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Parallel High Performance Bootstrapping in Python

Aakash Prasad‡∗, David Howard‡, Shoaib Kamil‡, Armando Fox‡

F

We use a combination of code-generation, code lowering,
and just-in-time compilation techniques called SEJITS (Selec-
tive Embedded JIT Specialization) to generate highly performant
parallel code for Bag of Little Bootstraps (BLB), a statistical
sampling algorithm that solves the same class of problems as
general bootstrapping, but which parallelizes better. We do this
by embedding a very small domain-specific language into Python
for describing instances of the problem and using expert-created
code generation strategies to generate code at runtime for a
parallel multicore platform. The resulting code can sample giga-
byte datasets with performance comparable to hand-tuned parallel
code, achieving near-linear strong scaling on a 32-core CPU,
yet the Python expression of a BLB problem instance remains
source- and performance-portable across platforms. This work
represents another case study in a growing list of algorithms we
have "packaged" using SEJITS in order to make high-performance
implementations of the algorithms available to Python program-
mers across diverse platforms.

Introduction

A common task domain experts are faced with is performing
statistical analysis on data. The most prevalent methods for doing
this task (e.g. coding in Python) often fail to take advantage of
the power of parallelism, which restricts domain experts from
performing analysis on much larger data sets, and doing it much
faster than they would be able to with pure Python.

The rate of growth of scientific data is rapidly outstripping
the rate of single-core processor speedup, which means that
scientific productivity is now dependent upon the ability of domain
expert, non-specialist programmers (productivity programmers)
to harness both hardware and software parallelism. However,
parallel programming has historically been difficult for produc-
tivity programmers, whose primary concern is not mastering
platform specific programming frameworks. At the same time, the
methods available to harness parallel hardware platforms become
increasingly arcane and specialized in order to expose maximum
performance potential to efficiency programming experts. Several
methods have been proposed to bridge this disparity, with varying
degrees of success.

High performance natively-compiled scientific libraries (such
as SciPy) seek to provide a portable, high-performance interface

* Corresponding author: aprasad91@gmail.com
‡ University of California, Berkeley

Copyright © 2012 Aakash Prasad et al. This is an open-access article dis-
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for common tasks, but the usability and efficiency of an interface
often varies inversely to its generality. In addition, SciPy’s imple-
mentations are sequential, due to both the wide variety of parallel
programming models and the difficulty of selecting parameters
such as degree of concurrency, thread fan-out, etc.

SEJITS [SEJITS] provides the best of both worlds by allowing
very compact Domain-Specific Embedded Languages (DSELs)
to be embedded in Python. Specializers are mini-compilers for
these DSELs, themselves implemented in Python, which perform
code generation and compilation at runtime; the specializers only
intervene during those parts of the Python program that use Python
classes belonging to the DSEL. BLB is the latest such specializer
in a growing collection.

ASP ("ASP is SEJITS for Python") is a powerful framework
for bringing parallel performance to Python using targeted just-in-
time code transformation. The ASP framework provides a skinny
waist interface which allows multiple applications to be built
and run upon multiple parallel frameworks by using a single
run-time compiler, or specializer. Each specializer is a Python
class which contains the tools to translate a function/functions
written in Python into an equivalent function/functions written
in one or more low-level efficiency languages. In addition to
providing support for interfacing productivity code to multiple
efficiency code back-ends, ASP includes several tools which help
the efficiency programmer lower and optimize input code, as well
as define the front-end DSL. Several specializers already use
these tools to solve an array of problems relevant to scientific
programmers [SEJITS].

Though creating a compiler for a DSL is not a new problem,
it is one with which efficiency experts may not be familiar.
ASP eases this task by providing accessible interfaces for AST
transformation. The NodeTransformer interface in the ASP
toolkit includes and expands upon CodePy’s [CodePy] C++ AST
structure, as well as providing automatic translation from Python
to C++ constructs. By extending this interface, efficiency program-
mers can define their DSEL by modifying only those constructs
which differ from standard python, or intercepting specialized con-
structs such as special function names. This frees the specializer
writer from re-writing boilerplate for common constructs such as
branches or arithmetic operations.

ASP also provides interfaces for managing source variants
and platforms, to complete the task of code lowering. The ASP
framework allows the specializer writer to specify Backends,
which represent distinct parallel frameworks or platforms. Each
backend may store multiple specialized source variants, and in-
cludes simple interfaces for selecting new or best-choice variants,
as well as compiling and running the underlying efficiency source
codes. Couple with the Mako templating language and ASP’s
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AST transformation tools, efficiency programmers are relieved of
writing and maintaining platform-specific boilerplate and tools,
and can focus on providing the best possible performance for their
specializer.

Related Work

Prior work on BLB includes a serial implementation of the
algorithm, as described in "The Big Data Bootstrap" and a Scala
implementation that runs on the Spark cluster computing frame-
work, as described in "A Scalable Bootstrap for Massive Data".
The first paper shows that the BLB algorithm produces statistically
robust results on a small data set with a linear estimator function.
The second paper describes how BLB scales with large data sets
in distributed environments.

BLB

BLB ("Bag of Little Bootstraps") is a method to assess the quality
of a statistical estimator, θ(X), based upon subsets of a sample
distribution X. θ might represent such quantities as the parameters
of a regressor, or the test accuracy of a machine learning classifier.
In order to calculate θ , subsamples of size Kγ , where K = |X |
and γ is a real number between 0 and 1, are drawn n times
without replacement from X, creating the independent subsets
X1,X2, ...,Xn. Next, K elements are resampled with replacement
from each subset Xi, m times. This procedure of resampling
with replacement is referred to as bootstrapping. The estimator
θ is applied to each bootstrap. These results are reduced using a
statistical aggregator (e.g. mean, variance, margin of error, etc.)
to form an intermediate estimate θ ′(Xi).Finally, the mean of θ ′
for each subset is taken as the estimate for θ(X). This method
is statistically rigorous, and in fact reduces bias in the estimate
compared to other bootstrap methods [BLB]. In addition, its
structural properties lend themselves to efficient parallelization.

DSEL for BLB

A BLB problem instance is defined by the estimators and reducers
it uses, its sampling parameters, and its input data. Our BLB
specializer exposes a simple but expressive interface which allows
the user to communicate all of these elements using either pure
Python or a simple DSEL.

The DSEL, which is formally specified in Appendix A, is
designed to concisely express the most common features of BLB
estimator computations: position-independent iteration over large
data sets, and dense linear algebra. The BLB algorithm was
designed for statistical and loss-minimization tasks. These tasks
share the characteristic of position-independant computation; they
depend only on the number and value of the unique elements
of the argument data sets, and not upon the position of these
data points within the set. For this reason, the DSEL provides
a pythonic interface for iteration, instead of a position-oriented
style (i.e., subscripts and incrementing index variables) which is
common in lower-level languages. Because most data sets which
BLB operates on will have high-dimensional data, the ability to
efficiently express vector operations is an important feature of the
DSEL. All arithmetic operations and function calls which operate
on data are replaced in the final code with optimized, inlined
functions which automatically handle data of any size without
changes to the source code. In addition to these facilities, common
dense linear algebra operations may also be accessed via special
function calls in the DSEL.

The next set of problem parameters, the sampling parameters,
are not represented directly in the DSEL; In fact, they are not refer-
enced anywhere therein. This is because the sampling parameters,
which comprise n, m, and γ , have pattern-level consequences, and
have no direct bearing on the executrion of users’ computations.
These values can be passed as keyword arguments to the special-
izer object when it is created, or the specializer may be left to
choose reasonable defaults.

The final components of a problem instance are the input data.
Much of the necessary information about the input data is gleaned
by the specializer without referring to the DSEL. However, a major
component of what to do with the input data is expressed using
the DSEL’s annotation capability. Argument annotations, as seen
in figure 1 below, are used to determine whether or not a given
input should be subsampled as part of the BLB pattern. This is
essential for many tasks, because it allows the user to pass in
non-data information (e.g. a machine learning model vector) into
the computation. Though the annotations are ultimately removed,
the information they provide propagates as changes to the pattern
within the execution template.

An example application of BLB is to do model verification.
Suppose we have trained a classifier π : Rd → C where d is the
dimension of our feature vectors and C is the set of classes. We can
define θ [Y ] to be error[Y]/|Y|, where the error function is 1 if
π(y) is not the true class of y, and 0 elsewhere. If we then choose
arithmetic mean as a statistical aggregator, the BLB method using
the γ we defined will provide an estimate of the test error of our

classifier.
Figure 1. User-supplied code for model verification applica-

tion using BLB specializer.

The Specializer: A Compiler for the BLB DSEL

The BLB specializer combines various tools, as well as compo-
nents of the ASP framework and a few thousand lines of custom
code, to inspect and lower productivity code at run time.

The BLB DSEL is accessed by creating a new Python class
which uses the base specializer class, blb.BLB, as a parent.
Specific methods corresponding to the estimator and reducer
functions are written with the DSEL, allowing the productivity
programmer to easily express aspects of a BLB computation which
can be difficult to write efficiently. Though much of this code is
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converted faithfully from Python to C++ by the specializer, two
important sets of constructs are intercepted and rewritten in an
optimized way when they are lowered to efficiency code. The
first such construct is the for loop. In the case of the estimator
theta, these loops must be re-written to co-iterate over a weight
set. As mentioned above, the bootstrap step of the algorithm
samples with replacement a number of data points exponentially
larger than the size of the set. A major optimization of this
operation is to re-write the estimator to work with a weight set
the same size as the subsample, who’s weights sum to the size
of the original data set. This is accomplished within the DSEL
by automatically converting for loops over subsampled data sets
into weighted loops, with weight sets drawn from an appropriate
multinomial distribusion for each bootstrap. When this is done, the
specializer converts all the operations in the interior of the loop to
weighted operations, which is why only augmented assignments
are permitted in the interior of loops Appendix A. The other set of
constructs handled specially by the specializer are operators and
function calls. These constructs are specialized as described in the
previous section.

Introspection begins when a specializer object is instantiated.
When this occurs, the specializer uses Python’s inspect module
to extract the source code from the specializer object’s methods
named compute_estimate, reduce_bootstraps, and
average. The specializer then uses Python’s ast module to
generate a Python abstract syntax tree for each method.

The next stage of specialization occurs when the specialized
function is invoked. When this occurs, the specializer extracts
salient information about the problem, such as the size and data
type of the inputs, and combines it with information about the
platform gleaned using ASP’s platform detector. Along with this
information, each of the three estimator ASTs is passed to a
converter object, which transforms the Python ASTs to C++ equiv-
alents, as well as performing optimizations. The converter objects
referred to above perform the most radical code transformations,
and more so than any other part of the specializer might be called
a run-time compiler (with the possible exception of the C++
compiler invoked later on). Once each C++ AST is produced,
it is converted into a python string whose contents are a valid
C++ function of the appropriate name. These functions-strings,
along with platform and problem-specific data, are used as inputs
to Mako templates to generate a C++ source file tailored for the
platform and problem instance. Finally, CodePy is used to compile
the generate source file and return a reference to the compiled
function to Python, which can then be invoked.

In addition to code lowering and parallelization, the specializer
is equipped to make pattern-level optimization decisions. These
optimizations change the steps of the execution pattern, but do
not affect the user’s code. The best example of this in the BLB
specializer is the decision of whether or not to load in subsamples.
Subsamples of the full data set can be accessed by indirection to
individual elements (a subsample is an array of pointers) or by
loading the subsampled elements into a new buffer (loading in).
Loading in subsamples encourages caching, and our experiments
showed performance gains of up to 3x for some problem/platform
combinations using this technique. However, as data sizes grow,
the time spent moving data or contending for shared resources
outweighs the caching benefit. Because the specializer has some
knowledge of the platform and of the input data sizes, it is able to
make predictions about how beneficial loading in will be, and can
modify the efficiency level code to decide which inputs should

be loaded in and which should not. The specializer determines
this by comparing the size of a subsample to the size of the
shared L2 cache; if the memory needed for a single thread would
consume more than 40% of the resources, then subsamples will
not be loaded in. The value of 40% is empirical, and determined
for the particular experiments herein. In the future, this and
other architecture-level optimizations will be made automatically
by specializers by comparing the performance effects of such
decisions on past problem instances.

The other major pattern-level decision for a BLB computation
is choice of sampling parameters. These constitute the major
efficiency/accuracy trade-off of the BLB approach. By default, the
specializer sets these parameters conservatively, favoring accuracy
heavily over efficiency; The default sampling parameters are n =
25 subsamples, m = 100 bootstraps per subsample, and γ = 0.7.
Though each of these values has clear performance implications,
the specializer does not adjust them based on platform parameters
because it does not include a mechanism to evaluate acceptable
losses in accuracy.

Empirical evidence shows that accuracy declines sharply using
γ less than 0.5 [BLB], though does not increase much more
using a higher value than 0.7. A change of .1 in this value
leads to an order-of-magnitude change in subsample size for data
sets in the 10-100 GB range, so the smallest value which will
attain the desired accuracy should be chosen. The number of
subsamples taken also has a major impact on performance. The
run time of a specialized computation in these experiments could
be approximated to within 5% error using the formula t = d n

c es ,
where t is the total running time, c is the number of cores in use,
and s is the time to compute the bootstraps of a single subsample
in serial. Though the result from bootstraps of a given subsample
will likely be close to the true estimate, at least 20 subsamples
were needed in the experiments detailed here to reduce variance
in the estimate to an acceptable level. Finally, the number of
bootstraps per subsample determines how accurate an estimate
is produced for each subsample. In the experiments described
below, 40 bootstraps were used. In experiments not susceptible
to noise, as few as 25 were used with acceptable results. Because
the primary effect of additional bootstraps is to reduce the effect
of noise and improve accuracy, care should be taken not to use too
few.

Evaluation

We evaluated the performance gains from using our SEJITS
specializer by performing model verification of a SVM classifier
on a subset of the Enron email corpus [ENRON]. We randomly
selected 10% (Approximately 120,000 emails) from the corpus to
serve as our data set. From each email, we extracted the counts
of all words in the email, as well as the user-defined directory
the email was filed under. We then aggregated the word counts
of all the emails to construct a Bag-of-Words model of our data
set, and assigned classes based upon directory. In the interest of
classification efficiency, we filtered the emails to use only those
from the 20 most common classes, which preserved approximately
98% of our original data set. In the final count, our test data
consisted of approximately 126,000 feature vectors and tags,
with each feature vector composed of approximately 96,000 8-
bit features. Using the SVM-Multiclass [SVM] library, we trained
a SVM classifier to decide the likeliest storage directory for an
email based upon its bag of words representation. We trained the
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classifier on 10% of our data set, reserving the other 90% as a
test set. We then applied the specialized code shown in figure 1
to estimate the accuracy of the classifier. We benchmarked the
performance and accuracy of the specializer on a system using 4
Intel X7560 processors.

Our experiments indicate that our specialized algorithm
was able to achieve performance gains of up to 31.6x with
regards to the serial version of the same algorithm, and
up to 22.1x with respect to other verification techniques.
These gains did not come at the cost of greatly reduced
accuracy; the results from repeated runs of the specialized
code were both consistent and very close to the true population

statistic.
Figure 2. Efficiency gains from specialized code.
As is visible from figure 2 above, our specialized code

achieved near-perfect strong scaling. In the serial case, the com-
putation took approximately 3478 seconds. By comparison, when
utilizing all 32 available hardware contexts, the exact same pro-
ductivity level code returned in just under 110 seconds.

We also used SVM Multiclass’ native verification utility to in-
vestigate the relative performance and accuracy of the specializer.
SVM Multiclass’ utility differs critically from our own in several
ways: The former uses an optimized sparse linear algebra system,
whereas the latter uses a general dense system; the former provides
only a serial implementation; and the algorithm (traditional cross-
validation) is different from ours. All of these factors should be
kept in mind as results are compared. Nevertheless, the special-
izer garnered order-of-magnitude performance improvements once
enough cores were in use. SVM Multiclass’ utility determined the
true population statistic in approximately 2200 seconds, making
it faster than the serial incarnation of our specializer, but less
efficient than even the dual-threaded version.

The native verification utility determined that the true error
rate of the classifier on the test data was 67.86%. Our specializers
estimates yielded a mean error rate of 67.24%, with a standard
deviation of 0.36 percentage points. Though the true statistic was
outside one standard deviation from our estimate’s mean, the
specializer was still capable of delivering a reasonably accurate
estimate very quickly.

Limitations and Future Work

Some of the limitations of our current specializer are that the tar-
gets are limited to OpenMP and Cilk. We would like to implement
a GPU and a cloud version of the BLB algorithm as additional
targets for our specializer. We’d like to explore the performance of
a GPU version implemented in CUDA. A cloud version will allow
us to apply the BLB sepcializer to problems involving much larger
data sets than are currently supported. Another feature we’d like

to add is the ability for our specializer to automatically determine
targets and parameters based on the input data size and platform
specifications.

Conclusion

Using the SEJITS framework, productivity programmers are able
to easily express high level computations while simultaneously
gaining order-of-magnitude performance benefits. Because the
parallelization strategy for a particular pattern of computation and
hardware platform is often similar, efficiency expert programmers
can make use of DSLs embedded in higher level languages, such
as Python, to provide parallel solutions to large families of similar
problems.

We were able to apply the ASP framework and the BLB
pattern of computation to efficiently perform the high level task of
model verification on a large data set. This solution was simple to
develop with the help of the BLB specializer, and efficiently took
advantage of all available parallel resources.

The BLB specializer provides the productivity programmer not
only with performance, but with performance portability. Many
techniques for bringing performance benefits to scientific pro-
gramming, such as pre-compiled libraries, autotuning, or parallel
framework languages, tie the user to a limited set of platforms.
With SEJITS, productivity programmers gain the performance
benefits of a wide variety of platforms without changes to source
code.

This specializer is just one of a growing catalogue of such
tools, which will bring to bear expert parallelization techniques
to a variety of the most common computational patterns. With
portable, efficient, high-level interfaces, domain expert program-
mers will be able to easily create and maintain code bases in the
face of evolving parallel hardware and networking trends.
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Appendix A: Formal Specification of DSEL
## NAME indicates a valid python name, with the added
## stipulation it not start with '_blb_'
## INT and FLOAT indicate decimal representations of
## 64 bit integers and IEEE floating point numbers,
## respectively
## NEWLINE, INDENT, and DEDENT stand for the respective
## whitespace elements

P ::= OUTER_STMT* RETURN_STMT
AUG ::= '+=' \ '-=' | '*=' | '/='
NUM ::= INT | FLOAT
OP ::= '+' | '-' | '*' | '/' | '**'
COMP ::= '>' | '<' | '==' | '!=' | '<=' | '>='
BRANCH ::= 'if' NAME COMP NAME':'

RETURN_STMT ::= 'return' NAME | 'return' CALL
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CALL ::= 'sqrt(' NAME ')'
| 'len(' NAME ')'
| 'mean(' NAME ')'
| 'pow(' NAME',' INT ')'
| 'dim(' NAME [',' INT ] ')'
| 'dtype(' NAME ')'
| 'MV_solve(' NAME',' NAME',' NAME ')'
| NAME OP CALL | CALL OP NAME
| CALL OP CALL | NAME OP NAME
| NAME '*' NUM | CALL '*' NUM
| NAME '/' NUM | CALL '/' NUM
| NAME '**' NUM | CALL '**' NUM

INNER_STMT ::= NAME '=' NUM |
| NAME = 'vector(' INT [',' INT]*', type='NAME ')'
| NAME AUG CALL
| NAME '=' 'index('[INT]')' OP NUM
| NAME = NUM OP 'index('[INT]')'
| BRANCH NEWLINE INDENT INNER_STMT* DEDENT
| 'for' NAME[',' NAME]* 'in' NAME[',' NAME]*':' NEWLINE INDENT INNER_STMT* DEDENT

OUTER_STMT ::= NAME '=' NUM
| NAME '=' 'vector(' INT [',' INT]*', type='NAME ')'
| NAME '=' CALL | NAME AUG CALL
| 'for' NAME[',' NAME]* 'in' NAME[',' NAME]*':' NEWLINE INDENT INNER_STMT* DEDENT
| BRANCH NEWLINE INDENT OUTER_STMT* DEDENT
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A Computational Framework for Plasmonic
Nanobiosensing

Adam Hughes‡∗

F

Abstract—Basic principles in biosensing and nanomaterials precede the intro-
duction of a novel fiber optic sensor. Software limitations in the biosensing do-
main are presented, followed by the development of a Python-based simulation
environment. Finally, the current state of spectral data analysis within the Python
ecosystem is discussed.

Index Terms—gold nanoparticles, fiber optics, biosensor, Python, immunoas-
say, plasmonics, proteins, metallic colloids, IPython, Traits, Chaco, Pandas,
SEM,

Introduction

Because of their unique optical properties, metallic colloids, espe-
cially gold nanoparticles (AuNPs), have found novel applications
in biology. They are utilized in the domain of nanobiosensing as
platforms for biomolecule recognition. Nanobiosensing refers to
the incorporation of nanomaterials into biosensing instrumenta-
tion. Sensors whose primary signal transduction mechanism is the
interaction of light and metallic colloids are known as plasmonic
sensors.1

Plasmonic sensors are constructed by depositing metallic
layers (bulk or colloidal) onto a substrate such as glass, or in
our case, onto a stripped optical fiber. Upon illumination, they
relay continuous information about their surrounding physical and
chemical environment. These sensors behave similarly to con-
ventional assays with the added benefits of increased sensitivity,
compact equipment, reduced sample size, low cost, and real-time
data acquisition. Despite these benefits, nanobiosensing research
in general is faced with several hinderances.

It is often difficult to objectively compare results between
research groups, and sometimes even between experimental trials.
This is mainly because the performance of custom sensors is
highly dependent on design specifics as well as experimental
conditions. The extensive characterization process found in com-
mercial biosensors2 exceeds the resources and capabilities of the
average research group. This is partially due to a disproportionate
investment in supplies and manpower; however, it is also due to a
dearth of computational resources. The ad-hoc nature of empirical

* Corresponding author: hugadams@gwmail.gwu.edu
‡ The George Washington University
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1. This exposition is germane to plasmonic sensors, more so than to other
nanobiosensor subgroups.

biosensor characterization often leads to asystematic experimen-
tal designs, implementations and conclusions between research
groups. To compound matters, dedicated software is not evolving
fast enough keep up with new biosensing technology. This lends an
advantage to commercial biosensors, which use highly customized
software to both control the experimental apparatus and extract
underlying information from the data. Without a general software
framework to develop similar tools, it is unreasonable to expect
the research community to achieve the same breadth in application
when pioneering new nanobiosensing technology.

Publications on novel biosensors often belaud improvement in
sensitivity and cost over commercial alternatives; however, the
aforementioned shortcomings relegate many new biosensors to
prototype limbo. Until the following two freeware components
are developed, new biosensors, despite any technical advantages
over their commercial counterparts, will fall short in applicability:

1) A general and systematic framework for the development
and objective quantification of nanobiosensors.

2) Domain-tailored software tools for conducting simula-
tions and interpreting experimental data.

In regard to both points, analytical methods have been de-
veloped to interpret various aspects of plasmonic sensing; [R1]
however, they have yet to be translated into a general software
framework. Commercial software for general optical system de-
sign is available; however, it is expensive and not designed to
encompass nanoparticles and their interactions with biomolecules.
In the following sections, an effort to begin such computational
endeavors is presented. The implications are relevant to plasmonic
biosensing in general.

Optical Setup

We have developed an operational benchtop setup which records
rapid spectroscopic measurements in the reflected light from the
end of an AuNP-coated optical fiber. The nanoparticles are de-
posited on the flat endface of the fiber, in contrast to the commonly
encountered method of depositing the AuNPs axially3 along an
etched region of the fiber [R2], [R3]. In either configuration, only
the near-field interaction affects the signal, with no interference
from far-field effects. The simple design is outlined in Fig. 1 (left).
Broadband emission from a white LED is focused through a 10×
objective (not shown) into the 125µm core diameter of an optical
fiber. AuNP-coated probes are connected into the setup via an

2. Biacore© and ForteBio© are examples of prominent nanobiosensing
companies.
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Fig. 1: Left: Bench-top fiber optic configuration schematic, adapted
from [R4]. Right: Depiction from bottom to top of fiber endface,
APTMS monolayer, AuNPs, antibody-antigen coating.

optical splice. The probes are dipped into solutions containing
biomolecules, and the return light is captured by an OceanOptics©

USB2000 benchtop spectrometer and output as ordered series
data.

Fiber Surface Functionalization

16nm gold nanospheres are attached to the optical fiber via a linker
molecule, (3-Aminoptopropyl)trimethoxysilane, or APTMS.4 The
surface chemistry of the gold may be further modified to the spec-
ifications of the experiment. One common modification is to co-
valently bind a ligand to the AuNPs using Dithiobis[succinimidyl
propionate] (Lomant’s reagent), and then use the fiber to study
specificity in antibody-antigen interactions. This is depicted in Fig.
1 (right).

Modeling the Optical System in Python

The simulation codebase may be found at http://github.com/
hugadams/fibersim.

Nanobiosensing resides at an intersection of optics, biology,
and material science. To simulate such a system requires back-
ground in all three fields and new tools to integrate the pieces
seamlessly. Nanobiosensor modeling must describe phenomena at
three distinct length scales. In order of increasing length, these
are:

1) A description of the optical properties of nanoparticles
with various surface coatings.

2) The properties of light transmission through multi-
layered materials at the fiber endface.

3) The geometric parameters of the optics (e.g. fiber diame-
ter, placement of nanoparticle monolayer, etc.).

The size regimes, shown in Fig. 2, will be discussed separately
in the following subsections. It is important to note that the
computational description of a material is identical at all three
length scales. As such, general classes have been created and inter-
faced to accommodate material properties from datasets [R5] and
models [R6]. This allows for a wide variety of experimental and
theoretical materials to be easily incorporated into the simulation
environment.

Modeling Nanoparticles

AuNPs respond to their surrounding environment through a phe-
nomenon known as surface plasmon resonance. Incoming light
couples to free electrons and induces surface oscillations on the

3. Axial deposition allows for more control of the fiber’s optical properties;
however, it makes probe creation more difficult and less reproducible.

4. APTMS is a heterobifunctional crosslinker that binds strongly to glass
and gold respectively through silane and amine functional groups.

Fig. 2: Three size regimes of the optical setup. Top: Optical fiber
with an AuNP-coated endface. Left: Coarse approximation of a
multilayered material. Right: Individual nanoparticles with protein
shells.

nanoparticle. The magnitude and dispersion of these oscillations is
highly influenced by the dielectric media in direct contact with the
particle’s surface. As such, the scattering and absorption properties
of the gold particles will change in response to changes in solution,
as well as to the binding of biomolecules.

To model AuNPs, the complex dielectric function5 of gold
is imported from various sources, both from material models
[R5] and datasets [R6]. The optical properties of bare and coated
spheroids are described analytically by Mie theory [R7]. Scat-
tering and absorption coefficients are computed using spherical
Bessel functions from the scipy.special library of mathematical
functions. Special routines and packages are available for com-
puting the optical properties of non-spheroidal colloids; however,
they have not yet been incorporated in this package.

AuNP modeling is straightforward; however, parametric anal-
ysis is uncommon. Enthought’s Traits and Chaco packages
are used extensively to provide interactivity. To demonstrate a use
case, consider a gold nanoparticle with a shell of protein coating.
The optical properties of the core-shell particle may be obtained
analytically using Mie Theory;6 however, analysis performed at a
coarser scale requires this core-shell system to be approximated as
a single composite particle (Fig. 3). With Traits, it is very easy
for the user to interactively adjust the mixing parameters to ensure
that the scattering properties of the approximated composite are as
close as possible to those of the analytical core-shell particle. In
this example, and in others, interactivity is favorable over complex
optimization techniques.

Modeling Material Layers

The fiber endface at a more coarse resolution resembles a multi-
layered dielectric stack of homogeneous materials, also referred
to as a thin film (Fig. 5). In the limits of this approximation, the
reflectance, transmittance, and absorbance through the slab can

5. The dielectric function and shape of the particle are the only parameters
required to compute its absorption and scattering cross sections.

6. Assuming that the shell is perfectly modeled; however, in practice the
optical properties of protein mixtures are approximated by a variety of mixing
models and methods.
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Fig. 3: Left: A nanoparticle with heterogeneous core and shell
dielectrics (ε1,ε2), of radius, r = r1 + r2. Right: Composite approx-
imation of a homogeneous material, with effective dielectric ε ′, and
radius, r′.

Fig. 4: Screenshot of an interactive TraitsUI program for modeling
the scenario in Fig. 3: the extinction spectra of a protein-coated AuNP
(blue) compared to that of an equivalent core-shell composite (red).

be calculated recursively for n-layered systems [R8]. Thin film
optical software is commercially available and used extensively
in optical engineering, for example, in designing coatings for
sunglasses. Unfortunately, a free, user-friendly alternative is not
available.7 In addition, these packages are usually not designed
for compatibility with nanomaterials; therefore, we have begun
development of an extensible thin film Python API that incorpo-
rates nanomaterials. This is ideal, for example, in simulating a
fiber immersed in a solvent with a variable refractive index (e.g. a
solution with changing salinity). The program will ensure that as
the solvent changes, the surrounding shell of the nanoparticle, and
hence its extinction spectra, will update accordingly.

Optical Configurations and Simulation Environment

With the material and multilayer APIs in place, it is straightfor-
ward to incorporate an optical fiber platform. The light source and
fiber parameters merely constrain the initial conditions of light

7. Open-source thin film software is often limited in scope and seldom
provides a user-interface, making an already complex physical system more
convoluted.

Fig. 5: Left: Electromagnetic field components at each interface of
a dielectric slab [R7]. Right: Illustration of a multilayered material
whose optical properties would be described by such treatment.

entering the multilayer interface; thus, once the correct multilay-
ered environment is established, it easy to compare performance
between different fiber optic configurations. Built-in parameters
already account for the material makeup and physical dimensions
of many commercially available optical fibers. A phase angle has
been introduced to distinguish nanomaterial deposition on the fiber
endface from axial deposition. This amounts to a 90◦ rotation of
the incident light rays at the multilayered interface.8

The entire application was designed for exploratory analysis,
so adjusting most parameters will automatically trigger system-
wide updates. To run simulations, one merely automates setting
Trait attributes in an iterative manner. For example, by iter-
ating over a range of values for the index of refraction of the
AuNP shells, one effectively simulates materials binding to the
AuNPs. After each iteration, Numpy arrays are stored for the
updated optical variables such as the extinction spectra of the
particles, dielectric functions of the mixed layers, and the total
light reflectance at the interface. All data output is formatted as
ordered series to mimic the actual output of experiments; thus,
simulations and experiments can be analyzed side-by-side without
further processing. With this work flow, it is quite easy to run
experiments and simulations in parallel as well as compare a
variety of plasmonic sensors objectively.

Data Analysis

Our work flow is designed to handle ordered series spectra
generated from both experiment and simulation. The Python pack-
ages IPython, Traits, and Pandas synergistically facilitate
swift data processing and visualization. Biosensing results are
information-rich, both in the spectral and temporal dimensions.
Molecular interactions on the AuNP’s surface have spectral sig-
natures discernible from those of environmental changes. For
example, the slow timescale of protein binding events is orders of
magnitude less than the rapid temporal response to environmental
changes.

Fig. 6 illustrates a fiber whose endface has been coated with
gold nanoparticles and subsequently immersed in water. The top
left plot shows the reflected light spectrum function of time. When
submerged in water, the signal is very stable. Upon the addition of

8. The diameter of the optical fiber as well as the angle at which light
rays interact with the material interface has a drastic effect on the system
because each light mode contributes differently to the overall signal, which is
the summation over all modes.
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Fig. 6: Temporal evolution (top) and spectral absorbance (bottom)
of the light reflectance at the fiber endface due to a protein-protein
interaction (left) as opposed to the stepwise addition of glycerin
(right).

micromolar concentrations of Bovine Serum Albumin (BSA), the
signal steadily increases as the proteins in the serum bind to the
gold. About an hour after BSA addition, the nanoparticle binding
sites saturate and the signal plateaus.

Fig. 6 (top right) corresponds to a different situation. Again,
an AuNP-coated fiber is immersed in water. Instead of proteins,
glycerin droplets are added. The fiber responds to these refractive
index changes in an abrupt, stepwise fashion. Whereas the serum
binding event evolves over a timescale of about two hours, the
response to an abrupt environmental change takes mere seconds.
This is a simple demonstration of how timescale provides insights
to the physiochemical nature of the underlying process.

The dataset’s spectral dimension can be used to identify phys-
iochemical phenomena as well. Absorbance plots corresponding
to BSA binding and glycerin addition are shown at the bottom
of Fig. 6. These profiles tend to depend on the size of the
biomolecules in the interaction. The spectral profile of BSA-AuNP
binding, for example, is representative of other large proteins
binding to gold. Similarly, index changes from saline, buffers and
other viscous solutions are consistent with the dispersion profile
of glycerin. Small biomolecules such as amino acids have yet
another spectral signature (not shown), as well as a timestamp that
splits the difference between protein binding and refractive index
changes. This surprising relationship between the physiochemistry
of an interaction and its temporal and spectral profiles aids in the
interpretation of convoluted results in complex experiments.

Consistent binding profiles require similar nanoparticle cov-
erage between fibers. If the coating process is lithographic, it is
easier to ensure consistent coverage; however, many plasmonic
biosensors are created through a wet crosslinking process similar
to the APTMS deposition described here. Wet methods are more
susceptible to extraneous factors; yet remarkably, we can use
the binding profile as a tool to monitor and control nanoparticle
deposition in realtime.

Fig. 7 (top) is an absorbance plot of the deposition of gold
nanoparticles onto the endface of an optical fiber (dataset begins
at y = 1). As the nanoparticles accumulate, they initially absorb
signal, resulting in a drop in light reflectance; however, eventually
the curves invert and climb rapidly. This seems to suggest the ex-
istence of a second process; however, simulations have confirmed
that this inflection is merely a consequence of the nanoparticle

Fig. 7: Top: Absorbance plot of the real-time deposition of AuNPs
onto an optical fiber. Bottom: Time-slice later in the datasets shows
that the signal is dominated by signal at the surface plasmon res-
onance peak for gold, λSPR ≈ 520 nm. The exemplifies the correct
timescale over which spectral events manifest.

film density and its orientation on the fiber. The spectral signature
of the AuNP’s may be observed by timeslicing the data (yellow
curves) and renormalizing to the first curve in the subset. This is
plotted in Fig. 7 (bottom), and clearly shows spectral dispersion
with major weight around λ = 520 nm, the surface plasmon
resonance peak of our gold nanoparticles.

This approach to monitoring AuNP deposition not only allows
one to control coverage,9 but also provides information on depo-
sition quality. Depending on various factors, gold nanoparticles
may tend to aggregate into clusters, rather than form a monolayer.
When this occurs, red-shifted absorbance profiles appear in the
timeslicing analysis. Because simple plots like Fig. 7 contain so
much quantitative and qualitative information about nanoparticle
coverage, we have begun an effort to calibrate these curves to
measured particle coverage using scanning electron microscopy
(SEM) (Fig. 8).

The benefits of such a calibration are two-fold. First, it turns
out that the number of AuNP’s on the fiber is a crucial parameter
for predicting relevant biochemical quantities such as the binding
affinity of two ligands. Secondly, it is important to find several
coverages that optimize sensor performance. There are situations
when maximum dynamic range at low particle coverage is desir-
able, for example in measuring non-equilibrium binding kinetics.
Because of mass transport limitations, estimations of binding
affinity tend to be in error for densely populated monolayers. In
addition, there are coverages that impair dynamic range. Thus, it
is important to optimize and characterize sensor performance at
various particle coverages. Although simulations can estimate this
relationship, it should also be confirmed experimentally.

Since most non-trivial biosensing experiments contain mul-
tiple phases (binding, unbinding, purging of the sensor surface,
etc.), the subsequent data analysis requires the ability to rescale,
resample and perform other manual curations on-the-fly. Pandas
provides a great tool set for manipulating series data in such a

9. The user merely removes the fiber from AuNP when the absorbance
reaches a preset value.
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Fig. 8: SEM images of fiber endfaces with 25% (left) and 5% (right)
AuNP surface coverage at 30,000 X magnification.

manner. For example, slicing a set of ordered series data by rows
(spectral dimension) and columns (temporal dimension) is quite
simple:
## Read series data from tab-delimited
## file into a pandas DataFrame object
from pandas import read_csv
data=read_csv('path to file', sep='\t')

## Select data by column index
data[['time1', 'time2']]

## Slice data by row label (wavelength)
data.ix[500.0:750.0]

By interfacing to Chaco, and to the Pandas plotting interface,
one can slice, resample and visualize interesting regions in the
dataspace quite easily. Through these packages, it is possible for
non-computer scientists to not just visualize, but to dynamically
explore the dataset. The prior examples of BSA and glycerin
demonstrated just how much information could be extracted from
the data using only simple, interactive methods.

our interactive approach is in contrast to popular all-in-
one analysis methods. In Two-Dimensional Correlation Analysis
(2DCA), [R9] for example, cross correlations of the entire dataset
are consolidated into two contour plots. These plots tend to be
difficult to interpret,10 and become intractable for multi-staged
events. Additionally, under certain experimental conditions they
cannot be interpreted at all. It turns out that much of the same
information provided by 2DCA can be ascertained using the
simple, dynamic analysis methods presented here. This is not to
suggest that techniques like 2DCA are disadvantageous, merely
that some of the results may be obtained more simply. Perhaps
in the future, transparent, interactive approaches will constitute
the core of the spectral data analysis pipeline with sophisticated
techniques like 2DCA adopting a complimentary role.

Conclusions

A benchtop nanobiosensor has been developed for the realtime
detection of biomolecular interactions. It, as well as other emer-
gent biosensing technologies, is hindered by a lack of dedicated
open-source software. In an effort to remedy this, prototypical
simulation and analysis tools have been developed to assist with
our plasmonic sensor and certainly have the potential for wider
applicability. Scientific Python libraries, especially Chaco and
Pandas, reside at the core of our data analysis toolkit and are

10. 2DCA decomposes series data into orthogonal synchronous and asyn-
chronous components. By applying the so-called Noda’s rules, one can
then analyze the resultant contour maps and infer information about events
unfolding in the system.

proving invaluable for interacting with and visualizing results.
Unexpected physiochemical identifiers appear consistently within
experimental results. These binding profiles not only provide new
qualitative insights, but with the help of SEM imaging, may soon
open new avenues towards the difficult task of quantifying biosen-
sor output. Python has proven invaluable to our research, and just
as it has suffused the domains of astronomy and finance, seems
primed to emerge as the de-facto design platform in biosensing
and its related fields.
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A Tale of Four Libraries
Alejandro Weinstein‡∗, Michael Wakin‡

F

Abstract—This work describes the use some scientific Python tools to solve
information gathering problems using Reinforcement Learning. In particular,
we focus on the problem of designing an agent able to learn how to gather
information in linked datasets. We use four different libraries—RL-Glue, Gensim,
NetworkX, and scikit-learn—during different stages of our research. We show
that, by using NumPy arrays as the default vector/matrix format, it is possible to
integrate these libraries with minimal effort.

Index Terms—reinforcement learning, latent semantic analysis, machine learn-
ing

Introduction

In addition to bringing efficient array computing and standard
mathematical tools to Python, the NumPy/SciPy libraries provide
an ecosystem where multiple libraries can coexist and interact.
This work describes a success story where we integrate several
libraries, developed by different groups, to solve some of our
research problems.

Our research focuses on using Reinforcement Learning (RL) to
gather information in domains described by an underlying linked
dataset. We are interested in problems such as the following: given
a Wikipedia article as a seed, find other articles that are interesting
relative to the starting point. Of particular interest is to find articles
that are more than one-click away from the seed, since these
articles are in general harder to find by a human.

In addition to the staples of scientific Python computing
NumPy, SciPy, Matplotlib, and IPython, we use the libraries RL-
Glue [Tan09], NetworkX [Hag08], Gensim [Reh10], and scikit-
learn [Ped11].

Reinforcement Learning considers the interaction between
a given environment and an agent. The objective is to design
an agent able to learn a policy that allows it to maximize its
total expected reward. We use the RL-Glue library for our RL
experiments. This library provides the infrastructure to connect an
environment and an agent, each one described by an independent
Python program.

We represent the linked datasets we work with as graphs.
For this we use NetworkX, which provides data structures to
efficiently represent graphs, together with implementations of
many classic graph algorithms. We use NetworkX graphs to
describe the environments implemented using RL-Glue. We also
use these graphs to create, analyze and visualize graphs built from
unstructured data.

* Corresponding author: aweinste@mines.edu
‡ the EECS department of the Colorado School of Mines

Copyright © 2012 Alejandro Weinstein et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

One of the contributions of our research is the idea of rep-
resenting the items in the datasets as vectors belonging to a
linear space. To this end, we build a Latent Semantic Analysis
(LSA) [Dee90] model to project documents onto a vector space.
This allows us, in addition to being able to compute similarities
between documents, to leverage a variety of RL techniques that
require a vector representation. We use the Gensim library to build
the LSA model. This library provides all the machinery to build,
among other options, the LSA model. One place where Gensim
shines is in its capability to handle big data sets, like the entirety of
Wikipedia, that do not fit in memory. We also combine the vector
representation of the items as a property of the NetworkX nodes.

Finally, we also use the manifold learning capabilities of
sckit-learn, like the ISOMAP algorithm [Ten00], to perform some
exploratory data analysis. By reducing the dimensionality of the
LSA vectors obtained using Gensim from 400 to 3, we are able
to visualize the relative position of the vectors together with their
connections.

Source code to reproduce the results shown in this work is
available at https://github.com/aweinstein/a_tale.

Reinforcement Learning

The RL paradigm [Sut98] considers an agent that interacts with
an environment described by a Markov Decision Process (MDP).
Formally, an MDP is defined by a state space X , an action space
A , a transition probability function P, and a reward function r. At
a given sample time t = 0,1, . . . the agent is at state xt ∈X , and
it chooses action at ∈ A . Given the current state x and selected
action a, the probability that the next state is x′ is determined by
P(x,a,x′). After reaching the next state x′, the agent observes an
immediate reward r(x′). Figure 1 depicts the agent-environment
interaction. In an RL problem, the objective is to find a function
π : X 7→A , called the policy, that maximizes the total expected
reward

R = E

[
∞

∑
t=1

γ tr(xt)

]
,

where γ ∈ (0,1) is a given discount factor. Note that typically
the agent does not know the functions P and r, and it must
find the optimal policy by interacting with the environment. See
Szepesvári [Sze10] for a detailed review of the theory of MDPs
and the different algorithms used in RL.

We implement the RL algorithms using the RL-Glue library
[Tan09]. The library consists of the RL-Glue Core program and
a set of codecs for different languages1 to communicate with
the library. To run an instance of a RL problem one needs to
write three different programs: the environment, the agent, and
the experiment. The environment and the agent programs match
exactly the corresponding elements of the RL framework, while
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Agent Environment
x
r

a

Fig. 1: The agent-environment interaction. The agent observes the
current state x and reward r; then it executes action π(x) = a.

the experiment orchestrates the interaction between these two. The
following code snippets show the main methods that these three
programs must implement:

################# environment.py #################
class env(Environment):

def env_start(self):
# Set the current state

return current_state

def env_step(self, action):
# Set the new state according to
# the current state and given action.

return reward

#################### agent.py ####################
class agent(Agent):

def agent_start(self, state):
# First step of an experiment

return action

def agent_step(self, reward, obs):
# Execute a step of the RL algorithm

return action

################# experiment.py ##################
RLGlue.init()
RLGlue.RL_start()
RLGlue.RL_episode(100) # Run an episode

Note that RL-Glue is only a thin layer among these programs,
allowing us to use any construction inside them. In particular, as
described in the following sections, we use a NetworkX graph to
model the environment.

Computing the Similarity between Documents

To be able to gather information, we need to be able to quantify
how relevant an item in the dataset is. When we work with
documents, we use the similarity between a given document and
the seed to this end. Among the several ways of computing
similarities between documents, we choose the Vector Space
Model [Man08]. Under this setup, each document is represented
by a vector. The similarity between two documents is estimated
by the cosine similarity of the document vector representations.

The first step in representing a piece of text as a vector is
to build a bag of words model, where we count the occurrences
of each term in the document. These word frequencies become
the vector entries, and we denote the term frequency of term t
in document d by tft,d . Although this model ignores information
related to the order of the words, it is still powerful enough to
produce meaningful results.

1. Currently there are codecs for Python, C/C++, Java, Lisp, MATLAB, and
Go.

In the context of a collection of documents, or corpus, word
frequency is not enough to asses the importance of a term. For this
reason, we introduce the quantity document frequency dft , defined
to be the number of documents in the collection that contain term
t. We can now define the inverse document frequency (idf) as

idft = log
N
dft

,

where N is the number of documents in the corpus. The idf is a
measure of how unusual a term is. We define the tf-idf weight of
term t in document d as

tf-idft,d = tft,d× idft .

This quantity is a good indicator of the discriminating power of a
term inside a given document. For each document in the corpus
we compute a vector of length M, where M is the total number of
terms in the corpus. Each entry of this vector is the tf-idf weight
for each term (if a term does not exist in the document, the weight
is set to 0). We stack all the vectors to build the M×N term-
document matrix C.

Note that since typically a document contains only a small
fraction of the total number of terms in the corpus, the columns of
the term-document matrix are sparse. The method known as Latent
Semantic Analysis (LSA) [Dee90] constructs a low-rank approx-
imation Ck of rank at most k of C. The value of k, also known
as the latent dimension, is a design parameter typically chosen
to be in the low hundreds. This low-rank representation induces
a projection onto a k-dimensional space. The similarity between
the vector representation of the documents is now computed after
projecting the vectors onto this subspace. One advantage of LSA
is that it deals with the problems of synonymy, where different
words have the same meaning, and polysemy, where one word has
different meanings.

Using the Singular Value Decomposition (SVD) of the term-
document matrix C = UΣV T , the k-rank approximation of C is
given by

Ck =UkΣkV T
k ,

where Uk, Σk, and Vk are the matrices formed by the k first
columns of U , Σ, and V , respectively. The tf-idf representation
of a document q is projected onto the k-dimensional subspace as

qk = Σ−1
k UT

k q.

Note that this projection transforms a sparse vector of length M
into a dense vector of length k.

In this work we use the Gensim library [Reh10] to build the
vector space model. To test the library we downloaded the top 100
most popular books from project Gutenberg.2 After constructing
the LSA model with 200 latent dimensions, we computed the
similarity between Moby Dick, which is in the corpus used to
build the model, and 6 other documents (see the results in Table
1). The first document is an excerpt from Moby Dick, 393 words
long. The second one is an excerpt from the Wikipedia Moby
Dick article. The third one is an excerpt, 185 words long, of The
Call of the Wild. The remaining two documents are excerpts from
Wikipedia articles not related to Moby Dick. The similarity values
we obtain validate the model, since we can see high values (above
0.8) for the documents related to Moby Dick, and significantly
smaller values for the remaining ones.

2. As per the April 20, 2011 list, http://www.gutenberg.org/browse/scores/
top.
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Text description LSA similarity
Excerpt from Moby Dick 0.87
Excerpt from Wikipedia Moby Dick article 0.83
Excerpt from The Call of the Wild 0.48
Excerpt from Wikipedia Jewish Calendar
article

0.40

Excerpt from Wikipedia Oxygen article 0.33

TABLE 1: Similarity between Moby Dick and other documents.

Next, we build the LSA model for Wikipedia that allows us to
compute the similarity between Wikipedia articles. Although this
is a lengthy process that takes more than 20 hours, once the model
is built, a similarity computation is very fast (on the order of 10
milliseconds). Results in the next section make use of this model.

Note that although in principle it is simple to compute the
LSA model of a given corpus, the size of the datasets we are
interested in make doing this a significant challenge. The two
main difficulties are that in general (i) we cannot hold the vector
representation of the corpus in RAM memory, and (ii) we need to
compute the SVD of a matrix whose size is beyond the limits of
what standard solvers can handle. Here Gensim does stellar work
by being able to handle both these challenges.

Representing the State Space as a Graph

We are interested in the problem of gathering information in
domains described by linked datasets. It is natural to describe such
domains by graphs. We use the NetworkX library [Hag08] to build
the graphs we work with. NetworkX provides data structures to
represent different kinds of graphs (undirected, weighted, directed,
etc.), together with implementations of many graph algorithms.
NetworkX allows one to use any hashable Python object as a node
identifier. Also, any Python object can be used as a node, edge, or
graph attribute. We exploit this capability by using the LSA vector
representation of a Wikipedia article, which is a NumPy array, as
a node attribute.

The following code snippet shows a function3 used to build a
directed graph where nodes represent Wikipedia articles, and the
edges represent links between articles. Note that we compute the
LSA representation of the article (line 11), and that this vector
is used as a node attribute (line 13). The function obtains up to
n_max articles by breadth-first crawling the Wikipedia, starting
from the article defined by page.
1 def crawl(page, n_max):
2 G = nx.DiGraph()
3 n = 0
4 links = [(page, -1, None)]
5 while n < n_max:
6 link = links.pop()
7 page = link[0]
8 dist = link[1] + 1
9 page_text = page.edit().encode('utf-8')

10 # LSI representation of page_text
11 v_lsi = get_lsi(page_text)
12 # Add node to the graph
13 G.add_node(page.name, v=v_lsi)
14 if link[2]:
15 source = link[2]
16 dest = page.name
17 if G.has_edge(source, dest):
18 # Link already exists
19 continue
20 else:
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Fig. 2: Graph for the "Army" article in the simple Wikipedia with
97 nodes and 99 edges. The seed article is in light blue. The size of
the nodes (except for the seed node) is proportional to the similarity.
In red are all the nodes with similarity greater than 0.5. We found
two articles ("Defense" and "Weapon") similar to the seed three links
ahead.

21 sim = get_similarity(page_text)
22 self.G.add_edge(source,
23 dest,
24 weight=sim,
25 d=dist)
26 new_links = [(l, dist, page.name)
27 for l in page.links()]
28 links = new_links + links
29 n += 1
30

31 return G

We now show the result of running the code above for two
different setups. In the first instance we crawl the Simple English
Wikipedia4 using "Army" as the seed article. We set the limit on
the number of articles to visit to 100. The result is depicted5 in Fig.
2, where the node corresponding to the seed article is in light blue
and the remaining nodes have a size proportional to the similarity
with respect to the seed. Red nodes are the ones with similarity
bigger than 0.5. We observe two nodes, "Defense" and "Weapon",
with similarities 0.7 and 0.53 respectively, that are three links away
from the seed.

In the second instance we crawl Wikipedia using the article
"James Gleick"6 as seed. We set the limit on the number of
articles to visit to 2000. We show the result in Fig. 3, where,
as in the previous example, the node corresponding to the seed
is in light blue and the remaining nodes have a size proportional
to the similarity with respect to the seed. The eleven red nodes
are the ones with similarity greater than 0.7. Of these, 9 are more
than one link away from the seed. We see that the article with the
biggest similarity, with a value of 0.8, is about "Robert Wright
(journalist)", and it is two links away from the seed (passing
through the "Slate magazine" article). Robert Wright writes books
about sciences, history and religion. It is very reasonable to
consider him an author similar to James Gleick.

Another place where graphs can play an important role in the
RL problem is in finding basis functions to approximate the value-

3. The parameter page is a mwclient page object. See http://sourceforge.
net/apps/mediawiki/mwclient/.

4. The Simple English Wikipedia (http://simple.wikipedia.org) has articles
written in simple English and has a much smaller number of articles than the
standard Wikipedia. We use it because of its simplicity.

5. To generate this figure, we save the NetworkX graph in GEXF format,
and create the diagram using Gephi (http://gephi.org/).

6. James Gleick is "an American author, journalist, and biographer, whose
books explore the cultural ramifications of science and technology".
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Fig. 3: Graph for the "James Gleick" Wikipedia article with 1975
nodes and 1999 edges. The seed article is in light blue. The size of the
nodes (except for the seed node) is proportional to the similarity. In
red are all the nodes with similarity bigger than 0.7. There are several
articles with high similarity more than one link ahead.

function. The value-function is the function V π : X 7→ R defined
as

V π(x) = E

[
∞

∑
t=1

γ tr(xt)
∣∣ x0 = x,at = π(xt)

]
,

and plays a key role in many RL algorithms [Sze10]. When the
dimension of X is significant, it is common to approximate V π(x)
by

V π ≈ V̂ = Φw,

where Φ is an n-by-k matrix whose columns are the basis functions
used to approximate the value-function, n is the number of states,
and w is a vector of dimension k. Typically, the basis functions
are selected by hand, for example, by using polynomials or radial
basis functions. Since choosing the right functions can be difficult,
Mahadevan and Maggioni [Mah07] proposed a framework where
these basis functions are learned from the topology of the state
space. The key idea is to represent the state space by a graph and
use the k smoothest eigenvectors of the graph laplacian, dubbed
Proto-value functions, as basis functions. Given the graph that
represents the state space, it is very simple to find these basis
functions. As an example, consider an environment consisting of
three 16× 20 grid-like rooms connected in the middle, as shown
in Fig. 4. Assuming the graph is stored in G, the following code7

computes the eigenvectors of the laplacian:

L = nx.laplacian(G, sorted(G.nodes()))
evalues, evec = np.linalg.eigh(L)

Figure 5 shows8 the second to fourth eigenvectors. Since in general
value-functions associated to this environment will exhibit a fast
change rate close to the room’s boundaries, these eigenvectors
provide an efficient approximation basis.

7. We assume that the standard import numpy as np and import
networkx as nx statements were previously executed.

8. The eigenvectors are reshaped from vectors of dimension 3× 16× 20 =
960 to a matrix of size 16-by-60. To get meaningful results, it is necessary to
build the laplacian using the nodes in the grid in a row major order. This is
why the nx.laplacian function is called with sorted(G.nodes()) as
the second parameter.

Fig. 4: Environment described by three 16× 20 rooms connected
through the middle row.
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Fig. 5: Second to fourth eigenvectors of the laplacian of the three
rooms graph. Note how the eigendecomposition automatically cap-
tures the structure of the environment.

Visualizing the LSA Space

We believe that being able to work in a vector space will allow us
to use a series of RL techniques that otherwise we would not be
available to use. For example, when using Proto-value functions,
it is possible to use the Nyström approximation to estimate the
value of an eigenvector for out-of-sample states [Mah06]; this is
only possible if states can be represented as points belonging to a
Euclidean space.

How can we embed an entity in Euclidean space? In the
previous section we showed that LSA can effectively compute
the similarity between documents. We can take this concept one
step forward and use LSA not only for computing similarities, but
also for embedding documents in Euclidean space.

To evaluate the soundness of this idea, we perform an ex-
ploratory analysis of the simple Wikipedia LSA space. In order
to be able to visualize the vectors, we use ISOMAP [Ten00] to
reduce the dimension of the LSA vectors from 200 to 3 (we use
the ISOMAP implementation provided by scikit-learn [Ped11]).
We show a typical result in Fig. 6, where each point represents the
LSA embedding of an article in R3, and a line between two points
represents a link between two articles. We can see how the points
close to the "Water" article are, in effect, semantically related
("Fresh water", "Lake", "Snow", etc.). This result confirms that the
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Fig. 6: ISOMAP projection of the LSA space. Each point represents
the LSA vector of a Simple English Wikipedia article projected
onto R3 using ISOMAP. A line is added if there is a link between
the corresponding articles. The figure shows a close-up around the
"Water" article. We can observe that this point is close to points
associated to articles with a similar semantic.

LSA representation is not only useful for computing similarities
between documents, but it is also an effective mechanism for
embedding the information entities into a Euclidean space. This
result encourages us to propose the use of the LSA representation
in the definition of the state.

Once again we emphasize that since Gensim vectors are
NumPY arrays, we can use its output as an input to scikit-learn
without any effort.

Conclusions

We have presented an example where we use different elements of
the scientific Python ecosystem to solve a research problem. Since
we use libraries where NumPy arrays are used as the standard
vector/matrix format, the integration among these components is
transparent. We believe that this work is a good success story that
validates Python as a viable scientific programming language.

Our work shows that in many cases it is advantageous to use
general purposes languages, like Python, for scientific computing.
Although some computational parts of this work might be some-
what simpler to implement in a domain specific language,9 the
breadth of tasks that we work with could make it hard to integrate
all of the parts using a domain specific language.
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Total Recall: flmake and the Quest for Reproducibility

Anthony Scopatz‡∗

F

Abstract—FLASH is a high-performance computing (HPC) multi-physics code
which is used to perform astrophysical and high-energy density physics simula-
tions. To run a FLASH simulation, the user must go through three basic steps:
setup, build, and execution. Canonically, each of these tasks are independently
handled by the user. However, with the recent advent of flmake - a Python
workflow management utility for FLASH - such tasks may now be performed in a
fully reproducible way. To achieve such reproducibility a number of developments
and abstractions were needed, some only enabled by Python. These methods
are widely applicable outside of FLASH. The process of writing flmake opens
many questions to what precisely is meant by reproducibility in computational
science. While posed here, many of these questions remain unanswered.

Index Terms—FLASH, reproducibility

Introduction

FLASH is a high-performance computing (HPC) multi-physics
code which is used to perform astrophysical and high-energy
density physics simulations [FLASH]. It runs on the full range
of systems from laptops to workstations to 100,000 processor
super computers, such as the Blue Gene/P at Argonne National
Laboratory.

Historically, FLASH was born from a collection of uncon-
nected legacy codes written primarily in Fortran and merged
into a single project. Over the past 13 years major sections
have been rewritten in other languages. For instance, I/O is now
implemented in C. However building, testing, and documentation
are all performed in Python.

FLASH has a unique architecture which compiles simulation
specific executables for each new type of run. This is aided by
an object-oriented-esque inheritance model that is implemented
by inspecting the file system directory tree. This allows FLASH
to compile to faster machine code than a compile-once strategy.
However it also places a greater importance on the Python build
system.

To run a FLASH simulation, the user must go through three
basic steps: setup, build, and execution. Canonically, each of these
tasks are independently handled by the user. However with the
recent advent of flmake - a Python workflow management utility
for FLASH - such tasks may now be performed in a repeatable
way [FLMAKE].

Previous workflow management tools have been written for
FLASH. (For example, the "Milad system" was implemented
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entirely in Makefiles.) However, none of the prior attempts have
placed reproducibility as their primary concern. This is in part
because fully capturing the setup metadata required alterations to
the build system.

The development of flmake started by rewriting the existing
build system to allow FLASH to be run outside of the mainline
subversion repository. It separates out a project (or simulation) di-
rectory independent of the FLASH source directory. This directory
is typically under its own version control.

For each of the important tasks (setup, build, run, etc), a
sidecar metadata description file is either initialized or modified.
This is a simple dictionary-of-dictionaries JSON file which stores
the environment of the system and the state of the code when
each flmake command is run. This metadata includes the version
information of both the FLASH mainline and project repositories.
However, it also may include all local modifications since the last
commit. A patch is automatically generated using standard posix
utilities and stored directly in the description.

Along with universally unique identifiers, logging, and Python
run control files, the flmake utility may use the description files
to fully reproduce a simulation by re-executing each command in
its original state. While flmake reproduce makes a useful
debugging tool, it fundamentally increases the scientific merit of
FLASH simulations.

The methods described herein may be used whenever source
code itself is distributed. While this is true for FLASH (uncommon
amongst compiled codes), most Python packages also distribute
their source. Therefore the same reproducibility strategy is appli-
cable and highly recommended for Python simulation codes. Thus
flmake shows that reproducibility - which is notably absent from
most computational science projects - is easily attainable using
only version control, Python standard library modules, and ever-
present command line utilities.

New Workflow Features

As with many predictive science codes, managing FLASH simu-
lations may be a tedious task for both new and experienced users.
The flmake command line utility eases the simulation burden and
shortens the development cycle by providing a modular tool which
implements many common elements of a FLASH workflow. At
each stage this tool captures necessary metadata about the task
which it is performing. Thus flmake encapsulates the following
operations:

• setup/configuration,
• building,
• execution,
• logging,
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• analysis & post-processing,
• and others.

It is highly recommended that both novice and advanced users
adopt flmake as it enables reproducible research while simultane-
ously making FLASH easier to use. This is accomplished by a few
key abstractions from previous mechanisms used to set up, build,
and execute FLASH. The implementation of these abstractions
are critical flmake features and are discussed below. Namely they
are the separation of project directories, a searchable source path,
logging, dynamic run control, and persisted metadata descriptions.

Independent Project Directories

Without flmake, FLASH must be setup and built from within
the FLASH source directory (FLASH_SRC_DIR) using the setup
script and make [GMAKE]. While this is sufficient for single runs,
such a strategy fails to separate projects and simulation campaigns
from the source code. Moreover, keeping simulations next to the
source makes it difficult to track local modifications independent
of the mainline code development.

Because of these difficulties in running suites of simulations
from within FLASH_SRC_DIR, flmake is intended to be run
external to the FLASH source directory. This is known as the
project directory. The project directory should be managed by
its own version control systems. By doing so, all of the project-
specific files are encapsulated in a repository whose history is
independent from the main FLASH source. Here this directory
is called proj/ though in practice it takes the name of the
simulation campaign. This directory may be located anywhere on
the user’s file system.

Source & Project Paths Searching

After creating a project directory, the simulation source files must
be assembled using the flmake setup command. This is analogous
to executing the traditional setup script. For example, to run the
classic Sedov problem:

~/proj $ flmake setup Sedov -auto
[snip]
SUCCESS
~/proj $ ls
flash_desc.json setup/

This command creates symbolic links to the the FLASH
source files in the setup/ directory. Using the normal
FLASH setup script, all of these files must live within
${FLASH_SRC_DIR}/source/. However, the flmake setup
command searches additional paths to find potential source files.

By default if there is a local source/ directory in the project
directory then this is searched first for any potential FLASH
units. The structure of this directory mirrors the layout found in
${FLASH_SRC_DIR}/source/. Thus if the user wanted to
write a new or override an existing driver unit, they could place
all of the relevant files in ~/proj/source/Driver/. Units
found in the project source directory take precedence over units
with the same name in the FLASH source directory.

The most commonly overridden units, however, are
simulations. Yet specific simulations live somewhat
deep in the file system hierarchy as they reside
within source/Simulation/SimulationMain/.
To make accessing simulations easier a local project
simulations/ directory is first searched for any possible

simulations. Thus simulations/ effectively aliases
source/Simulation/SimulationMain/. Continuing
with the previous Sedov example the following directories are
searched in order of precedence for simulation units, if they exist:

1) ~/proj/simulations/Sedov/
2) ~/proj/source/Simulation/

SimulationMain/Sedov/
3) ${FLASH_SRC_DIR}/source/

Simulation/SimulationMain/Sedov/

Therefore, it is common for a project directory to have the
following structure if the project requires many modifications to
FLASH that are - at least in the short term - inappropriate for
mainline inclusion:

~/proj $ ls
flash_desc.json setup/ simulations/ source/

Logging

In many ways computational simulation is more akin to experi-
mental science than theoretical science. Simulations are executed
to test the system at hand in analogy to how physical experiments
probe the natural world. Therefore, it is useful for computational
scientists to adopt the time-tested strategy of a keeping a lab
notebook or its electronic analogy.

Various example of virtual lab notebooks exist [VLABNB] as
a way of storing information about how an experiment was con-
ducted. The resultant data is often stored in conjunction with the
notebook. Arguably the corollary concept in software development
is logging. Unfortunately, most simulation science makes use of
neither lab notebooks nor logging. Rather than using an external
rich- or web-client, flmake makes use of the built-in Python logger.

Every flmake command has the ability to log a message. This
follows the -m convention from version control systems. These
messages and associated metadata are stored in a flash.log
file in the project directory.

Not every command uses logging; for trivial commands which
do not change state (such as listing or diffing) log entries are not
needed. However for more serious commands (such as building)
logging is a critical component. Understanding that many users
cannot be bothered to create meaningful log messages at each
step, sensible and default messages are automatically generated.
Still, it is highly recommended that the user provide more detailed
messages as needed. E.g.:

~/proj $ flmake -m "Run with 600 J laser" run -n 10

The flmake log command may then be used to display past
log messages:

~/proj $ flmake log -n 1
Run id: b2907415
Run dir: run-b2907415
Command: run
User: scopatz
Date: Mon Mar 26 14:20:46 2012
Log id: 6b9e1a0f-cfdc-418f-8c50-87f66a63ca82

Run with 600 J laser
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The flash.log file should be added to the version control
of the project. Entries in this file are not typically deleted.

Dynamic Run Control

Many aspects of FLASH are declared in a static way. Such
declarations happen mainly at setup and runtime. For certain build
and run operations several parameters may need to be altered in a
consistent way to actually have the desired effect. Such repetition
can become tedious and usually leads to less readable inputs.

To make the user input more concise and expressive, flmake
introduces a run control flashrc.py file in the project directory.
This is a Python module which is executed, if it exists, in an empty
namespace whenever flmake is called. The flmake commands may
then choose to access specific data in this file. Please refer to
individual command documentation for an explanation on if/how
the run control file is used.

The most important example of using flashrc.py is that
the run and restart commands will update the flash.par file
with values from a parameters dictionary (or function which
returns a dictionary).

Initial flash.par

order = 3
slopeLimiter = "minmod"
charLimiting = .true.
RiemannSolver = "hll"

Run Control flashrc.py

parameters = {"slopeLimiter": "mc",
"use_flattening": False}

Final flash.par

RiemannSolver = "hll"
charLimiting = .true.
order = 3
slopeLimiter = "mc"
use_flattening = .false.

Description Sidecar Files

As a final step, the setup command generates a
flash_desc.json file in the project directory. This is
the description file for the FLASH simulation which is currently
being worked on. This description is a sidecar file whose purpose
is to store the following metadata at execution of each flmake
command:

• the environment,
• the version of both project and FLASH source repository,
• local source code modifications (diffs),
• the run control files (see above),
• run ids and history,
• and FLASH binary modification times.

Thus the description file is meant to be a full picture of the
way FLASH code was generated, compiled, and executed. Total
reproducibility of a FLASH simulation is based on having a well-
formed description file.

The contents of this file are essentially a persisted dictionary
which contains the information listed above. The top level keys

include setup, build, run, and merge. Each of these keys gets
added when the corresponding flmake command is called. Note
that restart alters the run value and does not generate its own top-
level key.

During setup and build, flash_desc.json is modified in
the project directory. However, each run receives a copy of this
file in the run directory with the run information added. Restarts
and merges inherit from the file in the previous run directory.

These sidecar files enable the flmake reproduce command
which is capable of recreating a FLASH simulation from only the
flash_desc.json file and the associated source and project
repositories. This is useful for testing and verification of the same
simulation across multiple different machines and platforms. It is
generally not recommended that users place this file under version
control as it may change often and significantly.

Example Workflow

The fundamental flmake abstractions have now been explained
above. A typical flmake workflow which sets up, builds, runs,
restarts, and merges a fork of a Sedov simulation is now demon-
strated. First, construct the project repository:

~ $ mkdir my_sedov
~ $ cd my_sedov/
~/my_sedov $ mkdir simulations/
~/my_sedov $ cp -r ${FLASH_SRC_DIR}/source/\

Simulation/SimulationMain/Sedov
simulations/

~/my_sedov $ # edit the simulation
~/my_sedov $ nano simulations/Sedov/\

Simulation_init.F90
~/my_sedov $ git init .
~/my_sedov $ git add .
~/my_sedov $ git commit -m "My Sedov project"

Next, create and run the simulation:

~/my_sedov $ flmake setup -auto Sedov
~/my_sedov $ flmake build -j 20
~/my_sedov $ flmake -m "First run of my Sedov" \

run -n 10
~/my_sedov $ flmake -m "Oops, it died." restart \

run-5a4f619e/ -n 10
~/my_sedov $ flmake -m "Merging my first run." \

merge run-fc6c9029 first_run
~/my_sedov $ flmake clean 1

Why Reproducibility is Important

True to its part of speech, much of ‘scientific computing’ has the
trappings of science in that it is code produced to solve problems
in (big-‘S’) Science. However, the process by which said programs
are written is not typically itself subject to the rigors of the
scientific method. The vaulted method contains components of
prediction, experimentation, duplication, analysis, and openness
[GODFREY-SMITH]. While software engineers often engage in
such activities when programming, scientific developers usually
forgo these methods, often to their detriment [WILSON].

Whatever the reason for this may be - ignorance, sloth, or
other deadly sins - the impetus for adopting modern software
development practices only increases every year. The evolution of
tools such as version control and environment capturing mecha-
nisms (such as virtual machines/hypervisors) enable researchers
to more easily retain information about software during and
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after production. Furthermore, the apparent end of Silicon-based
Moore’s Law has necessitated a move to more exotic architectures
and increased parallelism to see further speed increases [MIMS].
This implies that code that runs on machines now may not be able
to run on future processors without significant refactoring.

Therefore the scientific computing landscape is such that there
are presently the tools and the need to have fully reproducible
simulations. However, most scientists choose to not utilize these
technologies. This is akin to a chemist not keeping a lab notebook.
The lack of reproducibility means that many solutions to science
problems garnered through computational means are relegated to
the realm of technical achievements. Irreproducible results may be
novel and interesting but they are not science. Unlike the current
paradigm of computing-about-science, or periscientific comput-
ing, reproducibility is a keystone of diacomputational science
(computing-throughout-science).

In periscientific computing there may exist a partition between
expert software developers and expert scientists, each of whom
must learn to partially speak the language of the other camp.
Alternatively, when expert software engineers are not available,
canonically ill-equipped scientists perform only the bare minimum
development to solve computing problems.

On the other hand, in diacomputational science, software exists
as a substrate on top of which science and engineering prob-
lems are solved. Whether theoretical, simulation, or experimental
problems are at hand the scientist has a working knowledge of
computing tools available and an understanding of how to use
them responsibly. While the level of education required for dia-
computational science may seem extreme in a constantly changing
software ecosystem, this is in fact no greater than what is currently
expect from scientists with regard to Statistics [WILSON].

With the extreme cases illustrated above, there are some
notable exceptions. The first is that there are researchers who
are cognizant and respectful of these reproducibility issues. The
efforts of these scientists help paint a less dire picture than the one
framed here.

The second exception is that while reproducibility is a key
feature of fundamental science it is not the only one. For example,
openness is another point whereby the statement "If a result is
not produced openly then it is not science" holds. Open access to
results - itself is a hotly contested issue [VRIEZE] - is certainly
a component of computational science. Though having open and
available code is likely critical for pure science, it often lies outside
the scope of normal research practice. This is for a variety of
reasons, including the fear that releasing code too early or at all
will negatively impact personal publication records. Tackling the
openness issue must be left for another paper.

In summary, reproducibility is important because without it
any results generated are periscientific. To achieve diacompu-
tational science there exist computational tools to aid in this
endeavor, as in analogue science there are physical solutions.
Though it is not the only criticism to be levied against modern
research practices, irreproducibility is one that affects computation
acutely and uniquely as compared to other spheres.

The Reproduce Command

The flmake reproduce command is the key feature enabling
the total reproducibility of a FLASH simulation. This takes a
description file (e.g. flash_desc.json) and implicitly the
FLASH source and project repositories and replays the setup,

build, and run commands originally executed. It has the following
usage string:

flmake reproduce [options] <flash_descr>

For each command, reproduction works by cloning both source
and project repositories at a the point in history when they were
run into temporary directories. Then any local modifications which
were present (and not under version control) are loaded from
the description file and applied to the cloned repository. It then
copies the original run control file to the cloned repositories and
performs any command-specific modifications needed. Finally, it
executes the appropriate command from the cloned repository
using the original arguments provided on the command line.
Figure 1 presents a flow sheet of this process.

Fig. 1: The reproduce command workflow.

Thus the flmake reproduce recreates the original simu-
lation using the original commands (and not the versions currently
present). The reproduce command has the following limitations:

1) Source directory must be version controlled,
2) Project directory must be version controlled,
3) The FLASH run must depend on only the runtime param-

eters file, the FLASH executable and FLASH datafiles,
4) and the FLASH executable must not be modified between

build and run steps.

The above restrictions enforce that the run is not considered
reproducible if at any point FLASH depends on externalities or
alterations not tracked by version control. Critical to this process
are version control abstractions and the capability to execute
historical commands. These will be discussed in the following
subsections.

Meta-Version Control

Every user and developer tends towards one version control system
or another. The mainline FLASH development team operates in
subversion [SVN] though individual developers may prefer git
[GIT] or mercurial [HG]. As mentioned previously, some users
do not employ any source control management software.

In the case where the user lacks a sophisticated version control
system, it is still possible to obtain reproducibility if a clean
directory tree of a recent release is available. This clean tree must
be stored in a known place, typically the .clean/ subdirectory of
the FLASH_SRC_DIR. This is known as the ‘release’ versioning
system and is managed entirely by flmake.
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To realize reproducibility in this environment, it is neces-
sary for the reproduce command to abstract core source control
management features away from the underlying technology (or
absence of technology). For flmake, the following operations
define version control in the context of reproducibility:

• info,
• checkout or clone,
• diff,
• and patch.

The info operation provides version control information that
points to the current state of the repository. For all source control
management schemes this includes a unique string id for the
versioning type (e.g. ‘svn’ for subversion). In centralized version
control this contains the repository version number, while for for
distributed systems info will return the branch name and the hash
of the current HEAD. In the release system, info simply returns
the release version number. The info data that is found is then
stored in the description file for later use.

The checkout (or sometimes clone) operation is effectively the
inverse operation to info. This operation takes a point in history, as
described by the data garnered from info, and makes a temporary
copy of the whole repository at this point. Thus no matter what
evolution the code has undergone since the description file was
written, checkout rolls back the source to its previous incarnation.
For centralized version control this operation copies the existing
tree, reverts it to a clean working tree of HEAD, and performs
a reverse merge on all commits from HEAD to the historical
target. For distributed systems this clones the current repository,
checkouts or updates to the historical position, and does a hard
reset to clean extraneous files. The release system is easiest in that
checkout simply copies over the clean subdirectory. This operation
is performed for the setup, build, and run commands at reproduce
time.

The diff operation may seem less than fundamental to version
control. Here however, diff is used to capture local modifications
to the working trees of the source and project directories. This
diffing is in place as a fail-safe against uncommitted changes.
For centralized and distributed systems, diffing is performed
through the selfsame command name. In the release system (where
committing is impossible), diffing takes on the heavy lifting not
provided by a more advanced system. Thus for the release system
diff is performed via the posix diff tool with the recursive
switch between the FLASH_SRC_DIR and the clean copy. The
diff operation is executed when the commands are originally run.
The resultant diff string is stored in the description file, along with
the corresponding info.

The inverse operation to diff is patch. This is used at reproduce
time after checkout to restore the working trees of the temporary
repositories to the same state they were in at the original execution
of setup, build, and run. While each source control management
system has its own patching mechanism, the output of diff always
returns a string which is compatible with the posix patch utility.
Therefore, for all systems the patch program is used.

The above illustrates how version control abstraction may
be used to define a set of meta-operations which capture all
versioning information provided. This even included the case
where no formal version control system was used. It also covers
the case of the ‘forgetful’ user who may not have committed

every relevant local change to the repository prior to running a
simulation. What is more is that the flmake implementation of
these abstractions is only a handful of functions. These total less
than 225 lines of code in Python. Though small, this capability is
vital to the reproduce command functioning as intended.

Command Time Machine

Another principal feature of flmake reproducibility is its ability to
execute historical versions of the key commands (setup, build, and
run) as reincarnated by the meta-version control. This is akin to
the bootstrapping problem whereby all of the instruction needed
to reproduce a command are contained in the original information
provided. Without this capability, the most current versions of the
flmake commands would be acting on historical versions of the
repository. While such a situation would be a large leap forward
for the reproducibility of FLASH simulations, it falls well short
of total reproducibility. In practice, therefore, historical flmake
commands acting on historical source are needed. This maybe be
termed the ‘command time machine,’ though it only travels into
the past.

The implementation of the command time machine requires
the highly dynamic nature of Python, a bit of namespace slight-
of-hand, and relative imports. First note that module and package
which are executing the flmake reproduce command may not be
deleted from the sys.modules cache. (Such a removal would
cause sudden and terrifying runtime failures.) This effectively
means that everything under the flash package name may not
be modified.

Nominally, the historical version of the package would be
under the flash namespace as well. However, the name flash
is only given at install time. Inside of the source directory,
the package is located in tools/python/. This allows the
current reproduce command to add the checked out and patched
{temp-flash-src-dir}/tools/ directory to the front of
sys.path for setup, build, and run. Then the historical flmake
may be imported via python.flmake because python/ is a
subdirectory of {temp-flash-src-dir}/tools/.

Modules inside of python or flmake are guaranteed to im-
port other modules in their own package because of the exclusive
use of relative imports. This ensures that the old commands import
old commands rather then mistakenly importing newer iterations.

Once the historical command is obtained, it is ex-
ecuted with the original arguments from the descrip-
tion file. After execution, the temporary source direc-
tory {temp-flash-src-dir}/tools/ is removed from
sys.path. Furthermore, any module whose name starts with
python is also deleted from sys.modules. This cleans the
environment for the next historical command to be run in its own
temporal context.

In effect, the current version of flmake is located in the
flmake namespace and should remain untouched while the re-
produce command is running. Simultaneously, the historic flmake
commands are given the namespace python. The time value of
python changes with each command reproduced but is fully in-
dependent from the current flmake code. This method of renaming
a package namespace on the file system allows for one version of
flmake to supervise the execution of another in a manner relevant
to reproducibility.
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A Note on Replication

A weaker form of reproducibility is known as replication
[SCHMIDT]. Replication is the process of recreating a result when
"you take all the same data and all the same tools" [GRAHAM]
which were used in the original determination. Replication is a
weaker determination than reproduction because at minimum the
original scientist should be able to replicate their own work. With-
out replication, the same code executed twice will produce distinct
results. In this case no trust may be placed in the conclusions
whatsoever.

Much as version control has given developers greater control
over reproducibility, other modern tools are powerful instruments
of replicability. Foremost among these are hypervisors. The ease-
of-use and ubiquity of virtual machines (VM) in the software
ecosystem allows for the total capture and persistence of the
environment in which any computation was performed. Such en-
vironments may be hosted and shared with collaborators, editors,
reviewers, or the public at large. If the original analysis was
performed in a VM context, shared, and rerun by other scientists
then this is replicability. Such a strategy has been proposed by C.
T. Brown as a stop-gap measure until diacomputational science is
realized [BROWN].

However, as Brown admits (see comments), the delineation
between replication and reproduction is fuzzy. Consider these
questions which have no clear answers:

• Are bit-identical results needed for replication?
• How much of the environment must be reinstated for

replication versus reproduction?
• How much of the hardware and software stack must be

recreated?
• What precisely is meant by ‘the environment’ and how

large is it?
• For codes depending on stochastic processes, is reusing

the same random seed replication or reproduction?

Without justifiable answers to the above, ad hoc definitions
have governed the use of replicability and reproducibility. Yet to
the quantitatively minded, an I-know-reproducibility-when-I-see-
it approach falls short. Thus the science of science, at least in the
computational sphere, has much work remaining.

Even with the reproduction/replication dilemma, the flmake re-
produce command is a reproducibility tool. This is because it takes
the opposite approach to Brown’s VM-based replication. Though
the environment is captured within the description file, flmake
reproduce does not attempt to recreate this original environment
at all. The previous environment information is simply there for
posterity, helping to uncover any discrepancies which may arise.
User specific settings on the reproducing machine are maintained.
This includes but is not limited to which compiler is used.

The claim that Brown’s work and flmake reproduce represent
paragons of replicability and reproducibility respectively may
be easily challenged. The author, like Brown himself, does not
presuppose to have all - or even partially satisfactory - answers.
What is presented here is an attempt to frame the discussion and
bound the option space of possible meanings for these terms.
Doing so with concrete code examples is preferable to debating
this issue in the abstract.

Conclusions & Future Work

By capturing source code and the environment at key stages -
setup, build, and run - FLASH simulations may be fully repro-
duced in the future. Doing so required a wrapper utility called
flmake. The writing of this tool involved an overhaul of the
existing system. Though portions of flmake took inspiration from
previous systems none were as comprehensive. Additionally, to the
author’s knowledge, no previous system included a mechanism to
non-destructively execute previous command incarnations similar
to flmake reproduce.

The creation of flmake itself was done as an exercise in
reproducibility. What has been shown here is that it is indeed
possible to increase the merit of simulation science through a
relatively small, though thoughtful, amount of code. It is highly
encouraged that the methods described here be copied by other
software-in-science project*.

Moreover, in the process of determining what flmake should
be, several fundamental questions about reproducibility itself were
raised. These point to systemic issues within the realm of compu-
tational science. With the increasing importance of computing,
soon science as a whole will also be forced to reconcile these
reproducibility concerns. Unfortunately, there does not appear to
be an obvious and present solution to the problems posed.

As with any software development project, there are further
improvements and expansions that will continue to be added to
flmake. More broadly, the questions posed by reproducibility will
be the subject of future work on this project and others. Additional
issues (such as openness) will also figure into subsequent attempts
to bring about a global state of diacomputational science.
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Python’s Role in VisIt

Cyrus Harrison‡∗, Harinarayan Krishnan§

F

Abstract—VisIt is an open source, turnkey application for scientific data anal-
ysis and visualization that runs on a wide variety of platforms from desktops to
petascale class supercomputers. VisIt’s core software infrastructure is written in
C++, however Python plays a vital role in enabling custom workflows. Recent
work has extended Python’s use in VisIt beyond scripting, enabling custom
Python UIs and Python filters for low-level data manipulation. The ultimate
goal of this work is to evolve Python into a true peer to our core C++ plugin
infrastructure. This paper provides an overview of Python’s role in VisIt with a
focus on use cases of scripted rendering, data analysis, and custom application
development.

Index Terms—visualization, hpc, python

Introduction

VisIt [VisIt05], like EnSight [EnSight09] and ParaView
[ParaView05], is an application designed for post processing of
mesh based scientific data. VisIt’s core infrastructure is written
in C++ and it uses VTK [VTK96] for its underlying mesh data
model. Its distributed-memory parallel architecture is tailored to
process domain decomposed meshes created by simulations on
large-scale HPC clusters.

Early in development, the VisIt team adopted Python as the
foundation of VisIt’s primary scripting interface. The scripting
interface is available from both a standard Python interpreter and
a custom command line client. The interface provides access to
all features available through VisIt’s GUI. It also includes support
for macro recording of GUI actions to Python snippets and full
control of windowless batch processing.

While Python has always played an important scripting role
in VisIt, two recent development efforts have greatly expanded
VisIt’s Python capabilities:

1) We now support custom UI development using Qt via
PySide [PySide]. This allows users to embed VisIt’s
visualization windows into their own Python applications.
This provides a path to extend VisIt’s existing GUI and
for rapid development of streamlined UIs for specific use
cases.

2) We recently enhanced VisIt by embedding Python in-
terpreters into our data flow network pipelines. This
provides fine grained access, allowing users to write
custom algorithms in Python that manipulate mesh data
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Fig. 1: Python integration with VisIt’s components.

via VTK’s Python wrappers and leverage packages such
as NumPy [NumPy] and SciPy [SciPy]. Current support
includes the ability to create derived mesh quantities and
execute data summarization operations.

This paper provides an overview of how VisIt leverages Python
in its software architecture, outlines these two recent Python
feature enhancements, and introduces several examples of use
cases enabled by Python.

Python Integration Overview

VisIt employs a client-server architecture composed of several
interacting software components:

• A viewer process coordinates the state of the system and
provides the visualization windows used to display data.

• A set of client processes, including a Qt-based GUI and
Python-based command line interface (CLI), are used to
setup plots and direct visualization operations.

• A parallel compute engine executes the visualization
pipelines. This component employs a data flow network
design and uses MPI for communication in distributed-
memory parallel environments.

Client and viewer proceses are typically run on a desktop ma-
chine and connect to a parallel compute engine running remotely
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on a HPC cluster. For smaller data sets, a local serial or parallel
compute engine is also commonly used.

Figure 1 outlines how Python is integrated into VisIt’s compo-
nents. VisIt both extends and embeds Python. State control of
the viewer is provided by a Python Client Interface, available
as Python/C extension module. This interface is outlined in the
Python Client Interface section, and extensions to support custom
UIs written in Python are described in the Custom Python UIs
section. Direct access to low-level mesh data structures is provided
by a Python Filter Runtime, embedded in VisIt’s compute engine
processes. This runtime is described in the Python Filter Runtime
section.

Python Client Interface

VisIt clients interact with the viewer process to control the state of
visualization windows and data processing pipelines. Internally
the system uses a collection of state objects that rely on a
publish/subscribe design pattern for communication among com-
ponents. These state objects are wrapped by a Python/C extension
module to expose a Python state control API. The function calls
are typically imperative: Add a new plot, Find the maximum value
of a scalar field, etc. The client API is documented extensively in
the VisIt Python Interface Manual [VisItPyRef]. To introduce the
API in this paper we provide a simple example script, Listing
1, that demonstrates VisIt’s five primary visualization building
blocks:

• Databases: File readers and data sources.
• Plots: Data set renderers.
• Operators: Filters implementing data set transformations.
• Expressions: Framework enabling the creation of derived

quantities from existing mesh fields.
• Queries: Data summarization operations.

Listing 1: Trace streamlines along the gradient of a scalar field.

# Open an example file
OpenDatabase("noise.silo")
# Create a plot of the scalar field 'hardyglobal'
AddPlot("Pseudocolor","hardyglobal")
# Slice the volume to show only three
# external faces.
AddOperator("ThreeSlice")
tatts = ThreeSliceAttributes()
tatts.x = -10
tatts.y = -10
tatts.z = -10
SetOperatorOptions(tatts)
DrawPlots()
# Find the maximum value of the field 'hardyglobal'
Query("Max")
val = GetQueryOutputValue()
print "Max value of 'hardyglobal' = ", val
# Create a streamline plot that follows
# the gradient of 'hardyglobal'
DefineVectorExpression("g","gradient(hardyglobal)")
AddPlot("Streamline","g")
satts = StreamlineAttributes()
satts.sourceType = satts.SpecifiedBox
satts.sampleDensity0 = 7
satts.sampleDensity1 = 7
satts.sampleDensity2 = 7
satts.coloringMethod = satts.ColorBySeedPointID
SetPlotOptions(satts)
DrawPlots()

In this example, the Silo database reader is automatically selected
to read meshes from the input file ’noise.silo’. A Pseudocolor

Fig. 2: Pseudocolor and Streamline plots setup using the script in
Listing 1.

plot is created to display the scalar field named ’hardyglobal’.
The mesh is transformed by a ThreeSlice operator to limit the
volume displayed by the Pseudocolor plot to three external faces.
We use a query to obtain and print the maximum value of the
’hardyglobal’ field. An expression is defined to extract the gradient
of the ’hardyglobal’ scalar field. Finally, this gradient vector is
used as the input field for a second plot, which traces streamlines.
Figure 2 shows the resulting visualization which includes both the
Pseudocolor and Streamline plots.

Accessing the Python Client Interface

For convenience, you can access the client interface from a custom
binary or a standalone Python interpreter.

VisIt provides a command line interface (CLI) binary that
embeds a Python interpreter and automatically imports the client
interface module. There are several ways to access this binary:

• From VisIt’s GUI, you can start a CLI instance from the
"Launch CLI" entry in the "Options" menu.

• Invoking VisIt from the command line with the -cli
option starts the CLI and launches a connected viewer
process:

>visit -cli

For batch processing, the -nowin option launches the
viewer in an offscreen mode and you can select a Python
script file to run using the -s option:

• >visit -cli -nowin -s
<script_file.py>

You can also import the interface into a standalone Python
interpreter and use the module to launch and control a new
instance of VisIt. Listing 2 provides example code for this use
case. The core implementation of the VisIt module is a Python/C
extension module, so normal caveats for binary compatibly with
your Python interpreter apply.
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The features of the VisIt interface are dependent on the version
of VisIt selected, so the import process is broken into two steps.
First, a small front end module is imported. This module allows
you to select the options used to launch VisIt. Examples include:
using -nowin mode for the viewer process, selecting a specific
version of VisIt, -v 2.5.1, etc. After these options are set
the Launch() method creates the appropriate Visit components.
During the launch, the interfaces to the available state objects are
enumerated and dynamically imported into the visit module.

Listing 2: Launch and control VisIt from a standalone Python inter-
preter.

import sys
import os
from os.path import join as pjoin
vpath = "path/to/visit/<ver>/<arch>/"
# or for an OSX bundle version
# "path/to/VisIt.app/Contents/Resources/<ver>/<arch>"
vpath = pjoin(vpath,"lib","site-packages")
sys.path.insert(0,vpath)
import visit
visit.Launch()
# use the interface
visit.OpenDatabase("noise.silo")
visit.AddPlot("Pseudocolor","hardyglobal")

Macro Recording

VisIt’s GUI provides a Commands window that allows you to
record GUI actions into short Python snippets. While the client in-
terface supports standard Python introspection methods (dir(),
help(), etc), the Commands window provides a powerful learn-
ing tool for VisIt’s Python API. You can access this window from
the "Commands" entry in the "Options" menu. From this window
you can record your actions into one of several source scratch pads
and convert common actions into macros that can be run using the
Marcos window.

Custom Python UIs

VisIt provides 100+ database readers, 60+ operators, and over 20
different plots. This toolset makes it a robust application well
suited to analyze problem sets from a wide variety of scientific
domains. However, in many cases users would like to utilize
only a specific subset of VisIt’s features and understanding the
intricacies of a large general purpose tool can be a daunting task.
For example, climate scientists require specialized functionality
such as viewing information on Lat/Long grids bundled with
computations of zonal averages. Whereas, scientists in the fusion
energy science community require visualizations of interactions
between magnetic and particle velocity fields within a tokomak
simulation. To make it easier to target specific user communities,
we extended VisIt with ability to create custom UIs in Python.
Since we have an investment in our existing Qt user interface,
we choose PySide, an LGPL Python Qt wrapper, as our primary
Python UI framework. Leveraging our existing Python Client
Interface along with new PySide support allows us to easily and
quickly create custom user interfaces that provide specialized
analysis routines and directly target the core needs of specific user
communities. Using Python allows us to do this in a fraction of
the time it would take to do so using our C++ APIs.

VisIt provides two major components to its Python UI inter-
face:

• The ability to embed VisIt’s render windows.

• The ability to reuse VisIt’s existing set of GUI widgets.

The ability to utilize renderers as Qt widgets allows VisIt’s
visualization windows to be embedded in custom PySide GUIs
and other third party applications. Re-using VisIt’s existing generic
widget toolset, which provides functionally such as remote filesys-
tem browsing and a visualization pipeline editor, allows custom
applications to incorporate advanced features with little difficulty.

One important note, a significant number of changes went
into adding Python UI support into VisIt. Traditionally, VisIt
uses a component-based architecture where the Python command
line interface, the graphical user interface, and the viewer exist
as separate applications that communicate over sockets. Adding
Python UI functionality required these three separate components
to work together as single unified application. This required
components that once communicated only over sockets to also
be able to directly interact with each other. Care is needed when
sharing data in this new scenario, we are still refactoring parts of
VisIt to better support embedded use cases.

To introduce VisIt’s Python UI interface, we start with Listing
3, which provides a simple PySide visualization application that
utilizes VisIt under the hood. We then describe two complex
applications that use VisIt’s Python UI interface with several
embedded renderer windows.

Listing 3: Custom application that animates an Isosurface with a
sweep across Isovalues.

class IsosurfaceWindow(QWidget):
def __init__(self):

super(IsosurfaceWindow,self).__init__()
self.__init_widgets()
# Setup our example plot.
OpenDatabase("noise.silo")
AddPlot("Pseudocolor","hardyglobal")
AddOperator("Isosurface")
self.update_isovalue(1.0)
DrawPlots()

def __init_widgets(self):
# Create Qt layouts and widgets.
vlout = QVBoxLayout(self)
glout = QGridLayout()
self.title = QLabel("Iso Contour Sweep Example")
self.title.setFont(QFont("Arial", 20, bold=True))
self.sweep = QPushButton("Sweep")
self.lbound = QLineEdit("1.0")
self.ubound = QLineEdit("99.0")
self.step = QLineEdit("2.0")
self.current = QLabel("Current % =")
f = QFont("Arial",bold=True,italic=True)
self.current.setFont(f)
self.rwindow = pyside_support.GetRenderWindow(1)
# Add title and main render winodw.
vlout.addWidget(self.title)
vlout.addWidget(self.rwindow,10)
glout.addWidget(self.current,1,3)
# Add sweep controls.
glout.addWidget(QLabel("Lower %"),2,1)
glout.addWidget(QLabel("Upper %"),2,2)
glout.addWidget(QLabel("Step %"),2,3)
glout.addWidget(self.lbound,3,1)
glout.addWidget(self.ubound,3,2)
glout.addWidget(self.step,3,3)
glout.addWidget(self.sweep,4,3)
vlout.addLayout(glout,1)
self.sweep.clicked.connect(self.exe_sweep)
self.resize(600,600)

def update_isovalue(self,perc):
# Change the % value used by
# the isosurface operator.
iatts = IsosurfaceAttributes()
iatts.contourMethod = iatts.Percent
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iatts.contourPercent = (perc)
SetOperatorOptions(iatts)
txt = "Current % = " + "%0.2f" % perc
self.current.setText(txt)

def exe_sweep(self):
# Sweep % value accoording to
# the GUI inputs.
lbv = float(self.lbound.text())
ubv = float(self.ubound.text())
stpv = float(self.step.text())
v = lbv
while v < ubv:

self.update_isovalue(v)
v+=stpv

# Create and show our custom window.
main = IsosurfaceWindow()
main.show()

In this example, a VisIt render window is embedded in a QWidget
to provide a Pseudocolor view of an Isosurface of the scalar field
’hardyglobal’. We create a set of UI controls that allow the user
to select values that control a sweep animation across a range of
Isovalues. The sweep button initiates the animation. To run this
example, the -pysideviewer flag is passed to VisIt at startup
to select a unified viewer and CLI process.

> visit -cli -pysideviewer

This example was written to work as standalone script to
illustrate the use of the PySide API for this paper. For most custom
applications, developers are better served by using QtDesigner for
UI design, in lieu of hand coding the layout of UI elements. Listing
4 provides a small example showing how to load a QtDesigner UI
file using PySide.

Listing 4: Loading a custom UI file created with Qt Designer.

from PySide.QtUiTools import *
# example slot
def on_my_button_click():

print "myButton was clicked"

# Load a UI file created with QtDesigner
loader = QUiLoader()
uifile = QFile("custom_widget.ui")
uifile.open(QFile.ReadOnly)
main = loader.load(uifile)
# Use a string name to locate
# objects from Qt UI file.
button = main.findChild(QPushButton, "myButton")
# After loading the UI, we want to
# connect Qt slots to Python functions
button.clicked.connect(on_my_button_click)
main.show()

Advanced Custom Python UI Examples

To provide more context for VisIt’s Python UI interface, we now
discuss two applications that leverage this new infrastructure: the
Global Cloud Resolving Model (GCRM) [GCRM] Viewer and
Ultra Visualization - Climate Data Analysis Tools (UV-CDAT)
[UVCDAT],

VisIt users in the climate community involved with the global
cloud resolving model project (GCRM) mainly required a custom
NetCDF reader and a small subset of domain specific plots and
operations. Their goal for climate analysis was to quickly visualize
models generated from simulations, and perform specialized anal-
ysis on these modules. Figure 3 shows two customized skins for
the GCRM community developed in QtDesigner and loaded using

Fig. 3: Climate Skins for the Global Cloud Resolving Model Viewer.

Fig. 4: Example showing integration of VisIt’s components in UV-
CDAT.
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PySide from VisIt’s Python UI client. The customized skins embed
VisIt rendering windows and reuse several of VisIt’s GUI widgets.
We also wrote several new analysis routines in Python for custom
visualization and analysis tasks targeted for the climate com-
munity. This included providing Lat/Long grids with continental
outlines and computing zonal means. Zonal mean computation
was achieved by computing averages across the latitudes for each
layer of elevation for a given slice in the direction of the longitude.

UV-CDAT is a multi-institutional project geared towards ad-
dressing the visualization needs of climate scientists around the
world. Unlike the GCRM project which was targeted towards
one specific group and file format, for UV-CDAT all of VisIt’s
functionality needs to be exposed and embedded alongside several
other visualization applications. The goal of UV-CDAT is to bring
together all the visualization and analysis routines provided within
several major visualization frameworks inside one application.
This marks one of the first instances where several separate fully-
featured visualization packages, including VisIt, ParaView, DV3D,
and VisTrails all function as part of one unified application. Figure
4 shows an example of using VisIt plots, along with plots from
several other packages, within UV-CDAT. The core UV-CDAT
application utilizes PyQt [PyQt] as its central interface and Python
as the intermediate bridge between the visualization applications.
The infrastructure changes made to VisIt to support custom Python
UIs via PySide also allowed us to easily interface with PyQt.
Apart from creating PyQt wrappers for the project, we also made
significant investments in working out how to effectively share
resources created within Python using NumPy & VTK Python
data objects.

Python Filter Runtime

The Python Client Interface allows users to assemble visualization
pipelines using VisIt’s existing building blocks. While VisIt pro-
vides a wide range of filters, there are of course applications that
require special purpose algorithms or need direct access to low-
level mesh data structures. VisIt’s Database, Operator, and Plot
primitives are extendable via a C++ plugin infrastructure. This
infrastructure allows new instances of these building blocks to be
developed against an installed version of VisIt, without access to
VisIt’s full source tree. Whereas, creating new Expression and
Query primitives in C++ currently requires VisIt’s full source
tree. To provide more flexibility for custom work flows and
special purpose algorithms, we extended our data flow network
pipelines with a Python Filter Runtime. This extension provides
two important benefits:

• Enables runtime prototyping/modification of filters.
• Reduces development time for special purpose/one-off

filters.

To implement this runtime, each MPI process in VisIt’s com-
pute engine embeds a Python interpreter. The interpreter coordi-
nates with the rest of the pipeline using Python/C wrappers for
existing pipeline control data structures. These data structures also
allow requests for pipeline optimizations, for example a request
to generate ghost zones. VisIt’s pipelines use VTK mesh data
structures internally, allowing us to pass VTK objects zero-copy
between C++ and the Python interpreter using Kitware’s existing
VTK Python wrapper module. Python instances of VTK data
arrays can also be wrapped zero-copy into ndarrays, opening up
access to the wide range of algorithms available in NumPy and
SciPy.

To create a custom filter, the user writes a Python script that
implements a class that extends a base filter class for the desired
VisIt building block. The base filter classes mirror VisIt’s existing
C++ class hierarchy. The exact execution pattern varies according
the to selected building block, however they loosely adhere to the
following basic data-parallel execution pattern:

• Submit requests for pipeline constraints or optimizations.
• Initialize the filter before parallel execution.
• Process mesh data sets in parallel on all MPI tasks.
• Run a post-execute method for cleanup and/or summariza-

tion.

To support the implementation of distributed-memory algo-
rithms, the Python Filter Runtime provides a simple Python MPI
wrapper module, named mpicom. This module includes support
for collective and point-to-point messages. The interface provided
by mpicom is quite simple, and is not as optimized or extensive as
other Python MPI interface modules, as such mpi4py [Mpi4Py].
We would like to eventually adopt mpi4py for communication,
either directly or as a lower-level interface below the existing
mpicom API.

VisIt’s Expression and Query filters are the first constructs
exposed by the Python Filter Runtime. These primitives were
selected because they are not currently extensible via our C++
plugin infrastructure. Python Expressions and Queries can be
invoked from VisIt’s GUI or the Python Client Interface. To
introduce these filters, this paper will outline a simple Python
Query example and discuss how a Python Expression was used to
research a new OpenCL Expression Framework.

Listing 5: Python Query filter that calculates the average of a cell
centered scalar field.

class CellAverageQuery(SimplePythonQuery):
def __init__(self):

# basic initialization
super(CellAverageQuery,self).__init__()
self.name = "Cell Average Query"
self.description = "Calculating scalar average."

def pre_execute(self):
# called just prior to main execution
self.local_ncells = 0
self.local_sum = 0.0

def execute_chunk(self,ds_in,domain_id):
# called per mesh chunk assigned to
# the local MPI task.
ncells = ds_in.GetNumberOfCells()
if ncells == 0:

return
vname = self.input_var_names[0]
varray = ds_in.GetCellData().GetArray(vname)
self.local_ncells += ncells
for i in range(ncells):

self.local_sum += varray.GetTuple1(i)
def post_execute(self):

# called after all mesh chunks on all
# processors have been processed.
tot_ncells = mpicom.sum(self.local_ncells)
tot_sum = mpicom.sum(self.local_sum)
avg = tot_sum / float(tot_ncells)
if mpicom.rank() == 0:

vname = self.input_var_names[0]
msg = "Average value of %s = %s"
msg = msg % (vname,str(avg))
self.set_result_text(msg)
self.set_result_value(avg)

# Tell the Python Filter Runtime which class to use
# as the Query filter.
py_filter = CellAverageQuery
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Listing 6: Python Client Interface code to invoke the Cell Average
Python Query on a example data set.

# Open an example data set.
OpenDatabase("multi_rect3d.silo")
# Create a plot to query
AddPlot("Pseudocolor","d")
DrawPlots()
# Execute the Python query
PythonQuery(file="listing_5_cell_average.vpq",

vars=["default"])

Listing 5 provides an example Python Query script, and Listing 6
provides example host code that can be used to invoke the Python
Query from VisIt’s Python Client Interface. In this example, the
pre_execute method initializes a cell counter and a variable to hold
the sum of all scalar values provided by the host MPI task. After
initialization, the execute_chunk method is called for each mesh
chunk assigned to the host MPI task. execute_chunk examines
these meshes via VTK’s Python wrapper interface, obtaining
the number of cells and the values from a cell centered scalar
field. After all chunks have been processed by the execute_chunk
method on all MPI tasks, the post_execute method is called. This
method uses MPI reductions to obtain the aggregate number of
cells and total scalar value sum. It then calculates the average
value and sets an output message and result value on the root MPI
process.

Using a Python Expression to host a new OpenCL Expression
Framework.

The HPC compute landscape is quickly evolving towards ac-
celerators and many-core CPUs. The complexity of porting ex-
isting codes to the new programming models supporting these
architectures is a looming concern. We have an active research
effort exploring OpenCL [OpenCL] for visualization and analysis
applications on GPU clusters.

One nice feature of OpenCL is the that it provides runtime
kernel compilation. This opens up the possibility of assembling
custom kernels that dynamically encapsulate multiple steps of a
visualization pipeline into a single GPU kernel. A subset of our
OpenCL research effort is focused on exploring this concept, with
the goal of creating a framework that uses OpenCL as a backend
for user defined expressions. This research is joint work with
Maysam Moussalem and Paul Navrátil at the Texas Advanced
Computing Center, and Ming Jiang at Lawrence Livermore Na-
tional Laboratory.

For productivity reasons we chose Python to prototype this
framework. We dropped this framework into VisIt’s existing data
parallel infrastructure using a Python Expression. This allowed
us to test the viability of our framework on large data sets in
a distributed-memory parallel setting. Rapid development and
testing of this framework leveraged the following Python modules:

• PLY [PLY] was used to parse our expression language
grammar. PLY provides an easy to use Python lex/yacc
implementation that allowed us to implement a front-end
parser and integrate it with the Python modules used to
generate and execute OpenCL kernels.

• PyOpenCL [PyOpenCL] was used to interface with
OpenCL and launch GPU kernels. PyOpenCL provides a
wonderful interface to OpenCL that saved us an untold
amount of time over the OpenCL C-API. PyOpenCL also
uses ndarrays for data transfer between the CPU and GPU,
and this was a great fit because we can easily access our

data arrays as ndarrays using the VTK Python wrapper
module.

We are in the process of conducting performance studies and
writing a paper with the full details of the framework. For this
paper we provide a high-level execution overview and a few
performance highlights:

Execution Overview:
An input expression, defining a new mesh field, is parsed

by a PLY front-end and translated into a data flow network
specification. The data flow network specification is passed to
a Python data flow module that dynamically generates a single
OpenCL kernel for the operation. By dispatching a single kernel
that encapsulates several pipeline steps to the GPU, the framework
mitigates CPU-GPU I/O bottlenecks and boosts performance over
both existing CPU pipelines and a naive dispatch of several small
GPU kernels.

Performance Highlights:

• Demonstrated speed up of up to ~20x vs an equivalent
VisIt CPU expression, including transfer of data arrays to
and from the GPU.

• Demonstrated use in a distributed-memory parallel setting,
processing a 24 billion zone rectilinear mesh using 256
GPUs on 128 nodes of LLNL’s Edge cluster.

Python, PLY, PyOpenCL, and VisIt’s Python Expression capa-
bility allowed us to create and test this framework with a much
faster turn around time than would have been possible using
C/C++ APIs. Also, since the bulk of the processing was executed
on GPUs, we were able to demonstrate impressive speedups.

Conclusion

In this paper we have presented an overview of the various roles
that Python plays in VisIt’s software infrastructure and a few ex-
amples of visualization and analysis use cases enabled by Python
in VisIt. Python has long been an asset to VisIt as the foundation
of VisIt’s scripting language. We have recently extended our
infrastructure to enable custom application development and low-
level mesh processing algorithms in Python.

For future work, we are refactoring VisIt’s component infras-
tructure to better support unified process Python UI clients. We
also hope to provide more example scripts to help developers
bootstrap custom Python applications that embed VisIt. We plan
to extend our Python Filter Runtime to allow users to write
new Databases and Operators in Python. We would also like to
provide new base classes for Python Queries and Expressions that
encapsulate the VTK to ndarray wrapping process, allowing users
to write streamlined scripts using NumPy.

For more detailed info on VisIt and its Python interfaces, we
recommend: the VisIt Website [VisItWeb], the VisIt Users’ Wiki
[VisItWiki], VisIt’s user and developer mailing lists, and the VisIt
Python Client reference manual [VisItPyRef].
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PythonTeX: Fast Access to Python from within LaTeX
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Abstract—PythonTeX is a new LaTeX package that provides access to the full
power of Python from within LaTeX documents. It allows Python code entered
within a LaTeX document to be executed, and provides access to the output.
PythonTeX also provides syntax highlighting for any language supported by the
Pygments highlighting engine.

PythonTeX is fast and user-friendly. Python code is separated into user-
defined sessions. Each session is only executed when its code is modified.
When code is executed, sessions run in parallel. The contents of stdout and
stderr are synchronized with the LaTeX document, so that printed content is
easily accessible and error messages have meaningful line numbering.

PythonTeX simplifies scientific document creation with LaTeX. Plots can
be created with matplotlib and then customized in place. Calculations can be
performed and automatically typeset with NumPy. SymPy can be used to auto-
matically create mathematical tables and step-by-step mathematical derivations.

Index Terms—LaTeX, document preparation, document automation, matplotlib,
NumPy, SymPy, Pygments

Introduction

Scientific documents and presentations are often created with the
LaTeX document preparation system. Though some LaTeX tools
exist for creating figures and performing calculations, external
scientific software is typically required for these tasks. This can
result in an inefficient workflow. Every time a calculation requires
modification or a figure needs tweaking, the user must switch
between LaTeX and the scientific software. The user must locate
the code that created the calculation or figure, modify it, and
execute it before returning to LaTeX.

One way to streamline this process is to include non-LaTeX
code within LaTeX documents, with a means to execute this
code and access the output. That approach has connections to
Knuth’s concept of literate programming, in which code and its
documentation are combined in a single document [Knuth]. The
noweb literate programming tool extended Knuth’s work to ad-
ditional document formats and arbitrary programming languages
[Ramsey]. Sweave subsequently built on noweb by allowing the
output of individual chunks of R code to be accessed within
the document [Leisch]. This made possible dynamic reports that
are reproducible since they contain the code that generated their
results. As such, Sweave and similar tools represent an additional,
complementary approach to reproducibility compared to makefile-
based approaches [Schwab].
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Several methods of including executable code in LaTeX docu-
ments ultimately function as preprocessors or templating systems.
A document might contain a mix of LaTeX and code, and the
preprocessor replaces the code with its output. The original docu-
ment would not be valid LaTeX; only the preprocessed document
would be. Sweave, knitr [Xie], the Python-based Pweave [Pastell],
and template libraries such as Mako [MK] function in this manner.
More recently, the IPython notebook has provided an interactive
browser-based interface in which text, code, and code output may
be interspersed [IPY]. Since the notebook can be exported as
LaTeX, it functions similarly to the preprocessor-style approach.

The preprocessor/templating-style approach has a significant
advantage. All of the examples mentioned above are compatible
with multiple document formats, not just LaTeX. This is par-
ticularly true in the case of templating libraries. One significant
drawback is that the line numbers of the preprocessed document,
which LaTeX receives, do not correspond to those of the original
document. This makes it difficult to debug LaTeX errors, partic-
ularly in longer documents. It also breaks standard LaTeX tools
such as forward and inverse search between a document and its
PDF (or other) output; only Sweave and knitr have systems to
work around this. An additional issue is that it is difficult for
LaTeX code to interact with code in other languages, when the
code in other languages has already been executed and removed
before LaTeX runs.

In an alternate approach to including executable code in LaTeX
documents, the original document is valid LaTeX, containing
code wrapped in special commands and environments. The code
is extracted by LaTeX itself during compilation, then executed
and replaced by its output. Such approaches with Python go
back to at least 2007, with Martin R. Ehmsen’s python.sty style
file [Ehmsen]. Since 2008, SageTeX has provided access to the
Sage mathematics system from within LaTeX [Drake]. Because
Sage is largely based on Python, it also provides Python ac-
cess. SympyTeX (2009) is based on SageTeX [Molteno]. Though
SympyTeX is primarily intended for accessing the SymPy library
for symbolic mathematics [SymPy], it provides general access to
Python. Since these packages begin with a valid LaTeX document,
they automatically work with standard LaTeX editing tools and
also allow LaTeX code to interact with Python.

Python.sty, SageTeX, and SympyTeX illustrate the potential
of a close Python-LaTeX integration. At the same time, they leave
much of the possible power of the Python-LaTeX combination un-
tapped. Python.sty requires that all Python code be executed every
time the document is compiled. SageTeX and SympyTeX separate
code execution from document compilation, but because all code
is executed in a single session, everything must be executed
whenever anything changes. None of these packages provides
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comprehensive syntax highlighting. SageTeX and SympyTeX do
not provide access to stdout or stderr. They do synchronize error
messages with the document, but synchronization is performed by
executing a try/except statement on every line of the user’s
code. This reduces performance and fails in the case of syntax
errors.

PythonTeX is a new LaTeX package that provides access to
Python from within LaTeX documents. It emphasizes performance
and usability.

• Python-generated content is always saved, so that the La-
TeX document can be compiled without running Python.

• Python code is divided into user-defined sessions. Each
session is only executed when it is modified. When code
is executed, sessions run in parallel.

• Both stdout and stderr are easily accessible.
• All Python error messages are synchronized with the

LaTeX document, so that error line numbers correctly
correspond to the document.

• Code may be typeset with highlighting provided by Pyg-
ments [Pyg]—this includes any language supported by
Pygments, not just Python. Unicode is supported.

• Native Python code is fully supported, including imports
from __future__. No changes to Python code are
required to make it compatible with PythonTeX.

While PythonTeX lacks the rapid interactivity of the IPython
notebook, as a LaTeX package it offers much tighter Python-
LaTeX integration. It also provides greater control over what is
displayed (code, stdout, or stderr) and allows executable code to
be included inline within normal text.

This paper presents the main features of PythonTeX and
considers several examples. It also briefly discusses the internal
workings of the package.

PythonTeX environments and commands

PythonTeX provides four LaTeX environments and four LaTeX
commands for accessing Python. These environments and com-
mands save code to an external file and then bring back the output
once the code has been processed by PythonTeX.

The code environment simply executes the code it contains.
By default, any printed content is brought in immediately after
the end of the environment and interpreted as LaTeX code. For
example, the LaTeX code
\begin{pycode}
myvar = 123
print('Greetings from Python!')
\end{pycode}

creates a variable myvar and prints a string, and the printed
content is automatically included in the document:

Greetings from Python!
The block environment executes its contents and also typesets

it. By default, the typeset code is highlighted using Pygments.
Reusing the Python code from the previous example,

\begin{pyblock}
myvar = 123
print('Greetings from Python!')
\end{pyblock}

creates

myvar = 123
print('Greetings from Python!')

The printed content is not automatically included. Typically, the
user wouldn’t want the printed content immediately after the
typeset code—explanation of the code, or just some space, might
be desirable before showing the output. Two equivalent commands
are provided for including the printed content generated by a block
environment: \printpythontex and \stdoutpythontex.
These bring in any printed content created by the most recent
PythonTeX environment and interpret it as LaTeX code. Both
commands also take an optional argument to bring in content
as verbatim text. For example, \printpythontex[v] brings
in the content in a verbatim form suitable for inline use, while
\printpythontex[verb] brings in the content as a verbatim
block.

All code entered within code and block environments is
executed within the same Python session (unless the user specifies
otherwise, as discussed below). This means that there is continuity
among environments. For example, since myvar has already been
created, it can now be modified:

\begin{pycode}
myvar += 4
print('myvar = ' + str(myvar))
\end{pycode}

This produces

myvar = 127

The verb environment typesets its contents, without executing
it. This is convenient for simply typesetting Python code. Since
the verb environment has a parallel construction to the code and
block environments, it can also be useful for temporarily disabling
the execution of some code. Thus

\begin{pyverb}
myvar = 123
print('Greetings from Python!')
\end{pyverb}

results in the typeset content

myvar = 123
print('Greetings from Python!')

without any code actually being executed.
The final environment is different. The console environment

emulates a Python interactive session, using Python’s code mod-
ule. Each line within the environment is treated as input to an
interactive interpreter. The LaTeX code

\begin{pyconsole}
myvar = 123
myvar
print('Greetings from Python!')
\end{pyconsole}

creates

>>> myvar = 123
>>> myvar
123
>>> print('Greetings from Python!')
Greetings from Python!

PythonTeX provides options for showing and customizing a ban-
ner at the beginning of console environments. The content of all
console environments is executed within a single Python session,
providing continuity, unless the user specifies otherwise.
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While the PythonTeX environments are useful for executing
and typesetting large blocks of code, the PythonTeX commands
are intended for inline use. Command names are based on abbrevi-
ations of environment names. The code command simply executes
its contents. For example, \pyc{myvar = 123}. Again, any
printed content is automatically included by default. The block
command typesets and executes the code, but does not automati-
cally include printed content (\printpythontex is required).
Thus, \pyb{myvar = 123} would typeset

myvar = 123

in a form suitable for inline use, in addition to executing the
code. The verb command only typesets its contents. The command
\pyv{myvar = 123} would produce

myvar=123

without executing anything. If Pygments highlighting for inline
code snippets is not desired, it may be turned off.

The final inline command, \py, is different. It provides a
simple way to typeset variable values or to evaluate short pieces of
code and typeset the result. For example, \py{myvar} accesses
the previously created variable myvar and brings in a string
representation: 123. Similarly, \py{2**8 + 1} converts its
argument to a string and returns 257.

It might seem that the effect of \py could be achieved using
\pyc combined with print. But \py has significant advantages.
First, it requires only a single external file per document for
bringing in content, while print requires an external file for each
environment and command in which it is used. This is discussed in
greater detail in the discussion of PythonTeX’s internals. Second,
the way in which \py converts its argument to a valid LaTeX
string can be specified by the user. This can save typing when
several conversions or formatting operations are needed. The
examples below using SymPy illustrate this approach.

All of the examples of inline commands shown above use
opening and closing curly brackets to delimit the code. This
system breaks down if the code itself contains an unmatched
curly bracket. Thus, all inline commands also accept arbitrary
matched characters as delimiters. This is similar to the behavior of
LaTeX’s \verb macro. For example, \pyc!myvar = 123!
and \pyc#myvar = 123# are valid. No such consideration is
required for environments, since they are delimited by \begin
and \end commands.

Options: Sessions and Fancy Verbatims

PythonTeX commands and environments take optional arguments.
These determine the session in which the code is executed and
provide additional formatting options.

By default, all code and block content is executed within a
single Python session, and all console content is executed within a
separate session. In many cases, such behavior is desired because
of the continuity it provides. At times, however, it may be useful
to isolate some independent code in its own session. A long
calculation could be placed in its own session, so that it only
runs when its code is modified, independently of other code.

PythonTeX provides such functionality through user-
defined sessions. All commands and environments take
a session name as an optional argument. For example,
\pyc[slowsession]{myvar = 123} and

\begin{pycode}[slowsession]
myvar = 123
print('Greetings from Python!')
\end{pycode}

Each session is only executed when its code has changed,
and sessions run in parallel (via Python’s multiprocessing
package), so careful use of sessions can significantly increase
performance.

All PythonTeX environments also accept a second optional
argument. This consists of settings for the LaTeX fancyvrb
(Fancy Verbatims) package [FV], which PythonTeX uses for
typesetting code. These settings allow customization of the code’s
appearance. For example, a block of code may be surrounded by
a colored frame, with a title. Or line numbers may be included.

Plotting with matplotlib

The PythonTeX commands and environments can greatly simplify
the creation of scientific documents and presentations. One exam-
ple is the inclusion of plots created with matplotlib [MPL].

All of the commands and environments discussed above be-
gin with the prefix py. PythonTeX provides a parallel set of
commands and environments that begin with the prefix pylab.
These behave identically to their py counterparts, except that
matplotlib’s pylab module is automatically imported via from
pylab import *. The pylab commands and environments
can make it easier to keep track of code dependencies and separate
content that would otherwise require explicit sessions; the default
pylab session is separate from the default py session.

Combining PythonTeX with matplotlib significantly simplifies
plotting. The commands for creating a plot may be included
directly within the LaTeX source, and the plot may be edited in
place to get the appearance just right. Matplotlib’s LaTeX option
may be used to keep fonts consistent between the plot and the
document. The code below illustrates this approach. Notice that
the plot is created in its own session, to increase performance.

\begin{pylabcode}[plotsession]
rc('text', usetex=True)
rc('font', **{'family':'serif', 'serif':['Times']})
rc('font', size=10.0)
rc('legend', fontsize=10.0)
x = linspace(0, 3*pi)
figure(figsize=(3.25,2))
plot(x, sin(x), label='$\sin(x)$')
plot(x, sin(x)**2, label='$\sin^2(x)$',

linestyle='dashed')
xlabel(r'$x$-axis')
ylabel(r'$y$-axis')
xticks(arange(0, 4*pi, pi), ('$0$',

'$\pi$', '$2\pi$', '$3\pi$'))
axis([0, 3*pi, -1, 1])
legend(loc='lower right')
savefig('myplot.pdf', bbox_inches='tight')
\end{pylabcode}

The plot may be brought in and positioned using the standard
LaTeX commands:

\begin{figure}
\centering
\includegraphics{myplot}
\caption{\label{fig:matplotlib} A plot
created with PythonTeX.}
\end{figure}

The end result is shown in Figure 1.
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Fig. 1: A matplotlib plot created with PythonTeX.

Solving equations with NumPy

PythonTeX didn’t require any special modifications to the Python
code in the previous example with matplotlib. The code that
created the plot was the same as it would have been had an
external script been used to generate the plot. In some situations,
however, it can be beneficial to acknowledge the LaTeX context
of the Python code. This may be illustrated by solving an equation
with NumPy [NP].

Perhaps the most obvious way to solve an equation using
PythonTeX is to separate the Python solving from the LaTeX
typesetting. Consider finding the roots of a polynomial using
NumPy.

\begin{pylabcode}
coeff = [4, 2, -4]
r = roots(coeff)
\end{pylabcode}

The roots of $4x^2 + 2x - 4 = 0$ are
$\pylab{r[0]}$ and $\pylab{r[1]}$.

This yields

The roots of 4x2 + 2x− 4 = 0 are −1.2807764064
and 0.780776406404.

Such an approach works, but the code must be modified sig-
nificantly whenever the polynomial changes. A more sophisticated
approach automatically generates the LaTeX code and perhaps
rounds the roots as well, for an arbitrary polynomial.

\begin{pylabcode}
coeff = [4, 2, -4]
# Build a string containing equation
eq = ''
for n, c in enumerate(coeff):

if n == 0 or str(c).startswith('-'):
eq += str(c)

else:
eq += '+' + str(c)

if len(coeff) - n - 1 == 1:
eq += 'x'

elif len(coeff) - n - 1 > 1:
eq += 'x^' + str(len(coeff) - n - 1)

eq += '=0'
# Get roots and format for LaTeX
r = ['{0:+.3f}'.format(root)

for root in roots(coeff)]
latex_roots = ','.join(r)
\end{pylabcode}

The roots of $\pylab{eq}$ are
$[\pylab{latex_roots}]$.

This yields

The roots of 4x2 +2x−4 = 0 are [−1.281,+0.781].

The automated generation of LaTeX code on the Python side
begins to demonstrate the full power of PythonTeX.

Solving equations with SymPy

Several examples with SymPy further illustrate the potential of
Python-generated LaTeX code [SymPy].

To simplify SymPy use, PythonTeX provides a set of com-
mands and environments that begin with the prefix sympy. These
are identical to their py counterparts, except that SymPy is
automatically imported via from sympy import *.

SymPy is ideal for PythonTeX use, because its
LatexPrinter class and the associated latex() function
provide LaTeX representations of objects. For example, returning
to solving the same polynomial,

\begin{sympycode}
x = symbols('x')
myeq = Eq(4*x**2 + 2*x - 4)
print('The roots of the equation ')
print(latex(myeq, mode='inline'))
print(' are ')
print(latex(solve(myeq), mode='inline'))
\end{sympycode}

creates

The roots of the equation 4x2 + 2x− 4 = 0 are[
− 1

4

√
17− 1

4 , − 1
4 +

1
4

√
17
]

Notice that the printed content appears as a single uninter-
rupted line, even though it was produced by multiple prints. This
is because the printed content is interpreted as LaTeX code, and
in LaTeX an empty line is required to end a paragraph.

The \sympy command provides an alternative to printing.
While the \py and \pylab commands attempt to convert their
arguments directly to a string, the \sympy command converts its
argument using SymPy’s LatexPrinter class. Thus, the output
from the last example could also have been produced using

\begin{sympycode}
x = symbols('x')
myeq = Eq(4*x**2 + 2*x - 4)
\end{sympycode}

The roots of the equation $\sympy{myeq}$
are $\sympy{solve(myeq)}$.

The \sympy command uses a special interface to
the LatexPrinter class, to allow for context-dependent
LatexPrinter settings. PythonTeX includes a utilities class,
and an instance of this class called pytex is created within each
PythonTeX session. The formatter() method of this class is
responsible for converting objects into strings for \py, \pylab,
and \sympy. In the case of SymPy, pytex.formatter()
provides an interface to LatexPrinter, with provision for
context-dependent customization. In LaTeX, there are four possi-
ble math styles: displaystyle (regular equations), textstyle (inline),
scriptstyle (superscripts and subscripts), and scriptscriptstyle (su-
perscripts and subscripts, of superscripts and subscripts). Separate
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LatexPrinter settings may be specified for each of these
styles individually, using a command of the form

pytex.set_sympy_latex(style, **kwargs)

For example, by default \sympy is set to create normal-sized
matrices in displaystyle and small matrices elsewhere. Thus, the
following code

\begin{sympycode}
m = Matrix([[1,0], [0,1]])
\end{sympycode}

The matrix in inline is small: $\sympy{m}$

The matrix in an equation is of normal size:
\[ \sympy{m} \]

produces

The matrix in inline is small:
(

1 0
0 1

)

The matrix in an equation is of normal size:
(

1 0
0 1

)

As another example, consider customizing the appearance of
inverse trigonometric functions based on their context.

\begin{sympycode}
x = symbols('x')
sineq = Eq(asin(x/2)-pi/3)
pytex.set_sympy_latex('display',

inv_trig_style='power')
pytex.set_sympy_latex('text',

inv_trig_style='full')
\end{sympycode}

Inline: $\sympy{sineq}$

Equation: \[ \sympy{sineq} \]

This creates

Inline: arcsin
( 1

2 x
)
− 1

3 π = 0
Equation:

sin−1
(

1
2

x
)
− 1

3
π = 0

Notice that in both examples above, the \sympy com-
mand is simply used—no information about context must be
passed to Python. On the Python side, the context-dependent
LatexPrinter settings are used to determine whether the
LaTeX representation of some object is context-dependent. If not,
Python creates a single LaTeX representation of the object and
returns that. If the LaTeX representation is context-dependent,
then Python returns multiple LaTeX representations, wrapped
in LaTeX’s \mathchoice macro. The \mathchoice macro
takes four arguments, one for each of the four LaTeX math
styles display, text, script, and scriptscript. The correct argument
is typeset by LaTeX based on the current math style.

Step-by-step derivations with SymPy

With SymPy’s LaTeX functionality, it is simple to automate tasks
that could otherwise be tedious. Instead of manually typing step-
by-step mathematical solutions, or copying them from an external
program, the user can generate them automatically from within
LaTeX.

\begin{sympycode}
x, y = symbols('x, y')
f = x + sin(y)
step1 = Integral(f, x, y)
step2 = Integral(Integral(f, x).doit(), y)
step3 = step2.doit()
\end{sympycode}

\begin{align*}
\sympy{step1} &= \sympy{step2} \\

&= \sympy{step3}
\end{align*}

This produces

∫∫
x+ sin(y) dxdy =

∫ 1
2

x2 + xsin(y) dy

=
1
2

x2y− xcos(y)

Automated mathematical tables with SymPy

The creation of mathematical tables is another traditionally tedious
task that may be automated with PythonTeX and SymPy. Consider
the following code, which automatically creates a small integral
and derivative table.

\begin{sympycode}
x = symbols('x')
funcs = ['sin(x)', 'cos(x)', 'sinh(x)', 'cosh(x)']
ops = ['Integral', 'Derivative']
print('\\begin{align*}')
for func in funcs:

for op in ops:
obj = eval(op + '(' + func + ', x)')
left = latex(obj)
right = latex(obj.doit())
if op != ops[-1]:

print(left + '&=' + right + '&')
else:

print(left + '&=' + right + r'\\')
print('\\end{align*}')
\end{sympycode}

∫
sin(x) dx =−cos(x)

∂
∂x

sin(x) = cos(x)
∫

cos(x) dx = sin(x)
∂
∂x

cos(x) =−sin(x)
∫

sinh(x) dx = cosh(x)
∂
∂x

sinh(x) = cosh(x)
∫

cosh(x) dx = sinh(x)
∂
∂x

cosh(x) = sinh(x)

This code could easily be modified to generate a page or more
of integrals and derivatives by simply adding additional function
names to the funcs list.

Debugging and access to stderr

PythonTeX commands and environments save the Python code
they contain to an external file, where it is processed by Python-
TeX. When the Python code is executed, errors may occur. The
line numbers for these errors do not correspond to the document
line numbers, because only the Python code contained in the
document is executed; the LaTeX code is not present. Furthermore,
the error line numbers do not correspond to the line numbers
that would be obtained by only counting the Python code in
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the document, because PythonTeX must execute some boilerplate
management code in addition to the user’s code. This presents a
challenge for debugging.

PythonTeX addresses this issue by tracking the original LaTeX
document line number for each piece of code. All error messages
are parsed, and Python code line numbers are converted to LaTeX
document line numbers. The raw stderr from the Python code is
interspersed with PythonTeX messages giving the document line
numbers. For example, consider the following code, with a syntax
error in the last line:

\begin{pyblock}[errorsession]
x = 1
y = 2
z = x + y +
\end{pyblock}

The error occurred on line 3 of the Python code, but this might
be line 104 of the actual document and line 47 of the combined
code and boilerplate. In this case, running the PythonTeX script
that processes Python code would produce the following message,
where <temp file name> would be the name of a temporary
file that was executed:

* PythonTeX code error on line 104:
File "<temp file name>", line 47
z = x + y +

^
SyntaxError: invalid syntax

Thus, finding code error locations is as simple as it would be if
the code were written in separate files and executed individually.
PythonTeX is the first Python-LaTeX solution to provide such
comprehensive error line synchronization.

In general, errors are something to avoid. In the context of
writing about code, however, they may be created intentionally for
instructional purposes. Thus, PythonTeX also provides access to
error messages in a form suitable for typesetting. If the PythonTeX
package option stderr is enabled, any error message created by
the most recent PythonTeX command or environment is available
via \stderrpythontex. By default, stderr content is brought
in as LaTeX verbatim content; this preserves formatting and
prevents issues caused by stderr content not being valid LaTeX.

Python code and the error it produces may be typeset next to
each other. Reusing the previous example,

\begin{pyblock}[errorsession]
x = 1
y = 2
z = x + y +
\end{pyblock}

creates the following typeset code:

x = 1
y = 2
z = x + y +

The stderr may be brought in via \stderrpythontex:

File "<file>", line 3
z = x + y +

^
SyntaxError: invalid syntax

Two things are noteworthy about the form of the stderr.
First, in the case shown, the file name is given as "<file>".
PythonTeX provides a package option stderrfilename for
controlling this name. The actual name of the temporary file

that was executed may be shown, or simply a name based on
the session ("errorsession.py" in this case), or the more
generic "<file>" or "<script>". Second, the line number
shown corresponds to the code that was actually entered in the
document, not to the document line number or to the line number
of the code that was actually executed (which would have included
PythonTeX boilerplate). To accomplish this, PythonTeX parses the
stderr and corrects the line number, so that the typeset code and
the typeset stderr are in sync.

General code highlighting with Pygments

The primary purpose of PythonTeX is to execute Python code
included in LaTeX documents and provide access to the output.
Once support for Pygments highlighting of Python code was added
[Pyg], however, it was simple to add support for general code
highlighting.

PythonTeX provides a \pygment command for typesetting
inline code snippets, a pygments environment for typesetting
blocks of code, and an \inputpygments command for bring-
ing in and highlighting an external file. All of these have a
mandatory argument that specifies the Pygments lexer to be used.
For example, \pygment{latex}{\pygment} produces

\pygment

in a form suitable for inline use while

\begin{pygments}{python}
def f(x):

return x**3
\end{pygments}

creates

def f(x):
return x**3

The pygments environment and the \inputpygments com-
mand accept an optional argument containing fancyvrb set-
tings.

As far as the author is aware, PythonTeX is the only LaTeX
package that provides Pygments highlighting with Unicode sup-
port under the standard pdfTeX engine. The listings package
[LST], probably the most prominent non-Pygments highlighting
package, does support Unicode—but only if the user follows spe-
cial procedures that could become tedious. PythonTeX requires no
special treatment of Unicode characters, so long as the fontenc
and inputenc packages are loaded and used correctly. For
example, PythonTeX can correctly highlight the following snippet
copied and pasted from a Python 3 console session, without any
modification.

>>> var1 = 'âæéöø'
>>> var2 = 'ßçñðŠ'
>>> var1 + var2
'âæéöøßçñðŠ'

Implementation

A brief overview of the internal workings of PythonTeX is
provided below. For additional details, please consult the docu-
mentation.

When a LaTeX document is compiled, the PythonTeX com-
mands and environments write their contents to a single shared
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external file. The command and environment contents are inter-
spersed with delimiters, which contain information about the type
of command or environment, the session in which the code is to
be executed, the document line number where the code originated,
and similar tracking information. A single external file is used to
minimize the number of temporary files created, and because TeX
has a very limited number of output streams.

During compilation, each command and environment also
checks for any Python-generated content that belongs to it, and
brings in this content if it exists. Python-generated content is
brought in via LaTeX macros and via separate external files. At the
beginning of the LaTeX document, the PythonTeX package brings
in two files of LaTeX macros that were created on the Python
side, if these files exist. One file consists of macros containing
the Python content accessed by \py, \pylab, and \sympy. The
other file contains highlighted Pygments content. The files are
separate for performance reasons. In addition to content that is
brought in via macros, content may be brought in via separate
external files. Each command or environment that uses the print
statement/function must bring in an external file containing the
printed content. The printed content cannot be brought in as
LaTeX macros, because in general printed content need not be
valid LaTeX code. In contrast, \py, \pylab, and \sympy
should return valid LaTeX, and of course Pygments-highlighted
content is valid LaTeX as well.

On the Python side, the file containing code and delimiters
must be processed. All code is hashed, to determine what has been
modified since the previous run so that only new and modified
code may be executed. Code that must be executed is divided
by session, and each session (plus some PythonTeX management
code) is saved to its own external file. The highlighting settings
for Pygments content are compared with the settings for the last
run, to determine what needs to be highlighted again with new
settings.

Next, Python’s multiprocessing package is used to per-
form all necessary tasks. Each of the session code files is executed
within a separate process. The process executes the file, parses
the stdout into separate files of printed content based on the
command or environment from which it originated, and parses
the stderr to synchronize it with the document line numbers. If
specified by the user, a modified version of the stderr is created
and saved in an external file for inclusion in the document via
\stderrpythontex. Two additional processes are used, one
for highlighting code with Pygments and one for evaluating and
highlighting all console content (using Python’s code module).

Finally, all LaTeX macros created by all processes are saved
in one of two external files, depending on whether they contain
general content or content highlighted by Pygments (again, this is
for performance reasons). All information that will be needed the
next time the Python side runs is saved. This includes the hashes
for each session. Any session that produced errors is automatically
set to be executed the next time the Python side runs. A list of all
files that were automatically created by PythonTeX is also saved,
so that future runs can clean up outdated and unused files.

PythonTeX consists of a LaTeX package and several Python
scripts. A complete compilation cycle for a PythonTeX document
involves running LaTeX to create the file of code and delimiters,
running the PythonTeX script to create Python content, and finally
running LaTeX again to compile the document with Python-
generated content included. Since all Python-generated content
is saved, the PythonTeX script only needs to be run when the doc-

ument’s PythonTeX commands or environments are modified. By
default, all files created by PythonTeX are kept in a subdirectory
within the document directory, keeping things tidy.

Conclusion

PythonTeX provides access to the full power of Python from
within LaTeX documents. This can greatly simplify the creation
of scientific documents and presentations.

One of the potential drawbacks of using a special LaTeX pack-
age like PythonTeX is that publishers may not support it. Since
PythonTeX saves all Python-generated content, it already provides
document compilation without the execution of any Python code,
so that aspect will not be an issue. Ideally, a PythonTeX document
and its Python output could be merged into a single, new document
that does not require the PythonTeX package. This feature is being
considered for an upcoming release.

PythonTeX provides many features not discussed here, in-
cluding a number of formatting options and methods for adding
custom code to all sessions. PythonTeX is also under active de-
velopment. For additional information and the latest code, please
visit https://github.com/gpoore/pythontex.
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Self-driving Lego Mindstorms Robot

Iqbal Mohomed‡∗

F

Abstract—In this paper, I describe the workings of my personal hobby project -
a self-driving lego mindstorms robot. The body of the robot is built with Lego
Mindstorms. An Android smartphone is used to capture the view in front of
the robot. A user first teaches the robot how to drive; this is done by making
the robot go around a track a small number of times. The image data, along
with the user action is used to train a Neural Network. At run-time, images of
what is in front of the robot are fed into the neural network and the appropriate
driving action is selected. This project showcases the power of python’s libraries,
as they enabled me to put together a sophisticated working system in a very
short amount of time. Specifically, I made use of the Python Image Library to
downsample images, as well as the PyBrain neural network library. The robot
was controlled using the nxt-python library.

Index Terms—self-driving, neural networks, robotics

Introduction

Recently, there has been significant interest in building self-driving
cars. Starting in 2004, a series of competitions were held as part of
the DARPA Grand Challenge, wherein driverless vehicles outfitted
with sophisticated sensing equipment navigated real-world terrain.
While none of the entrants in the 2004 iteration of the competition
made it to the finish line, in the 2005 iteration, five driverless
vehicles successfully completed the course. More recently, there
have been many exciting developments in this area, with the
development of Google’s Driverless Car, and the US state of
Nevada beginning the process to legalize and issue licenses for
self-driving cars.

Building a self-driving car requires expensive sensing equip-
ment. For example, the stanford entry in the DARPA grand
challenge had 5 different laser measurement system [Mon08]. It
is interesting to consider, if it is possible to create a self-driving
car only using data from a camera. Around 1993, CMU created a
learning system called "ALVINN" (Autonomous Land Vehicle In a
Neural Network) [Pom93], which could control a testbed vehicle
to drive on a variety of road surfaces. ALVINN worked by first
"watching" a human driver’s response to road conditions . After
just 5 minutes of such training data in new situations, ALVINN
could be trained to drive on a variety of road surfaces, and at
speeds of unto 55 mies per hour. At first blush, it is starting that
simply feeding image data and driver response to train a neural
network would lead to a working autonomous vehicle. Earlier this
year, David Singleton put up a blog post describing his weekend
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project – a self-driving RC car [Sin12]. As the project dealt with
a small RC vehicle in an indoor environment, the technique was
simpler than that used in ALVINN. I was inspired by David’s
post and decided to independently replicate this project using a
Lego Mindstorms robot instead of an RC car. While I started out
with limited experience using Neural Networks, I succeeded in my
endeavor to create a self-driving robot that can navigate a track in
an indoor environment. Figure 1 shows the lego robot in action.

The purpose of this paper is to share details of how I utilized
a set of Python libraries - nxt-python to control the Lego robot,
Python Image Library (PIL) to process camera images, and the
pyBrain library to train and use an artificial neural network - to
build a self-driving Lego Mindstorms robot.

Robot Construction

I used the Lego Mindstorms NXT 2.0 set to construct the robot.
The set consists of various construction elements, motors and
sensors. A key element of the set is a microcomputer called
the NXT Intelligent Brick. The NXT brick contains a 32-bit
ARM7 microprocessor, flash memory, a battery holder, USB 2.0
port, supports Bluetooth communication and also has ports for
connecting sensors and motors. While the Lego Mindstorms set
contains a variety of sensors, I did not utilize any of them for this
project. The motors in the Lego set are Interactive Servo Motors.
Unlike regular hobbyist motors, these motors can be rotated a
specific number of degrees (the Lego motors are precise to 1
degree).

The robot I constructed has two independent tracks (each
controlled by a separate motor). The motors are powered and
controlled by an NXT brick, which is mounted on top of the tracks.
The most challenging part of the robot build was creating a secure
holder for my smart phone. While the phone has two cameras
(front and back), I made the glass of the phone face backwards.
This resuled in an acceptable camera mounting. I took care to have
the images coming from the camera show what is directly in front
of the robot and minimize views that are far away. That said, I did
not have to spend too much effort in optimizing the camera view.
The mount I created also had a mechanism to quickly release the
phone, which was useful in debugging, charging the phone, and
other activities. Figure 2 shows a close up of the phone mount on
the robot, and figure 3 shows a schematic of the mount.

Setup

All my code (written in Python) runs on a Windows 7 PC. The
PC communicates with the Lego NXT brick via Bluetooth. An
Android camera phone (Google Nexus S) is attached to the Lego
robot. The phone is connected to my home wireless network, as is
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my PC. Figure 4 shows a diagram of communication between the
various components.

Driving the Lego Mindstorms robot

I used the nxt-python library to interface my PC to the Lego Mind-
storms robot. While the NXT brick does possess flash memory to
allow programs to reside on the robot itself, nxt-python works by
executing on a PC and sending short commands to the NXT brick
via Bluetooth or USB. As I want the robot to be untethered, I
make use of Bluetooth.

I made use of an experimental class in nxt-python called
"SynchrnonizedMotors" that makes the motors controlling the left
and right track to move in unision. If care were not taken to move
the two motors together, the robot could drift to one side when the
intent is to move straight ahead. Ultimately, the key requirement
for the robot’s motion is consistency. In my implementation, the
robot had three movement options: it could move straight ahead,
turn left or turn right. Each action went on for a short period of
time. The right motor (which ran the right-side track) is connected
to PORT A of the NXT brick. Analagously, the left motor is
connected to PORT B. In nxt-python, we can create a Motor object
that represents the motor and provides a function like turn() to
move the interactive servo motor to a specific position using a
given amount of power.
import nxt

def initBrick():
# Define some globals to simplify code
global b, r, l, m, mls, mrs
# Search and connect to NXT brick (via BT)
b = nxt.find_one_brick()
# Create objects to control motors
r = nxt.Motor(b, nxt.PORT_A)
l = nxt.Motor(b, nxt.PORT_B)
# Create objects for synchronized motors
# We specify the leader, follower and turn ratio
m = nxt.SynchronizedMotors(r,l, 0)
mls = nxt.SynchronizedMotors(l, r, 20)
mrs = nxt.SynchronizedMotors(r, l, 20)

# The first parameter to turn() indicates
# 100% or full power. To run the motor backwards,
# a negative value can be provided. Amt indicates the
# number of degrees to turn.
def go(dev,amt):

dev.turn(100,amt);

To facilitate the collection of training data, I implemented a
“keyboard teleop” mode, wherein I type commands into a python
CLI and get my robot to make the appropriate movement (i.e. go
straight, go left or go right).
# cmd param is the character typed by the user
def exec_cmd(cmd):

if cmd == 'f':
go(m,250)

elif cmd == 'l':
go(mls,250)

elif cmd == 'r':
go(mrs,250)

elif cmd == 'x':
b.sock.close()

Getting images from the camera phone

I initially thought about writing my own app to capture images
from my phone (an Android Nexus S). However, I found a free
app called IP Webcam that allowed me to take snapshots from

Fig. 1: An image of the lego robot as it is driving along its course.

Fig. 2: A close up look at the holder mechanism for the Android
phone.

Fig. 3: A schematic of the holder mechanism for the Android phone.
Credit goes to Saira Karim for drawing the diagram using the free
Lego Digital Designer software
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Fig. 4: A diagram showing communication between various compo-
nents.

Fig. 5: A view of the robot driving on the track.

the phone via HTTP. Note that the IP address in the URL used
to retrieve the image corresponds to the address assigned to the
Android phone by the wireless AP. The lowest resolution at which
I could get images was 176×144; I processed these images on the
desktop before sending them to the neural network.
import urllib
res=urllib.urlretrieve('http://192.168.1.12:8080/shot.jpg')

Processing the images on desktop

I used the Python Imaging Library to first convert the images from
the camera phone to greyscale and then lower their resolution to
100×100.
from PIL import Image
im = Image.open(res[0])
nim = im.convert('L')
nim2 = nim.resize((100,100))

I combine the two code fragments above into a function called
take_pic(), which captures an image from the Android phone,
transforms it and returns the result.

Obtaining training data

In order to teach the Lego robot how to drive, one must first obtain
training data. Each sample of the training data consists of a low
resolution greyscale image showing what is in front of the robot,
and a human driver’s action in that situation.
# This function accepts a command from the
# user via the keyboard, and executes it on the robot
def accept_execute_cmd():

cmd = '';
gotCmd = False;
print "CMD: "
while gotCmd == False:

cmd = getch();
#cmd = raw_input('CMD: ')
if cmd == 'f' or cmd == 'l' or cmd == 'r':

exec_cmd(cmd)
gotCmd = True;

elif cmd == 'x':
b.sock.close()
gotCmd = False;
exit();

print cmd + "\n";
return cmd;

def trainer():
while True:

# download pic from camera and downsample
im=take_pic()
# get cmd from user and run it
cmd = accept_execute_cmd()
# record the image and cmd
record_data(im,cmd)

Enter the Neural Network

This was the key part of the project. To learn about Neural Net-
works, I went through Professor Andrew Ng’s lectures on Neural
Networks, and played around with the assignments on the topic
(recognizing hand-written digits using Neural Networks). Luckily,
I found the pyBrain project, which provides a very easy interface
for using Neural Nets in Python. Similar to David Singleton, I
used a three level network. The first layer had 100×100 nodes.
Each input node corresponds to a greyscale image captured from
the camera phone. The hidden layer had 64 units (I tried other
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values, but like David, 64 hidden units worked well for me too).
Unlike David, I only had three output units – forward, left and
right.
from pybrain.tools.shortcuts import buildNetwork
from pybrain.datasets import SupervisedDataSet
from pybrain.supervised.trainers import BackpropTrainer
net = buildNetwork(10000,64,3,bias=True)
ds = SupervisedDataSet(10000,3)

Training the brain

I built a "driving course" in my living room (shown in Figure 5).
I drove around the course only 10 times and trained network for
about an hour.
def train(net,ds,p=500):

trainer = BackpropTrainer(net,ds)
trainer.trainUntilConvergence(maxEpochs=p)
return trainer

Auto-drive mode

The code for auto-drive mode was pretty similar to training mode.
I took an image from the camera phone, processed it (greyscale
and lowered the res to 100×100) and activated it against the neural
net I had trained. The output is one of three commands (forward,
left or right), which I send to the same “drive(cmd)” function I
used in training mode. I put a short sleep between each command
to ensure the robot had enough time to complete its motion.
# The following function takes the Neural Network
# and the processed image as input. It returns
# the action selected by activating the neural
# net.
def use_nnet(nnet,im):

cmd = ''
lst = list(im.getdata())
res=nnet.activate(lst)
val = res.argmax()

if val == 0:
cmd = 'f'

elif val == 1:
cmd = 'l'

elif val == 2:
cmd = 'r'

return cmd

# The auto() function takes a trained
# neural network as input, and drives
# the robot. Each time through the loop,
# it obtains an image from the phone (and
# downsamples it). The image data is used
# to activate the Neural Network, the
# output of which is executed on the robot.
def auto(nnet):

while True:
im=take_pic()
cmd=use_nnet(nnet,im)
exec_cmd(cmd)
print "executing .." + cmd
time.sleep(3)

The Self-Driving Lego Mindstorms Robot comes to life!

It worked! Mostly. About 2/3 of the time, the robot could go
through the entire course without any "accidents". About 1/3 of
the time, the robot’s motion takes it to a point where it can only
see the track (sheets of white paper). When it gets to that state,
it keeps going forward instead of making a turn. I have posted
videos to YouTube as well as a blog post on my attempts [Moh12].
Implementing a “spin-90-degrees” command might help the robot
get out of that situation. But all-in-all, I’m pretty happy with the
results.

Conclusions

In this paper, I detail the workings of my self-driving Lego
Mindstorms robot. The heart of the project is a neural network,
which is trained with camera images of the "road" ahead and user
input. At run time, the same camera images are used to activate the
neural network, and the resulting action is executed on the robot.
While a simple vision-based system cannot be expected to perform
flawlessly, acceptable performance was achieved. My experience
suggests that Python programmers can utilize neural networks and
camera images to quickly build other interesting applications.

Source Code

All the source code I wrote for this project is publicly available on
GitHub (https://github.com/iqbalmohomed/selfdrivingrobot.git).
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The Reference Model for Disease Progression
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Abstract—The Reference Model for disease progression is based on a model-
ing framework written in Python. It is a prototype that demonstrates the use of
computing power to aid in chronic disease forecast. The model uses references
to publicly available data as a source of information, hence the name for the
model. The Reference Model also holds this name since it is designed to be
used by other models as a reference. The model uses parallel processing
and computing power to create a competition among hypothesis of disease
progression. The system runs on a multi core machine and is scalable to a
SLURM cluster.

Index Terms—Disease Models, High Performance Computing, Simulation

Introduction

Disease modeling is a field where disease progression and its
impact are studied. The field combines clinical knowledge, bio
statistics, health economics, and computer science to create mod-
els. Such models are potential candidates for disease forecast
tasks.

Within chronic disease models, most models target high risk
diseases such as Coronary Heart Disease (CHD) and Stroke, espe-
cially with diabetes [McE10] , [Wil98], [Ste01], [Kot02], [Cla04],
[Ste04], [Hip08], [Zet11], [CDC02], [EBMI], [Mich], [Bar10],
[Edd03], [Par09]. Yet there are other models such as cancer
models [Urb97], models to asses antidepressant cost-effectiveness
[Ram12], infectious disease models [Gin09], and more complex
models for policy makers [Che11].

Although models differ from each other in structure and
implementation, most models can be defined as a function that
maps initial population to clinical outcomes after a certain number
of years. Once clinical outcomes are established, it is possible to
derive quality of life and costs [Cof02], [Bra03]. Hence chronic
disease models can predict economic impact or calculate cost
effectiveness and therefore be valuable tools for decision makers.

Never the less, past behavior does not ensure future behavior,
especially under different circumstances. Therefore the function
the model represents is hard to calculate. Not only it depends
on many factors such as biomarkers, health state, and treatment,
it may also change with time and with unknowns. Moreover,
models that work well on one population may work poorly on
another population. Therefore it is recommended to validate a
model against many populations [Her03]. It is interesting to see
how different models behave on the same population. The latter
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Fig. 1: The Reference Model structure.

procedure is accomplished at the Mount Hood conference where
diabetes models are compared [MH4]. Mount Hood 6 held in 2012
and included 8 models from around the world. The Reference
Model [Bar12] was a new model based on Python that joined the
challenge and it is the main topic of this paper.

The Reference Model

The prototype version of the model consists of three main
processes: CHD, Stroke, and Competing Mortality. The model
structure is shown in figure 1.

The Reference Model is composed from references to publicly
available literature. This is one reason for the name. Another
reason is since the model is designed to act as a reference for
model developers to test new populations or equations.

Equations are typically extracted from clinical trials and repre-
sent phenomena encountered in the trial populations. One equation
may perform differently on other populations where another equa-
tion may have better performance. Moreover, different equations
rely on different parameters as shown in Figure 2.

The Reference Model is a platform where different equations
can be tested on different populations to deduce fitness. Moreover,
the system combines equations from different sources and tests
the fitness of these equation combinations. Such a combination of
equations can include hypothesis, so the user can test "what if"
scenarios in case of uncertainty.

An example of uncertainty is biomarker progression during
the study. When a study is published it typically contains the
initial population statistics in it, see table 1 in [Cla10], [ACC10],
[Kno06]. These statistics are sufficient to recreate a population
without need to access private and restricted data. Yet this in-
formation does not always include information on biomarker
progression, so the modeler can create several hypothesis to see
which fits best with the equations and population information.

This approach of using secondary published data expands the
reach of the model. Instead of building a model on top of informa-
tion extracted from a single population such as UKPDS [UKP98],
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Fig. 2: Different risk equations found in the literature and parameters
they use. When an equation uses a specific parameter, it is highlighted.
Smoking status is highlighted to demonstrate the fact that the 6 first
equations test for smoking. The Reference Model uses these risk
equations.

the system uses models from multiple sources and compares
them to multiple populations to find fitness between the sources
of information. This enhances modeling capabilities significantly
beyond a single data set and allows access to more populations
overall. This is done while avoiding access to restricted individual
data.

The Reference Model accomplishes these tasks by using com-
puting power and a Python based disease modeling framework
[Bar10], [Bar], [Mich]. There are several main aspects of the
software that are important enablers of this work:

1) Simulation language
2) Population generator
3) Simulation engine
4) Simulation launcher

These components rely on the power of the Python language
and will be discussed in the following sections.

Simulation language

The Python language exposes itself to the degree that it can be
reused. The modeling framework takes advantage of this to create
a language that is a based on Python.

The modeling framework allows the user to define variables
and assemble expressions with a simple syntax. The syntax con-
sists of numerical operations and a limited set of system functions.
Users can also define their own functions.

Once an expression is entered to the system it is parsed to
check if it will compile well. Expression validness is established
by: 1) Check if tokens used are valid operators, system variables,
or reserved words and are not recursively cyclically used, 2) Check
if syntax is correct by parsing and evaluation.

The system uses the parser library to figure out grammar in
conjunction with the tokenize library to handle variable names.
The re library is used to figure out regular expression patterns
within the expression. The eval command is used by the system
as a validation tool by using an evaluation dictionary that consists
only of __builltins__, NaN, Inf to handle expressions
that support non finite values.

Errors reported during these checks are considered compilation
errors that the user receives as feedback. Since the Python inter-
preter provides good and meaningful error messages, the system

wraps Python error messages and returns these to the user, while
adding its own language specific error messages.

After passing validity checks the expression is stored in the
system database. This expression will be later reused once the
system compiles files for runtime Python script.

For example, consider the following definition of a user
defined function:

CappedGaussian3 is defined as:
Max(-3,Min(3,Gaussian(0,1)))

Once entered into the system the expression undergoes the follow-
ing stages:

1) The tokens Max, Min, and Gaussian are recognized as
system functions and therefore valid.

2) The parser library successfully parses the expression,
meaning there is no parenthesis mismatch or other syntax
error.

3) The expression is evaluated to make sure evaluation is
possible.

4) The expression is stored and whenever
CappedGaussian3 is used in the future, it will
be replaced with that expression.

Here is an example of another expression that reuses the user
defined function:
50+10*CappedGaussian3

This expression undergoes similar validity checks, yet
CappedGaussian3 is now recognized as a valid token rep-
resenting a function. Also, it is verified that there is no recursive
cyclic reuse of this token.

When this expression is compiled by the system into a Python
script that will run, the expression will become Python code
where the system will first calculate CappedGaussian3 and
then substitute the result in the expression that uses this token.
The system will also recognize Min, Max, and Gaussian as
system functions with Python implementation and will call those
functions.

The runtime language is Python that implements the modeling
language that is derived from Python. Keeping the languages close
allowed shortening development time considerably.

The compiled files are executed by the population generator
and by the simulation engine that will be discussed in the follow-
ing sections.

Population Generator

Constructing a population from published data is a key element.
The Reference Model cross validates against as many populations
as possible. Since populations typically hold restricted healthcare
data, full information on many populations is not available. Yet
summary statistics are available through the publication. The
modeling framework is designed to allow reconstruction of a
population from these statistics.

Typically a clinical trial will describe the initial population by
a table showing distributions. Table 1 will be used as a simplified
example:

To implement this simplified example, the system will use
the internal language previously discussed. Table 2 describes the
implementation.

Age is assumed to be distributed with normal distribution. The
user defined function we introduced previously is used to avoid
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Biomarker Distribution
Age Mean 65, SD 7
Male 48%
Smoke 30% for Age<50, 15% for Age>=50

TABLE 1: Simple example of population distributions.

Biomarker Implementation
Age 65+7*CappedGaussian3

Male Bernoulli(0.48)

Smoke Bernoulli(0.15+0.15*Ls(Age,50))

TABLE 2: Implementation of the distributions in table 1.

extreme outliers. Gender and Smoke use the Bernoulli distribution.
However, Smoke has a dependency on the Age parameter. The
system supports such dependencies in population creation by
allowing the user to reference other parameters in the population
and include these in expressions. The system raises an error in case
of recursive cyclic references. This is important if the population
is defined out of order, e.g. the Smoke formula uses Age before the
Age distribution is defined. Actually, the system resolves the order
by which calculations are performed when a population generation
script is compiled.

The compiled Python script has the expressions in correct
order and repeats the generation for each individual in the popula-
tion. The output of running this script is a list of individuals, each
with characteristics drawn from the given distributions. This mock
population represents the starting conditions for the simulation
engine to apply the model to.

Simulation Engine

The simulation engine has been described previously in [Bar10]
and in the system documentation [Bar], [Mich]. Therefore this
paper will only briefly relate to python related issues and many
aspects are simplified.

The simulation engine applies a function to a vector for each
simulation step for each individual. The function is complex and
composed of rules, and state transitions happening in parallel
in random order. The vector the function is applied to consists
of biomarkers, states indicators, treatment parameters, costs and
quality of life parameters. After each simulation step some values
in the vector change and this updated vector will become the
input for the same function in the next simulation step and so on.
This continues until the individual dies or a predefined number of
simulation steps is reached.

The modeling framework uses two mechanisms to compile
the simulation files. 1) rule expansion to code, 2) state processing
queue.

Rules are simple conditional assignments of the type
if Conditional and InState:

AffectedParameter = Expression

Both the Conditional and the Expression are general ex-
pressions using the simulation language. Each of these expressions
may contain user defined functions. The system compiles the
code so that value bound checks can be incorporated into every
calculated expression to maintain a strict simulation. Even though
calculations are expanded, the compiled code is still readable and

can be debugged since the compiled code uses the user defined
names instead of AffectedParameter as variable names.

State transitions are handled by a queue that processes events
of transition between states. The queue is loaded in random
order and changes within simulation. Random order of events is
important to allow scenarios where event 1 can happen before
event 2, or event 2 happens before event 1 at the same simulation
step. The Python implementation of the queue is such that the
queue consists of functions that define transitions to check. These
functions are automatically generated as Python code from the
model structure as defined by the user. The Python script pops
the next transition from the queue and calls it’s state transition
function. Each state transition function can change the queue or
state indicator values. If this results in more events, those are added
to the queue. For specific details, please consult the developer
guide that arrives with the software [Bar], [Mich].

Note that, state indicator names and variable names are read-
able to simplify debugging and controlled simulation reconstruc-
tion.

Actually the implementation initializes the vector upon which
the function is applied as a Python sequence of variables with
names such as:
[Age, Gender, Smoke, ...] =
_PopulationSetInfo.Data[IndividualID-1]

Where IndividualID is the loop counter and _Population
holds the population data created by the population generator after
merging it with the model.

Actually, the population sequence is pickled and embedded
within the code as well as all other data structures that created the
simulation file. This is done to allow reconstructing the simulation
conditions from the simulation file. This is also important for
clerical back tracing purposes and for debugging.

Another such back tracing feature is saving the random state to
file at the beginning of simulation. This is on top of allowing the
user to select a random seed. This method facilitates recreation of
a simulation even in the case of a random seed set by the system
timer rather than set by the user.

The simulation engine supports simulation control through
overrides. These overrides are essential to support multiple sce-
narios to run in parallel through the simulation launcher.

Simulation Launcher

Simulations can be launched through the WxPython [WxP] based
GUI. This is appropriate for testing and model development
purposes. Yet this is not sufficient for running many scenarios
or many repetitions to reduce the Monte Carlo error. Moreover,
running the same simulation with variations on populations or
equations cannot be accomplished in an automated way through
the GUI. Therefore the modeling framework offers an external
launcher for simulations that arrives with it as a Python script.

The script SlurmRun.py allows running multiple simula-
tions in a programmatic manner. The script controls the launch of
the simulations and also responsible for collecting the results and
creating csv reports and plots through matplotlib.

The SlurmRun.py script arrives as an example that runs a
self test scenario on a SLURM cluster [SLU]. It is setup to send
summary results by email to the developer once the simulation
ends.

The script holds placeholders for modifications so that it
can be adapted to new simulations. The basic idea behind the
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launch script is that the user provides the file name that holds the
simulation data definitions pickled an zipped. This file includes
the default simulation instructions. The system then sends this file
for actual simulation using sbatch SLURM commands. These
defaults are then overridden according to user instructions.

User instructions include definitions of variations around the
default simulation. Each such variation is described by a tuple
consisting of an override value and a unique variation name
string. The override value can be considered as an override for
a parameter the simulation function relies on. These overrides are
passed to the simulation engine in the command line as a vector.
Each component in this vector represents a different override and
taken from the value part of the tuple. Exchanging the override
value with the unique variation name string creates a unique
key sentence that can later be used to describe each simulation
variation.

The number of simulation variations is combinatorial depend-
ing on amount of options for each override in the vector. Many
combinations of variations may not be meaningful or desirable.
So the system contains 3 variables to restrict the number of
simulation variations: 1) Inclusions, 2) Exclusions, 3)
MaxDimensionsAllowedForVariations.

Inclusions is a sequence of tuples. Each tuple is composed
of a set of variation sub strings. If Inclusions in not empty
the system will include only variations that their variation key
sentence includes all the strings in any tuple.

Exclusions is also a sequence of tuples of strings. Yet the
system excludes any variation that includes all sub strings in a
tuple.

MaxDimensionsAllowedForVariations is the maxi-
mal Hamming distance from default allowed for simulation vari-
ations. In other words, it is an integer that holds the maximal
number of override vector components allowed to change from
the default.

These override mechanisms allow controlling the large number
of combinations generated. The following example demonstrates
the large number of variations.

The Reference Model calibration for the Mount Hood 6 Chal-
lenge used 16 populations and 48 equation/hypothesis variations.
Each such simulation was repeated 20 times to reduce Monte
Carlo error. This resulted in 15360 simulations that the system
launched. The launcher was modified to run these simulations
on a single 8 core desktop machine with Ubuntu using batch
command rather than using the SLURM sbatch command.
These computations took 4.5 days on this machine.

In the future more computing power will be needed to process
information since more populations and equation variations will
exist.

Conclusions

Previous work was focused on merging information that is avail-
able in the literature using statistical methods [Isa06], [Isa10],
[Ye12]. The Reference Model continues in the same spirit while
relying on the availability of computing power.

The Reference Model for disease progression relies on a
Python based framework that provides the computational support
needed for comparing a myriad of scenarios.

The state of the art in the field of chronic disease models
is such that different groups offer different models. Each such
model is built from equations that depend on different parameters.
Therefore equation performance differs on different populations.

So far only a few groups have addressed the issues of compar-
ing equation performance over populations [Sim09], [Par09]. Val-
idation of the same model with multiple populations is more com-
mon [Edd03]. Comparisons of multiple Models against multiple
populations traditionally happens at the Mount Hood conference
[MH4]. Yet this comparison involves manual labor from multiple
groups and much of the modeling remains closed. The Reference
Model on the other hand performs this comparison automatically
under controlled conditions. The Reference Model depends on
availability of published information. It relies on existing equa-
tions and human guidance. Even with the automation it offers,
modelers will still need to work on extracting new equations. Yet
it’s availability provides advantages such as: 1) a testing facility
for new equations/hypothesis. 2) similarity identifier in data sets
through fitness. 3) common framework for modeling information
that can be reused in other ways.

From an implementation point of view, relying on paralleliza-
tion and on the regular increase in computing speed [Moo65]
may be enhanced by using compiled languages. Such needs have
been identified in the disease modeling field [McE10] and by the
Python community [Sel09], [Fri09]. So future implementations
may include a python front end, while simulations will run in a
compiled language to improve speed. Never the less, the use of
the Python languange was a good selection for this project since
it allowed rapid progress and many suitable tools.

Software Availability

The latest version of the GPL modeling framework is available for
download from the author’s personal website at: [Bar]. Previous
versions are available at [Mich].

The Reference Model is not released at the time this paper is
written.
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Abstract—Flow cytometry has the ability to measure multiple parameters of a
heterogeneous mix of cells at single cell resolution. This has lead flow cytometry
to become an integral tool in immunology and biology. Most flow cytometry
analysis is performed in expensive proprietary software packages, and few
opensource tool exist for working with flow cytometry data. In this paper we
present fcm, an BSD licensed python library for traditional gating based analysis
in addition to newer model based analysis methods.

Index Terms—Flow Cytometry, Model-based Analysis, Automation, Biology,
Immunology

Introduction

Flow cytometry (FCM) has become an integral tool in immunol-
ogy and biology due to the ability of FCM to measure cell prop-
erties at the single cell level for thousands to millions of cells in a
high throughput manner. In FCM, cells are typically labeled with
monoclonal antibodies to cell surface or intracellular proteins. The
monoclonal antibodies are conjugated to different fluorochromes
that emit specific wavelengths of light when excited by lasers.
These cells are then streamed single file via a capillary tube where
they may be excited by multiple lasers. Cells scatter the laser light
in different ways depending on their size and granularity, and
excited fluorochromes emit light of characteristic wavelengths.
Scattered light is recorded in forward and side scatter detectors,
and specific fluorescent emission light is recorded into separate
channels. Since each fluorescent dye is attached to specific cell
markers by monoclonal antibodies, the intensity of emitted light
is a measure of the number of bound antibodies of that specificity
[Herzenberg2006] . The data recorded for each cell is known as an
event, although events may sometimes also represent cell debris or
clumps. Modern instruments can resolve about a dozen fluorescent
emissions simultaneously and hence measure the levels of a dozen
different markers per cell - further increase in resolution is limited
by the spectral overlap (spillover) between fluorescent dyes.

Analysis of FCM data has traditionally relied on expert in-
terpretation of scatter plots known as dot plots that show the
scattered light or fluorescence intensity for each cell depicted as a
point. Expert operators examine these two dimensional dot plots
in sequence and manually define boundaries around cell subsets
of interest in each projection. The regions demarcated by these
boundaries are known as gates, and the cell subsets of interest may
require multiple levels of gates to identify. Much work is needed
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Fig. 1: Diagram of how events are recorded in a flow cytometer
provided by lanl.gov

train expert operators to standardize gate placement and minimize
variance. Maecker et al [Maecker2005] found a significant source
of variability in a multi-center study was due to variability in
gating. New technologies have the potential to greatly increase the
number of simultaneous markers that can be resolved with FCM.
Inductively coupled plasma mass spectrometry [Ornatsky2006]
replaces the fluorescent dyes with stable heavy metal isotopes
and fluorescent detection with mass spectrometry. This eliminates
the spectral overlap (spillover) from fluorescent dyes allowing a
significantly increased number of markers to be resolved simulta-
neously.

With the increasing number of markers that can be resolved
simultaneously, there has been an increasing interest in automated
methods of cell subset identification. While there is need for such
tools, with the exception of the R BioConductor package, few
open source packages exist for doing both traditional analysis and
automated analysis. The majority of open source packages simply
extract flow events into tabular/csv formats, losing all metadata
and providing no additional tools for analysis. fcm attempts to
resolve this by providing methods for working with flow data in
both gating-based and model-based methods.

The goals in writing fcm [fcm] are to provide a general-
purpose python library for working with flow cytometry data.
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Targeted uses include interactive data exploration with [ipython],
building pipelines for batch data analysis, and development of
GUI and web based applications. In this paper we will explore the
basics of working with flow cytometry data using fcm and how
to use fcm to perform analysis using both gating and model based
methods.

Loading, compensating and transforming data

Flow cytometry samples that have been prepared and run through
a flow cytometer generate flow cytometry standard (FCS) files,
consisting of metadata about the sample, the reagents and instru-
ment used, together with the scatter and fluorescent values for each
event captured in the sample acquisition. These binary FCS files
are then used to perform quality control and analysis of the data,
typically with specialized proprietary software.

In fcm, the loadFCS() function will read in version 2 or
3 FCS files and return a FCMdata object. FCMdata objects
contain the recorded scatter and fluorescent marker values for each
event in an underlying numpy array, along with the associated
metadata stored in the FCS file. In the FCS specification, metdata
is stored in separate text, header and analysis sections in the
original FCS file, and these can be accessed within a FCM-
data instance from FCMdata.notes.text, FCMdata.notes.header,
and FCMdata.notes.analysis respectively using either attribute or
dictionary lookup conventions. The FCMdata object provides
a few methods to directly manipulate the event data extracted
from the FCS file, but mostly simply delegates to the underlying
numpy array storing the event data matrix. Conveniently, this
allows FCMdata objects to perform numpy array methods, such
as mean() or std(), and also allows FCMdata objects to be passed
to functions expecting numpy arrays. In addition to traditional
numpy array indexing, the text names of channels can be used to
access channels too.
In [1]: import numpy as np

In [2]: import fcm

In [3]: x = fcm.loadFCS('62851.fcs')

In [4]: x.channels[7]
Out[4]: 'AViD'

In [5]: np.all(x[:,7] == x[:,'AViD'])
Out[5]: True

When processing cells and acquiring data, often the emission
spectra of fluorescent dyes overlap with neighboring channels.
This spillover of light needs to be corrected in a process called
compensation that attempts to remove the additional signal from
neighboring channels. Using a compensation matrix that describes
the amount of spillover from each channel into others, fcm will
by default apply compensation at the time of loading data, but this
default behavior can be suppressed and compensation performed
at a later time if necessary. The spillover or compensation matrix
is typically found in the FCMdata.notes.text metadata, and load-
FCS() will default to compensating using that matrix if another is
not specified.

Since FCM fluorescent data typically approximately follows
a lognormal distribution, data is often transformed into log or
log-like scales. fcm supports both log transforms and logicle
[Parks2005] transforms as methods of FCMdata objects. load-
FCS() will default to the logicle transform if the data is on
the correct scale, that is if P#R value in the text segment is

Fig. 2: Compensation changes the data via matrix multiplication
operation to reduce the spillover from other markers into each channel
and can improve the resolution of individual cell populations.

Fig. 3: Illustration of the effects of logicle and log transform on CD3
AmCyan fluorescent from a FCS file from the EQAPOL data set.

262144. Figure 3 illustrates the effects that transforming has on
the distribution of events in each fluorescent channel.

Gating Analysis

In gating based analysis, the objective is to identify specific
cellular subsets by sequentially drawing boundary regions, called
gates, in a succession of one dimensional and two dimensional
plots to select the cellular subsets of interest. Each successive gate
captures increasingly specific cellular subsets. Once the required
populations have been identified, summary statistics, typically
mean or frequency, can easily be computed to compare with other
populations.

fcm provides several gating objects to assist in traditional
gating analysis of FCS files. Gate objects provided by fcm include
PolygonGate, defining a region of interest by a set of vertices
of the boundary of the region, QuadrantGate, dividing a two-
dimensional projection into four quadrants defined by the point of
intersection of all four quadrants, ThresholdGate, a region defined
by all points above or below a point in a single parameter, and
an IntervalGate, the set of points between two points in a single
parameter. In addition to traditional gates, fcm provides additional
gate like filters, DropChannel, to remove unwanted columns from
a view, and Subsample, that use a python slice objects to filter
events. FCMdata objects gate() method can be used to apply gate
objects in successive manner as it returns the updated FCMdata
object allowing chaining of gate() calls, like so:
FCMdata.gate(g1).gate(g2).gate(g3)

which is equivalent to the following three lines of code:
FCMdata.gate(g1)
FCMdata.gate(g2)
FCMdata.gate(g3)

In fcm, gating FCMdata object does not produce new FCMdata
objects, but rather each FCMdata object maintains a tree of
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Fig. 4: Mixture models are comprised of multiple simpler distribu-
tions. These simpler distributions are added together to describe more
complex distributions. Using these simpler distributions, in this case
multivariate normal distributions, it becomes possible to describe very
complex distributions.

each gated populations. Moving between nodes of the tree, ac-
complished by the FCMdata.visit() method, selects which events
are retured on array lookup, using numpy’s efficient indexing to
generate views. This allows FCMdata objects to contain an entire
analysis in a single object and reduces the need to keep multiple
large high dimensional arrays in memory.

Model Based Analysis

As a result of the increasing dimensionality of FCM data resulting
from technological advances, manual analysis is increasingly
complex and time-consuming. Therefor there is much interest in
finding automated methods of analyzing flow data. Model based
analysis is an approach to automate and increase reproducibility
in the analysis of flow data by the use of statistical models fitted
to the data. With the appropriate multivariate statistical models,
data fitting can be naturally performed on the full dimensionality,
allowing analysis to scale well with the increasing number of
parameters in flow cytometry. Mixture models are one such model
based method. Mixture models are often chosen due to their ability
to use multiple simpler distributions added together to describe a
much more complex distribution as seen in figure 4.

fcm provides several model based methods for identifying
cell subsets, the simplest method being k-means classification,
and more advanced methods based on the use of mixtures of
Gaussians for data fitting. The general procedure for fitting a
data set to a statistical model consists of creating a FCMmodel
object containing hyper-parameters, followed by calling its fit
method on a collection of (or just one) FCMdata objects to
generate ModelResult objects. Each ModelResult object holds
the estimated parameters of the statistical model -- a KMeans
object representing the centroid locations in a k-means model, or a
DPMixture object representing the estimated weights, means and
covariances for Gaussian mixture models. These objects can then
be used to classify arbitrary datasets or to explore the estimated
model parameters.

Gaussian mixture models describe events as coming from a
mixture of multiple multivariate Gaussian distributions, where an
event x comes from each Gaussian component with probability πi,

Fig. 5: Events in a sample data set clustered by DPMixtureModel
using Bayesian EM

the weight. Hence the overall probability is

p(x|π,µ,σ) =
k

∑
i=1

πiN(x|µi,σi)

where N is a Gaussian, and x can be assigned to the Gaussian
component with the highest probability. fcm provides two related
mixture models to fit data from the [dpmix] package, which is
capable of using [gpustats] to utilize GPU cards for efficient
estimation of mixture parameters. The two models are DPMixture-
Model and HDPMixtureModel, describing a truncated Dirichlet
process mixture model, and a hierarchical truncated Dirichlet
process mixture model.

DPMixtureModel has two methods of estimating parameters
of the model for a given dataset, the first using Markov chain
monte carlo (MCMC) and the second using Bayesian expectation
maximization (BEM). Sensible defaults for hyperparameters have
been chosen that in our experience perform satisfactorily on all
FCS data samples we have analyzed.

1 import fcm
2 import fcm.statistics as stats
3 import pylab
4

5 #load FCS file
6 data = fcm.loadFCS('3FITC_4PE_004.fcs')
7

8 #ten component model fit using BEM for
9 # 100 iterations

10 dpmodel = stats.DPMixtureModel(10, niter=100,
11 type='BEM')
12

13 # estimate parameters printing every 10 iterations
14 results = dpmodel.fit(data,verbose=10)
15

16 #assign data to components
17 c = results.classify(data)
18

19 # plot data coloring by label
20 pylab.scatter(data[:,0], data[:,1], c=c,
21 s=1, edgecolor='none')
22

23 pylab.xlabel(data.channels[0])
24 pylab.ylabel(data.channels[1])

The above code labels each event by color to the cluster it belongs
to as seen in figure 5
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Fig. 6: Pseudo-color heatmap produced by fcm.graphics.heatmap
function showing CD4 versus CD8.

HDPMixtureModel fits multiple data sets simultaneously so
as to identify a hierarchical model that fits all datasets such that
component means and covariance are common to all fitted samples
but the weights of components are specific for each sample. Since
HDPMixtureModel estimates multiple datasets simultaneously, a
list of DPMixture objects is returned corresponding to each of the
FCMdata objects passed to HDPMixureMode.fit().

Visualization

By using packages like [matplotlib] it becomes easy to
recreate the typical plots flow cytometry analysts are used
to seeing. Convenience functions for several common plot
types have been included in the fcm.graphics sub-package.
The common pseudocolor dotplot is handled by the function
fcm.graphics.pseudocolor()
1 import fcm
2 import fcm.graphics as graph
3 x = fcm.loadFCS('B6901GFJ-08_CMV pp65.fcs')
4 graph.pseudocolor(x, [('CD4 PerCP Cy55','CD8 APC Cy7')])

The above code produces the plot like that seen in figure 6
Another common plot is overlay histograms, which is provided

by fcm.graphics.hist()
1 import fcm
2 import fcm.graphics as graph
3 from glob import glob
4 xs =[fcm.loadFCS(x) for x in glob('B6901GFJ-08_*.fcs')]
5 graph.hist(xs,3, display=True)

The code above will produce the histogram seen in figure 7
More examples of flow cytometry graphics can be seen in the

gallery at http://packages.python.org/fcm/gallery.

Conclusion and future work

Currently fcm is approaching its 1.0 release, providing a stable
API for development and we feel fcm is ready for wider usage

Fig. 7: Overlay histogram of three samples from the EQAPOL data
set.

in the scientific community. Internally we use fcm for EDA for
data sets from HIV/AIDS, caner, and solid-organ transplantation
studies. In addition we have developed pipelines for batch analysis
of large numbers of FCS files from the Duke Center for AIDS
Research, External Quality Assurance Program Oversight Labora-
tory (EQAPOL), and the Association for Cancer Immunotherapy
(CIMT). We have also developed a graphical tool to assist im-
munologist to perform model based analysis [cytostream]. Our
hope is that fcm can fill a need in the biomedical community
and facilitate the growth of python as a tool suited for scientific
programming.

With the growing complexity of flow cytometry data, we
foresee an increased need for computational tools. Current mass-
spec based flow cytometers are capable of resolving many more
parameters than current fluorescent based cytometers, necessi-
tating improved tools for analysis. Imaging cytometers, which
take digital images of events as they pass through the detection
apparatus, will also produce a wealth of additional information
about each event based on analyzing the images generated. These
technologies will necessitate improved tools to analyze data gen-
erated by these newer cytometers. Our hope is that fcm can
meet these needs and continue to grow to address these needs,
with specific goals of developing tools to facilitate cross sample
comparison and time series of flow data.

The next generation of the FCS file standard, Analytical
Cytometry Standard, has been proposed, using NetCDF as the
format for event storage. The ACS file will be a container allowing
storage of much more than the current FCS limitations of event
and textual metadata. Thanks to the availability of several good
libraries for dealing with NetCDF, and the associated xml and
image files proposed to be included in the ACS container, adding
support for the finalized version of ACS standard should not be
difficult. Gating-ML, an XML format proposed with ACS for
describing gates and thier placement, has been gaining popularity.
We are exploring how best to implement readers and writers for
Gating-ML
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Uncertainty Modeling with SymPy Stats

Matthew Rocklin‡∗

F

Abstract—We add a random variable type to a mathematical modeling lan-
guage. We demonstrate through examples how this is a highly separable way
to introduce uncertainty and produce and query stochastic models. We motivate
the use of symbolics and thin compilers in scientific computing.

Index Terms—Symbolics, mathematical modeling, uncertainty, SymPy

Introduction

Scientific computing is becoming more challenging. On the com-
putational machinery side heterogeneity and increased parallelism
are increasing the required effort to produce high performance
codes. On the scientific side, computation is used for problems
of increasing complexity by an increasingly broad and untrained
audience. The scientific community is attempting to fill this
widening need-to-ability gulf with various solutions. This paper
discusses symbolic mathematical modeling.

Symbolic mathematical modeling provides an important in-
terface layer between the description of a problem by domain
scientists and description of methods of solution by computational
scientists. This allows each community to develop asynchronously
and facilitates code reuse.

In this paper we will discuss how a particular problem domain,
uncertainty propagation, can be expressed symbolically. We do
this by adding a random variable type to a popular mathematical
modeling language, SymPy [Sym, Joy11]. This allows us to
describe stochastic systems in a highly separable and minimally
complex way.

Mathematical models are often flawed. The model itself may
be overly simplified or the inputs may not be completely known.
It is important to understand the extent to which the results of
a model can be believed. Uncertainty propagation is the act of
determining the effects of uncertain inputs on outputs. To address
these concerns it is important that we characterize the uncertainty
in our inputs and understand how this causes uncertainty in our
results.

Motivating Example - Mathematical Modeling

We motivate this discussion with a familiar example from kine-
matics.

Consider an artilleryman firing a cannon down into a valley.
He knows the initial position (x0,y0) and orientation, θ , of the
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cannon as well as the muzzle velocity, v, and the altitude of the
target, y f .
# Inputs
>>> x0 = 0
>>> y0 = 0
>>> yf = -30 # target is 30 meters below
>>> g = -10 # gravitational constant
>>> v = 30 # m/s
>>> theta = pi/4

If this artilleryman has a computer nearby he may write some code
to evolve forward the state of the cannonball to see where it hits
lands.
>>> while y > yf: # evolve time forward until y hits the ground
... t += dt
... y = y0 + v*sin(theta)*t
... + g*t**2 / 2
>>> x = x0 + v*cos(theta)*t

Notice that in this solution the mathematical description of the
problem y = y0 + vsin(θ)t + gt2

2 lies within the while loop. The
problem and method are woven together. This makes it difficult
both to reason about the problem and to easily swap out new
methods of solution.

If the artilleryman also has a computer algebra system he may
choose to model this problem and solve it separately.
>>> t = Symbol('t') # SymPy variable for time
>>> x = x0 + v * cos(theta) * t
>>> y = y0 + v * sin(theta) * t + g*t**2
>>> impact_time = solve(y - yf, t)
>>> xf = x0 + v * cos(theta) * impact_time
>>> xf.evalf() # evaluate xf numerically
65.5842

# Plot x vs. y for t in (0, impact_time)
>>> plot(x, y, (t, 0, impact_time))

In this case the solve operation is nicely separated. SymPy defaults
to an analytic solver but this can be easily swapped out if analytic
solutions do not exist. For example we can easily drop in a
numerical binary search method if we prefer.

If he wishes to use the full power of SymPy the artilleryman
may choose to solve this problem generally. He can do this simply
by changing the numeric inputs to sympy symbolic variables
>>> x0 = Symbol('x_0')
>>> y0 = Symbol('y_0')
>>> yf = Symbol('y_f')
>>> g = Symbol('g')
>>> v = Symbol('v')
>>> theta = Symbol('theta')

He can then run the same modeling code found in (missing code
block label) to obtain full solutions for impact_time and the final
x position.
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Fig. 1: The trajectory of a cannon shot
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Fig. 2: A graph of all the varibles in our system. Variables on top
depend on variables connected below them. The leaves are inputs to
our system.

>>> impact_time

−vsin(θ)+
√
−4gy0 +4gy f + v2 sin2 (θ)

2g

>>> xf

x0 +

v
(
−vsin(θ)+

√
−4gy0 +4gy f + v2 sin2 (θ)

)
cos(θ)

2g

Rather than produce a numeric result, SymPy produces an abstract
syntax tree. This form of result is easy to reason about for both
humans and computers. This allows for the manipulations which
provide the above expresssions and others. For example if the
artilleryman later decides he needs derivatives he can very easily
perform this operation on his graph.

Motivating Example - Uncertainty Modeling

To control the velocity of the cannon ball the artilleryman intro-
duces a certain quantity of gunpowder to the cannon. He is unable
to pour exactly the desired quantity of gunpowder however and so
his estimate of the velocity will be uncertain.

He models this uncertain quantity as a random variable that
can take on a range of values, each with a certain probability. In

27 28 29 30 31 32 33

Distribution of velocity

Fig. 3: The distribution of possible velocity values

this case he believes that the velocity is normally distributed with
mean 30 and standard deviation 1.
>>> from sympy.stats import *
>>> v = Normal('v', 30, 1)
>>> pdf = density(v)
>>> z = Symbol('z')
>>> plot(pdf(z), (z, 27, 33))

√
2e−

1
2 (z−30)2

2
√

π

v is now a random variable. We can query it with the following
operators
P -- # Probability
E -- # Expectation
variance -- # Variance
density -- # Probability density function
sample -- # A random sample

These convert stochasitc expressions into computational ones. For
example we can ask the probability that the muzzle velocity is
greater than 31.
>>> P(v > 31)

−1
2

erf
(

1
2

√
2
)
+

1
2

This converts a random/stochastic expression v > 31 into a
deterministic computation. The expression P(v > 31) actually
produces an intermediate integral expression which is solved with
SymPy’s integration routines.
>>> P(v > 31, evaluate=False)

∫ ∞

31

√
2e−

1
2 (z−30)2

2
√

π
dz

Every expression in our graph that depends on v is now a random
expression

We can ask similar questions about the these expressions. For
example we can compute the probability density of the position of
the ball as a function of time.
>>> a,b = symbols('a,b')
>>> density(x)(a) * density(y)(b)

e−
a2

t2 e−
(b+5t2)

2

t2 e30
√

2a
t e30

√
2(b+5t2)

t

πt2e900
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Fig. 4: A graph of all the varibles in our system. Red variables are
stochastic. Every variable that depends on the uncertain input, v, is
red due to its dependence.
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Or we can plot the probability that the ball is still in the air at time
t

>>> plot( P(y>yf), (t, 4.5, 6.5))

Note that to obtain these expressions the only novel work the
modeler needed to do was to describe the uncertainty of the inputs.
The modeling code was not touched.

We can attempt to compute more complex quantities such as
the expectation and variance of impact_time the total time of
flight.

>>> E(impact_time)

∫ ∞

−∞

(
v+
√

v2 +2400
)

e−
1
2 (v−30)2

40
√

π
dv

In this case the necessary integral proved too challenging for the
SymPy integration algorithms and we are left with a correct though
unresolved result.

This is an unfortunate though very common result. Math-
ematical models are usually far too complex to yield simple
analytic solutions. I.e. this unresolved result is the common case.
Fortunately computing integral expressions is a problem of very
broad interest with many mature techniques. SymPy stats has
successfully transformed a specialized and novel problem (uncer-

RV Type Computational Type
Continuous SymPy Integral
Discrete - Finite (dice) Python iterators / generators
Discrete - Infinite (Poisson) SymPy Summation
Multivariate Normal SymPy Matrix Expression

TABLE 1: Different types of random expressions reduce to different
computational expressions (Note: Infinite discrete and multivariate
normal are in development and not yet in the main SymPy distribution)

tainty propagation) into a general and well studied one (computing
integrals) to which we can apply general techniques.

Sampling

One method to approximate difficult integrals is through sampling.
SymPy.stats contains a basic Monte Carlo backend which can

be easily accessed with an additional keyword argument.

>>> E(impact_time, numsamples=10000)
5.36178452172906

Implementation

A RandomSymbol class/type and the functions P, E,
density, sample are the outward-facing core of sympy.stats
and the PSpace class in the internal core representing the
mathematical concept of a probability space.

A RandomSymbol object behaves in every way like a stan-
dard sympy Symbol object. Because of this one can replace
standard sympy variable declarations like

x = Symbol('x')

with code like

x = Normal('x', 0, 1)

and continue to use standard SymPy without modification.
After final expressions are formed the user can query them

using the functions P, E, density, sample. These func-
tions inspect the expression tree, draw out the RandomSymbols
and ask these random symbols to construct a probabaility space or
PSpace object.

The PSpace object contains all of the logic to turn random
expressions into computational ones. There are several types
of probability spaces for discrete, continuous, and multivariate
distributions. Each of these generate different computational ex-
pressions.

Implementation - Bayesian Conditional Probability

SymPy.stats can also handle conditioned variables. In this section
we describe how the continuous implementation of sympy.stats
forms integrals using an example from data assimilation.

We measure the temperature and guess that it is about 30C
with a standard deviation of 3C.

>>> from sympy.stats import *
>>> T = Normal('T', 30, 3) # Prior distribution

We then make an observation of the temperature with a thermome-
ter. This thermometer states that it has an uncertainty of 1.5C

>>> noise = Normal('eta', 0, 1.5)
>>> observation = T + noise
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Fig. 6: The joint prior distribution of the temperature and measure-
ment noise. The constraint T + noise == 26 (diagonal line) and
the resultant posterior distribution of temperature on the left.

With this thermometer we observe a temperature of 26C. We
compute the posterior distribution that cleanly assimilates this new
data into our prior understanding. And plot the three together.
>>> data = 26 + noise
>>> T_posterior = Given(T, Eq(observation, 26))

We now describe how SymPy.stats obtained this result. The
expression T_posterior contains two random variables, T and
noise each of which can independently take on different values.
We plot the joint distribution below in figure 6. We represent the
observation that T + noise == 26 as a diagonal line over the
domain for which this statement is true. We project the probability
density on this line to the left to obtain the posterior density of the
temperature.

These gemoetric operations correspond exactly to Bayesian
probability. All of the operations such as restricting to the condi-
tion, projecting to the temperature axis, etc... are managed using

Math / PDE description

Linear Algebra/
Matrix Expressions

Sparse matrix algorithms

Parallel solution /
scheduler

C/FORTRAN

x86

Uncertainty

Scientific description

BLAS/LAPACK

PETSc/Trilinos

FEniCS

SymPy.stats

CUDA

PowerPC GPU SoC

Numerical Linear Algebra

gcc/nvcc

Fig. 7: The scientific computing software stack. Various projects are
displayed showing the range that they abstract. We pose that scientific
computing needs more horizontal and thin layers in this image.

core SymPy functionality.

Multi-Compilation

Scientific computing is a demanding field. Solutions frequently
encompass concepts in a domain discipline (such as fluid dynam-
ics), mathematics (such as PDEs), linear algebra, sparse matrix
algorithms, parallelization/scheduling, and local low level code
(C/FORTRAN/CUDA). Recently uncertainty layers are being
added to this stack.

Often these solutions are implemented as single monolithic
codes. This approach is challenging to accomplish, difficult to
reason about after-the-fact and rarely allows for code reuse. As
hardware becomes more demanding and scientific computing
expands into new and less well trained fields this challenging
approach fails to scale. This approach is not accessible to the
average scientist.

Various solutions exist for this problem.
Low-level Languages like C provide a standard interface for

a range of conventional CPUs effectively abstracting low-level
architecture details away from the common programmer.

Libraries such as BLAS and LAPACK provide an interface be-
tween linear algebra and optimized low-level code. These libraries
provide an interface layer for a broad range of architecture (i.e.
CPU-BLAS or GPU-cuBLAS both exist).

High quality implementations of vertical slices of the stack
are available through higher level libraries such as PETSc and
Trilinos or through code generation solutions such as FENICS.
These projects provide end to end solutions but do not provide
intermediate interface layers. They also struggle to generalize well
to novel hardware.

Symbolic mathematical modeling attempts to serve as a thin
horizontal interface layer near the top of this stack, a relatiely
empty space at present.
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SymPy stats is designed to be as vertically thin as possible. For
example it transforms continuous random expressions into integral
expressions and then stops. It does not attempt to generate an end-
to-end code. Because its backend interface layer (SymPy integrals)
is simple and well defined it can be used in a plug-and-play manner
with a variety of other back-end solutions.

Multivariate Normals produce Matrix Expressions

Other sympy.stats implementations generate similarly structured
outputs. For example multivariate normal random variables found
in sympy.stats.mvnrv generate matrix expressions. In the
following example we describe a standard data assimilation task
and view the resulting matrix expression.

mu = MatrixSymbol('mu', n, 1) # n by 1 mean vector
Sigma = MatrixSymbol('Sigma', n, n) # covariance matrix
X = MVNormal('X', mu, Sigma)

H = MatrixSymbol('H', k, n) # An observation operator
data = MatrixSymbol('data', k, 1)

R = MatrixSymbol('R', k, k) # covariance matrix for noise
noise = MVNormal('eta', ZeroMatrix(k, 1), R)

# Conditional density of X given HX+noise==data
density(X , Eq(H*X+noise, data) )

µ = [ I 0 ]
([Σ 0

0 R

][
HT

I
](
[H I ]

[Σ 0
0 R

][
HT

I
])−1 (

[H I ]
[ µ

0
]
−data

)
+
[ µ

0
])

Σ= [ I 0 ]
(
I−
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0 R

][
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I
](
[H I ]

[Σ 0
0 R

][
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I
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[H I ]
)[Σ 0
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][ I
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]

µ = µ+ΣHT (R+HΣHT )
−1

(Hµ−data)

Σ =
(
I−ΣHT (R+HΣHT )

−1
H
)

Σ

Those familiar with data assimilation will recognize the Kalman
Filter. This expression can now be passed as an input to other
symbolic/numeric projects. Symbolic/numerical linear algebra is
a vibrant and rapidly changing field. Because sympy.stats
offers a clean interface layer it is able to easily engage with these
developments. Matrix expressions form a clean interface layer in
which uncertainty problems can be expressed and transferred to
computational systems.

We generally support the idea of approaching the
scientific computing conceptual stack (Physics/PDEs/Linear-
algebra/MPI/C-FORTRAN-CUDA) with a sequence of simple and
atomic compilers. The idea of using interface layers to break up a
complex problem is not new but is oddly infrequent in scientific
computing and thus warrants mention. It should be noted that for
heroic computations this approach falls short - maximal speedup
often requires optimizing the whole problem at once.

Conclusion

We have foremost demonstrated the use of sympy.stats a
module that enhances sympy with a random variable type. We
have shown how this module allows mathematical modellers to
describe the undertainty of their inputs and compute the uncer-
tainty of their outputs with simple and non-intrusive changes to
their symbolic code.

Secondarily we have motivated the use of symbolics in compu-
tation and argued for a more separable computational stack within
the scientific computing domain.
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QuTiP: A framework for the dynamics of open
quantum systems using SciPy and Cython

Robert J. Johansson‡∗, Paul D. Nation‡
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Abstract—We present QuTiP (http://www.qutip.org), an object-oriented, open-
source framework for solving the dynamics of open quantum systems. Written
in Python, and using a combination of Cython, NumPy, SciPy, and matplotlib,
QuTiP provides an environment for computational quantum mechanics that
is both easy and efficient to use. Arbitrary quantum systems, including time-
dependent systems, may be built up from operators and states defined by a
quantum object class, and then passed on to a choice of unitary or dissipative
evolution solvers. Here we give an overview of the basic structure for the
framework, and the techniques used in its implementation. We also present
a few selected examples from current research on quantum mechanics that
illustrate the strengths of the framework, as well as the types of calculations
that can be performed. This framework is particularly well suited to the fields of
quantum optics, superconducting circuit devices, nanomechanics, and trapped
ions, while also being ideal as an educational tool.

Index Terms—quantum mechanics, master equation, monte-carlo

Introduction

One of the main goals of contemporary physics is to control the
dynamics of individual quantum systems. Starting with trapped-
ion experiments in the 1970s [Hor97], the ability to manipulate
single realizations, as opposed to ensembles, of quantum systems
allows for fundamental tests of quantum mechanics [Har06] and
quantum computation [Lad10]. Traditionally, the realm of quan-
tum mechanics has been confined to systems with atomic and
molecular characteristic length scales with system properties fixed
by nature. However, during the last two decades, advances in
experimental and manufacturing techniques have opened up the
possibility of producing man-made micro and nanometer scale
devices with controllable parameters that are governed by the
laws of quantum mechanics. These engineered systems can now
be realized with a wide range of different technologies such
as quantum optics [Obr09], superconducting circuits [You11],
semiconducting quantum dots [Han08], nanomechanical devices
[Oco10], and ion traps [Bla12], and have received considerable
experimental and theoretical attention.

With the increasing interest in engineered quantum devices,
the demand for efficient numerical simulations of open quantum
dynamics has never been greater. By definition, an open quantum
system is coupled to an environment, also called a reservoir or
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Fig. 1: The organization of user available functions in the QuTiP
framework. The inner circle represents submodules, while the outer
circle gives the public functions and classes contained in each
submodule.

bath, where the complexity of the environmental dynamics renders
the combined evolution of system plus reservoir analytically
intractable and must therefore be simulated numerically. With a
quantum computer out of reach for the foreseeable future, these
simulations must be performed using classical computing tech-
niques, where the exponentially increasing dimensionality of the
underlying Hilbert space severely limits the size of system that can
be efficiently simulated [Fey82]. Fortunately, recent experimental
advances have lead to quantum systems fabricated from a small
number of oscillator and spin components, containing only a few
quanta, that lend themselves to simulation in a truncated state
space.

Here we introduce QuTiP [Joh12], a framework designed for
simulating open quantum systems using SciPy and Cython. Al-
though other software solutions exist [Sch97], [Vuk07], [Tan99],
QuTiP goes beyond these earlier tools by providing a completely
open-source solution with an easy to read syntax and extended
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functionality, such as built-in multiprocessing. Our objective with
QuTiP is to provide a thoroughly tested and well documented
generic framework that can be used for a diverse set of quantum
mechanical problems, that encourages openness, verifiability, and
reproducibility of published results in the computational quantum
mechanics community.

Numerical quantum mechanics

In quantum mechanics, the state of a system is represented by
the wavefunction Ψ, a probability amplitude that describes, for
example, the position and momentum of a particle. The wavefunc-
tion is in general a function of space and time, and its evolution
is ideally governed by the Schrödinger equation, −i∂tΨ = ĤΨ,
where Ĥ is the Hamiltonian that describes the energies of the
possible states of the system (total energy function). In general,
the Schrödinger equation is a linear partial differential equation.
For computational purposes, however, it is useful to expand the
wavefunction, Hamiltonian, and thus the equation of motion, in
terms of basis functions that span the state space (Hilbert space),
and thereby obtain a matrix and vector representation of the
system. Such a representation is not always feasible, but for many
physically relevant systems it can be an effective approach when
used together with a suitable truncation of the basis states that
often are infinite. In particular, systems that lend themselves to
this approach includes resonator modes and systems that are well
characterized by a few quantum states (e.g., the two quantum
levels of an electron spin). These components also represent the
fundamental building blocks of engineered quantum devices.

In the matrix representation the Schrödinger equation can be
written as

− i
d
dt
|ψ〉= H(t) |ψ〉 , (1)

where |ψ〉 is a state vector and H is the Hamiltonian matrix.
Note that the introduction of complex values in (1) is a fun-
damental property of evolution in quantum mechanics. In this
representation, the equations of motion are a system of ordinary
differential equations (ODEs) in matrix form with, in general,
time-dependent coefficients. Therefore, to simulate the dynamics
of a quantum system we need to obtain the matrix representation
of the Hamiltonian and the initial state vector in the chosen
basis. Once this is achieved, we have a numerically tractable
problem, that involves solving systems of coupled ODEs defined
by complex-valued matrices and state vectors.

The main challenge in numerical simulation of quantum sys-
tems is that the required number basis states, and thus the size of
the matrices and vectors involved in the numerical calculations,
quickly become excessively large as the size of the system un-
der consideration is increased. In a composite system, the state
space increases exponentially with the number of components.
Therefore, in practice only relatively small quantum systems can
be simulated on classical computers with reasonable efficiency.
Fortunately, in essentially all experimentally realizable systems,
the local nature of the physical interactions gives rise to system
Hamiltonians containing only a few nonzero elements that are
thus highly sparse. This sparsity plays a fundamental role in the
efficiency of simulations on quantum computers as well [Aha03].
The exact number of states that can be managed depends on
the detailed nature of the problem at hand, but the upper limit
is typically on the order of a few thousand quantum states.
Many experimentally relevant systems fall within this limit, and

numerical simulations of quantum systems on classical computers
is therefore an important subject.

Although the state of an ideal quantum systems is completely
defined by the wavefunction, or the corresponding state vector,
for realistic systems we also need to describe situations where the
true quantum state of a system is not fully known. In such cases,
the state is represented as a statistical mixture of state vectors
|ψn〉, that can conveniently be expressed as a state (density) matrix
ρ = ∑n pn |ψn〉〈ψn|, where pn is the classical probability that the
system is in the state |ψn〉. The need for density matrices, instead
of wavefunctions, arises in particular when modeling open quan-
tum system, where the system’s interaction with its surrounding
is included. In contrast to the Schrödinger equation for closed
quantum systems, the equation of motion for open systems is not
unique, and there exists a large number of different equations
of motion (e.g., Master equations) that are suitable for different
situations and conditions. In QuTiP, we have implemented many
of the most common equations of motion for open quantum
systems, and provide a framework that can be extended easily
when necessary.

The QuTiP framework

As a complete framework for computational quantum mechanics,
QuTiP facilitates automated matrix representations of states and
operators (i.e. to construct Hamiltonians), state evolution for
closed and open quantum systems, and a large library of common
utility functions and operations. For example, some of the core
functions that QuTiP provides are: tensor for constructing
composite states and operators from its fundamental components,
ptrace for decomposing states into their components, expect
for calculating expectation values of measurement outcomes for
an operator and a given state, an extensive collection of functions
for generating frequently used states and operators, as well as
additional functions for entanglement measures, entropy measures,
correlations and much more. A visual map of the user-accessible
functions in QuTiP is shown in Fig. 1. For a complete list of
functions and their usage, see the QuTiP user guide [Nat12].

The framework is designed so that its syntax and procedures
mirror, as closely as possible, the standard mathematical formu-
lation of a quantum mechanical problem. This is achieved thanks
to the Python language syntax, and an object-oriented design that
is centered around the class Qobj, used for representing quantum
objects such as states and operators.

In order to simulate the quantum evolution of an arbitrary
system, we need an object that not only incorporates both states
and operators, but that also keeps track of important properties
for these objects, such as the composite structure (if any) and
the Hermicity. This later property is especially important as all
physical observables are Hermitian, and this dictates when real
values should be returned by functions corresponding to mea-
surable quantities. In QuTiP, the complete information for any
quantum object is included in the Qobj class. This class is the
fundamental data structure in QuTiP. As shown in Fig. 2, the
Qobj object can be thought of as a container for the necessary
properties need to completely characterize a given quantum object,
along with a collection of methods that act on this operator alone.

A typical simulation in QuTiP takes the following steps:

• Specify system parameters and construct Hamiltonian,
initial state, and any dissipative quantum (Qobj) objects.
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Fig. 2: Qobj class used for defining quantum objects. The class
properties include the sparse matrix representation of the object
(data), the type of object represented, a nested list describing the
composite structure (dimensions), whether the object is Hermitian,
and the shape of the underlying data matrix. Also included is a lengthy
set of operations acting on the Qobj, a list of which can be found at
[Nat12].

• Calculate the evolution of the state vector, or density
matrix, using the system Hamiltonian in the appropriate
solver.

• Post-process output Qobj and/or arrays of return values,
including visualization.

Given the generality of this process, we highlight each of these
steps below by demonstrating the setup and simulation of select
real-world examples.

Constructing Hamiltonians and states

The first step in any QuTiP simulation is the creation of the
Hamiltonian that describes the system of interest, initial state, and
any possible operators that characterize the interaction between
the system and its environment. Although it is possible to directly
input a system Hamiltonian into a Qobj class object, QuTiP
includes a number of predefined operators for oscillator and spin
systems out of which a large collection of Hamiltonians can
be composed. The simplest, and most common, example is the
so-called Jaynes-Cummings model for a two-level atom (qubit)
interacting with a single harmonic oscillator [Jay63]

Ĥ = h̄ωcâ†â+ h̄ωqσ̂z/2+ h̄g/2
(
âσ̂++ â†σ̂−

)
(2)

where the first term in (2) describes the oscillator in terms of cre-
ation operators, the second gives the bare qubit Hamiltonian, and
the final term characterizes the interaction between oscillator and
qubit. Here, ωc is the oscillator frequency, ωq is the qubit energy
splitting frequency, and g gives the strength of the oscillator-qubit
coupling. Typically one is interested in the exchange of a single
excitation between the qubit and oscillator. Although the oscillator
has an infinite number of states, in this case, we can truncate the
Hilbert space. For the initial state with the excitation in the qubit,
this state may be written in QuTiP as (we omit the from qutip
import * statement):
N = 4 # number of oscillator levels to consider
psi_osc = basis(N)
psi_qubit = basis(2,1)
psi_sys = tensor(psi_osc,psi_qubit)

where basis(N,m) creates a basis function of size N with a
single excitation in the m level, and the tensor function creates
the composite initial state from the individual state vectors for

the oscillator and qubit subsystems. The total Hamiltonian (2) can
be created in a similar manner using built-in operators and user
defined system parameters:
wc = wq = 1.0
g = 0.1
a = tensor(destroy(N),qeye(2))
sz = tensor(qeye(N),sigmaz())
sp = tensor(qeye(N),sigmap())
sm = tensor(qeye(N),sigmam())
H = wc*a.dag()*a + wq/2.*sz + g/2.*(a*sp+a.dag()*sm)

This final Hamiltonian is a Qobj class object representing the
Jaynes-Cummings model and is created with a syntax that closely
resembles the mathematical formulation given in Eq. (2). Using
the print function, we can list all of the properties of H (omitting
the underlying data matrix):
Quantum object: dims = [[4, 2], [4, 2]],
shape = [8, 8], type = oper, isHerm = True

showing the composite (4× 2) structure, the type of object, and
verifying that indeed the Hamiltonian is Hermitian as required.
Having created collapse operators, if any, we are now in a position
to pass the Hamiltonian and initial state into the QuTiP evolution
solvers.

Time-evolution of quantum systems

The time-evolution of an initial state of a closed quantum system
is completely determined by its Hamiltonian. The evolution of
an open quantum system, however, additionally depends on the
environment surrounding the system. In general, the influence of
such an environment cannot be accounted for in detail, and one
need to resort to approximations to arrive at a useful equation
of motion. Various approaches to this procedure exist, which
results in different equations of motion, each suitable for certain
situations. However, most equations of motion for open quan-
tum systems can be characterized with the concept of collapse
operators, which describe the effect of the environment on the
system and the rate of those processes. A complete discussion of
dissipative quantum systems, which is outside the scope of this
paper, can be found in [Joh12] and references therein.

QuTiP provides implementations of the most common equa-
tions of motion for open quantum systems, including the Lindblad
master equation (mesolve), the Monte-Carlo quantum trajectory
method (mcsolve), and certain forms of the Bloch-Redfield
(brmesolve) and Floquet-Markov (fmmesolve) master equa-
tions. In QuTiP, the basic type signature and the return value
are the same for all evolution solvers. The solvers take following
parameters: a Hamiltonian H, an initial state psi_sys, a list of
times tlist, an optional list of collapse operators c_ops and an
optional list of operators for which to evaluate expectation values.
For example,
c_ops = [sqrt(0.05) * a]
expt_ops = [sz, a.dag() * a]
tlist = linspace(0, 10, 100)
out = mesolve(H, psi_sys, tlist, c_ops, expt_ops)

Each solver returns (out) an instance of the class Odedata that
contains all of the information about the solution to the problem,
including the requested expectation values, in out.expect. The
evolution of a closed quantum system can also be computed using
the mesolve or mcsolve solvers, by passing an empty list
in place of the collapse operators in the fourth argument. On
top of this shared interface, each solver has a set of optional
function parameters and class members in Odedata, allowing
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for modification of the underlying ODE solver parameters when
necessary.

Visualization

In addition to providing a computational framework, QuTiP also
implements of a number of visualization methods often employed
in quantum mechanics. It is of particular interest to visualize the
state of a quantum system. Quantum states are often complex
superpositions of various basis states, and there is an important
distinction between pure quantum coherent superpositions and
statistical mixtures of quantum states. Furthermore, the set of all
quantum states also includes the classical states, and it is therefore
of great interest to visualize states in ways that emphasize the
differences between classical and quantum states. Such properties
are not usually apparent by inspecting the numerical values of
the state vector or density matrix, thus making quantum state
visualization techniques an important tool.

Bloch sphere

A quantum two-level system (qubit), can not only occupy the two
classical basis states, e.g., "0" and "1", but an arbitrary complex-
valued superposition of those two basis states. Such states can
conveniently be mapped to, and visualized as, points on a unit
sphere, commonly referred to as the Bloch sphere. QuTiP provides
a class Bloch for visualizing individual quantum states, or lists
of data points, on the Bloch sphere. Internally it uses matplotlib to
render a 3D view of the sphere and the data points. The following
code illustrates how the Bloch class can be used

bs = Bloch()
bs.add_points([x, y, z])
bs.show()

where x, y, and z are the expectation values for the operators
σx, σy, and σz, respectively, for the given states. The expectation
values can be obtained from the Odedata instance returned by a
time-evolution solver, or calculated explicitly for a particular state,
for example

psi = (basis(2,0) + basis(2,1)).unit()
op_axes = sigmax(), sigmay(), sigmaz()
x, y, z = [expect(op, psi) for op in op_axes]

In Fig. 5, the time-evolution of a two-level system is visualized on
a Bloch sphere using the Bloch class.

Quasi-probability distributions

One of goals in engineered quantum systems is to manipulate the
system of interest into a given quantum state. Generating quantum
states is a non-trivial task as classical driving fields typically lead
to classical system states, and the environment gives rise to noise
sources that destroy the delicate quantum superpositions and cause
unwanted dissipation. Therefore, it is of interest to determine
whether the state of the system at a certain time is in a non-
classical state. One way to verify that the state of a system is
indeed quantum mechanical is to visualize the state of the system
as a Wigner quasi-probability distribution. This Wigner function
is one of several quasi-probability distributions that are linear
transformations of the density matrix, and thus give a complete
characterization of the state of the system [Leh10]. The Wigner
function is of particular interest since any negative Wigner values
indicate an inherently quantum state. Here we demonstrate the
ease of calculating Wigner functions in QuTiP by visualizing

Fig. 3: Wigner function for the state |Ψ〉 = 1√
3
[|0〉 + |3〉 + |6〉 ] as

reconstructed experimentally in [Hof09] . Negative (blue) values
indicate that this state is inherently quantum mechanical. The x- and
y-axes represent the oscillator position and momentum, respectively.

the quantum oscillator state |Ψ〉 = 1√
3
[|0〉 + |3〉 + |6〉 ] recently

generated in a superconducting circuit device [Hof09]:
psi = (basis(10)+basis(10,3)+basis(10,6)).unit()
xvec = linspace(-5,5,250)
X,Y = meshgrid(xvec, xvec)
W = wigner(psi,xvec,xvec)

Again, the quantum state is written in much the same manner
as the corresponding mathematical expression with the basis
functions representing the Fock states |0〉 , |3〉 , and |6〉 in a trun-
cated Hilbert space with N = 10 levels. Here, the unit method
of the Qobj class automatically normalizes the state vector. The
wigner then takes this state vector (or a density matrix) and
generates the Wigner function over the requested interval. The
result in shown in Fig. 3.

Example: Multiple Landau-Zener transitions

To demonstrate additional features in QuTiP, we now consider a
quantum two-level system, with static tunneling rate ∆ and energy-
splitting ε , that is subject to a strong driving field of amplitude A
coupled to the σz operator. In recent years, this kind of system
has been actively studied experimentally [Oli05], [Sil06], [Ste12]
for its applications in amplitude spectroscopy and Mach-Zehnder
interferometry. The system is described by the Hamiltonian

Ĥ =−∆
2

σ̂x−
ε
2

σ̂z−
A
2

cos(ωt)σ̂z, (3)

and the initial state |ψ(t = 0)〉 = |0〉. This is a time-dependent
problem, and we cannot represent the Hamiltonian with a single
Qobj instance. Instead, we can use a nested list of Qobj instances
and their time-dependent coefficients. In this notation (referred to
as list-string notation in QuTiP), the Hamiltonian in Eq. 3 can be
defined as
H0 = -delta/2 * sigmax() - epsilon/2 * sigmaz()
H1 = sigmaz()
H_td = [H0, [H1, 'A/2 * cos(omega * t)']]
args = {'omega': omega, 'A': A}

The QuTiP time-evolution solvers, as well as other functions
that use time-dependent operators, then know how to evaluate
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Fig. 4: Repeated Landau-Zener-like transitions in a quantum two-
level system. In each successive sweep through the avoided-level
crossing, a small additative change in the occupation probability
occurs, and after many crossings a nearly complete state transfer
has been achieved. This is an example of constructive interference.

the nested list H_td to the appropriate operator expression. In
this list-string format, this nested list is converted into a Cython
source file and compiled. Here, the dictionary args is used for
passing values of variables that occur in the expression for the
time-dependent coefficients. Given this QuTiP representation of
the Hamiltonian 3, we can evolve an initial state, using for example
the Lindblad master equation solver, with the following lines of
code:

psi0 = basis(2,0)
tlist = linspace(0, 160, 500)
output = mesolve(H_td, psi0, tlist, [], [], args)

Note that here we passed empty lists as fourth and and fifth
arguments to the solver mesolve, that indicates that we do not
have any collapse operators (that is, a closed quantum system) and
we do not request any expectation values to be calculated directly
by the solver. Instead, we will obtain a list output.states that
contains the state vectors for each time specified in tlist.

These states vectors can be used in further calculations, or
for example to visualizing the occupation probabilities of the two
states, as show in Figs. 4 and 5. In Fig. 5 we used the previously
discussed Bloch class to visualize the trajectory of the two-level
system.

Implementation and optimization techniques

In implementing the QuTiP framework, we have relied heavily on
the excellent Scipy and Numpy packages for Python. Internally,
in the class for representing quantum objects, Qobj, and in the
various time-evolution solvers, we use the sparse matrix from
Scipy (in particular the compressed-row format), and in some
special cases dense Numpy arrays, for the matrix and vector
representation quantum operators and states. Most common quan-
tum mechanics operations can be mapped to the linear algebra
operations that are implemented in Scipy for sparse matrices, in-
cluding matrix-matrix and matrix-vector multiplication, outer and
inner products of matrices and vectors, and eigenvalue/eigenvector
decomposition. Additional operations that do not have a direct

Fig. 5: Bloch-sphere visualization of the dynamics of a quantum
two-level system subject to repeated Landau-Zener-like avoided-level
crossings. All the points lay on the surface of the Bloch sphere, so we
can immediately conclude that the dynamics is the unitary evolution of
a closed quantum system (we did not include any collapse operators
in this example).

correspondence in matrix algebra, such as the ptrace function
for decomposing composite states, have been implemented mostly
in Python and NumPy. Note that in quantum mechanics it is essen-
tial that all matrix and vector elements are complex numbers, and
Scipy’s thorough support for complex-valued sparse matrices has
been a fundamental prerequisite for using Scipy in QuTiP. Overall,
Scipy’s sparse matrices, and the corresponding functions, have
delivered excellent performance. However, we have found that
by replacing the built-in matrix-vector multiplication in selected
locations with a less general Cython implementation (without, for
example type and out-of-bounds checks) we can obtain additional
speed-ups.

The ordinary differential equation solver is another feature in
Scipy that is used extensively in QuTiP, as most time-evolution
solvers use the scipy.integrate.ode interface at some
level. The configurability and flexibility of Scipy’s ODE solver
has significantly simplified the implementation of many time-
evolution solvers in QuTiP. The Monte-Carlo solver in particular,
which is a hybrid method that mixes evolution according to an
ODE with stochastic processes, uses some of the more advanced
modes of operating Scipy’s ODE solver including the high level of
control of step size, selectively stopping and restarting the solver,
etc.

In a typical simulation using QuTiP, the vast majority of the
elapsed time is devoted to evolving ODEs. Fine-tuning Scipy’s
ODE solver and ensuring that we obtain optimal performance from
it has therefore been a priority. Among the optimization measures
we have used, the largest impact has been gained by implementing
the callback function for the right-hand side (RHS) of the ODE in
standard form using Cython. By doing so, a significant amount of
overhead related to Python function calls can be avoided, and with
the additional speed-up that is gained by evaluating the callback
using Cython, this technique has given speed-up factors of up
to an order of magnitude or greater [Joh12]. Given this level
of speed-up, for any computational problem using Scipy’s ODE
solver, we would recommend investigating if the callback function
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can be implemented in Cython as one of the first performance
optimization measures.

One complicating factor that prevents using static Cython
implementations for the RHS function with Scipy’s ODE, is that
in QuTiP the ODEs are generated dynamically by the QuTiP
framework. For time-independent problems the RHS function for
the ODEs reduce to matrix-vector multiplication, and can be
delegated to a pre-compiled Cython function, but in a general
time-dependent problem this is not possible. To circumvent this
problem, we have employed a method of dynamically generating,
compiling and loading Cython code for the RHS callback function.
This approach allows us to benefit from the speed-ups gained with
a Cython implementation with nontrivial time-dependent RHS
functions.

Finally, in implementing QuTiP we have used the Python
multiprocessing package to parallellize of many time-
consuming tasks using the QuTiP parfor function, ensuring
efficient use of the resources commonly available on modern
multicore systems. The Monte-Carlo solver, which requires the
evolution of many hundreds of independent ODE systems, is
particularly easy to parallelize and has benefited greatly from the
multiprocessing package, and its good scaling properties as
a function of the number of CPU cores.

Conclusions

The Python, Numpy/Scipy and matplotlib environment provides
and encourages a unique combination of intuitive syntax and good
coding practices, rapid code development, good performance, tight
integration between the code and its documentation and testing.
This has been invaluable for the QuTiP project. With the additional
selective optimization using Cython, QuTiP delivers performance
that matches and in many cases exceeds those of natively compiled
alternatives [Tan99], accessible through an easy to use environ-
ment with a low learning curve for quantum physicists. As a result,
sophisticated quantum systems and models can be programmed
easily and simulated efficiently using QuTiP.

Acknowledgements

We would like to thank all of the contributors who helped test
and debug QuTiP. RJJ and PDN were supported by Japanese
Society for the Promotion of Science (JSPS) Fellowships P11505
and P11202, respectively. Additional support comes from Kakenhi
grant Nos. 2302505 (RJJ) and 2301202 (PDN).

REFERENCES

[Aha03] D. Aharonov and A. Ta-Shma, Adiabatic quantum state generation
and statistical zero knowledge, ACM Symposium on Theory of
Computing 20, 2003, available at quant-ph/0301023.

[Bla12] R. Blatt and C. F. Roos, Quantum simulations with trapped ions, Nat.
Physics, 8:277, 2012.

[Fey82] R. Feynman, Simulating Physics with Computers, Int. J. Theor. Phys.,
21(6):467, 1982.

[Han08] R. Hanson and D. D. Awschalom, Coherent manipulation of single
spins in semiconductors, Nature, 453:1043, 2008.

[Har06] S. Haroche and J-M. Raimond, Exploring the Quantum: Atoms,
Cavities, and Photons, Oxford University Press, 2006.

[Hof09] M. Hofheinz et al., Synthesizing arbitrary quantum states in a
superconducting resonator, Nature, 459:546, 2009.

[Hor97] G. Z. K. Horvath et al., Fundamental physics with trapped ions,
Contemp. Phys., 38:25, 1997.

[Jay63] E. T. Jaynes and F. W. Cummings, Comparison of quantum and
semiclassical radiation theories with application to the beam maser,
Proc. IEEE 51(1):89 (1963).

[Joh12] J. R. Johansson et al., QuTiP: An open-source Python framework
for the dynamics of open quantum systems, Comp. Phys. Commun.,
183:1760, 2012, available at arXiv:1110.0573.

[Lad10] T. D. Ladd et al., Quantum computers, Nature, 464:45, 2010.
[Leh10] U. Leonhardt, Essential Quantum Optics, Cambridge, 2010.
[Nat12] P. D. Nation and J. R. Johansson, QuTiP: Quantum Toolbox in

Python, Release 2.0, 2012, available at www.qutip.org.
[Obr09] J. L. O’Brien et al., Photonic quantum technologies, Nat. Photonics,

3:687, 2009.
[Oco10] A. D. O’Connell et al., Quantum ground state and single-phonon

control of a mechanical resonator, Nature, 464:697, 2010.
[Sch97] R. Schack and T. A. Brun, A C++ library using quantum trajectories

to solve quantum master equations, Comp. Phys. Commun., 102:210,
1997.

[Tan99] S. M. Tan, A computational toolbox for quantum and atomic optics,
J. Opt. B: Quantum Semiclass. Opt., 1(4):424, 1999.

[Vuk07] A. Vukics and H. Ritsch, C++QED: an object-oriented framework
for wave-function simulations of cavity QED systems, Eur. Phys. J.
D, 44:585, 2007.

[You11] J. Q. You and F. Nori, Atomic Physics and Quantum Optics Using
Superconducting Circuits, Nature, 474:589, 2011.

[Oli05] W. D. Oliver et al., Mach-Zehnder Interferometry in a Strongly
Driven Superconducting Qubit, Science. 310:1653, 2005.

[Sil06] M. Sillanpää et al., Continuous-Time Monitoring of Landau-Zener
Interference in a Cooper-Pair Box, Phys. Rev. Lett., 96:187002,
2006.

[Ste12] J. Stehlik et al., Landau-Zener-Stuckelberg Interferometry of a Single
Electron Charge Qubit, ArXiv:1205.6173, 2012.



62 PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

cphVB: A System for Automated Runtime
Optimization and Parallelization of Vectorized

Applications
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F

Abstract—Modern processor architectures, in addition to having still more
cores, also require still more consideration to memory-layout in order to run
at full capacity. The usefulness of most languages is deprecating as their
abstractions, structures or objects are hard to map onto modern processor
architectures efficiently.

The work in this paper introduces a new abstract machine framework,
cphVB, that enables vector oriented high-level programming languages to map
onto a broad range of architectures efficiently. The idea is to close the gap
between high-level languages and hardware optimized low-level implementa-
tions. By translating high-level vector operations into an intermediate vector
bytecode, cphVB enables specialized vector engines to efficiently execute the
vector operations.

The primary success parameters are to maintain a complete abstraction
from low-level details and to provide efficient code execution across differ-
ent, modern, processors. We evaluate the presented design through a setup
that targets multi-core CPU architectures. We evaluate the performance of
the implementation using Python implementations of well-known algorithms: a
jacobi solver, a kNN search, a shallow water simulation and a synthetic stencil
simulation. All demonstrate good performance.

Index Terms—runtime optimization, high-performance, high-productivity

Introduction

Obtaining high performance from today’s computing environ-
ments requires both a deep and broad working knowledge on com-
puter architecture, communication paradigms and programming
interfaces. Today’s computing environments are highly heteroge-
neous consisting of a mixture of CPUs, GPUs, FPGAs and DSPs
orchestrated in a wealth of architectures and lastly connected in
numerous ways.

Utilizing this broad range of architectures manually requires
programming specialists and is a very time-consuming task – time
and specialization a scientific researcher typically does not have.
A high-productivity language that allows rapid prototyping and
still enables efficient utilization of a broad range of architectures
is clearly preferable. There exist high-productivity language and
libraries that automatically utilize parallel architectures [Kri10],
[Dav04], [New11]. They are however still few in numbers and
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have one problem in common. They are closely coupled to both
the front-end, i.e. programming language and IDE, and the back-
end, i.e. computing device, which makes them interesting only to
the few using the exact combination of front and back-end.

A tight coupling between front-end technology and back-end
presents another problem; the usefulness of the developed program
expires as soon as the back-end does. With the rapid develop-
ment of hardware architectures the time spend on implementing
optimized programs for specific hardware, is lost as soon as the
hardware product expires.

In this paper, we present a novel approach to the problem of
closing the gap between high-productivity languages and parallel
architectures, which allows a high degree of modularity and
reusability. The approach involves creating a framework, cphVB*

(Copenhagen Vector Bytecode). cphVB defines a clear and easy to
understand intermediate bytecode language and provides a runtime
environment for executing the bytecode. cphVB also contains a
protocol to govern the safe, and efficient exchange, creation, and
destruction of model data.

cphVB provides a retargetable framework in which the user
can write programs utilizing whichever cphVB supported pro-
gramming interface they prefer and run the program on their own
workstation while doing prototyping, such as testing correctness
and functionality of their programs. Users can then deploy exactly
the same program in a more powerful execution environment
without changing a single line of code and thus effectively solve
greater problem sets.

The rest of the paper is organized as follows. In Section
Programming Model. we describe the programming model sup-
ported by cphVB. The section following gives a brief description
of Numerical Python, which is the first programming interface
that fully supports cphVB. Sections Design and Implementation
cover the overall cphVB design and an implementation of it.
In Section Performance Study, we conduct an evaluation of the
implementation. Finally, in Section Future Work and Conclusion
we discuss future work and conclude.

Related Work

The key motivation for cphVB is to provide a framework for
the utilization of heterogeneous computing systems with the

*. Open Source Project - Website: http://cphvb.bitbucket.org.
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goal of obtaining high-performance, high-productivity and high-
portability (HP3). Systems such as pyOpenCL/pyCUDA [Klo09]
provides a direct mapping from front-end language to the op-
timization target. In this case, providing the user with direct
access to the low-level systems OpenCL [Khr10] and CUDA
[Nvi10] from the high-level language Python [Ros10]. The work
in [Klo09] enables the user to write a low-level implementation in
a high-productivity language. The goal is similar to cphVB – the
approach however is entirely different. cphVB provides a means to
hide low-level target specific code behind a programming model
and providing a framework and runtime environment to support it.

Intel Math Kernel Library [Int08] is in this regard more com-
parable to cphVB. Intel MKL is a programming library providing
utilization of multiple targets ranging from a single-core CPU to a
multi-core shared memory CPU and even to a cluster of computers
all through the same programming API. However, cphVB is not
only a programming library it is a runtime system providing sup-
port for a vector oriented programming model. The programming
model is well-known from high-productivity languages such as
MATLAB [Mat10], [Rrr11], [Idl00], GNU Octave [Oct97] and
Numerical Python (NumPy) [Oli07] to name a few.

cphVB is more closely related to the work described in
[Gar10], here a compilation framework is provided for execution
in a hybrid environment consisting of both CPUs and GPUs. Their
framework uses a Python/NumPy based front-end that uses Python
decorators as hints to do selective optimizations. cphVB similarly
provides a NumPy based front-end and equivalently does selective
optimizations. However, cphVB uses a slightly less obtrusive
approach; program selection hints are sent from the front-end via
the NumPy-bridge. This approach provides the advantage that any
existing NumPy program can run unaltered and take advantage of
cphVB without changing a single line of code. Whereas unPython
requires the user to manually modify the source code by applying
hints in a manner similar to that of OpenMP [Pas05]. This non-
obtrusive design at the source level is to the author’s knowledge
novel.

Microsoft Accelerator [Dav04] introduces ParallelArray,
which is similar to the utilization of the NumPy arrays in cphVB
but there are strict limitations to the utilization of ParallelArrays.
ParallelArrays does not allow the use of direct indexing, which
means that the user must copy a ParallelArray into a conventional
array before indexing. cphVB instead allows indexed operations
and additionally supports array-views, which are array-aliases
that provide multiple ways to access the same chunk of allocated
memory. Thus, the data structure in cphVB is highly flexible
and provides elegant programming solutions for a broad range
of numerical algorithms. Intel provides a similar approach called
Intel Array Building Blocks (ArBB) [New11] that provides re-
targetability and dynamic compilation. It is thereby possible to
utilize heterogeneous architectures from within standard C++. The
retargetability aspect of Intel ArBB is represented in cphVB as a
plain and simple configuration file that define the cphVB runtime
environment. Intel ArBB provides a high performance library
that utilizes a heterogeneous environment and hides the low-level
details behind a vector oriented programming model similar to
cphVB. However, ArBB only provides access to the programming
model via C++ whereas cphVB is not biased towards any one
specific front-end language.

On multiple points cphVB is closely related in functionality
and goals to the SEJITS [Cat09] project. SEJITS takes a dif-
ferent approach towards the front-end and programming model.

Fig. 1: Matrix expression of a simple 5-point stencil computation
example. See line eight in the code example, for the Python expression.

SEJITS provides a rich set of computational kernels in a high-
productivity language such as Python or Ruby. These kernels are
then specialized towards an optimality criteria. This approach has
shown to provide performance that at times out-performs even
hand-written specialized code towards a given architecture. Being
able to construct computational kernels is a core issue in data-
parallel programming.

The programming model in cphVB does not provide this ker-
nel methodology. cphVB has a strong NumPy heritage which also
shows in the programming model. The advantage is easy adapt-
ability of the cphVB programming model for users of NumPy,
Matlab, Octave and R. The cphVB programming model is not a
stranger to computational kernels – cphVB deduce computational
kernels at runtime by inspecting the vector bytecode generated by
the Bridge.

cphVB provides in this sense a virtual machine optimized
for execution of vector operations, previous work [And08] was
based on a complete virtual machine for generic execution whereas
cphVB provides an optimized subset.

Numerical Python

Before describing the design of cphVB, we will briefly go through
Numerical Python (NumPy) [Oli07]. Numerical Python heavily
influenced many design decisions in cphVB – it also uses a vector
oriented programming model as cphVB.

NumPy is a library for numerical operations in Python, which
is implemented in the C programming language. NumPy provides
the programmer with a multidimensional array object and a whole
range of supported array operations. By using the array operations,
NumPy takes advantage of efficient C-implementations while
retaining the high abstraction level of Python.

NumPy uses an array syntax that is based on the Python list
syntax. The arrays are indexed positionally, 0 through length –
1, where negative indexes is used for indexing in the reversed
order. Like the list syntax in Python, it is possible to index
multiple elements. All indexing that represents more than one
element returns a view of the elements rather than a new copy
of the elements. It is this view semantic that makes it possible
to implement a stencil operation as illustrated in Figure 1 and
demonstrated in the code example below. In order to force a real
array copy rather than a new array reference NumPy provides the
”copy” method.

In the rest of this paper, we define the array-base as the
originally allocated array that lies contiguously in memory. In
addition, we will define the array-view as a view of the elements
in an array-base. An array-view is usually a subset of the
elements in the array-base or a re-ordering such as the reverse
order of the elements or a combination.
1 center = full[1:-1, 1:-1]
2 up = full[0:-2, 1:-1]
3 down = full[2: , 1:-1]
4 left = full[1:-1, 0:-2]
5 right = full[1:-1, 2: ]
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6 while epsilon < delta:
7 work[:] = center
8 work += 0.2 * (up+down+left+right)
9 center[:] = work

Target Programming Model

To hide the complexities of obtaining high-performance from
a heterogeneous environment any given system must provide a
meaningful high-level abstraction. This can be realized in the
form of domain specific languages, embedded languages, language
extensions, libraries, APIs etc. Such an abstraction serves two
purposes: 1) It must provide meaning for the end-user such that
the goal of high-productivity can be met with satisfaction. 2) It
must provide an abstraction that consists of a sufficient amount of
information for the system to optimize its utilization.

cphVB is not biased towards any specific choice of abstraction
or front-end technology as long as it is compatible with a vector
oriented programming model. This provides means to use cphVB
in functional programming languages, provide a front-end with a
strict mathematic notation such as APL [Apl00] or a more relaxed
syntax such as MATLAB.

The vector oriented programming model encourages express-
ing programs in the form of high-level array operations, e.g.
by expressing the addition of two arrays using one high-level
function instead of computing each element individually. The
NumPy application in the code example above figure 1 is a good
example of using the vector oriented programming model.

Design of cphVB

The key contribution in this paper is a framework, cphVB, that
support a vector oriented programming model. The idea of cphVB
is to provide the mechanics to seamlessly couple a programming
language or library with an architecture-specific implementation
of vectorized operations.

cphVB consists of a number of components that commu-
nicate using a simple protocol. Components are allowed to be
architecture-specific but they are all interchangeable since all
uses the same communication protocol. The idea is to make it
possible to combine components in a setup that perfectly match
a specific execution environment. cphVB consist of the following
components:

Programming Interface
The programming language or library exposed to
the user. cphVB was initially meant as a computa-
tional back-end for the Python library NumPy, but
we have generalized cphVB to potential support all
kinds of languages and libraries. Still, cphVB has
design decisions that are influenced by NumPy and
its representation of vectors/matrices.

Bridge
The role of the Bridge is to integrate cphVB into
existing languages and libraries. The Bridge generates
the cphVB bytecode that corresponds to the user-code.

Vector Engine
The Vector Engine is the architecture-specific imple-
mentation that executes cphVB bytecode.

Vector Engine Manager
The Vector Engine Manager manages data location
and ownership of vectors. It also manages the distri-
bution of computing jobs between potentially several
Vector Engines, hence the name.

Fig. 2: cphVB design idea.

An overview of the design can be seen in Figure 2.

Configuration

To make cphVB as flexible a framework as possible, we manage
the setup of all the components at runtime through a configuration
file. The idea is that the user can change the setup of components
simply by editing the configuration file before executing the
user application. Additionally, the user only has to change the
configuration file in order to run the application on different
systems with different computational resources. The configuration
file uses the ini syntax, an example is provided below.
# Root of the setup
[setup]
bridge = numpy
debug = true

# Bridge for NumPy
[numpy]
type = bridge
children = node

# Vector Engine Manager for a single machine
[node]
type = vem
impl = libcphvb_vem_node.so
children = mcore

# Vector Engine using TLP on shared memory
[mcore]
type = ve
impl = libcphvb_ve_mcore.so

This example configuration provides a setup for utilizing a shared
memory machine with thread-level-parallelism (TLP) on one ma-
chine by instructing the vector engine manager to use a single
multi-core TLP engine.

Bytecode

The central part of the communication between all the components
in cphVB is vector bytecode. The goal with the bytecode language
is to be able to express operations on multidimensional vectors.
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Taking inspiration from single instruction, multiple data (SIMD)
instructions but adding structure to the data. This, of course, fits
very well with the array operations in NumPy but is not bound nor
limited to these.

We would like the bytecode to be a concept that is easy
to explain and understand. It should have a simple design that
is easy to implement. It should be easy and inexpensive to
generate and decode. To fulfill these goals we chose a design
that conceptually is an assembly language where the operands are
multidimensional vectors. Furthermore, to simplify the design the
assembly language should have a one-to-one mapping between
instruction mnemonics and opcodes.

In the basic form, the bytecode instructions are primitive
operations on data, e.g. addition, subtraction, multiplication, di-
vision, square root etc. As an example, let us look at addition.
Conceptually it has the form:

add $d, $a, $b

Where add is the opcode for addition. After execution $d will
contain the sum of $a and $b.

The requirement is straightforward: we need an opcode. The
opcode will explicitly identify the operation to perform. Addition-
ally the opcode will implicitly define the number of operands. Fi-
nally, we need some sort of symbolic identifiers for the operands.
Keep in mind that the operands will be multidimensional arrays.

Interface

The Vector Engine and the Vector Engine Manager exposes
simple API that consists of the following functions: initialization,
finalization, registration of a user-defined operation and execution
of a list of bytecodes. Furthermore, the Vector Engine Manager
exposes a function to define new arrays.

Bridge

The Bridge is the bridge between the programming interface,
e.g. Python/NumPy, and the Vector Engine Manager. The Bridge
is the only component that is specifically implemented for the
programming interface. In order to add cphVB support to a
new language or library, one only has to implement the bridge
component. It generates bytecode based on programming interface
and sends them to the Vector Engine Manager.

Vector Engine Manager

Instead of allowing the front-end to communicate directly with
the Vector Engine, we introduce a Vector Engine Manager (VEM)
into the design. It is the responsibility of the VEM to manage data
ownership and distribute bytecode instructions to several Vector
Engines. It is also the ideal place to implement code optimization,
which will benefit all Vector Engines.

To facilitate late allocation, and early release of resources, the
VEM handles instantiation and destruction of arrays. At array
creation only the meta data is actually created. Often arrays are
created with structured data (e.g. random, constants), with no data
at all (e.g. empty), or as a result of calculation. In any case it saves,
potentially several, memory copies to delay the actual memory
allocation. Typically, array data will exist on the computing device
exclusively.

In order to minimize data copying we introduce a data owner-
ship scheme. It keeps track of which components in cphVB that
needs to access a given array. The goal is to allow the system to
have several copies of the same data while ensuring that they are

in synchronization. We base the data ownership scheme on two
instructions, sync and discard:

Sync
is issued by the bridge to request read access to a data
object. This means that when acknowledging a sync
request, the copy existing in shared memory needs to
be the most resent copy.

Discard
is used to signal that the copy in shared memory has
been updated and all other copies are now invalid.
Normally used by the bridge to upgrading a read
access to a write access.

The cphVB components follow the following four rules when
implementing the data ownership scheme:

1) The Bridge will always ask the Vector Engine Manager
for access to a given data object. It will send a sync
request for read access, followed by a release request for
write access. The Bridge will not keep track of ownership
itself.

2) A Vector Engine can assume that it has write access
to all of the output parameters that are referenced in
the instructions it receives. Likewise, it can assume read
access on all input parameters.

3) A Vector Engine is free to manage its own copies of
arrays and implement its own scheme to minimize data
copying. It just needs to copy modified data back to share
memory when receiving a sync instruction and delete all
local copies when receiving a discard instruction.

4) The Vector Engine Manager keeps track of array owner-
ship for all its children. The owner of an array has full (i.e.
write) access. When the parent component of the Vector
Engine Manager, normally the Bridge, request access
to an array, the Vector Engine Manager will forward
the request to the relevant child component. The Vector
Engine Manager never accesses the array itself.

Additionally, the Vector Engine Manager needs the capability
to handle multiple children components. In order to maximize
parallelism the Vector Engine Manager can distribute workload
and array data between its children components.

Vector Engine

Though the Vector Engine is the most complex component of
cphVB, it has a very simple and a clearly defined role. It has
to execute all instructions it receives in a manner that obey the
serialization dependencies between instructions. Finally, it has
to ensure that the rest of the system has access to the results
as governed by the rules of the sync, release, and discard
instructions.

Implementation of cphVB

In order to demonstrate our cphVB design we have implemented a
basic cphVB setup. This concretization of cphVB is by no means
exhaustive. The setup is targeting the NumPy library executing
on a single machine with multiple CPU-cores. In this section,
we will describe the implementation of each component in the
cphVB setup – the Bridge, the Vector Engine Manager, and the
Vector Engine. The cphVB design rules (Sec. Design) govern the
interplay between the components.
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Bridge

The role of the Bridge is to introduce cphVB into an already
existing project. In this specific case NumPy, but could just as
well be R or any other language/tool that works primarily on
vectorizable operations on large data objects.

It is the responsibility of the Bridge to generate cphVB
instructions on basis of the Python program that is being run.
The NumPy Bridge is an extension of NumPy version 1.6. It uses
hooks to divert function call where the program access cphVB
enabled NumPy arrays. The hooks will translate a given function
into its corresponding cphVB bytecode when possible. When it
is not possible, the hooks will feed the function call back into
NumPy and thereby forcing NumPy to handle the function call
itself.

The Bridge operates with two address spaces for arrays: the
cphVB space and the NumPy space. All arrays starts in the
NumPy space as a default. The original NumPy implementation
handles these arrays and all operations using them. It is possible to
assign an array to the cphVB space explicitly by using an optional
cphVB parameter in array creation functions such as empty and
random. The cphVB bridge implementation handles these arrays
and all operations using them.

In two circumstances, it is possible for an array to transfer
from one address space to the other implicitly at runtime.

1) When an operation accesses an array in the
cphVB address space but it is not possible for
the bridge to translate the operation into cphVB
code. In this case, the bridge will synchronize
and move the data to the NumPy address space.
For efficiency no data is actually copied instead
the bridge uses the mremap† function to re-
map the relevant memory pages.

2) When an operations access arrays in different
address spaces the Bridge will transfer the ar-
rays in the NumPy space to the cphVB space.
Afterwards, the bridge will translate the opera-
tion into bytecode that cphVB can execute.

In order to detect direct access to arrays in the cphVB address
space by the user, the original NumPy implementation, a Python
library or any other external source, the bridge protects the
memory of arrays that are in the cphVB address space using
mprotect‡. Because of this memory protection, subsequently
accesses to the memory will trigger a segmentation fault. The
Bridge can then handle this kernel signal by transferring the array
to the NumPy address space and cancel the segmentation fault.
This technique makes it possible for the Bridge to support all
valid Python/NumPy application since it can always fallback to
the original NumPy implementation.

In order to gather greatest possible information at runtime, the
Bridge will collect a batch of instructions rather than executing one
instruction at a time. The Bridge will keep recording instruction
until either the application reaches the end of the program or
untranslatable NumPy operations forces the Bridge to move an
array to the NumPy address space. When this happens, the Bridge
will call the Vector Engine Manager to execute all instructions
recorded in the batch.

Vector Engine Manager

The Vector Engine Manager (VEM) in our setup is very simple
because it only has to handle one Vector Engine thus all operations

Processor Intel Core i5-2510M
Clock 2.3 GHz
Private L1 Data Cache 128 KB
Private L2 Data Cache 512 KB
Shared L3 Cache 3072 KB
Memory Bandwidth 21.3 GB/s
Memory 4GB DDR3-1333
Compiler GCC 4.6.3

TABLE 1: ASUS P31SD.

go to the same Vector Engine. Still, the VEM creates and deletes
arrays based on specification from the Bridge and handles all
meta-data associated with arrays.

Vector Engine

In order to maximize the CPU cache utilization and enables paral-
lel execution the first stage in the VE is to form a set of instructions
that enables data blocking. That is, a set of instructions where all
instructions can be applied on one data block completely at a time
without violating data dependencies. This set of instructions will
be referred to as a kernel.

The VE will form the kernel based on the batch of instructions
it receives from the VEM. The VE examines each instruction
sequentially and keep adding instruction to the kernel until it
reaches an instruction that is not blockable with the rest of the
kernel. In order to be blockable with the rest of the kernel an
instruction must satisfy the following two properties where A is
all instructions in the kernel and N is the new instruction.

1) The input arrays of N and the output array of A do not
share any data or represents precisely the same data.

2) The output array of N and the input and output arrays of
A do not share any data or represents precisely the same
data.

When the VE has formed a kernel, it is ready for execution.
Since all instruction in a kernel supports data blocking the VE can
simply assign one block of data to each CPU-core in the system
and thus utilizing multiple CPU-cores. In order to maximize the
CPU cache utilization the VE may divide the instructions into
even more data blocks. The idea is to access data in chunks that
fits in the CPU cache. The user, through an environment variable,
manually configures the number of data blocks the VE will use.

Performance Study

In order to demonstrate the performance of our initial cphVB
implementation and thereby the potential of the cphVB design,
we will conduct some performance benchmarks using NumPy§.
We execute the benchmark applications on ASUS P31SD with an
Intel Core i5-2410M processor (Table 1).

The experiments used the three vector engines: simple, score
and mcore and for each execution we calculate the relative
speedup of cphVB compared to NumPy. We perform strong
scaling experiments, in which the problem size is constant though
all the executions. For each experiment, we find the block size
that results in best performance and we calculate the result of each
experiment using the average of three executions.

†. The function mremap() in GNU C library 2.4 and greater.
‡. The function mprotect() in the POSIX.1-2001 standard.
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The benchmark consists of the following Python/NumPy ap-
plications. All are pure Python applications that make use of
NumPy and none uses any external libraries.

• Jacobi Solver An implementation of an it-
erative jacobi solver with fixed iterations instead
of numerical convergence. (Fig. 3).

• kNN A naive implementation of a k Nearest
Neighbor search (Fig. 4).

• Shallow Water A simulation that simulates a
system governed by the shallow water equations.
It is a translation of a MATLAB application by
Burkardt [Bur10] (Fig. 5).

• Synthetic Stencil A synthetic stencil simulation
the code relies heavily on the slicing operations
of NumPy. (Fig. 6).

Discussion

The jacobi solver shows an efficient utilization of data-blocking to
an extent competing with using multiple processors. The score en-
gine achieves a 1.42x speedup in comparison to NumPy (3.98sec
to 2.8sec).

On the other hand, our naive implementation of the k Near-
est Neighbor search is not an embarrassingly parallel problem.
However, it has a time complexity of O(n2) when the number of
elements and the size of the query set is n, thus the problem should
be scalable. The result of our experiment is also promising – with
a performance speedup of of 3.57x (5.40sec to 1.51sec) even with
the two single-core engines and a speed-up of nearly 6.8x (5.40sec
to 0.79) with the multi-core engine.

The Shallow Water simulation only has a time complexity
of O(n) thus it is the most memory intensive application in
our benchmark. Still, cphVB manages to achieve a performance
speedup of 1.52x (7.86sec to 5.17sec) due to memory-allocation
optimization and 2.98x (7.86sec to 2.63sec) using the multi-core
engine.

Finally, the synthetic stencil has an almost identical perfor-
mance pattern as the shallow water benchmark the score engine
does however give slightly better results than the simple engine.
Score achieves a speedup of 1.6x (6.60sec to 4.09sec) and the
mcore engine achieves a speedup of 3.04x (6.60sec to 2.17sec).

It is promising to observe that even most basic vector en-
gine (simple) shows a speedup and in none of our benchmarks
a slowdown. This leads to the promising conclusion that the
memory optimizations implemented outweigh the cost of using
cphVB. Adding the potential of speedup due to data-blocking
motivates studying further optimizations in addition to thread-
level-parallelization. The mcore engine does provide speedups,
the speedup does however not scale with the number of cores.
This result is however expected as the benchmarks are memory-
intensive and the memory subsystem is therefore the bottleneck
and not the number of computational cores available.

Future Work

The future goals of cphVB involves improvement in two major
areas; expanding support and improving performance. Work has
started on a CIL-bridge which will leverage the use of cphVB
to every CIL based programming language which among others

§. NumPy version 1.6.1.
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Fig. 3: Relative speedup of the Jacobi Method. The job consists of a
vector with 7168x7168 elements using four iterations.
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Fig. 4: Relative speedup of the k Nearest Neighbor search. The job
consists of 10.000 elements and the query set also consists of 1K
elements.
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Fig. 5: Relative speedup of the Shallow Water Equation. The job
consists of 10.000 grid points that simulate 120 time steps.
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Fig. 6: Relative speedup of the synthetic stencil code. The job consists
of vector with 10240x1024 elements that simulate 10 time steps.

include: C#, F#, Visual C++ and VB.NET. Another project in cur-
rent progress within the area of support is a C++ bridge providing
a library-like interface to cphVB using operator overloading and
templates to provide a high-level interface in C++.

To improve both support and performance, work is in progress
on a vector engine targeting OpenCL compatible hardware, mainly
focusing on using GPU-resources to improve performance. Ad-
ditionally the support for program execution using distributed
memory is on progress. This functionality will be added to cphVB
in the form a vector engine manager.

In terms of pure performance enhancement, cphVB will in-
troduce JIT compilation in order to improve memory intensive
applications. The current vector engine for multi-cores CPUs uses
data blocking to improve cache utilization but as our experiments
show then the memory intensive applications still suffer from the
von Neumann bottleneck [Bac78]. By JIT compile the instruction
kernels, it is possible to improve cache utilization drastically.

Conclusion

The vector oriented programming model used in cphVB provides a
framework for high-performance and high-productivity. It enables
the end-user to execute vectorized applications on a broad range
of hardware architectures efficiently without any hardware specific
knowledge. Furthermore, the cphVB design supports scalable ar-
chitectures such as clusters and supercomputers. It is even possible
to combine architectures in order to exploit hybrid programming
where multiple levels of parallelism exist. The authors in [Kri11]
demonstrate that combining shared memory and distributed mem-
ory parallelism through hybrid programming is essential in order
to utilize the Blue Gene/P architecture fully.

In a case study, we demonstrate the design of cphVB by
implementing a front-end for Python/NumPy that targets multi-
core CPUs in a shared memory environment. The implementation
executes vectorized applications in parallel without any user
intervention. Thus showing that it is possible to retain the high
abstraction level of Python/NumPy while fully utilizing the un-
derlying hardware. Furthermore, the implementation demonstrates
scalable performance – a k-nearest neighbor search purely written
in Python/NumPy obtains a speedup of more than five compared
to a native execution.

Future work will further test the cphVB design model as
new front-end technologies and heterogeneous architectures are
supported.
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OpenMG: A New Multigrid Implementation in Python
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Abstract—In many large-scale computations, systems of equations arise in the
form Au = b, where A is a linear operation to be performed on the unknown data
u, producing the known right-hand side, b, which represents some constraint of
known or assumed behavior of the system being modeled. Since such systems
can be very large, solving them directly can be too slow. In contrast, a multigrid
solver solves partially at full resolution, and then solves directly only at low
resolution. This creates a correction vector, which is then interpolated to full
resolution, where it corrects the partial solution. This project aims to create an
open-source multigrid solver called OpenMG, written only in Python. The exist-
ing PyAMG multigrid implementation is a highly versatile, configurable, black-
box solver, but is difficult to read and modify due to its C core. Our proposed
OpenMG is a pure Python experimentation environment for testing multigrid
concepts, not a production solver. By making the code simple and modular,
we make the algorithmic details clear. We thereby create an opportunity for
education and experimentation with the partial solver (Jacobi, Gauss Seidel,
SOR, etc.), the restriction mechanism, the prolongation mechanism, and the
direct solver, or the use of GPGPUs, multiple CPUs, MPI, or grid computing. The
resulting solver is tested on an implicit pressure reservoir simulation problem
with satisfactory results.

Index Terms—python, multigrid, numpy, partial differential equations

Introduction to Multigrid

Multigrid algorithms aim to accelerate the solution of large linear
systems that typically arise from the discretization of partial differ-
ential equations. While small systems (hundreds of unknowns) can
efficiently be solved with direct methods such as Gaussian elim-
ination or iterative methods such as Gauss-Seidel, these methods
do not scale well. In contrast, multigrid methods can theoretically
solve a system in O(N) CPU steps and memory usage [Brandt2].

The entire multigrid algorithm can be summarized in a few
steps. The process below assumes that the user has first discretized
the partial differential equation ("PDE") of interest, or otherwise
expressed the problem as a matrix system of equations.

1) Setup hierarchies of operators and restriction matrices.
2) Find an approximation to the solution (pre-smooth the

high-frequency error).
3) Find the fine residual.
4) Coarsen the residual, and produce the coarse right-hand

side.
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5) Solve at the coarse level (via a direct solver or a recursive
call to the multigrid algorithm).

6) Prolong the coarse solution, and produce the fine correc-
tion vector.

7) Return the corrected solution.

Because of the possibility for a recursive call, this is often
called a multigrid "cycle".

The basic premise of multigrid is that a quick but sloppy
solution can be corrected using information calculated at a coarser
resolution. That is, an approximation is first made at the fine
resolution, and the residual from this approximation is used as the
right-hand side for a correction equation to be solved at a much
coarser resolution, where computational costs are also much lower.
This basic two-grid scheme can be extended by using a recursive
call at the coarse level instead of a direct solver.

History

Multigrid techniques were first introduced in 1964 in the USSR by
R. P. Fedorenko [Fedorenko1], [Fedorenko2], who recognized the
significance of the interaction between the mesh resolution and the
components of the error of an iterative solution (see section Pre-
Smoothing), but who initially conceived of the multigrid algorithm
simply as an occasional correction to a basic iterative solver.
Rigorous analysis of the technique was furthered in the seventies
by Achi Brandt, Wolfgang Hackbusch, and R. A. Nicolaides.
Brandt [Brandt2] placed more emphasis on the coarse-grid repre-
sentations, describing multigrid as a method by which to "intermix
discretization and solution processes, thereby making both of them
orders of magnitude more effective." He further recast the process
in terms of local and global mode analysis (Fourier analysis) in
1994 [Brandt1]. In 1979 Nicolaides wrote a useful synthesis of
the work of Fedorenko and Brandt up to that point, and also
contrasted the older two-level coarse-grid correction strategy with
true, l-level multigrid [Nicolaides]. Hackbrush wrote one of the
foundational texts on multigrid [Hackbusch].

More information on the history of multigrid techniques can
be found in several books [Trottenberg], [Hackbusch], [Wesseling]
or lecture notes [Heckbert] on the topic.

Examples of simulation problem domains that have ben-
efited from multigrid techniques include porous media trans-
port [Douglas2], [Kameswaran], molecular dynamics [Dzwinel],
[Zapata], [Boschitsch], fluid dynamics [Denev], [Douglas2],
[Kameswaran], and neural network simulations (and neurotrans-
mitter diffusion) [Bakshi].

Multigrid concepts are not limited to applications in simula-
tion. Mipmapped textures for computer graphics and ultra-high-
resolution image viewing applications such as satellite imaging
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both rely on the concept of a hierarchy of grid resolutions. Here,
intergrid transfer operators are used for the purpose of creating
images at different resolutions than the original.

Existing Python Implementations

The current open-source Python multigrid implementation
PyAMG (due to Nathan Bell [Bell]) is a very capable and speedy
multigrid solver, with a core written in C. However, because of
the extent of optimizations (and the inclusion of C code), it is not
particularly readable.

Another interesting implementation is Yvan Notay’s AGMG,
which is available for Matlab and Fortran and includes parallel
versions [Notay], [AGMG]. AGMG is available for free for
academic use and by site-license for commercial use.

Our project, OpenMG, is not intended to be a production
solver but instead a tool for education and experimentation. In
this, it is largely inspired by the intentions behind Douglas, Deng,
Haase, Liebmann, and Mckenzie’s AMGlab [Douglas1], which is
written for MATLAB. (AMGlab is freely available, although a
license does not seem to be specified.) OpenMG is constructed
in a modular fashion so each part can be understood by itself.
Optimizations that might decrease readability have been avoided.
Because of the modularity of the system, simplified components of
the algorithm can be overridden with more optimized components
in the future.

Theoretical Algorithm

Discretization

The need for any sort of linear algebraic solver arises when a
system of partial differential equations is discretized on a finite
grid of points. While this is not the work of the OpenMG solver
itself (the arguments to the solver are already in discretized form),
it is a necessary preliminary step.

A good illustration of discretization is that of the Poisson
equation, ∇u = 0. Here, ∇ is the Laplace operator, which signifies
the sum of unmixed second partial derivatives.

∇u =
∂ 2u
∂x2 +

∂ 2u
∂y2

One possible discretization of this equation uses a central differ-
ence of both forward- and backwards-difference discretizations of
the first partial derivatives.

∂ 2u
∂x2 ≈

ui, j+1−ui, j
h − ui, j−ui, j−1

h
h

∂ 2u
∂y2 ≈

ui+1, j−ui, j
h − ui, j−ui−1, j

h
h

∂ 2u
∂x2 +

∂ 2u
∂y2 ≈

(
1
h2

)
(1ui−1, j +1ui, j−1−4ui, j +1ui, j+1 +1ui+1, j)

(1)
When applied to every point in the domain, the coefficient pattern
1,1,−4,1,1 produces a five-banded square coefficent matrix A in
the equation

Au = b (2)

where u is the vector of unknowns, for which we must solve, and
the right-hand side b includes boundary information.

1. Setup R and A Hierarchies

The basic requirement of multigrid is, unsurprisingly, a multiplicy
of grids, each discretizing the problem domain at a different
resolution. In the simplest ("two-grid") scheme, there are two grid
levels, h and H, where grid h has Nh unknowns, grid H has NH
unknowns, Nh >NH , and (for regular Cartesian grids) the values of
h and H represent the fine and coarse grid spacings, respectively.

In geometric multigrid, the operator at the fine level Ah is
replaced by the operator at the coarse level AH by re-discretizing
the underlying PDE. However, this method, while potentially
faster, enforces a tighter coupling between the solver and the
simulation problem at hand.

The alternative to geometric multigrid is algebraic multigrid,
in which the coarse operator is derived not from the PDE but
only from the fine operator. Ruge-Steuben coarsening bases this
transformation on the pattern of coefficients in Ah, but our current
implementation (see Implementation) instead uses a stencil-based
average.

Before the cycling portion of the algorithm, a setup phase is
executed in which we generate a hierarchy of restriction matrices
and coefficient matrices. The restriction array at position h in the
hierarchy, where the number of unknowns is Nh, and where the
number of unknowns for the next coarsest level is NH , is RH

h , or
simply Rh. It functions as an intergrid transfer operator from grid
H to grid h, and has shape (NH ,Nh). That is, it can reduce the size
of a vector from Nh to NH elements:

uH = Rhuh (3)

These restriction matrices are used to produce a similar hierarchy
of coefficient matrices, via the Galerkin coarse-grid approximation
[Zeng].

AH = RhAhRT
h

This is significant because the multigrid algorithm thereby requires
no knowledge of the underlying PDE to generate the coarse-
grid operator. Instead, the coarse-grid operator is created solely
through algebraic manipulation, giving rise to the term “algebraic
multigrid”.

It should be noted that the labels h and H are used because, in
cartesian structured grids, the characteristic that distinguishes be-
tween grid levels is the spacing between points. It is geometrically
intuitive to call the distance between points h in the fine grid and
H in the coarse grid.

2. Pre-Smoothing: uapx,h

An iterative solver is used to produce an initial estimate of the
solution. This solver can be a Jacobi, Gauss-Seidel, or conjugate
gradient implementation, or any other solver that can use a
number-of-iterations parameter to make a tradeoff between overall
accuracy and speed.

These iterative solvers begin with some initial guess of the
solution, which could either be the work of previous solvers or
simply a zero-vector. Because the iterative solvers reduce the high-
frequency components of the error in this guess more quickly than
they reduce the low-frequency ones, they are often referred to
as “smoothers” in the context of multigrid methods. The purpose
of a multigrid scheme is to use these iterative smoothers only
at high resolution to reduce the high-frequency error, relying on
corrections at lower resolution to reduce the low-frequency com-
ponents of the error. [Harimi] See Figure 5 c, and accompanying
explanations in Test Definitions and Results.
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So,

uapx,h = iterative_solve(Ah,bh, iterations) (4)

where iterations is a small integer, often simply 1.

3. Residual: rh

After the iterative solution, an error rh in the approximation uapx,h
can be defined as

Ahuapx,h + rh = bh (5)

where bh is the given right-hand side.

4. Coarse Right-hand-side: bH

let rh = Ahvh
Ahuapx,h +Ahvh = bh (6)

Ah(uapx,h + vh) = bh (7)

So, vh functions as a correction vector for the iterative approxi-
mation. Equation 6 can be rearranged to produce another matrix
equation in the same form as Equation 2:

Ahvh = bh−Ahuapx,h (8)

Here, every element on the right-hand side is known, so it can be
used to form a new right-hand side with which we can solve for
the correction vh. However, because this correction only serves the
purpose of reducing the low-frequency components of the error,
we can safely solve Equation 8 at a coarser resolution without
losing information [Borzi]. So, we make use of our hierarchy of
restriction and coefficient matrices to make Equation 8 an easier
problem to solve (fewer unknowns):

AHvH = Rh(bh−Ahuapx,h) (9)

where AH and Rh are taken from the hierarchy generated earlier.

5. Coarse Solution

The unknown vector and right-hand side of Equation 9 can now be
replaced with new variables, revealing a new problem with only
NH unknowns, down from the Nh unknowns in Equation 8.

AHuH = bH (10)

Because this is simply another matrix equation similar
in form to Equation 2, it can be solved either with
a recursive call to the multigrid solver, or with a di-
rect solver, such Numpy’s np.linalg.solve or SciPy’s
scipy.base.np.linalg.solve.

6. Interpolate Correction

In order to correct the iterative approximation uapx, the solution
from the coarse problem must be interpolated from NH unknowns
up to Nh unknowns. Because the restriction matrices are defined
algebraically in Equation 3, it is possible to define an interpolation
(or “prolongation”) algebraically:

vh = RT
h uH (11)

This is used to prolongate the solution uH from the coarse level
for use as a correction vh at the fine level. Note that, at the coarse
level, the symbol u is used, since this is a solution to the coarse
problem, but, at the fine level, the symbol v is used, since this is
not the solution, but a correction to the iterative approximation.

Fig. 1: Recursive multigrid cycle, with V-cycle iteration until conver-
gence.

7. Return Corrected Solution

With the correction vector in hand, it is now possible to return
a solution whose error has been reduced in both high- and low-
frequency components:

uh = uapx + vh (12)

It is also possible to insert a second “post-smoothing” step be-
tween the interpolation and the return steps, similar to Equation
4.

As described in this section, this algorithm is a 2-grid V-cycle,
because the high-resolution → low-resolution → high-resolution
pattern can be visualized as a V shape. In our small sample
problem, using more grid levels than two actually wasted enough
time on grid setup to make the solver converge less quickly.
However, repeated V-cycles were usually necessary for visually
compelling convergence. That is, the solution from one V-cycle
was used as the initial guess for the fine-grid pre-smoother of the
next V-cycle. More complicated cycling patterns are also possible,
such as W-cycles, or the full-multigrid ("FMG") pattern, which
actually starts at the coarse level. However, these patterns are not
yet addressed by OpenMG.

Implementation

The process shown in Figure 1 is a multigrid solver with nearly
black-box applicability–the only problem-specific piece of infor-
mation required (one of the “parameters” in the figure) is the shape
of the domain, as a 3-tuple, and it is possible that future versions
of restriction() will obviate this requirement. Note that, in
code listings given below, import numpy as np is assumed.

Setup R and A Hierarchies

Any restriction can be described by a restriction matrix. Our
current implementation, which is replacable in modular fashion,
uses 2-point averages in one dimension, 4-point averages in two
dimensions, and 8-point averages in three dimensions, as depicted
in Figure 2. Alternate versions of these two functions have been
developed that use sparse matrices, but the dense versions are
shown here for simplicity.
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Fig. 2: Eight-point average restriction method. All points are included
in the fine set, but red points included in both the fine set and the
coarse set. Blue points are used in the calculation of eight-point
average for the coarse point nearest to the camera in the bottom
plane.

Other simplifications have also been made–for example,
automatic V-cycling has been removed, although, in the ac-
tual code, this is contained with in the wrapper function
openmg.mg_solve(). Forced line breaks have also reduced
the readability of this sample code. We recommend download-
ing the most up-to-date OpenMG code from https://github.com/
tsbertalan/openmg for working examples.

The following code generates a particular restriction matrix,
given a number of unknowns N, and a problem domain shape
tuple, shape. It fails (or works very inefficiently) for domains
that have odd numbers of points along one or more dimensions.
Operator-based coarsening would remove this restriction.

from sys import exit
def restriction(N, shape):

alpha = len(shape) # number of dimensions
R = np.zeros((N / (2 ** alpha), N))
r = 0 # rows
NX = shape[0]
if alpha >= 2:

NY = shape[1]
each = 1.0 / (2 ** alpha)
if alpha == 1:

coarse_columns = np.array(range(N)).\
reshape(shape)\
[::2].ravel()

elif alpha == 2:
coarse_columns = np.array(range(N)).\

reshape(shape)\
[::2, ::2].ravel()

elif alpha == 3:
coarse_columns = np.array(range(N)).\

reshape(shape)\
[::2, ::2, ::2].ravel()

else:
print "> 3 dimensions is not implemented."
exit()

for c in coarse_columns:
R[r, c] = each
R[r, c + 1] = each
if alpha >= 2:

R[r, c + NX] = each

R[r, c + NX + 1] = each
if alpha == 3:

R[r, c + NX * NY] = each
R[r, c + NX * NY + 1] = each
R[r, c + NX * NY + NX] = each
R[r, c + NX * NY + NX + 1] = each

r += 1
return R

The function restriction() is called several times by the
following code to generate the complete hierarchy of restriction
matrices.
def restrictions(N, problemshape, coarsest_level,\

dense=False, verbose=False):
alpha = np.array(problemshape).size
levels = coarsest_level + 1
# We don't need R at the coarsest level:
R = list(range(levels - 1))
for level in range(levels - 1):

newsize = N / (2 ** (alpha * level))
R[level] = restriction(newsize,

tuple(np.array(problemshape)\
/ (2 ** level)))

return R

Using the hierarchy of restriction matrices produced by
restrictions() and the user-supplied top-level coefficient
matrix A_in, the following code generates a similar hierarchy
of left-hand-side operators using the Galerkin coarse-grid approx-
imation, AH = RAhRT .
def coarsen_A(A_in, coarsest_level, R, dense=False):

levels = coarsest_level + 1
A = list(range(levels))
A[0] = A_in
for level in range(1, levels):

A[level] = np.dot(np.dot(
R[level-1],
A[level-1]),

R[level-1].T)
return A

Both restrictions() and coarsen_A() return lists of
arrays.

Smoother

Our iterative smoother is currently a simple implementation of
Gauss-Seidel smoothing, but this portion of the code could be
replaced with a Jacobi implementation to allow parallelization if
larger domains prove to spend more execution time here.
def iterative_solve(A, b, x, iterations):

N = b.size
iteration = 0
for iteration in range(iterations):

for i in range(N): # [ 0 1 2 3 4 ... n-1 ]
x[i] = x[i] + (b[i] - np.dot(

A[i, :],
x.reshape((N, 1)))

) / A[i, i]
return x

Multigrid Cycle

The following function uses all the preceeding functions to per-
form a multigrid cycle, which encompasses the Residual, Coarse
Solution, Interpolate Correction, and Return Corrected Solution
steps from the theoretical discussion above. It calls itself recur-
sively until the specified number of gridlevels is reached. It
can be called directly, or through a wrapper function with a more
simplified prototype, mg_solve(A_in, b, parameters)
(not shown here).
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def amg_cycle(A, b, level, \
R, parameters, initial='None'):

# Unpack parameters, such as pre_iterations
exec ', '.join(parameters) +\

', = parameters.values()'
if initial == 'None':

initial = np.zeros((b.size, ))
coarsest_level = gridlevels - 1
N = b.size
if level < coarsest_level:

u_apx = iterative_solve(\
A[level],\
b,\
initial,\
pre_iterations,)

b_coarse = np.dot(R[level],\
b.reshape((N, 1)))

NH = len(b_coarse)
b_coarse.reshape((NH, ))
residual = b - np.dot(A[level], u_apx)
coarse_residual = np.dot(\

R[level],\
residual.reshape((N, 1))\
).reshape((NH,))

coarse_correction = amg_cycle(
A,
coarse_residual,
level + 1,
R,
parameters,
)

correction = np.dot(\
R[level].transpose(),\
coarse_correction.\
reshape((NH, 1))\

).reshape((N, ))
u_out = u_apx + correction
norm = np.linalg.norm(b - np.dot(

A[level],
u_out.\
reshape((N,1))
))

else:
norm = 0
u_out = np.linalg.solve(A[level],\

b.reshape((N, 1)))
return u_out

Results

Sample Application

In our test example we simulate the geologic sequestration of CO2.
The governing pressure-saturation equation is

v =−K(λw +λCO2)∇p+K(λwρw +λCO2 ρCO2)G (13)

and the saturation equation is

φ
∂ sw

∂ t
+∇( fw(sw)[v+d(sw,∇sw)+g(sw)]) =

qw

ρw
(14)

where v is a velocity vector, the gravitational pull-down force G
is −g∇z, subscript w represents water-saturated porous medium,
g represents gravitational acceleration, K represents the perme-
ability tensor, p represents fluid pressure, q models sources and
sinks, (outflow or inflow), S represents saturation, z represents
the vertical direction, ρ represents water density, φ represents
porosity, and λ represents mobility (ratio of permeability to
viscosity).

Equation 14, the saturation equation, is generally parabolic.
However, the terms for the viscous force f (s)v and the gravity
force f (s)g(s) usually dominate the capillary force f (s)d(s,∇s).
Therefore the equation will have a strong hyperbolic nature and

Fig. 3: Pressure isosurfaces of several solutions to a 3D porous
media problem with 123 = 1728 unknowns. The grey outer surface
is a direct solution, while the blue inner surfaces are the result
of different numbers of multigrid V-cycles–with more V-cycles, the
multigrid solution approaches the true solution. Plotted with MayaVi’s
mlab.contour3d.

Fig. 4: Parallel testing apparatus. The IMPES (implicit pressure,
explicit saturation) simulation script calls the OpenMG script when
solving its pressure equation, and then reports a dictionary of depen-
dent variables of interest to be written to a comma-separated-value
file.

can be solved by many schemes [Aarnes]. On the other hand,
Equation 13, the pressure equation, is of elliptic form. After
discretization, this equation will reduce to Au = b and a multigrid
scheme can be used for efficient computation especially if the
problem size is big (for instance, millions of cells [Carlson]).

The unknown quantity, which the solver algorithm must find,
is the fluid pressure p. In Figure 3, we show ~3033 psi isosurfaces
of this solution (pressure across the entire domain varies by only
about 5 psi). The actual solution (via np.linalg.solve) is
rendered in grey, and the three blue surfaces (from narrowest to
widest) are the result of applying one, two, and three two-grid
cycles, respectively.

As shown, this two-grid solver is converging on the true
solution in the vicinity of this isosurface. The multigrid isosurface
and the direct solution isosurface become indistinguishable within
about ten V-cycles.

Discussion

Testing Setup

In a wrapper script depicted in Figure 4, we used the Python 2.6
module multiprocessing.Pool to accelerate the execution
of test sets. A dictionary of parameters is constructed for each
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distinct possible parameter combination where several parameters
of interest are being varied. A process in the pool is then assigned
to test each parameter combination. Each pool process then returns
a dictionary of dependent variables of interest. Our tests are run
on a dual-socket Intel Xeon E5645 (2.40GHz) machine with 32
GB of memory. However, care still must be taken to ensure that
the number of processes in the pool is not so high that individual
processes run out of memory.

Test Definitions and Results

In Figure 5 a, we show the results of a V-cycle convergence test
with our OpenMG solver. Here, we specify the number of repeated
2-grid cycles as an independent variable, and monitor the residual
norm as the dependent variable. There were 83 = 512 unknowns,
one pre-smoothing iteration, and zero post-smoothing iterations.
OpenMG was able to reduce the error at a steady logarithmic rate.
The norm used everywhere was the 2-norm.

This contrasts with Figure 5 b, where we show the convergence
behavior of the ordinary Gauss-Seidel on its own. Similarly to the
method used for Fig. 5 a, we used the number of iterations as
the independent variable, and examined the residual norm as the
dependent variable. There were 123 = 1723 unknowns, and the test
took 43 hours to complete 200,000 iterations. However (for this
sample problem), the Gauss-Seidel solver quickly exhausts the
high-frequency portions of the solution error, and begins slower
work on the low-frequency components.

This frequency-domain effect can be seen more clearly in
Figure 5 c, where we show the Fourier transform of the er-
ror (u− uapx ) after different numbers of Gauss-Seidel itera-
tions. A Hann-window smoother with a window width of 28
was applied after the Fourier transform to better distinguish
the several curves. For this test, we used a 1D Poisson coef-
ficent matrix and an expected solution vector generated using
np.random.random((N,)).reshape((N,1)), where N
was 18,000 unknowns. Because of this method of noise gen-
eration (a continuous uniform distribution, or equal probability
of all permitted magnitudes at all points in the domain), the
pre-generated solution sampled all frequencies unequally, unlike
true white noise. This accounts for the initial bell-shaped error
in the frequency domain. However, the unequal rate of error-
reduction for different frequencies that was observed as iterations
were completed is to be expected of iterative solvers, hence their
description as "smoother" in the context of multigrid methods.
This recalls the argument from a frequency-domain perspective
for a multigrid solver [Brandt2].

In Figure 5 d, we examine the effect of this Gauss-Seidel pre-
smoother by increasing the number of pre-smoothing iterations
from our default value of only one. Dependent variables include
the number of V-cycles required to obtain a residual norm of
0.00021, and the time taken by the whole OpenMG solver to
arrive at that precision. There were 83 = 512 unknowns and two
grid levels, and all restriction and coefficient matrices used were
stored in dense format. As expected, increasing the number of
pre-smoothing iterations does decrease the number of required V-
cycles for convergence, but this does not generally improve the
solution time, except in the transition from 3 V-cycles to 2 V-
cycles. However, this trend is useful to validate that the smoother
is behaving as expected, and might be useful if, in the future,
some coarsening method is employed that makes V-cycling more
expensive.

Fig. 5: Results from explanatory tests. Tests described and interpreted
in Test Definitions and Results.

The Gauss-Seidel (GS) solver’s very slow convergence in low-
frequency error accounts for the difference in time between it and
the OpenMG multigrid (mmg) solver, as shown in Figure 5 e.
Here, we compare the running times of several solvers, including
PyAMG’s smoothed aggregation solver, our own pure-python
Gauss-Seidel iterative solver, and the direct solver np.linalg.solve.
There were 203 = 8000 unknowns, and dense R and A matrices
were used for OpenMG. In order to keep the GS bar similar
in scale to the other bars in the chart, a relatively high residual
norm tolerance of 0.73 was used for both the GS and mmg
solvers. However, this tolerance parameter was not an option for
the direct solver or PyAMG, both of which achieved very good
precision without prompting. The PyAMG solver (pyamg-linagg)
used linear aggregation coarsening, and so is not really comparable
to our multigrid implementation in this example, but it is included
in this plot to demonstrate the speed that can be achieved using
optimized multigrid methods with efficient coarsening algorithms.
Our own coarsener uses the simple geometric scheme shown in
Figure 2, not the more efficient, general, and geometry-agnostic
Ruge-Steuben method usually used in algebraic multigrid solvers.

Conclusion and Future Work

OpenMG is an environment for testing new implementations of
algebraic multigrid components. While optimized implementa-
tions such as PyAMG are more suitable for use as production
solvers, OpenMG serves as an easy-to-read and easy-to-modify
implementation to foster understanding of multigrid methods. For
example, future module improvements could include a parallel
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Jacobi iterative solver, a method of generating restriction matrices
that is tolerant of a wider range of problem sizes, or operator-based
Ruge-Steuben coarsening in addition to the option of stencil-based
coarsening. In order to find computational bottlenecks, it might be
useful also to add a per-step time profiler.

As open-source software, the code for this project has been
posted online under the New BSD license at https://github.com/
tsbertalan/openmg. We invite the reader to download the code
from this address to explore its unit tests and possible modifi-
cations, and to contribute new modules.
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