed,
or the vertical or horizontal spacing of the plot is adjusted, then
the bar will no longer be in the correct position relative to the data.

As a solution, for each bar drawn with TrendVis, the upper
and lower horizontal and vertical limits, the upper right and lower
left axes, and the index of the patch in XGrid.fig.patches are all
stored as XGrid attributes. Storing the patch index allows the user
to make other types of patches that are exempt from TrendVis’
patch repositioning. When any of TrendVis’ wrappers around
matplotlib’s subplot spacing adjustment, x or y limit settings, etc
are used, the user can stipulate that the bars automatically be
adjusted to new figure coordinates. The stored data coordinates
and axes are converted to figure space, and the x, y, width, and
height of the existing bars are adjusted. Alternatively, the user
can make changes to axes space relative to figure space without
adjusting the bar positioning and dimensions each time or without
using TrendVis wrappers, and simply adjust the bars at the end.

TrendVis also enables a special kind of bar, a frame. The frame
is designed to visually anchor data axis spines, and appears around
an entire column (row in YGrid) of data axes under the spines.
However, for paleofig we will use a softer division of our the
columns by using cut marks on the main axes to signify a broken
axis:

102 paleofig.draw_cutout(di=0.075)

Similar to bars, frames are drawn in figure space and can some-
times be moved out of place when axes positions are changed
relative to figure space, thus they are handled in the same way.
Cutouts, however, are actual line plots on the axes that live in axes
space and will not be affected by adjustments in axes limits or
subplot positioning. With the cut marks drawn on paleofig, we
have completed the dense but highly readable plot shown in Figure
1.

Conclusions and Moving Forward

TrendVis is a package that expedites the process of creating
complex figures with multiple x or y axes against a common y
or x axis. It is largely order-agnostic and exposes most of its
attributes and methods in order to promote highly-customizable
and reproducible plot creation in this particular style. In the long-
term, with the help of the scientific Python community, TrendVis
aims to become a widely-used higher level tool for the matplotlib
plotting library and alternative to expensive software such as
SigmaPlot and MATLAB, and to time-consuming, error-prone
practices like assembling multiple Excel plots in vector graphics
editing software.

REFERENCES

[Petit] J. R. Petit et al. Climate and Atmospheric History of the Past
420,000 years from the Vostok Ice Core, Antarctica Nature,
399:429-436, 1999.

[BarMatthews] M. Bar-Matthews et al. Sea--land oxygen isotopic relation-
ships from planktonic foraminifera and speleothems in the
Eastern Mediterranean region and their implication for pa-
leorainfall during interglacial intervals, Geochimica et Cos-
mochimica Acta, 67(17):3181-3199, 2003.

[Drysdale] R. N. Drysdale et al. Stalagmite evidence for the onset of
the Last Interglacial in southern Europe at 129 pm1 ka,
Geophysical Research Letters, 32(24), 2005.

[Wang] Y. J. Wang et al. A high-resolution absolute-dated late Pleis-
tocene monsoon record from Hulu Cave, China, Science,
294(5550):2345-2348, 2001.

[Dykoski] C. A. Dykoski et al., A high-resolution, absolute-dated
Holocene and deglacial Asian monsoon record from Dongge
Cave, China, Earth and Planetary Science Letters, 233(1):71-
86, 2005.

[Sanbao] Y. J. Wang et al. Millennial-and orbital-scale changes in the
East Asian monsoon over the past 224,000 years, Nature,
451(7182):1090-1093, 2008.

[Wagner] J. D. M. Wagner et al. Moisture variability in the southwestern
United States linked to abrupt glacial climate change, Nature
Geoscience, 3:110-113, 2010.

[Asmerom] Y. Asmerom et al. Variable winter moisture in the southwest-
ern United States linked to rapid glacial climate shifts, Nature
Geoscience, 3:114-117, 2010.

[Winograd0] I. J. Winograd et al. Continuous 500,000-year climate
record from vein calcite in Devils Hole, Nevada, Science,
258(5080):255-260, 1992.

[Winograd1] I. J. Winograd et al. Devils Hole, Nevada, $delta$ 18 O
record extended to the mid-Holocene, Quaternary Research,
66(2):202-212, 2006.

[Lachniet] M. S. Lachniet et al. Orbital control of western North America
atmospheric circulation and climate over two glacial cycles,
Nature Communications, 5, 2014.

[Shakun] J. D. Shakun et al. Milankovitch-paced Termination II in a
Nevada speleothem? Geophysical Research Letters, 38(18),
2011.

[matplotlib] J. D. Hunter. Matplotlib: A 2D Graphics Environment, Com-
puting in Science & Engineering, 9:90-95, 2007.

[Cross] M. Cross et al. Great Basin hydrology, paleoclimate, and
connections with the North Atlantic: A speleothem stable
isotope and trace element record from Lehman Caves, NV,
Quaternary Science Reviews, in press.

[NumPy] S. van der Walt et al. The NumPy Array: A Structure for
Efficient Numerical Computation, Computing in Science &
Engineering, 13:22-30, 2011.

144 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Causal Bayesian NetworkX

Michael D. Pacer‡∗

https://www.youtube.com/watch?v=qWAQgWOD_nA

F

Abstract—Probabilistic graphical models are useful tools for modeling systems
governed by probabilistic structure. Bayesian networks are one class of prob-
abilistic graphical model that have proven useful for characterizing both formal
systems and for reasoning with those systems. Probabilistic dependencies in
Bayesian networks are graphically expressed in terms of directed links from
parents to their children. Casual Bayesian networks are a generalization of
Bayesian networks that allow one to "intervene" and perform "graph surgery"
— cutting nodes off from their parents. Causal theories are a formal framework
for generating causal Bayesian networks.

This report provides a brief introduction to the formal tools needed to com-
prehend Bayesian networks, including probability theory and graph theory. Then,
it describes Bayesian networks and causal Bayesian networks. It introduces
some of the most basic functionality of the extensive NetworkX python package
for working with complex graphs and networks [HSS08]. I introduce some
utilities I have build on top of NetworkX including conditional graph enumeration
and sampling from discrete valued Bayesian networks encoded in NetworkX
graphs [Pac15]. I call this Causal Bayesian NetworkX, or CBNX. I conclude by
introducing a formal framework for generating causal Bayesian networks called
theory based causal induction [GT09], out of which these utilities emerged. I
discuss the background motivations for frameworks of this sort, their use in
computational cognitive science, and the use of computational cognitive science
for the machine learning community at large.

Index Terms—probabilistic graphical models, causal theories, Bayesian net-
works, computational cognitive science, networkx

Introduction and Aims

My first goal in this paper is to provide enough of an introduction
to some formal/mathematical tools such that those familiar with
python and programming more generally will be able to appre-
ciate both why and how one might implement causal Bayesian
networks. Especially to exhibit how, I have developed parts of
a toolkit that allows the creation of these models on top of the
NetworkX python package:cite:networkx. Given the coincidence
of the names, it seemed most apt to refer to this toolkit as Causal
Bayesian NetworkX abbreviated as CBNX1.

In order to understand the tool-set requires the basics of prob-
abilistic graphical models, which requires understanding some
graph theory and some probability theory. The first few pages are
devoted to providing necessary background and illustrative cases
for conveying that understanding.

* Corresponding author: mpacer@berkeley.edu
‡ University of California at Berkeley

Copyright © 2015 Michael D. Pacer. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

1. Static code can be found at [Pac15], and the most recent version can be
found at CBNX. CBNX is licensed with the BSD 3-clause license.

Notably, contrary to how Bayesian networks are commonly in-
troduced, I say relatively little about inference from observed data.
This is intentional, as is this discussion of it. Many of the most
trenchant problems with Bayesian networks are found in critiques
of their use to infer these networks from observed data. But, many
of the aspects of Bayesian networks (especially causal Bayesian
networks) that are most useful for thinking about problems of
structure and probabilistic relations do not rely on inference from
observed data. In fact, I think the immediate focus on inference
has greatly hampered widespread understanding of the power and
representative capacity of this class of models. Equally – if not
more – importantly, I aim to discuss generalizations of Bayesian
networks such as those that appear in [GT09], and inference in
these cases requires a much longer treatment (if a comprehensive
treatment can be provided at all). If you are dissatisfied with this
approach and wish to read a more conventional introduction to
(causal) Bayesian networks I suggest consulting [Pea00].

The current instantiation of the CBNX toolkit can be seen as
consisting of two main parts: graph enumeration/filtering and the
storage and use of probabilistic graphical models in a NetworkX
compatible format [HSS08].

I focus first on establishing a means of building iterators over
sets of directed graphs. I then apply operations to those sets.
Beginning with the complete directed graph, we enumerate over
the subgraphs of that complete graph and enforce graph theoretic
conditions such as acyclicity over the entire graph, guarantees on
paths between nodes that are known to be able to communicate
with one another, or orphan-hood for individual nodes known to
have no parents. We accomplish this by using closures that take
graphs as their input along with any explicitly defined arguments
needed to define the exact desired conditions.

I then shift focus to a case where there is a specific known
directed acyclic graph that is imbued with a simple probabilistic
semantics over its nodes and edges, also known as a Bayesian
network. I demonstrate how to sample independent trials from
these variables in a way consistent with these semantics. I discuss
some of the challenges of encoding these semantics in dictionaries
as afforded by NetworkX without resorting to eval statements.

I conclude by discussing Computational Cognitive Science as
it relates to graphical models and machine learning in general. In
particular, I will discuss a framework called theory based causal
induction [GT09], or my preferred term: causal theories, which
allows for defining problems of causal induction. The perspective
expressed in this paper, the associated talk, and the CBNX toolkit
developed out of this framework.

CAUSAL BAYESIAN NETWORKX 145

Graphical Models

Graphs are defined by a set of nodes (X , |X | = N) and a set of
edges between those nodes (E|e ∈ E ≡ e ∈ (X×X)).

Notes on notation

Nodes: In the examples in CBNX, nodes are given
explicit labels individuating them such as {A,B,C, . . .} or
{’rain’,’sprinkler’,’ground’}. Often, for the purposes of mathe-
matical notation, it is better to index nodes with integers over
a common variable label, e.g., using {X1,X2, . . .}.2

Edges: Defined in this way, edges are all directed in the
sense that an edge from X1 to X2 is not the same as the edge from
X2 to X1, or (X1,X2) 6= (X2,X1). An edge (X1,X2) will sometimes
be written as X1 → X2, and the relation may be described using
language like "X1 is the parent of X2" or "X2 is the child of X1".

Directed paths: Paths are a useful way to understand
sequences of edges and the structure of a graph. Informally, to
say there is a path between Xi and X j is to say that one can start
at Xi and by traveling from parent to child along the edges leading
out from the node that you are currently at, you can eventually
reach X j.

To define it recursively and more precisely, if the edge (Xi,X j)
is in the edge set or if the edges (Xi,Xk) and (Xk,X j) are in the
edge set there is a path from Xi to X j. Otherwise, a graph has a
path from node Xi to X j if there is a subset of its set of edges such
that the set contains edges (Xi,Xk) and (Xl ,X j) and there is a path
from Xk to Xl .

Adjacency Matrix Perspective

For a fixed set of nodes X of size N, each graph is uniquely defined
by its edge set, which can be seen as a binary N×N matrix, where
each index (i, j) in the matrix is 1 if the graph contains an edge
from Xi→ X j, and 0 if it does not contain such an edge. We will
refer to this matrix as A(G).

This means that any values of 1 found on the diagonal of the
adjacency matrix (i.e., where Xi → X j, i = j) indicate a self-loop
on the respective node.

Undirected Graphs

We can still have a coherent view of undirected graphs, despite
the fact that our primitive notion of an edge is that of a directed
edge. If a graph is undirected, then if it has an edge from Xi→ X j
then it has an edge from X j→ Xi. Equivalently, this means that the
adjacency matrix of the graph is symmetric, or A(G) = A(G)>.
However from the viewpoint of the undirected graph, that means
that it has only a single edge.

Directed Graphs

From the adjacency matrix perspective we’ve been considering,
all graphs are technically directed, and undirected graphs are a

2. Despite pythonic counting beginning with 0, I chose not to begin this se-
ries with 0 because when dealing with variables that might be used in statistical
regressions, the 0 subscript will have a specific meaning that separates it from
the rest of the notation. For example when expressing multivariate regression
as Y = βX + ε,ε ∼ N (0,Σ), β0 refers to the parameter associated with a
constant variable x0 = 1 and X is normally defined as x1,x2,x3, This allows
a simple additive constant to be estimated, which often is not of interest to
statistical tests, acting as a scaling constant. This makes for a simpler notation
than Y = β0 + βX + ε , because that is equivalent to Y = βX + ε if x0 = 1.
But, in other cases (e.g., [PG12]) 0 index will be used to indicate background
sources for events in a system.

special case where one (undirected) edge would be represented as
two symmetric edges.

The number of directed graphs that can be obtained from a set
of nodes of size n can be defined explicitly using the fact that they
can be encoded as a unique n×n matrix:

Rn = 2n2

Directed Acyclic Graphs: A cycle in a directed graph can
be understood as the existence of a path from a node to itself. This
can be as simple as a self-loop (i.e., if there is an edge (Xi,Xi) for
any node Xi).

Directed acyclic graphs(DAGs) are directed graphs that contain
no cycles.

The number of DAGs that obtainable from a set of n noddes
can be defined recursively as follows [MOR+04]:

Rn =
n

∑
k=1

(−1)k+1
(

n
k

)
2k(n−k)Rn−k

Note, because DAGs do not allow any cycles, this means that there
can be no self-loops. As a result, every value on the diagonal of a
DAG’s adjacency matrix will be 0.

Probability Distributions: Conditional, Joint and Marginal

A random variable defined by a conditional probability
distribution3 has a distribution indexed by the realization of some
other variable (which itself is often a random variable, especially
in the context of Bayesian networks).

The probability mass function (pmf) for discrete random
variable X with value x will be noted as P(X = x). Often, when
discussing the full set of potential values (and not just a single
value), we leave out the = x and just indicate P(X).4

The conditional probability of X with value x given another
variable Y with value y is P(X = x |Y = y). Much like above, if
we want to consider the probability of each possible event without
specifying one, sometimes this will be written as P(X |Y = y). If
we are considering conditioning on any of the possible values of
the known variable, we might use the notation P(X |Y), but that is
a slight abuse of the notation.

You can view P(X |Y) as a function over the X ×Y space. But
do not interpret that as a probability function. Rather, this defines
a probability function for X relative to each value of Y . Without
conditioning on Y we have many potential probability functions
for X. Equivalently, it denotes a family of probability functions on
X indexed by the values Y = y.

The joint probability of X and Y is the probability that both X
and Y occur in the event set in question. This is noted as P(X ,Y) or

3. Rather than choose a particular interpretation of probability over event
sets (e.g., Bayesian or frequentist), I will attempt to remain neutral, as those
concerns are not central to the issues of graphs and simple sampling.

4. If one is dealing with continuous quantities rather than discrete quantities
one will have to use a probability density function (pdf) which does not have as
straightforward an interpretation as a probability mass function. This difficult
stems from the fact that (under most cases) the probability of any particular
event occurring is "measure zero", or "almost surely" impossible. Without
getting into measure theory and the foundation of calculus and continuity we
can simply note that it is not that any individual event has non-zero probability,
but that sets of events have non-zero probability.As a result, continuous random
variables are more easily understood in terms a cumulative density function
(cdf), which states not how likely any individual event is, but how likely it is
that the event in question is less than a value x. The notation usually given
for a cdf of this sort is F(X ≤ x) =

∫ x
−∞ f (u)du, where f (u) is the associated

probability density function.

146 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

P(X∩Y) (using the set theoretic intersection operation). Similar to
P(X |Y), you can view P(X ,Y) as a function over the space defined
by X ×Y . However, P(X ,Y) is a probability function in the sense
that the sum of P(X = x,Y = y) over all the possible events in the
space defined by (x,y) ∈ X×Y equals 1.

The marginal probability of X is just P(X). The term
"marginalization" refers to the notion of summing over values
of Y in their joint probability. When probabilities were recorded
in probability tables, the sum would be recorded in the margins.
Formally, this can be stated as P(X) = ∑y∈Y P(X ,Y).

Relating conditional and joint probabilities

Conditional probabilities are related to joint probabilities using the
following form:

P(X |Y = y) =
P(X ,Y = y)

P(Y = y)
=

P(X ,Y = y)
∑x∈X P(X = x,Y = y)

Equivalently:

P(X ,Y = y) = P(X |Y = y)P(X)

Bayes’ Theorem

Bayes’ Theorem can be seen as a result of how to relate con-
ditional and joint probabilities. Or more importantly, how to
compute the probability of a variable once you know something
about some other variable.

Namely, if we want to know P(X |Y) we can transform it
into P(X ,Y)

∑x∈X P(X=x,Y) , but then can also transform joint probabilities
(P(X ,Y)) into statements about conditional and marginal proba-
bilities (P(X |Y)P(X)). This leaves us with

P(X |Y) = P(Y |X)P(X)

∑x∈X P(Y |X = x)P(X = x)

Probabilistic Independence

To say that two variables are independent of each other means that
knowing/conditioning on the realization of one variable is irrele-
vant to the distribution of the other variable. This is equivalent to
saying that the joint probability is equal to the multiplication of
the probabilities of the two events.

If two variables are conditionally independent, that means that
conditional on some set of variables, condition

Example: Marginal Independence 6= Conditional Independence

Consider the following example:

X ∼ Bernoulli{0,1}(.5), Y ∼ Bernoulli{0,1}(.5)

Z = X⊕Y,⊕≡ XOR

Note that, X ⊥⊥ Y but X 6⊥⊥ Y |Z.

Bayesian Networks

Bayesian networks are a class of graphical models that have
particular probabilistic semantics attached to their nodes and
edges. This makes them probabilistic graphical models.

In Bayesian networks when a variable is conditioned on the
total set of its parents and children, it is conditionally independent
of any other variables in the graph. This is known as the "Markov
blanket" of that node.5

5. The word "Markov" refers to Andrei Markov and appears as a prefix
to many other terms. It most often indicates that some kind of independence
property holds. For example, a Markov chain is a sequence (chain) of variables
in which each variable depends only on the value of the immediately preceding
and postceding variables in the chain. Properties like this make computation
easier.

Common assumptions in Bayesian networks

While there are extensions to these models, a number of assump-
tions commonly hold.

Fixed node set: The network is considered to be compre-
hensive in the sense that there is a fixed set of n known nodes.
This rules out the possibility of hidden/latent variables as being
part of the network. From this perspective inducing hidden nodes
requires postulating a new graph that is potentially unrelated to
the previous graph.

Trial-based events, complete activation and DAG-hood:
Within a trial, all events are presumed to occur simultane-
ously.There is no notion of temporal asynchrony, where one
node/variable takes on a value before its children take on a value
(even if in reality – i.e., outside the model – that variable is known
to occur before its child). Additionally, the probabilistic semantics
will be defined over the entirety of the graph which means that
one cannot sample a proper subset of the nodes of a graph without
marginalizing out and incorporating information from the ignored
nodes into the subset in question.

This property also explains why Bayesian networks need to
be acyclic. Most of the time when we consider causal cycles
in the world the cycle relies on a temporal delay between the
causes and their effects to take place. If the cause and its effect is
simultaneous, it becomes difficult (if not nonsensical) to determine
which is the cause and which is the effect — they seem instead to
be mutually definitional. But, as noted above, when sampling in
Bayesian networks simultaneity is presumed for all of the nodes.

Independence in Bayes Nets

One of the standard ways of describing the relation between the
semantics (probability values) and syntax (graphical structure) of
Bayesian networks is how graph encodes particular conditional in-
dependence assumptions between the nodes of the graph. Indeed,
in some cases Bayesian networks merely play the role of a con-
venient representation for conditional and marginal independence
relationships between different variables.

It is the perspective of the graphs as merely representing the
independence relationships and the focus on inference that leads
to the focus on equivalence classes of Bayes nets. The set of
graphs {A→ B→C, A← B→C, and A← B←C} represent the
same conditional independence relationships, and thus cannot be
distinguished on the basis of observational evidence alone. This
also leads to the emphasis on finding V-structures or common-
cause structures where (at least) two arrows are directed into
the same child with no direct link between those parents(e.g.,
A → B ← C). V-structures are observationally distinguishable
because any reversing the direction of any of the arrows will alter
the conditional independence relations that are guaranteed by the
graphical structure.6

Though accurate, this eschews important aspects of the se-
mantics distinguishing arrows with different directions when you
consider the kinds of values variables take on.

Directional semantics between different types of nodes:
The conditional distributions of child nodes are usually defined
with parameter functions that take as arguments their parents’
realizations for that trial. Bayes nets often are used to exclusively

6. A more thorough analysis of this relation between graph structures
and implied conditional independence relations invokes the discussion of d-
separation. However, d-separation (despite claims that "[t]he intuition behind
[it] is simple") is a more subtle concept than it at first appears as it involves
both which nodes are observed and the underlying structure.

CAUSAL BAYESIAN NETWORKX 147

represent discrete (usually, binary) nodes the distribution is usually
defined as an arbitrary probability distribution associated with the
label of it’s parent’s realization.

If we allow (for example) positive continuous valued nodes to
exist in relation to discrete nodes the kind of distributions available
to describe relations between these nodes changes depending
upon the direction of the arrow. A continuous node taking on
positive real values mapping to an arbitrarily labeled binary node
taking on values {a,b} will require a function that maps from
R→ [0,1], where it maps to the probability that the child node
takes on (for instance) the value a7.However, if the relationship
goes the other direction, one would need to have a function that
maps from {a,b} → R. For example, this might be a Gaussian
distributions for a and b ((µa,σa),(µb,σb)). Regardless of the
particular distributions, the key is that the functional form of the
distributions are radically different.

Sampling and semantics in Bayes Nets

The procedure we will use to sample from Bayesian networks uses
an active sample set. This is the set of nodes for which we have
well-defined distributions at the time of sampling.

There will always be at least one node in a Bayesian network
that has no parents. We will call these nodes orphans. To sample
a trial from the Bayesian network we begin with the orphans.
Because orphans have no parents – in order for the Bayes net to
be well-defined – each orphan will have a well-defined probability
distribution available for direct sampling. The set of orphans is our
first active sample set.

After sampling from all of the orphans, we will take the union
of the sets of children of the orphans, and at least one of these
nodes will have values sampled for all of its parents. We take the
set of orphans whose entire parent-set has sampled values, and
sample from the conditional distributions defined relative to their
parents’ sampled values and make this the active sample set.

After sampling the active sample set, we will either have
new variables whose distributions are well-defined or will have
sampled all of the variables in the graph for that trial.

Example: Rain, Sprinkler & Ground

In the sprinkler Bayesian network in Figure 18, there three discrete
nodes that represent whether it Rains (yes or no), whether the
Sprinkler is on (on or off) and whether the Ground is wet (wet or
dry). The edges encode the fact that the rain listens to no one, that
the rain can alter the probability of whether the sprinkler is on,
and the rain and the sprinkler together determine how likely it is
that the ground is wet.

Causal Bayesian Networks

Causal Bayesian networks are Bayesian networks that are given an
interventional operation allowing for "graph surgery" by cutting
nodes off from their parents9. Interventions are cases where a

7. If the function maps directly to one of the labeled binary values this can
be represented as having probability 1 of mapping to either a or b.

8. This is an ill-specified Bayesian network, because while I have specified
the states and their relations, I left open the potential interpretation of the
parameters and how they relate to one another. I did so because it shows
both the limits and strengths of what is encoded knowing only the structure,
computing both conditional and marginal distributions for all variables.

Rain
{yes, no}

Sprinkler
{on, off}

Ground
{wet, dry}

P (R = yes) = p

P (G = wet) = pqyeswyes,on + p(1� qyes)wyes,off

+ (1� p)qnowno,on + (1� p)(1� qno)wno,off

P (S = on) = pqyes + (1� p)qno

Fig. 1: An Bayesian network describing the sprinkler example.
Including both conditional and marginal distributions.

causal force is able to exogenously set the values of individual
nodes, rendering intervened on nodes independent of their parents.

NetworkX [HSS08]

NetworkX is a package for using and analyzing graphs and
complex networks. It stores different kinds of graphs as variations
on a "dict of dicts of dicts" structure. For example, directed graphs
are stored as two dict-of-dicts-of-dicts structures10.

Basic NetworkX operations

NetworkX is usually imported using the nx abbreviation, and you
input nodes and edges as lists of tuples, which can be assigned
dictionaries as their last argument, which stores the dictionary as
the nodes’ or edges’ data.

import networkx as nx

G = nx.DiGraph() # init directed graph
G.add_edges_from(edge_list) # input edges
G.add_nodes_from(node_list) # input nodes
edge_list = G.edges(data=True) # output edges
node_list = G.nodes(data=True) # output nodes

9. This is technically a more general definition than that given in [Pea00] as
in that case there is a specific semantic flavor given to interventions as they
affect the probabilistic semantics of the variables within the network. This is
related to his notion of a do-operator which deterministically sets a node to
a particular value. Because here we are considering a version of intervention
that affects the structure of a set of graphs rather than an intervention’s results
on a specific parameterized graph, this greater specificity is unnecessary.

10. It can also represent multi-graphs (graphs where multiple versions of
"the same" edge from the adjacency matrix perspective can exist and will
(usually) carry different semantics). We will not be using the multigraph
feature of NetworkX, as multigraphs are not traditionally used in the context
of Bayesian networks.

148 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

CBNX: Graphs

Here we will look at some of the basic operations described in
the ipython notebook [JOP+] found at CBNX. For space and
formatting reasons this code may differ slightly from that either in
the variable names or comments, for the original version of these
code snippets see graph-builder-code.

Other packages

In addition to networkX, we need to import numpy [VDWCV11],
scipy [JOP+], and functions from itertools.

import numpy as np
import scipy
from itertools import chain, combinations, tee

Beginning with a max-graph

Starting with the max graph for a set of nodes (i.e., the graph with
N2 edges), we build an iterator that returns graphs by successively
removing subsets of edges. Because we start with the max graph,
this procedure will visit all possible subgraphs. One challenge that
arises when visiting all possible subgraphs is the sheer magnitude
of that search space (2N2

).

def completeDiGraph(nodes):
G = nx.DiGraph()
G.add_nodes_from(nodes)
edgelist = list(combinations(nodes,2))
edgelist.extend([(y,x) for x,y in edgelist)
edgelist.extend([(x,x) for x in nodes])
G.add_edges_from(edgelist)
return G

Preëmptive Filters

The graph explosion problem is helped by determining which
individual edges are known to always be present and which ones
are known to never be present. In this way we can reduce the size
of the edgeset over which we will be iterating.

Filters can be applied by using filter_Graph(), which
takes a graph and a filter_set as its arguments and returns a graph.
A filter_set is a set of functions that take each take (at least) a
graph as an argument and return a graph with a reduced edgeset
according to the semantics of the filter.

def filter_Graph(G,filter_set):
graph = G.copy()
for f in filter_set:

graph = f(graph)
return graph

Example filter: remove self-loops

By default the graph completed by completeDiGraph() will
have self-loops, often we will not want this (e.g., DAGs cannot
contain self-loops).

def extract_remove_self_loops_filter():
def remove_self_loops_filter(G):

g2 = G.copy()
g2.remove_edges_from(g2.selfloop_edges())
return g2

return remove_self_loops_filter

Conditions

The enumeration portion of this approach is defined in this
conditionalSubgraphs function.[#]_ This allows you to
pass in a graph from which you will want to sample subgraphs
that meet the conditions that you also pass in.

def conditionalSubgraphs(G,condition_list):
for edges in powerset(G.edges()):

G_test = G.copy()
G_test.remove_edges_from(edges)
if all([c(G_test) for c in condition_list]):

yield G_test

Example condition: requiring complete paths

This condition holds only if a graph has paths from the first node
to the second node for each 2-tuple in the node-pair list.

def create_path_complete_condition(n_p):
def path_complete_condition(G):

return all([nx.has_path(G,x,y) for x,y in n_p])
return path_complete_condition

Non-destructive conditional subgraph generators

Because conditionalSubgraph produces an iterator, apply-
ing a condition after that initial set is generated, requires splitting
it into two copies of the iterator. This involves the tee function
from the itertools core package.

def new_conditional_graph_set(graph_set,cond_list):
graph_set_newer, graph_set_test = tee(graph_set,2)
def gen():

for G in graph_set_test:
G_test = G.copy()
if all([c(G_test) for c in condition_list]):

yield G_test
return graph_set_newer, gen()

Filters versus Conditions: which to use: The structural
differences between filters and conditions highlight how they are
to be used. Filters are intended to apply a graph to reduce its edge
set in place; as such they return a graph. Conditions return truth
values — they are applied to graph set reducing the size of that
graph set.

CBNX: Representing probabilistic relations and sampling

We discuss an algorithm for sampling from Bayesian networks
above (sampling). But, most of the difficult parts of encoding a
sampling procedure prove (in this case) to do with the algorithm.
Rather, the most pressing difficulties arise from attempting to store
the relevant information within the NetworkX data dictionaries,
so that a self-contained graphical object can be imported and
exported. There is a general problem of a lack of standard storage
format for Bayesian networks (and probabilistic graphical models
in general). This is just one flavor of that problem.

A CBNX implementation for sprinkler graph

Below I will illustrate how to use NetworkX [HSS08] and node-
associated attributes to define and sample from a parameterized
version of the sprinkler Bayesian network represented in abstract,
graphical form in Figure 1. for space reasons comments and
formatting were reduced, if you wish to see the original code it
can be found at sampling-code.

11. Note that powerset will need to be built (see CBNX for details).

CAUSAL BAYESIAN NETWORKX 149

Sampling infrastructure

def sample_from_graph(G,f_dict=None,k = 1):
if f_dict == None:

f_dict = {"choice": np.random.choice}
n_dict = G.nodes(data = True)
n_ids = np.array(G.nodes())
n_states = [(n[0],n[1]["state_space"])

for n in n_dict]
orphans = [n for n in n_dict

if n[1]["parents"]==[]]
s_values = np.empty([len(n_states),k],dtype='U20')
s_nodes = []
for n in orphans:

samp_f = str_to_f(n[1]["sample_function"],
f_dict)

s_states = n[1]["state_space"]
s_dist = n[1]["dist"]
s_idx = G.nodes().index(n[0])
s_values[s_idx,:] = samp_f(s_states,

size=[1,k],p=s_dist)
s_nodes.append(n[0])

while set(s_nodes) < set(G.nodes()):
nodes_to_sample = has_full_parents(G,s_nodes)
for n in nodes_to_sample:

par_indices = [(par,G.nodes().index(par))
for par in G.node[n]["parents"]]

par_vals = [(par[0],s_values[par[1],:])
for par in par_indices]

samp_index = G.nodes().index(n)
s_values[samp_index,:] = cond_samp(G,n,

par_vals,f_dict,k)
s_nodes.append(n)

return s_values

def has_full_parents(G,s_n):
check_n = [x for x in G.nodes() if x not in s_n]
nodes_to_be_sampled = []
for n in G.nodes(data = True):

if (n[0] in check_n) & (n[1]["parents"]<=s_n):
nodes_to_be_sampled.append(n[0])

if len(nodes_to_be_sampled)==0:
raise RuntimeError("A node must be sampled")

return nodes_to_be_sampled

def nodeset_query(G,n_set,n_atr=[]):
if len(n_atr)==0:

return [n for n in G.nodes(data = True)
if n[0] in n_set]

else:
return_val = []
for n in G.nodes(data=True):

if n[0] in node_set:
return_val.append((n[0],
{attr:n[1][attr] for attr in n_atr}))

return return_val

def cond_samp(G,n,par_vals,f_dict, k = 1):
try: n in G
except KeyError:

print("{} is not in graph".format(n))
output = np.empty(k,dtype="U20")
for i in np.arange(k):

val_list = []
for p in par_vals:

val_list.append(tuple([p[0],p[1][i]]))
samp_dist = G.node[n]["dist"][tuple(val_list)]
samp_f = str_to_f(

G.node[n]["sample_function"],f_dict)
samp_states = G.node[n]["state_space"]
temp_output = samp_f(samp_states,

size=1,p=samp_dist)
output[i] = temp_output[0]

return output

def str_to_f(f_name, f_dict=None):
if f_dict == None:

f_dict = {"choice": np.random.choice}

try: f_dict[f_name]
except KeyError:

print("{} is not defined.".format(f_name))
return f_dict[f_name]

Sampling from the sprinkler Bayes net with CBNX

The following encodes the sprinkler network from Figure 1 with
parameters p = .2,qyes = .01,qno = .4,wyes,on = .99,wyes,off =
.8,wno,on = .9andwno,off=0. This distribution is meant to accord
with our intuitions that rain and sprinklers increase the probability
of the ground being wet, and that we are less likely to use the
sprinkler when it has rained.
node_prop_list = [("rain",{

"state_space":("yes","no"),
"sample_function": "choice",
"parents":[],
"dist":[.2,.8]}),
("sprinkler",{
"state_space":("on","off"),
"sample_function": "choice",
"parents":["rain"],
"dist":{(("rain","yes"),):[.01,.99],

(("rain","no"),):[.4,.6]}}),
("grass_wet",{
"state_space":("wet","dry"),
"sample_function": "choice",
"parents":["rain","sprinkler"],
"dist":{

(("rain","yes"),("sprinkler","on")):[.99,.01],
(("rain","yes"),("sprinkler","off")):[.8,.2],
(("rain","no"),("sprinkler","on")):[.9,.1],
(("rain","no"),("sprinkler","off")):[0,1]}})]

edge_list = [("sprinkler","grass_wet"),
("rain","sprinkler"),
("rain","grass_wet")]

G = nx.DiGraph()
G.clear()
G.add_edges_from(edge_list)
G.add_nodes_from(node_prop_list)
test = sample_from_graph(G,k=10)

Causal Theories and Computational Cognitive Science

Theory based causal induction is a formal framework arising out
of the tradition in computational cognitive science to approach
problems of human cognition with rational, computational-level
analyses [GT09]. Causal theories form generative models for
defining classes of parameterized probabilistic graphical models.
They rely on defining a set of classes of entities (ontology), poten-
tial relationships between those classes of entities and particular
entities (plausible relations), and particular parameterizations of
how those relations manifest in observable data (or in how other
relations eventually ground out into observable data). This allows
Griffiths and Tenenbaum to subsume the prediction of a wide
array of human causal inductive, learning and reasoning behavior
using this framework for generating graphical models and doing
inference over the structures they generate.

Rational analysis

Rational analysis is a technique that frees us from some of the
problems inherent in mechanistic modeling in cognition. We spec-
ify the goals of the cognitive system, the environment in which
it exists and minimal constraints on the computations available to
the agent. We translate this into mathematically precise accounts

150 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

of "mechanism-free casting[s] of psychological [theories]" for op-
timal behavior. These formal models provide empirical predictions
that can be evaluated by studying human cognitive behavior under
different observable environmental conditions [And90]11. If the
model disagrees with the empirical data, we iterate — reëvaluating
each component of the theory until we match a wide variety12 of
empirical data.

Computational-Level Analysis of Human Cognition

A computational-level analysis [Mar82] is one in which we model
a system in terms of its functional role(s) and how they would
be optimally solved. This is distinguished from algorithmic-
level analysis by not caring how this goal achievement state is
implemented in terms of the formal structure of the underlying
system and from mechanistic-level analysis by not caring about
the physical structure of how these systems are implemented
(which may vary widely while still meeting the structure of
the algorithmic-level which itself accomplishes the goals of the
computational level).

A classic example [Mar82] of the three-levels of analysis are
different ways of studying flying with the example of bird-flight.
The mechanistic-level analysis would be to study feathers, cells
and so on to understand the component subparts of individual
birds. The algorithmic-level analysis would look at how these
subparts fit together to form an active whole that is capable
of flying often by flapping its wings in a particular way. The
computational-level analysis would be a theory of aerodynamics
with specific accounts for the way forces interact to produce flight
through the particular motions of flying observed in the birds.

Causal theories: ontology, plausible relations, functional form

The causal theory framework generalizes specifying Bayesian
network in the same way first-order logic generalizes specifying
propositions in propositional logic. A causal theory requires ele-
ments necessary to populate nodes, those nodes with properties,
and relations between the nodes, stating which of those relations
are plausible (and how plausible), and a specific, precise formu-
lation for how those relations manifest in terms of a probabilistic
semantics. In the terms of [GT09]’s theory-based causal induction,
this requires specifying an ontology, plausible relations over
those ontologies, and functional forms for parameterizing those
relations.

Ontology: This specifies the full space of potential kinds of
entities, properties and relations that exist. This is the basis around
which everything else will be defined. It is straightforward popu-
late nodes with features using the data dictionary in NetworkX.

Plausible Relations: This specifies which of the total
set of relations allowed by the ontology are plausible and how
plausible. If you do not dramatically restrict the sets of relations
you consider, there will be an explosion of possibilities. People,
even young children, have many expectations about what sorts of
things can can feasibly be causally related to one another. This
sometimes has been interpreted as the plausible existence of a
mechanism linking cause and effect. For example, we know that
in most situations a fan is more likely than a tuning fork to blow
out a candle.

12. As Anderson notes, it is often the mathematization that proves to be the
most difficult aspect of this procedure [And90].

Functional form:
Even in the most basic cases of causal induction we

draw on expectations as to whether the effects of one
variable on another are positive or negative, whether
multiple causes interact or are independent, and what
type of events (binary, continuous, or rates) are relevant
to evaluating causal relationships.

—[GT09]
Of course, this allows for uncertainty about these functional

forms and indeed, quite different judgments can be warranted
depending on treats the underlying relation and structure of the
data (e.g., continuous vs. binary data [PG11]).

Generalizations to other kinds of logical/graphical conditions

The causal theory framework is richer than the set of examples
developed in [GT09]. It can express conditions of graphical
connectivity, context-sensitive functional forms, substructures of
constrained plausible relations, among others.

In [GT09], plausible relations are described in terms of suffi-
cient conditions, implicitly suggesting that most relations are not
plausible. However, we can also make necessary statements about
the kinds of relations that must be there. And one can see this as
selecting a subset of all the possible graphs implementable by the
set of nodes defined by the ontology. It is for this purpose that I
first arrived at the node enumeration.

One goal for CBNX is to enable causal theory programming.
The utilities in networkX, plus the enumerating, filtering and
conditioning functions in CBNX, ease implementing higher-order
graphical conditions (e.g., a directed path necessarily existing
between two nodes) than in the original notation described in
[GT09]. These ideas were expressible in the original mathematical
framework, but would have required a good deal more notational
infrastructure to represent. CBNX not only provides a notation, but
a programming infrastructure for expressing and using these kinds
of conditions.

Uses in modeling human cognition

Using this framework, Griffiths and Tenenbaum were able to pro-
vide comprehensive coverage for a number of human psychology
experiments. This allows them to model people’s inferences in
causal induction and learning regarding different functional forms,
at different points in development, with different amounts of data,
with and without interventions, and in continuous time and space
(to name only a few of the different conditions covered).

They successfully modeled human behavior using this frame-
work by treating people as optimal solvers of this computational
problem13 (at least as defined by their framework). Furthermore,
by examining different but related experiments, they were able
to demonstrate the different ways in which specific kinds of
prior knowledge are called upon differentially to inform human
causal induction resulting in quite different inferences on a rational
statistical basis.

Cognition as Benchmark, Compass, and Map

People have always been able to make judgments that are be-
yond machine learning’s state-of-the-art. In domains like object
recognition, we are generally confident in people’s judgments as

13. Optimality in these cases is taken to mean on average approximating the
posterior distribution of some inference problem defined by the authors in each
case.

CAUSAL BAYESIAN NETWORKX 151

veridical, and – as such – they have been used as a benchmark
against which to test and train machine learning systems. The
eventual goal is that the system reaches a Turing point — the
point at which machine performance and human performance are
indistinguishable.

But that is not the only way human behavior can guide
machine learning. In domains like causal induction, people’s
judgments cannot form a benchmark in the traditional sense
because we cannot trust people to be "correct". Nonetheless,
people do make these judgments and, more importantly, these
judgments exhibit systematic patterns. This systematicity allows
the judgments output by cognition to be modeled using formal,
computational frameworks. Further, if we formally characterize
both the inputs to and outputs from cognition, we can define
judgments as optimal according to some model. Formal models
of individual cognitive processes can then act as a compass for
machine learning, providing a direction for how problems and
some solutions can be computed.

Formal frameworks for generating models (e.g., causal theo-
ries) can be even more powerful. Data can often be interpreted
in multiple ways, with each way requiring a model to generate
solutions. Holding the data constant, different goals merit different
kinds of solutions. Frameworks that generate models, optimality
criteria and solutions not only provide a direction for machine
learning, but lay out sets of possible directions. Generalized
methods that use one system for solving many kinds of problems
provide the ability to relate these different directions to each other.
Formalizing the inputs, processes and outputs of human cognition
produces a map of where machine learning could go, even if it
never goes to any particular destination. From this, navigators with
more details about the particular terrain can find newer and better
routes.

Acknowledgements

Thank you to Jess Hamrick for aiding in the design of the
underlying code, Katy Huff and Stéfan van der Walt for aiding in
getting the bibliography working and helping me navigate github
and the submission and review processes, Seb Benthall and Ankur
Ankan for helping reviews, and Elizabeth Seiver for comments
and support throughout the writing process.

REFERENCES

[And90] J. R. Anderson. The adaptive character of thought. Erlbaum,
Hillsdale, NJ, 1990.

[GT09] T. L. Griffiths and J. B. Tenenbaum. Theory-based causal
induction. Psychological review, 116(4), 2009.

[HSS08] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Ex-
ploring network structure, dynamics, and function using Net-
workX. In Proceedings of the 7th Python in Science Conference
(SciPy2008), pages 11–15, Pasadena, CA USA, August 2008.

[JOP+] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open
source scientific tools for Python. http://www.scipy.org/, 2001–.
Online (accessed 2015-07-04).

[Mar82] D. Marr. Vision. W. H. Freeman, San Francisco, CA, 1982.
[MOR+04] Brendan D McKay, Frederique E Oggier, Gordon F Royle,

NJA Sloane, Ian M Wanless, and Herbert S Wilf. Acyclic
digraphs and eigenvalues of (0, 1)-matrices. Journal of Integer
Sequences, 7:3, 2004.

[Pac15] M.D. Pacer. Causal-Bayesian-NetworkX. http://dx.doi.org/10.
6084/m9.figshare.1471763, 2015. Online (accessed July 2,
2015). URL: http://dx.doi.org/10.6084/m9.figshare.1471763,
doi:10.6084/m9.figshare.1471763.

[Pea00] J. Pearl. Causality: Models, reasoning and inference. Cam-
bridge University Press, Cambridge, UK, 2000.

[PG11] M.D. Pacer and T.L. Griffiths. A rational model of causal
induction with continuous causes. In Advances in Neural
Information Processing Systems, volume 24, Cambridge, MA,
2011. MIT Press.

[PG12] M.D. Pacer and T.L. Griffiths. Elements of a rational framework
for continuous-time causal induction. In Proc. of the 34th Conf.
of the CogSci Society, 2012.

[VDWCV11] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The
numpy array: a structure for efficient numerical computation.
Computing in Science & Engineering, 13(2):22–30, 2011.

152 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Geodynamic simulations in HPC with Python

Nicola Creati‡∗, Roberto Vidmar‡, Paolo Sterzai‡

https://www.youtube.com/watch?v=PTEgs7salEc

F

Abstract—The deformation of the Earth surface reflects the action of several
forces that act inside the planet. To understand how the Earth surface evolves
complex models must be built to reconcile observations with theoretical numeri-
cal simulations. Starting from a well known numerical methodology already used
among the geodynamic scientific community, PyGmod has been developed from
scratch in the last year. The application simulates 2D large scale geodynamic
processes by solving the conservation equations of mass, momentum, and
energy by a finite difference method with a marker-in-cell technique. Unlike
common simulation code written in Fortran or C this code is written in Python.
The code implements a new approach that takes advantage of the hybrid ar-
chitecture of the latest HPC machines. In PyGmod the standard MPI is coupled
with a threading architecture to speed up some critical computations. Since the
OpenMP API cannot be used with Python, threading is implemented in Cython.
In addition a realtime visualization library has been developed to inspect the
evolution of the model during the computation.

Index Terms—HPC, numerical modelling, geodynamics

Introduction

The dynamics of surface and deep Earth processes, referred as
geodynamics, is a challenging subject in geosciences since the
establishment of plate tectonics in the late 1960s. The outer shell
of the Earth is split into a number of thin, rigid plates that are
in relative motion with respect to one another [Mor68]. Most
of the earthquakes, volcanic eruptions and mountain buildings
occur at plate boundaries [Tur02]. Geology started to move from
a descriptive approach to a quantitative one [McK69], [Min70].
Numerical modeling in geodynamics is necessary because tectonic
processes are too slow and too deep in the Earth to be observed
directly. In the last 30 years numerical geodynamic modeling
has developed very rapidly thanks to the introduction of new
numerical techniques and the availability of powerful computers
[Ger10]. Several of the known problems in computational science,
such as the non-linear nature of rock rheology, the multicomponent
nature of the systems and other thermodynamic variables, can
now be managed. In the past years computer clusters of differ-
ent architectures (shared memory systems, distributed memory
systems and distributed shared memory systems) have become
available to most researchers. To take full advantage of the power
of these machines, parallel algorithms and software packages must
be developed. However, geoscience researchers often do not have

* Corresponding author: ncreati@inogs.it
‡ Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, OGS

Copyright © 2015 Nicola Creati et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

enough knowledge to build and debug parallel software. While
in the last fifteen years several numerical methods and libraries
have been developed to solve many of the equations needed
to model geodynamic problems, almost all of them are written
in C/C++ or Fortran. Sometimes geodynamic modeling is done
with commercial software [Pas02], [Jar11] to reduce the effort
of solving equations, as well as writing and debugging a new
application. By exploiting several years of Python experience with
remote sensing and geoscience topics, a numerical geodynamic
modeling application, PyGmod, has been developed in the last
twelve months. The development of PyGmod occurred within
the PRACE-OGS research project, which is concerned with HPC
applications for oceanographic and geophysical numerical simula-
tions.

Scientific Context

PyGmod can simulate different geodynamic scenarios (e.g. plate
subduction/collision, magma intrusion, continental drifting, etc.
[Tur02]) and processes. The main target of PyGmod is the study
of extensional geodynamic contexts. The application has been
developed as a tool for understanding the genesis and evolution of
extensional continental zones (rifts). Rifts and their final product,
passive margins, are the expression of fundamental processes
continually shaping planetary surfaces [Tur02]. They are sites
of magmatic fluid and volatile transfer from the mantle to the
surface trough flood basalt and alkaline magmatism, and from
the surface to the mantle via surface weathering, hydrothermal
systems and serpentinization. Sedimentary sequences contained
within the segmented rift systems record the interplay between
tectonics and climate throughout basin evolution, and they may se-
quester large volumes of CO2 and hydrocarbons. Like subduction
margins, rifts may be sites of voluminous and explosive volcanism.
Passive margins are sites of enormous landslides and destructive
earthquakes [Jac97], [Buc04]. The poor understanding of rift
initiation is partly due to the fact that extensive stretching, syn-
and post-rift magmatism, and post breakup sedimentation usually
overprint and bury the record of incipient extension at mature
rifts and rifted margins. Understanding how, why and when rifts
initiate and localize is important for defining factors controlling
their dynamics. The relative importance of these factors during the
inception and earliest development of a new rift is controversial.

Core Development

PyGmod is inspired by some examples available in the geody-
namic literature [Ger10], [Deu08]. These codes have been studied,
ported to Python and tested. The first Python version was serial,

GEODYNAMIC SIMULATIONS IN HPC WITH PYTHON 153

was based on the Numpy [Van11] and Scipy [Jon01] packages
to manage arrays and solved the governing differential equations.
The parallel version of the algorithm has been developed on a
multicore commodity PC with the target of the distributed shared
memory architecture systems available at CINECA [Cin]. The
porting of PyGmod from the commodity PC to a supercomputer
was not straightforward beacuse every supercomputer has a dif-
ferent hardware architecture. The MPI message-passing system
has been adopted while the Python multiprocessing module was
avoided because it is not available on all supercomputers (e.g.
the IBM Blue Gene series [Gil13]). The management of parallel
distributed arrays has been possible thanks to the Global Array
Toolkit (GA) library [Nie06] which is available in Python as
ga4py. GA hides all the complexity of managing the distributed
arrays between the nodes making them available simply as Numpy
arrays. The parallel solution of the governing equations is done
using the well known PETSc library provided by the petsc4py
package [Dal11]. Simulation results are stored in an HDF5 file
using the h5py [Col13] package. Ga4py, petsc4py and h5py are
all depending on mpi4py [Dal05], [Dal11] and provide a higher
level interface that greatly reduces the parallel programming effort.
Practically all the MPI communication in PyGmod is hidden by
the previous three packages and there are only few direct calls to
MPI methods (Figure 1).

Fig. 1: PyGmod layer diagram.

PyGmod Structure

PyGmod is a 2D thermomechanical code based on an well known
geodynamic modeling methodology characterized by the solution
of conservative finite difference schemes [Pat80] coupled with the
marker-in-cell method [Ger03], [Ger07], [Deu08]. The deforma-
tion of rocks is modeled as flow of variable viscous material as in
computational fluid dynamics [Ver07]. The governing equations
reflect the conservation laws of physics:

• conservation of mass,
• conservation of momentum (rate of change of momentum

is equal to the sum of forces on the fluid particle, second
law of Newton),

• conservation of energy (first law of thermodynamics).

These equations are coupled with rock rheological laws that
take in account stress, strain-rate, viscosity, temperature, pressure
and composition. The solution is achieved by a finite difference
conservative schema and coupled with the the moving-marker
Lagrangian approach [Bra86]. The equations are solved on an
Eulerian grid while the markers are a cloud of points which
covers the grid. The marker-in-cell methodology is characterized

by several interpolation processes from the markers to the nodes of
the grid and back [Ger03], [Deu08]. These are atomic calculations
whose execution time depends on the number of markers and the
type of interpolator (linear, bilinear, cubic, etc.). Implementation
of this algorithm is usually done on shared memory architecture
computers using the OpenMP API [Gor06]. These interpolations
unfortunately cannot be vectorized by Numpy as they need the
allocation of large temporary arrays for every MPI process and
the memory available can be very little even if the number of
processors is huge. For example, the IBM BG/Q at CINECA has
only 1 Gb of RAM available to each MPI process even if the
system has 160K cores [Gil13].

GA greatly helps to create, distribute and manage all the
arrays, both 1D and 2D, providing a shared memory style pro-
gramming environment in the context of a distributed array data
structures. GA arrays are global and can be used as if they
were stored in a shared memory environment. All details of the
data distribution, addressing, and data access are encapsulated
in the global array objects. The basic shared memory operations
supported include get, put, scatter, and gather. These operations
are truly one-sided/unilateral and will complete regardless of
any action taken by the remote process(es) which own(s) the
referenced data.

PyGmod uses a modified GA version which implements the
ARMCI-MPI [Armci] RMA (Remote Memory Access) one-sided
communication because the standard GA implementation, avail-
able at the time of the development of PyGmod, worked only on
few hardware architectures.

The MPI topology implemented by a global array is used to
split the 2D domain in Cartesian blocks along the vertical and
horizontal axes and to assign to each block the markers which
belong to it. Each block of data is then extended to partially
overlap its neighbors to avoid border effects. Markers move inside
the model domain at every time step iteration and the local portion
of markers inside each Cartesian block must be extracted again.
In each time iteration, most of the calculation is done on the
local portion of the markers and on the grid nodes using only
Numpy arrays and methods. Numerical calculation on local arrays
has been vectorized by Numpy methods wherever possible. The
following is an example of a block of code that has been vectorized
to speed up computation (up to 75x) by removing a double for-
loop:
Original code
(r0, c0), (r1, c1) = ga.distribution(self.dexy)
for i in range(dexy.shape[0]):

for j in range(dexy.shape[1]):
dexy[i, j] = (

0.5 * ((vx[i + 1, j] - vx[i, j]) /
self.dyc[i + r0] +
(vy[i, j + 1] - vy[i, j]) /
self.dxc[j + c0]))

Vectorized code
i = np.arange(dexy.shape[0])
j = np.arange(dexy.shape[1])
dexy[:] = (

0.5 * ((vx[i + 1, :][:, j] -
vx[i, :][:, j]) / self.dyc[i + r0, np.newaxis] +
(vy[i, :][:, j + 1] - vy[i, :][:, j]) /
self.dxc[j + c0]))

The governing equations are solved using the PETSc library
provided by petsc4py. PyGmod uses direct equation solvers to
achieve accurate solutions like MUMPS [Ame00] or Superlu
[Li03] beacuse the problem is 2D and current supercomputers

154 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 2: Example of on-screen log outputby four MPI tasks running with log level "info".

provide enough memory. Unfortunately GA arrays cannot be di-
rectly passed to PETSc solvers so local processor ranges of PETSc
sparse arrays and vectors must be extracted and the corresponding
data block must be retrieved as Numpy arrays from the global
array instance. The following is an example of the extraction of
the local portion of a quantity from a global array needed later to
fill PETSc arrays:
Get local PETSC ranges
istart, iend = l.getOwnershipRange()

Calculate equivalent local block of
GA array ranges
c0 = istart / dofs / (ynum - 1)
c1 = iend / dofs / (ynum - 1) + 2
r0 = 0
r1 = ynum - 1

From global GA array get needed block as
Numpy array
local_array = ga.get(

global_array, (r0, c0), (r1, c1))

In this example, l is a PETSc distributed bi-dimensional array,
dofs is the degree of freedom of the system, and ynum is the total
number of rows of the model. The local array is used to fill the
local PETSc portion of the sparse arrays and vectors. The local
solution of the equations, a Numpy array, is then put back in the
corresponding global array.

PyGmod communicates with the user by a logging system,
based on MPI, that helps the tracking of each step of the simulation
and is of paramount importance in debugging the code. The
MPILog class uses an MPI.File object’s methods to write logging
information to standard output (Figure 2) or to a file. Six log levels
are defined: critical, error, warning, notice, info and debug, with
warning as the default. Each MPI process writes its log to the
same file in a different color. Log level as well as processor ID
number can be filtered out. Log calls are invoked according to the
following syntax:
log.info(...)
log.error(...)
log.critical(...)

Each of these is a pythonic shortcut to the write method of the
MPILog object:
def write(self, inmsg, watch=['all'],

rank=True, mono=False, level=INFO):

In this example inmsg is the message string, watch is the list of
processors to which the message applies, rank is a switch to hide
the processor rank from the message, mono disables colorized
messages, and level defines the minimum level at which the
message will be printed.

Each simulation is controlled by a single configuration file
handled by the ConfigObj [Cfg] package. This file provides some
general physical constants, modeling switches, PETSc equation
solver options, mesh geometry and size, lithological geometry,
initial distribution of temperature, boundary conditions, and topog-
raphy. Units of measurements can be included in the configuration
file because the parsing system implemented converts the units
to the right ones needed by PyGmod checking also for dimen-
sionality consistency. This has been accomplished adopting the
Pint [Pint] package. The configuration file is organized in several
sections as in the following condensed example:

Physical constants
gx = 0. m / s**2
gy = 9.81 m / s**2

Ouput file
output_file = 'extension.hdf5'
log_file = 'extension.log'

Stokes solver options
stokesSolver = """

ksp_type=preonly
pc_type=lu
pc_factor_mat_solver_package=superlu_dist
mat_superlu_dist_colperm=PARMETIS
mat_superlu_dist_parsymbfact=1
"""

...
Specific sections
[Mesh]

model = "extension"
SizeAlongX = 400000
SizeAlongY = 300000
NumberOfNodesAlongX = 161
NumberOfNodesAlongY = 61
NumberOfMarkersAlongX = 500
NumberOfMarkersAlongY = 400
DistributionOfNodesAlongX = """(

'Variable(0.0, 100000.0, 2000.0, 30,
rtol=True)',

'Constant(100000.0, 300000.0, 100)',
'Variable(300000.0, 400000, 2000.0,

30, rtol=False)'

GEODYNAMIC SIMULATIONS IN HPC WITH PYTHON 155

Fig. 3: RTV screenshot of a rift simulation.

)"""
DistributionOfNodesAlongY = """(

'Constant(0.0, 80000.0, 40)',
'Variable(80000.0, 300000, 2000.0,

20, rtol=False)'
)"""

Lithological/Rheological model
[Lithologies]

[["Lithospheric mantle"]]
density = 3300 * kg/m**3
melt_density = 2700 * kg/m**3
sinFI0 = 0.6 * dimensionless
sinFI1 = 0.0 * dimensionless
GAM1 = 0.1 * dimensionless

Geometry of polygons where
lithologies are defined
[Polygons]

lid = """
0 32
0 95

48 95
48 32
"""

[Thermal Boundary Condition]
...
[Fluid Boundary Condition]
...

[Topography]
...

Modeling results are stored in HDF5 files created by the parallel
(MPI) version of the h5py package. Each time iteration is saved
in a different HDF5 file (evolution step) to avoid large files. A
main output file also contains a copy of the configuration which
generated the simulation for the entire evolution.

Results of the simulation can be explored by a viewer applica-
tion module called Real Time Viewer (RTV). RTV code is based
on Matplotlib [Hun07] and plots some of the quantities calculated
in the simulation (Figure 3). Because the visualization of over
a million markers as a cloud of points can be challenging, data
are interpolated during the simulation using the power of MPI and
saved in the HDF5 file as arrays. Thus, each processor interpolates
only a small image patch from its own local markers pool. The
interpolation uses the griddata module of Scipy with a nearest
neighbors switch. RTV can plot data from a real-time simulation
showing the current evolution step or historical data.

Each simulation can be interrupted by the user or by the
operating system and restarted from the last completed time
iteration without any data loss.

156 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Performance

PyGmod was built using optimized third party libraries to speed
up the computation and avoid the direct calls to MPI primitives
needed for the parallelization wherever possible. Some sections
(e.g. the mesh and topography objects) and some arrays are not
yet parallel. These objects and arrays are replicated on all tasks
since the size of the problems used to develop the code was not
so big so as to require further optimization. Further parallelization
should increase the speed and decrease the memory allocation.
Tests proved that marker interpolation is a critical operation that
can take a large amount of time. Interpolation is done in for-
loops as the atomic nature of the algorithm used forbids the use of
Numpy methods. Marker points contribute to the resolution of the
model and they tend to be on the order of millions dramatically
slowing down the computation. The following code is an example
of one of the interpolations in PyGmod:

Loop over markers
for mk in range(len(idx)):

Check if data is in the model domain
if self.inDomain(...):

Find upper left node of the grid
from marker coordinates
xn, yn, dx, dy = self.ul_node(...)

Linear interpolation method
self.markerBint(...)

The loop operates over all the markers inside the block assigned to
each processor and every time iteration step calls the interpolation
methods several times. Because Python loops are inherently slow,
Cython has been used to speed up markers interpolation. Most of
the original Python code has been ported to Cython with minor
modifications, just adding static typing and using pointers for
arrays. The net increase of speed with this simple technique is
almost three orders of magnitude (Table 1). The performance has
been further improved by threading the interpolation methods.
Thanks to Cython [Beh11], the Global Interpreter Lock (GIL) can
be removed to make the threads concurrent. Loops are split into
threads and each of them owns only a small section of the block
of markers assigned locally to every processor. More tests are
now taking place on the HPC facilities provided by CINECA to
understand the scalability and further optimize the code.

Final Remarks

PyGmod shows that it is possible to build a simulation code that
runs efficiently on HPC computers with a small programming
effort. Available third party Python packages (Figure 1) greatly
reduced the work needed to parallelize the algorithms. Petsc4py,
ga4py, mpi4py and h5py are efficient and handle of all the neces-
sary communication. Pure Python code can be optimized further
by using different switches or methods provided by external
packages (e.g. equation solvers). PyGmod is young code that
works without any C or Fortran. It can be modified with minor
effort, adapted to the needs of the research, and extended including
other geodynamic phenomena like melting, fluid migration, phase
changes, etc.. Open-source and efficient libraries and packages
available in the Python universe overcome the myth that Python is
only a scripting language not suited for computationally intensive
purposes or that cannot be used on HPC facilities.

Interpolation Speedup

Pure Python 1
Cython 725
Cython (2 Threads) 1187
Cython (4 Threads) 2056

TABLE 1: Performance comparision between interpolation code
adopting Cython and threading.

REFERENCES

[Ame00] P.R. Amestoy, I.S. Duff, J.Y. L’Excellent, Multifrontal parallel
distributed symmetric and unsymmetric solvers, Comput. Methods
in Appl. Mech. Eng., 184:501-520, 2000.

[Armci] ARMCI-MPI: https://github.com/jeffhammond/armci-mpi.
[Beh11] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. Sverre Seljebotn,

K.Smith, Cython: The Best of Both Worlds, Computing in Science
& Engineering, 13(2):31-39, 2011.

[Bra86] J.U. Brackbill, H.M. Ruppel, FLIP: A method for adaptively zoned,
particle-in-cell calculations of fluid flows in two dimensions, Journal
of Computational Physics, 65(2): 314-343, 1986.

[Buc04] W.R. Buck, Consequences of Asthenospheric Variability on Con-
tinental Rifting, in Rheology and Deformation of the lithosphere
at comntinental margins, editors G.D. Karner, B. Taylor, N.W.
Driscolland D.L. Kohlstedt, Columbia University Press, 1-31, 2004.

[Cfg] R. Dennis, E. Courtwright, https://github.com/DiffSK/configobj.
[Cin] Cineca, http://www.cineca.it.
[Col13] A. Collette, Python and HDF5, Unlocking Scientific Data, O’Riley

ed., 152 pp, 2013.
[Dal11] L. Dalcin, P. Kler, R. Paz, A. Cosimo, Parallel Distributed Comput-

ing using Python, Advances in Water Resources, 34(9):1124-1139,
2011.

[Dal05] L. Dalcin, R. Paz, M. Storti, MPI for Python, Journal of Parallel and
Distributed Computing, 65(9), 1108-1115, 2005.

[Deu08] Y. Deubelbeiss, B.J.P. Kaus, Comparison of Eulerian and La-
grangian numerical techniques for the Stokes equations in the
presence of strongly varying viscosity, Physics of the Earth and
Planetary Interiors, 171:92-111, 2008.

[Ger10] T.V. Gerya, Introduction to Numerical Geodynamic Modelling,
Cambridge University Press ed., 345 pp, 2010.

[Ger07] T.V. Gerya, D.A. Yuen, Robust characteristics method for modelling
multiphase visco-elasto-plastic thermo -mechanical problems, Phys.
Earth Planet. Interiors, 163:83-105, 2007.

[Ger03] T.V. Gerya, D.A. Yuen, Characteristics-based marker-in-cell
method with conservative finite-differences schemes for modeling
geological flows with strongly variable transport properties, Phys.
Earth Planet. Interiors, 140: 293-318, 2003.

[Gil13] M. Gilge, IBM System Blue Gene Solution Blue Gene/Q Application
Development, IBM RedBook ed., 188 pp, 2013.

[Gor06] W. Gorczyk, T.V. Gerya, J.A.D. Connolly, D.A. Yuen, M. Rudolph,
Large-scale rigid-body rotation in the mantle wedge and its implica-
tions for seismic tomography, G^3, 7, doi:10.1029/2005GC001075,
2006

[Hun07] J.D.Hunter, Matplotlib: A 2D graphics environment, Computing In
Science & Engineering, 9(3):90-95, 2007.

[Jac97] J. Jackson, T. Blenkinsop, The Bilila-Mtakataka fault in Malawi:
An active, 100-km long, normal fault segment in thick seismogenic
crust, Tectonics 16(1):137-150, 1997.

[Jar11] M. Jarosinskia, F. Beekmanb, L. Matencob, S. Cloetingh, Mechanics
of basin inversion: Finite element modelling of the Pannonian Basin
System, Tectonophysics, 502:121-145, 2011.

[Jon01] E. Jones, T. Oliphant, E. Peterson, SciPy: Open Source Scientific
Tools for Python, http://www.scipy.org/, 2001.

[Li03] X.S. Li, J. W. Demmel, SuperLU_DIST: A Scalable Distributed-
Memory Sparse Direct Solver for Unsymmetric Linear Systems, CM
Trans. Mathematical Software, 29(2):110-140, 2003.

[McK69] D. McKenzie, R.L. Parker, The North Pacific: an example of
tectonics on a sphere, Nature, 216(5122): 1276–1280, 1967.

[Min70] J.W Minear, M.F. Toksoz, Thermal regime of a downgoing slab and
new global tectonics, Tectonics, 75(8):1397–1419, 1970.

[Mor68] W. Morgan, Rises, Trenches, Great Faults, and Crustal Blocks,
Journal of Geophysical Research, 73(6):1959-1982, 1968.

GEODYNAMIC SIMULATIONS IN HPC WITH PYTHON 157

[Nie06] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, E.
Apra, Advances, Applications and Performance of the Global Arrays
Shared Memory Programming Toolkit, International Journal of High
Performance Computing Applications, 20(2):203-231, 2006.

[Pas02] C. Pascal, S. Cloetingh, Rifting in heterogeneous lithosphere: Infer-
ences from numerical modeling of the northern North Sea and the
Oslo Graben, Tectonics, 21(6):1-15, 2002.

[Pat80] S. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere
Series on Computational Methods in Mechanics and Thermal Sci-
ence, CRC Press ed., 180 pp, 1980.

[Pint] H.E. Grecco, Pint, http://pint.readthedocs.org/en/0.6/.
[Tur02] D.L. Turcotte, S. G. Schubert, Geodynamics, Cambridge University

Press ed., 456 pp, 2002.
[Van11] S. van der Walt, S.C. Colbert, G. Varoquaux, The NumPy Array:

A Structure for Efficient Numerical Computation, Computing in
Science & Engineering, 13:22-30, 2011.

[Ver07] H.K. Versteeg, M. Malalasekera, An Introductio to Computational
Fluid Dynamics, Pearson Education ed., 503 pp, 2007.

158 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Qiita: report of progress towards an open access
microbiome data analysis and visualization platform

The Qiita Development Team‡∗

https://www.youtube.com/watch?v=TQzXwQ9Vx08

F

Abstract—Advances in sequencing, proteomics, transcriptomics and
metabolomics are giving us new insights into the microbial world and
dramatically improving our ability to understand microbial community
composition and function at high resolution. These new technologies are
generating vast amounts of data, even from a single study or sample, leading to
challenges in storage, representation, analysis, and integration of the disparate
data types.

Qiita (https://github.com/biocore/qiita) aims to be the leading platform to
store, analyze, and share multi-omics data. Qiita is BSD-licensed, unit-tested,
and adherent to PEP8 style guidelines. New code additions are reviewed by mul-
tiple developers and tested using Travis CI. This approach opens development
to the largest possible number of experts in "-omics" fields. The heterogeneous
data generated by these disciplines led us to use a combination of Redis, Post-
greSQL, BIOM ([Atr10]), and HDF5 for relational and hierarchical storage. The
compute backend is provided by IPython’s parallel framework (http://ipython.
org/). In addition, the project depends on mature Python packages such as
Tornado (http://www.tornadoweb.org/en/stable/), click (http://click.pocoo.org/4/),
scipy (http://www.scipy.org), numpy (http://www.numpy.org), and scikit-bio (http:
//scikit-bio.org) among others. Most notably, the analysis pipeline is provided by
QIIME (http://qiime.org), with EMPeror (http://emperor.microbio.me) serving as
the visualization platform for high-dimensional ordination plots, which can be
recolored interactively and manipulated using the sample metadata.

By providing the database and compute resources at http://qiita.microbio.
me to the global community of microbiome researchers, Qiita alleviates the tech-
nical burdens, such as familiarity with the command line or access to compute
power, that are typically limiting for researchers studying microbial ecology, while
at the same time promoting an open access culture. Because Qiita is entirely
open source and highly scalable, developers can inspect, customize, and extend
it to suit their needs regardless of whether it is deployed as a desktop application
or as a shared resource.

Index Terms—Microbiome, multi-omics, open science, metagenomics, meta-
transcriptomics, metaproteomics, metabolomics

Introduction

In recent years, the importance of microbes, including bacteria,
archaea, fungi, and unicellular eukaryotes, in ecological commu-
nities has been extensively studied ([Atr11], [Atr06]). As the costs
of analytical techniques such as DNA sequencing have continued
their dramatic decline and samples become relatively easy to
collect, large volumes of data and new data types have allowed

* Corresponding author: robknight@ucsd.edu
‡ University of California, San Diego

Copyright © 2015 The Qiita Development Team. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

for the characterization of the potent effects that microbial com-
munities can impart on both host-associated ([Atr07], [Atr03]) and
environmental ([Atr09]) health. The myriad techniques that can be
used to characterize each individual sample allow researchers to
understand these communities in previously unattainable detail,
but also pose new challenges for integrating the results from
multiple levels of observational data into a coherent picture.
These techniques are colloquially called “omics” techniques and
allow researchers to study the entire collections of genes (ge-
nomics), gene transcripts (transcriptomics), proteins (proteomics),
and metabolites (metabolomics) represented in samples.

The genome of an organism is all of its genetic material; the
“metagenome” of an environmental sample is the union of all of
the genomes present in the sample. Since the genome of an organ-
ism defines the organism’s biological capabilities, metagenomic
analysis allows researchers to approach the question of what are
the organisms in a sample capable of doing, collectively? Current
techniques for performing metagenomic analysis fragment the
metagenome into small pieces, which are then sequenced in
massively parallel fashion, and genes are identified by comparison
to references containing known genes. This technique results in a
highly detailed view, but is relatively expensive due to the amount
of sequencing that must be performed and the computational effort
required ([Atr13]). A less detailed (but much cheaper and still
very useful) characterization of a microbial community can be
attained by performing targeted sequencing of marker genes. Se-
quences from marker genes are commonly grouped by similarity
into operational taxonomic units (OTUs), groupings that might
correspond to species, or genera, or classes, etc. A powerful way to
identify the OTUs present in a sample is to amplify and sequence
genes encoding components of the ribosome (rather than all of
the genes). The ribosome is a cellular component that translates
transcripts into proteins that is shared across the tree of life.
Because it is believed to be under neutral evolution, mutations
accrue at a relatively consistent rate, allowing it to be thought
of as a “molecular clock” that provides phylogenetic information
about the organism it came from ([Atr15]). In bacteria and archaea,
amplicons of the 16S small subunit ribosomal gene are the most
commonly used, while in eukaryotes the analogous 18S small
subunit ribosomal gene is used (although for fungi, often parts of
the internal transcribed spacer region are included for additional
phylogenetic signal).

The central dogma of biology is that genes are transcribed into
messenger RNAs (mRNAs), which are then translated into specific
proteins. Tight regulation at each level is required for proper

QIITA: REPORT OF PROGRESS TOWARDS AN OPEN ACCESS MICROBIOME DATA ANALYSIS AND VISUALIZATION PLATFORM 159

cellular function. If amplicon sequencing and metagenomics help
answer the questions of who’s there, and what are they capable of
doing, transcriptomics help answer the question what genes are
actually being expressed right now? Genes that are “on” can be
recognized by the presence of mRNA transcripts that identifiably
correspond to the gene. Sequencing these transcripts elucidates
which genes are actually being expressed ([Atr04]).

However, even the added depth provided by transcriptomic
analyses does not paint the full picture. First, because transcripts
are continuously being generated and degraded by cellular pro-
cesses, only a snapshot of the transcriptome can be obtained from a
single sample. Second, the regulatory mechanisms that govern the
translation of transcripts into proteins do not treat all transcripts
uniformly. Indeed, the abundances of proteins in a cell correlate
only weakly with the abundances of their respective transcripts, as
reviewed in [Atr08]. Therefore, protein levels must be measured
directly using proteomics techniques to answer the question of
how actively are observed transcripts actually being expressed
as proteins? Proteins are inherently more complex molecules
than DNA and RNA, and proteomics techniques fundamentally
differ from genomics and transcriptomics techniques as they do
not sequence nucleic acids. Instead of using genetic sequencers,
instruments called mass spectrometers are used to fragment pro-
teins and analyze the resulting charged peptides. The spectrum of
peptides produced from a fragmented protein identifies it like a
fingerprint (reviewed in [Atr01]).

The last “omics” technique considered here, metabolomics,
provides an even more detailed view of cellular function by
observing the presence of specific metabolites or all of the
metabolites in a sample. Identifying the metabolites present in
an organism (or group of organisms) helps answer the question, to
what extent are these organisms interacting with and affecting their
environments? Similar to proteomics, mass spectrometers are used
to identify compounds and gauge metabolic interactions (reviewed
in [Atr05]).

More and more commonly, studies are employing two or
more of these techniques in “multi-omic” analyses of samples.
Integrating these analyses and gaining biological insights from the
preponderance of data resulting from each applied technique is a
considerable challenge. For each technique, computational tools
that process and digest raw data have been developed to varying
levels of maturity, but orchestrating these tools into a coherent
multi-omic analysis package has not yet been accomplished.

Moreover, the extremely rich datasets generated by each multi-
omic study are valuable resources that can form the basis of sub-
sequent “meta-analyses,” wherein the original data are augmented
with data from other new or existing studies. Meta-analysis has
already been shown to be a powerful approach (Mason et al. 2014),
and the potency of the approach increases as individual studies
provide more and more detailed characterizations of their samples,
enabling reuse of the data. The power of this approach underscores
the scientific community’s need for centralized resources for
standardized, open access data.

Here, we present a progress report of Qiita, a multi-omic
platform for meta-analysis that stresses standardization of data
formats, open access to data and results, and methods for inte-
grating samples across studies. As we design Qiita, we intend to
account for the most common use-cases that a modern microbiome
researcher will face. The following list briefly describes tasks that
are streamlined using Qiita:

• Perform a microbiome analysis without any required
knowledge of command line tools.

• Deposition of biological sequences into a public data
repository, in specific the European Bioinformatics Insti-
tute’s European Nucleotide Archive (ENA).

• Searching for studies based on sample and study metadata.
• Hosting of sequence data, sample metadata and processed

files like BIOM tables.
• Provide a platform to collaboratively work on a dataset.
• Combine one or more studies into a single dataset to

perform further specialized analyses.
• Analyze and organize different data types (16S, 18S,

WGS, etc) into a single location where the sample meta-
data is enforced to be consistent across representations.

The list of tasks above, while not comprehensive, exemplifies
some commonly encountered scenarios where Qiita is a powerful
tool. Please also note that the last point regarding integration of
multiple data types is a work in progress at this point. Currently,
only portions of the 16S workflow are implemented, but there
are plans for adding additional workflows (see future directions).
Although other platforms and individual tools exist that are capa-
ble achieving one or more of these goals independently, such ad
hoc pipelines are often troublesome, time consuming, and error
prone.

Structure and Operation

Modular organization

Qiita follows a model-view-controller (MVC) architecture, with a
Python module for each level (qiita_db, qiita_pet, and qiita_ware,
respectively). Modularizing the platform in this way allows for
flexibility in the case that different technologies are adopted as
the project matures. It also permits customizability, since a user
maintaining a deployment can choose to replace any of these
modules with one of their own design as long as it operates using
the same inter-module APIs.

Qiita-DB

The qiita_db module defines a database schema in PostgreSQL
(http://www.postgresql.org/) that serves to store and relate study
metadata as well as system data. The schema was designed in
DBSchema (http://www.dbschema.com/), which provides a con-
venient GUI for defining the table structure, setting constraints,
and generating documentation. Although the project is under
heavy development, there are active deployments of Qiita (e.g.,
http://qiita.microbio.me and http://qiita.ibdmdb.org). As develop-
ment progresses and modifications to the database schema are
required, they must be implemented and deployed in a way that
preserves active deployments’ data. Therefore, migrations are per-
formed using a combination of SQL- and Python-based patches. In
order to facilitate brand new deployments as well as accommodate
upgrading active deployments, Qiita’s GitHub repository contains
the schema definition ab initio as well as all patches needed to
upgrade it (modifying data of active deployments as needed) to the
most up-to-date version. The database itself contains information
about the currently deployed patch version so that what patches
need to be applied, if any, can easily be determined. Psycopg
(http://initd.org/psycopg/) provides Python bindings for interact-
ing with PostgreSQL.

Several aspects of the data model itself bear mentioning. Users
are identified by an email address and a password supplied upon

160 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 1: Core structure of a study in Qiita. The study metadata broadly
describes information about the study, the sample and preparation
metadata refer to the biological specimens and their preparation
method, the raw data refers to the files as generated by the instrument,
quality controlled sequence data is generated for convenience and is
used to create the processed tables.

account creation. Passwords are salted and hashed with hashlib
using bcrypt (https://github.com/pyca/bcrypt/). After users verify
their email addresses, they are free to create “studies” by supplying
some basic information such as the title of the study, an abstract,
and what kind of environment is being studied, et al. Most of this
information can be edited at any time after creation. Each study
serves as a logical container for its associated data, metadata, and
results files.

Because the system was designed with multi-omic analyses in
mind, a distinction is made between metadata associated with the
samples themselves (sample metadata) and metadata associated
with preparations of those samples for biological processing
(preparation metadata). In other words, sample metadata is in-
variant information about the samples themselves (e.g., the gender
or age of the subject that was sampled), while preparation meta-
data for a 16S amplicon analysis of those samples would differ
from preparation metadata for a proteomic analysis of the same
samples. Note that the set of samples in two different preparation
metadata might not overlap (or might overlap only partially) since
not all samples are analyzed using all available techniques (see
Figure 1). For example, the database currently contains a public
study of about 100 samples taken from the site of the Deepwater
Horizon oil spill in 2011 (study ID 1197; [Atr09]) where both 16S
data and metagenomic data were collected. Some of the metadata
collected (including the amounts of dissolved inorganic nitrogen,
dissolved phosphate, amount of toluene, etc.) is specific to the
samples themselves and will not vary with preparation; this is
the sample metadata. On the other hand, some of the metadata is
specific to a particular preparation of the samples for 16S analysis
(including the region that was amplified, the primers that were

used, the date the sequencing was performed, etc.); this is one
set of preparation metadata. The subset of the full ~100 samples
that were prepared for 16S analysis would be represented in this
preparation metadata. For the metagenomic preparation, a smaller
subset of the full ~100 samples were analyzed, so the metadata for
that preparation would only contain information on those samples,
and the data tracked would differ from the preparation metadata
for the 16S analysis (for example, the preparation metadata for
the metagenomic analysis would not contain a column for the 16S
region).

Qiita (and the administrator(s) in a multi-user system) attempts
to standardize as many fields of the metadata as possible using
controlled vocabularies and ontologies when available. However,
users are permitted to supply whatever sample and preparation
metadata they deem relevant to their studies. Since the data that is
supplied by users cannot be predicted a priori, a dynamic approach
to storing the metadata must be taken. New tables are created
dynamically using a consistent naming convention to keep track
of each study’s sample metadata and various preparation metadata,
and another table keeps track of what fields are available in each
metadata table and what the datatype of the field is. Like metadata
fields, processing parameters are also standardized in order to
minimize the impact of technical effects that would arise from
heterogeneous processing. Tables for each key processing step,
including demultiplexing, quality filtering, and OTU picking, keep
track of these standard sets of parameters.

The qiita_db module also contains Python objects and utility
functions that mediate filesystem and database interactions, similar
in many respects to an object-relational mapper (ORM). Uploaded
metadata files and raw data files (e.g., sequence data from a
sequencing instrument) are stored in a directory structure with
indirection to support horizontal scaling of file systems. Unlike
the information in metadata files, the contents of raw data files
are not stored in the database. Instead, the filepaths are recorded.
This design facilitates processing the raw data files using external
programs (e.g., programs that are implemented or wrapped in
qiita_ware; see below) that need filehandles.

Qiita-pet

The qiita_pet module defines components supporting a browser-
based user interface. In a single-user deployment, tornado (http:
//www.tornadoweb.org/) handles all requests and serves all pages.
In a multi-user deployment, nginx (http://nginx.org/) is required
to serve downloads. While tornado is proficient at serving small
or moderate files in small chunks, serving very large files can bog
down the single-threaded server. Instead, tornado can be used to
handle the initial request and to determine whether the file should
be served (e.g., whether user has permission to access the file)
before handing the request off to nginx to perform the actual file
transfer. Another good use of nginx is as a load balancer sitting in
front of several tornado web servers running on different ports.

Tornado templates provide a user interface that is based
largely on bootstrap (http://getbootstrap.com/) and jQuery (https:
//jquery.com/). Other packages and extensions are used for various
interface elements (for example, WTForms (https://github.com/
wtforms/wtforms) is used for handling some form data, cho-
sen (http://harvesthq.github.io/chosen/) provides improved select
and multiple select form elements, and DataTables (https://www.
datatables.net/) provides interactive and pleasantly formatted tab-
ular displays). Asynchronous JavaScript and XML (AJAX) is used
for the majority of asynchronous client-server communication,

QIITA: REPORT OF PROGRESS TOWARDS AN OPEN ACCESS MICROBIOME DATA ANALYSIS AND VISUALIZATION PLATFORM 161

although websockets are employed when push notifications are
useful (for example, when the server wants to notify a client that
a processing job has completed).

Qiita-ware

The qiita_ware module contains functions for manipulating input
files, dispatching processing jobs, and performing operations on
results files (e.g., submitting them to external data repositories
like the European Bioinformatics Institute). Qiita is designed
to be highly parallelizable through the use of IPython engines.
Currently, the best supported workflow is for performing 16S
amplicon analysis. For this workflow, scripts in the Quantitative
Insights Into Microbial Ecology package (QIIME; [Atr02]) are
executed from IPython engines to process users’ input files and
generate visualizations. Jobs are dispatched using mustached-
octo-ironman (MOI; https://github.com/biocore/mustached-octo-
ironman/), which serves the dual purpose of managing the submis-
sion of jobs and communicating their statuses to the browser-based
interface through a websocket using pubsub calls with Redis as a
message broker. Two packages are used to interface with Redis:
redis-py (https://github.com/andymccurdy/redis-py) and toredis
(https://github.com/mrjoes/toredis/), the latter of which provides
a non-blocking mechanism for handling pubsub with Redis.

Command line interface

In addition to the browser-based interface provided by qiita_pet, a
command line interface (CLI) is also available. Qiita’s scripts di-
rectory contains Python scripts that provide a command line inter-
face to many of the system’s capabilities through the click frame-
work (http://click.pocoo.org/4/). The top-level qiita click group
has subgroups (db, ware, and pet) for interfacing with each of the
aforementioned modules along with a maintenance subgroup for
performing administrative actions and probing the system’s status.
Note that all of the CLI commands assume that the user executing
the commands has administrator access to Qiita.

Data access control

Qiita can be deployed as either a single-user or multi-user system.
A single-user deployment enforces virtually no data access restric-
tions; the sole user has ownership of all data in the system. The
single-user deployment is intended for users who want a system
that organizes their data and provides a graphical interface for
performing analyses and meta-analyses. A multi-user deployment
is more complex and depends on a group of administrators (at least
one administrator is required) who moderate and curate additions
and certain modifications to data in the system. Access to users’
data is restricted based on the data’s status, which can be one of
sandboxed, private, or public.

Data that is sandboxed or private is visible only to its owner
and other users with whom the owner explicitly chooses to share
the data; data that is public is visible to all users of the system.
Any user is free to upload, process, and explore his or her own
sandboxed data using the full suite of tools provided, but the data
is only minimally validated. The purpose of the sandboxed status
is to allow users to get a quick look at their data -- and even
rapidly compare it to other data in the system -- before expending a
potentially large amount of time and effort detailing and correcting
metadata-related minutiae.

Private data is assured to be maximally compatible with
existing data in the system. Because computational validation can
provide only a limited guarantee of compatibility, administrator

approval is required to change a study from sandboxed to pri-
vate status after a manual curation process. Manual curation helps
ensure that new metadata uses controlled vocabulary and ontology
terms where available, that applicable standards are followed (e.g.,
MIMARKS for marker gene sequence-related metadata), and that
new user-defined metadata fields are introduced sparingly (for
example, if there were already a field called “sex” in one or more
existing studies, the curator would suggest amending a proposed
“gender” field to avoid having multiple fields that contain the same
class of information). It is possible but discouraged to revert data
from private to sandboxed since another round of curation would
be required to make it private again.

Once data is private, it is up to the user to decide if and when to
make the data public at his or her discretion. At this stage, all users
of the system are permitted to download and analyze the data, and
the owner of the data can submit the data and metadata to a public
repository such as the European Bioinformatics Institute (EBI;
https://www.ebi.ac.uk). Reverting data from public to private has
limited efficacy (since other users might have downloaded and/or
performed analyses on the data) and requires administrator action.

Configuration

By default, Qiita will look for a configuration file in a default
location where an example configuration file is supplied. This
behavior can be overridden by setting the QIITA_CONFIG_FP
environment variable. This configuration file controls the behavior
of various aspects of Qiita and its dependencies, including Post-
gres, IPython (http://ipython.org; [Atr12]), Redis (http://redis.io/),
and MOI.

Roadmap of future directions

Qiita is currently in alpha release and under active development.
New functionality is continually being added, and these changes
have the potential to affect all of the aforementioned submodules
and interfaces, but any changes will maintain backwards com-
patibility with existing deployments. One planned enhancement
will allow deployments to be “branded,” so that not every Qiita
deployment looks identical. In addition to supporting cosmetic
changes, for example to logos or graphics, we will support the
specification of multiple “portals” that coexist on one system and
access a common database, but provide access to only desired
subsets of the data. For example, we plan to introduce an Earth
Microbiome Project ([Atr06]; EMP) portal that provides access to
only EMP studies.

The most significant change currently planned will be the
implementation of a plug-in system designed to support modular
expansion of the system with new processing capabilities while
maintaining a common user interface. We intend the plug-in
system to support extensions to both the database schema and the
Python framework by providing common interfaces to the main
system. To demonstrate the feasibility of this approach, the current
16S analysis pipeline will be migrated to be the first plug-in. New
users should note that right now, only portions of the 16S workflow
are implemented. However, the data model and modularity that we
have designed and built into the system will facilitate the addition
of additional pipelines (including metagenomics, metaboloomics,
and proteomics) through this upcoming plug-in system.

Another important change will affect data processing. Right
now, in order to ensure consistent processing workflows, users can
upload only raw data for processing on the system using standard-
ized methods. However, the ability to enter the data processing

162 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 2: Embeded beta diversity plot displayed using EMPeror show-
casing an example dataset where samples are colored by the body
habitat from where they were collected.

workflows at downstream steps is a frequently requested feature
that we plan to support. For the 16S analysis pipeline, users will be
able to upload sequence files that have already been demultiplexed
and/or quality filtered (e.g., by the sequencing center) or even
BIOM tables of OTU picking results. The downside to these
alternative pipeline entry points is that the standardized processing
that is applied to other studies in the system cannot be guaranteed.
For this reason, processing results that do not originate from raw
data cannot be made available for public use like other results.

Due to the size and complexity of this nascent project, Qiita’s
documentation for users and developers is continuously evolv-
ing. For developers, the Numpydoc-formatted docstrings (https:
//github.com/numpy/numpydoc) that have already been added,
which describe the system’s Python objects and functions, will be
rendered using sphinx (http://sphinx-doc.org/) and supplemented
by markdown documents that provide additional details or instruc-
tions. For users, separate documentation will be made available
covering key design concepts and how to interact with the system
through the web interface.

Interactive Visualizations

Allowing users to share, process, and combine their datasets easily
does not ensure that interesting conclusions or insights will be
generated. Only by carefully cross-examining results with sample
metadata can correlations be observed and hypotheses developed.
When working with large datasets (or combinations of datasets),
effective visualizations are indispensable for presenting informa-
tion in an intuitive manner and accelerating hypothesis genera-
tion. Collaborative efforts benefit greatly from visualizations that
are portable and lightweight, qualities that allow researchers to
communicate results and ideas to one another seamlessly.

One application that has proven useful to a large number
of microbiome researchers is EMPeror ([Atr14]). While many
existing tools are capable of displaying scatter plots, none of
them actually integrates the sample metadata into the visualization
on the fly while providing publication quality graphics. EMPeror
accomplishes this integration, for example Figure 2 shows EM-
Peror executing within Qiita, meaning that users can interactively

recolor points in space based on a metadata field using an intuitive
browser-based interface. Other graphical manipulations of the
points are also available, such as resizing or changing the opacity
of arbitrary subsets of points. These capabilities shorten the gap
between running a purely exploratory analysis and producing
publication-quality figures.

As the development of EMPeror matures, other enhancements
are being added, including the ability to view and interact with
EMPeror plots from within an IPython notebook, supplementing
textual descriptions with interactive plots. This feature is still in
active development and will be available in a future release.

Since 2010, QIIME has provided the tools that utilize a
sample’s metadata to visualize taxonomic summaries, rarefaction
curves, ordination plots, and even histograms of beta diversity
distances. However these tools are usually limited, either because
they are not extensible, lacking an interface that other web applica-
tions might use, or because they do not effectively provide both in-
teractive and publication-quality static plots. The need for in-
teractive, lightweight, and extensible browser-based visualization
tools like EMPeror grows with the popularity of web-based scien-
tific analysis platforms like BaseSpace (https://basespace.illumina.
com/), Galaxy (https://galaxyproject.org/), iPlant (http://www.
iplantcollaborative.org/), and KBase (https://kbase.us/), among
others.

Conclusions

Qiita provides a centralized resource where researchers can add
their multi-omic datasets and process them in a standardized
manner that maximizes their utility in meta-analyses. Organizing
data and results, managing computational work, and interacting
with all of the available tools poses a significant technical burden
for researchers to surmount. Single-user deployments of Qiita
help ameliorate this burden for individuals. Meanwhile, multi-
user deployments serve as hubs that coordinate research efforts by
facilitating the sharing of data and communication between users.
Furthermore, a large, centralized, multi-user deployment that is
maintained by the Qiita developers and staff at the University
of California, San Diego, is available at http://qiita.microbio.me,
where free data storage and compute clusters are provided to
users. Regardless of the mode of deployment, a growing set of
interactive results visualizations are provided by browser-based
tools like EMPeror to accelerate the generation and exploration of
new hypotheses.

REFERENCES

[Atr01] Aebersold R, Mann M, “Mass spectrometry-based proteomics,” Na-
ture 2003 Mar 13;422(6928):198-207.

[Atr02] Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD,
Costello EK, Fierer N, Pea AG, Goodrich JK, Gordon JI, Huttley GA,
Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald
D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ,
Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R,
“QIIME allows analysis of high-throughput community sequencing
data,” Nature Methods 2010 May 7;7(5):335-6.

[Atr03] Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R,
“Bacterial community variation in human body habitats across space
and time,” Science. 2009 Dec 18;326(5960):1694-7. doi: 10.1126/sci-
ence.1177486.

[Atr04] Creecy JP and Conway T, “Quantitative bacterial transcriptomics
with RNA-seq,” Curr Opin Microbiol. 2015 Feb;23:133-40. doi:
10.1016/j.mib.2014.11.011. Epub 2014 Dec 5.

[Atr05] Dettmer K, Aronov PA, Hammock BD, “Mass spectrometry-based
metabolomics,” Mass Spectrom Rev. 2007 Jan-Feb;26(1):51-78.

QIITA: REPORT OF PROGRESS TOWARDS AN OPEN ACCESS MICROBIOME DATA ANALYSIS AND VISUALIZATION PLATFORM 163

[Atr06] Gilbert JA, Jansson JK, Knight R, “The Earth Microbiome
project: successes and aspirations,” BMC Biology 2014, 12:69
doi:10.1186/s12915-014-0069-1.

[Atr07] Goodrich JK, Di Rienzi SC, Poole AC, Koren O, Walters WA,
Caporaso JG, Knight R, Ley RE, “Conducting a microbiome study,”
Cell 2014,158(2):250-62. doi:10.1016/j.cell.2014.06.037.

[Atr08] Maier T, Güell M, Serrano L, “Correlation of mRNA and protein in
complex biological samples,” FEBS Lett. 2009 Dec 17;583(24):3966-
73. doi: 10.1016/j.febslet.2009.10.036.

[Atr09] Mason OU, Scott NM, Gonzalez A, Robbins-Pianka A, Bælum J,
Kimbrel J, Bouskill NJ, Prestat E, Borglin S, Joyner DC, Fortney
JL, Jurelevicius D, Stringfellow WT, Alvarez-Cohen L, Hazen TC,
Knight R, Gilbert JA, Jansson JK, “Metagenomics reveals sediment
microbial community response to Deepwater Horizon oil spill,” ISME
J. 2014 Jul;8(7):1464-75. doi: 10.1038/ismej.2013.254.

[Atr10] McDonald D, Clemente JC, Kuczynski J, Rideout JR, Stombaugh J,
Wendel D, Wilke A, Huse S, Hufnagle J, Meyer F, Knight R, Caporaso
JG, “The Biological Observation Matrix (BIOM) format or: how I
learned to stop worrying and love the ome-ome,” Gigascience 2012
Jul 12;1(1):7. doi: 10.1186/2047-217X-1-7.

[Atr11] NIH HMP Working Group, Peterson J, Garges S, Giovanni M,
McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand
KA, Deal C, Baker CC, Di Francesco V, Howcroft TK, Karp RW,
Lunsford RD, Wellington CR, Belachew T, Wright M, Giblin C,
David H, Mills M, Salomon R, Mullins C, Akolkar B, Begg L, Davis
C, Grandison L, Humble M, Khalsa J, Little AR, Peavy H, Pontzer C,
Portnoy M, Sayre MH, Starke-Reed P, Zakhari S, Read J, Watson B,
Guyer M, “The NIH Human Microbiome Project,” Genome Res. 2009
Dec;19(12):2317-23. doi: 10.1101/gr.096651.109.

[Atr12] Pérez F, Granger B, “IPython: A System for Interactive Scientific
Computing,” Computing in Science and Engineering, vol. 9, no.
3, pp. 21-29, May/June 2007, doi:10.1109/MCSE.2007.53. URL:
http://ipython.org

[Atr13] Scholz MB, Lo CC, Chain PS, “Next generation sequencing
and bioinformatic bottlenecks: the current state of metagenomic
data analysis,” Curr Opin Biotechnol. 2012 Feb;23(1):9-15. doi:
10.1016/j.copbio.2011.11.013.

[Atr14] Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R, “EMPeror:
a tool for visualizing high-throughput microbial community data,”
Gigascience 2013 Nov 26;2(1):16. doi: 10.1186/2047-217X-2-16.

[Atr15] Woese CR, “Bacterial evolution,” Microbiol Rev. 1987 Jun; 51(2):
221–271.

164 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Python in Data Science Research and Education

Randy Paffenroth§∗, Xiangnan Kong‡

https://www.youtube.com/watch?v=EUEHOYl0mRg

F

Abstract—In this paper we demonstrate how Python can be used throughout
the entire life cycle of a graduate program in Data Science. In interdisciplinary
fields, such as Data Science, the students often come from a variety of different
backgrounds where, for example, some students may have strong mathematical
training but less experience in programming. Python’s ease of use, open source
license, and access to a vast array of libraries make it particularly suited for such
students. In particular, we will discuss how Python, IPython notebooks, scikit-
learn, NumPy, SciPy, and pandas can be used in several phases of graduate
Data Science education, starting from introductory classes (covering topics such
as data gathering, data cleaning, statistics, regression, classification, machine
learning, etc.) and culminating in degree capstone research projects using more
advanced ideas such as convex optimization, non-linear dimension reduction,
and compressed sensing. One particular item of note is the scikit-learn library,
which provides numerous routines for machine learning. Having access to such
a library allows interesting problems to be addressed early in the educational
process and the experience gained with such “black box” routines provides a firm
foundation for the students own software development, analysis, and research
later in their academic experience.

Index Terms—data science, education, machine learning

Introduction

Data Science is a burgeoning field of study that lies at the
intersection of statistics, computer science, and numerous applied
scientific domains. As is common within such interdisciplinary
domains of study, Data Science education, mentoring, and research
draws ideas from, and is inspired by, several other domains
such as the mathematical sciences, computer science, and various
businesses and application domains. Perhaps just as importantly,
students who wish to pursue education and careers in Data
Science come from similarly diverse backgrounds. Accordingly,
the challenges and opportunities of being an educator in such a
domain requires one to reflect on appropriate tools and approaches
that promote educational success. It is the authors’ view, and
experience, that the Python scripting language can be an effective
part of the Data Science curriculum for several reasons such as its
ease of use, its open source license, and its access to a vast array
of libraries covering many topics of interest to Data Science.

Worcester Polytechnic Institute (WPI) has recently (fall 2014)
begun admitting students into its new Data Science Master’s

* Corresponding author: rcpaffenroth@wpi.edu
§ Worcester Polytechnic Institute, Mathematical Sciences Department and
Data Science Program
‡ Worcester Polytechnic Institute, Computer Science Department and Data
Science Program

Copyright © 2015 Randy Paffenroth et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

degree program and, as of spring 2015, has also initiated a Data
Science Ph.D. program. Even at this early stage, the program has
been quite fortunate to receive many more applications from stu-
dents then it can reasonably admit. The authors have the pleasure
of being faculty members in the program and have the honor of
teaching a number of the courses on offer. In addition, as long
time Python users (for one of them since 1997 in fact [Paf99]),
the authors were intrigued by the possibility of leveraging Python
in the graduate Data Science curriculum and this monograph
describes some of the experiences, both successes and challenges,
gained from that effort. Of course, it is much too early to make
any comments on the sustained effect of using Python for graduate
Data Science education, however, perhaps the reader will find
some value in the authors’ experiences, even at this early date.

Of course, we are not the first to suggest Python’s effectiveness
in an education and research environment. In fact, the Python
scripting language is quite popular in numerous problem domains
and Python has seen wide used in education, see e.g., [Mye07]
and [Sta00]. In fact, it ranks quite highly in many surveys of
programming language popularity [OGr14], it is seeing substan-
tial growth within the Data Science community [Sin14], and is
generally speaking quite easy to learn [Lut13].

However, it is not our purpose here to focus on Python in
general, but rather to focus on its use in Data Science education
and research. With that in mind, herein we will focus on a small
number of case studies that provide insights into how we have
leveraged Python in that domain.

In particular, herein we will discuss the use of Python at three
different levels of Data Science education and research. First,
one of the courses that is offered as part of our Data Science
curriculum, and in which the authors and others have leveraged
Python, is DS501–"Introduction to Data Science". The idea of
DS501 is to provide an introductory overview of the many fields
that comprise Data Science and it is intended that DS501 be
one of the first classes a new student takes when entering the
program. Second, one of the authors has also used Python to
support MA542–"Regression Analysis". MA542 is a somewhat
more advanced class that is a (core) elective in the Data Science
program as well as being a class taken by many students who
are seeking degrees in the Mathematical Sciences department.
Finally, the authors mentor a number of students’ research projects
within the Data Science Program, the Mathematical Sciences
Department, and the Computer Science Department. Many of
these research projects leverage Python in various ways, and
having access to a common code base allows the various student
projects to build off of one another.

Two key themes will permeate our discussion in the following

PYTHON IN DATA SCIENCE RESEARCH AND EDUCATION 165

sections. First, the Python community provides easy access to a
vast array of libraries. Even though Data Science education and
research draws from many other domains, Python was always
there with a library ready to support our work. Second, and
perhaps more subtly, having access to a language which is easy
to use, but provides access to many advanced libraries, allows
one to carefully craft the difficulty and scope of homework
assignments, class projects, and research problems. In particular,
Python allows students to tackle specific aspects of real world
problems, without being overly burdened with details that are
extraneous to their particular learning objectives. Both properties
make Python particularly advantageous.

Finally, in an effort to assist the reader who is not steeped in
Python, we will attempt to provide a range of references so that
the interested reader can learn more about the specific libraries
we leverage in our work. While in certain circles the libraries we
mention are well known, we thought it would be useful to collect
these references together into a single document.

DS501 Introduction to Data Science

DS501–"Introduction to Data Science" is intended to be one of the
first classes a new student takes when entering the Data Science
program at WPI, and the goal is to provide a high level overview
of a wide swath of the material that a burgeoning Data Scientist
should know. In particular, the course is described as:

This course provides an overview of Data Science,
covering a broad selection of key challenges in and
methodologies for working with big data. Topics to
be covered include data collection, integration, man-
agement, modeling, analysis, visualization, prediction
and informed decision making, as well as data security
and data privacy. This introductory course is integrative
across the core disciplines of Data Science, including
databases, data warehousing, statistics, data mining, data
visualization, high performance computing, cloud com-
puting, and business intelligence. Professional skills,
such as communication, presentation, and storytelling
with data, will be fostered. Students will acquire a
working knowledge of data science through hands-on
projects and case studies in a variety of business, engi-
neering, social sciences, or life sciences domains. Issues
of ethics, leadership, and teamwork are highlighted. –
http://www.wpi.edu/academics/catalogs/grad/dscourses.html

As one might imagine from such an ambitious description,
finding the right level of detail for the course can be quite
challenging. One must consider the fact that many of the students
have quite varied backgrounds. Some students are experts in
mathematics and have less training in computer science or soft-
ware development, while others find themselves in the opposite
situation.

Space does not allow for a fulsome description of the class
content and, in any event, such a discussion would distract us from
our focus on Python. However, in the authors’ view, one important
feature of such a class is that the students should be able to get
"their hands dirty" playing with real data both early and often.
Students can often find inspiration by seeing the ideas developed
as part of the lectures being put to use on problems of practical
interest.

With all of the above in mind, it was decided to have four
interconnected case studies as major learning activities for the

class. Each case study is intended to build upon the previous one
with the students solving interesting and pertinent problems in
Data Science at every step. Accordingly, our focus here will be on
these case studies and the substantial role that Python had to play
in their development.

Case Study One

The idea of the first case study in DS501 is to perform basic
data gathering, cleaning, and collection of statistics. For this case
study we choose our data source to be the Twitter Data Streaming
API [Rus13], [Twi15]. Already, Python begins to demonstrate its
usefulness, since it allows ready access to the Twitter API through
the python-twitter library [Ptw15].

Another key feature of the case studies in DS501 is that
we chose to use IPython notebooks [Per07] both to provide the
assignments to the students and to have the students submit
their results. Using IPython notebooks for both of these tasks
provided a number of advantages. First and foremost, it let the
instructors provide the students with skeleton implementations
of their assignments and allowed the students to focus on their
learning objectives. Second, it provide a uniform and easy to use
development environment for the students’ efforts. As DS501 is
not a programming class, per se, leveraging IPython notebooks
made the introduction of Python to those students unfamiliar with
it substantially easier.

For example, in the IPython notebooks we are able to provide
code examples to get the students started with their development
work. For example, we could provide code similar to the following
as a launching pad for their efforts (see [Twi15] for details and
code example is based upon [Rus13]):
import twitter
#---

Define a Function to Login Twitter API
def oauth_login():

Go to http://twitter.com/apps/new to create an
app and get values for these credentials that
you'll need to provide in place of these empty
string values that are defined as placeholders.
See https://dev.twitter.com/docs/auth/oauth
for more information on Twitter's OAuth
implementation.

CONSUMER_KEY = '<Insert your key>'
CONSUMER_SECRET ='<Insert your key>'
OAUTH_TOKEN = '<Insert your token>'
OAUTH_TOKEN_SECRET = '<Insert your token>'

auth = twitter.oauth.OAuth(OAUTH_TOKEN,
OAUTH_TOKEN_SECRET,
CONSUMER_KEY,
CONSUMER_SECRET)

twitter_api = twitter.Twitter(auth=auth)
return twitter_api

#--
Your code starts here
Please add comments or text cells in between
to explain the general idea of each block of the
code. Please feel free to add more cells below
this cell if necessary.

In this example we provide a skeleton that allows the students
to focus on the objective of analyzing tweets and hashtags with
frequency analysis and not have to struggle with the details
of Twitter authentication. Using Python, and the skeleton code
provided by the instructors, the student were able to gather and

166 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

analyze many thousands of tweets and learn important lessons
about data gathering, data APIs, data storage, and basic analytics.

Case Study Two

Building upon the skills gained in the first case study, the second
case study asks the students to analyze the MovieLens 1M Data
Set [Mov15], which contains data about how users rate movies.
The key learning objectives are to analyze the data set, make
conjectures, support or refute those conjectures with data, and
use the data to tell a compelling story. In particular, the students
are not only asked to perform several technical tasks, but they
must also propose a business question that they think this data can
answer. In effect, they are expected to play the role of a Data
Scientist at a movie company and they must convince "upper
management", who are not presumed to be technically minded,
that their conjecture is correct.

While a seemingly tall order for only the second case study,
Python again shows its utility. In particular, just as in case study 1,
the assignment is provided in an IPython notebook, and the student
is required to submit their work in the same format, thereby
leveraging the skills learned in the first case study.

However, in this case study we introduce several important
Python libraries that support Data Science including Numpy
[Wal11], matplotlib [Hun07], and, perhaps most importantly, pan-
das [McK10]. As is perhaps well known to the readers of this
text, Numpy provides a vast selection of routines for numerical
processing, including powerful array and matrix/vector classes,
while matplotlib allows for plotting of data and generation of
compelling figures. Finally, pandas provides many tools for data
processing, including a structure called a DataFrame (inspired by
a data structure with the same name in the R language [RCT13]),
which facilitates many data manipulations. Note, we are certainly
not the first to consider this collection of libraries to be important
for Data Science, and this particular case study was inspired by
the excellent book "Python for Data Analysis: Data Wrangling
with Pandas, NumPy, and IPython", by Wes McKinney [McK12]
(which is required reading for this particular assignment).

Many of the tasks in this case study revolve around question
like:

• How many movies have an average rating over 4.5 overall?
• How many movies have an average rating over 4.5 among

men? How about women?
• How many movies have a median rating over 4.5 among

men over age 30? How about women over age 30?
• What are the ten most popular movies given a reasonable,

student derived, definition of "popular"?

and the visualization of the data by way of:

• Plotting a histogram of the ratings of all movies.
• Plotting a histogram of the number of ratings each movie

received.
• Plotting a histogram of the average rating for each movie.
• Plotting a histogram of the average rating for movies

which are rated more than 100 times.
• Making a scatter plot of men versus women and their mean

rating for every movie.
• Making a scatter plot of men versus women and their mean

rating for movies rated more than 200 times.

Note, there are a number of important learning objectives
that we wish to support. First, several terms are, intentionally,

only vaguely defined in the assignment. For example, the precise
definition of "popular" is left to the student to derive. As is often
the case is real world Data Science, one of the key first steps of
analysis is to decide precisely what the question of interest is.
Second, the student is expected to make hypotheses or conjectures
based upon the definitions they come up with. For example, the
student might conjecture that men’s and women’s rating for certain
genres are highly correlated, while for other genres their ratings
more independent. Finally, the students must try to either prove,
or just as interestingly, disprove their conjectures based upon the
data.

Diving a bit more deeply into some of the specific functionality
that we leverage in Python, we note that pandas [McK10] is
particularly useful for these kinds of data analysis questions. In
particular, to any Python aficionado, it is likely to be clear that
there are many ways to process the data to answer the questions
above, ranging from the brute force to the elegant.

To begin, we note that the MovieLens 1M Data Set itself is
actually provided in three different files. First is a file containing
the information regarding individual users, indexed by a unique
user_id. Second is a file containing the information regarding each
movie, indexed by a unique movie_id. Finally, and perhaps most
importantly, is a file which contains ratings (and time stamps)
indexed by a pair of user_id and movie_id.

Already we can perceive a thorny issue. Clearly, the questions
of interest can only be answered by appropriate cross referencing
between these three files. For example, all three files must be refer-
enced to answer a question as seemingly straight forward as "how
many action movies do men rate higher than 4?" While perhaps not
too troublesome for students who are adept programmers, the cross
referencing between the files presents an unnecessary impediment
to less proficient students and overcoming this sort of impediment
does not support the learning goals for this assignment.

Of course, a straightforward answer would be for the instruc-
tors to preprocess the data appropriately. However, using the power
of Python one can easily arm the students with a general tool,
while at the same time avoiding unnecessary hurdles. In particular,
pandas has a merge function [PMe15] that provides exactly the
required functionality in a quite general framework. In particular,
one can use the code below to easily merge the three data files into
a single DataFrame.
import pandas as pd
#---

Read in the user data into a DataFrame
unames = ['user_id', 'gender', 'age',

'occupation', 'zip']
users = pd.read_table('ml-1m/users.dat',

sep='::', header=None,
names=unames)

Read in the rating data into a DataFrame
rnames = ['user_id', 'movie_id',

'rating', 'timestamp']
ratings = pd.read_table('ml-1m/ratings.dat',

sep='::', header=None,
names=rnames)

Read in the movie data into a Data Frame
mnames = ['movie_id', 'title', 'genres']
movies = pd.read_table('ml-1m/movies.dat',

sep='::', header=None,
names=mnames)

Merge all the data into one DataFrame
data = pd.merge(pd.merge(ratings,

PYTHON IN DATA SCIENCE RESEARCH AND EDUCATION 167

users),
movies)

Of course, even once the data files have been merged, there are
many places where a student might fall astray. Fortunately, pandas
provides another tool which allows for elegant and compact code,
namely the pivot-table. For example, one can imagine writing
complicated loops and conditionals to perform the task of printing
out all movies that have a median rating of 5 by men or women.
However, using pivot-tables, such a question can be answered with
just three lines of code (using the Python 2 "print" statement versus
the Python 3 "print()" function):
Create a pivot table to aggregate the data
mean_ratings = data[data['age'] > 30].\

pivot_table(values='rating',
rows='title',
cols='gender',
aggfunc='median')

Only print out movies with at least one rating
print (mean_ratings[mean_ratings['M'].notnull()].\

sort('M',ascending=False)['M'] > 4.5).nonzero()
print (mean_ratings[mean_ratings['F'].notnull()].\

sort('F',ascending=False)['F'] > 4.5).nonzero()

Of course, one might be tempted to argue that having students
develop their own code, rather than leveraging such black box
routines leads to a deeper learning experience. While we certainly
appreciate this point of view, we wish to emphasize that the
class in question is an introductory Data Science class, and not
a programming or data structure class. Accordingly, using Python,
and the powerful features of libraries such as Pandas, allows us
to focus on the Data Science learning goals, while at the same
time allowing the students to utilize large scale, real world, and
sometimes messy data sources. This theme of using Python to
allow for focused learning goals, using real world data, is a key
message of this text.

Case Study Three

The third case study is substantially more challenging than the
second case study, but builds on the foundations already laid
down. While case study two focused on analyzing numerical
movie reviews, case study three focuses on detecting positive and
negative reviews from raw text using natural language processing.

In particular, in case study three, the class turns its attention
to the Movie Review Data v2.0 from http://www.cs.cornell.edu/
people/pabo/movie-review-data. This data set contains written
reviews of movies divided into positive and negative reviews, and
the goal is to learn how to automatically distinguish between the
two cases.

Of course, tackling such problems is well known to be difficult,
and there are many open research problems in this domain. On
the other hand, such problems are clearly of importance in many
domains, and it is not at all difficult to get students interested
in solving them. The question remains, how can students in their
very first Data Science class be expected to approach such difficult
and important problems, and still be able to make meaningful
progress? Of course, the answer is, again, Python.

In particular, we base this case study on the excellent scikit-
learn [Ped11] Python library. Scikit-learn provides easy to use
and efficient tools for data analysis. Most importantly, it provides
routines for many important Data Science concepts such as ma-
chine learning, cross validation, etc. In fact, this case study is
inspired by the scikit-learn tutorial "Working With Text Data"
which can be found at http://scikit-learn.org/stable/tutorial/text_
analytics/working_with_text_data.html.

Following our theme of leveraging Python to quickly get to
interesting Data Science problems, the students in case study three
are encouraged to start their work based upon various examples
provided in the scikit-learn library. In particular, the students
leverage the exercise_02_sentiment.py files from the directories:

• doc/tutorial/text_analytics/skeletons/
• doc/tutorial/text_analytics/solutions/

One version of the file is merely a skeleton of a natural
language processing example, while the other contains the full
source code.

For DS501 there are two key learning goals for this case
study. First, the students need to derive features from the raw text
that they feel would be useful in predicting positive and negative
sentiments. Second, they must make predictions by processing
these features using a variety of supervised machine learning
algorithms.

Feature Generation: Classically, rather than attempting to
do machine learning on raw text, Data Science practitioners will
first process the raw text to derive features for downstream pro-
cessing. A detailed description of text feature generation is beyond
the scope of the current text (the interested reader may see [Raj11],
and references therein, for more details). However, Python and
scikit-learn [Ped11] provide easy access to the exact functionality
required by the students by way of the TfidVectorizer class which
implements the term frequency–inverse document frequency (TF-
IDF) statistic [Raj11]. For our purposes we merely observe that
there are several parameters that the student can explore to get
a feel for feature generation from raw text, including min_df
and max_df parameters (which control thresholds on document
frequencies) and ngram_range (which controls how many words
are conglomerated into a single token). Experimenting with these
parameters provide many important insights for feature generation
from real world text data, not the least of which is that large values
of ngram_range may take a long time to run.

Supervised Machine Learning: Now, given a collection
of reviews, each represented by a set of features sometimes
called predictors, one can imagine many interesting problems. For
example, a classic problem in machine learning involves using a
set of reviews which have appropriate labels (in this case positive
or negative) to predict labels of other reviews which do not already
have labels. This process is called supervised machine learning.
The idea is that the labeled data is used to supervise the training
of an algorithm which, after training, can attempt to compute
labels just from the raw features. Again, supervised machine
learning is a vast subject, and space does not allow us to treat
the subject even at the more superficial level here (the interested
read may see [Fri01], [Jam13], [Bis06], and references therein,
for more details). However, we will note that scikit-learn provides
functions and classes for many standard algorithms, allowing the
students to become familiar with important machine learning and
Data Science concepts, without being expected to have too many
prerequisites. For example, scikit-learn provides access to classic
and powerful algorithms such as K-nearest neighbors, support vec-
tor classifiers, and principal component analysis [Fri01], [Jam13],
[Bis06].

Using such routines, several important learning objectives can
be supported, such as error estimation, by way of techniques such
as cross-validation and confusion matrices. In fact, one particu-
larly effective learning experience revolved around the following
challenge. Using their favorite technique the student is asked to

168 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

find a two dimensional plot of the data where the positive and
negative reviews are separated. While easy to state, practitioners
of natural language processing will recognize that actually solving
the problem is exceptionally difficult, and the instructors admit
that they are not in possession of an actual solution. For some
students this may be the first time they have been presented with
a problem they are expected to tackle for which their instructor
does not know the solution. The student’s ability to begin thinking
about such open problems so early in their Data Science career
is substantially supported by a language such as Python and the
libraries it provides.

Case Study Four

The final case study, and in some sense the capstone of the class,
revolves around the Yelp Dataset Challenge http://www.yelp.com/
dataset_challenge. This case study involves a large data set with
approximately 42,153 business, 252,898 users, and 1,125,458
reviews in Phoenix, Las Vegas, Madison, Waterloo and Edinburgh.

Again, building off of the previous case studies, the students
are expected to process the data, generate statistics, process
reviews using TfidVectorizer, etc. However, for this case study the
students are also expected to process the data using MapReduce
[Dea08]. As is well known in certain circles, MapReduce is a pro-
gramming model (with various implementations) for distributed
processing of large scale data sets. Distributed processing models,
and MapReduce in particular, are essential elements of modern
Data Science and we would have felt remiss if students in a class
such as DS501 were not able to experience, at least at some level,
the beauty and power of such methods.

Fortunately, and we fear that we are repeating ourselves,
Python provides precisely the functionality we required. In partic-
ular, there are several MapReduce interfaces for Python, and the
mrjob package [MrJ15] was chosen to support the students learn-
ing objectives. This package is especially useful in a classroom
environment since it can be used locally on a single computer (for
testing) and in a cluster environment. Accordingly, the students
can learn about MapReduce with the need for access to large scale
computing resources.

Introductory Data Science: Final Thoughts

Of course, Python is not the only choice for an Introductory Data
Science course. For example, the scripting language R [RCT13] is
also a popular choice which has also used successfully in the Data
Science curriculum. In particular, R offers much, if not all, of the
functionality mentioned above, including interfaces to MapReduce
[Usu14]. Accordingly, the choice of language for such a class may
be considered a matter of taste.

However, there is mounting evidence of Python’s growing
popularity within the Data Science community [Sin14] and the
software development community at large [OGr14]. Perhaps, if
we may be forgiven a small measure of Python bias, we will
merely emphasize that Python’s popularity cuts across many
problem domains. For example, the authors are not aware of any
customer relationship management applications, system adminis-
tration tools, or web servers1, to name just a handful of areas
outside of statistical and data analysis, currently being developed
in R, nor many other domains in which Python has made inroads.
The fact that Python is as generally applicable as it is, while

perhaps still being just as popular as R for Data Science, is a
testament to its advantages.

MA542 Regression Analysis

Leaving aside introductory classes, we now make brief mention
of Python’s usefulness in more advanced classes. In particular,
one of the authors recently taught a Regression Analysis class
(using the text Applied linear regression models [Kut04]), for the
first time, with all of the development in the class being Python
focused. Regression Analysis is a more advanced class with a
greater concentration of mathematically focused students who take
the class. In addition, many students were first time Python users,
with the majority of the exceptions being Data Science students
who had taken DS501–"Introduction to Data Science" previously.

Just as in DS501, Numpy [Wal11], matplotlib [Hun07], and
pandas [McK10] provided almost all of the functionality the
students required for the learning objectives in the class. Also as in
DS501, the instructor can use Python and its vast array of libraries
to carefully control the difficulty and scope of assignments. In fact,
one of the challenges in this class was that Python perhaps does
too good of a job providing functionality to the students.

In particular, Python provides so many libraries that, for exam-
ple, many of the computationally oriented homework questions are
trivially answerable if the students look hard enough. Accordingly,
as an instructor, one needs to be careful that the ground rules
are set correctly so that the learning objectives are achieved. For
example, if the learning objective is for the student to understand
the details of a particular mathematical concept, say the normal
equations, rather than just a numerical procedure, such as linear
regression on a particular data set, then the expectations for the
assignment need to be carefully delineated.

Accordingly, to maintain the integrity of the learning objec-
tives, a tactic used by the authors was to carefully delineate
what parts of the assignment are allowed to be Python "black
boxes" and which parts must be hand coded. In addition, we
require the students to hand in their Python code, even though
the code itself is not graded. The learning objectives of the class
are mathematical, and not programming. Accordingly, the quality
of the implementations is not a focus. However, having access to
the code allows the instructor to verify that the desired learning
objectives are being met.

As one final note, one tactic that was quite successful was to
encourage the students to check their hand coded results against
those provided by any black box routine they are able to use.
It was quite useful for the students in debugging their own
implementations and understanding of the mathematical concepts.
It was quite empowering for the students when their answers
would exactly match those of the black box. They then appreciated
that they understood, in a deep way, what the "professionals" were
doing.

Student research projects and theses

Python has had an important part to play in the authors’ research
since 1997 [Paf99]. Currently, we perform research involving,
and mentor students in, several topics revolving around semi-
supervised and unsupervised machine learning applied to several

1. We would be remiss not to at least mention the quite beautiful R web
application framework Shiny [Shi14]. However, we believe our point still
stands.

PYTHON IN DATA SCIENCE RESEARCH AND EDUCATION 169

different domains, with a focus on cyber-defense (see, for exam-
ple, [Paf13]). Accordingly, one of our key goals is to support the
training of the next generation of researchers in these domains.
We will not burden the reader with the mathematical details
of our research directions, but just observe that our work, and
the work of our students, draws from a laundry list of ideas
from mathematics, statistics, and Data Science, including convex
optimization [Boy04], deep learning [Den14], graphical models
[Lau96], and scientific visualization [War10].

For the current purpose, it is merely important to note that
Python libraries are available that support all of these subject
areas. For example, we have:

• Statistical modeling: Statsmodels [StM15]
• Convex optimization: cvxopt [Dah06], CVXPY [Dia14]
• Deep learning: Theano [Ber11]
• Graphical models: libpgm [Kar14], pgmpy [Pgm15]
• Scientific visualization: Mayavi [Ram11], Matplotlib

[Hun07], Bokeh [Bok15], Seaborn [Was14]

Accordingly, students who are trained in classes such as
DS501 and MA542 can leverage that training to get a running
start on their research subjects. Perhaps this is the single biggest
advantage of using a language such as Python from the earliest
stages of Data Science education. In addition to being easy to
learn [Lut13], and providing access to many libraries that support
Data Science education, Python provides ready access to a broad
swath of cutting edge Data Science research.

We use all of these libraries in our work, where we are
especially interested in large scale robust principle component
analysis [Can11], [Paf13] and non-linear dimension reduction
problems [Lee07]. These problem domains are mathematically
subtle, computationally intensive, and lead to, in the authors’
opinion, rather intriguing visualization problems, which are also
supported by Python through libraries such as Mayavi, as shown
in the figure below.

Beyond the mathematical research that Python supports, there
are a vast array of computational resources that are at the fingertips
of those well versed in Python. For example, our research group
is interested in developing algorithms for modern distributed
supercomputers that leverage GPUs to accelerate computations.
Again, Python displays its usefulness with the pycuda [Klo12]
and mpi4py [Dal08] libraries.

As one can see, Python is an effective tool for cutting edge
Data Science research. Of course, there are many such tools, and
often the specific choice of language for Data Science research
is a matter of taste. However, we would respectfully submit that
few languages have the broad range of support for Data Science
research that Python provides.

Conclusion

We have discussed how Python can be used throughout the entire
life cycle of a graduate program in Data Science. Python is easy
to learn and use, but it also provides access to a vast array of
libraries for cutting edge Data Science research. In particular,
IPython notebooks, scikit-learn, NumPy, SciPy, and pandas can be
used to support many aspects of the Data Science education. These
libraries allow instructors to focus on desired learning objectives,
while leaving many of the less important details to the libraries.
Having access to such libraries allow interesting problems to be
addressed early in the educational process and the experience

Fig. 1: An example of a 3D visualization of a manifold using
Mayavi [Ram11]. In our work we attempt to detect the non-linear
dependencies in such data, even when the data is noisy and unevenly
distributed. In this synthetic example we see data which is intrinsically
two-dimensional (since it is a flat surface) embedded in a three-
dimensional space. The two-dimensional structure is non-trivial to
detect based upon the non-linear nature of the data, noise, and regions
with no data points.

gained with such Python libraries supports the student’s own
software development, analysis, and research throughout their
academic career and beyond.

Acknowledgments

We wish to gratefully acknowledge several people without whom
this monograph would not have been possible. In particular, the
authors are deeply grateful to the other members of Data Science
Steering Committee at WPI:

• Prof. Elke Angelika Rundensteiner (Director of Data Sci-
ence)

• Prof. Mohamed Eltabakh
• Prof. Eleanor T. Loiacono
• Prof. Joseph D. Petruccelli
• Prof. Carolina Ruiz
• Prof. Diane M. Strong
• Prof. Andrew C. Trapp
• Prof. Domokos Vermes
• Prof. Jian Zou

without whose tireless efforts the WPI Data Science program
would not be what it is today.

REFERENCES

[Beh11] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin,
Dag Sverre Seljebotn and Kurt Smith. Cython: The Best of Both
Worlds, Computing in Science and Engineering, 13, 31-39 (2011),
DOI:10.1109/MCSE.2010.118

[Ber11] Bergstra, James, et al. Theano: Deep learning on gpus with python.
NIPS 2011, BigLearning Workshop, Granada, Spain. 2011. http://
deeplearning.net/software/theano/ [Online; accessed 2015-06-08].

[Bis06] Bishop, Christopher M. Pattern recognition and machine learning.
Springer, 2006.

[Bok15] Bokeh (2015), http://bokeh.pydata.org/en/latest/ [Online; accessed
2015-06-17].

170 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

[Boy04] Boyd, Stephen, and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[Can11] Candès, Emmanuel J., Li, Xiaodong, Ma, Yi, and Wright, John.
Robust principal component analysis?. Journal of the ACM (JACM)
58.3 (2011): 11.

[Dah06] Dahl, Joachin, and Lieven Vandenberghe. Cvxopt: A python package
for convex optimization. Proc. eur. conf. op. res. 2006. http://cvxopt.
org [Online; accessed 2015-06-08].

[Dal08] Dalcín, Lisandro, Paz, Rodrigo, Storti, Mario, and D’Elía, Jorge
(2008). MPI for Python: Performance improvements and MPI-2
extensions. Journal of Parallel and Distributed Computing, 68(5),
655-662.

[Dea08] Dean, Jeffrey, and Sanjay Ghemawat. MapReduce: simplified data
processing on large clusters. Communications of the ACM 51.1
(2008): 107-113.

[Den14] Deng, Li, and Dong Yu. Deep learning: methods and applications.
Foundations and Trends in Signal Processing 7.3–4 (2014): 197-387.

[Dia14] Diamond, Steven, Eric Chu, and Stephen Boyd. CVXPY: A Python-
embedded modeling language for convex optimization, version 0.2."
(2014). http://cvxpy.org [Online; accessed 2015-06-08].

[Fri01] Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. The ele-
ments of statistical learning. Vol. 1. Springer, Berlin: Springer series
in statistics, 2001.

[Jam13] James, Gareth, et al. An introduction to statistical learning. New
York: springer, 2013.

[Hun07] John D. Hunter. Matplotlib: A 2D Graphics Environment,
Computing in Science & Engineering, 9, 90-95 (2007),
DOI:10.1109/MCSE.2007.55

[Kar14] Karkera, Kiran R. Building Probabilistic Graphical Models with
Python. Packt Publishing Ltd, 2014.

[Klo12] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan Catanzaro, Paul
Ivanov, Ahmed Fasih, PyCUDA and PyOpenCL: A scripting-based
approach to GPU run-time code generation, Parallel Computing,
Volume 38, Issue 3, March 2012, Pages 157-174.

[Kut04] Kutner, Michael H., Chris Nachtsheim, and John Neter. Applied
linear regression models. McGraw-Hill/Irwin, 2004.

[Lau96] Lauritzen, Steffen L. Graphical models. Oxford University Press,
1996.

[Lee07] Lee, John A., and Michel Verleysen. Nonlinear dimensionality re-
duction. Springer Science & Business Media, 2007.

[Lut13] Lutz, Mark. Programming python. 5th edition, O’Reilly Media, Inc.,
2010.

[McK10] McKinney, Wes. Data Structures for Statistical Computing in
Python, Proceedings of the 9th Python in Science Conference, 51-
56 (2010)

[McK12] McKinney, Wes. Python for data analysis: Data wrangling with
Pandas, NumPy, and IPython .O’Reilly Media, Inc., 2012.

[PMe15] Merge, join, and concatenate (2015), http://pandas.pydata.org/
pandas-docs/stable/merging.html [Online; accessed 2015-06-08].

[Mil11] K. Jarrod Millman and Michael Aivazis. Python for Scientists and
Engineers, Computing in Science & Engineering, 13, 9-12 (2011),
DOI:10.1109/MCSE.2011.36

[Mov15] MovieLens (2015), http://grouplens.org/datasets/movielens/ [Online;
accessed 2015-06-08].

[MrJ15] mrjob (2015), https://pythonhosted.org/mrjob/ [Online; accessed
2015-06-08].

[Mye07] Myers, Christopher R., and James P. Sethna. Python for education:
Computational methods for nonlinear systems. Computing in Science
& Engineering 9.3 (2007): 75-79.

[OGr14] O’Grady, Stephen. The RedMonk Programming Language Rank-
ings: January 2014 (2014), http://redmonk.com/sogrady/2014/01/22/
language-rankings-1-14/ [Online; accessed 2015-06-08].

[Oli01] Jones, Erid, Oliphant, Travis, Peterson, Pearu, et al. SciPy: Open
Source Scientific Tools for Python, 2001-, http://www.scipy.org/ [On-
line; accessed 2015-05-31].

[Oli07] Travis E. Oliphant. Python for Scientific Computing,
Computing in Science & Engineering, 9, 10-20 (2007),
DOI:10.1109/MCSE.2007.58

[Paf99] Paffenroth, Randy C. VBM and MCCC: Packages for objected ori-
ented visualization and computation of bifurcation manifolds. Object
Oriented Methods for Interoperable Scientific and Engineering Com-
puting: Proceedings of the 1998 SIAM Workshop. Vol. 99. SIAM,
1999.

[Paf13] Paffenroth, Randy, Du Toit, Philip, Nong, Ryan, Scharf, Louis,
Jayasumana, Anura. P., and Bandara, Vidarshana. (2013). Space-
time signal processing for distributed pattern detection in sensor

networks. Selected Topics in Signal Processing, IEEE Journal of,
7(1), 38-49. Chicago

[Ped11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter
Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot,
Édouard Duchesnay. Scikit-learn: Machine Learning in Python, Jour-
nal of Machine Learning Research, 12, 2825-2830 (2011)

[Per07] Fernando Pérez and Brian E. Granger. IPython: A System for Inter-
active Scientific Computing, Computing in Science & Engineering,
9, 21-29 (2007), DOI:10.1109/MCSE.2007.53

[Pgm15] Python Library for Probabilistic Graphical Models (pgmpy) (2015),
https://github.com/pgmpy/pgmpy [Online; accessed 2015-06-24].

[Ptw15] Python Twitter (2015), https://code.google.com/p/python-twitter/
[Online; accessed 2015-06-08].

[Raj11] Rajaraman, Anand and Jeffrey David Ullman. Data Mining, Mining
of Massive Datasets. 1st ed. Cambridge: Cambridge University Press,
2011. pp. 1-17. Cambridge Books Online. http://dx.doi.org/10.1017/
CBO9781139058452.002 [Online; accessed 2015-06-08].

[Ram11] Ramachandran, Prabhu and Varoquaux, Gael, Mayavi: 3D Visualiza-
tion of Scientific Data IEEE Computing in Science & Engineering,
13 (2), pp. 40-51 (2011)

[RCT13] R Core Team (2013). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
http://www.R-project.org/.

[Rus13] Russell, Matthew A. Mining the Social Web: Data Mining Facebook,
Twitter, LinkedIn, Google+, GitHub, and More. O’Reilly Media, Inc.,
2013.

[Shi14] RStudio, Inc. shiny: Easy web applications in R (2014), http://shiny.
rstudio.com [Online; accessed 2015-06-08].

[Sin14] Singh, Harpreet. Is Python Becoming the King of the Data Science
Forest? (2014), http://www.experfy.com/blog/python-data-science/
[Online; accessed 2015-06-08].

[Sta00] Stajano, Frank. Python in education: Raising a generation of native
speakers. Proceedings of 8th International Python Conference. 2000.

[StM15] Statsmodels (2015), http://statsmodels.sourceforge.net/ [Online; ac-
cessed 2015-06-17].

[Twi15] The Streaming APIs Overview (2015), https://dev.twitter.com/
streaming/overview [Online; accessed 2015-06-08].

[Usu14] Usuelli, Michele. An Example of MapReduce with rmr2 (2014), http:
//www.milanor.net/blog/?p=853 [Online; accessed 2015-06-08].

[Wal11] Stéfan van der Walt, S. Chris Colbert and Gaël Varoquaux.
The NumPy Array: A Structure for Efficient Numerical Compu-
tation, Computing in Science & Engineering, 13, 22-30 (2011),
DOI:10.1109/MCSE.2011.37

[War10] Ward, Matthew, Georges Grinstein, and Daniel Keim. Interactive
Data Visualization: Foundations, Techniques, and Applications, AK
Peters, Ltd., Natick, MA (2010).

[Was14] Waskom, Michael et al.. (2014). seaborn: v0.5.0 (November 2014).
Zenodo. 10.5281/zenodo.12710

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 171

Relation: The Missing Container

Scott James‡∗, James Larkin‡

F

Abstract

The humble mathematical relation1, a fundamental (if implicit)
component in computational algorithms, is conspicuously absent
in most standard container collections, including Python’s. In
this paper, we present the basics of a relation container, and
why you might use it instead of other methods. The concept
is simple to implement and easy to use. We will walk through
with code examples using our implementation of a relation
(https://pypi.python.org/pypi/relate)

Background: It’s the Little Things

In our work in surface and aviation traffic simulation we deal with
many moving pieces, terabytes of streaming information. Manag-
ing this much information pieces requires, unsurprisingly, some
significant computational machinery: clusters of multiprocessors;
different interworking database topologies: HDF5, NoSQL and
SQL; compiled code, scripted code; COTS tools, commercial and
open source code libraries. For the Python components of our
work, we are fortunate to have data crunching libraries: numpy,
pandas etc... However, we kept finding that, despite this wealth of
machinery, we would get caught up on the little things.

There may be thousands of flights in the air at any one
time, but there are far fewer types of aircraft. There may be
millions of vehicles on the road, but only a handful of vehicle
categories. Whereas we could place these mini-databases into our
data crunching tools as auxiliary tables, we didn’t. It didn’t make
sense to perform a table merge with streaming data when we could
do a quick lookup, on-the-fly, when we needed to. We didn’t want
to create a table with ten rows and two columns when we could
easily put that information into a dictionary, or a list. We didn’t
want to implement our transient, sparse table with a graph database
or create tables with an ’other’ column which we would then have
to parse anyhow. And besides the traffic specific information, there
were all those other pesky details: file tags, user aliases, color
maps.

Instead we cobbled together our mini-databases with what
we had within easy mental reach: lists, sets and dictionaries.
And when we needed to do a search, or invert keys/values, or
assure uniqueness of mappings, we would create a loop, a list
comprehension or a helper class.

* Corresponding author: scott.james@noblis.org
‡ Noblis

Copyright © 2015 Scott James et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

After some time it occurred to us that what we were really
doing with our less-than-big data was reinventing a mathematical
relation, ... over and over again. Once we realized that, we replaced
the bookkeeping code managing our mini-databases with relation
instances. This resulted in a variety of good things: reduced cod-
ing overhead, increased clarity of purpose and, oddly, improved
computational efficiency.

What is a relation and what is it good for?

A relation a simply a pairing of elements of one set, the domain,
with another, the range. Rephrasing more formally, a relation is a
collection of tuples (x,y) where x is in the domain and y is in the
range. A relation, implemented as code, can perform a variety of
common tasks:

• Inversion: quickly find the values(range) associated with
a key(domain)

• Partitioning: group values into unique buckets
• Aliasing: maintain a unique pairing between keys and

values
• Tagging: associate two sets in an arbitrary manner

These roughly correspond to the four cardinalities of a rela-
tion:

• Many-to-one (M:1): a function, each range value having
possibly multiple values in the domain

• One-to-many (1:M): a categorization, where each element
in the domain is associated with a unique group of values
in the range

• One-to-one (1:1): an isomorphism, where each element in
the domain is uniquely identified with a single range value

• Many-to-many (M:N): an unrestricted pairing of domain
and range

What is it not good for?

The relation, at least as we have implemented it, is a chisel, not a
jack-hammer. It is meant for the less-than-big data not the actually-
big data. When computational data is well-structured, vectorized
or large enough to be concerned about storage, we use existing
computational and relational libraries. A relation, by contrast, is
useful when the data is loosely structured, transient, and in no real
danger of overloading memory.

The API

Using a relation should be easy, as easy as using any fundamental
container. It should involve as little programming friction as
possible. It should feel natural and familiar. To accomplish these

172 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Method Comment

__init__ establish the cardinality and ordering of a Relation
__setitem__assign a range element to a domain element
__getitem__retrieve range element(s) for a domain element
__delitem__remove a domain element and all associated range pairings. If

the range element has no remaining pairings, delete it.
extend combine two Relation objects
values return the domain
keys returns list of domains
__invert__swap domain and range

TABLE 1

goals, we created our Relation class by inheriting and extending
MutableMapping:

In essence, it will look and feel like a dictionary, but with some
twists.

Example 1 (Many-to-many)

For example, suppose we need to map qualitative weather condi-
tions to dates:

weather = Relation()
weather['2011-7-23']='high-wind'
weather['2011-7-24']='low-rain'
weather['2011-7-25']='low-rain'
weather['2011-7-25']='low-wind'

Note that in the last statement the assignment operator performs
an append not an overwrite. So:

weather['2014-7-25']

Produces a set of values:

{'low-rain','low-wind'}

Relation also provides an inverse:

(~weather)['low-rain']

Also producing a set of values:

{'2014-7-25','2014-7-24'}

For our work, other many-to-many relations include:

• Flight numbers and airports
• Auto makers and vehicle classes
• Neighboring planes (or autos) at an instant of time

Cardinality

Relations look like a dictionary but also provide the ability to

1) Assign many-to-many values
2) Invert the mapping directly

Relations become even more valuable when we have the
ability to enforce the degree of relationship, i.e. cardinality. As
mentioned, there are four cardinalities used in the relation object
class:

Many-to-one assignment is already supported by Python’s
built-in dictionary (minus the inversion); however, the remainder
of the cardinalities are not2.

Relationship Shortcut Pseudonyms

many-to-one M:1 function, mapping, assignment
one-to-many 1:M partition, category
one-to-one 1:1 aliasing, isomorphism
many-to-many M:N general

TABLE 2

Example 2 (One-to-One)
airport = Relation(cardinality='1:1')
airport['ATL'] = 'Hartsfield-Jackson Atlanta International'
airport['KORD'] = 'Chicago O'Hare International'

When the relation is forced to be 1:1, the results are no longer
sets:

airport['ATL']
> 'Hartsfield-Jackson Atlanta International'

And assignments overwrite both the domain and the range:

use the full four-letter international code ...
not the US 3-letter code
airport['KATL'] = 'Hartsfield-Jackson Atlanta International'
airport['ATL']
> KeyError: 'ATL'

Note that, similar to a dictionary silently overwriting a key-value
pair, a 1:1 relation silently overwrites a value-key pair, and in this
case, removes the stranded key. Also worth noting, for cardinalities
M:1 and 1:1, a dictionary literal can also serve as syntactic sugar
for an initializer:

airport = Isomorphism(
{'KATL':'Hartsfield-Jackson Atlanta International',
'KORD':'Chicago O'Hare International'})

airport['KATL']
> 'Hartsfield-Jackson Atlanta International'

For our work, other 1:1 mappings include:

• User names and company id
• Automobile manufacturers and their abbreviations
• Color codes and their representations in various simulation

tools (using a chain of 1:1 containers)

Comparing Relation Implementations

The relation container is fast, as fast as a dictionary. It should
be; it is implemented by two dictionaries: one for each mapping
direction. However, there are other ways to implement many-to-
many relations. In this section we compare the relation against
two other implementations: a Pandas data frame and a NetworkX
graph.

Our test data will consist of 200 two-digit alphanumeric values
(domain) and 1 million numeric values (range) for a total of
approximately 10 million unique entries. We describe the imple-
mentations of the lookups and then compare speeds.

Data Frame

To implement a M:N relationship using a data frame, we create a
two-column table:

A forward search can performed as follows:
df['range']==887267]['domain']
And a reverse search as:
df[df['domain']=='YR']['range']
Each of these searches can be accelerated by indexing.

RELATION: THE MISSING CONTAINER 173

Domain Range

UF 423423
OP 3242
FD 887267
YR 343
... ...

TABLE 3

Method Forward (ms) Reverse (ms)

Pandas 7.34e2 7.94e1
Pandas (indexed) 1.97e2 7.81e-2
Graph 9.47e0 6.84e-4
Relate 3.76e-4 4.58e-4

TABLE 4

NetworkX

To implement an M:N relation using a NetworkX Graph we use
a bipartite graph, that is, a graph connecting two disjoint sets,
creating the relations by linking the nodes from one set (domain)
to another set (range)

Both forward and reverse searches are performed in the same
manner:

forward, using domain nodes
G.neighbors('YR')
reverse, using range nodes
G.neighbors(887267)

Timings

We collect timings using the Python’s timeit function:
In all cases, Relate is faster, most significantly when searching

on strings as opposed to numeric values. Of course, data frames
and graphs have many more features than a relation. Also, the two-
dictionary Relation implementation is cheating: it precomputed the
only two searches it was built to handle; moreover, it did so at a
cost of doubling the memory footprint. But this is precisely the
use-case for which the relation was created: space at non-critical
levels but economy of code and code performance crucial.

Sparse Matrix

One other implementation worth mentioning is a sparse matrix.
Viewing the nonzero elements of a sparse matrix as a connec-
tion between the row (domain) and column (range) indices also
produces an M:N relationship. The power of the sparse matrix
is in its suitability to large-scale numerical computations. The
relation container proposed, however, is designed to match general
datatypes, including non-numerical. Providing a direct comparison
between the two is thus somewhat difficult as the two are used for
different purposes.

More Examples

The relation object is a basic concept, and as such useful in
limitless contexts. A few more examples are worth mentioning.

Tags (Many-to-Many)

Over the last decade, we’ve seen tags invade our previously
hierarchical organized data. Tags are now ubiquitous, attached to
our: photos, files, URL bookmarks, to-do items etc ...

Tags are also exactly a many-to-many relationship:

files = Relation()

files['radar-2011-7-23.png'] = 'image'
files['radar-2011-7-23.png'] = 'KATL'
files['departure-procedures.doc'] = 'KATL'
files['departure-procedures.doc'] = 2015

#find the files associated with Atlanta
(~files)['KATL']
> {'radar-2011-7-23.png','departure-procedures.doc'}

find the attributes for particular file
files['departure-procedures.doc']
> {2015,'KATL'}

We tag our simulation products to allow flexible retrieval and
searching. With an in-code tagging scheme we can automatically
attach tags at the file system level and then query these tags with
both in-code and operating system level tools.

Taxonomies (One-to-Many)

We mentioned earlier that the 1:M relation is a partition, a way
to categorize objects into groups. Nesting 1:M relations creates
a backward-searchable taxonomy. An example in our work are
en-route air traffic sectors, the nested polyhedrons through which
aircraft fly:

sectors=Relation(cardinality='1:M')
sectors['ZNY'] = 'ZNY010'
sectors['ZNY'] = 'ZNY034'
sectors['ZNY010'] = 'ZNY010-B'
sectors['ZNY010'] = 'ZNY010-2'
sectors['ZNY034'] = 'ZNY034-B'
sectors['ZNY034'] = 'ZNY034-11'

(~sectors)['ZNY034-B']
> 'ZNY034'

(~sectors)[(~sectors)['ZNY034-B']]
> 'ZNY'

Using a taxonomy of sectors as above allows us to quickly
access aggregate information at different granularities as the flight
progresses.

When to Use What for What

Modern high-level computing languages provide us with a robust
set of containers. We feel, of course, that a relation container is
a valuable addition but, we also feel one should use the most
economical container for the task. Asking questions about the type
of data being stored and the relationship between an element and
its attributes is crucial, even for the less-than-big data:

Choosing the best matching structure for your data set doesn’t
just help with the code, it helps with the intent, providing the next
programmer touching the code with your vision of the structure,
and also some safety belts in case they didn’t see it the first time.

Conclusion

The relation object provides an easy-to-use invertible mapping
structure supporting all four relationship cardinalities: 1:1, 1:M,
M:1 and M:N. Using the relation library can simplify your

174 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Content Structure

unordered set of unique objects set
ordered set of non-unique objects list
ordered set of unique objects OrderedDict
unidirectional mapping dictionary
bidirectional mapping relation
mapping with restricted cardinalities relation
multiple, fixed attributes per element data frame/table
variant attributes per element relation

TABLE 5

code and eliminate the need for repeated, ad hoc patterns when
managing your less-than-big working data structures.

One of the best things about the relation data container is its
ease of implementation within Python. For a simple, yet complete
example, see our implementation at https://pypi.python.org/pypi/
relate.

1. http://www.purplemath.com/modules/fcns.htm
2. For 1:1 mapping, however we also recommend the excellent bidict

package https://bidict.readthedocs.org/en/master/intro.html#intro

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 175

Testing Generative Models of Online Collaboration
with BigBang

Sebastian Benthall‡∗

https://www.youtube.com/watch?v=AQFS_ES7rT0

F

Abstract—We introduce BigBang, a new Python toolkit for analyzing online
collaborative communities such as those that build open source software. Mail-
ing lists serve as critical communications infrastructure for many communities,
including several of the open source software development communities that
build scientific Python packages. BigBang provides tools for analyzing mailing
lists. As a demonstration, in this paper we test a generative model of network
growth on collaborative communities. We derive social networks from archival
mailing list history and test the Barabási-Alpert model against this data. We
find the model does not fit the data, but that mailing list social networks share
statistical regularities. This suggests room for a new generative model of network
formation in the open collaborative setting.

Index Terms—mailing lists, network analysis, assortativity, power law distribu-
tions, collaboration

Introduction

Open source software communites such as those that produce
many scientific Python packages are a critical part of contem-
porary scientific organization. A distinguishing feature of these
communities is their heavy use of Internet-based infrastructure,
such as mailing lists, version control systems, and issue trackers,
for managing communications and organizing work on distributed
teams. This data is often deliberately publicly accessible as open
source best practices include the "conspicuous use of archives"
[Fogel]. The availability of these digital records are also an
excellent resource for the researcher interested in sociotechnical
organization and collaboration within science.

This paper introduces BigBang, a Python project whose pur-
pose is the collection, preprocessing, and analysis of data from
open collaborative communities. Built for the use case of studying
the Scientific Python communities in particular, it generalizes
to other communities and supports fruitful comparisons between
them.

To demonstrate the potential of this approach, this paper will
explore the structure of mailing list discussions in the context of
open collaborative projects. We extract social network data from
the archives of public mailing lists and test the plausibility that
these graphs were generated by Barabási-Alpert network model.
We find that of the mailing lists we’ve analyzed, none exhibit

* Corresponding author: sb@ischool.berkeley.edu
‡ UC Berkeley School of Information

Copyright © 2015 Sebastian Benthall. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

two features of Barabási-Alpert networks: power law degree
distribution and zero degree assortativity. Instead the data indicates
that these networks have a log-normal degree distribution and have
negative degree disassortivity. This result suggests the possibility
of future work of scientifically developing a generative model of
collaboration.

BigBang Overview

Launched in 2014, BigBang is a software project that aims to
provide researchers a complete toolkit for the scientific analysis
of open online collaborative communities. Though applicable to
many domains, research into online collaboration has special rel-
evance to practicioners of computationally intensive open science.
Through it scientific programming communities such as Scientific
Python can achieve a quantitative understanding of their own work
and innovation process.

Thorough study of these kinds of communities requires the
collection and rationalization of many heterogenous and high-
dimensional data sources, including but not limited to mailing
lists, version control systems such as Git, and issue trackers such
as GitHub and Bugzilla.

This data is complex in that it has many dimensions that afford
very different kinds of analysis:

• Time. All data from online collaboration infrastructure is
timestamped, affording use of time series methods.

• Text. Email message bodies, issue contents, and commit
messages in version control are all text data suitable for
study with natural language processing techniques.

• Social network. Participants in the project are individuals
linked by relational ties of communication. Hence these
data afford study through social network analysis tech-
niques.

• Software static analysis. Source code in version control is
complex data containing the definition of many interelated
variables, functions, classes, and modules. Static analysis
and compilation techniques from computer science can be
used to study these entities within the software itself.

The richness and granularity of the data from open source soft-
ware communities and other open on-line collaborative projects
promise the answers to many research questions about software
engineering, innovation, social organization, and more. The catch
is that with data that is so multifaceted, preprocessing the data is
an engineering-intensive endeavor.

176 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

The versatility and scope of open source Scientific Python
packages makes building a generic research infrastructure for
analyzing these communities a possibility within reach. Archi-
tecturally, BigBang is a Python package that includes Scientific
Python libraries for time series analysis, natural language process-
ing, network analysis, and software analysis as dependencies.

BigBang includes methods for collecting research data from
sources on the web about the activity of open collaborative
communities. At the time of this writing, BigBang supports data
collection from Mailman, the mailing list service, as well as other
.mbox formatted email archives. It also supports data collection
from Git repositories. Future versions will have methods for
collecting data from issue trackers.

The BigBang repository contains an examples directory of
Jupyter notebooks demonstrating its functionality and exploring
lines of research inquiry. Researchers can contribute to the project
by submitting Jupyter notebooks to the repository for review
through the GitHub Pull Request system. Source code that per-
forms preprocessing that is usable by multiple computational
experiments is in a separate source code directory that can be
imported as a Python module.

In the context of Scientific Python, BigBang is deliberately
recursive. It is a Python project that depends on many other scien-
tific Python projects. It is designed to study, among other things,
dependencies and interactions between the Scientific Python tech-
nologies and communities. Our goal is for BigBang to provide
a new means for these communities to engage in scientific self-
management.

Testing Generative Models of Online Collaboration

As a demonstration of BigBang’s capabilities, in this paper we
will test a well known generative model of network formation
against social network data derived from public mailing list
discussions. A generative model is a formal model that describes
a process through which data is generated. A principle benefit
of a formal generative model is that the statistical properties of
data it generates can be compared with the statistical properties
of empirical data. Such comparisons are one way to get empirical
purchase on the mechanism behind even purely observational data.
Discovering a concise generative model that fits data from on-
line collaboration would give us insight into the mechanism of
collaboration itself.

In this paper, we will test one well known generative model of
network data, the Barabási-Alpert model. This model describes a
process by which new nodes, as they join a network, form edges
with other nodes with probability proportional to their degree. This
process is called preferential attachment. Very roughly speaking,
in social networks preferential attachment is suggestive of a net-
work dominated by attachments to a small number of luminaries.
In its basic form, this model generates networks with two notable
statistical properties:

• The degree distributions of Barabási-Alpert networks are
scale-free, meaning that the fraction of nodes of degree k
falls asymptotically according to a power law distribution.
P(k)∼ k−γ for some positive γ .

• The correlation between the degrees of adjacent nodes
converges to zero (from below) as the network grows.

We discover in our empirical data that neither of these proper-
ties hold for the social networks fo public mailing list discussions.

This suggests that preferential attachment is not a mechanism
that dominates the social interactions on the collaborative projects
represented in our data. On the contrary, the statistical properties
of public mailing list discussions suggest that participation is more
widely distributed than in many other social networks, and that
interaction with new participations is a priority.

Preferential attachment model

An early result in the study of complex networks was the obser-
vation that many networks existing in nature exhibit a scale-free
degree distribution. [BarabásiAlbert] This means that the tail of the
distribution of the number of edges of each node in the network
(the node’s degree) converges to a power law function:

y = axk

(Scale-free refers to the scale invariance of the power law distri-
bution.)

The prevalence of scale-free networks in nature has raised the
question of what generative processes produce networks with this
property. What was at one point the most well-known random
graph model, the Erdős-Rénri model, produces networks with
binomial degree distribution. Barabási and Alpert [BarabásiAlbert]
have proposed a widely cited and studied model of network gen-
eration that produces graphs with scale-free degree distribution.

The attractiveness of the Barabási-Alpert model is due in part
to its being a generative model that describes a process for creating
data of an observed distribution, as opposed to being simply a
description of the distribution itself. This gives the Barabási-Alpert
model explanatory power.

In particular, the Barabási-Alpert model attributes the scale-
free distribution of node degree to a preferential attachment
mechanism, parameterized by m0 and m. The network is formed
by beginning with a small number m0 of nodes and adding new
nodes, connecting each new node to m < m0 nodes, where the
probability of connecting to node i is proportional to the prior
degree of that node, ki.

P(ki) =
ki

∑ j k j

Here, ∑ j k j is the sum of all degrees of all nodes in the graph. The
parameter m is fixed across all iterations. [AlbertBarabási]

The Barabási-Alpert model is favored for its simplicity, its
intuitively clear mechanism of preferential attachment, and for
its analytic tractability. Intuitively, a social process driven by
preferential attachment is one in which "the rich get richer".
Consider the social graph from an on-line social network such
as Facebook or Twitter. New entrants to the network will ’friend’
or ’follow’ existing nodes. If they preferentially attach, the will be
much more likely to connect to celebrities who already dominate
the network than to new entrants such as themselves. The most
highly connected participants will likely owe their position in the
network to their seniority. Studies have supported the role of a
preferential attachment mechanism in social network formation
[Zhou2011], [Tinatti2012]. It is an empirical question whether
the preferential attachment mechanism explains the data from
collaborative communities such as those that develop Scientific
Python packages.

TESTING GENERATIVE MODELS OF ONLINE COLLABORATION WITH BIGBANG 177

Power law or log-normal?

An implicit challenge to the Barabási-Alpert model comes from
[Clauset2007], who argue that many conventionally accepted
techniques for fitting power law distributions to empirical data
are biased and unsound. Specifically, they critique the common
method of plotting the histogram of the data on a log-log axis and
testing for linearity by perfoming a least-squares linear regression,
and variations of this. They propose an alternative Bayesian
technique for testing power law distributions. By computing the
likelihood of the data being generated by a power law distribution
and comparing it with the likelihood of it being generated by other
heavy-tail distributions, such as the log-normal distribution, they
provide a statistically sound basis for model comparison.

The Clauset et al. method considers only the tail of the data,
picking a cutoff value xmin below which data are ignored. They
argue that picking this value is of critical importance: to pick too
high an xmin is to fit a power law to non-power law data. to pick too
low a value is to throw out legitimate data, which can lead to bias.
They propose selecting the xmin that minimizes the Kolmogorov-
Smirnov distance between the best fitting power law distribution
and the empirical data above the mininum.

We refer the reader to [Clauset2007] for the in-depth defense
of this method as an alternative to those based on testing for
linearity on a log-log scale. Besides its statistical soundess, an
advantage of this method is that it has been implemented in Python
in the powerlaw package by [Alstott2014], which is what is used
for the computational results below.

From a Bayesian perspective, the ratio of likelihoods rep-
resents how much one should update one’s beliefs based on
observation of data. In this case, the computed likelihood ratio
of the data being generated by a power law over a log-normal
distribution would be interpreted as how much the data should
persuade that it came from a power law distribution independent
of one’s prior untested belief.

This leaves open the question of the prior probability of a
distribution being generated by a power law producing process, or
a log-normal producing process. [Mitzenmacher2003] surveys a
century of scientific disagreement over the prevalance of each dis-
tribution across many disciplines. Different processes are expected
to produce different distributions.

Processes through which "the rich get richer" systematically,
such as the preferential attachment process described above, will
produce power law distributed data.

Log-normal distributions are produced by what
[Mitzenmacher2003] calls multiplicative processes. A
multiplicative process occurs when independent random variables
are multiplied together. Contrast this with the preferential
attachment process, where the possibility of attachement is
distinctly not independent of prior conditions. When a series of
independent and identically distributed variables is multiplied
together, the product’s distribution converges on a log-normal
distribution by the Central Limit Theorem.

Mitzenmacher argues that subtle variations in generative pro-
cesses can turn their results one way or another. Ideally one can
look more deeply at the structure of data, not just its distribution, to
determine the process behind a heavy-tailed data set. Despite this
difficulty, the statistical consequences of different processes will
become more apparent asymptotically as more data is generated.

In summary, a process of network growth according to which
degree is the result of a independent multiplicative process will
assymptotically produce a log-normal distribution. A process of

network growth driven by non-independent preferential attach-
ment will approach a power law degree distribution. A test of the
log likelihood of the best fit of either distribution on an empirical
data set provides empirical support for the data’s being produced
by one process or the other.

Degree assortativity

Another graph theory concept that we will use in our analysis of
collaborative mailing lists is degree assortativity. Degree assorta-
tivity is the correlation between degrees of adjacent nodes in the
network. In the context of social networks, it is a measure of a
special case of homophily, the tendency of people to be connected
to others who are similar to them. Degree assortativity means that
the most connected members of the network are connected with
each other.

Following the mathematical definition of [Newman2003], the
degree assortativity coefficient is

r =
∑ jk jk(e jk−q jqk))

σ2
q

In the above formula, e jk is the fraction of edges that connect
vertices of degree j+1 and k+1, i.e. the degrees of the connected
vertices not including the connecting edge itself. [Newman2003]
calls this excess degree. The value qk is the distribution of excess
degree.

qk = ∑
j

e jk

The value σq is the standard deviation of qk.
[Newman2002] studied degree assortativity in complex net-

works and introduced an intriguing hypothesis. Observed social
networks, such as those of academic coauthorship networks and
business director associations, exhibit positive degree assortativity.
Technical and biological networks, such as connections between
autonomous systems on the Internet, protein interactions, and
neural networks, exhibit negative degree assortativity, or disas-
sortivity. Our own speculative interpretation is that the organi-
zation of technical and biological networks evolves for a func-
tional purpose facilitated better by having highly connected hubs
distributed widely, whereas many social networks are organized
more according to the self-interest or homophilic tendencies of
the participants.

[Noldus2015] reviews the extensive scholarship on assorta-
tivity in networks since Newman’s work in 2002. They note
that Barabási-Alpert networks are only slightly disassortive, con-
verging on zero assortativity as the number of nodes increases.
[Noldus2015] also surveys work such as [Newman2003] and
[Foster2009] that define and analyze directed degree assortativity.
In directed variations, degree assortativity is computed as above
except using either the in-degree or out-degree of the source and
targets nodes. In our empirical work below, we report directed
assortativity in its in/in and out/out variations. We have observed
little difference between these and the computed values for the
in/out and out/in variations in our data, though there are theoretical
graph structures for which these values can vary greatly.

According to the survey by [Noldus2015], assortivity in
weighted networks is not well explored either theoretically or
empirically. The weighted assortativity of a a network is the
correlation between the weighted degree of its adjacent nodes,
where weighted degree is the sum of the weights of all edges
of a node. Directed weighted assortativity is computed from

178 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

weighted in- and out-degrees. [Networkx] provides functions for
computing these values on networks. We will compare weighted
and unweighted directed assortivity in empirical networks below.

Methods

We collected archival data of 13 mailing lists from open collab-
orative communities. From these data we derived an interaction
graph of who replied to whom. We then computed the weighted
and unweighted degree assortativity of these networks. We also
used the Alstott package to test the degree distribution of these
networks using the Clauset method.

Email data collection

BigBang supports collection of email data. It can do this either
by scraping the archival pages of a Mailman 2 instance, or by
importing an .mbox formatted file. Internally, BigBang parses this
data into a Pandas DataFrame [McKinney] and stores parsed and
normalized email data in .csv format.

For the purpose of this study, we scraped data from public
Mailman 2 instances associated with the following projects:

• SciPy: http://mail.scipy.org/mailman/listinfo/
• WikiMedia: http://lists.wikimedia.org/mailman/listinfo
• OpenStreetMap: http://lists.openstreetmap.org/listinfo

We selected mailing lists from the SciPy Mailman instance
primarily for their relevance to the SciPy community. We also
selected some mailing lists from other projects for comparison.

A limiting factor for our analysis is that every new data set
introduces new edges cases BigBang’s processing logic must take
into account. For example, misformatted timestamps cause errors
in many archival email data sets. In future work we hope to sample
data more systematically in order to establish general principles of
collaboration. This preliminery study is merely descriptive.

Deriving interaction graphs

Email is archived in the same text format that email is sent in, as
specified in RFC2822 [RFC2822]. Every email is comprised of a
message body and a number of metadata headers that are essential
for email processing and presentation.

For our study, we have been interested in extracting the implied
social network from an email archive of a public mailing list. To
construct this network, we have used the From, Message-ID, and
In-Reply-To headers of the email.

The From field of an email contains data identifying the
mailbox of the message author. This often includes both a full
name and an email address of the sender. As this is set by the
email client and a single person may use many different mailboxes,
a single person is often represented differently in the From field
across many emails. See Entity Resolution for our strategies for
resolving entities from divergent email headers.

The Message-ID header provides a globally unique identifi-
cation string for every email. The uniqueness of the identifier
must be guaranteed by the host that generates the message. It
is recommended in [RFC2822] that email hosts accomplish this
by including their domain name and combination of the exact date
and time, as well as some other unique identifier (such as a process
ID number) from the host system. The In-Reply-To header is set
when an email is sent as a reply to another email. The reply’s
In-Reply-To header will match the Message-ID of the original
email.

Formally, we construct the directed interaction graph G from
a set of emails indexed by i ∈ I. Each email consists of a tuple
(fi,ri), where fi identifies the mailbox of the sender (correspond-
ing to the From header) and ri ∈ I ∪ {ε} (corresponding to the
In-Reply-To header) may be a null value ε or be the index of
another email.

• For every email i, if there is not one already add a node
with label fi to G corresponding and set its sent attribute
1. If such a node already exists, increment its sent attribute
by 1.

• Iterating again through every email i, if ri 6= ε , and if there
is not one already, then create a directed edge between
nodes fi and fri with a weight attribute set to 1. If the edge
already exists, increment the weight attribute by 1.

In sum, the final graph G has a node for every email author
annotated by the number of emails from that sender in the data
set. There is an edge from fi to f j if author fi ever wrote a reply
to an email authored by f j. The weight of an edge corresponds to
the number of these replies in the data set.

The motivation for constructing interaction graphs in this way
is to build a concise representation of the social network implied
by email data. We posit that building a social network represen-
tation based on actual messages sent between people provides a
more granular and faithful description of social relationships than
one based on higher-level descriptions of social relationships or
ties from web services such as Facebook ’friends’ and Twitter
’followers’

BigBang implements this interaction graph creation using
Python’s native email processing libraries, pandas, and networkx.
[Networkx] The following code builds the interaction graph rep-
resentations.
import networkx as nx

def messages_to_interaction_graph(messages):
"""
messages is a Pandas DataFrame, each row
containing the body and header metadata for
an email from the archive.
Messages should be in chronological order.

Returns a NetworkX DiGraph (directed graph),
the nodes of which are mailing list participants.

Nodes have a 'sent' attribute indicating number
of emails they have sent within the archive.

Edges from i to j indicate that i has sent at least
one reply to j. The weight of the edge is equal
to the number of replies sent from i to j.
"""

IG = nx.DiGraph()

from_dict = {}

sender_counts = {}
reply_counts = {}

for m in df.iterrows():
m_from = m[1]['From']

from_dict[m[0]] = m_from
sender_counts[m_from] = \\

sender_counts.get(m_from, 0) + 1
IG.add_node(m_from)

if m[1]['In-Reply-To'] is not None:
reply_to_mid = m[1]['In-Reply-To']

TESTING GENERATIVE MODELS OF ONLINE COLLABORATION WITH BIGBANG 179

if reply_to_mid in from_dict:
m_to = from_dict[reply_to_mid]
reply_counts[m_from][m_to] = \\

reply_counts[m_from].get(m_to, 0) + 1

for sender, count in sender_counts.items():
IG.node[sender]['sent'] = count

for m_from, edges in reply_counts.items():
for m_to, count in edges.items():

IG.add_edge(m_from, m_to, weight=count)

return IG

One potential objection to this approach is that since the data
we are considering comes from public mailing lists where every
message has a potentially large audience, it may be misleading to
build a network representation on the assumption that a reply is
directed primarily at the person who was replied to and not more
broadly to other participants in a thread or, even more broadly,
to the mailing list as a whole. While this is a valid objection,
it points to the heart of what is distinctive about this research.
While there have been many studies of social network formation
in conventional settings, the conditions of open collaboration
are potentially quite different. Theoretically, we expect them to
be explicitly and collectively goal-directed, self-organized for
efficient action as opposed to positional social advantage, and
designed around an archiving system for the sake of efficiency.
Understanding the statistical properties of this particular form of
social organization, as opposed to others, is the very purpose of
this empirical work.

Entity Resolution

Empirically, over the extent of a mailing list’s archival data it
is common for the From fields of emails to vary even when
the email is coming from the same person. Not only do people
sometimes change their email address or use multiple addresses
to interact with the same list, but also different email clients may
represent the same email address in the From header in different
ways. BigBang includes automated techniques for resolving these
entities, cleaning the data for downstream processing.

Data from the From header of messages stored by Mailman
is most often represented in a form that includes both a full name
representation and an email representation. Unfortunately these
fields can vary widely for one person. Table 1 shows some of the
variability that might appear for a single prolific sender. Variation
in entity representation is a source of noise in our research and an
ongoing area of development for BigBang.

For the study in this paper, we have implemented a heuristic
system for entity matching.

• First we standardize the data by converting it to lower case
and normalizing " at " and "@".

• Then we construct a similarity matrix between each entry.
Each entry is parsed into email and full name subfields.
The value of the similarity matrix at cell (i, j) is 1 if there
is an exact match of either the email address or the full
name, and 0 otherwise.

• We then construct a graph from the similarity matrix and
treat each connected component (group of nodes that are
connected to each other by at least one path) as an entity.

Under this procedure, all of the above email addresses would
be collapsed into a single entity. These heuristics were developed

Variations

tyrion.lannister at gmail.com (Tyrion
Lannister)

Tyrion.Lannister at gmail.com (Tyrion
Lannister)

Tyrion.Lannister at gmail.com
(Tyrion.Lannister@gmail.com)

Tyrion.Lannister at gmail.com (Tyrion.Lannister
at gmail.com)

Tyrion.Lannister@gmail.com (Tyrion Lannister)

Tyrion.Lannister@gmail.... (Tyrion Lannister)

Tyrion.Lannister@gmail.com

Tyrion.Lannister at gmail.com (Tyrion)

tyrion at lanister.net (Tyrion Lannister)

halfman@council.kings-landing.gov (Tyrion
Lannister)

halfman@council.kings-landing.gov (Tyrion
Lannister, Hand of the King)

halfman@council.kings-landing.gov
(halfman@council.kings-landing.gov)

tyrion+hand at lanister.net (Tyrion Lannister)

tyrion.lannister at gmail.com
(=?UTF-8?B?RGF2aWQgQWJpw6Fu?=)

"Tyrion Lannister" <Tyrion.Lannister@gmail.com>

TABLE 1: Examples of variations in From header values correspond-
ing to the same person in an email archive. Some of these changes
reflect changes of email address. Others are artifacts of the users’
email clients and the mailing list software.

through informal but thorough investigation of mailing list data we
have analyzed for this paper. We leave it to future work to formally
test and improve this method with respect to a sufficiently large
and labeled test data set.

In our interaction graph study, this has the effect of combining
several nodes into a single one in a way that’s similar to the
blockmodel technique. The edges to and from the derived node
are weighted by the sum of the edges of the original nodes. The
sent attribute of the new node is also set as the sum of the sent
attribute of the original nodes.

Results

We computed the (unweighted) degre distribution and the
weighted and unweighted degree assortativities of each of the
mailing lists for which we collected data. We also aggregated the
interaction graphs of each list into a single graph that we have
called total and ran the same analysis.

Every mailing list of the 13 we analyzed exhibits degree disas-
sortivity better fit to log-normal instead of power law distribution.
This is the meaning of the negative R value given in Table 2.

The p values require special explanation. The value given is
computed by the [Alstott2014] package in the direction of the best
fitting distribution. Since the best fitting distribution is log-normal,
the null hypothesis used for computing the p-values is that the data
was generated from a power law distribution. That the p-value
for no individual mailing list is beneath a threshold of statistical
significance (such as p < .05 speaks to the similarity between
these two distributions that is the source of such confusion and
debate, as outlined previously. Especially for lists with low n,
the [Clauset2007] test can be entirely inconclusive as to which
distribution is more likely.

180 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

List name List Source n R value p in,in,weighted out,out,weighted in,in,unweighted out,out,unweighted
total All sources 9576 -7.62 0.01 -0.13 -0.12 -0.21 -0.17
numpy-discussion SciPy 2973 -0.76 0.40 -0.22 -0.20 -0.29 -0.26
scipy-user SciPy 2735 -0.02 0.31 -0.11 -0.11 -0.19 -0.18
wikimedia-l WikiMedia 1729 -3.65 0.07 -0.15 -0.15 -0.21 -0.20
ipython-user SciPy 1085 -0.33 0.23 -0.27 -0.26 -0.29 -0.26
scipy-dev SciPy 1056 -0.33 0.58 -0.28 -0.26 -0.31 -0.29
ipython-dev SciPy 689 -0.52 0.08 -0.25 -0.24 -0.36 -0.36
hot OpenStreetMap 524 -0.85 0.40 -0.19 -0.20 -0.24 -0.24
astropy SciPy 404 -0.08 0.77 -0.16 -0.20 -0.16 -0.16
gendergap WikiMedia 301 -0.86 0.40 -0.15 -0.18 -0.20 -0.21
apug SciPy 121 -0.01 0.52 -0.20 -0.20 -0.21 -0.22
maps-l WikiMedia 118 -0.00 0.95 -0.19 -0.18 -0.27 -0.26
design WikiMedia 111 -3.62 0.10 -0.18 -0.17 -0.21 -0.21
potlatch-dev OpenStreetMap 75 -0.00 0.97 -0.01 -0.08 -0.45 -0.34

TABLE 2: Results of analysis. For each mailing list archive, number of participants n, loglikelihood ratio R and statistical significance p
in the direction of the best fit. In all cases, the log-normal distribution is a better fit, though only in the case of the aggregated graph is the
power-law distribution ruled out with statistical significance. We compute weighted and unweighted variations of (in,in) and (out,out) degree
assorativity.

Fig. 1: Interaction graph of all participants across all mailing lists
explored in this study, rendered with [Gephi]. The large blue module
is roughly the SciPy community. The green module is the Wikimedia
community. The purple module is the OpenStreetMap community.
Notably, these communities are not completely disjoint. There are
several bridge nodes, meaning there are some mailboxes that have
participated in two or more of the communities represented. Singleton
points on either side of the central component indicate email authors
to whom nobody ever replied.

In the total interaction graph, we can rule out that the data
was generated from a power law distribution because p < .05.
One reason for this may be simply because the graph size n is
much larger than for any of the individual graphs. Another may be
because of the sampling method of aggregating otherwise mainly
separate networks.

We find in all cases that interaction graphs are disassortative.
We have presented here the results of computing both weighted
and unweighted variations of directed (in, in) and (out,out) assor-
tativity. (In all cases, (out, in) and (out, in) were similar enough to
the values given that we felt they provided no additional insight to
the reader). We observe that the disassortativity of the interaction
graphs appears to be insensitive to graph size n. We tentatively
conclude that this disassortativity is therefore not of the residual
sort found in small Barabási-Alpert graphs. A more thorough
analysis of this point may be the subject of future work.

In most (but not all) cases, unweighted disassortativity in
interaction graphs is more extreme than its weighted variation.
As little work has been done on weighted degree disassortativity,
we find this notable.

Fig. 2: A common technique for testing whether a distribution fits a
log-normal or power law distribution is to plot its density function
on log-log axes and observe whether the tail of the distribution drops
below the line of best fit. As an illustration, this is the log-log plot
of the probability density function for the unweighted degrees of the
aggregated total interaction graph. In this paper, we eschew this
technique on the grounds that it is biased for reasons discussed in
depth in [Clauset2007].

Discussion

We have found no empirical support for email interaction networks
having power law degree distribution, as opposed to a log-normal
degree distribution. Interpretation of this result will vary depend-
ing on the "prior" probability on assigns to finding power law and
log-normal distributions in social processes like this. As similar
processes may generate both kinds of heavy-tail distributions, we
can say only that our study suggests we should not be tethered
to models that guarantee scale-free distributions such as Barabási-
Alpert when explaining the interaction network data. We consider
the development of a network generation model whose degree is
determined by a multiplicative process as a direction for future
work.

The statistical strength of the rejection of the power law

TESTING GENERATIVE MODELS OF ONLINE COLLABORATION WITH BIGBANG 181

hypothesis in the case of the aggregate interaction graph is note-
worthy because it suggests that other social network analysis may
suffer from a kind of myopia. Recall that preferential attachment
requires that new nodes attach according to a probability distribu-
tion that is a global property of the network. But considering the
growth of largely disjoint communities of collaborators, it is prima
facie for one participant to understand the aggregate network
structure. A network formation process that is more sensitive to
this modularity may be a better fit for aggregated collaboration
data.

A possible explanation for the disassortativity of these interac-
tion graphs is a community norm of inclusiveness. If community
leaders (who have high degree) make it a common practice to
respond to new or infrequent participants in an effort to encourage
them to contribute further, that would lead to disassortative mixing
of degree. On the other hand, this mixing pattern could be the
result of a much more generic statistical process.

It is our good fortune that the network data we study is
granularly time-stamped. Since the total network structure is
derived from an archive in which every email is annotated with
a particular time, we see an opportunity to test generative models
for there predictions during the whole duration of network growth.

Though anecdotally there is a difference between typical
behavior on an open source project’s developer list (e.g. ipython-
dev and scipy-dev in our data set) and a projects user list (e.g.
ipython-user and scipy-user), these behavior differences do not
surface as a clear statistical pattern in our study. A direction for
future work is to more carefully operationalize and test for these
behavioral differences.

We anticipate that research supported by BigBang will con-
tribute to discourse on social roles in on-line communities
[SocWik], [SocRole], measurement of digital labor [LaborWik],
and the relationship between social structure and technical modu-
larity [Zanetti2012].

We have also built BigBang and conducted this preliminary
analysis with a number of applications in mind. One is anomaly
detection in the open source ecosystem as a method of supply
chain risk management. An statistical understanding of the typ-
ical patterns of collaborative behavior in open source software
development could form the foundation for techniques that detect
deviations from those patterns. If non-adherence to these patterns
were correlated with propensity for software to be buggy or
brittle, then detecting non-adherence could play a useful role in
community self-management.

Another potential application of this research is in the appro-
priate incentivization of participation in open source development.
Supposing, as seems likely, that open source software development
is truly a collective effort and not merely the sum of many individ-
ual efforts, the question of how to best incentivize contributions
to open source software is not an easy one. An understanding of
how the network structure of collaboration relates to collective
productivity could inform incentive plans that are sensitive to
participants unique role within the network.

I gratefully acknowledge the helpful comments of Christine
Choirat, Allen Downey, Thomas Kluyver, and Skipper Seabold.

REFERENCES

[Alstott2014] Alstott J, Bullmore E, Plenz D (2014) power-
law: A Python Package for Analysis of Heavy-
Tailed Distributions. PLoS ONE 9(1): e85777.
doi:10.1371/journal.pone.0085777

[AlbertBarabási] Reka Albert and Albert-László Barabási. 2002 Statisti-
cal mechanics of complex networks. Reviews of Modern
Physics, vol 74

[BarabásiAlbert] Albert-László Barabási & Reka Albert. Emergence of
Scaling in Random Networks, Science, Vol 286, Issue
5439, 15 October 1999, pages 509-512.

[Benthall2013] Benthall, S. 2013. "Reflexive Data Science: An
Overview". http://dlab.berkeley.edu/blog/reflexive-data-
science-overview

[Clauset2007] A. Clauset, C.R. Shalizi, and M.E.J. Newman. Power-
law distributions in empirical data. arXiv:0706.1062,
June 2007.

[Fogel] Fogel, K. 2013 Producing Open Source Software. http:
//producingoss.com/

[Foster2009] Foster, J, Foster, D, Grassberger, P, and Paczuski, M.
2010 "Edge direction and the structure of networks"
PNAS 2010 107 (24) 10815-10820; published ahead of
print May 26, 2010, doi:10.1073/pnas.0912671107

[Gephi] Bastian M., Heymann S., Jacomy M. (2009). Gephi: an
open source software for exploring and manipulating
networks. International AAAI Conference on Weblogs
and Social Media.

[LaborWik] R. Stuart Geiger and Aaron Halfaker. 2013. Using edit
sessions to measure participation in wikipedia. In Pro-
ceedings of the 2013 conference on Computer supported
cooperative work (CSCW ’13). ACM, New York, NY,
USA, 861-870.

[McKinney] Wes McKinney. Data Structures for Statistical Comput-
ing in Python, Proceedings of the 9th Python in Science
Conference, 51-56 (2010)

[Mitzenmacher2003] Mitzenmacher, M. 2003. "A Brief History of Generative
Models for Power Law and Lognormal Distributions."
Internet Mathematics Vol. 1, No. 2: 226-251

[Networkx] Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart,
“Exploring network structure, dynamics, and function
using NetworkX”, in Proceedings of the 7th Python
in Science Conference (SciPy2008), Gäel Varoquaux,
Travis Vaught, and Jarrod Millman (Eds), (Pasadena,
CA USA), pp. 11–15, Aug 2008

[Newman2002] Newman, M. E. J. 2002. "Assortative mixing in net-
works."

[Newman2003] Newman, M. E. J. 2003. "Mixing patterns in networks."
Phys. Rev. E 67, 026126

[Noldus2015] Noldus, R and Mieghem, P. 2015. "Assortativity in
Complex Networks" Journal of Complex Networks. doi:
10.1093/comnet/cnv005

[RFC2822] Resnick, P. 2001. "Internet Message Format". Network
Working Group, IETF.

[SocWik] Howard T. Welser, Dan Cosley, Gueorgi Kossinets,
Austin Lin, Fedor Dokshin, Geri Gay, and Marc Smith.
2011. Finding social roles in Wikipedia. In Proceedings
of the 2011 iConference (iConference ’11). ACM, New
York, NY, USA, 122-129.

[SocRole] Gleave, E.; Welser, H.T.; Lento, T.M.; Smith, M.A., "A
Conceptual and Operational Definition of ’Social Role’
in Online Community," System Sciences, 2009. HICSS
’09. 42nd Hawaii International Conference on , vol., no.,
pp.1,11, 5-8 Jan. 2009

[Tinatti2012] Tinati, R., Carr, L., Hall, W. and Bentwood, J. (2012)
Scale Free: Twitter’s Retweet Network Structure. At
Network Science 2012, Evanston, US.

[Zanetti2012] Zanetti, M. and Schweitzer, F. 2012. "A Network Per-
spective on Software Modularity" ARCS Workshops
2012, pp. 175-186.

[Zhou2011] Zhou T, Medo M, Cimini G, Zhang Z-K, Zhang Y-C
(2011) Emergence of Scale-Free Leadership Structure
in Social Recommender Systems. PLoS ONE 6(7):
e20648.

182 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Visualizing physiological signals in real-time

Sebastián Sepúlveda‡∗, Pablo Reyes‡, Alejandro Weinstein‡

https://www.youtube.com/watch?v=6WxkOeTuX7w

F

Abstract—This article presents an open-source Python software package,
dubbed RTGraph, to visualize, process and record physiological signals (electro-
cardiography, electromyography, etc.) in real-time. RTGraph has a multiprocess
architecture. This allows RTGraph to take advantage of multiple cores and to
be able to handle data rates typically encountered during the acquisition and
processing of biomedical signals. It also allows RTGraph to have a clean separa-
tion between the communication and visualization code. The paper presents the
architecture and some programming details of RTGraph. It also includes three
examples where RTGraph was adapted to work with (i) signals from a Inertial
Measurement Unit (IMU) in the context of a biomechanical experiment; (ii)
electromyography signals to estimate muscle fatigue; and (iii) pressure signals
from a device used to monitor nutrition disorders in premature infants.

Index Terms—real-time processing, visualization, signal processing

Introduction

A common task in biomedical research is to record and visualize
physiological signals in real-time. Although there are several
options to do this, they are commonly based on proprietary
tools, associated with a particular signal acquisition device vendor.
This article presents RTGraph, an open-source software package
(under MIT license) written in Python, to visualize and record
physiological signals in real-time, such as electrocardiography,
electromyography and human movement. RTGraph is also capa-
ble of doing real-time processing, such as filtering and spectral
estimation. RTGraph is open-source,1 extensible, and has been
tested on different Linux distributions, including the RaspberryPi
(ARM architecture). RTGraph has a modular design, with a clear
separation among its different functionalities, making it easy to
add new signal processing tasks, to use different communication
protocols (serial, Bluetooth, Sockets, etc.), and customize the user
interface for the specific needs of the application.

The main aim of RTGraph is to display multiple signals in real-
time and to export them to a file. In the current implementation,
the communication between RTGraph and the acquisition device
is through the serial port, and it is implemented using the PySerial
library. Other communication protocols can be easily added. The
real-time display of the signals is implemented using the PyQt-
Graph library.2 RTGraph has a multiprocess architecture, based

* Corresponding author: ssepulveda.sm@gmail.com
‡ Escuela de Ingeniería Civil Biomédica, Facultad de Ingeniería, Universidad
de Valparaíso

Copyright © 2015 Sebastián Sepúlveda et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

1. Available at https://github.com/ssepulveda/RTGraph.

on the multiprocessing Python standard library. This allows having
concurrent processes for receiving, processing, and displaying the
data. Signal processing tasks, such as spectral estimation, are
based on the SciPy/NumPy stack [Ste11]. This architecture makes
it possible to ensure that no data is lost and that the user interface
has a fast response.

Software architecture

The applications described in this article can be classified as a
"data logger". A data logger needs to acquire a stream of data,
add a time stamp to the data (if required), and export the time-
stamped data to a file in a known file format, such as comma
separated value (CSV) format. Optionally, the application can do
some processing (filtering, spectral estimation, etc.) before saving
the data. In addition, it is also useful to be able to visualize, in
real-time, the stream of data.

When developing, evaluating, or validating new hardware or
software, it is important to control the outcome of the algorithms
and the fidelity and performance of the data acquisition process. In
particular, in the field of Biomedical Engineering, the acquisition
and processing of biological signals need to be reliable and with
a tight control over the sampling frequency. It is also fundamental
to ensure that no data is lost during the acquisition and logging
process. From a practical point of view, having to wait for the data
to be stored before visualizing it (possibly in another program) is
cumbersome, slowing down the development process. For these
reasons, in this article we present a program capable of: receiving
data from a variety of sources (serial port, Bluetooth, Zigbee,
Sockets, etc.); processing and visualizing the data in real-time;
and saving the data in a file.

The first version of this program was developed for biome-
chanical engineering research. In our case, this research involves
logging, processing and the display in real-time of the signals
generated by a nine degrees of freedom inertial measurement unit
(9DOF-IMU) [Roe06]. This requires acquiring nine signals with
a sampling rate of at least 100 Hz. Six additional signals are
computed through a sensor fusion algorithm [Mad11]. A total of
15 signals are displayed and exported as a CSV file. We designed
the architecture of the program with these requirements in mind.

Real-time graphics library

Real-time visualization is a key component of our program. To
satisfy our requirements we needed a fast and portable graphics
library. Since we implemented the GUI in PyQT, we also required
that the graphics library should be embeddable in this framework.

2. Available at http://www.pyqtgraph.org.

VISUALIZING PHYSIOLOGICAL SIGNALS IN REAL-TIME 183

We used Matplotlib [Hun20] in the first version of the pro-
gram. This option worked out of the box. We were able to embed
a Matplotlib plot in the GUI and interact with it through other
elements of the UI without major complications. Although this
approach worked for displaying one signal with a sampling rate of
30 Hz, we started to notice a degradation on performance as we
increased the number of signals. It is important to note that this is
not a flaw of Matplotlib, since the main focus of the library is the
production of publication of quality figures, and not the display of
real-time data.

Next, we tried PyQtGraph [Cam15]. It is a pure Python
implementation, with a focus on speed, portability and a rich set
of features. Unlike Matplotlib, PyQtGraph is designed to do real-
time plotting and interactive image analysis. It is built on top of
PyQt4/PySide, giving easy integration and full compatibility with
the Qt framework. This allows using tools like Qt Designer to
design the GUI. Using Qt Designer and the examples provided
with the PyQtGraph library, it is easy to configure and customize
the widgets. PyQtGraph is also built on top of NumPy, facilitating
and improving the performance of the manipulation of numerical
data. In addition, PyQtGraph wraps up some NumPy/SciPy signal
processing functions such as the Fast Fourier Transform and some
linear and non-linear filters.3

Threading versus Multiprocessing

After using PyQtGraph to its limits in a multithreaded archi-
tecture, we could not reliably achieve the desired performance.
The limitations of threads in Python [Bea10] combined with the
interaction between the UI (main thread) and communication
thread, resulted in data losses when the data rate was too high.
The Global Interpreter Lock (GIL) [Bea10] prevents threads from
taking advantage of multicore systems. In short, it means that
a mutex controls threads access to memory. There are ways to
work around this limitation. For instance, many of the NumPy
primitives take advantage of multiple cores.4 However, in our case
we need to parallelize the reception of the data, the visualization,
the processing, and the logging.

To overcome the GIL limitations we used the multiprocessing
module, belonging to the Python Standard Library. This module
provides an API similar to the threading module, but it uses
subprocesses instead of threads [Pyt15]. By letting the OS control
the subprocesses, it is possible to take advantage of the multiple
cores available on the platform.

Putting it all together

After selecting the key components of the program, the remaining
problem is to orchestrate the communication among the processes.
We pay special attention to data synchronization, since there are
specific considerations that should be taken into account when
working with multiple processes.

Figure 1 shows the architecture of RTGraph. The architecture
allow us to: (1) Have a multiplatform program; (2) have a sepa-
ration between the reception and parsing of input data stream and

3. We also evaluated the PyQwt library (http://qwt.sourceforge.net/). This
library provides a Python interface to the Qwt library. It is a light implementa-
tion with an easy QT integration. It is fast enough to support real-time display
of the data. However, this library is not currently maintained, and its author
recommended using PyQtGraph (see http://comments.gmane.org/gmane.comp.
graphics.qwt.python/506).

4. See http://wiki.scipy.org/ParallelProgramming for details.

queue

main process

QTimer

Signal
Processing

Plotting Logging

Parsing &
Timestamping

data
stream

communication
process

Fig. 1: Diagram of the software architecture. There are two inde-
pendent processes. The communication process reads the incoming
data stream, parses it, adds a time-stamp (if necessary), and puts the
processed data into a queue. The main process reads the data from
the queue, processes the data, and then updates the plot and logs the
data to a file.

the plotting and logging tasks. The following is a description of
each process.

1) Communication process: This process is responsible
for receiving and parsing the data stream sent by
the device. The implementation consists of an abstract
class, that subclasses the Process class from the
multiprocessing library. Therefore, the methods
__init__ and run are overwritten. We also added
methods start and stop to properly start and stop
the subprocesses. The class also has methods common to
different communication protocols (serial, sockets, etc.).
The details of each protocol are implemented in each
subclass. This process is also responsible of validating
the data and adding the time-stamp to the data, in case
the device does not provide it. This guarantees that the
data is always time-stamped.

2) Main process: The main process is responsible for initial-
izing the different subprocesses and for coordinating the
communication between them. As shown in figure 1, this
process instantiates the components that will allow the
communication between the subprocesses and also man-
age the different UI elements. A Queue, as implemented
by the multiprocessing module, is used to connect
the communication process with the main process. A
QtTimer is set to update the real-time plot. By updating
the plot at a known frequency, we can control the respon-
siveness of the program under different conditions. Each
time the QtTimer triggers a plot update (30 times per
second), the queue is processed. The queue is read until
it is empty and then the plot is updated.

Figure 2 shows the processes viewed by htop during the ex-
ecution of the program. The first process (PID 3095) corresponds
to the process initiated by the application. The second one is the
communication process (PID 3109).5

Programming details

The template for the communication process is implemented
through the CommunicationProcess class. This template
allows for processing data streams coming from a variety of

5. By default htop shows the processes and threads together. Pressing the
H key while the program is running shows or hides the threads. In figure 2, the
screen is configured to show only the processes.

184 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

protocols (serial, sockets, bluetooth, etc.). The design of the class
also allows changing some of the communication parameters
during run-time. In addition, since the class inherits from the
Process class, it is trivial to run several instances of the class
to receive from multiple devices simultaneously. For instance, it
is possible to instantiate the class twice to receive data form two
different serial ports at the same time. The following code snippet
shows the basic structure of the class.
class CommunicationProcess(Process):

def __init__(self, queue):
Process.__init__(self)
self.exit = Event()
self.queue = queue
Initialize the process ...
Initialize the acquisition method ...

def run(self):
self.init_time = time()
try:

while not self.exit.is_set():
do acquisition
and add time stamp ...

except:
raise

finally:
self.closePort()

def openPort(self, port):
Port configuration to open

def closePort():
self.exit.set()

One of the key methods of the CommunicationProccess
class is run. The following code snippets is an example of how
to write a serial port interface.
class SerialProcess(Process):

...
def run(self):

self.init_time = time()
try:

while self.ser.isOpen() and \
not self.exit.is_set()

data = self.ser.readline().strip()
try:

data = map(float, data.split(','))
self.queue.put([time() -

self.init_time] + data)
except:

pass
except:

raise
finally:

self.closePort()
...

In this case, run computes the time stamp, then checks if the serial
port is open and if the process is not exiting. If both statements
are true, a line is read from the serial port. Then, the data is parsed
(in this example, the data stream consists of CSV floats). Finally,
if the data is valid it is placed in the queue.

The main process is implemented through the MainWindow
class. It is a subclass of the QtGui.QMainWindow class. In-
side this class we define the proper acquisition method (serial,
sockets, bluetooth, etc.) and the basic plot configurations, and we
configure the timers used to update the plots, which trigger the
update_plot method. The following code snippet shows the
basic structure of the class.
class MainWindow(QtGui.QMainWindow):

def __init__(self):
QtGui.QMainWindow.__init__(self)

Fig. 2: Screenshot of htop showing the processes associated with
the program. The first process (PID 3095) corresponds to the process
initiated by the application. The second one is the communication
process (PID 3109).

self.ui = Ui_MainWindow()
self.ui.setupUi(self)
initialize plots ...
self.ui.plt.setBackground(background=None)
self.plt1 = self.ui.plt.addPlot(row=1, col=1)

initialize variables ...
initialize timers ...
QtCore.QObject.connect(self.timer_plot_update,

...)

def start(self):
self.data = CommunicationProcess(self.queue)
self.data.openPort(...)

self.timer_plot_update.start(...)
self.timer_freq_update.start(...)

def update_plot(self):
while self.queue.qsize() != 0:

data = self.queue.get(True, 1)

draw new data ...
self.plt1.clear()
self.plt1.plot(...)

def stop(self):
self.data.closePort()
self.data.join()
self.timer_plot_update.stop()

The start method initializes the communication process. This
method is triggered every time the Start button is pressed. This
allows to change the communication parameters (port name,
bauds, etc.) during execution time.

The plot details are also defined in the MainWindow class.
The following code snippets shows how to customize some PyQt-
Graph options, such as titles, labels, and line colors.

class MainWindow(QtGui.QMainWindow):
def __init__(self):

...
Initializes plots
self.ui.plt.setBackground(background=None)
self.plt1 = self.ui.plt.addPlot(row=1, col=1)
self.plt2 = self.ui.plt.addPlot(row=2, col=1)
...
self.configure_plot(self.plt1, "title1",

"unit1")
self.configure_plot(self.plt2, "title2",

"unit2")

@staticmethod
def configure_plot(plot,title, unit,

y_min=0, y_max=0,
label_color='#2196F3',
label_size='11pt'):

label_style = {'color': label_color,
'font-size': label_size}

plot.setLabel('left', title,
unit, **label_style)

plot.setLabel('bottom', 'Time',
's', **label_style)

plot.showGrid(x=False, y=True)
if y_min != y_max:

plot.setYRange(y_min, y_max)

VISUALIZING PHYSIOLOGICAL SIGNALS IN REAL-TIME 185

Fig. 3: Screenshot of RTGraph customized and modified to display
3 signals: an EMG signal (first panel), an estimation of the fatigue
level (second panel) based on the acquired EMG signal, and three
acceleration signals (third panel).

else:
plot.enableAutoRange(axis=None,

enable=True)
plot.setMouseEnabled(x=False, y=False)

The class sets the layout of the plots through calls to
self.ui.plt.addPlot methods. Then, each plot is config-
ured by the configure_plot method, where details such as
title, range, color, and font sizes are set.

Results

We have used RTGraph with a serial port data stream correspond-
ing to a signal with a sampling frequency of 2 kHz. We have also
used it with a data stream from a TCP/IP socket corresponding to
20 signals with a sampling frequency of 500 Hz.

In a biomechanical study we used our program to evaluate a
prototype of a wearable device used to estimate muscle fatigue
through the EMG signal. RTGraph was customized to acquire
and record these data. We also incorporated some steps of a
fatigue estimation algorithm [Dim03] in the processing pipeline.
We found that having real-time feedback of the signal simplified
the procedure to position the wearable device correctly, drastically
reducing the amount of time required by the experiments. Figure
3 shows a screenshot of the program while acquiring an EMG
signal using a wearable device to study muscle fatigue. The
figure shows an EMG signal (first panel), a real-time estimation
of the fatigue level (second panel) based on the acquired EMG
signal, and three acceleration signals (third panel). See the follow-
ing links for a video of RTGraph being used to acquire these
signals: https://www.youtube.com/watch?v=sdVygxpljII, https://
www.youtube.com/watch?v=6WxkOeTuX7w.

An important feature of our program is the ease with wich it
can be customized to a specific application. For instance, RTGraph
is being used to acquire a set of pressure signals from a device (as
seen in figure 4) used to monitor nutrition disorders in premature
infants. The customization included: (1) modifying RTGraph to
acquire two pressure signals using bluetooth; and (2) to perform

Fig. 4: Photo of the prototype device used to monitor nutrition
disorders in premature infants. An Arduino development platform
is used to acquire the signals (two pressure measurements). These
signals are acquired by a computer running a modified version of
RTGraph.

some specific signal processing before the visualization. In this
example it is important to emphasize that the changes to the
program were made by a researcher other than the main developer
of our program. We claim that this is possible because our program
is written in Python. This makes it easier to understand and modify
the code compared to a program written in a lower-level language.

The software package presented in this article has been tested
with different devices, communication protocols, platforms and
operating systems (OSs). The initial development was done and
tested on the platforms x86, x64 and ARM (RaspberryPy) running
Linux. However, this version of RTGraph did not work as expected
on OS X and Windows, due to some restrictions of the multipro-
cessing library in these OSs. Despite the fact that OS X is a Unix-
like OS, there are some multiprocessing methods not implemented
in the multiprocessing library. In particular, the method qsize,
used to get the approximate size of the queue, is not implemented
in OS X. The lack of the os.fork() call in Windows adds
some extra limitations when running a program on this OS. Since
in this case a child process can not access the parent resources,
it is necessary that subclasses of the Process class must be
picklable. Although the documentation of the library contains
some suggestions to overcome these restrictions, currently we are
not able to run our program on Windows.

Conclusions

In this article we presented a program developed to record, process
and visualize physiological signals in real-time. Although many
people consider Python as a "slow" language, this article shows
that it is possible to use Python to write applications able to work
in real-time. At the same time, the clarity and simplicity of Python
allowed us to end up with a program that it is easy to modify and
extend, even by people who are not familiar with the base code.

We also believe that our solution is a contribution to the
open-source and Do It Yourself (DIY) communities. Typically,
programs to receive and manipulate data in real-time are developed
using proprietary tools such as LabView or MATLAB. The cost
of these tools denies members of these communities access to

186 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

solutions like those described in this article. As we showed in
the results section, in many cases we have used the program with
an Arduino acting as an acquisition device. This is a common
situation, and we believe that our program can be extended to be
used in other fields in need of similar tools.

In the future our first priority is to make our program work
on platforms running OS X and Windows. We are currently
investigating how to overcome the restriction imposed by the
multiprocessing platform on these OSs. Next, we will focus on
improving the UI. In particular, we will add an option to change
some plotting and processing parameters on the fly, instead of
requiring a change in the source code. Finally, we will refactor
the architecture of the program to improve the performance, so we
can handle higher data rates. In this respect, the main change we
plan to do is to move the signal processing computation to another
process, leveraging the existence of multi-core machines.

Acknowledgments

This research was partially supported by the Advanced Center
for Electrical and Electronic Engineering, Basal Project FB0008,
Conicyt.

REFERENCES

[Bea10] D. Beazley. Understanding the Python GIL, In PyCON Python
Conference. Atlanta, Georgia, 2010.

[Cam15] L. Campagnola. PyQtGraph. Scientific Graphics and GUI Library
for Python, http://www.pyqtgraph.org/

[Dim03] N. Dimitrova and G. Dimitrov. Interpretation of EMG changes with
fatigue: facts, pitfalls, and fallacies. Journal of Electromyography
and Kinesiology 13.1 (2003): 13-36.

[Hun20] J. D. Hunter. Matplotlib: A 2D graphics environment, Computing In
Science & Engineering, 9(3):90-95, IEEE COMPUTER SOC, 2007.

[Mad11] S. Madgwick, Andrew JL Harrison, and Ravi Vaidyanathan. Esti-
mation of IMU and MARG orientation using a gradient descent al-
gorithm., Rehabilitation Robotics (ICORR), 2011 IEEE International
Conference on. IEEE, 2011.

[Pyt15] Python Software Foundation, 16.6 multiprocessing - Process-
based “threading” interface, https://docs.python.org/2/library/
multiprocessing.html

[Roe06] D. Roetenberg, Inertial and magnetic sensing of human motion.
University of Twente, 2006.

[Ste11] S. van der Walt, S.C. Colbert and G. Varoquaux, The NumPy Array:
A Structure for Efficient Numerical Computation, Computing in
Science & Engineering, 13, 22-30, 2011.

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 187

Building a Cloud Service for Reproducible Simulation
Management

Faical Yannick Palingwende Congo‡∗

https://www.youtube.com/watch?v=euMLYw7SNdk

F

Abstract—The notion of capturing each execution of a script and workflow and
its associated metadata is enormously appealing and should be at the heart of
any attempt to make scientific simulations repeatable and reproducible.

Most of the work in the literature focus in the terminology and the ap-
proaches to acquire those metadata. Those are critical but not enough. Since
one of the purposes of capturing an execution is to be able to recreate the same
execution environment as in the original run, there is a great need to investigate
ways to recreate a similar environment from those metadata and also to be able
to make them accessible to the community for collaboration. The so popular
social collaborative pull request mechanism in Github is a great example of how
cloud infrastructures can bring another layer of public collaboration. We think
reproducibility could benefit from a cloud social collaborative presence because
capturing the metadata about a simulation is far from being the end game of
making it reproducible, repeatable or of any use to another scientist that has
difficulties to easily get them.

In this paper we define a reproducibility record atom and the cloud infras-
tructure to support it. We also provide a use case example with the event based
simulation management tool Sumatra and the container system Docker.

Index Terms—metadata, simulations, repeatable, reproducible, Sumatra, cloud,
Docker.

Introduction

Reproducibility in general is important because it is the corner-
stone of scientific advancement. Either done manually or automat-
ically; reusability, refutability and discovery are the key proprieties
that make research results repeatable and reproducible.

One will find that in the literature many research have been
done in defining the terminology (repeatability, reproducibility
and replicability) [Slezak2011] and investigating approaches re-
garding the recording of simulations metadata using workflows
[Oinn2006], libraries [Langer2014] or event control systems
[Guo2012]). These research are critical because they focus on
getting to the point where the metadata about a simulation ex-
ecution have been captured in a qualitative and reliable way.
Yet the use of these metadata to recreate the proper execution
environment is challenging and is not only extremely valuable to
the scientist that ran the simulation. It is more valuable to other

* Corresponding author: yannick.congo@gmail.com
‡ LIMOS - UMR CNRS 6158, Blaise Pascal Univerity, Campus Universitaire
des Cezeaux, 2 Rue de la Chebarde, TSA 60125 - CS, 60026, 63178 Aubière
CEDEX FRANCE

Copyright © 2015 Faical Yannick Palingwende Congo. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

scientists that share the same interest and could benefit an easy
way to at least get the same results consistently. This is why we
think that reproducibility can gain from a more active presence
in the cloud through infrastructures that bring an easy access and
collaboration around those captured metadata. The social collab-
orative pull request mechanism from Github [MacDonnell2012]
is a great example about the importance of cloud infrastructures
in enhancing collaboration. In fact many scientific projects from
SciPy [Oliver2013] got some interest and contribution because of
their exposure on Github and its ease for collaboration.

In this paper we discuss on a structure of a reproducible record
atom. It is a record that we propose to ease the reconstruction
of the execution environment and allow an easy assessment of
its reproducibility by comparing it to others. Then we propose a
cloud platform to deliver an online collaborative access around
these record atoms. And finally we present an integration use
case with the data driven simulation management tool Sumatra
[Davidson2010].

A reproducible record atom

Defining what are the requirements that have to be recorded to bet-
ter enforce the reproducibility of a simulation is of good interest in
the community. From more general approaches like defining rules
that have to be fulfilled [Sandve2013], to more specific approaches
[Heroux2011], we can define a set of metadata that are useful to
determine the reproducibility of a simulation. To do so, we have
to go from the fact that the execution of a simulation involves
mostly five different components: the source code or executable,
the input files, the output files, the dependencies and the hosting
system. The source code or executable gives all the information
about what the simulation is, where it can be found (repository)
and how it was run. The input files are all the files being loaded
by the simulation during its execution. The output files are all
the files that the simulation produced during its execution. The
dependencies are all the libraries and tools that are needed by
the simulation to run. The hosting system is the system in which
the simulation is being ran. These components can be classified
into two groups regarding repeatability as a goal. To repeat a
simulation execution, the source code and the inputs are part of a
group of components that are kept as the same. The dependencies
and the host system on the other end are part of the components
that will most likely change from the original executing system to
another that is attempting a repeat. We think of them as a cause of
uncertainties that lead to variations in the outputs when the source

188 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

code and inputs are still the same. To assess a reproducibility
property on a simulation, we provide the Table 1. It defines the
reproducibility properties involved (repeatable, reproducible, non-
repeatable, non-reproducible or unknown) when comparing the
source code, inputs and outputs of two simulations. This table
is used in conjunction with the models presented later to assess
the reproducibility property of any record atom in the system
compared to another through a requesting mechanism that will
be detailed further.

One thing is to be able to gather crucial information about a
simulation yet another challenging one is to be able to recreate the
same execution context as when the simulation was done the first
time. It is impossible to consistently reproduce a simulation across
platforms and machines if we do not have a uniform and portable
way to bundle the whole simulation execution environment.

We think that container based systems [Bottomley2014] are a
possible solution to ensure the consistency of the operating system
and dependencies on which the simulation runs. Building and
sharing a container that will deliver a runnable image in which
the simulation execution is well scoped and controlled will ensure
that across machines and platforms we get closer to a consistent
execution environment [Melia2014].

Thus we propose here a container based recording alternative
along with the captured metadata as a set of four models that
combined together should be enough to deliver a reproducible
record atom storage. We show here the project model in Table 2.

It describes the simulation. Its history field is the list of
container images that have been built each time that the project
source code changes. The container is setup directly from the
source code of the simulation. We also propose a container model
that is as simple as shown in the Table 3.

Based on the project’s model in Table 2, we designed a record
atom model shown in Table 4. A record is related to a project
and a container in the history of the project containers. When a
record atom is created, its container is the last container in the the
project’s history at that time. Thus, a record atom that will be done
on a modified project source code has to be performed after the
new container for this modified version of the project get pushed
to the history field. This way we ensure that two records with
different containers are from two different sources codes and also
two records with the same containers are from the same source
code.

A record atom reproducibility property assessment is done
through a differentiation process. A differentiation process is a
process that allows the resolution of a record atom reproducibility
property compared to another. In this situation, the two record
atoms are considered being from simulations that try to achieve
the same goals. It is quite hard to know at a high level standpoint
if two record atoms are the same because it will most likely be
a domain related decision that proves that both records support
the same claims. We focus here in an approach that provides some
basic differentiation methods and allow the definition of new ones.
Thus, the differentiation will most likely be based on the targeted
record atom owner domain knowledge and understanding on the
method used. Since the record atom is the state of a simulation
execution, the inputs, outputs, dependencies and system fields
have to be provided every time because from a run to another
any of those may be subject to a change. Sometimes an action
as simple as upgrading a library can have terrible and not easy
to determine consequences on the outputs of another execution of
the same simulation in the same system.

A differentiation request or shortly diff request is the contract
on which the mechanism described before runs. A requesting
record owner asks a targeted record atom owner to validate a
record atom reproducibility proposal from him. In this mechanism,
the requesting party has to define what the assessment is based
on: repeated, reproduced, non-reproduced and non-repeated. This
party also has to define the base differentiation method on which
the assessment has been made: default, visual and custom. A
default differentiation method is a Leveinstein distance1 based
differentiation on the text data. A visual one is a nobservation
based knowledge assessment. And custom is left to the requester to
define and propose to the targeted. It is important to point that the
Table 1 is the core scheme of comparison that all differentiation
request have to go through upon submission. To be accepted in
the platform, the diff request assessment has to comply with the
content of that Table. As such a diff request for two requests
that have different inputs contents cannot be assessed as a repeat
compared to one another because an input variation should lead to
a reproducible assessment as pointed in the Table 1. The targeted
record atom owner has to answer to the request by setting after
verification on his side, the status of the request to agreed or
denied. By default the status value is proposed. The table 5
represents the fields that a diff request contains. In fact one may
say that in a model level a solved diff request is a relationship of
reproducibility assessment between two records.

A project reproducibility property can be assessed from the
differentiation requests on its records. All the requests that have
a status to agreed represent a list of accepted couple of records
that have been resolved as: repeated, reproduced, non-repeated
and non-reproduced.

Data Driven Cloud Service Platform

To support simulation management tools metadata, we propose a
cloud platform that implements the reproducible assessable record
described previously. This platform has two sides. As shown in
the Figure 1, an API2 access and a Web Frontend3 access. These
two services are linked to a MongoDB4 database that contains:
the user accounts, the projects, the records, the containers and
the differentiation requests. We implemented some restrictions
depending on the type of access.

The API service exposes endpoints that are accessible by
the Simulation management tool from the executing machine.
It is a token based credential access that can be activated and
renewed only from the Web Frontend access. The API allows the
Simulation Management tools to push, pull and search projects
and records. The API documentation will be available publicly
and will present the endpoints, HTTP5 methods and the mandatory
fields in a structured JSON6 format request content.

The Web Frontend service on the other end is controlled by the
Cloud service. The Cloud service is accessible only from the Web
Frontend. Thus when the user interacts with the Web Frontend, he
is actually securely communicating with the Cloud service. This
strongly coupled design allows a flexible deployment and upgrades
but at the same time harden the security of the platform. The
frontend access allows the user to manage his account and handle
his API credentials which are used by the Simulation Management
tools to communicate with the platform. It also allows the user
to visualize his projects, records and requests. It is the only place

1. Levenshtein distance is a string metric for measuring the difference
between two sequences.

BUILDING A CLOUD SERVICE FOR REPRODUCIBLE SIMULATION MANAGEMENT 189

Output Files Source Code and Input Files
Same and Same Same and Different Different and Same Different and Different

Same Repeatable Reproducible Reproducible Reproducible
Different non-repeatable Unknown Unknown Unknown

TABLE 1: Reproducibility assessment based on source code, inputs and outputs

Fig. 1: Platform Architecture.

Fields Descriptions

created string: simulation creation timestamp.
private boolean: false if project is public.
name string: project name.
description string: full description of the project.
goals string: project goals.
owner user: the creator of the project.
history list: container images list.

TABLE 2: Simulation metadata Project Model.

Fields Descriptions

created string: simulation creation timestamp.
system string: docker, rocket, ...
version dict: version control source code’s tag .
image string: path to the image in the cloud.

TABLE 3: Simulation metadata Container Model.

where the user can update some content regarding a project, record
or interact with his differentiation requests.

On the platform, the API is the only place where projects and
records are automatically created. On the Web side this is still
possible but it is a manual process.

A Simulation tool that needs to interact with the platform has
to follow the endpoints descriptions in Tables 6 and 7.

Fields Descriptions

created string: execution creation timestamp.
updated string: execution update timestamp.
program dictionary: command, version control,...
inputs list: input files.
outputs list: output files.
dependencies list: dependencies.
status string: unknown, started, paused, ...
system dictionary: machine and os information.
project project: the simulation project.
image container: reference to the container.

TABLE 4: Simulation metadata Record Model.

Fields Descriptions

created string: request creation timestamp.
sender user: responsible of the request.
toward record: targeted record.
from record: requesting record.
diff dictionary: method of differentiation.
proposition string: repeated,reproduced,...
status string: agreed,denied,proposed.

TABLE 5: Simulation Record Differentiation Request Model.

190 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Endpoint Content
Method Envelope

/api/v1/ < api− token > /pro ject/pull/ < pro ject−name > GET null. Note: pull metadata about the project.
/api/v1/ < api− token > /pro ject/push/ < pro ject−name > POST name, description, goal... custom. Note: push project metadata.

TABLE 6: REST Project endpoints

Endpoint Content
Method Envelope

/api/v1/ < api− token > /record/push/ < pro ject−name > POST program, inputs, outputs... Note: push metadata about the record.
/api/v1/ < api− token > /record/pull/ < pro ject−name > GET null. Note: pull the container.
/api/v1/ < api− token > /record/display/ < pro ject−name > GET null. Note: metadata of the record.

TABLE 7: REST Record endpoints

Integration with Sumatra and Use Case

Sumatra Integration
Sumatra is an open source event based simulation management

tool. To integrate the cloud API into Sumatra we briefly investigate
how Sumatra stores the metadata about a simulation execution.

To store records about executions, Sumatra implements record
stores. It also has data stores that allow the storage of the sim-
ulation results. As of today, Sumatra provides three data storage
options:

• FileSystemDataStore: It provides methods for accessing
files stored on a local file system, under a given root
directory.

• ArchivingFileSystemDataStore: It provides methods for
accessing files written to a local file system then archived
as .tar.gz.

• MirroredFileSystemDataStore: It provides methods for ac-
cessing files written to a local file system then mirrored to
a web server.

Sumatra also provides three ways of recording the simulation
metadata:

• ShelveRecordStore: It provides the Shelve based record
storage.

• DjangoRecordStore: It provides the Django based record
storage (if Django is installed).

• HttpRecordStore: It provides the HTTP based record stor-
age.

Regarding the visualization of the metadata from a simulation,
Sumatra provides a Django7 tool named smtweb. It is a local web
app that provides a web view to the project folder from where
it has been ran. For a simulation management tool like Sumatra
there are many advantages in integrating a cloud platform into its
record storage options:

• Cloud Storage capability: When pushed to the cloud, the
data is accessible from anywhere.

2. Application Programming Interface.
3. Client browser access.
4. An Agile, Scalable NoSQL Database: https://www.mongodb.org/
5. HyperText Transfert Protocol.
6. A Data-Interchange format: http://json.org/
7. Python Web Framework: https://www.djangoproject.com/

• Complexity reduction: There is no need for a local record
viewer. The scientist can have access to his records any-
time and anywhere.

• Discoverability enhancement: Everything about a simula-
tion execution is a click away to being publicly shared.

As presented in the list of record store options, Sumatra
already has an HTTP based record store available. Yet it does
not suite the requirements of the cloud platform. Firstly because
there is no automatic mechanism to push the data in the cloud.
The MirroredFileSystemDataStore has to be fully done by the
user. Secondly we think there is need for more atomicity. In fact,
Sumatra gather the metadata about the execution and store it at
the end of the execution, which can have many disadvantages
generally when the simulation process dies or the Sumatra instance
dies.

To integrate the cloud API and fully comply to the requirement
cited before, we had to implement and update some parts of the
Sumatra source code:

• DataStore: Currently the collect of newly created data
happens at the end of the execution. This creates many
issues regarding concurrent runs of the same projects
because the same files are going to be manipulated. We are
investigating two alternatives. The first is about running the
simulation in a labeled working directory. This way, many
runs can be done at the same time while having a private
labeled space to write to. The second alternative consists of
writing directly into the cloud. This will most likely break
the already implemented data and record store paradigm
in Sumatra.

• RecordStore: We make the point that the simulation man-
agement tool is the one that should comply to as many
API interfaces as possible to give the user as many inter-
operability as possible with cloud platforms that support
reproducible records. Thus, we intend to provide a total
new record store that will fully integrate the API into
Sumatra.

• Recording Mechanism: In Sumatra the knowledge of the
final result of the execution combined with atomic state
monitoring of the process will allow us to have a dynamic
state of the execution. We want to make Sumatra record
creation a dynamic many points recorder. In addition to an
active monitoring, this feature allows the scientist to have
basic informations about its runs may they crash or not.

BUILDING A CLOUD SERVICE FOR REPRODUCIBLE SIMULATION MANAGEMENT 191

Example project with Sumatra
The Sumatra repository8 provides three test example projects.

This example is based on the python one9. We propose here an
example project as a base line to make the scientist’s simulation
comply with the principles described here. The platform currently
supports docker as a container based system and Sumatra as a
simulation management tool.

The example is the encapsulation of the execution of a python
simulation code main.py that is simply:
import numpy
import sys

__version__ = "1.2.3a"

version numbers are deliberately different
for testing purposes
def get_version():

return (1, 2, "3b")

def run():
parameter_file = sys.argv[1]
parameters = {}
this way of reading parameters
execfile(parameter_file, parameters)
is not necessarily recommended
numpy.random.seed(parameters["seed"])
distr = getattr(numpy.random,

parameters["distr"])
data = distr(size=parameters["n"])

numpy.savetxt("Data/example2.dat",
data)

if __name__ == "__main__":
run()

The input file to provide is default.param that contains:
seed for random number generator
seed = 65785
statistical distribution to draw values from
distr = "uniform"
number of values to draw
n = 100

The instrumented project is organized as following:

• Python main: It’s the simulation main source code.
• Git ignore: It contains the files that will not be versioned

by git.
• Requirements: It contains all the python requirements

needed by the simulation.
• Dockerfile: It contains the simulation docker container

setup.
• Manage files: It’s a script that allows the scientist to

manage the container builds and the simulation executions.
• Sumatra integrate: It is a modified copy of Sumatra that

integrates the API.

This demo example is currently working in linux and OsX
systems and to run it, the scientist has to proceed as following:

• Get the source from github.
• To have an API key: Create an account on the platform

and login.
• Access the user profile: In the home page, the round user

floating image display two buttons that are the user profile

8. https://github.com/open-research/sumatra.git
9. https://github.com/faical-yannick-congo/ddsm-demo/tree/setup

access. Click the first one to view and the second one to
edit the profile.

• Get the API key: Go to view the user profile and copy the
string near the key image.

• Open the manage.sh file and replace the API key
3a8d4cc793bd3e5b85c733b523584... by this string. Up-
date data path to be where the default.param file is located
and the container path to be where the container image
will be placed. By default the container image is generated
in the demo-sumatra directory.

• Git global settings: Replace the git global username and
email by the scientist’s.

• Build the container image.
• Run the simulation: It will run main.py in the container

and push the record along with the container image to the
cloud space in the platform.

• Outcome: In the online dashboard, there will be a new
project named demo-sumatra with a record that can be
downloaded and executed with an input file like the de-
fault.param.

The following bash code, is the set of commands that will be
ran by the scientist. Note that the first echo is the step described
previously about replacing the API key in manage.sh by the
scientist’s one.

git clone github.com/faical-yannick-congo/ddsm-demo
cd ddsm-demo
git checkout setup
echo "Update the api key."
echo "To build the container image: "
./manage.sh --build --simulation demo-sumatra
echo "To run the simulation: "
./manage.sh --run-core --simulation demo-sumata

For a new simulation project we suggest that the scientist follow
the same source structure as done in the demo example. Then to
instrument his simulation, the scientist has to go through some few
steps:

• Source code: The scientist may remove the script main.py
and include his source code.

• Requirements: The scientist may provide the python li-
braries used by the simulation there.

• Dockerfile: Uncomment line 54 by removing the first
character. Also the installation of non python libraries
should be added here.

• Management: Here, the scientist has to update the API key
and the git global settings (username and email).

• Running command: The scientist has to determine the full
command that will be ran with the simulation and the input
data to provide. The -v argument for docker allows file
mapping from the local file system to the docker container.
The -c argument allows the user to run a string command in
the docker’s /bin/bash terminal. More information can be
found about those arguments. The scientist should update
the run string to fit the simulation execution.

After performing this instrumentation on his simulation source
code, the scientist has to build and run the simulation as done
previously for the demo example. In addition, it is important
that the scientist builds the container every time that the source
modifications are ready to be tested as justified before when
presenting the record model. In this case a newly exported image
will be available to be ran with Sumatra. After a build, a run will

192 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

execute the simulation and create the associated record that will
be pushed to the cloud API. The interesting part of such a design
is that the record image can be ran by any other scientist with the
possibility to change the input data. This allows reproducibility at
an input data level. For source code level modifications, the other
scientist has to recreate an instrumented project. In the manage
script, an API token is required to be able to access the cloud
API. The scientist will have to put his own. A further detailed
documentation will be provided. The source code of the demo can
be found here10. It has been tested on an Ubuntu 15.04 machine
and will work on any Linux or OsX machine that has docker
installed.

The instrumented example presented here, has been done
from a local development instance of the platform. AWS11 server
instances are being setup to host a public access to a production
version of this platform. To reproduce this example demo, the
url inside the manage.sh will have to be update accordingly to
the location of the API endpoint. Further information will be
delivered.

Conclusion and Perspective

Scientific computational experiments through simulation is getting
more support to enhance the reproducibility of research results.
Execution metadata recording systems through event control,
workflows and libraries are the approaches that are investigated
and quite a good number of softwares and tools implement
them. Yet the aspect of having these records discoverable in
a reproducible manner is still an unfulfilled need. This paper
proposes a container based reproducible record atom and the cloud
platform to support it. The cloud platform provides an API that
can easily be integrated to the existing Data Driven Simulation
Management tools and allow: reproducibility assessments, world
wide web exposure and sharing. We described an integration use
case with Sumatra and explained how beneficial and useful it is
for Sumatra users to link the cloud API to their Sumatra tool.
This platform main focus is to provide standard and generic ways
for scientists to collaborate through reproducible record atoms
and interact by the mean of differentiation procedures that will
allow them to assess if a simulation is repeatable, reproducible,
non-repeatable, non-reproducible or if its an ongoing research. A
differentiation request description has been provided and can be
presented as a hand shake between scientists regarding the result
of simulation runs. One can request a reproducibility assessment
property validation from a record against another.

We are under integration investigation for other simulation
management tools used in the community. In the short term this
platform will hopefully be a space where scientists could clone the
entire execution environment that another scientist did. And from
there be able to verify the claims of the project and investigate
other execution on different input data. The container based record
described here, we hope, will allow a better standard environment
control across repeats and reproductions, which is a very hard
battle currently for all simulation management tools. Operating
systems, compilers and dependencies variations are the nightmare
of reproducibility tools because the information is usually not fully
accessible and recreating the appropriate environment is not an
easy straight forward task.

10. https://github.com/faical-yannick-congo/ddsm-demo
11. Amazon Web Services: http://aws.amazon.com/

Finally it is important to point out that in some cases the five
components (source code, inputs, hosting system, dependencies
and outputs) cited before are not sufficient because the design of
the simulation itself has to follow a rigorous method to better
enforce reproducibility. Parallel stochastic simulations presents
this requirement of determining the right techniques for generating
parallel pseudorandom numbers [Hill2015].

Acknowledgments

This research paper is made possible through the help of my thesis
supervisors and colleagues.

First and foremost, I would like to thank Dr. David Hill and
Dr. Jonathan Guyer for their most support, encouragements and
critics.

Second, I would also like to thank Dr. Daniel Wheeler for his
ideas and brainstorms at the early stage of this investigation and
his continuous research for better technologies for computational
science.

Finally, I would like to thank Dr. Andrew Reid and Dr. Stephen
Langer for their exceptional willingness to help me reshape and
bring more lights in this paper. They kindly read my paper and
offered invaluable detailed advices on grammar and organization
of the paper.

REFERENCES

[Slezak2011] P. Slezák and I. Waczulíková, Reproducibility and Re-
peatability. Physiological Research, Volume 60, Issue 1,
pp. 203-205, 2011.

[Oinn2006] Tom Oinn et al, Taverna: lessons in creating a work-
flow environment for the life sciences. Concurrency and
Computation: Practice and Experience, Special Issue:
Workflow in Grid Systems, Volume 18, Issue 10, pages
1067–1100, 25 August 2006.

[Langer2014] Stephen Langer et al, gtklogger: A Tool For Systematically
Testing Graphical User Interfaces. NIST Internal Publica-
tion, pp. 2-3, October 2014.

[Guo2012] Philip Guo, CDE: A Tool for Creating Portable Exper-
imental Software Packages. Reproducible Research For
Scientific Computing, pp. 2-3, October 2012.

[MacDonnell2012] John MacDonnell, Git for Scientists: A Tutorial. http://
nyuccl.org/pages/gittutorial/, July 2012.

[Oliver2013] Marc Oliver, Introduction to the Scipy Stack - Scientific
Computing Tools for Python. Jacobs University,
http://math.jacobs-university.de/oliver/teaching/scipy-
intro/scipy-intro.pdf, November 2013.

[Davidson2010] Andrew Davidson, Automated tracking of computational
experiments using Sumatra. EuroSciPy 2010,
http://www.andrewdavison.info/media/slides/sumatra_
euroscipy2010.pdf, 2010.

[Sandve2013] Geir Kjetil Sandve et al, Ten Simple Rules for Repro-
ducible Computational Research.. PLoS Comput Biol
9(10): e1003285. doi:10.1371/journal.pcbi.1003285, Oc-
tober 2013.

[Heroux2011] Michael A. Heroux, Improving CSE Software through
Reproducibility Requirements. SECSE ’11 Proceedings of
the 4th International Workshop on Software Engineering
for Computational Science and Engineering, pp. 28-31,
ISBN: 978-1-4503-0598-3 do:10.1145/1985782.1985787,
May 2011.

[Bottomley2014] James Bottomley, What is All the Container Hype?.
Linux Foundation, p. 2, http://www.odin.com/fileadmin/
media/hcap/pcs/documents/ParCloudStorage_Mini_WP_
EN_042014.pdf, April 2014.

[Melia2014] Ivan Melia et al, Linux Containers: Why They are in
Your Future and What Has to Happen First. Cisco
and RedHat, p.7, https://www.cisco.com/c/dam/en/us/
solutions/collateral/data-center-virtualization/openstack-
at-cisco/linux-containers-white-paper-cisco-red-hat.pdf,
September 2014.

BUILDING A CLOUD SERVICE FOR REPRODUCIBLE SIMULATION MANAGEMENT 193

[Hill2015] David Hill, Parallel Random Numbers, Simulation, Sci-
ence and reproducibility. IEEE/AIP - Computing in Sci-
ence and Engineering, Volume:17, Issue: 4, pp. 66-71.

