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A Technical Anatomy of SPM.Python, a Scalable,
Parallel Version of Python

Minesh B. Amin‡∗

F

Abstract—SPM.Python is a scalable, parallel fault-tolerant version of the serial
Python language, and can be deployed to create parallel capabilities to solve
problems in domains spanning finance, life sciences, electronic design, IT, visu-
alization, and research. Software developers may use SPM.Python to augment
new or existing (Python) serial scripts for scalability across parallel hardware.
Alternatively, SPM.Python may be used to better manage the execution of stand-
alone (non-Python x86 and GPU) applications across compute resources in a
fault-tolerant manner taking into account hard deadlines.

Index Terms—fault tolerance, parallel closures, parallel exceptions, parallel
invariants, parallel programming, parallel sequence points, scalable vocabulary,
parallel management patterns

Prologue

Consider the following acid test for general purpose
parallel computing. A serial session is depicted on
the left, whereas the session on the right describes its
parallel equivalent:

>>> createVirtualCloud -async
>>> cmdA >>> cmdA -parallel
>>> cmdB >>> cmdB -parallel
>>> cmdC >>> cmdC -parallel
>>> cmdD >>> cmdD -parallel

For example, the command cmdA -parallel may be a par-
allel make-like capability, while the command cmdB -parallel
may be a map-reduce capability. At the same time, the command
cmdC -parallel may be a fine grain parallel SAT solver that
limits itself to resources with specific incarnations of those utilized
by the command cmdA -parallel. Finally, cmdD -parallel
may be a parallel graph-based analytics capability.

Yet, notwithstanding the prosaic serial session, the equivalent
parallel session is in fact predicated on solutions to what were
several formally open problems, including (a) defining a scalable
vocabulary rich enough to capture the essence of a wide range of
parallel problems, (b) the ability to utilize a collection of hardware
resources in completely different ways, depending on the nature of
parallelism exploited by the respective commands within the same
session, and (c) the ability to treat the conclusion of each parallel
command as a sequence point, thus guaranteeing that there would
be no pending side effects post conclusion.

* Corresponding author: mamin@mbasciences.com
‡ MBA Sciences, Inc

Copyright © 2011 Minesh B. Amin. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Introduction

In this paper, we shall review (patented) SPM technology, and
the methodology behind it, both predicated on the supposition
that parallelism entails nothing more than the management of a
collection of serial tasks, where management refers to the policies
by which:

• tasks are scheduled,
• premature terminations are handled,
• preemptive support is provided,
• communication primitives are enabled/disabled, and
• the manner in which resources are obtained and released

and serial tasks are classified in terms of either:

• Coarse grain – where tasks may not communicate prior to
conclusion, or

• Fine grain – where tasks may communicate prior to con-
clusion.

We shall review how SPM.Python augments the serial Python
language to include a suite of parallel primitives, henceforth
referred to as parallel closures. These closures represent the sole
means by which to express any parallelism when leveraging
SPM.Python. Their APIs are designed to be as close to the
developer’s intent as possible, and therefore easy to relate to.
Furthermore, the API of all closures represent the boundary that
delineates the serial component (authored and maintained by the
developer) from the parallel component (authored and embedded
within SPM.Python).

Specifically, the context for and solutions to four formerly
open technical problems will be reviewed:

a) decoupling tracking of resources from management of
resources,

b) declaration and definition of parallel closures, the build-
ing blocks of all parallel constructs,

c) design and architecture of parallel closures in a way
so that serial components are delineated from parallel
components, and

d) extensions to the general exception handling infrastruc-
ture to account for exceptions across many compute
resources.

We will illustrate key concepts by reviewing a simple, scalable,
fault-tolerant, self-cleaning 60-line Python script that can be used
to launch any stand-alone (x86 or GPU) applications in parallel.
Appendix A will provide another self-contained Python script that
calculates the total number of prime numbers within a given range;
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thus, illustrating how any Python module may be parallelized
using one of SPM.Python’s several built-in parallel closures.
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Fig. 1: In order to facilitate the exploitation of multiple, potentially
different, forms of parallelism within a single session of SPM.Python,
tracking of resources is decoupled from the management of resources.
Therefore, while the tracker is always online, at any moment in time,
at most one task manager may be online.
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Fig. 2: Parallel sequence points in terms of online and offline states
of the Hub and Spokes. On the Hub, transition to online occurs when
a task manager is invoked; transition back to offline occurs when the
said manager concludes. On the Spoke, transition to online occurs
when a task evaluator is invoked; transition back to offline occurs
when the said evaluator concludes.

Related Work

Traditionally, most parallel solutions in Python have taken the
form of: (a) distributed task queues like Celery[1], Parallel
Python[2], (b) distributed frameworks like Disco (MapReduce)[3],
PaPy (parallel pipelines)[4], or (c) low-level wrappers around HPC
libraries like MPI[5], PVM[6]. In sharp contrast, SPM.Python is

a single runtime environment that provides access to multiple
different, distinct forms of parallelism by way of parallel prim-
itives called parallel closures.. Furthermore, these closures are
architectured to be as close to the developer’s intent as possible –
in terms of, say, either coarse or fine-grain DAG/templates/hybrid
flows, and lists – while de-emphasizing low-level error-prone
concepts like locks, threads, pipes, mutexes and semaphores.

Tracking of Resources

In SPM.Python, compute resources are tracked independently of
any task manager. In operation, any task manager may come online
and request resources from the tracker. The task manager would
then manage the execution of tasks using the acquired resources,
and when done, go offline (i.e. release the resources back to the
tracker). Another task manager may subsequently come online,
obtain the same or different resources used by a previous task
manager, and utilize those resources in a completely different way.
In other words, the task managers can be implemented more sim-
ply because each manager would have a more narrowly focused
discrete policy. Furthermore, a tight coupling can be established
between a task manager and the communication closures, thus
preventing a whole class of deadlocks from occurring. More
details can be found at [7].

Declaration and Definition of Parallel Closures

In SPM.Python, parallel closures are the building blocks of all
parallel constructs, and provide the sole means by which one may
express how serial components interact with parallel components.
The interactions may take place in one of two contexts (a) when
creating, submitting, and evaluating tasks, and (b) when creat-
ing and processing messages. However, any usage of a parallel
closure within any resource is predicated on a successful, safe,
asynchronous and race-free declaration and definition across many
compute resources. We solve this problem by augmenting the
traditional concept of serial sequence points by introducing the
notion of offline and online states. The declaration and definition
of parallel closures is only permitted when the resource in question
is in the offline state – a state when SPM.Python guarantees that
the serial component of the resource may not communicate with
the outside world and vice versa. So, all resources start off offline
( A , C ).

On
the Hub, the transition to the online state occurs when a

parallel (task manager) closure is invoked; the transition back
to the offline state does not occur until just before the closure
concludes. On the Spoke, SPM.Python receives a task from the
Hub while offline ( C ), and at which point any preloading of
Python modules is performed. One side effect of this preloading
may be the declaration and definition of parallel closures. Next,
the transition to online is made before SPM.Python invokes the
callback ( D ) for the task; the transition back to offline does not
occur until just after the callback concludes.
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Fig. 3: The architectural and runtime perspectives of coarse grain
task manager closures. Note that such closures do not permit tasks to
communicate prior to conclusion.
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Fig. 4: The architectural and runtime perspective of fine grain
(limited) task manager closures. Note that such closures permit tasks
to communicate only with the Hub.
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Fig. 5: The architectural and runtime perspective of fine grain
(general) task manager closures. Note that such closures permit
communication among Spokes and, if appropriate, with the Hub.

Types of Fault-Tolerant Parallel Closures

A key tenet of the serial software ecosystem is the asymptotic
parity between the serial compute resources available to the
developers and the end-users, which makes possible the reporting,
reproduction, and resolution of bugs.

With parallel software, this most fundamental of tenets is vio-
lated; software engineers need to be able to produce high-quality

parallel software in what is an essentially serial environment, yet
be able to deploy the said software in a parallel environment.

SPM.Python addresses this dichotomy by offering a suite of
easy to relate to parallel closures. These closures enable the
prototyping, validation, and testing of parallel solutions in an
essentially serial-like development environment, yet are scalable
when exercised in any parallel environment.

Coarse grain

Exploiting coarse grain parallelism is anchored around the asyn-
chronous declaration and definition of a parallel (task manager)
closure ( ) across all resources (Hub and Spokes). On the Hub,
this is depicted by ( A ). On the Spokes, this is only possible prior
to the evaluation of a task, as depicted by ( C ), when the modules
may be preloaded.

Next,
existing serial functionality ( ) may be parallelized by having

it be augmented with serial code ( ) to:

• generate and submit tasks to the parallel task manager, and
handle status reports/exceptions from tasks, as depicted by
( B )

• evaluate tasks, as depicted by ( D )

Finally, actual parallelism can commence by invoking the task
manager on the Hub with a collection of tasks, and a handle to
a pool of resources ( B ). The backend of the task manager would
ensure the concurrent scheduling and evaluation of tasks across
all Spokes. Note that coarse grain task manager closures do not
permit the usage of any form of communication closures ( ).

Fine grain (limited)

Fine grain (limited) parallelism augments the coarse grain par-
allelism by allowing tasks to communicate with the Hub prior
to their conclusion. The closures ( ) that would permit such
communication must be declared and defined following the steps
reviewed for parallel task manager closures ( ).

However,
in order to avoid the vast majority of deadlocks, the com-

munication closures must be designed in a way so that all
communication is initiated by the Spokes; the Hub must be
restricted to processing incoming messages from the Spokes, and,
if appropriate, replying to them.

Fine grain (general)

Fine grain (general) parallelism augments the fine grain (limited)
parallelism by permitting communication among Spokes.

However,
in order to avoid the vast majority of deadlocks, the fine grain

(general) task manager closures must treat all Spokes under their
control as a single unit; the premature termination of any Spoke
must be treated as a premature termination of all Spokes.
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Fig. 6: The architectural and runtime perspectives of coarse grain
parallel exceptions.
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Fig. 7: The architectural and runtime perspectives of fine grain
(limited) parallel exceptions.

(Fine grain (general))

Task
Generator

Status reporter

Evaluator

SPM.Python

Serial functionality

A

B D

C

Fig. 8: The architectural and runtime perspectives of fine grain
(general) parallel exceptions.

Types of Fault-Tolerant Parallel Exceptions

To quote Wikipedia, "exception handling is a construct designed
to handle the occurrence of exceptions, special conditions that
change the normal flow of program execution".

The ability to throw and catch exceptions forms the bedrock
of the serial Python language. We will review details of how we

extended the basic serial exception infrastructure to account for
exceptions that may occur across many compute resources.

Our solution is predicated on the notion that parallel task man-
agers must take ownership of how serial exceptions are handled
across all resources under their control. Therefore, unlike in the
serial world, the parallel exception handling infrastructure must be
customized for each type of parallel task manager.

Coarse grain

Exception handling, as traditionally defined in the serial context,
is designed to handle the change in the normal flow of program
execution ... a rather straightforward concept given that there is
only one call-stack.

However,
when exploiting parallelism, the normal flow of program

execution involves multiple resources and, therefore, multiple call-
stacks need to be processed in a fault-tolerant manner. Further-
more, in order to enforce various forms of parallel invariants, we
need an ability to throw exceptions at any resource, but which may
only be caught by the Hub.

Stated another way, in order to make our problem tractable in
the context of coarse grain parallelism:

• on a Spoke, any uncaught/uncatchable exception must be
treated and reported as final status of the task. Therefore,
an exception free execution on the Hub would result in the
normal unrolling of the call-stack at the Hub, as depicted
by ( A , B ).

• on the Hub, any uncaught exception from any callbacks
invoked by the task manager must result in the forcible
termination and, if appropriate, relaunching of Spokes, as
depicted by ( C , D ).

Fine grain (limited)

The exception handling infrastructure in the context of fine grain
(limited) parallelism may be identical to that for coarse grain
parallelism provided stale replies generated by the Hub and meant
for some Spoke can be filtered out at the Hub itself.

Fine grain (general)

Given that fine grain task manager closures treat all Spokes as a
single unit:

• on a Spoke, any uncaught/uncatchable exception must be
treated and reported as final status of all the Spokes.
Therefore, an exception free execution on the Hub and
all Spokes would result in the normal unrolling of the call-
stack at the Hub, as depicted by ( A , B ).

• any uncaught/uncatchable exception from any callbacks
invoked by the task manager or by any Spoke should result
in the forcible termination and, if appropriate, relaunching
of Spokes, as depicted by ( C , D ).
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Fig. 9: Partition/List Parallel Management Pattern.
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Fig. 10: The architectural and runtime perspective of launching stand-
alone applications in parallel using SPM.Python.

Problem Decomposition

Understanding the nature of any parallel problem is key to de-
termining the appropriate solution. Parallel Management Patterns
(PMPs) provide a framework for decomposing and authoring
scalable, fault-tolerant parallel solutions. In other-words, if the
end goal is some parallel application, PMPs enable us to classify
the journey to the end goal in terms of the nature of parallelism
to be exploited, while parallel closures provided by SPM.Python
enable us to express the parallelism implied by any PMP.

For the purpose of illustration, we shall review an implemen-
tation of the Partition/List PMP, a pattern that captures the essence
of how to execute a list of tasks across many compute resources
in a fault-tolerant manner.

Problem Statement

Our goal is to invoke the SPM coprocess API:
.

spm.util.coprocess.shell.policyA(cmd = ...,
timeout = ...,
)

across multiple resources. We shall capture the context - in the
form of arguments needed, and the final result to be returned - of
each execution by way of tasks. To that end, we shall augment
the aforementioned serial functionality by authoring a scalable,
parallel, fault-tolerant Python script made up of the following
components:

• declaration of a (task manager) closure at the Hub,
• definition of tasks, processing of status reports, and invo-

cation of task manager at the Hub.

As an aside, note that the backend of our closure will evaluate the
task on our behalf ... a process that is rather straightforward given
that we would be invoking a built-in method (shell.policyA).

A Task manager: Declaration and Definition

In order to create (declare and define) an instance of the task
manager, we require the Hub to be offline to in order to avoid
various types of parallel race conditions. This invariant is captured
by the decorator statements on lines 1 and 2.

A natural point in time to perform this initialization step would
be when loading the module containing the statements prior to
actual usage. In other words, initialization should occur when
the file containing __init method is imported by the Python
interpreter.

The arguments for creating our instance bear highlighting.
Each instance of any closure must be unique within a module;
hence, the unique string as argument 1. Furthermore, all instances
of our closure are defined in terms of two stages. Of these,
functionality for stage 1 is expected via a callback; hence argument
2 (__taskStat).

.
1 @spm.util.dassert(predicateCb = spm.sys.sstat.amOffline)
2 @spm.util.dassert(predicateCb = spm.sys.pstat.amHub)
3 def __init():
4 return spm.pclosure.macro.papply.list.grainCoarse.\
5 policyA.defun(signature = ’signature::Hub’,
6 stage1Cb = __taskStat,
7 );
8
9 __pc = __init();
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r"""
task<list> :: struct {

# SPM component ...
spm :: struct {

meta :: struct {
label :: scalar<stringSnippet> = deferred;
api :: scalar<ApiMethod> = deferred;
apiArgs :: dict<string,mixed> = deferred;
timeout :: scalar<timeout> = deferred;

};

core :: struct {
relaunchPre :: scalar<bool> = None;
relaunchPost :: scalar<bool> = None;
nameHost :: scalar<auto> = None;
whoAmI :: scalar<auto> = None;

};

stat :: struct {
exception :: scalar<auto> = None;
returnValue :: scalar<record> = None;

};
};
# non-SPM component ...

};
"""

Fig. 11: Typedef for the definition of list of tasks.

Exception
|
+-- SPMError

|
+-- SPMTaskDropped
+-- SPMTaskLoad
| |
| +-- SPMTaskLoadUncaught
| +-- SPMTaskLoadFatal
| +-- SPMTaskLoadKill
| +-- SPMTaskLoadTimeout
|
+-- SPMTaskEval

|
+-- SPMTaskEvalUncaught
+-- SPMTaskEvalFatal
+-- SPMTaskEvalKill
+-- SPMTaskEvalTimeout

Fig. 12: Hierarchy of (parallel) SPM exceptions.

A Task manager: Population and Invocation

Our goal in the function main is to be able to invoke the task
manager (line 18). However, before doing so, we must populate it
with the tasks to be executed. This is achieved by submitting our
tasks by way of the API stage0, as shown in lines 11 through 16.

Once our task manager is invoked, the Hub transitions to the
online state. The transition back to offline does not occur until just
prior to the conclusion of the invocation.

.
1 @spm.util.dassert(predicateCb = spm.sys.sstat.amOffline)
2 @spm.util.dassert(predicateCb = spm.sys.pstat.amHub)
3 def main(pool,
4 taskApi,
5 taskApiArgs,
6 taskTimeout):
7 # Initialize ’stage0’.
8 __pc.stage0.init.main(typedef = ...); # See Figure 11.
9 hdl = __pc.stage0.payload.tie();

10 # Create a list of tasks
11 for entry in taskApiArgs:
12 hdl.spm.meta.label = ’***’; # Not interested.
13 hdl.spm.meta.api = taskApi;
14 hdl.spm.meta.apiArgs = entry;
15 hdl.spm.meta.timeout = taskTimeout;
16 hdl.Push();
17 # Invoke the pmanager
18 __pc.stage0.event.manage(pool = pool,
19 nSpokesMin = ...
20 nSpokesMax = ...
21 timeoutWaitForSpokes = ...
22 timeoutExecution = ...
23 );
24 return;

B Task manager: (Final) Status Reports

The method __taskStat (used when declaring and defining our
closure) is automatically invoked by the task manager to process
the status report of any task. Note that this method is invoked
while the Hub is in the online state. This invariant is captured by
the decorator statements on lines 1 and 2.

.
1 @spm.util.dassert(predicateCb = spm.sys.sstat.amOnline)
2 @spm.util.dassert(predicateCb = spm.sys.pstat.amHub)
3 def __taskStat(pc):
4 try:
5 hdl = pc.stage1.payload.tie();
6 returnValue = hdl.spm.stat.returnValue;
7 if (returnValue.Has(attr = ’stdOut’)):
8 print("\tstdOut : %s", returnValue.stdOut);
9 if (returnValue.Has(attr = ’stdErr’)):

10 print("\tstdErr : %s", returnValue.stdErr);
11 if (returnValue.Has(attr = ’stdOutErr’)):
12 print("\tstdOutErr: %s", returnValue.stdOutErr);
13 except (SPMTaskDropped,
14 SPMTaskLoad,
15 SPMTaskEval,
16 ), (hdl,):
17 pass;
18
19 return (pc.stage1.event.done(),
20 None,
21 )[-1];

C Task manager: Preloading of Python modules

D Task manager: Task Evaluation

As each task involves the invocation of one of the built-in spm
coprocess methods, we do not need to define any method to
accept and evaluate any task. Instead, our task manager will
automatically evaluate our tasks on the Spokes, and return the
respective status reports to the Hub.
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l GNU/Linux [] spm.3.110602.trial.A.python
(Trial Edition)

Spm.Python 3.110602 / Python 2.4.6

[GCC 4.4.3 (64 bit) on linux2]

NOTE

>>>> Trial period ends at <<<<

>>>> 24:00 hrs (Pacific Standard Time) <<<<

>>>> July 28, 2011 <<<<

Type "help", "copyright", "credits", "license" or "spm.Api()" for more information.

Type "spm.DemoExtract(dirname = ...)" to extract demo scripts.

Please visit www.mbasciences.com for the latest and growing

collection of scripts and technical briefs classified in terms of

parallel management patterns.

l >>> import pool
l >>> import demo
l >>> taskApi = spm.util.coprocess.shell.policyA;
l >>> taskApiArgs = \

[

dict(cmd = "echo ‘hostname‘",

timeout = spm.util.timeout.after(seconds = 1)),

dict(cmd = "echo ‘hostname‘",

timeout = spm.util.timeout.after(seconds = 2)),

];

l >>> taskTimeout = spm.util.timeout.after(seconds = 10);
3 >>> demo.main(pool = pool.intraAll(),
l taskApi = taskApi,
l taskApiArgs = taskApiArgs,
l taskTimeout = taskTimeout)
l #: MetaStatus (hub): Waiting - ForSpokes [ for up to 30 secs ]
l #: MetaStatus (hub): Tasks - Eval
l stdOut : lusaka
l stdOut : lusaka
l #: MetaStatus (hub): Tasks - EvalDone
3 >>> demo.main(pool = pool.intraOnePerServer(),
l taskApi = taskApi,
l taskApiArgs = taskApiArgs,
l taskTimeout = taskTimeout)
l #: MetaStatus (hub): Waiting - ForSpokes [ for up to 30 secs ]
l #: MetaStatus (hub): Tasks - Eval
l stdOut : lusaka
l stdOut : lusaka
l #: MetaStatus (hub): Tasks - EvalDone
( >>> demo.main(pool = pool.inter(),
l taskApi = taskApi,
l taskApiArgs = taskApiArgs,
l taskTimeout = taskTimeout)
l #: MetaStatus (hub): Waiting - ForSpokes [ for up to 30 secs ]
l #: MetaStatus (hub): Tasks - Eval
l stdOut : lusaka
l stdOut : lusaka
l #: MetaStatus (hub): Tasks - EvalDone
( >>> demo.main(pool = pool.interOnePerServer(),
l taskApi = taskApi,
l taskApiArgs = taskApiArgs,
l taskTimeout = taskTimeout)
l #: MetaStatus (hub): Waiting - ForSpokes [ for up to 30 secs ]
l #: MetaStatus (hub): Tasks - Eval
l stdOut : lusaka
l stdOut : lusaka
l #: MetaStatus (hub): Tasks - EvalDone
l >>> exit()
l GNU/Linux []

Fig. 13: A typical parallel session of SPM.Python.

The automatic evaluation of our tasks is aided by the typedef used
when initializing stage0 (at the Hub). Specifically, all Spokes
end up executing the pseudo-code:

.
try:

task.spm.stat.returnValue = apply(task.spm.meta.api,
(),
task.spm.meta.apiArgs);

except e:
task.spm.stat.exception = str(e);

return task;

SPM.Python Session

Having reviewed our parallel application, we will conclude by de-
scribing an actual SPM.Python session. We start off by importing
the pool module (l). Next we import our parallel application
demo, and run our application four times before exiting, as
illustrated by 3 and (.

The
first two times (marked 3), we limited ourselves to cores from

the server running the Hub. intraOnePerServer refers to one
unique core on the server.

The
second two times (marked (), we limited our selves to cores

from potentially different servers. interOnePerServer refers
to one unique core from each server.

The
fact that the results produced are identical should not be a

surprise since our code is a function of a handle to a pool, and not
its content. In other words, user code remains unchanged despite
having selected four different sets of resources.

Note that, notwithstanding our rather small script, our solution
is not only fault-tolerant (thanks to closures), self-cleaning (thanks
to robust timeout support), but also robust (thanks to the efficient
manner by which parallel invariants are enforced). So, once we
have tested our solution in a serial-like environment, we can be
sure our solution can be deployed on any cluster. See [8] for a
comprehensive list of problem decomposition using other PMPs
including self contained and equally powerful examples.

Conclusion

In this paper, we reviewed the technical anatomy of SPM.Python,
a scalable parallel version of the serial Python language. We began
with a prologue presenting the acid test for general purpose par-
allel computing. Next, we described the solution to four formerly
open technical problems, namely the decoupling of tracking of
resources from management of resources; the declaration and
definition of parallel closures; the design and architecture of
parallel closures that delineate serial and parallel components;
and fault-tolerant parallel exception handling. We concluded by
illustrating how a parallel problem, once classified in terms of
a Parallel Management Pattern (PMP), can be decomposed and
easily expressed in terms of SPM.Python’s parallel closures.
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Appendix A

Figures 14 through 16 highlight the manner by which any mod-
ule can be parallelized using SPM.Python. Specifically, a serial
module that computes number of prime numbers within a given
range (Figure 14) is parallelized by introducing two wrappers
as depicted by Figure 15 (for Spoke), and Figure 16 (for Hub).
Recall that SPM.Python has built-in support for multiple different
and distinct forms of parallelism. However, for our purpose, we
are only interested in the closure that executes a list of tasks in
parallel.

#
# Serial module to compute prime numbers
#
def am(n):

#
# Came across this algo on the internet.
#
import math
n = abs(n)
i = 2
while i <= math.sqrt(n):

if n % i == 0:
return False

i += 1
return True

def ctRange(nMin, nMax):
if ((nMin % 2) == 0):

nMin = nMin + 1; # Focus on odd numbers (!)

nprimes = 0;
while (nMax > nMin):

if (am(nMin)):
nprimes += 1;

nMin += 2;

return nprimes;

Fig. 14: Spoke: Original ’serial’ module that computes the number of
prime numbers given a range.

#
# Compute the number of primes between 3 and 502347 ...
#

@spm.util.dassert(predicateCb = spm.sys.sstat.amOnline)
@spm.util.dassert(predicateCb = spm.sys.pstat.amSpoke)
def taskEval(pc):

from serial import ctRange as ctRange;

hdl = pc.stage2.payload.tie();
hdl.spm.stat.returnValue = ctRange(nMin = hdl.nMin,

nMax = hdl.nMax,
);

return (pc.stage2.event.done(),
None,
)[-1];

Fig. 15: Spoke: Wrapper around serial functionality. The wrapper
is automatically invoked by SPM.Python based on the content of the
task’s ’spm’ sub-structure.

@spm.util.dassert(predicateCb = spm.sys.sstat.amOffline)
@spm.util.dassert(predicateCb = spm.sys.pstat.amHub)
def __init():

# Create parallel closure (task manager) of the type
# we are interested in (coarse grain parallel list manager) ...
return spm.pclosure.macro.pinterp.list.grainCoarse.policyA.defun \

(signature = ’is_prime::main’, # Something unique to module.
stage1Cb = __taskStat,
);

__pc = __init();
__nprimes = 0;

@spm.util.dassert(predicateCb = spm.sys.sstat.amOnline)
@spm.util.dassert(predicateCb = spm.sys.pstat.amHub)
def __taskStat(pc):

# Callback for incoming status reports ...
try:

global __nprimes;

hdl = pc.stage1.payload.tie();
__nprimes += hdl.spm.stat.returnValue;
print(’ --> Rolling count of (# of prime numbers) :: %d’ \

% (__nprimes,));
except (SPMTaskDropped,

SPMTaskLoad,
SPMTaskEval,
), (hdl,):

pass;

return (pc.stage1.event.done(), # Explicitly let the backend
# know we are done;

None,
)[-1];

#
# Compute the number of primes between 3 and 502347
# by dividing the range into ’nBuckets’ ...
#
import os;

@spm.util.dassert(predicateCb = spm.sys.sstat.amOffline)
@spm.util.dassert(predicateCb = spm.sys.pstat.amHub)
def main(pool,

nBuckets = 10,
):

# Initialize ’stage0’.
global __nprimes;

assert(nBuckets >= 1);
__pc.stage0.init.main(typedef = \

r"""
task<list>::struct {
#
# SPM component ...
#
spm::struct {
meta::struct {
label ::scalar<stringSnippet> = deferred;
path ::tuple<string> = deferred;
modulePreload::tuple<string> = deferred;
module ::scalar<stringSnippet> = deferred;
timeout ::scalar<timeout> = deferred;

};

core::struct {
relaunchPre ::scalar<bool> = None;
relaunchPost ::scalar<bool> = None;

};

stat::struct {
exception ::scalar<auto> = None;
returnValue ::scalar<auto> = None;

};
};

#
# non-SPM component ...
#
nMin ::scalar<auto> = deferred;
nMax ::scalar<auto> = deferred;

};
""");

__nprimes = 0; # Always reset counter.
hdl = __pc.stage0.payload.tie(); # Handle to the payload.
nMin = 2;
for ct in range(0, nBuckets):

# Initialize ’spm’ component so that Spokes know what to
# preload ...
hdl.spm.meta.label = ’***’;
hdl.spm.meta.path = \

(os.path.dirname(__pc.meta.module.srcDir),);
hdl.spm.meta.modulePreload = (’is_prime’,);
hdl.spm.meta.module = ’is_prime’;
hdl.spm.meta.timeout = \

spm.util.timeout.after(seconds = 10);
hdl.nMin = nMin; nMin += ((502347) / nBuckets);

if (ct == (nBuckets - 1)):
hdl.nMax = 502347;

else:
hdl.nMax = nMin;

hdl.Push();

#
# Invoke the pmanager ...
#
__pc.stage0.event.manage \ (pool = pool,

nSpokesMin = spm.env.const.default,
nSpokesMax = spm.env.const.default,
timeoutWaitForSpokes = spm.util.timeout.after(seconds = 2),
timeoutExecution = spm.util.timeout.after(seconds = 300),
);

return;

Fig. 16: Hub: Creation/population/invocation of parallel (task man-
ager) closure. The backend of the closure, once invoked, would execute
as many tasks in parallel as possible using resources within the pool.
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Fitting and Estimating Parameter Confidence Limits
with Sherpa

Brian Refsdal‡∗, Stephen Doe‡, Dan Nguyen‡, Aneta Siemiginowska‡

F

Abstract—Sherpa is a generalized modeling and fitting package. Primarily
developed for the Chandra Interactive Analysis of Observations (CIAO) package
by the Chandra X-ray Center, Sherpa provides an Object-Oriented Programming
(OOP) API for parametric data modeling. It is designed to use the forward fitting
technique to search for the set of best-fit parameter values in parametrized
model functions. Sherpa can also estimate the confidence limits on best-fit
parameters using a new confidence method or using an algorithm based on
Markov chain Monte Carlo (MCMC). Confidence limits on parameter values are
necessary for any data analysis result, but can be non-trivial to compute in a
non-linear and multi-parameter space. This new, robust confidence method can
estimate confidence limits of Sherpa parameters using a finite convergence
rate. The Sherpa extension module, pyBLoCXS, implements a sophisticated
Bayesian MCMC-based algorithm for simple single-component spectral mod-
els defined in Sherpa. pyBLoCXS has primarily been developed in Python
using high-energy X-ray spectral data. We describe the algorithm including
the features for defining priors and incorporating deviations in the calibration
information. We will demonstrate examples of estimating confidence limits using
the confidence method and processing simulations using pyBLoCXS.

Index Terms—modeling, fitting, parameter, confidence, mcmc, bayesian

Introduction

Sherpa is an extensible, general purpose modeling and fitting
application written in Python and Python C/C++/FORTRAN ex-
tensions. Originally developed for users of NASA’s Chandra X-
ray Observatory, Sherpa has also been used to analyze data from
other astronomy missions, and even non-astronomical data. Sherpa
provides Python data classes to encapsulate various types of
astronomical data sets (spectra, images, time series, light curves).
But to provide the greatest flexibility, Sherpa is also designed to
read in any data set that can be represented as a collection of
arrays. From its first version, Sherpa has been designed to help
scientists analyze data from many different sources, and to be
extensible by scientific users, to help solve new problems.

Sherpa’s main task is to help users fit parametrized models to
their data. Sherpa provides a library of physical and mathematical
models, also written in Python. These models can be combined in
arbitrarily complex expressions, that are interpreted by the Python
parser; such expressions can include Sherpa models, arithmetic
operators, models written by users in Python, and even other
Python functions.

* Corresponding author: brefsdal@cfa.harvard.edu
‡ Smithsonian Astrophysical Observatory

Copyright © 2011 Brian Refsdal et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

To compare models and data, Sherpa includes statistics such
as least-squares, chi-squared based on Gaussian statistics, and
maximum likelihood based on Poisson statistics. As model pa-
rameters are varied, Sherpa can then measure whether the new
model parameter values improve or worsen the fit to the data,
using one of these statistics. Sherpa also provides functions to
search parameter space for the set of best-fit parameter values: a
non-linear least squares using the Levenberg-Marquardt algorithm
[lm]; and the Nelder-Mead simplex algorithm [nm].

However, the analysis is not complete when a user has found
a set of best-fit model parameter values consistent with the data.
Because of measurement errors and statistical noise, there is some
probability distribution in parameter space of parameter values
that are consistent with the data. If the user can examine this
probability distribution in some way, the user can determine how
well the best-fit parameter values are constrained. Such constraints
are often summarized as confidence limits, stating that parameters
are known to a certain level of confidence [avn1976]. For example,
after an examination of parameter space, the user might determine
that, for a model having temperature as a parameter, a best-fit
temperature of 1.2 keV has 90% confidence limits of +0.2 keV,
-0.4 keV. Meaning that if the observation and resulting fit were
replicated 1000 times, then in 900 trials the best-fit temperature
would be between 1.4 and 0.8 keV. The narrower the confidence
limits, the better the constraints on the best-fit parameter value.

In this paper, we describe several methods we make available
to Sherpa users and Python programmers to put confidence limits
on fitted parameter values. We discuss a confidence limit function
included in Sherpa, that examines parameter space near the local
minimum representing best-fit parameter values, and that returns
the desired confidence limits. We provide an interface to this
function allowing users to add their own statistic and fitting
functions, making this function available to SciPy users. We also
discuss the use of simulations in Sherpa to derive limits from
distributions of fitted parameter values after many simulations
and fits, and show an example to derive both flux and flux
errors from a model fitted to spectral data. Finally, we present
a new Python module providing a Bayesian approach to deriving
fitted parameter values and confidence limits: pyBLoCXS, a new
importable Python module, that allows use of prior distributions
on model parameters via extensions to Sherpa statistics classes.

Data Preparation

Sherpa provides native Python data classes that encapsulate 1-D
and 2-D data sets, i.e., (x, y) and (x_1, x_2, y) respectively. These
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classes can be extended to contain data of higher dimensionality.
In all data classes, the x-array(s) are considered to be the inde-
pendent variable(s), and the y-array is considered the dependent
variable. Any model to be fit to the data must take the form f(x, p),
where x is the collection of x-array(s) taken from the data, and p
is the array of parameter values that may be varied by the Sherpa
fitting function. The model returns an array of model values that
are compared to the data’s y-values.

Sherpa data classes also include error bars on the dependent
variable; these error bars are assumed to be symmetric. (Error bars
on the independent x-array(s) are not yet supported, and so are
not assumed to be significant.) The data classes can contain both
statistical and systematic errors; if both are present, they are added
in quadrature to provide the error bars on the data. Systematic
errors come from measurements; if not provided along with the
data, Sherpa assumes the systematic errors are zero. If statistical
errors are not measured and provided with the data, then Sherpa
can estimate Gaussian errors as needed in χ2 fitting; or, the user
can use one of the maximum likelihood statistics, in which Poisson
statistics are assumed; or, the user can do a simple least-squares
fit to the data.

Fitting Models to Data

Sherpa models are assumed to be parametrized functions f(x, p),
where x is the collection of x-array(s) from the data, and p is
the array of model parameters. When the model is calculated,
the return value is an array of predicted data values that can be
directly compared to the observed data values (that are contained
in the data’s y-array).

Sherpa includes a model description syntax for users to build
composite models that are arbitrarily complex. To support such a
powerful feature, the user is not required to provide a function to
calculate the derivatives. For least squares fitting using Levenberg-
Marquardt, Sherpa estimates the gradient using forward difference
approximation (LMDIF) and backward difference approximation
if the fit is at an upper parameter boundary. An estimate of the
gradient is not needed for fitting using simplex, only the fit statistic
value is required.

In some cases, the fit parameters are not necessarily indepen-
dent and identically distributed (i.i.d.) and correlations between
parameters are present. This can lead to non-linear effects and
complex parameter spaces, see Figure 1. We present a method
designed to calculate confidence intervals in non-linear regression
and a Bayesian method to sample the posterior probability distri-
bution.

Confidence Intervals

The optimizer’s search for the best-fit parameters stops when the
fit statistic or error function has reached an optimal value. For least
squares, the optimal value is when the sum of squared residuals
is a minimum. For the maximum likelihood estimator, the optimal
value is found when the log-likelihood is a maximum. Once the
best-fit parameter values are found, users typically determine how
well constrained the parameter values are at a certain confidence
level by calculating confidence intervals for each parameter. The
confidence level is a value of the fit statistic that describes a
constraint on the parameter value. The confidence interval is
the range that likely contains the parameter value at which the
fit statistic reaches its confidence level while other parameters
reach new best-fit values. See Figure 2. For example, consider

Fig. 1: A local minima

calculating the confidence intervals at a value of σ = 1, or 68%
confidence. If the observed data is re-sampled and the model is
fit again with new data, there would be a 68% chance that the
confidence intervals would constraint the parameter value. The
narrower the confidence interval, the more the model parameter
value becomes accurately constrained.

Fig. 2: A closeup view of a local minima

In the neighborhood of the fit statistic minimum, the multi-
dimensional parameter space can take the shape of an asym-
metric paraboloid. The confidence intervals are calculated for
each selected parameter independently by viewing the parameter
space along the current parameter’s dimension. This view can be
represented as a 1-D asymmetric parabola, see Figure 2. Suppose
that x0 represents a parameter’s best-fit value. Its associated
confidence intervals are represented as x0±δ1

δ2
where δ1 6= δ2 in

non-linear parameter spaces, so each confidence limit must be
calculated independently. In turn, the statistic value should equal
an amount of σ2 (where σ represents the degree of confidence) at
each confidence interval x0 + δ1 and x0− δ2 as other parameters
vary to new best-fit values. The degree to which the confidence
limit is bounded can be characterized by the shape of the well in
a multi-dimensional parameter space. A well that is a deep-and-
narrow corresponds to a tight confidence interval while a well that
is shallow-and-broad represents a wider confidence interval.
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Fig. 3: The confidence intervals can be reduced to a root solving
problem by translating the y-axis by an amount equal to σ2 and
selecting points along the fit statistic curve.

Method for Determining Confidence

Calculating the confidence interval for a selected fit parameter
can be transformed into a one dimensional root finding problem
with the correct coordinate translation. By simply translating the
parameter dimension by an amount equal to σ2, the confidence
intervals now become x-axis intercepts in the parameter dimen-
sion. This is an important step in the algorithm because a change
in sign will bracket the root. The green and blue points in Figure
3 effectively bracket the requested confidence limit.

Method for Selecting Abscissae

Sherpa’s confidence method uses Müller’s root finding method to
calculate the confidence intervals given three points. Sherpa begins
at the best-fit value and calculates points along the fit statistic
curve using the covariance, if available, and the secant method.
Müller’s method is the a good algorithm for finding the root of a
curve that is approximated by a parabola near the minimum. We
argue that the function curve can be approximated by parabola
given that the function can be represented as a Taylor’s series. The
leading term in series expansion is quadratic since the gradient of
the statistic curve can be ignored near the minimum.

The confidence method assumes that the parameter values are
located in a minimum approximated by a parabola, that the best-
fit is sufficiently far from any parameter boundaries, and that the
bracketed parameter interval is larger than the requested machine
tolerance.

A Bayesian Approach to Confidence

Fitting Poisson data with χ2 can lead to biased results. Using
likelihood statistics like cash or C do not introduce bias, but
lack simple tests for characterizing how well the model fits the
data. Such likelihood statistics often require additional methods to
validate model selection and to determine "goodness-of-fit". Such
methods involve sampling from the posterior probability distribu-
tion. Sherpa includes fit statistics derived from the likelihood and
complimentary optimization methods, but on its own Sherpa does
not include the means to calculate the posterior.

pyBLoCXS is an additional Python module that complements
Sherpa to probe the posterior probability and to verify model

selection using Bayesian methods. pyBLoCXS is designed to use
Markov chain Monte Carlo (MCMC) techniques to explore param-
eter space at a suspected minimum. pyBLoCXS was originally
implemented and tested to handle Bayesian Low-Count X-ray
Spectral (BLoCXS) analysis in Sherpa using simple composite
spectral models, and additional research is underway to test more
complex cases.

The underlying statistical model in pyBLoCXS employs
Bayes’ Rule 2 where the posterior probability distribution is pro-
portional to the product of the conditional and prior distributions.

p(θ |d, I) = p(d|θ , I)p(θ |I)
p(d|I) (1)

Where p(θ |d, I) represents the posterior distribution; p(d|θ , I), the
likelihood; p(θ |I), the prior; and p(d|I) is considered constant.

p(θ |d, I) ∝ p(d|θ , I)p(θ |I) (2)

Where θ represents the model parameters; d, the observed data;
and I, the initial information.

The pyBLoCXS package includes a method get_draws
to sample the posterior distribution for a specified number of
iterations. The loop draws parameter values from a multi-variate
Student’s t distribution and calculates the likelihood on the pa-
rameter proposal given the observed data. The proposal is then
accepted or rejected according to the current Metropolis-Hastings
acceptance criterion and repeat. See Figure 4 for a graphical
representation of the MCMC loop.

Fig. 4: The Metropolis-Hastings criterion implemented in pyBLoCXS.

pyBLoCXS currently has two sampling methods. The Python
class, MH, implements a Metropolis-Hastings jumping rule char-
acterized by the Student’s t distribution based on the input scales,
best-fit values, and user-specified degrees of freedom. The second
class, MetropolisMH, is a variation on MH in that it implements
a Metropolis-Hastings jumping rule with a Metropolis jumping
rule centered on the current draw.

The pyBLoCXS package can be used separately from Sherpa
using just Python and NumPy. The main inputs to pyBLoCXS are
a callable function to calculate the log-likelihood, an ndarray of
best-fit parameter values of size n, an ndarray of the multi-variate
scales of size n x n, and the degrees of freedom. The ndarray of
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multi-variate scales is typically the covariance matrix calculated
at the best-fit parameter values.

pyBLoCXS is based on the techniques described in the paper
[van2001], however, pyBLoCXS implements a different type of
sampler. A description of the MCMC methods implemented in
pyBLoCXS can be found in Chapter 11 of [gel2004].

Example

The Thurber problem is an example of Non-linear least squares
regression from the Statistical Reference Datasets (StRD) at the
National Institute of Standards and Technology (NIST). The ob-
served data results from a NIST study of semiconductor electron
mobility. The data includes 37 observations with the dependent
variable (y) represented as electron mobility and the independent
variable (x) as the log of the density.

y = f (x;β )+ ε =
β1 +β2x+β3x2 +β4x3

1+β5x+β6x2 +β7x3 + ε (3)

~p = {β1,β2,β3,β4,β5,β6,β7} (4)

We define a compact high-level UI to access the Sherpa con-
fidence method. The illustrative example below minimizes the
Thurber function using least-squares and Sherpa’s implementation
of Levenberg-Marquardt (LMDIF). The results can be found in
Table 1. The fit results agree to 99.99% for all parameters.

Fig. 5: Thurber fit

Loading Data

This example relies on a package asciitable to read columns of text
data into NumPy arrays. The Thurber problem defines an equation
as the model the function which is written as a vectorized Python
function using NumPy ufuncs.

import sherpa.ui as ui
import asciitable

tbl = asciitable.read('Thurber.dat',
Reader=asciitable.NoHeader,
data_start=36,
delimiter="\s")

# Columns as NumPy arrays
x = tbl['col2']
y = tbl['col1']

Parameter Certified Values Sherpa Values Percentage
β1 1.2881396800E+03 1.28813971e+03 99.999
β2 1.4910792535E+03 1.49106665e+03 99.999
β3 5.8323836877E+02 5.83229092e+02 99.998
β4 7.5416644291E+01 7.54148565e+01 99.998
β5 9.6629502864E-01 9.66284739e-01 99.999
β6 3.9797285797E-01 3.97967752e-01 99.999
β7 4.9727297349E-02 4.97257372e-02 99.997

TABLE 1: The best-fit parameters for Thurber problem.

p0 = [1000, 1000, 400, 40, 0.7, 0.3, 0.03]

def calc(p, x):
xx = x**2
xxx = x**3
return ( (p[0] + p[1]*x + p[2]*xx + p[3]*xxx) /

(1. + p[4]*x + p[5]*xx + p[6]*xxx) )

# define a tolerance
tol = 1.e-9

Sherpa Fitting

Below, the Thurber data arrays are loaded into a Sherpa data
set using load_arrays. The example indicates the fit statis-
tic, optimization method, and defines the calc function as
the Sherpa model using load_user_model. The function
add_user_pars accepts Python lists that specify the parameter
names, initial values, and optionally the parameter limits. A user
can fit the model to the data using fit and access the best-fit
parameter values as a NumPy array popt.

names = ['b%i' % (ii+1) for ii in range(len(p0))]

ui.load_arrays(1, x, y, ui.Data1D)
ui.set_stat('leastsq')

ui.set_method('levmar')
ui.set_method_opt('gtol', tol)
ui.set_method_opt('xtol', tol)
ui.set_method_opt('ftol', tol)
ui.set_method_opt('epsfcn', tol)

ui.load_user_model(calc, 'mdl')
ui.add_user_pars('mdl', names, p0)
ui.set_model('mdl')

ui.fit()
popt = ui.get_fit_results().parvals

Sherpa Confidence Method

The example below highlights the calculation of the asymmetric
1σ confidence limits on seven parameters using conf using the
C-statistic and simplex. The confidence limits are accessible as
NumPy arrays pmins and pmaxes.

ui.set_stat('cstat')
ui.set_method('neldermead')
ui.fit()
ui.conf()

# lower error bars
pmins = ui.get_conf_results().parmins



14 PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

Parameter Best Fit Lower
Bound

Upper
Bound

β1 1288.12 -12.1594 12.1594
β2 1452.67 -73.3571 17.8398
β3 557.281 -7.09913 34.3927
β4 70.2984 -10.1567 2.42915
β5 0.943534 -0.0575953 0.0433009
β6 0.387899 -0.02639 0.0199346
β7 0.0403176 -0.0134162 0.00914532

TABLE 2: The one standard deviation confidence limits for Thurber
problem.

Parameter Best Fit Lower
Bound

Upper
Bound

β1 1288.12 -12.1594 12.1594
β2 1452.67 -55.506 55.506
β3 557.281 -39.7166 39.7166
β4 70.2984 -7.58595 7.58595
β5 0.943534 -0.0471354 0.0471354
β6 0.387899 -0.0217024 0.0217024
β7 0.0403176 -0.0107599 0.0107599

TABLE 3: The one standard deviation covariance results for Thurber
problem.

# upper error bars
pmaxes = ui.get_conf_results().parmaxes

Confidence limits on the example Thurber problem are listed in
Table 2.

Sherpa Covariance Method

To compute the covariance matrix, Sherpa first estimates the
information matrix by finite differences by reducing a multi-
dimensional problem to a series of 1-D problems. Sherpa then
iteratively applies second central differencing with extrapolation
(Kass 1987). The covariance matrix follows by inverting the
information matrix.

The example below calculates the covariance matrix accessible
as a NumPy array for the seven parameter values. An estimation
of the symmetric confidence limits are found in the NumPy arrays
pmins and pmaxes.

ui.covar()

# lower error bars
pmins = ui.get_covar_results().parmins

# upper error bars
pmaxes = ui.get_covar_results().parmaxes

# where pmins == -pmaxes

# Access the covariance matrix
cov = ui.get_covar_results().extra_output

It is important to note that the parameter uncertainties com-
puted by covariance do not consider correlations between param-
eters and can underestimate or overestimate the true uncertainty.
Compare the differences in uncertainties computed by conf and
covar in Tables 2 and 3.

Fig. 6: A trace plot show the draws for β1 per iteration

pyBLoCXS

The example below selects the Metropolis-Hastings using the
pyBLoCXS [sem2011] function set_sampler. The likelihood
and parameter draws are computed using the high level function
get_draws. The inputs to get_draws at the API level are a
function to calculate the likelihood, the best-fit parameter values,
the covariance matrix centered on the best-fit, the degrees of
freedom, and the number of iterations. At the high level, only
the number of iterations is needed as input. The other inputs are
accessed from Sherpa by pyBLoCXS.

import pyblocxs

pyblocxs.set_sampler('MH')
stats, accept, params = pyblocxs.get_draws(niter=1e4)

pyblocxs.plot_trace(params[0], 'b1')

pyBLoCXS includes high level plotting functions to display the
trace, the cumulative distribution function, and the probability
distribution function. The trace plot for β1 includes gaps in the
line that indicate rejected parameter proposals. This example has
an acceptance rate of ~24%, well within the accepted range for an
MCMC chain.

The scatter function in matplotlib can be used to visualize
the log-likelihood according to two selected parameters. Using
Metropolis-Hastings as the sampler, the density plot is shown in
Figure 7 . For parameters β3 and β4, a distinct correlation is shown
as a long and narrow well.

import pylab
pylab.scatter(params[0], params[1],

c=stats, cmap=pylab.cm.jet)

To contrast the previous sampler, selecting Metropolis-Hastings
mixed with Metropolis and re-sampling shows a density plot with
a larger region of parameter space and distinct tail features in
Figure 8.

pyblocxs.set_sampler('MetropolisMH')
stats, accept, params = pyblocxs.get_draws(niter=1e4)

pylab.scatter(params[0], params[1],
c=stats, cmap=cm.jet)
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Fig. 7: Log-likelihood density using Metropolis-Hastings in py-
BLoCXS.

Fig. 8: Log-likelihood density using Metropolis-Hastings with
Metropolis in pyBLoCXS.

Priors

pyBLoCXS includes a flexible definition of priors for each fit
parameter. Priors are important for maximum likelihood analysis
to take advantage of priori knowledge such as the range of
parameter values. pyBLoCXS assumes each parameter to have
a flat or non-informative prior by default.

Using the Sherpa model normgauss1d, a Gaussian prior can
be added to the first parameter in the set with

import sherpa.astro.ui as ui
import pyblocxs

ui.xsapec.therm
ui.normgauss1d.g1
g1.pos=2.5; g1.fwhm=0.5

pyblocxs.set_prior(therm.kT,g1)
pyblocxs.set_sampler_opt('defaultprior',

False)
pyblocxs.set_sampler_opt('priorshape',

[True, False, False])

pyblocxs.set_sampler_opt('originalscale',
[True, True, True])

By accepting callable functions, pyBLoCXS can support arbitrary
functions representing the parameter prior.

import sherpa.astro.ui as ui
import numpy

def lognorm(x, sigma=0.5, norm=1.0, x0=20.):
xl=numpy.log10(x)+22.
return (norm/numpy.sqrt(2*numpy.pi)/sigma)*

numpy.exp(-0.5*(xl-x0)*(xl-x0)/sigma/sigma)

ui.xsphabs.abs1

pyblocxs.set_prior(abs1.NH,lognorm)
pyblocxs.set_sampler_opt('defaultprior',

False)
pyblocxs.set_sampler_opt('priorshape',

[True, False, False])
pyblocxs.set_sampler_opt('originalscale',

[True, True, True])

Accounting for Calibration Uncertainties

Future released versions of pyBLoCXS will include methods
to incorporate the systematic uncertainties in modeling high en-
ergy spectra. These uncertainties which have largely been ignored
due to the lack of a comprehensive method, can introduce bias
in the calculation of model parameters and can underestimate
their variance. Specifically, pyBLoCXS will utilize the calibration
uncertainties in the effective area curve for spectral analysis. The
effective area for high energy detectors records the sensitivity of
the detector as a function of energy.

Calibration samples of the effective area are described in
Drake et al. (2006) using Principle Component Analysis (PCA)
to represent the curve’s variability. Samples of the effective area
can also be found using simulations.

pyBLoCXS perturbs the effective area curve by sampling from
the calibration information at each iteration in the MCMC loop
accurately accounting for the non-linear effects in the systematic
uncertainty. With this method, best-fit model parameters values
and their uncertainty are estimated more accurately and efficiently
using Sherpa and pyBLoCXS.

Conclusion

We describe the Sherpa confidence method and the techniques
included in pyBLoCXS to estimate parameter confidence when
fit parameters present with correlations or the parameters are
not themselves normally distributed. Multi-dimensional parameter
space is typically non-uniform and Sherpa provides the user
with options to explore its topology. The included code example
describes an application of the Sherpa confidence method and the
pyBLoCXS sampling method.

Support of the development of Sherpa is provided by National
Aeronautics and Space Administration through the Chandra X-
ray Center, which is operated by the Smithsonian Astrophysical
Observatory for and on behalf of the National Aeronautics and
Space Administration contract NAS8-03060.
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Crab: A Recommendation Engine Framework for
Python
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Abstract—Crab is a flexible, fast recommender engine for Python that integrates
classic information filtering recommendation algorithms in the world of scientific
Python packages (NumPy,SciPy, Matplotlib). The engine aims to provide a rich
set of components from which you can construct a customized recommender
system from a set of algorithms. It is designed for scability, flexibility and
performance making use of scientific optimized python packages in order to
provide simple and efficient solutions that are acessible to everybody and
reusable in various contexts: science and engineering. The engine takes users’
preferences for items and returns estimated preferences for other items. For
instance, a web site that sells movies could easily use Crab to figure out, from
past purchase data, which movies a customer might be interested in watching to.
This work presents our inniative in developing this framework in Python following
the standards of the well-known machine learning toolkit Scikit-Learn to be an
alternative solution for Mahout Taste collaborative framework for Java. Finally,
we discuss its main features, real scenarios where this framework is already
applied and future extensions.

Index Terms—data mining, machine learning, recommendation systems, infor-
mation filtering, framework, web

Introduction

With the great advancements of machine learning in the past few
years, many new learning algorithms have been proposed and
one of the most recognizable techniques in use today are the
recommender engines [Adoma2005]. There are several services
or sites that attempt to recommend books or movies or articles
based on users past actions [Linden2003] , [Abhinandan2007] .
By trying to infer tastes and preferences, those systems focus to
identify unknown items that are are of interest given an user.
Although people’s tastes vary, they do follow patterns. People
tend to like things that are similar to other items they like.
For instance, because a person loves bacon-lettuce-and-tomato
sandwiches, the recommender system could guess that he would
enjoy a club sandwich, which is mostly the same sandwich, with
turkey. Likewise, people tend to like things that similar people like.
When a friend entered design school, he saw that just about every
other design student owned a Macintosh computer - which was
no surprise, as she already a lifetime Mac User. Recommendation
is all about predicting these patterns of taste, and using them to
discover new and desirable things a person didn’t know about.

* Corresponding author: marcel@muricoca.com
‡ Muricoca Labs

Copyright © 2011 Marcel Caraciolo et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Recommendation engines have been implemented in program-
ming languages such as C/C++, Java, among others and made
publicly available. One of the most popular implementations is the
open-source recommendation library Taste, which was included in
the Mahout framework project in 2008 [Taste] . Mahout is a well-
known machine learning toolkit written in Java for building scal-
able machine libraries [Mahout] . It is specially a great resource
for developers who are willing to take a step into recommendation
and machine learning technologies. Taste has enabled system-
atic comparisons between standard developed recommendation
methods, leading to an increased visibility, and supporting their
broad adoption in the community of machine learning, information
filtering and industry. There are also several another publicly
available implementations of recommender engines toolkits in the
web [EasyRec] , [MyMediaLite]. Each one comes with its own
interface, sometimes even not updated anymore by the project
owners, a small set of recommendation techniques implemented,
and unique benefits and drawbacks.

For Python developers, which has a considerable amount of
machine learning developers and researchers, there is no single
unified way of interfacing and testing these recommendation
algorithms, even though there are some approaches but found
incomplete or missing the required set for creating and evaluating
new methods [PySuggest], [djangorecommender]. This restraints
developers and researchers from fully taking advantage of the
recent developments in recommendation engines algorithms as
also an obstacle for machine learning researchers that will not
want to learn complex programming languages for writing their
recommender approaches. Python has been considered for many
years a excellent choice for programming beginners since it is easy
to learn with simple syntax, portable and extensive. In scientific
computing field, high-quality extensive libraries such as Scipy,
MatPlotlib and Numpy have given Python an attractive alternative
for researchers in academy and industry to write machine learning
implementations and toolkits such as Brain, Shogun, Scikit-Learn,
Milk and many others.

The reason of not having an alternative for python machine
learning developers by providing an unified and easy-to-use rec-
ommendation framework motivated us to develop a recommen-
dation engine toolbox that provides a rich set of features from
which the developer can build a customized recommender system.
The result is a framework, called Crab, with focus on large-
scale recommendations making use of scientific python packages
such as Scipy, Numpy and Matplotlib to provide simple and
efficient solutions for constructing recommender systems that are
acessible and reusable in various contexts. Crab provides a generic
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interface for recommender systems implementations, among them
the collaborative filtering approaches such as User-Based and
Item-Based filtering, which are already available for use. The
recommender interfaces can be easily combined with more than
10 different pairwise metrics already implemented, like the co-
sine, tanimoto, pearson, euclidean using Scipy and Numpy basic
optimized functions [Breese1998]. Moreover, it offers support for
using similarities functions such as user-to-user or item-to-item
and allows easy integration with different input domains like
databases, text files or python dictionaries.

Currently, the collaborative filtering algorithms are widely
supported. In addition to the User-Based and Item-Based filter-
ing techniques, Crab implements several pairwise metrics and
provides the basic interfaces for developers to build their own
customized recommender algorithms. Finally, several widely used
performance measures, such as accuracy, precision, recall are
implemented in Crab.

An important aspect in the design of Crab was to enable very
large-scale recommendations. Crab is currently being rewritten
to support optimized scientific computations by using Scipy and
Numpy routines. Another feature concerned by the current main-
tainers is to make Crab support sparse and large datasets in a way
that there is a little as possible overhead for storing the data and
intermediate results. Moreover, Crab also aims to support scaling
in recommender systems in order to build high-scale, dynamic
and fast recommendations over simple calls. It is also planned to
support distributed recommendation computation by interfacing
with the distributed computation library MrJob written in Python
currently developed by Yelp [MrJob]. What sets Crab apart from
many other recommender systems toolboxes, is that it provides
interactive interfaces to build, deploy and evaluate customized
recommender algorithms written in Python running on several
platforms such as Linux, BSD, MacOS and Windows.

The outline of this paper is as follows. We first discuss the
Crab’s main features by explaining the architecture of the frame-
work. Next, we provide our current approach for representing the
data in our system and current challenges. Then, we also presents
how Crab can be used in production by showing a real scenario
where it is already deployed. Finally, we discuss about our plans
to handle with distributed recommendation computations. Also,
our conclusions and future works are also presented at the end of
this paper.

Recommender Engines

Crab contains a recommender engine, in fact, several types be-
ginning with conventional in the literature user-based and item-
based recommenders. It provides an assortment of components
that may be plugged together and customized to create an ideal
recommender for a particular domain. The toolkit is implemented
using Python and the scientific environments for numerical appli-
cations such as Scipy and NumPy. The decision of choosing those
libraries is because they are widely used in scientific computations
specially in python programs. Another reason is because the
framework uses the Scikit-learn toolkit as dependant, which pro-
vides basic components from our recommender interfaces derive
[Scikitlearn] . The Figure 1 presents the relationship between these
basic components. Not all Crab-based recommenders will look
like this -- some will employ different components with different
relationships, but this gives a sense of the role of each component.

The Data Model implementation stores and provides access to
all the preferences, user and item data needed in the recommenda-

Fig. 1: Simplified illustration of the component interaction in Crab

tion. The Similarity interface provides the notion of how similar
two users or items are; where this could be based on one of many
possible pairwise metrics or calculations. Finally, a Recommender
interface which inherits the BaseEstimator from Scikit-learn pull
all these components together to recommend items to users, and
related functionality.

It is easy to explore recommendations with Crab. Let’s go
through a trivial example. First, we need input to the recom-
mender, data on which to base recommendations. Generally, this
data takes the form of preferences which are associations from
users to items, where these users and items could be anything.
A preference consist of a user ID and an item ID, and usually
a number expressing the strength of the user’s preference for the
item. IDs in Crab can be represented by any type indexable such
as string, integers, etc. The preference value could be anything,
as long as larger values mean strong positive preferences. For
instance, these values can be considered as ratings on a scale of 1
to 5, where the user has assigned "1" to items he can’t stand, and
"5" to his favorites.

Crab is able to work with text files containing information
about users and their preferences. The current state of the frame-
work allows developers to connect with databases via Django’s
ORM or text files containing the user IDs, product IDs and pref-
erences. For instance, we will consider a simple dataset including
data about users, cleverly named "1" to "5" and their preferences
for four movies, which we call "101" through "104". By loading
this dataset and passing as parameter to the dataset loader, all the
inputs will be loaded in memory by creating a Data Model object.

Analyzing the data set shown at Figure 2, it is possible to
notice that Users 1 and 5 seem to have similar tastes. Users 1
and 3 don’t overlap much since the only movie they both express
a preference for is 101. On other hand, users 1 and 2 tastes are
opposite- 1 likes 101 while 2 doesn’t, and 1 likes 103 while 2
is just the opposite. By using one of recommender algorithms
available in Crab such as the User-Based-Filtering with the given
data set loaded in a Data Model as input, just run this script using
your favorite IDE as you can see the snippet code below.
from models.basic_models import FileDataModel
from recommenders.basic_recommenders

import UserBasedRecommender
from similarities.basic_similarities

import UserSimilarity
from neighborhoods.basic_neighborhoods

import NearestUserNeighborhood
from metrics.pairwise import pearson_correlation

user_id = 1
# load the dataset
model = FileDataModel('simple_dataset.csv')
similarity = UserSimilarity(model,

pearson_correlation)
neighbor = NearestUserNeighborhood(similarity,

model, 4, 0.0)
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Fig. 2: Book ratings data set - intro.csv

# create the recommender engine
recommender = UserBasedRecommender(model, similarity,

neighbor, False)
# recommend 1 item to user 1
print recommender.recommend(user_id, 1)

The output of running program should be: 104. We asked for
one top recommendation, and got one. The recommender engine
recommended the book 104 to user 1. This happens because it
estimated user 1’s preference for book 104 to be about 4.3 and that
was the highest among all the items eligible for recommendations.
It is important to notice that all recommenders are estimators,
so they estimate how much users may like certain items. The
recommender worked well considering a small data set. Analyzing
the data you can see that the recommender picked the movie 104
over all items, since 104 is a bit more highly rated overall. This
can be refforced since user 1 has similar preferences to the users
4 and 5, where both have highly rated.

For small data sets, producing recommendations appears trivial
as showed above. However, for data sets that are huge and noisy, it
is a different situation. For instance, consider a popular news site
recommending new articles to readers. Preferences are inferred
from article clicks. But, many of these "preferences" may be
noisy - maybe a reader clicked an article but did not like it, or,
had clicked the wrong story. Imagine also the size of the data
set - perhaps billions of clicks in a month. It is necessary for
recommender engines to handle with real-life data sets, and Crab
as Mahout is focusing on how to deal with large and sparse data
as we will discuss in a future section.

Therefore, before deploying recommender engines in Crab
into production, it is necessary to present another main concept
in our framework at the next section: representation of data.

Representing Data

Recommender systems are data-intensive and runtime perfor-
mance is greatly affected by quantity of data and its representation.
In Crab the recommender-related data is encapsulated in the im-
plementations of DataModel. DataModel provides efficient access
to data required by several recommender algorithms. For instance,
a DataModel can provide a count or an array of all user IDs in
the input data, or provide access to all preferences associated to
an item.

One of the implementations available in Crab is the in-memory
implementation DictDataModels. This model is appropriate if the
developer wants to construct his data representation in memory by
passing a dictionary of user IDs and their preferences for item IDs.
One of benefits of this model is that it can easily work with JSON
files, which is commonly used as output at web services and REST
APIs, since Python converts the json input into a bult-in dictionary.
from models.basic_models

import DictPreferenceDataModel

dataset = {'1':{'101': 3.0, '102': 3.5},
'2':{'102': 4.0, '103':2.5, '104': 3.5}}

#load the dataset
model = DictPreferenceDataModel(dataset)
print model.user_ids()
#numpy.array(['1','2'])

print model.preference_value('1', '102')
#3.5

print model.preferences_for_item('102')
#numpy.array([('1',3.5),('2',4.0)])

Typically the model that developers will use is the FileDataModel
- which reads data from a file and stores the resulting preference
data in memory, in a DictDataModel. Comma-separated-value
or tab-separated files which each line contains one datum: user
ID, item ID and preference value are acceptable as input to the
model. Zipped and gzipped files will be supported, since they are
commonly used for store huge data in a compressed format.

For data sets which ignore the preference values, that is, ignore
the strength of preference, Crab also has an appropriate DataModel
twin of DictDataModel called BooleanDictDataModel. This is
likewise as in-memory DictDataModel implementation, but one
which internally does not store the preference values. These
preferences also called "boolean preferences" have two states:
exists, or does not exist and happens when preferences values
aren’t available to begin with. For instance, imagine a news site
recommending articles to user based on previously viewed article.
It is not typical for users to rate articles. So the recommender
recommends articles based on previously viewed articles, which
establishes some association between user and item, an interesting
scenario for using the BooleanDictModel.
from models.basic_models

import DictBooleanDataModel

dataset = {'1':['101','102'],
'2':['102','103','104']}

#load the dataset
model = DictBooleanDataModel(dataset)

print model.user_ids()
#numpy.array(['1','2'])

print model.preference_value('1', '102')
#1.0 - all preferences are valued with 1.0
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print model.preferences_for_item('102')
#numpy.array([('1',1.0),('2',1.0)])

Crab also supports store and access preference data from a
relational database. The developer can easily implement their
recommender by using customized DataModels integrated with
several databases. One example is the MongoDB, a NoSQL
database commonly used for non-structured data [MongoDB]. By
using MongoEngine, a ORM adapter for integrating MongoDB
with Django, we could easily set up a customized Data Model
to access and retrieve data from MongoDB databases easily
[Django], [MongoEngine]. In fact, it is already in production at
a recommender engine using Crab for a brazilian social network
called AtéPassar. We will explore more about it in the next
sections.

One of the current challenges that we are facing is how to
handle with all this data in-memory. Specially for recommender
algorithms, which are data intensive. We are currently investi-
gating how to store data in memory and work with databases
directly without using in-memory data representations. We are
concerned that it is necessary for Crab to handle with huge data
sets and keep all this data in memory can affects the performance
of the recommender engines implemented using our framework.
Crab uses Numpy arrays for storing the matrices and in the
organization of this paper at the time we were discussing about
using scipy.sparse packages, a Scipy 2-D sparse matrix package
implemented for handling with sparse a matrices in a efficient
way.

Now that we have discussed about how Crab represents the
data input to recommender, the next section will examine the
recommenders implemented in detail as also how to evaluate
recommenders using Crab tools.

Making Recommendations

Crab already supports the collaborative recommender user-based
and item-based approaches. They are considered in some of
the earliest research in the field. The user-based recommender
algorithm can be described as a process of recommending items
to some user, denoted by u, as follows:

for every item i that u has no preference for yet

for every other user v that has preference for i

compute a similarity s between u and v

incorporate v's preference for i, weighted by s,
into a running average

return the top items, ranked by weighted average

The outer loop suggests we should consider every known item that
the user hasn’t already expressed a preference for as a candidate
for recommendation. The inner loop suggests that we should
look to any other user who has expressed a preference for this
candidate item and see what his or her preference value for it
was. In the end, those values are averaged to come up with an
estimate -- a weighted average. Each preference value is weighted
in the average by how similar that user is to the target user.
The more similar a user, the more heavily that we weight his or
her preference value. In the standard user-based recommendation
algorithm, in the step of searching for every known item in the data
set, instead, a "neighborhood" of most similar users is computed
first, and only items known to those users are considered.

In the first section we have already presented a user-based
recommender in action. Let’s go back to it in order to explore the
components the approach uses.

# do the basic imports
user_id = 1

# load the dataset
model = FileDataModel('simple_dataset.csv')

# define the similarity used and the pairwise metric
similarity = UserSimilarity(model,

pearson_correlation)

# for neighborhood we will use the k-NN approach
neighbor = NearestUserNeighborhood(similarity,

model, 4, 0.0)

# now add all to the UserBasedRecommender
recommender = UserBasedRecommender(model, similarity,

neighbor, False)

#recommend 2 items to user 1
print recommender.recommend(user_id,2)

UserSimilarity encapsulates the concept of similarity amongst
users. The UserNeighborhood encapsulates the notion of a group
of most-similar users. The UserNeighborhood uses a UserSimilar-
ity, which extends the basic interface BaseSimilarity. However, the
developers are encouraged to plug in new variations of similarity
- just creating new BaseSimilarity implementations - and get quite
different results. As you will see, Crab is not one recommender
engine at all, but a set of components that may be plugged
together in order to create customized recommender systems for
a particular domain. Here we sum up the components used in the
user-based approach:

• Data model implemented via DataModel
• User-to-User similarity metric implemented via UserSim-

ilarity
• User neighborhood definition implementd via UserNeigh-

borhood
• Recommender engine implemented via Recommender, in

this case, UserBasedRecommender

The same approach can be used at UserNeighborhood where
developers also can create their customized neighborhood ap-
proaches for defining the set of most similar users. Another
important part of recommenders to examine is the pairwise metrics
implementation. In the case of the User-based recommender, it
relies most of all in this component. Crab implements several
pairwise metrics using the Numpy and Scipy scientific libraries
such as Pearson Correlation, Euclidean distance, Cosine measure
and distance implementations that ignore preferences entirely like
as Tanimoto coefficient and Log-likehood.

Another approach to recommendation implemented in Crab
is the item-based recommender. Item-based recommendation is
derived from how similar items are to items, instead of users to
users. The algorithm implemented is familiar to the user-based
recommender:

for every item i that u has no preference for yet

for every item j that u has a preference for

compute a similarity s between i and j

add u's preference for j, weighted by s,
to a running average
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return the top items, ranked by weighted average

In this algorithm it is evaluated the item-item similarity, not user-
user similarity as shown at the user-based approach. Although they
look similar, there are different properties. For instance, the run-
ning time of an item-based recommender scales up as the number
of items increases, whereas a user-based recommender’s running
time goes up as the number of users increases. The performance
advantage in item-based approach is significant compared to the
user-based one. Let’s see how to use item-based recommender in
Crab with the following code.

# do the basic imports
user_id = 1

# load the dataset
model = FileDataModel('simple_dataset.csv')

# define the Similarity used and the pairwise metric
similarity = ItemSimilarity(model, euclidean_distance)

# there is no neighborhood in this approach
# now add all to the ItemBasedRecommender
recommender = ItemBasedRecommender(model,

similarity, False)

# recommend 2 items to user 1
print recommender.recommend(user_id,2)

Here it employs ItemBasedRecommender rather than UserBase-
dRecommender, and it requires a simpler set of dependencies. It
also implements the ItemSimilarity interface, which is similar to
the UserSimilarity that we’ve already seen. The ItemSimilarity
also works with the pairwise metrics used in the UserSimilarity.
There is no item neighborhood, since it compares series of pref-
erences expressed by many users for one item instead of by one
user for many items.

Now that we have seen some techniques implemented at Crab,
which produces recommendations for a user, it is now time to
answer another question, "what are the best recommendations for
a user ?". A recommender engine is a tool and predicts user
preferences for items that he haven’t expressed any preference
for. The best possible recommender is a tool that could somehow
know, before you do, exactly estimate how much you would
like every possible item available. The remainder of this section
will explore evaluation of a recommender, an important step in
the construction of a recommender system, which focus on the
evaluating the quality of the its estimated preference values - that
is, evaluating how closely the estimated preferences match the
actual preferences.

Crab supports several metrics widely used in the recom-
mendation literature such as the RMSE (root-mean-square-error),
precision, recall and F1-Score. Let’s see the previous example
code and instead evaluate the simple recommender we created, on
our data set:

from evaluators.statistics
import RMSRecommenderEvaluator

# initialize the recommender
# initialize the RMSE Evaluator
evaluator = RMRecommenderEvaluator()

# using training set with 70% of data and 30% for test
print evaluator.evaluate(recommender,

model, 0.7, 1.0)
#0.75

Fig. 3: PrecisionxRecall Graph with F1-Score.

Most of the action happens in evaluate(). The RecommenderEval-
uator handles splitting the data into a training and test set, builds a
new training DataModel and Recommender to test, and compares
its estimated preferences to the actual test data. See that we pass
the Recommender to this method. This is because the evaluator
will need to build a Recommender around a newly created training
DataModel. This simple code prints the result of the evaluation:
a score indicating how well the Recommender performed. The
evaluator is an abstract class, so the developers may build their
custom evaluators, just extending the base evaluator.

For precision, recall and F1-Score Crab provides also a simple
way to compute these values for a Recommender:

from evaluators.statistics
import IRStatsRecommenderEvaluator

# initialize the recommender
# initialize the IR Evaluator
evaluator = IRStatsRecommenderEvaluator()

# call evaluate considering the top 4 items recommended.
print evaluator.evaluate(recommender, model, 2, 1.0)
# {'precision': 0.75, 'recall': 1.0,

'f1Score': 0.6777}

The result you see would vary significantly due to random selec-
tion of training data and test data. Remember that precision is the
proportion of top recommendations that are good recommenda-
tions, recall is the proportion of good recommendations that appear
in top recommendations and F1-Score is a score that analyzes the
proportion against precision and recall. So Precision at 2 with
0.75 means on average about a three quarters of recommendations
were good. Recall at 2 with 1.0; all good recommendations are
among those recommendations. In the following graph at Figure
3, it presents the PrecisionxRecall with F1-Scores evaluated. A
brief analysis shows that more training set size grows, more the
accuracy score grows. It is important to notice that the evaluator
doe not measure if the algorithm is better or faster. It is necessary
to make a comparison between the algorithms to check the
accuracy specially on other data sets available.

Crab supports several tools for testing and evaluating recom-
menders in a painless way. One of the future releases will support
the plot of charts to help the developers to better analyze and
visualized their recommender behavior.

Taking Recommenders to Production

So far we have presented the recommender algorithms and variants
that Crab provides. We also presented how Crab handles with
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Fig. 4: Crab Web Services server-side interaction over HTTP

accuracy evaluation of a recommender. But another important
step for a recommender life-cycle is to turn it into a deployable
production-ready web service.

We are extending Crab in order to allow developers to deploy
a recommender as a stand-alone component of your application
architecture, rather than embed it inside your application. One
common approach is to expose the recommendations over the
web via simple HTTP or web services protocols such as SOAP or
REST. One advantage using this service is that the recommender is
deployed as a web- accessible service as independent component
in a web container or a standalone process. In the other hand, this
adds complexity, but it allows other applications written in other
languages or running at remote machines to access the service. We
are considering use framework web Django with the the Django-
Piston RESTful builder to expose the recommendations via a
simple API using REST over HTTP [DjangoPiston]. Our current
structure is illustrated in Figure 4, which wraps the recommender
implementation using the django models and piston handlers to
provide the external access.

There is a recommender engine powered by Crab in pro-
duction using REST APIs to access the the recommendations.
The recommender engine uses collaborative filtering algorithms
to recommend users, study groups and videos in a brazilian
educational social network called AtéPassar [AtePassar] . Besides
the suggestions, the recommender was also extended to provide
the explanations for each recommendation, in a way that the
user not only receives the recommendation but also why the
given recommendation was proposed to him. The recommender
is in production since January 2011 and suggested almost 60.000
items for more than 50.000 users registered at the network. The
following Figure 5 shows the web interface with the recommender
engine in action at AtéPassar. One contribution of this work
was a new Data Model for integrating with MongoDB database
for retrieving and storing the recommendations and it is being
rewritten for the new release of Crab supporting Numpy and Scipy
libraries.

Crab can comfortably digest medium and small data sets on
one machine and produce recommendations in real time. But it
still lacks a mechanism that handles a much larger data set. One
common approach is distribute the recommendation computations,
which will be detailed in the next section.

Distributing Recommendation Computations

For large data sets with millions of preferences, the current
approaches for single machines would have trouble processing
recommendations in the way we have seen in the last sections. It is
necessary to deploy a new type of recommender algorithms using a
distributed and parallelized computing approach. One of the most
popular paradigms is the MapReduce and Hadoop [Hadoop].

Fig. 5: AtéPassar recommendation engine powered by Crab Frame-
work

Crab didn’t support at the time of writing this paper distributed
computing, but we are planning to develop variations on the item-
based recommender approach in order to run it in the distributed
world. One of our plans is to use the Yelp framework mrJob which
supports Hadoop and it is written in Python, so we may easily
integrate it with our framework. One of the main concerns in
this topic is to give Crab a scalable and efficient recommender
implementation without having high memory and resources con-
sumption as the number of items grows.

Another concern is to investigate and develop other distributed
implementations such as Slope One, Matrix Factorization, giving
the developer alternatives for choosing the best solution for its
need specially when handling with large data sets using the
power of Hadoop’s MapReduce computations. Another important
optimization is to use the JIT compiler PyPy for Python which is
being development and will bring faster computations on NumPy
[NumpyFollowUp].

Conclusion and Future Works

In this paper we have presented our efforts in building a recom-
mender engine toolkit in Python, which we believe that may be
useful and make an increasing impact beyond the recommendation
systems community by benefiting diverse applications. We are
confident that Crab will be an interesting alternative for machine
learning researchers and developers to create, test and deploy their
recommendation algorithms writing a few lines of code with the
simplicity and flexibility that Python with the scientific libraries
Numpy and Scipy offers. The project uses as dependency the
Scikit-learn toolkit, which forces the Crab framework to cope with
high standards of coding and testing, turning it into a madure
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and efficient machine learning toolkit. Discussing the technical
aspects, we are also always improving the framework by planning
to develop new recommender algorithms such as Matrix Factoriza-
tion, SVD and Boltzmann machines. Another concern is to bring
to the framework not only collaborative filtering algorithms but
also content based filtering (content analysis), social relevance
proximity graphs (social/trust networks) and hybrid approaches.
Finally it is also a requirement to a recommender engine to be
scalable, that is, to handle with large and sparse data sets. We are
planning to develop a scalable recommendation implementation
by using Yelp framework mrJob which supports Hadoop and
MapReduce as explained in the previous section.

Our project is hosted at Github repository and it is open for
machine learning community to use, test and help this project to
grow up. Future releases are planned which will include more
projects building on it and a evaluation tool with several plots and
graphs to help the machine learning developer better understand
the behavior of his recommender algorithm. It is an alternative for
Python developers to the Mahout machine learning project written
in Java. The source code is freely available under the BSD license
at http://github.com/muricoca/crab.
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Abstract—In this work we discuss gpustats, a new Python library for assist-
ing in "big data" statistical computing applications, particularly Monte Carlo-
based inference algorithms. The library provides a general code generation /
metaprogramming framework for easily implementing discrete and continuous
probability density functions and random variable samplers. These functions can
be utilized to achieve more than 100x speedup over their CPU equivalents. We
demonstrate their use in an Bayesian MCMC application and discuss avenues
for future work.

Index Terms—GPU, CUDA, OpenCL, Python, statistical inference, statistics,
metaprogramming, sampling, Markov Chain Monte Carlo (MCMC), PyMC, big
data

Introduction

Due to the high theoretical computational power and low cost
of graphical processing units (GPUs), researchers and scientists
in a wide variety of fields have become interested in applying
them within their problem domains. A major catalyst for making
GPUs widely accessible was the development of the general
purpose GPU computing frameworks, [CUDA] and [OpenCL],
which enable the user to implement general numerical algorithms
in a simple extension of the C language to run on the GPU. In
this paper, we will restrict our technical discussion to the CUDA
architecture for NVIDIA cards, while later commenting on CUDA
versus OpenCL.

As CUDA and OpenCL provide a C API for GPU program-
ming, significant portions of the development process can be quite
low level and require large amounts of boilerplate code. To address
this problem, [PyCUDA] and [PyOpenCL] provide a high-level
Python interface to the APIs, while also streamlining the process
of writing and testing new GPU functions, or kernels. PyCUDA
and PyOpenCL compile GPU kernels on the fly and upload them
to the card; this eliminates the need to recompile a C executable
with each code iteration. The result is a much more rapid and user-
friendly GPU development experience, as the libraries take care of
much of the boilerplate code for interacting with the GPU. They
also provide seamless integration with [NumPy], which allows
GPU functionality to integrate easily within a larger NumPy-based
computing application. And, since code is compiled on the fly,
it is relatively straightforward to implement metaprogramming
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approaches to dynamically generate customized GPU kernels
within a Python program.

In this paper, we discuss some of the challenges of GPU
computing and how GPUs can be applied to statistical inference
applications. We further show how PyCUDA and PyOpenCL
are ideal for implementing certain kinds of statistical computing
functions on the GPU.

Development Challenges in GPU Computing

While a CPU may have 4 or 8 cores, a latest generation GPU may
have 256, 512, or even more computational cores. However, the
GPU memory architecture is highly specialized to so-called single
instruction multiple data (SIMD) problems. This generally limits
the usefulness of GPUs to highly parallelizable data processing
applications. The developer writes a function, known as a kernel,
to process a unit of data. The kernel function is then executed once
for each unit or chunk of data.

The GPU has a large single global memory store (typically
512MB to 4GB) with which data sets can be transferred to and
from the CPU memory space. However, each group, or block, of
threads are assigned a small piece (typically 16K to 64K) of ultra
low-latency shared cache memory which is orders of magnitude
faster than the global memory. Therefore, the main challenge for
the developer, outside of writing the kernel function, is structuring
the computation to optimally utilize each thread block’s shared
memory and minimizing reads from and writes to the global
memory. Careful coordination of the threads is required to transfer
memory efficiently from global to shared. We omit the low-level
details of this process and instead refer the interested reader to
the CUDA API guide ([NvidiaGuide]). See Figure 1 for a rough
diagram of the computing architecture.

As a larger computation is divided up into a grid of thread
blocks, a typical CUDA kernel takes the following structure:

• Coordinate threads within a block to transfer relevant data
for block from global to shared memory

• Perform computation using (fast) shared memory
• Coordinate threads to transfer results back into global

memory

Computational Challenges in Likelihood-based Statistical In-
ference

In most standard and Bayesian statistical models, a probability
distribution (or family of distributions) is assumed for each real-
ization of the data. For example, the errors (residuals) in a linear
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Fig. 1: Mock-up of GPU computing architecture

regression problem are assumed to be normally distributed with
mean 0 and some variance σ2. In a standard statistical inference
problem given a set of distributional assumptions, the task is to
estimate the parameters of those distributions. Under this setup,
we can write down the joint likelihood for the data in mathematical
terms

p(x1, . . . ,xn|Θ) = Πn
i=1 p(xi|Θ), (1)

where Θ represents the unknown parameters of the model, and
p(xi|Θ) is the probability density for observation xi. This repre-
sentation assumes that the data are independent and identically
distributed. For example, we may wish to estimate the mean µ
and variance σ2 of a normally distributed population, in which
case Θ = (µ,σ2) and

p(xi|µ,σ2) =
1√

2πσ2
e−(xi−µ)2/2σ2

(2)

In many statistical inference algorithms, the "goodness of fit" of
the parameters Θ is evaluated based on the full data likelihood
1. It is common to use the logged likelihood function as 1
decomposes into a sum of log densities and this also reduces
numerical precision problems.

Many numerical algorithms for fitting these likelihood-based
models, especially Monte Carlo-based, involve evaluating the log-
likelihood function over thousands of iterations. Thus as the size
of the observed data grows, computational expense grows as least
linearly in the number of data points. As above, if the data are
assumed to be independently generated, the quantity log p(xi|Θ)
for each observation xi can be evaluated in parallel then summed
to compute the full log-likelihood. This becomes a very natural
setting for GPUs, and it is quite easy for GPUs to perform even
better than large CPU clusters because of the large number of
computing cores and very low memory latency. Suchard et al.
studied these advantages in the Bayesian mixture model setting
and found very promising results (100x speedup) on graphics
cards that are now 2 years old ([JCGS]).

Another source of significant computation in statistical appli-
cations that we address is that of generating draws from random
variables. In many algorithms (e.g. Bayesian Markov Chain Monte
Carlo methods), large data sets may require generating thousands
or millions of random variables from various probability distribu-
tions at each iteration of the algorithm.

Challenges of GPU Computing in Statistical Inference

As mentioned above, a CUDA or OpenCL programmer must be
very mindful of the memory architecture of the GPU. There are
multiple memory management issues to address, i.e. in CUDA
parlance

• Coalescing transactions between global and shared mem-
ory; this is, coordinating groups of typically 16 to 32
threads to copy a contiguous chunk of 64 or 128 bytes
in a single transaction

• Avoiding shared memory bank conflicts, i.e. threads com-
peting for read/write access to a shared memory address

To make this more concrete, let’s consider the task of imple-
menting the log of the normal probability density function (pdf) 2.
Given a data set with N observations, we wish to evaluate the pdf
on each point for a set of parameters, i.e. the mean µ and variance
σ2. Thus, all that needs to be passed to the GPU is the data set
and the parameters. A C function which can compute the log pdf
for a single data point is
float log_normal_pdf(float* x, float* params) {

float std = params[1];
float xstd = (*x - params[0]) / std;
return - (xstd * xstd) / 2 - 0.5 * LOG_2_PI

- log(std);
}

In practice, one would hope that implementing a new probability
density such as this would be as simple as writing this 4-
line function. Unfortunately, to achieve optimal performance, the
majority of one’s attention must be focused on properly addressing
the above data coordination / cache optimization problems. Thus,
the full form of a GPU kernel implementing a pdf is typically as
follows:

• Coordinate threads to copy (coalesce, if possible) data
needed for thread block to shared memory

• Similarly copy parameters needed by thread back to shared
memory

• Each thread computes a density result for a single data
point, writing results to shared memory

• Copy/coalesce resulting density values back to global
memory

Fortunately, the function signature for the vast majority of
probability density functions of interest is the same, requiring only
data and parameters. While the actual pdf function is very simple,
the rest of the code is much more involved. Since the kernels are
structurally the same, we would be interested in a way to reuse
the code for steps 1, 2, and 4, which will likely be nearly identical
for most of the functions. Were we programming in C, doing so
would be quite difficult. But, since we have PyCUDA/PyOpenCL
at our disposal, metaprogramming techniques can be utilized to do
just that, as we discuss later.

With respect to probability densities, we make a brief distinc-
tion between univariate (observations are a single floating point
value) and multivariate (vector-valued observations) distributions.
In the latter case, the dimension of each observation (the length of
each vector) typically must be passed as well. Otherwise, multi-
variate densities (e.g. multivariate normal) are handled similarly.

In a more general framework, we might wish to evaluate the
pdf for multiple parameters at once, e.g. (µ1,σ2

1 ), . . . , ..(µK ,σ2
K).

In other words, N ∗K densities need to be computed. A naive but
wasteful approach would be to make K round trips to the GPU for
each of the K sets of parameters. A better approach is to divide the
data / parameter combinations among the GPU grid to maximize
data reuse via the shared memory and perform all N ∗K density
computations in a single GPU kernel invocation. This introduces
the additional question of how to divide the problem among thread
blocks viz. optimally utilizing shared memory. As the available
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GPU resources are device specific, we would wish to dynamically
determine the optimal division of labor among thread blocks based
on the GPU being used.

Avoiding bank conflicts as mentioned above is a somewhat
thorny issue as it depends on the thread block layout and memory
access pattern. It turns out in the gpustats framework that bank
conflicts can be avoided with multivariate data by ensuring that
the data dimension is not a multiple of 16. Thus, some data sets
must be padded with arbitrary data to avoid this problem, while
passing the true data dimension to the GPU kernel. If this is not
done, bank conflicts will lead to noticeably degraded performance.
We are hopeful that such workarounds can be avoided with future
versions of GPU memory architecture.

For sampling random variables on the GPU, the process is
reasonably similar. Just as with computing the density function,
sampling requires the same parameters for each distribution to
be passed. Many distributions can be derived by transforming
draws from a uniform random variable on the interval [0, 1].
Thus, for such distributions it makes most sense to precompute
uniform draws (either using the CPU or the GPU) and pass these
precomputed draws to the GPU kernel. However, there are widely-
used distributions, such as the gamma distribution, which are
commonly sampled via adaptive rejection sampling. With this
algorithm, the number of uniform draws needed to produce a
single sample is not known a priori. Thus, such distributions
would be very difficult to sample on the GPU.

Metaprogramming: probability density kernels and beyond

The gpustats Python library leverages the compilation-on-the-
fly capabilities of PyCUDA and metaprogramming techniques to
simplify the process of writing new GPU kernels for computing
probability density functions, samplers, and other related statis-
tical computing functionality. As described above in the normal
distribution case, one would hope that writing a new density
function would amount to writing the simple log_normal_pdf
function and having the untidy global-shared cache management
problem taken care of by the library. Additionally, we would
like to have a mechanism for computing transformed versions
of existing kernels. For example, log_normal_pdf could be
transformed to the unlogged density by applying the exponent
function.

To solve these problems, we have developed a prototype
object-oriented code generation framework to make it easy to
develop new kernels with minimal effort by the statistical user. We
do so by taking advantage of the string templating functionality
of Python and the CUDA API’s support for inline functions on
the GPU. These inline functions are known as device functions,
marked by __device__. Since the data transfer / coalescing
problem needs to be only solved once for each variety of kernel,
we can use templating to generate a custom kernel for each new
device function implementing a new probability density. It is then
simple to enable element wise transformations of existing device
functions, e.g. taking the exp of a logged probability density. In
the gpustats framework, the code for implementing the logged
and unlogged normal pdf is as follows:

_log_pdf_normal = """
__device__ float %(name)s(float* x, float* params) {
// mean stored in params[0]
float std = params[1];

// standardize

float xstd = (*x - params[0]) / std;
return - (xstd * xstd) / 2 - 0.5f * LOG_2_PI

- log(std);
}
"""
log_pdf_normal = DensityKernel('log_pdf_normal',

_log_pdf_normal)
pdf_normal = Exp('pdf_normal', log_pdf_normal)

The gpustats code generator will, at import time, generate a
CUDA source file to be compiled on the fly by PyCUDA.
Note that the %(name)s template is there to enable the device
function to be given an appropriate (and non-conflicting) name
in the generated source code, given that multiple versions of a
single device function may exist. For example, the Exp transform
generates a one-line device function taking the exp of the logged
density function.

Python interface and device-specific optimization

Further work is needed to interface with the generated PyCUDA
SourceModule instance. For example, the data and parameters
need to be prepared in ndarray objects in the form that the
kernel expects them. Since all of the univariate density functions,
for example, have the same function signature, it’s relatively
straightforward to create a generic function taking care of this
often tedious process. Thus, implementing a new density function
requires only passing the appropriate function reference to the
generic invoker function. Here we show what the function imple-
menting the normal (logged and unlogged) pdf on multiple sets of
parameters looks like:

def normpdf_multi(x, means, std, logged=True):
if logged:

cu_func = mod.get_function('log_pdf_normal')
else:

cu_func = mod.get_function('pdf_normal')
packed_params = np.c_[means, std]
return _univariate_pdf_call(cu_func, x,

packed_params)

Inside the above _univariate_pdf_call function, the at-
tributes of the GPU device in use are examined to dynamically
determine the thread block size and grid layout that will maximize
the shared memory utilization. This is definitely an area where
much time could be invested to determine a more "optimal"
scheme.

Reusing data stored on the GPU

Since the above algorithms may be run repeatedly on the same data
set, leaving a data set stored on the GPU global device memory
is a further important optimization. Indeed, the time required to
copy a large block of data to the GPU may be quite significant
compared with the time required to execute the kernel.

Fortunately, PyCUDA and PyOpenCL have a GPUArray
class which mimics its CPU-based NumPy counterpart ndarray,
with the data being stored on the GPU. Thus, in functions like the
above, the user can pass in a GPUArray to the function which will
circumvent any copying of data to the GPU. Similarly, functions
like normpdf_multi above can be augmented with an option
to return a GPUArray instead of an ndarray. This is useful
as in some algorithms the results of a density calculation may
be immediately used for sampling random variables on the GPU.
Avoiding round trips to the GPU device memory can result in a
significant boost in performance, especially with smaller data sets.
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Some basic benchmarks

We show some benchmarks for the univariate and multivariate
normal probability density functions, both with and without using
GPUArray to use data already stored on the GPU. These were
carried out with a very modest NVIDIA GTS 250 desktop card,
which has 128 CUDA cores (latest generation cards have up to
512). The CPU benchmarks were done on a standard Intel Core
i7 930 processor. As you will see, the speedups with larger data
sets can be quite dramatic. The reported numbers below are the
speedup, i.e. the ratio of CPU average runtime divided by GPU
average runtime.

Univariate Normal PDF: "Single" indicates that the density
values were only computed for a single mean and variance.
"Multi" indicates that they were computed for 8 (an arbitrary
number) sets of means and variances in one shot. The column
header indicates the number of data points.

1e3 1e4 1e5 1e6
Single 0.2234 1.268 7.951 23.05
Single (GPUArray) 0.2407 1.291 9.359 38.72
Multi 1.46 7.035 26.19 43.73
Multi (GPUArray) 1.79 8.354 30.79 49.26

Multivariate Normal PDF: For this distribution, we used a
streamlined C implementation of the density function (nearly
identical code to the CUDA kernel) for benchmarking purposes so
that it’s an apples-to-apples comparison. For the data dimension
we chose 15, again arbitrarily. Here we can really see an even
greater impact of reusing data on the GPU:

1e3 1e4 1e5 1e6
Single 0.6998 4.167 12.55 14.09
Single (GPUArray) 0.8465 6.03 32.59 64.12
Multi 3.126 18.41 60.18 63.89
Multi (GPUArray) 3.135 19.8 74.39 82

Application: PyMC integration

Low-hanging fruit for GPU integration in big data applica-
tions would be in [PyMC]. This is a library for implementing
Bayesian Markov Chain Monte Carlo (MCMC) algorithms. The
user describes the generative process for a data set and places
prior distributions on the parameters of the generative process.
PyMC then uses the well-known Metropolis-Hastings algorithm
to approximate samples from the posterior distribution of the
parameters given the observed data. A key step in Metropolis-
Hastings is the proposal step in which new parameter values are
selected via some proposal distribution, which is typically based
on a symmetric random walk but may be more sophisticated. A
new proposed value θ ∗ for θ is accepted or rejected based on the
acceptance ratio

a∗ =
p(θ ∗)p(x|θ ∗)p(θ ∗|θ)
p(θ)p(x|θ)p(θ |θ ∗) ,

where p(θ) is the prior density for θ , p(x|θ) is the likelihood, and
p(θ |θ ∗) is the proposal density. Understanding the details of how
and why this algorithm works is not important for the scope of
this paper. What is important is the fact that the quantity p(x|θ)
is recomputed typically thousands of times to compute samples
from the model. If the data x is very large, then the majority of
the runtime of the MCMC may be spent recomputing the data
likelihood for different parameters.

Enabling all of the PyMC distributions to run in GPU mode (so
that likelihoods are computed on the GPU) would be very simple
as soon as the probability density functions are implemented

inside gpustats. Based on the above benchmarks, it is clear that
integrating gpustats with PyMC could significantly reduce the
overall runtime of many MCMC models on large data sets.

Conclusions and future work

As gpustats currently uses PyCUDA it can only be used with
NVIDIA graphics cards. OpenCL, however, provides a parallel
computing framework which can be executed on NVIDIA and
ATI cards as well as on CPUs. Thus, it will make sense to enable
the gpustats code generator to emit OpenCL code in the near
future. As PyOpenCL is developed in lockstep with PyCUDA,
altering the Python interface code to use PyOpenCL should not
be too onerous. Using OpenCL currently has drawbacks for statis-
tical applications: most significantly the lack of a pseudorandom
number generator equivalent in speed and quality to [CURAND].
For simulation-based applications this can make a big impact. We
are hopeful that this issue will be resolved in the next year or two.

Another important addition which would be important to some
users is to enable multiple GPUs to be run in parallel to extract
even better performance. While this would introduce more latency
for small datasets and likely be unnecessary, for processing large
data sets, the overhead of calling out to 3 GPUs, for example,
would likely be much less than the computation time. Ideally
code could be seamlessly run on multiple GPUs. Furthermore,
the device memory on the GPU can be small. However, most
GPUs allow asynchronous memory copying and thread execution,
so a streaming approach can be taken on large datasets that can be
partitioned. In some cases, the streaming overhead can be virtually
eliminated by the asynchronous calls.

Note that gpustats is still in prototype stages, so its API will
be highly subject to change. We hope to generate interest in this
development direction as it could have an impact in boosting
Python’s status as a desirable statistical computing environment
for big data. An end goal would be to reimplement most of the
probability distributions (densities, samplers, etc.) in scipy.stats
on the GPU and to fully integrate these where possible through-
out PyMC and other related libraries. The meta-programming
approach offers a development friendly environment that could
also be considered a prototype for a useful GPU programming
model in general.

Another interesting avenue, but perhaps of less importance
for Python programmers, would be the generation of wrapper
interfaces to the generated CUDA or OpenCL source module for
other programming languages, such as R. However, without the
easy-to-use PyCUDA and PyOpenCL bindings this would likely
be a fairly significant undertaking.
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Using the Global Arrays Toolkit to Reimplement
NumPy for Distributed Computation

Jeff Daily‡∗, Robert R. Lewis§

F

Abstract—Global Arrays (GA) is a software system from Pacific Northwest
National Laboratory that enables an efficient, portable, and parallel shared-
memory programming interface to manipulate distributed dense arrays. Using a
combination of GA and NumPy, we have reimplemented NumPy as a distributed
drop-in replacement called Global Arrays in NumPy (GAiN). Scalability studies
will be presented showing the utility of developing serial NumPy codes which
can later run on more capable clusters or supercomputers.

Index Terms—Global Arrays, Python, NumPy, MPI

Introduction

Scientific computing with Python typically involves using the
NumPy package. NumPy provides an efficient multi-dimensional
array and array processing routines. Unfortunately, like many
Python programs, NumPy is serial in nature. This limits both the
size of the arrays as well as the speed with which the arrays can
be processed to the available resources on a single compute node.

For the most part, NumPy programs are written, debugged,
and run in singly-threaded environments. This may be sufficient
for certain problem domains. However, NumPy may also be used
to develop prototype software. Such software is usually ported to a
different, compiled language and/or explicitly parallelized to take
advantage of additional hardware.

Global Arrays in NumPy (GAiN) is an extension to Python that
provides parallel, distributed processing of arrays. It implements
a subset of the NumPy API so that for some programs, by simply
importing GAiN in place of NumPy they may be able to take
advantage of parallel processing transparently. Other programs
may require slight modification. This allows those programs to
take advantage of the additional cores available on single com-
pute nodes and to increase problem sizes by distributing across
clustered environments.

Background

Like any complex piece of software, GAiN builds on many other
foundational ideas and implementations. This background is not
intended to be a complete reference, rather only what is necessary
to understand the design and implementation of GAiN. Further
details may be found by examining the references or as otherwise
noted.
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NumPy

NumPy [Oli06] is a Python extension module which adds a
powerful multidimensional array class ndarray to the Python
language. NumPy also provides scientific computing capabilities
such as basic linear algebra and Fourier transform support. NumPy
is the de facto standard for scientific computing in Python and
the successor of the other numerical Python packages Numarray
[Dub96] and numeric [Asc99].

The primary class defined by NumPy is ndarray. The
ndarray is implemented as a contiguous memory segment.
Internally, all ndarray instances have a pointer to the location
of the first element as well as the attributes shape, ndim, and
strides. ndim describes the number of dimensions in the array,
shape describes the number of elements in each dimension, and
strides describes the number of bytes between consecutive
elements per dimension. The ndarray can be either FORTRAN-
or C-ordered. Recall that in FORTRAN, the first dimension has a
stride of one while it is the opposite (last) dimension in C. shape
can be modified while ndim and strides are read-only and
used internally, although their exposure to the programmer may
help in developing certain algorithms.

The creation of ndarray instances is complicated by the
various ways in which it can be done such as explicit constructor
calls, view casting, or creating new instances from template
instances (e.g. slicing). To this end, the ndarray does not
implement Python’s __init__() object constructor. Instead,
ndarrays use the __new__() classmethod. Recall that
__new__() is Python’s hook for subclassing its built-in objects.
If __new__() returns an instance of the class on which it is
defined, then the class’s __init__() method is also called. Oth-
erwise, the __init__() method is not called. Given the various
ways that ndarray instances can be created, the __new__()
classmethod might not always get called to properly initialize
the instance. __array_finalize__() is called instead of
__init__() for ndarray subclasses to avoid this limitation.

The element-wise operators in NumPy are known as Universal
Functions, or ufuncs. Many of the methods of ndarray simply
invoke the corresponding ufunc. For example, the operator + calls
ndarray.__add__() which invokes the ufunc add. Ufuncs
are either unary or binary, taking either one or two arrays as input,
respectively. Ufuncs always return the result of the operation as
an ndarray or ndarray subclass. Optionally, an additional
output parameter may be specified to receive the results of the
operation. Specifying this output parameter to the ufunc avoids
the sometimes unnecessary creation of a new ndarray.
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Ufuncs can operate on ndarray subclasses or
array-like objects. In order for subclasses of the
ndarray or array-like objects to utilize the ufuncs,
they may define three methods or one attribute which
are __array_prepare__(), __array_wrap__(),
__array__(), and __array_priority__, respectively.
The __array_prepare__() and __array_wrap__()
methods will be called on either the output, if specified,
or the input with the highest __array_priority__.
__array_prepare__() is called on the way into the ufunc
after the output array is created but before any computation has
been performed and __array_wrap__() is called on the way
out of the ufunc. Those two functions exist so that ndarray
subclasses can properly modify any attributes or properties
specific to their subclass. Lastly, if an output is specified which
defines an __array__() method, results will be written to the
object returned by calling __array__().

Single Program, Multiple Data

Parallel applications can be classified into a few well defined pro-
gramming paradigms. Each paradigm is a class of algorithms that
have the same control structure. The literature differs in how these
paradigms are classified and the boundaries between paradigms
can sometimes be fuzzy or intentionally blended into hybrid mod-
els [Buy99]. The Single Program Multiple Data (SPMD) paradigm
is one example. With SPMD, each process executes essentially the
same code but on a different part of the data. The communication
pattern is highly structured and predictable. Occasionally, a global
synchronization may be needed. The efficiency of these types of
programs depends on the decomposition of the data and the degree
to which the data is independent of its neighbors. These programs
are also highly susceptible to process failure. If any single process
fails, generally it causes deadlock since global synchronizations
thereafter would fail.

Message Passing Interface (MPI)

Message passing libraries allow efficient parallel programs to
be written for distributed memory systems. MPI [Gro99a], also
known as MPI-1, is a library specification for message-passing that
was standardized in May 1994 by the MPI Forum. It is designed
for high performance on both massively parallel machines and on
workstation clusters. An optimized MPI implementation exists on
nearly all modern parallel systems and there are a number of freely
available, portable implementations for all other systems [Buy99].
As such, MPI is the de facto standard for writing massively parallel
application codes in either FORTRAN, C, or C++.

The MPI-2 standard [Gro99b] was first completed in 1997
and added a number of important additions to MPI including, but
not limited to, one-sided communication and the C++ language
binding. Before MPI-2, all communication required explicit hand-
shaking between the sender and receiver via MPI_Send() and
MPI_Recv() in addition to non-blocking variants. MPI-2’s one-
sided communication model allows reads, writes, and accumulates
of remote memory without the explicit cooperation of the process
owning the memory. If synchronization is required at a later time,
it can be requested via MPI_Barrier(). Otherwise, there is no
strict guarantee that a one-sided operation will complete before
the data segment it accessed is used by another process.

mpi4py

mpi4py is a Python wrapper around MPI. It is written to mimic the
C++ language bindings. It supports point-to-point communication,

one-sided communication, as well as the collective communication
models. Typical communication of arbitrary objects in the FOR-
TRAN or C bindings of MPI require the programmer to define new
MPI datatypes. These datatypes describe the number and order of
the bytes to be communicated. On the other hand, strings could
be sent without defining a new datatype so long as the length of
the string was understood by the recipient. mpi4py is able to com-
municate any serializable Python object since serialized objects
are just byte streams. mpi4py also has special enhancements to
efficiently communicate any object implementing Python’s buffer
protocol, such as NumPy arrays. It also supports dynamic process
management and parallel I/O [Dal05], [Dal08].

Global Arrays and Aggregate Remote Memory Copy Interface

The GA toolkit [Nie06], [Nie10], [Pnl11] is a software sys-
tem from Pacific Northwest National Laboratory that enables
an efficient, portable, and parallel shared-memory programming
interface to manipulate physically distributed dense multidimen-
sional arrays, without the need for explicit cooperation by other
processes. GA compliments the message-passing programming
model and is compatible with MPI so that the programmer can
use both in the same program. GA has supported Python bindings
since version 5.0. Arrays are created by calling one of the creation
routines such as ga.ceate(), returning an integer handle which
is passed to subsequent operations. The GA library handles the dis-
tribution of arrays across processes and recognizes that accessing
local memory is faster than accessing remote memory. However,
the library allows access mechanisms for any part of the entire
distributed array regardless of where its data is located. Local
memory is acquired via ga.access() returning a pointer to the
data on the local process, while remote memory is retrieved via
ga.get() filling an already allocated array buffer. Individual
discontiguous sets of array elements can be updated or retrieved
using ga.scatter() or ga.gather(), respectively. GA has
been leveraged in several large computational chemistry codes and
has been shown to scale well [Apr09].

The Aggregate Remote Memory Copy Interface (ARMCI)
provides general-purpose, efficient, and widely portable remote
memory access (RMA) operations (one-sided communication).
ARMCI operations are optimized for contiguous and non-
contiguous (strided, scatter/gather, I/O vector) data transfers. It
also exploits native network communication interfaces and system
resources such as shared memory [Nie00]. ARMCI provides
simpler progress rules and a less synchronous model of RMA
than MPI-2. ARMCI has been used to implement the Global
Arrays library, GPSHMEM - a portable version of Cray SHMEM
library, and the portable Co-Array FORTRAN compiler from Rice
University [Dot04].

Cython

Cython [Beh11] is both a language which closely resembles
Python as well as a compiler which generates C code based
on Python’s C API. The Cython language additionally supports
calling C functions as well as static typing. This makes writing
C extensions or wrapping external C libraries for the Python
language as easy as Python itself.

Previous Work

GAiN is similar in many ways to other parallel computation
software packages. It attempts to leverage the best ideas for
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transparent, parallel processing found in current systems. The
following packages provided insight into how GAiN was to be
developed.

MITMatlab [Hus98], which was later rebranded as Star-P
[Ede07], provides a client-server model for interactive, large-scale
scientific computation. It provides a transparently parallel front
end through the popular MATLAB [Pal07] numerical package
and sends the parallel computations to its Parallel Problem Server.
Star-P briefly had a Python interface. Separating the interactive,
serial nature of MATLAB from the parallel computation server
allows the user to leverage both of their strengths. This also allows
much larger arrays to be operated over than is allowed by a single
compute node.

Global Arrays Meets MATLAB (GAMMA) [Pan06] provides
a MATLAB binding to the GA toolkit, thus allowing for larger
problem sizes and parallel computation. GAMMA can be viewed
as a GA implementation of MITMatlab and was shown to scale
well even within an interpreted environment like MATLAB.

IPython [Per07] provides an enhanced interactive Python shell
as well as an architecture for interactive parallel computing.
IPython supports practically all models of parallelism but, more
importantly, in an interactive way. For instance, a single interactive
Python shell could be controlling a parallel program running on a
supercomputer. This is done by having a Python engine running
on a remote machine which is able to receive Python commands.

distarray [Gra09] is an experimental package for the IPython
project. distarray uses IPython’s architecture as well as MPI exten-
sively in order to look and feel like NumPy ndarray instances.
Only the SPMD model of parallel computation is supported, unlike
other parallel models supported directly by IPython. Further, the
status of distarray is that of a proof of concept and not production
ready.

A Graphics Processing Unit (GPU) is a powerful parallel
processor that is capable of more floating point calculations per
second than a traditional CPU. However, GPUs are more difficult
to program and require other special considerations such as copy-
ing data from main memory to the GPU’s on-board memory in
order for it to be processed, then copying the results back. The
GpuPy [Eit07] Python extension package was developed to lessen
these burdens by providing a NumPy-like interface for the GPU.
Preliminary results demonstrate considerable speedups for certain
single-precision floating point operations.

A subset of the Global Arrays toolkit was wrapped in Python
for the 3.x series of GA by Robert Harrison [Har99]. It illustrated
some important concepts such as the benefits of integration with
NumPy -- the local or remote portions of the global arrays were
retrieved as NumPy arrays at which point they could be used as
inputs to NumPy functions like the ufuncs.

Co-Array Python [Ras04] is modeled after the Co-Array FOR-
TRAN extensions to FORTRAN 95. It allows the programmer
to access data elements on non-local processors via an extra
array dimension, called the co-dimension. The CoArray module
provided a local data structure existing on all processors executing
in a SPMD fashion. The CoArray was designed as an extension to
Numeric Python [Asc99].

Design

The need for parallel programming and running these programs on
parallel architectures is obvious, however, efficiently programming
for a parallel environment can be a daunting task. One area of

Fig. 1: Each local piece of the gain.ndarray has its own shape
(in parenthesis) and knows its portion of the distribution (in square
brackets). Each local piece also knows the global shape.

research is to automatically parallelize otherwise serial programs
and to do so with the least amount of user intervention [Buy99].
GAiN attempts to do this for certain Python programs utilizing the
NumPy module. It will be shown that some NumPy programs can
be parallelized in a nearly transparent way with GAiN.

There are a few assumptions which govern the design of
GAiN. First, all documented GAiN functions are collective. Since
Python and NumPy were designed to run serially on workstations,
it naturally follows that GAiN, running in an SPMD fashion,
will execute every documented function collectively. Second, only
certain arrays should be distributed. In general, it is inefficient to
distribute arrays which are relatively small and/or easy to compute.
It follows, then, that GAiN operations should allow mixed inputs
of both distributed and local array-like objects. Further, NumPy
represents an extensive, useful, and hardened API. Every effort to
reuse NumPy should be made. Lastly, GA has its own strengths to
offer such as processor groups and custom data distributions. In
order to maximize scalability of this implementation, we should
enable the use of processor groups [Nie05].

A distributed array representation must acknowledge the du-
ality of a global array and the physically distributed memory of
the array. Array attributes such as shape should return the global,
coalesced representation of the array which hides the fact the array
is distributed. But when operations such as add() are requested,
the corresponding pieces of the input arrays must be operated
over. Figure 1 will help illustrate. Each local piece of the array
has its own shape (in parenthesis) and knows its portion of the
distribution (in square brackets). Each local piece also knows the
global shape.

A fundamental design decision was whether to subclass
ndarray or to provide a work-alike replacement for the entire
numpy module. The NumPy documentation states that ndarray
implements __new__() in order to control array creation via
constructor calls, view casting, and slicing. Subclasses implement
__new__() for when the constructor is called directly, and
__array_finalize__() in order to set additional attributes
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or further modify the object from which a view has been taken.
One can imagine an ndarray subclass called gainarray cir-
cumventing the usual ndarray base class memory allocation and
instead allocating a smaller ndarray per process while retaining
the global shape. One problem occurs with view casting -- with
this approach the other ndarray subclasses know nothing of the
distributed nature of the memory within the gainarray. NumPy
itself is not designed to handle distributed arrays. By design,
ufuncs create an output array when one is not specified. The
first hook which NumPy provides is __array_prepare__()
which is called after the output array has been created. This
means any ufunc operation on one or more gainarray instances
without a specified output would automatically allocate the entire
output on each process. For this reason alone, we opted to
reimplement the entire numpy module, controlling all aspects of
array creation and manipulation to take into account distributed
arrays.

We present a new Python module, gain, developed as part
of the main Global Arrays software distribution. The release of
GA v5.0 contained Python bindings based on the complete GA
C API, available in the extension module ga. The GA bindings
as well as the gain module were developed using Cython.
With the upcoming release of GA v5.1, the module ga.gain
is available as a drop-in replacement for NumPy. The goal of the
implementation is to allow users to write
import ga.gain as numpy

and then execute their code using MPI e.g.
mpiexec -np 4 python script.py

In order to succeed as a drop-in replacement, all attributes,
functions, modules, and classes which exist in numpy must also
exist within gain. Efforts were made to reuse as much of numpy
as possible, such as its type system. As of GA v5.1, arrays of
arbitrary fixed-size element types and sizes can be created and
individual fields of C struct data types accessed directly. GAiN
is able to use the numpy types when creating the GA instances
which back the gain.ndarray instances.

GAiN follows the owner-computes rule [Zim88]. The rule
assigns each computation to the processor that owns the data being
computed. Figures 2 and 3 illustrate the concept. For any array
computation, GAiN bases the computation on the output array.
The processes owning portions of the output array will acquire
the corresponding pieces of the input array(s) and then perform
the computation locally, calling the original NumPy routine on
the corresponding array portions. In some cases, for example if
the output array is a view created by a slicing operation, certain
processors will have no computation to perform.

The GAiN implementation of the ndarray implements a few
important concepts including the dual nature of a global array
and its individual distributed pieces, slice arithmetic, and sepa-
rating collective operations from one-sided operations. When a
gain.ndarray is created, it creates a Global Array of the same
shape and type and stores the GA integer handle. The distribution
on a given process can be queried using ga.distribution().
The other important attribute of the gain.ndarray is the
global_slice. The global_slice begins as a list of slice objects
based on the original shape of the array.
self.global_slice = [slice(0,x,1) for x in shape]

Slicing a gain.ndarray must return a view just like slicing
a numpy.ndarray returns a view. The approach taken is to

Fig. 2: Add two arrays with the same data distribution. There
are eight processors for this computation. Following the owner-
computes rule, each process owning a piece of the output array (far
right) retrieves the corresponding pieces from the sliced input arrays
(left and middle). For example, the corresponding gold elements
will be computed locally on the owning process. Note that for this
computation, the data distribution is the same for both input arrays
as well as the output array such that communication can be avoided
by using local data access.

Fig. 3: Add two sliced arrays. There are eight processors for this
computation. The elements in blue were removed by a slice operation.
Following the owner-computes rule, each process owning a piece of
the output array (far right) retrieves the corresponding pieces from the
sliced input arrays (left and middle). For example, the corresponding
gold elements will be computed locally on the owning process.
Similarly for the copper elements. Note that for this computation, the
data for each array is not equivalently distributed which will result in
communication.

apply the key of the __getitem__(key) request to the
global_slice and store the new global_slice on the
newly created view. We call this type of operation slice arithmetic.
First, the key is canonicalized meaning Ellipsis are replaced
with slice(0,dim_max,1) for each dimension represented
by the Ellipsis, all slice instances are replaced with the
results of calling slice.indices(), and all negative index
values are replaced with their positive equivalents. This step
ensures that the length of the key is compatible with and based
on the current shape of the array. This enables consistent slice
arithmetic on the canonicalized keys. Slice arithmetic effectively
produces a new key which, when applied to the same original
array, produces the same results had the same sequence of keys
been applied in order. Figures 4 and 5 illustrate this concept.

When performing calculations on a gain.ndarray, the
current global_slice is queried when accessing the local
data or fetching remote data such that an appropriate ndarray
data block is returned. Accessing local data and fetching re-
mote data is performed by the gain.ndarray.access() and
gain.ndarray.get() methods, respectively. Figure 6 illus-
trates how access() and get() are used. The ga.access()
function on which gain.ndarray.access() is based will
always return the entire block owned by the calling process. The
returned piece must be further sliced to appropriately match the



USING THE GLOBAL ARRAYS TOOLKIT TO REIMPLEMENT NUMPY FOR DISTRIBUTED COMPUTATION 33

Fig. 4: Slice arithmetic example 1. Array b could be created either
using the standard notation (top middle) or using the canonicalized
form (bottom middle). Array c could be created by applying the
standard notation (top right) or by applying the equivalent canonical
form (bottom right) to the original array a.

Fig. 5: Slice arithmetic example 2. See the caption of Figure 4 for
details.

current global_slice. The ga.strided_get() function
on which gain.ndarray.get() method is based will fetch
data from other processes without the remote processes’ coop-
eration i.e. using one-sided communication. The calling process
specifies the region to fetch based on the current view’s shape
of the array. The global_slice is adjusted to match the
requested region using slice arithmetic and then transformed into
a ga.strided_get() request based on the global, original
shape of the array.

Recall that GA allows the contiguous, process-local data to
be accessed using ga.access() which returns a C-contiguous
ndarray. However, if the gain.ndarray is a view created by
a slice, the data which is accessed will be contiguous while the
view is not. Based on the distribution of the process-local data, a
new slice object is created from the global_slice and applied
to the accessed ndarray, effectively having applied first the

Fig. 6: access() and get() examples. The current
global_slice, indicated by blue array elements, is respected
in either case. A process can access its local data block for a
given array (red highlight). Note that access() returns the entire
block, including the sliced elements. Any process can fetch any other
processes’ data using get() with respect to the current shape of
the array (blue highlight). Note that the fetched block will not contain
the sliced elements, reducing the amount of data communicated.

global_slice on the global representation of the distributed
array followed by a slice representing the process-local portion.

After process-local data has been accessed and sliced as
needed, it must then fetch the remote data. This is again done
using ga.get() or ga.strided_get() as above. Recall that
one-sided communication, as opposed to two-sided communica-
tion, does not require the cooperation of the remote process(es).
The local process simply fetches the corresponding array sec-
tion by performing a similar transformation to the target array’s
global_slice as was done to access the local data, and then
translates the modified global_slice into the proper argu-
ments for ga.get() if the global_slice does not contain
any step values greater than one, or ga.strided_get() if
the global_slice contained step values greater than one.

One limitation of using GA is that GA does not allow negative
stride values corresponding to the negative step values allowed
for Python sequences and NumPy arrays. Supporting negative
step values for GAiN required special care -- when a negative
step is encountered during a slice operation, the slice is applied
as usual. However, prior to accessing or fetching data, the slice is
inverted from a negative step to a positive step and the start
and stop values are updated appropriately. The ndarray which
results from accessing or fetching based on the inverted slice is
then re-inverted, creating the correct view of the new data.

Another limitation of using GA is that the data distribution
cannot be changed once an array is created. This complicates such
useful functionality as numpy.reshape(). Currently, GAiN
must make a copy of the array instead of a view when altering
the shape of an array.

Translating the numpy.flatiter class, which assumes a
single address space while translating an N-dimensional array
into a 1D array, into a distributed form was made simpler by
the use of ga.gather() and ga.scatter(). These two
routines allow individual data elements within a GA to be fetched
or updated. Flattening a distributed N-dimensional array which
had been distributed in blocked fashion will cause the blocks
to become discontiguous. Figure 7 shows how a 6 × 6 array
might be distributed and flattened. The ga.get() operation
assumes the requested patch has the same number of dimensions
as the array from which the patch is requested. Reshaping, in
general, is made difficult by GA and its lack of a redistribute
capability. However, in this case, we can use ga.gather()
and ga.scatter() to fetch and update, respectively, any array
elements in any order. ga.gather() takes a 1D array-like of
indices to fetch and returns a 1D ndarray of values. Similarly,
ga.scatter() takes a 1D array-like of indices to update and
a 1D array-like buffer containing the values to use for the update.
If a gain.flatiter is used as the output of an operation,
following the owner-computes rule is difficult. Instead, pseudo-
owners are assigned to contiguous slices of the of 1D view.
These pseudo-owners gather their own elements as well as the
corresponding elements of the other inputs, compute the result,
and scatter the result back to their own elements. This results
in additional communication which is otherwise avoided by true
adherence to the owner-computes rule. To avoid this inefficiency,
there are some cases where operating over gain.flatiter
instances can be optimized, for example with gain.dot() if
the same flatiter is passed as both inputs, the base of the
flatiter is instead multiplied together element-wise and then
the gain.sum() is taken of the resulting array.
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Fig. 7: Flattening a 2D distributed array. The block owned by a
process becomes discontiguous when representing the 2D array in 1
dimension.

Evaluation

The success of GAiN hinges on its ability to enable distributed ar-
ray processing in NumPy, to transparently enable this processing,
and most importantly to efficiently accomplish those goals. Per-
formance Python [Ram08] “perfpy” was conceived to demonstrate
the ways Python can be used for high performance computing. It
evaluates NumPy and the relative performance of various Python
extensions to NumPy. It represents an important benchmark by
which any additional high performance numerical Python module
should be measured. The original program laplace.py was
modified by importing ga.gain in place of numpy and then
stripping the additional test codes so that only the gain (numpy)
test remained. The latter modification makes no impact on the tim-
ing results since all tests are run independently but was necessary
because gain is run on multiple processes while the original test
suite is serial. The program was run on the chinook supercomputer
at the Environmental Molecular Sciences Laboratory, part of
Pacific Northwest National Laboratory. Chinook consists of 2310
HP DL185 nodes with dual socket, 64-bit, Quad-core AMD 2.2
GHz Opteron processors. Each node has 32 Gbytes of memory
for 4 Gbytes per core. Fast communication between the nodes is
obtained using a single rail Infiniband interconnect from Voltaire
(switches) and Melanox (NICs). The system runs a version of
Linux based on Red Hat Linux Advanced Server. GAiN utilized
up to 512 nodes of the cluster, using 4 cores per node.

In Figure 8, GAiN is shown to scale up to 2K cores on
a modest problem size. GAiN is also able to run on problems
which are not feasible on workstations. For example, to store one
100,000x100,000 matrix of double-precision numbers requires
approximately 75GB.

During the evaluation, it was noted that a lot of time was
spent within global synchronization calls e.g. ga.sync(). The
source of the calls was traced to, among other places, the vast
number of temporary arrays getting created. Using GA statistics
reporting, the original laplace.py code created 912 arrays
and destroyed 910. Given this staggering figure, an array cache
was created. The cache is based on a Python dict using the
shape and type of the arrays as the keys and stores discarded GA
instances represented by the GA integer handle. The number of
GA handles stored per shape and type is referred to as the cache
depth. The gain.ndarray instances are discarded as usual.
Utilizing the cache keeps the GA memory from many allocations
and deallocations but primarily avoids many synchronization calls.
Three cache depths were tested, as shown in Table 1. The trade-off
of using this cache is that if the arrays used by an application vary
wildly in size or type, this cache will consume too much memory.
Other hueristics could be developed to keep the cache from using
too much memory e.g. a maximum size of the cache, remove the
least used arrays, remove the least recently used. Based on the
success of the GA cache, it is currently used by GAiN.

Fig. 8: laplace.py for N=10,000 and N=100,000. For N=10,000,
one matrix of double-precision numbers is approximately 0.75GB. For
this problem, GAiN scales up to 2K cores. For N=100,000, one matrix
of double-precision numbers is approximately 75GB. In addition to
handling this large-scale problem, GAiN continues to scale up to 2K
cores.

No Cache Depth-1 Cache Depth-2 Cache Depth-3 Cache
912/910 311/306 110/102 11/1

TABLE 1: How array caching affects GA array creation/destruction
counts when running laplace.py for 100 iterations. The smaller
numbers indicate better reuse of GA memory and avoidance of global
synchronization calls, at the expense of using additional memory.

Conclusion

GAiN succeeds in its ability to grow problem sizes beyond a single
compute node. The performance of the perfpy code and the ability
to drop-in GAiN without modification of the core implementation
demonstrates its utility. As described previously, GAiN allows
certain classes of existing NumPy programs to run using GAiN
with sometimes as little effort as changing the import statement,
immediately taking advantage of the ability to run in a cluster
environment. Once a smaller-sized program has been developed
and tested on a desktop computer, it can then be run on a cluster
with very little effort. GAiN provides the groundwork for large
distributed multidimensional arrays within NumPy.

Future Work

GAiN is not a complete implementation of the NumPy API nor
does it represent the only way in which distributed arrays can be
achieved for NumPy. Alternative parallelization strategies besides
the owner-computes rule should be explored. GA allows for the
get-compute-put model of computation where ownership of data
is largely ignored, but data movement costs are increased. Task
parallelism could also be explored if load balancing becomes an
issue. The GA cache should be exposed as a tunable parameter.
Alternative temporary array creation strategies could be developed
such as lazy evaluation.
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Vision Spreadsheet: An Environment for Computer
Vision

Scott Determan‡∗

F

Abstract—Vision Spreadsheet is an environment for computer vision. It com-
bines a spreadsheet with computer vision and scientific python. The cells in the
spreadsheet are images, computations on images, measurements, and plots.
There are many built in image processing and machine learning algorithms and
it extensible by writing python functions and importing them into the spread-
sheet.

Index Terms—computer vision, spreadsheet, OpenCV

Introduction

Vision Spreadsheet is an application designed to explore and
solve computer vision problems. It provides a visual environment
and a familiar computational tool set to enable creative proto-
typing of computer vision algorithms. A novel interface using
a spreadsheet of images encourages interactive and exploratory
algorithm design. Computational scientists can leverage their
existing knowledge of python, NumPy, SciPy, OpenCV, VIGRA,
and other familiar technologies. Vision Spreadsheet aims to make
the techniques of computer vision accessible to a wider audience.

Vision Spreadsheet is modeled after familiar numerical spread-
sheets, such as MS Excel and Apple Numbers. In a numerical
spreadsheet, each cell contains a number, with cells relating
to each other by numerical expressions. In Vision Spreadsheet,
each cell contains an image, with cells relating to each other
by computer vision operations. As in a traditional spreadsheet,
changes propagate automatically through the cells. Complex vi-
sion algorithms can be built-up cell-by-cell, interactively, with
continuous visual feedback into the intermediate steps.

The cells within Vision Spreadsheet relate to each other
through expressions that operate on images. For example, if the
image in cell a2 is the dilation of the image in cell a1, this is
expressed as "dilate(a1)". The power of these expressions comes
from the large library of functions available, including all of the
image processing and machine learning algorithms from OpenCV.
Furthermore, users can easily add their own functions using
python, NumPy, and SciPy.

Vision Spreadsheet provides many tools to make it easier to
explore the solution space of a vision problem.

• source images can be loaded, reload or looped through
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• all cell expression can be edited interactively
• all changes to cells are automatically propagated through

the spreadsheet
• function parameters can be bound to GUI controls for

interactive exploration
• cells can contain graphs and tables containing measure-

ments and statistics from images

Vision Spreadsheet is the product of years of development and
many more years of experience working in the field of computer
vision. I feel it provides an excellent environment for exploring
solutions to computer vision problems. It is difficult to get a feel
for an interactive environment by reading a paper. Visit http://
visionspreadsheet.com to download the application for free or to
watch videos of Vision Spreadsheet in action.

Overview of Vision Spreadsheet

Figure 1 shows a screen shot of Vision Spreadsheet. There are
four main areas to the GUI: the grid of cells, the current cell’s
statement, the shell, and the current cell’s GUI controls.

Fig. 1: Vision Spreadsheet cells contain images, measurements, and
plots.

Numerical spreadsheets contain a grid of numbers and labels.
Vision Spreadsheet’s grid of cells contains images, computations
on images, measurements, and plots. In a numerical spreadsheet,
if a cell contains the sum of a column of numbers and a number
in the column changes then the total automatically updates itself.
Similarly, in Vision Spreadsheet if a cell changes (for instance by
loading a new image or changing an algorithm parameter) then all
of the cells that depend on the changed cell will update themselves.
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The current cell’s statement is a single-line control used to
show what statement was used to create the current cell. This
statement may be edited and updated in this control.

The shell is a modified IPython shell used to specify what
a cells contains. The shell is also used to write new spreadsheet
functions in python.

The GUI controls area contains display parameters, overlays,
and controls bound to algorithm parameters for the current cell.

Specifying a Cell’s Content

Just like in a numerical spreadsheet, the content of each cell in
the spreadsheet grid is defined by an expression. Expressions are
entered by typing them into the shell or current cell’s statement
control. The syntax of Vision Spreadsheet’s cell expressions
should feel familiar to any spreadsheet user. But unlike a nu-
merical spreadsheet, Vision Spreadsheet’s expressions operates on
images. A typical statement looks like this:
some_cell = some_function(parameter1,parameter2)

For example, to define cell b1 as the erosion of the image in cell
a1 you would enter the following expression into the shell:
b1 = erode(a1)

After entering this expression, cell b1 will display the image which
is an erosion of the image in cell a1. If you manually load a new
image into cell a1, then the image in cell b1 will automatically
update as the erosion of the new image.

The power in the expression language comes from the large
library of available computer vision functions. In fact, all of the
image processing and machine learning functions from OpenCV
are available. This allows professionals to leverage their existing
knowledge of this powerful library.

The arithmetic operators are available and follow the usual
syntax and precedence rules. A typical call with an operator looks
like (where someop is +, -, <, etc.):
some_cell = parameter1 someop parameter2

Functions may be nested, so one way to run a morphological open
would be:
b1 = dilate(erode(a1))

Morphological open is already a built in functions; the above was
only an example.

There are also a few special functions, like if and select.
Vision Spreadsheet supports multiple tabs per sheet. Cells in

another tab are in another namespace, and can be referenced using
the namespace syntax:
namespace_name::variable_name
::variable_name # global namespace

Sheets start with g and are sequentially numbered, so the following
code is used to refer to sheet g1 cell a1:
g1::a1

Literal data sets are specified with the following syntax:
[1,2,3,4]
[[1,2,3],[4,5,6],[7,8,9]]

Literal dictionaries are specified with the following syntax:
{'name':'Scott','weight':150,'location':[512,700]}

Keys must be a string. Values can be any supported data type
(dictionaries, data sets, data frames, etc.).

Expressions can be an arbitrarily complex combination of
functions and arithmetic operators. But just like in a numerical
spreadsheet, cell expressions work best as simple one-line ex-
pressions. For more complex programs, use python mode within
Vision Spreadsheet.

Binding Parameters to GUI Controls

A primary goal of Vision Spreadsheet is to allow interactive
exploration of vision problems. One of the most powerful tools to
do this is to bind GUI controls to parameters in a cell expression.
This allows users to have a value in a cell expression that comes
from a GUI control, such as a slider control. The user can
manipulate the GUI control to affect the value in the expression.
Because Vision Spreadsheet automatically propagates this change
through the spreadsheet, users can very quickly see the effect that
a particular parameter has on the result of an algorithm.

The best way to explain this feature is to look at an example.
Consider thresholding an image. There are a couple of threshold
operators, but the simplest is the ’>.’ operator. Load an image in
cell a1. Next, threshold it by typing:
b1 = a1 >. 128

This creates an image where values greater than 128 are set to 255
and values less than or equal to 128 are set to zero. One way to
decide on a threshold value would be to keep typing in numbers
until the threshold image looked good. A better way is to bind the
parameter to a GUI control, like a slider. The following command
does this:
b1 = a1 >. slider(128,0,255)

This creates a slider with a default value of 128, a min value of 0,
and a max value of 255. If the threshold image is the current cell,
then the cell controls pane on the left of the GUI will contain a
slider (see figure 2). This slider is used to interactively change the
parameter to the threshold function.

Fig. 2: GUI controls may be bound to algorithm parameters. Here a
slider is bound to a threshold.

There are many other types of GUI controls that may be bound
to parameters, such as: radio buttons, sliders, spin controls, combo
boxes and movie controls (radio button are particularly useful to
bind to file names so different images may be easily loaded into a
cell).

Multiple GUI controls may be used to control a single function
parameter. If the function calls to create the GUI controls are
nested, then they will control the same parameter. For example, to
have a spin control and a slider control the threshold:
b1 = a1 >. spin(slider(128,0,255))
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Python Mode

Python is a fantastic language for exploratory computer vision.
Vision Spreadsheet is tightly integrated with python and gives
users full access to an IPython shell within Vision Spreadsheet.
This integration gives users all of the power and familiarity
of python combined with the visual feedback and interactivity
of Vision Spreadsheet. Users can extend Vision Spreadsheet by
adding new functions they implement in python. Users also have
full access to the Vision Spreadsheet environment from within
python, allowing them to access and update cells interactively
from within the IPython shell.

To toggle the shell to/from IPython mode, type "##" in the
shell. Inside the IPython shell, you will have access to the
vis_sheet module. The vis_sheet module provides full access to the
Vision Spreadsheet environment from within python. The IPython
shell at the bottom of the GUI supports two modes, cells mode
and python mode. To toggle between the two modes, type ’##’
and hit return. Cells mode is the default mode. Python mode is
just a regular IPython shell with two differences: typing ’##’ will
toggle to cells mode and there is a module called ’vis_sheet’ that
can be used to interact with the spreadsheet.

There are at least two interesting activities to do in python
mode:

1) Extend the spreadsheet with new functions.
2) Get values from the spreadsheet, muck around with them

interactively in python, and set the values back into the
spreadsheet.

Here is how to add a new function to the spreadsheet. Change
to python mode by typing ’##’. The shell should now have a black
background. Define a subtraction function as follows:
def my_subtract(a,b): return a-b
import vis_sheet
vis_sheet.add_python_op(my_subtract)

Change back to cells mode by typing ’##’ (the shell should now
have a white background). Load an image in cell a1, erode it an
put it in b1, and subtract b1 from a1 using the new function:
c1 = my_subtract(a1,b1)

Cell c1 will contain the edges from the image in cell a1. Note
that the images in the spreadsheet are automatically converted to
NumPy arrays before they are passed to user defined functions.
The parameters a and b will be NumPy arrays. If the result is a
NumPy array, it will automatically be converted to an image.

To get or set values in the spreadsheet from python mode, use
the following functions:
import vis_sheet
vis_sheet.get_var_data('a1')
vis_sheet.set_var_data('b1',some_python_var)

Data Structures

There are three main data structures in vision spreadsheet: images,
data frames, and statistical models.

Images are the most important data structure. An image is a
two dimensional array of vectors. All the elements of an image
are of the same numeric type. Images with element types of uchar
through double are supported. Many image types are supported,
for example: grayscale, color (rgb, brg, hsi, cie lab, etc.), and depth
images (from the Kinect camera, for example). When an image
is passed to a user defined python function it is automatically
converted into a NumPy array.

Data frames are modeled after R’s data frame structure. Data
frames are used to store measurements on images and to overlay
images with shapes and regions of interest. It is a table where each
column in the table may have a different type. So a single data
frame may have a column of numbers and a column of strings.
Supported column types are: numeric (uchar through double),
boolean, string, and region of interest. Like R’s data frames, rows
may contain missing data. Data frames also support R’s notion
of factor columns. Factor columns are usually used to specify
responses when training classifiers. Unlike R, vision spreadsheet
supports grouping columns into a hierarchy. This is useful for
storing higher-level objects in a data frame. For example, rectan-
gles are stored in a data frame by grouping together four numeric
columns. These rectangles may then be overlaid and edited on an
image.

The last major data structure is a statistical model. Statistical
models are used to classify objects in images. There are two
main functions to a statistical model: train and predict. The train
function takes a statistical model, a data frame of features, and
a data frame of responses. It returns the newly trained model.
The predict function takes a model and data frame. It returns a
prediction for each row in the data frame.

There are other data types in vision spreadsheet, but many
problems in computer vision can be solved using only these three
data types.

Conclusion

I described a new environment for interactively working with
computer vision. I am optimistic that this will be a useful and
productive environment for many types of users. However, at this
point no one except myself has used Vision Spreadsheet. The key
to making the environment useful is to have real users try to solve
real problems with it. My goal in presenting this paper is to get
people using the spreadsheet so they can provide the feedback I
need to make Vision Spreadsheet as useful as I know it can be.
Please try it out.

I had planned on releasing Vision Spreadsheet shortly before
the conference. I did not make this deadline, but I am very close.
When it is released, you can go to http://visionspreadsheet.com to
download it for free.

Thank You

I owe thanks to many great open source projects. I espe-
cially want to thank the following projects (alphabetical or-
der): ANTLR1, boost2, CMake3, IPython4 [IPy], OpenKinect5,
NumPy6, OpenCV7, python8, SciPy9, SWIG10, VIGRA11,
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wxPython12, and wxWidgets13.
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Constructing scientific programs using SymPy

Mark Dewing‡∗

F

Abstract—We describe a method for constructing scientific programs where
SymPy is used to model the mathematical steps in the derivation. With this
workflow, each step in the process can be checked by machine, from the
derivation of the equations to the generation of the source code. We present
an example based on computing the partition function integrals in statistical
mechanics.

Index Terms—SymPy, code generation, metaprogramming

Introduction

Writing correct scientific programs is a difficult, largely manual
process. Steps in the process include deriving of the constituent
equations, translating those into source code, and testing the
result to ensure correctness. One challenging aspect of testing is
untangling the cause of errors. For example, if the result appears
incorrect, it is hard to determine whether the problem is with the
algorithm, or a mistake was made in the derivation, or a simple
transcription error in writing the source code. Confidence in the
correctness of the program can be increased if these steps can be
checked by computer.

The process of scientific programming also includes the pur-
suit of performance. Often the code needs to be heavily modified
or rewritten to take best advantage of various target systems. Each
modification introduces the possibility of further errors, and must
be checked.

A standard approach to create a high-level description of the
problem that is specialized to the particular domain, often through
a Domain Specific Language (DSL), and then transform this to a
representation in a general-purpose programming language. This
is used in systems such as FEniCS [FEniCS] (representing PDE’s)
and the Tensor Contraction Engine [TCE] (representing matrix
operations in quantum chemistry).

Since the specifications for scientific software are expressed
largely as mathematical equations, our high-level description will
be formed from a symbolic mathematics representation. A sym-
bolic mathematics package is well-suited for this representation.
In addition to this representation of the high-level description,
we will model the derivation steps that lead to a computationally
useful form.

The approach taken in this work is to operate on a symbolic
representation of the scientific program, and then programmati-
cally transform it into the target system. The specifications for
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scientific software are expressed largely as equations, and are
ideally suited for a symbolic mathematics package. We use SymPy
[SymPy], a symbolic mathematics package written in Python, for
this part of the process.

The target system is likely a source code representation (C,
Fortran, Python, etc), but could encompass more than that. For
instance, C might be used to target the CPU or GPU, but the source
code might look quite different in those cases. Or the user may call
different libraries for the same function to compare performance.

Modeling Derivations

The first goal is to model on the computer a set of steps similar
to those used when manually performing the derivation. Deriving
the equations using in scientific software is similar to a proof
where there is a series of logically justified steps connecting each
expression until the final result is reached.

The OpenMathDocuments (OMDoc) project [OMDoc] is a
representation for mathematics that describes a higher level than
expressions in MathML. For instance, it has representations for
proofs and lemmas. Similarly, for scientific computation we need
to represent structures a higher level. One major difference be-
tween proofs and derivations in scientific software is that some
steps are approximations.

The steps can be categorized as exact transformations, approxi-
mations, or specializations. An exact transform leaves the equality
satisfied. Some types of exact transforms are rearranging terms,
multiplying by factors, and identities (which operates only on one
side of the equation). A specialization is specifying a physical or
model parameter, such as the number of spatial dimensions, the
number of particles, interaction potential, etc.

Finally, the results can be displayed in rendered mathematics
(we use MathML or MathJax in web pages) to make the operation
of each step and the results clearly visible.

Implementations

Modeling Derivations

For the implementation, the basic class named derivation
has a constructor that takes an initial equation (lhs and rhs).
The primary method is add_step, which takes an operation
(or list of operations) to perform and a textual description of the
operation(s). There are series of classes for various operations,
such approx_lhs, which replaces the left-hand side of the
equation with a new value. Also there is add_term, which adds
the same term to both sides of the equation.
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Code Generation

It is easy to start generating code by simply printing the statements
of the target language. However, for greater generality we will
use a model of the target language. Currently this work has
(incomplete) language models for Python and C.

At the lowest level of transforming expressions, we developed
a pattern-matching syntax that concisely captures some of the
SymPy idioms.

The Match object matches a SymPy expression. The
__call__ method matches the first argument as the type of the
expression. Subsequent arguments are variables to be bound to
arguments. If the argument is a tuple, it is matched recursively on
that argument. In this way the pattern for a tree structure can be
built up concisely.

Variables that can match (for later binding) are members of
an AutoVar class. This class creates member variables upon first
access, and they are bound when the match succeeds.

Here is an example fragment of part of the SymPy to Python
expression transformation, that matches addition, subtraction, and
the reciprocal. SymPy normalizes subtraction as adding two ex-
pressions where the subtractand is multiplied by negative one.
(That is, a−b is represented as −1∗b+a). Matching subtraction
requires a nested pattern, which is shown here as well.
from sympy import Add, Mul, Pow, S
from derivation_modeling.codegen.lang_py import \

py_expr, py_num
from derivation_modeling.codegen.pattern_match \

import AutoVar, Match

class expr_to_py(object):
def __call__(self, e):
v = AutoVar()
m = Match(e)

# subtraction
if m(Add, (Mul, S.NegativeOne, v.e1), v.e2):
return py_expr(py_expr.PY_OP_MINUS,

expr_to_py(v.e2), expr_to_py(v.e1))

# addition
if m(Add, v.e1, v.e2):

return py_expr(py_expr.PY_OP_PLUS,
expr_to_py(v.e1), expr_to_py(v.e2))

# reciprocal
if m(Pow, v.e2, S.NegativeOne):

return py_expr(py_expr.PY_OP_DIVIDE,
py_num(1.0), expr_to_py(v.e2))

Examples

Simple derivation

The Euler method is the simplest method for solving a differential
equation. The steps involve a finite difference approximation to
the derivative, rearranging terms, and the result is

f1 = f0 +h∗2∗ x

The derivation is the following code:
from sympy import Function, Symbol, diff, sympify
from derivation_modeling import derivation, \

approx_lhs, mul_factor, add_term

f = Function('f')
x = Symbol('x')
df = diff(f(x),x)
fd = sympify('(f_1 - f_0)/h')

d = derivation(df,2*x)

d.add_step(approx_lhs(fd),
'Approximate derivative with finite difference')

d.add_step(mul_factor(h),'Multiply by h')
d.add_step(add_term(f0),'Move f_0 term to left side')

This can be output to MathML (or MathJax) for display in a web
browser, which looks approximately like the following:

∂
∂x

f(x) = 2∗ x

Approximate derivative with finite difference

f1− f0

h
= 2∗ x

Multiply by h
f1− f0 = 2∗ xh

Move f_0 term to left side to get the final result

f1 = f0 +2∗ xh

Quadrature

For one of the simplest quadrature formulas, we use the trape-
zoidal rule [Trapezoid]. The derivation part consists of starting
from the rule for single interval, and extending it to a series of
intervals. (The rules for a single interval can be derived from
interpolating polynomials, but we didn’t start there)

The starting point for the derivation in Python is to define
all the symbols, and the initial expression, then manipulate the
expression so the function evaluation of each point is used only
once.

from sympy import Symbol, Function, IndexedBase, Sum
from derivation_modeling import derivation, identity

i = Symbol('i',integer=True)
n = Symbol('n',integer=True)

I = Symbol('I')
f = Function('f')
h = Symbol('h')
x = IndexedBase('x')

# definitions of split_sum, adjust_limits,
# peel_terms not shown
# split_sum - expand the sum of terms into a term of sums
# adjust_limits - adjust the expressions in the
# summation variable. This allows matching
# the index used in the summand among different sums.
# peel_terms - move terms from the either end of the sum
# to be an explicit term this allows the sum limits
# to match and be combined.

trap = derivation(I, Sum(h/2*(f(x[i])+f(x[i+1])), (i,1,n)))
trap.add_step(identity(split_sum),'Split sum')
trap.add_step(identity(adjust_limits),'Adjust limits')
trap.add_step(identity(peel_terms),'Peel terms')

The LaTeX representation for the steps was copied from the
generated output.

Start with a sum of single interval formulas

I =
n

∑
i=1

1
2

h(f(x[i])+ f(x[i+1]))

Split into two sums (’Split sum’)

I =
n

∑
i=1

1
2

h f(x[i])+
n

∑
i=1

1
2

h f(x[i+1])
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Adjust the limits so the functions in the sum have compatible
indices (’Adjust limits’)

I =
n−1

∑
i=0

1
2

h f(x[i])+
n

∑
i=1

1
2

h f(x[i])

Peel off some terms so the sum limits match, and combine the
sums. (’Peel terms’)

I =
1
2

h f(x[0])+
1
2

h f(x[n])+2
n−1

∑
i=1

1
2

h f(x[i])

Now we have the final expression and can move to the transfor-
mation step. The approach to multiple dimensional integrals will
be iterated one-dimensional integrals.

Partition Function

We start with the partition function from statistical mechanics
[Partition]. It incorporates the interactions between particles (think
of particles in a box), and contains all the thermodynamic informa-
tion about a system. The dimension of the integral rises with the
number of particles. The complexity for the convergence of grid-
based methods is exponential in the number of dimensions, and
they quickly become overwhelmed. The convergence of Monte
Carlo methods is independent of dimension, and are commonly
used to compute these integrals. However, it would be still be
useful to use a grid method for a small number of particles as a
way to check the Monte Carlo algorithms.

The derivation starts as follows:
partition_function =

derivation(Z,Integral(exp(-V/(k*T)),R))

Where V is the inter-particle potential, T is the temperature, k
is Boltzmann’s constant, and Z is the symbol for the partition
function. All of these are defined as SymPy Symbol.

Once again, the LaTeX has been copied from the output
(although some steps have been combined for space)

Z =
∫

e−
V
T k dR

It is conventional to work with the dimensionless inverse temper-
ature, β = kT . Create the definition and insert into the integral.

beta_def = definition(Beta, 1/(k*T), T)
partition.function.add_step(

replace_definition(beta_def),
'Insert definition of beta')

The rendered output is

Z =
∫

e−V β dR

To support multiple child derivations branching from a single
parent, there is a method to support starting a new derivation from
the final step of the previous one. Specialize to two particles -
the specialize_integral transform replaces the integration
variables, and the the replace transform replaces the specified
variables (using a SymPy subs).
n2 = partitition_function.new_derivation()
n2.add_step(specialize_integral(R,(r1,r2)),

'specialize to N=2')
n2.add_step(replace(V,V2(r1,r2)),

'replace potential with N=2')

The rendered output is

Z =
∫ ∫

e−β V(r1,r2) dr1dr2

Change variables and switch to a potential that depends only on
the magnitude of the interparticle distance
r_cm = Vector('r_cm',dim=2)
r_12 = Vector('r_12',dim=2)

r_12_def = definition(r_12, r2-r1)
r_cm_def = definition(r_cm, (r1+r2)/2)

V12 = Function('V')

n2.add_step(specialize_integral(r1,(r_12,r_cm)),
'Switch variables')

n2.add_step(replace(V2(r1,r2),V12(r_12)),
'Specialize to a potential that depends only
on interparticle distance')

n2.add_step(replace(V12(r_12),V12(Abs(r_12))),
'Depend only on the magnitude of the distance')

The rendered output is

Z =
∫ ∫

e−β V(|r12|) dr12drcm

Integrate out the center of mass (or fixed coordinate) (This step
could be performed by SymPy, but isn’t right now)
Vol = Symbol('Omega')
n2.add_step(do_integral(Vol, [r_12]),

'Integrate out r_cm (this step is still a hack)')

The rendered output is

Z = Ω
∫

e−β V(|r12|) dr12

Decompose into vector components and specify limits. The
identity transform modifies the right-hand side of the equation
without changing its validity. The decompose operation takes an
expression involving vectors and replaces it with the expression in
terms of vector components. The add_limits transform adds
upper and lower limits to the previously indefinite integral.
L = Symbol('L')
n2.add_step(identity(decompose),

'Decompose into vector components')
n2.add_step(identity(add_limits(-L/2,L/2)),

'Add integration limits')

The rendered output is

Z = Ω
∫ L/2

−L/2

∫ L/2

−L/2
e
−β V

(√
r2
12x+r2

12y

)
dr12xdr12y

Specialize to the Lennard-Jones potential
lj_expr = 4*(1/r**12 - 1/r**6)
lj_pot = derivation(V(r),lj_expr)
n2.add_step(replace_func(V12,lj_pot.final()),

'Specialize to the LJ potential')

V(r) =
4

r12 −
4
r6

And get

Z = Ω
∫ 1

2 L

− 1
2 L

∫ 1
2 L

− 1
2 L

e
−β


 4(

r2
12x+r2

12y

)6 − 4(
r2
12x+r2

12y

)3




dr12xdr12y

Insert numerical values for the box size and temperature.
L = 2.0
n2.add_step(replace('L',L),

'Insert value for box size')
n2.add_step(replace('Omega',L*L),

'Insert value for box volume')
n2.add_step(replace('beta',1.0),

'Insert value for temperature')
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Z = 4.0
∫ 1

−1.0

∫ 1

−1.0
e
−4.0 1(

r2
12x+r2

12y

)6 +4.0 1(
r2
12x+r2

12y

)3

dr12xdr12y

Now we have an integral that is completely specified numerically1.
It can be evaluated by an existing quadrature routine in SymPy, by
another another package (scipy.quadrature.dblquad), or
by the trapezoidal rule code we derived earlier.

Code Generation

As an example of the language model, the classic ’Hello World’
program in python is
from derivation_modeling.codegen.lang_py import

py_expr, py_expr_stmt, py_function_call, \
py_function_def, py_if, py_print_stmt, \
py_stmt_block, py_string, \
py_var

body = py_stmt_block()

hello_func = py_function_def('hello')
hello_func.add_statement(

py_print_stmt(py_string("Hello, World")))
body.add_statements(hello_func)
main = py_if(

py_expr(py_expr.PY_OP_EQUAL,
py_var('__name__'), py_string('__main__')))

main.add_true_statement(
py_expr_stmt(py_function_call('hello')))

body.add_statements(main)

f = open('hello_py.py','w')
f.write(body.to_string())
f.close()

The generated output is
def hello():

print "Hello, World"
if __name__ == "__main__":

hello()

For C, the program is
from derivation_modeling.codegen.lang_c import

c_block, c_function_call, c_function_def, \
c_func_type, c_int, c_num, c_return, c_stmt, \
c_string, pp_include

body = c_block()
body.add_statement(pp_include('stdio.h'))
main_body = c_block()

main = c_function_def(
c_func_type(c_int('main')), main_body)

main_body.add_statement(
c_stmt(c_function_call("printf",

c_string("Hello, World\\n"))))

main_body.add_statement(c_return(c_num(0)))
body.add_statement(main)

f = open('hello_c.c','w')
f.write(body.to_string())
f.close()

The generated program is
#include <stdio.h>
int main(){
printf("Hello, World\n");
return 0;

}

The code and examples described here can be found in the author’s
derivation_modeling repository on GitHub:

https://github.com/markdewing/derivation_modeling

Discussion

The example derivations presented here are fairly simple and
linear. In reality, the connections are more complex. For instance,
one is often interested in multiple properties (energy, pressure,
distribution functions) that may branch off the original derivation
or have a separate thread of steps, but eventually, for efficiency
they should all be evaluated in the same integral.

The pattern-matching style makes the lower levels of expres-
sion translation fairly clear, but the the translations at the next level
up (combining the source code statements) is not very transparent
yet. An important future step is enhancing debugging by making
the connections between the code generator and the generated
code clearer.

Other Work

For solving partial differential equations, there is FEniCS
[FEniCS] project and the SAGA (Scientific computing with Al-
gebraic and Generative Abstractions) project [SAGA] .

Ignition [Ignition],[Terrel11]_ is a library that provides support
for writing and combining DSL’s for describing problems (or
aspects of problems)

Part of this work is modeling the target language for code
generation. Several other projects for modeling programming
languages include Pivot [Pivot], a project for modeling C++.
CodeBoost [CodeBoost] is the code transformation portion of the
SAGA system. PyCUDA [PyCUDA] is a potential target system,
and it also has an associated model of C and CUDA for generation
of code [CodePy]

Conclusions

We presented a snapshot of some work on some software blocks
necessary for a system of scientific computing, including modeling
a derivation, transforming to a source code representation, and
code generation.
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1. There is a division-by-zero error at r = 0 that must be avoided, either by
offsetting one limit slightly, or by capping the potential for small r. This latter
step has not been added to the definition of the potential yet.
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Using Python, Partnerships, Standards and Web
Services to provide Water Data for Texans
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F

Abstract—Obtaining time-series monitoring data in a particular region often re-
quires a significant effort involving visiting multiple websites, contacting multiple
organizations and dealing with a variety of data formats. Although there has
been a large research effort nationally in techniques to share and disseminate
water related time-series monitoring data, development of a usable system
has lagged. The pieces have been available for some time now, but a lack of
vision,expertise, resources and software licensing requirements have hindered
uptake outside of the academic research groups. The Texas Water Development
Board is both a data provider and large user of data collected by other entities.
As such, using the lessons learned from the last several years of research, we
have implemented an expandable infrastructure for sharing water data in Texas.
In this paper, we discuss the social, institutional and technological challenges in
creating a system that allows discovery, access, and publication of water data
from multiple federal, state, local and university sources and how we have used
Python to create this system in a resource limited environment.

Index Terms—time-series, web services, waterml, data, wofpy, pyhis, HIS,
hydrologic information system, cyberinfrastructure

Introduction

A wealth of physical, chemical and biological data exists for
Texas’ lakes, rivers, coastal bays and estuaries and the near-shore
Gulf of Mexico, but unfortunately much of it remains unused by
researchers and governmental entities because it is not widely
disseminated and its existence not advertised. Historical data is
typically stored by multiple agencies in a variety of incompat-
ible formats, often poorly documented. Locating, retrieving and
assembling these datasets into a form suitable for use in scientific
studies often consumes a significant portion of many studies.
Hence, despite having access to this information, much of the data
remain underutilized in the hydrologic sciences due in part to the
time required to access, obtain, and integrate data from different
sources [Goodall2008] .

As both a consumer of water related data delivered by other en-
tities and as a data provider whose data needs to be disseminated to
external users the Texas Water Development Board (TWDB) has
been researching the use of new technologies for data sharing for
several years. The Texas Hydrologic Information System (Texas
HIS) was born as a research project funded by the Texas Water
Development Board (TWDB) and implemented by the University
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Fig. 1: An example of a WaterML format file and the data it contains.

of Texas at Austin’s Center for Research in Water Resources (UT-
CRWR) as a working prototype to facilitate data discovery, access,
and publication of water related time-series monitoring data from
multiple entities [Whiteaker2010]. It was built as an extension
of the national Hydrologic Information System (HIS) that was
developed by the Consortium of Universities for the Advancement
of Hydrologic Science, Inc. (CUAHSI) [Tarboton2009]. This pro-
totype proved the viability of using web services along with xml
based data format standards to reliably exchange data and showed
how once the infrastructure was put in place, powerful standards
based tools could be developed to facilitate data discovery and
access [Ames2009].

Using Standards - WaterML, WaterOneFlow and the Observa-
tions Data Model

CUAHSI-HIS provides web services, tools, standards and proce-
dures that enhance access to more and better data for hydrologic
analysis [Tarboton2009]. CUAHSI-HIS has established a web
service design called WaterOneFlow as a standard mechanism for
the transfer of hydrologic data between hydrologic data servers
(databases) and users. Web services streamline the often time-
consuming tasks of extracting data from a data source, trans-
forming it into a usable format and loading it in to an analysis
environment [Maidment2009]. All WaterOneFlow web services
return data in a standard format called WaterML (Figure 1). The
specifics of WaterML are documented as an Open Geospatial
Consortium, Inc., discussion paper [ [Zaslavsky2007].

To publish data in CUAHSI-HIS, a data source provides access
to their data via a WaterOneFlow web service. CUAHSI-HIS also
includes mechanisms for registering WaterOneFlow web services
so that users can discover and use them. Data sources often store
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Fig. 2: The Observations Data Model Schema.

their data locally in a CUAHSI-HIS Observations Data Model
(ODM) database (2), where ODM is a database design for storing
hydrologic time series data reported at discrete point locations
[Horsburgh2008]. ODM databases, ODM data loaders, and a
special version of the WaterOneFlow web service specifically
designed to work with ODM as its underlying data source are
all available for free on the HIS website (http://his.cuahsi.org).

In addition, CUAHSI-HIS provides several free community
supported clients to search and retrieve data from WaterOneFlow
compliant services. These include a Microsoft Excel plugin called
HydroExcel and a desktop GIS softare called HydroDesktop
[Ames2010].

Barriers to Adoption

Although the technology seemed mature and had participation
from several universities and a few large federal agencies like
the United States Geological Service(USGS), uptake outside of
this group was low. Data providers are often resource poor in
staff, technical knowledge, time and money. In most cases, they
already have a system for collecting, storing and disseminating
data that works for their particular needs. In order to convince
them to become part of a system like the CUAHSI-HIS, the
cost of sharing their data has to be as low as possible and they
have to be educated on the benifits their organization will receive
through being part of the system. A review of the experiences
from building the prototype Texas HIS system showed that there
are significant barriers to wide scale adoption.

While there is nothing intrinsic to the CUAHSI-HIS that
requires a particular software stack, for historical reasons all
currently available software for both serving data and retrieving
data from the CUAHSI-HIS system was built on a Microsoft .Net
software stack and in some cases also needs commercial licenses.
Hence, data providers who could not or did not want to use
this software stack needed to write an in-house implementation
of WaterOneFlow web services from the ground up. In addition,
client side tools were also not cross-platform had were built for
specific use cases and could not be easily adapted for alternate
needs.

Changing Paradigms

Building a custom implementation of WaterOneFlow web services
to attach to a datasource is a non trivial endeavour. It requires and

understanding of the web services, XML and the particulars of the
WaterML and WaterOneFlow. Hence, the paradigm followed by
most participating data providers is to manipulate their data into
an ODM database hosted on an MSSQL server. CUAHSI-HIS has
a prebuilt WaterOneFlow implementation that can then be used
to serve data. This approach requires that the data provider either
adopt the ODM as their internal structure for storing data or they
must build a translator and periodically dump data from their in-
house database to the ODM database on a regular basis. The ODM
schema is designed to hold data from multiple sources and hence is
often much more complicated than most data providers in-house
database schemas. It also excludes data providers that use non
Microsoft operating systems.

Fig. 3: Comparison of changing paradigms.

Lowering these barriers requires flexible cross-platform soft-
ware that can be relatively easily adapted to each organizations
needs. In addition, participation in data sharing should not require
large changes to an organizations internal data systems. Based on
these requirements, two python modules were developed, WOFpy
for serving data as WaterOneFlow services and pyhis as the basis
for building customized data access tools.

Using Python to serve water data - WOFpy

WaterOneFlow in Python or WOFpy implements a reduced ODM
data model that maps to WaterML objects. It has an implemen-
tation of both REST and SOAP web services that are compliant
to the WaterOneFlow specification. This is done through the use
of the Flask and SOAPlib python packages. On the backend, Data
Access Objects (DAO’s) are used to connect the services to the
underlying database or storage mechanism. Through the use of
the sqlalchemy python package DAO’s can be written for any
database backend that sqlalchemy supports. This allows a large
degree of flexibility in attaching the web services to disparate data
sources. Figure 4 shows the basic architecture of WOFpy.

WOFpy can be used to serve data from flat files, a variety
of database backends and even as an on-the-fly translator of web
services that use other standards.

Using python to retrieve data - pyhis

Existing CUAHSI-HIS clients are not cross-platform and are GUI
based, pyhis is a command line python package that was developed
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Fig. 4: Architecture of WOFpy.

to allow access to WaterOneFlow services with requiring knowl-
edge of how the underlying web services architecture works. Pyhis
uses suds to retrieve data and caches downloaded data to a local
sqlite database using sqlachemy. Using pyhis more complicated
scripts can be built to conduct spatial analysis or retrieve data
automatically for use in real time forcast models.

Fig. 5: Example of using pyhis within ipython to retrieve data from
the USGS National Water Information System.

Water Data For Texas

Although the development of WOFpy and pyhis has lowered the
resource requirements of sharing data, a level of resources is still
required. To overcome this, TWDB has formed partnerships with
three agencies, The Texas Commission on Environmental Quality
(TCEQ), the Texas Parks and Wildlife Department (TPWD) and
the Conrad Blucher Institute for Surveying and Science(CBI) to

Fig. 6: Water Data for Texas logo.

serve their data as WaterOneFlow services. This is being done
either through scheduled data dumps or using web scapers or on-
the-fly web service translations [Pothina2011]. In addition, TWDB
is partnering with the Texas Natural Resource Information System
(TNRIS) to build a web based map interface that can be used by
the general public to find and download water data through a easy
to use interface. A high level design schematic of the entire system
is presented in Figure 7.

Fig. 7: Water Data for Texas Framework.

This system has been now branded Water Data for Texas and
will reside at the url http://waterdatafortexas.org once completed.

Conclusions

Water Data for Texas is a community effort to build a robust,
sustainable system for the sharing of water data across Federal,
State and local entities. Parts of the system are live now with the
rest expected to be completed by the Fall of 2011. Currently the
system will provide access to all Nation CUAHSI-HIS datasets
as well as data from the TCEQ, TPWD, CBI and TWDB. It is
expected that new water related data sets will become available as
more organizations choose to participate.

Python is an integral part of building this Texas-specific HIS
that employs partnerships with Federal and Texas agencies to
share water data. The system inherits the national CUAHSI-HIS
technology and provides additional tools and services to provide
ease of use and a level of quality control for partners and clients.
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In order to foster continued development and uptake of the tech-
nology in a community supported environment WOFpy and pyhis
are being released under a BSD open source license. Development
is currently taking place under the swtools organization on GitHub
(https://github.com/organizations/swtools).
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PyModel: Model-based testing in Python

Jonathan Jacky‡∗
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Abstract—In unit testing, the programmer codes the test cases, and also codes
assertions that check whether each test case passed. In model-based testing,
the programmer codes a "model" that generates as many test cases as desired
and also acts as the oracle that checks the cases. Model-based testing is
recommended where so many test cases are needed that it is not feasible to
code them all by hand. This need arises when testing behaviors that exhibit
history-dependence and nondeterminism, so that many variations (data values,
interleavings, etc.) should be tested for each scenario (or use case). Examples
include communication protocols, web applications, control systems, and user
interfaces. PyModel is a model-based testing framework in Python. PyModel
supports on-the-fly testing, which can generate indefinitely long nonrepeating
tests as the test run executes. PyModel can focus test cases on scenarios of
interest by composition, a versatile technique that combines models by synchro-
nizing shared actions and interleaving unshared actions. PyModel can guide test
coverage according to programmable strategies coded by the programmer.

Index Terms—testing, model-based testing, automated testing, executable
specification, finite state machine, nondeterminism, exploration, offline testing,
on-the-fly testing, scenario, composition

Introduction

Model-based testing automatically generates, executes, and checks
any desired number of test cases, of any desired length or com-
plexity, given only a fixed amount of programming effort. This
contrasts with unit testing, where additional programming effort is
needed to code each test case.

Model-based testing is intended to check behavior: ongoing
activities that may exhibit history-dependence and nondetermin-
ism. The correctness of behavior may depend on its entire history,
not just its most recent action. This contrasts with typical unit
testing, which checks particular results, such as the return value of
a function, given some arguments.

It is advisable to check entire behaviors, not just particular
results, when testing applications such as communication proto-
cols, web services, embedded control systems, and user interfaces.
Many different variations (data values, interleavings etc.) should
be tested for each scenario (or use case). This is only feasible with
some kind of automated test generation and checking.

Model-based testing is an automated testing technology that
uses an executable specification called a model program as both
the test case generator and the oracle that checks the results of
each test case. The developer or test engineer must write a model
program for each implementation program or system they wish
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to test. They must also write a test harness to connect the model
program to the (generic) test runner.

With model program and test harness in hand, developers or
testers can use the tools of the model-based testing framework
in various activities: Before generating tests from a model, it is
helpful to use an analyzer to validate the model program, visualize
its behaviors, and (optionally) perform safety and liveness analy-
ses. An offline test generator generates test cases and expected
test results from the model program, which can later be executed
and checked by a test runner connected to the implementation
through the test harness. This is a similar workflow to unit
testing, except the test cases and expected results are generated
automatically. In contrast, on-the-fly testing is quite different: the
test runner generates the test case from the model as the test
run is executing. On-the-fly testing can execute indefinitely long
nonrepeating test runs, and can accommodate nondeterminism in
the implementation or its environment.

To focus automated test generation on scenarios of interest, it
is possible to code an optional scenario machine, a lightweight
model that describes a particular scenario. The tools can combine
this with the comprehensive contract model program using an
operation called composition. It is also possible to code an optional
strategy in order to improve test coverage according to some
chosen measure. Some useful strategies are already provided.

Model-based testing supports close integration of design and
analysis with testing. The analyzer is similar to a model checker;
it can can check safety, liveness, and temporal properties. And, the
same models are used for these analyses as for automated testing.
Moreover, the models are written in the same language as the
implementation.

PyModel is an open-source model-based testing framework
for Python [PyModel11]. It provides the PyModel Analyzer pma,
the PyModel Graphics program pmg for visualizing the analyzer
output, and the PyModel Tester pmt for generating, executing, and
checking tests, both offline and on-the-fly. It also includes several
demonstration samples, each including a contract model program,
scenario machines, and a test harness.

The PyModel framework is written in Python. The models and
scenarios must be written in Python. It is often convenient, but not
required, if the system under test is also written in Python, because
it can be easier to write the test harness in that case.

Traces and Actions

We need to describe behavior. To show how, we discuss the
Alternating Bit Protocol [ABP11], a simple example that exhibits
history-dependence and nondeterminism. The protocol is designed
to send messages over an unreliable network. The sender keeps
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sending the same message, labeled with the same bit (1 or 0),
until the receiver acknowledges successful receipt by sending
back the same bit. The sender then complements the bit and
sends a new message labeled with the new bit until it receives
an acknowledgement with that new bit, and so on. When the
connection starts up, both ends send bit 1. The sender labels the
first real message with 0.

A sample of behavior is called a trace. A trace is a sequence
of actions, where each action has a name and may have arguments
(so actions resemble function calls). The alternating bit protocol
has only two actions, named Send and Ack. Each action has one
argument that can take on only two values, 0 or 1. (We abstract
away the message contents, which do not affect the protocol
behavior.) Here are some traces that are allowed by the protocol,
and others that are forbidden:

Allowed Allowed Allowed Forbidden Forbidden
------- ------- ------- --------- ---------
Send(0) Send(1) Send(1) Send(0) Send(0)
Ack(0) Send(1) Send(1) Ack(0) Ack(1)
Send(1) Ack(1) Ack(1) Send(0) Send(1)
Ack(1) Send(0) Send(1) Ack(0) Ack(1)

Ack(1) Ack(1)
Ack(1) Send(1)
Send(0)
Ack(0)

Traces like these might be collected by a test harness connected
to the sender. The Send are controllable actions invoked by the
sender while the Ack are observable actions that are observed by
monitoring the network. (If the test harness were connected to the
receiver instead, the Send would be the observable action and the
Ack would be controllable.)

Finite Models

A model is an executable specification that can generate traces (to
use as test cases) or check traces (to act as an oracle). To act as a
specification, the model must be able to generate (or accept) any
allowed trace and must not be able to generate any forbidden trace
(it must reject any forbidden trace).

The alternating bit protocol is finite because there are only a fi-
nite number of actions (only a finite number of possible values for
each action argument). Therefore this protocol can be modeled by
a finite state machine (FSM), which can be represented by a graph
where the edges represent actions and the nodes represent states
(Figure 1). Every allowed trace can be obtained by traversing paths
around this graph. In the figure, some of the nodes have doubled
borders. These are the accepting states where traces are allowed to
stop. A trace that stops in a non-accepting state is forbidden. If no
accepting states are specified, all states are considered accepting
states.
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Send(1)

1
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Send(0)
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Ack(0)
Send(1)

Fig. 1: Alternating bit protocol represented by a finite state machine
(FSM)

In PyModel, a finite state machine is represented by its graph:
a tuple of tuples, where each tuple represents a state transition,

the current state (a node), the action (an edge), and the next state
(another node):
graph = ((0, (Send, (1,),), 0),

(0, (Ack, (1,),), 0),
(0, (Send, (0,),), 1),
(1, (Ack, (0,),), 2),
... etc. ...
(4, (Send, (0,),), 1))

The PyModel Graphics program pmg generated Figure 1 from this
code.

Most interesting systems are infinite and cannot be described
by finite state machines. In PyModel, finite state machines are
most often used to describe scenario machines that are composed
with infinite contract model programs to focus test case generation
on scenarios of interest.

Infinite Models

Most interesting systems require infinite models. A system re-
quires an infinite model when it has an infinite number of actions.
This occurs whenever any of its action arguments are drawn from
types that have an infinite number of values: numbers, strings, or
compound types such as tuples.

Simple systems can be infinite. Consider a stack, a last-in first-
out queue which provides a Push action that puts a value on top
of the stack and a Pop action that removes the value from the top
of the stack and returns it. Here are some allowed traces:
Push(1,) Push(1,) Push(1,)
Push(2,) Pop(), 1 Push(2,)
Push(2,) Push(2,) Push(2,)
Push(1,) Pop(), 2 Push(1,)
Pop(), 1 Push(1,) Push(1,)
Pop(), 2 Pop(), 1 Push(1,)
Pop(), 2 Push(2,) Push(2,)
Push(2,) Pop(), 2 Push(2,)
Push(1.) Push(1,) Push(1,)
Push(1,) Pop(), 1 Push(1,)

In PyModel, an infinite model is expressed by a Python module
with an action function for each action and variables to represent
the state, the information stored in the system. In this example,
the state is a list that stores the stack contents in order. Constraints
on the ordering of actions are expressed by providing each action
with an optional guard or enabling condition: a Boolean function
that is true for all combinations of arguments and state variables
where the action is allowed to occur. In this example, Push is
always enabled so no enabling function is needed; Pop is only
enabled in states where the stack is not empty. Here is the model,
as coded in the module Stack:
stack = list() # State

def Push(x): # Push is always enabled
global stack
stack.insert(0,x)

def Pop(): # Pop requires an enabling condition
global stack
result = stack[0]
del stack[0]
return result

def PopEnabled(): # Pop enabled when stack not empty
return stack

Analysis

It can be helpful to visualize the behavior of a model program.
The PyModel Graphics program pmg can generate a graph from



50 PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

finite state machine, as in Figure 1. The PyModel Analyzer pma
generates a finite state machine from an infinite model program,
by a process called exploration which is a kind of concrete
state model-checking. In order to finitize the model program,
it is necessary to limit the action arguments to finite domains
and it may also be necessary to limit the state by state filters,
Boolean functions which the state must satisfy. Exploration in
effect performs exhaustive testing of the model program over these
finite domains, generating all possible traces and representing
them compactly as an FSM.

Here we define a domain that limits the arguments of Push to
the domain 0, 1; we also define a state filter that limits the stack
to fewer than four elements:

domains = { Push: {’x’:[0,1]} }

def StateFilter():
return len(stack) < 4
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Fig. 2: FSM for finitized Stack model program, generated by explo-
ration.

Subject to these limitations, pma generates a finite state machine
that is rendered by pmg (Figure 2).

Every trace allowed by the (finitized) model can be obtained
by traversing paths around the graph. This is useful for validation:
you can check whether the graph allows the expected behaviors.

Safety and Liveness

In addition to providing visualization, the analyzer can check
other properties. Safety analysis checks whether anything bad
can happen. You specify safety requirements by defining a state
invariant, a Boolean function on state variables that is supposed
to be satisfied in every state. The analyzer checks the invariant
in every state reached during exploration and marks unsafe states
where the invariant is violated. Liveness analysis checks whether
something good will happen. You specify liveness requirements
by defining an accepting state condition, a Boolean function on
state variables that is supposed to be satisfied in the states where
a trace ends. The analyzer checks the accepting state condition in
every state and marks the terminal states (which have no outgoing
actions) where the condition is violated; these are dead states from
which an accepting state cannot be reached. Since exploration
is exhaustive, these analyses are conclusive; they are machine-
generated proofs that the safety and liveness properties hold (or
not) for the model program over the given finite domains.

Test Harness

In order to execute tests, it is necessary to write a test harness
that connects the model program to the test runner pmt. The test
harness usually encapsulates the implementation details that are
abstracted away from the model. It is often convenient, but not

required, if the implementation under test is also written in Python,
because it can be easier to write the test harness in that case.

Here is a fragment of the code from the harness for testing
a web application. As it happens, the server code of the web
application that we are testing here is in PHP, not Python, but this
is not an inconvenience because the test harness acts as a remote
web client, using the Python standard library module urllib,
among others. The model includes Initialize, Login, and
Logout actions, among others:

def TestAction(aname, args, modelResult):
...

if aname == 'Initialize':
session = dict() # clear out cookies/session IDs

elif aname == 'Login':
user = users[args[0]]
...
password = passwords[user] if args[1] == 'Correct'

else wrongPassword
postArgs = urllib.urlencode({'username':user,

'password':password})
# GET login page
page = session[user].opener.open(webAppUrl).read()
...
if result != modelResult:
return 'received Login %s, expected %s' % \

(result, modelResult)

elif aname == 'Logout':
...

Offline Testing

Offline testing uses a similar workflow to unit testing, except the
test cases and expected results are generated automatically from
the model program.

Traces can be used as test cases. The PyModel Tester pmt can
generate traces from a (finitized) model program; these include
the expected return values from function calls, so they contain all
the information needed for testing. Later, pmt can act as the test
runner: it executes the generated tests (via the test harness) and
checks that the return values from the implementation match the
ones in the trace calculated by the model program.

On-the-fly Testing

In On-the-fly testing the test runner pmt generates the test case
from the model as the test run is executing. On-the-fly testing
can execute indefinitely long nonrepeating test runs. On-the-
fly testing is necessary to accommodate nondeterminism in the
implementation or its environment.

Accommodating nondeterminism requires distinguishing be-
tween controllable actions (functions that the test runner can call
via the test harness), and observable actions (events that the test
harness can detect). For example, when testing the sender side of
the alternating bit protocol, Send is controllable and Ack is ob-
servable. Handling observable actions may require asynchronous
programming techniques in the test harness.

Strategies

During test generation, alternatives arise in every state where
multiple actions are enabled (that is, where there are multiple
outgoing edges in the graph of the FSM). Only one action can be
chosen. The algorithm for choosing the action is called a strategy.
In PyModel, the default strategy is random choice among the
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enabled actions. It is also possible to code an optional strategy in
order to improve test coverage according to some chosen measure.

Some useful strategies are already provided. The
ActionNameCoverage strategy chooses different actions,
while the StateCoverage strategy attempts to reach unvisited
states. Here are some test cases generated from the stack model
using different strategies:

Random Action name State
(default) coverage coverage
-------- -------- --------
Push(1,) Push(1,) Push(1,)
Push(2,) Pop(), 1 Push(2,)
Push(2,) Push(2,) Push(2,)
Push(1,) Pop(), 2 Push(1,)
Pop(), 1 Push(1,) Push(1,)
Pop(), 2 Pop(), 1 Push(1,)
Pop(), 2 Push(2,) Push(2,)
Push(2,) Pop(), 2 Push(2,)
Push(1.) Push(1,) Push(1,)
Push(1,) Pop(), 1 Push(1,)

Composition

Composition is a versatile technique that combines models. Py-
Model uses it for scenario control, validation, and program struc-
turing. All of the PyModel commands can accept a list of models
to be composed in any context where they expect a model.

Composition combines two or more models to form a new
model, the product. (In the following discussion and examples,
just two models are composed.)

M1 ×M2 = P

When the product is explored, or is used to generate or check
traces, PyModel in effect executes the composed models in par-
allel, synchronizing on shared actions and interleaving unshared
actions. A shared action occurs in both models, an unshared
action occurs in only one. A shared action must be simultaneously
enabled in both models in order to execute in the product. This
results in synchronizing the execution of the shared actions. This
usually has the effect of limiting or restricting behavior, in effect
filtering it (Figure 3). This is useful for both scenario control and
validation, as we shall see.
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Fig. 3: Composition synchronizes on shared actions.

An unshared action can execute in the product whenever it is
enabled in its own model. This results in interleaving the execution
of the unshared actions in the product. This usually has the effect
of enlarging the behavior, in effect multiplying it (Figure 4). This
can be useful as a structuring technique for building up complex
models from simpler ones.
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Fig. 4: Composition interleaves unshared actions.

Notice that a state is an accepting state in the product if and
only if it is an accepting state in both of the composed models.

Scenario Control

A difficulty with any automated testing method is generating too
many tests. We need scenario control to limit test runs to scenarios
of interest. We can achieve this by composing the comprehensive
contract model program, usually a Python module with state
variables etc., with a particular scenario machine, usually an FSM.

Contract ×Scenario = Product

In this example (Figure 5), the contract model program (on the far
left) allows many redundant, uninteresting startup and shutdown
paths. We would like to intensively test just the few interesting
actions in this model. We create a scenario machine (on the near
left) that specifies a single path through startup and shutdown,
and omits the interesting actions. When we compose the two
models, the startup and shutdown actions are shared so the two
models must synchronize, which forces the product to follow the
sequences in the scenario. The interesting actions are unshared,
so they are free to interleave, and the product can execute these
as long as they are enabled. The product (on the right) will only
generate traces that are interesting for this test purpose.
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Fig. 5: Composition with a scenario can eliminate uninteresting paths
from tests.
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Validation

A model program is just a program so it is necessary to validate
it: to confirm that it expresses the intended behaviors. As already
noted, simply inspecting the graphs generated by the analyzer can
be helpful for this.

Composition also supports a more rigorous validation pro-
cedure analogous to unit testing. Composing a contract model
program with a scenario machine results in a product that reaches
an accepting state if and only if the model allows the behaviors
described by the scenario, that is, if the model can execute the
scenario. If the model cannot execute the scenario, the product will
not reach an accepting state. Therefore, a collection of scenarios
that are each known a priori to be allowed or forbidden can act as
a unit test suite for a model program. Composing the model with
each scenario in turn is, in effect, executing the unit test suite.

Figures 3 and 5 both show examples where the model program
can execute the scenario. In Figure 6 we compose the stack model
with a scenario that executes Push(1) followed by Pop(),0.
This is forbidden, because pop should only return the value that
was most recently pushed. As expected, we see that the product
only contains the push action because it is unable to synchronize
on the pop action, which is not enabled in the model. The product
does not reach an accepting state, which shows that the model
does not allow this scenario.
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Fig. 6: Composition with a forbidden scenario cannot reach an
accepting state.

This technique can be use to check a model program for any
property that can be expressed by a finite state machine, including
any temporal logic formula. Exploration with composition is
similar to model checking, and is a powerful complement to the
state-based safety and liveness analyses described earlier.

Conclusions

Model-based testing can encourage different approaches to testing.
It encourages on-the-fly testing --- but in general, on-the-fly test
runs are not reproducible, due to nondeterminism. It suggests ex-
tending testing to noninvasive monitoring or run time verification
--- if the test harness supports observable actions, the test runner
can check log files or monitor network traffic for conformance
violations.

The most intruiging prospect might be better integration of
design and analysis with testing. Exploration with composition
is like model checking; it can can check for safety, liveness,
and temporal properties. And, the same models are used for
these analyses as for automated testing. Moreover, the models are

written in the same language as the implementation, which could
make them accessible to developers and test engineers, not just
formal methods experts.

Model-based testing has been used on large projects in in-
dustry, but only post-hoc. Test engineers were given informal
documentation and an implementation to test, and then reverse-
engineered the models [Grieskamp08]. A more rational workflow
might be to write the model before writing the implementation,
analyze and tweak the design, then implement and test.

Related work

The techniques described in this paper can be expressed in any
programming language. More detailed explanations and exam-
ples, using the NModel framework for C# [NModel11], appear
in [Jacky08]. Another view of model-based testing appears in
[Utting07]. Model checking is discussed in [Peled01].
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Automation of Inertial Fusion Target Design with
Python

Matthew Terry‡∗, Joseph Koning‡

F

Abstract—The process of tuning an inertial confinement fusion pulse shape
to a specific target design is highly iterative process. When done manually,
each iteration has large latency and is consequently time consuming. We have
developed several techniques that can be used to automate much of the pulse
tuning process and significantly accelerate the tuning process by removing the
human induced latency. The automated data analysis techniques require spe-
cialized diagnostics to run within the simulation. To facilitate these techniques,
we have embedded a loosely coupled Python interpreter within a pre-existing
radiation-hydrodynamics code, Hydra. To automate the tuning process we use
numerical optimization techniques and construct objective functions to identify
tuned parameters.

Index Terms—inertial confinement fusion, python, automation

Inertial Confinement Fusion

Inertial confinement fusion (ICF) is a means to achieve controlled
thermonuclear fusion by way of compressing hydrogen to ex-
tremely large pressures (GBar), temperatures (10’s keV) and den-
sities (100x solid density). ICF capsule are typically small (~1 mm
radius) spheres composed of several layers of cryogenic hydrogen,
plastic, metal or other materials. These extreme conditions are
reached by illuminating the capsule with a very high intensity
(100’s TW) driver. This compresses the shell to more than 100
times solid density and accelerates the radially converging shell to
very high velocity (300 km/s). As the shell stagnates, a fusion burn
wave propagates from a central, low-density, high temperature
region to a surrounding high-density, low temperature fuel region.
The inertia of the fuel keeps it intact long enough for a significant
fraction of the fuel to burn.

There are several approaches to achieving a significant fusion
burn, but for this paper consider the shock ignition [Betti2007]
approach with the capsule directly driven by lasers. The capsule
is a spherical shell of frozen deuterium-tritium ("DT ice"), coated
with plastic or another ablator material. The region within the
DT ice is filled with DT gas at the vapor pressure. Laser beams
directly illuminate the target and deposit energy in the outer
most layer called the ablator. The ablation of the ablator supplies
the pressure to drive the implosion. We assume a spherically
symmetric illumination of the capsule with the total incident
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Fig. 1: A Radius-Time plot of the capsule implosion with the inci-
dent laser power overlay. Lines plot the trajectory of fluid particle
boundaries. Lines are color coded by material.

power varying in time. The power vs time profile is referred to
as the "pulse shape."

We divide the pulse shape into three logical sections, which
correspond to the three phases of the capsule implosion dynamics.
The first section is called the "pre-pulse" and is responsible for
shock compressing the DT shell to high density. The pre-pulse
consists of a short duration, high intensity spike in the laser
power (the "picket") and three pedestals, each with increasing
laser power. The pre-pulse is followed by the main pulse, which
accelerates the shell to moderate implosion velocity (~300 km/s).
When the imploding shell stagnates, it forms a central, low density,
high temperature hot spot and a surrounding high density, low
temperature shell.

The final section of the pulse shape is the igniter pulse. The
igniter pulse consists of another pedestal of very high intensity.
This section launches a strong shock that arrives just as the shell is
stagnating and further heats the hot spot as well as prevents the low
pressure shell from coming into pressure equilibrium with the high
pressure hot spot. The combination of the stagnation of the shell
and the timely arrival of the igniter shock lifts the temperature of
the central hot spot above the 12 keV threshold needed to initiate
a fusion burn wave. This burn wave propagates into the cold shell
where it produces most of the fusion yield.

While restricting our attention to laser shock shock ignition,
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there is a lot of potential variability in the composition and
structure of capsules and in the pulse shape. Capsule should
have sufficient ablator to drive the implosion, but not in excess.
Capsule materials must anticipate the effect of fluid instabilities
and laser absorption. The capsule should have realistic fabrication
tolerances. Laser powers must be set to produce shocks of an
appropriate strength and pulse features should be appropriately
timed. Additionally, there are several physical processes important
in describing an implosion. Due to all of these sources of com-
plexity, ICF targets are designed using sophisticated multi-physics
codes, such as Hydra [Marinak1996]. Extensive simulation, helps
identify interesting capsule/pulse shapes before resorting to ex-
pensive and difficult experiments. The process of designing a
capsule is highly iterative, time consuming, interactive process.
In this paper we describe the use of and modifications of Hydra
to automate significant sections of the target design process.
Specifically, we consider the situation where a capsule design and
the pulse shape power levels are specified and the timing of the
pulse shape is not specified.

When tuning the pre-pulse, we regard the picket as a fixed
quantity functioning as a time fiducial for synchronizing the re-
maining pre-pulse shocks. The picket exists to increase implosion
stability by heating the plasma corona, which increase lateral
thermal conduction, which in turn smooths out non-uniformities
in the deposition of laser energy. These are not effects that can
be resolved in one dimensional (1D) simulations, but the picket
effects the 1D dynamics and must be included. The pre-pulse
pedestals should have their start times set such that their associated
shocks reach the gas/ice interface within 50 ps as the picket shock
[Munro2001]. Spacing the pre-pulse shocks in this way, prevents
them from coalescing in the ice and unnecessarily shock heating
the fuel. Also, shocks gain strength with radial convergence, so
ensuring that the pre-pulse shocks escape the fuel while it is at
large radius helps minimize the shock heating.

The main pulse should be timed to get the maximum fuel con-
finement for a fixed amount of energy. The appropriate measure of
fuel confinement is its peak areal density (ρR =

∫
ρ(r)dr). Should

the fuel ignite, the burn fraction is approximated by f ≈ ρR
ρR+7

[Fraley1974]. Finally, the igniter pulse should be timed so that
the target ignites robustly. We implement this as maximizing the
fusion yield.

Automatic Tuning

We adopt the general strategy that a tuned pulse can be constructed
by serially adding tuned pulse segments. Additionally we require
that each property of a pulse segment can be "tuned" by numeri-
cally optimizing an appropriately chosen objective function. Our
automated pulse tuner ("autotuner") is structured around an itera-
tion over pairs of pulse properties and objective functions. These
properties are the start times of the pulse segments and are initially
turned off. The tuner iterates through each pulse segment, numer-
ically optimizing it based on its associated objective function. In
addition to fixed power levels, the combined energy delivered in
the pre-pulse and compression pulse is constrained. The total ig-
niter pulse energy is also pre-determined. It is important to realize
that the sequence of properties and choice of objective functions
embodies a strategy to achieve the desired target behavior. The
automation of this strategy does not guarantee the tuned pulse
will produce the desired performance characteristics, just that the
design strategy was faithfully executed.

In addition to a sequence of parameters and a definition of an
objective function, an autotuing program requires other software
infrastructure. It needs to transform parameter values to input
files and run directories. The autotuing program needs to gather
the appropriate information from a simulation needed by the
objective functions. Finally, it needs reasonably efficient numeric
optimization routines.

We generate Hydra input files from a Python proxy class
that wraps a nearly complete Hydra input file. The proxy has
simple pre-processor like capabilities for modifying simple input
file statements and for injecting more complicated structures into
the input file. For complicated structures, like the laser source
specification, it delegates responsibly to special purpose objects.
These object follow the convention that str(obj) produces a
string formatted for inclusion in a Hydra input file. This conven-
tion allows objects that define the __str__() to lazily evaluate
their Hydra representation, while actual strings can be inserted
with no boilerplate.

Certain objective functions require very high sampling rates
and thus must be run within a running simulation. For this
purpose, Hydra has an embedded Python interpreter. Since our
tuning program and Hydra’s embedded interpreter use the same
programming language, it is relatively easy for the control pro-
gram and Hydra to share data structures. There are two obvious
methods: object serialization with the pickle module and object
reconstruction using repr(). Reconstructed objects are easily
modified and more explicit, so we use that method.

All of the optimizations use a simple eight way parallel direct
search method. In terms of the number of function evaluations,
direct search is less efficient than Newton-like methods, direct
search is very inefficient. Typical optimizations requires 32 func-
tions evaluations. Converging to the same tolerance using the
BFGS method requires only 12 function evaluations. However,
the inefficient direct search method requires only 4 iterations,
compared to the 12 iterations with BFGS. We are satisfied with
the current performance, but recognize that the use of more
sophisticated sampling techniques would likely reduce the number
of iterations or the number of parallel function evaluations.

Hydra’s Parallel Python Interpreters

Hydra is a massively parallel multi-physics code in use since 1993.
The code combines hydrodynamics with radiation diffusion, laser
ray trace, and several more packages necessary for ICF design and
has over 40 users at national laboratories and universities.

Hydra users set up simulations using a built-in interpreter. The
existing interpreter provides access to the program parameters and
provides functions to access and manipulate the data in parallel.
Users can also access and alter the state while the simulation is
running through a message interface that runs at a specific cycle,
time or if a specific condition is met.

To improve functionality, the Python interpreter was added to
Hydra. Python was chosen due to the mature set of embedding
API and extending tools and the large number of third party
libraries. The Python interpreter was added by embedding instead
of extending Python itself. This choice was made due to the large
number of existing input files that could not be easily ported to
a new syntax. The Simplified Wrapper and Interface Generator
(SWIG) [Beazley2003] interface generator is used to wrap the
Hydra C++ classes and C functions.

Users can send commands to the Python interpreter using two
separate methods: a custom interactive interpreter based on the
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CPython interpreter and a file-based Python code block interpreter.
The Hydra code base is based on the message passing interface
(MPI) library. This MPI library allows for efficient communica-
tion of data between processors in a simulation. The embedded
interactive and file based methods must have access to the Python
input source on all of the processors. The MPI library is used to
broadcast a line read from stdin or a file on the root processor to all
of the other processors in the simulation. The simplest method to
provide an interactive parallel Python interpreter would be to over-
ride the PyOS_ReadlineFunctionPointer in the Python
code base. This function cannot be overridden for non-interactive
processes due to a check for an interactive tty. An alternative
interactive Python interpreter was developed to handle the parallel
stdin access and Python code execution. For parallel file access the
code reads the entire file in as a string and broadcasts it to all of
the other processors. The string is then sent through the embedded
Python interpreter function PyRun_SimpleString. This C
function will take a char pointer as the input and run the string
through the same parsing and interpreter calls as a file using the
Python program. One limitation of the PyRun_SimpleString
call is the lack of exception information. To alleviate this issue
a second method was implemented uses Py_CompileString
then PyEval_EvalCode. The Py_CompileString uses a
file name or input file information to give a better location for the
exception.

The existing Hydra interpreter is the dominant interpreter
and must be given control when Python is not in use. The
interactive Python interpreter must check for Hydra control com-
mands as well as compiling, executing and checking errors on
Python code. The custom interactive interpreter first reads a
line from stdin in parallel. Readline support is enabled which
gives the user line editing and history support similar to running
the Python program interactively. The line is then checked for
any Hydra specific control sequences and compiled through the
Py_CompileStringFlags. If the line compiled with no er-
rors then it is executed using the PyEval_EvalCode command.
Any errors in compiling or exceptions are checked for a block
continuation indicator, syntax error or EOF. Exceptions will be
displayed as in Python and available in the output of all the
processors.

With the above embedded Python support users can run
arbitrary Python code through the Python interpreter. One of the
mandates of the effort to embed the Python interpreter was to
provide an enhanced version of the existing Hydra interpreter.
In order to provide this functionality Python must be able to
access the information in the running Hydra simulation. This is
accomplished by wrapping the Hydra data structures, functions,
and parameters using SWIG and exposing them through the
hydra Python extension module. The code created by SWIG
includes a C++ file compiled into Hydra as a Python extension
library and a Python interface file that is serialized and compiled
into the Hydra code.

The hydra Python module allows users to access and ma-
nipulate the Hydra state. Hydra has several types of integer and
floating point arrays ranging from one to three dimensional. The
multi dimensional arrays have an additional index to indicate the
block in the block-structured mesh. The block defines a portion
of the mesh on which the zonal, nodal, edge, and face based
information is defined, these meshes can consist of several blocks.
The blocks are then decomposed into sub-blocks or domains
depending on how many processors will be used in the simulation.

Access to the multi-block parallel data structures is provided by
structures wrapped by C++ interface objects and then wrapped in
SWIG using the numerical Python, numpy, module to provide the
array object in Python.

Users control the simulation by scheduling messages that
conditionally execute based on cycle number, time or specific
states. These messages can be redefined from Python to steer the
simulation while it is running. In addition to the messages, there
is a callback functionality that will run a user defined Python
function after every simulation cycle has completed. An arbitrary
number of callable Python objects can be registered in the code.

Objects in the top level, __main__, state are saved to a restart
file. This restart file is a portable file object written through the
mesh and file I/O library silo [SILO2011]. The Python component
of the restart information is a binary string created through the
pickle interface augmented with a state saving module. The Python
module used for the state saving functionality is the savestate
module by Oren Tirosh [Tirosh2008]. This module has been
augmented with the addition of numpy support and None and
Ellipsis singleton object support.

Multiple versions of the Hydra code are available to users
at any given time. In order to add additional functionality and
maintain version integrity, the hydra Python module is embedded
in the Hydra code as a frozen module. The Python file resulting
from the SWIG generator is marshaled using a script based on
the freeze module in the Python distribution. This guarantees the
modules are always available even if the sys.path is altered.

Embedded Diagnostics and Objective Functions

Embedding a Python interpreter within Hydra adds significant
capability. One of the first applications was to add a fluid charac-
teristic tracker. Characteristics are eigenvectors of the Euler fluid
equations and represent the highest possible signal speed. Charac-
teristics located near a shock, the characteristic will naturally drift
toward the shock front or be swept up in int, consequently they
can be used to identify the location of the shock front without the
difficulty of post processing the moving Lagrangian mesh. The
following initial value problem describes the radial location of the
characteristic as the flow evolves: ṙ = v(r)− cs(r). u(r) and cs(r)
are the flow velocity and sound speed at the characteristic’s current
location r. Our characteristic tracker implementation is aware of
the pulse shape and starts tracking a new characteristic for each
significant feature of the pulse shape. Characteristic positions must
be updated every cycle and the tracker is registered as a callback.

Since the tracker is updated every cycle, it is easy to trigger
other events based on the behavior of the characteristic. The first
use is trigger the simulation to end just after shock breakout time.
This is very important as Hydra’s only other relevant mechanism
for ending the simulation is a maximum simulation time. Burn is
explicitly turned off for these scans, so Hydra’s burn rate monitor
is not relevant. Setting a time limit either leads to under-estimating
the shock breakout time and stopping the calculation before
gathering important information or setting the maximum time to
be very large and wasting many compute cycles. Additionally, we
use the location of characteristics to set the frequency Hydra writes
output files. Different stages of the simulation have disparate time
scales and it is useful to add resolution only when it is needed.

The most important application of the characteristic tracker is
producing smooth, non-noisy measurements of the shock breakout
time for the shock syncing objective function. To construct a
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Fig. 2: Breakout time for a scan of the start time of the second shock.
Notice that the objective function minimum accurately locates the
inflection point in the breakout vs start time plot.

Fig. 3: R-T plot showing optimal timing of pre-pulse shocks. Shock
fronts are identified with black lines.

shock syncing objective function, first consider the case of two
radially converging shocks launched at two different times from
comparable radii. The second shock is faster since the wake of the
first is warmer and the sound speed is larger. The second shock
will eventually overtake the first. If we define a "shock breakout
time" as when the first shock enters the gas region, we can plot
the shock breakout time as a function of the launch time of the
second shock (black line in 2). The appropriate objective function
should maximize the breakout time (recognizing that it saturates
for large launch times) while also minimizing the launch time of
the second shock. We construct an aggregate objective function as
a linear combination of the two constraints ( f (t) = ωt −b(t)). We
find an tuned value of 0.01m, where m is the slope between the end
points of the search region. The parallel direct search optimization
method typically converges within four iterations.

Recall from the first section the pre-pulse launches four
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Fig. 4: Tuning peak areal density

shocks, all of which should coalesce at the gas-ice interface at the
same time. Figure 3 shows the convergence of the pre-pulse shocks
well within the required 50 ps tolerance. It should be noted that
this shock syncing method only relies on tracking the first shock.
Characteristics will sometimes fail to locate the shock if they are
located in a region with heat sources that are not sonically coupled
to the plasma. Deeply penetrating x-rays, supra-thermal electrons
and heavy ion beams are examples. However, it is expected that
the ablator and the DT shell should provide sufficient insulation
for the picket shock tracker to locate its shock.

Another important embedded diagnostic monitors the fuel
areal density (ρR). When tuning the main pulse, the diagnostic
monitors the DT ρR, reports the peak value and stops the calcu-
lation when the current ρR has fallen to 50% of the peak value.
The maximum ρR sets the start time of the main pulse. The igniter
pulse start time is tuned by maximizing the fusion yield. Figure 4
shows a peak ρR of 1.8g/cm2 with a time width of 500ps. Peak
ρR is typically found within three iterations. The width in the peak
corresponds to mistiming robustness.

Hydra is already well suited for tuning the igniter pulse for
maximum fusion yield and needs no additional diagnostics. Hydra
monitors the burn rate and has triggers to end the calculation upon
completion of burn. Hydra also reports the total fusion yield.

Conclusions

Tuning an ICF pulse to a target is normally a labor intensive,
high latency process. We described the desired properties of a
tuned pulse and constructed objective functions that will identify
the tuned properties. Collecting information for the objective
functions requires high frequency sampling of simulation and
this data must be gathered within the simulation rather than
post-processing a completed simulation. To enable introspective
simulations, we add a parallel Python interpreter to Hydra. From
these pieces, we constructed a program that tunes a pulse without
human intervention. The net result is a significant time savings
over manual tuning. Where a typical manual tuning takes several
days of attention, an automated tuning takes around 4 hours to
execute the same number of simulations.

This work performed under the auspices of the U.S. DOE
by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344.
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Hurricane Prediction with Python
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Abstract—The National Centers for Environmental Prediction (NCEP) Global
Forecast System (GFS) is a global spectral model used for aviation weather
forecast. It produces forecasts of wind speed and direction, temperature, hu-
midity and precipitation out to 192 hr every 6 hours over the entire globe.
The horizontal resolution in operational version of the GFS is about 25 km.
Much longer integration of similar global models are run for climate applications
but with much lower horizontal resolution. Although not specifically designed
for tropical cyclones, the model solutions contain smoothed representations of
these storms. One of the challenges in using global atmospheric model for hurri-
cane applications is objectively determining what is a tropical cyclone, given the
three dimensional solutions of atmospheric variables. This is especially difficult
in the lower resolution climate models. To address this issue, without manually
selecting features of interests, the initial conditions from a low resolution version
of the GFS (2 degree latitude-longitude grid) are examined at 6 hour periods
and compared with the known positions of tropical cyclones. Several Python
modules are used to build a prototype model quickly, and the prototype model
shows fast and accurate prediction with the low resolution GFS data.

Index Terms—hurricane, prediction, GFS, SVM

Introduction

The devastating effects from tropical storms, hurricanes1 , and
typhoons on life and property places great importance on fore-
casting and warning systems [CAM02]. To minimize the possible
damages from hurricanes, we need fast and accurate forecasts
as early as possible. Even with the significance of predicting a
hurricane, the procedure for identifying the initial position and
intensity of tropical cyclones is not fully automated. From direct
measures from aircraft, ships and surface stations and remote
sensing observations, including satellite imagery and Doppler
radar that is collected over time, meteorologists identify a storm,
and it is cumbersome process.

Numerical models are used to forecast the future position,
intensity and structure of hurricanes. For climate applications,
the resolution of these models is marginal for representation
of hurricanes. Different schemes are proposed to detect tropi-
cal cyclone-like vortices (TCLVs) in general circulation model
(GCM) simulations, which rely on threshold values of observed
characteristics of actual tropical cyclones. However, it is ad-hoc
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Copyright © 2011 Minwoo Lee et al. This is an open-access article distributed
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1. In this paper, the term hurricane is used generically to represent tropical
cyclones of all intensities, even though, technically speaking, a tropical cyclone
must have winds greater than 63 kt to be classified as a hurricane.

Fig. 1: Hurricane prediction procedure.

to use a different threshold for hurricane prediction [WAL04].
Although there is some research ongoing to improve the reanalysis
approach that determines the threshold, currently there is no
good representation of actual hurricane structure for reanalysis.
Furthermore, considering potential changes of hurricane intensity
[WAL04], faster and simple approaches are required for practical
use.

This paper examines a method to automate the objective
identification of hurricanes in global model forecast fields by using
a machine learning approach, support vector machines (SVM),
based on Global Forecast System (GFS) analyses. The outputs
from GFS [SAH06, EMC03] that produce forecasts of wind
speed and direction, humidity, and temperature are used as source
for hurricane prediction without any filtering based on previous
knowledge. From these features at each grid point, SVMs can be
trained to make an accurate prediction of hurricane occurrence.

Figure 1 shows the sequential procedure for hurricane predic-
tion from data conversion to final hurricane prediction. Python
provides useful packages to reduce the time for prototyping this
hurricane prediction procedure. Using Numpy, the basic data
matrices for meteorological features in each grid are stored and
manipulated. Matplotlib is used to analyze the patterns of the data
features, and the data is trained and classified by using PyML
SVM. PyGTK with Glade and Basemap generate the graphical
user interface to connect the sequential process of preparing
data, training a classifier, predicting hurricanes and presenting
prediction results to users.

Global Forecast System and Hurricane Tracks

To predict hurricanes, the first step is to access the weather data. In
this paper, we choose the output from the U.S. National Centers for
Environmental Prediction (NCEP) Global Forecast System (GFS).
For this initial prototype, low resolution GFS analysis fields are
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Fig. 2: The wind component and humidity 2-D plot at a fixed
vertical pressure level. (http://mag.ncep.noaa.gov/NCOMAGWEB/
appcontroller)

used, rather than the GFS model forecasts. Similar GFS analysis
data are available in real time from NCEP (http://www.nco.ncep.
noaa.gov/pmb/products/gfs/) along with the forecast fields.

The GFS data set contains wind speed and direction, tem-
perature, geopotential height deviation and relative humidity in
a meteorological 3-D grid along with the year, month-day, time,
longitude, and latitude. The vertical coordinate of the 3-D grid
represents pressure level, where 100 hPa is near the top of the
atmosphere and 1000 hPa is near the surface. Figure 2 shows
example wind vectors at fixed vertical level (850 hPa of pressure).

This paper uses a low resolution GFS data with the longitude
and latitude intervals of 2 degrees and recording interval of 6
hours (0, 6, 12 or 18 UTC). This is similar to what might be
obtained from a long-term climate simulation. Along with GFS
outputs, hurricane tracks are used as labels for hurricane locations.
Hurricane tracks contain storm number, year, month, day, time,
and storm information such as latitude, longitude, maximum
winds, minimum pressure at the storm center, storm type, and
basin. For this research, each storm location and time information
is extracted to use them as labels for hurricane prediction training.

Data Preprocessing for Hurricane Detection

Raw GFS data and hurricane tracks cannot be used directly;
data preprocessing is necessary for efficient hurricane prediction.
Since the goal of the research is predicting the longitudinal and
latitudinal location of hurricanes, all the vertical coordinates can
be combined at each grid point. Each location on the earth,
specified by its latitude and longitude, is covered by a 3-D grid
cell of GFS data. We chose to combine the GFS data from the
four grid cell corners at all 11 heights by concatenating them into
one vector, as illustrated in Figure 3. The presence or absence of
a hurricane at each location is indicated by a 1 or -1, respectively,
as the first element of the vector. Thus, each sample contains
1+11×4×8 = 353 values.

Fig. 3: Converting GFS data and hurricane tracks for hurricane
prediction.

Fig. 4: Image map for the converted data. First 33 rows are the grids
that have hurricanes, and the rest rows are randomly sampled grids.

From July 1st, 2008 through July 4th, 2008, there are 194,400
sample grid cells, and only 33 of them contains hurricanes. To
examine the difference between hurricane cells and the others, the
preprocessed data representation can be visualized by combining
samples as the rows of a Numpy array and displayed as an
image using Matplotlib. In Figure 4, the first 33 rows represent
locations with hurricanes during the time period, and the other
rows are randomly selected locations that do not have hurricanes.
The image shows that the data patterns are significantly different
between hurricane locations and the other samples. There is less
variation in some columns in the first 33 rows, the locations
contain hurricanes, than in the last 66 rows, locations without
hurricanes.

Numpy and Matplotlib for Data Preprocessing and Analysis

Numpy is the fundamental package that is used as a multi-
dimensional container. In this research, Numpy provides the basic
data structure for converted data representations and operations. It
includes various tools for data handling such as reading and storing
files, linear algebra, and matrix manipulation. Data conversion in
Figure 3 is easily implemented by using Numpy functions and
array object. The matshow() function in Matplotlib is used to
generate the image in Figure 4 and gives a first look at the data
pattern. Although eye observation of data is not always successful
for the general machine learning approaches, it is useful for the
GFS data.

Support Vector Machine

Support Vector Machine (SVM) [ASA08,BIS06] is a popular tool
for classification, regression, and novelty detection. An important
property of support vector machines is that the determination
of the model parameters corresponds to a convex optimization
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Fig. 5: Support Vector Machine.

problem, thus a local solution is a global optimum [BIS06]. Figure
5 shows the binary SVM margin maximizer for classification and
is explained below.

Support vector machine is characterized by its margin: it
looks for the hyperplane that separates data into two classes with
maximum margin. Let the training data be (xi,yi) with m input
vectors xi and target values yi ∈ −1,1. The hyperplane can be
defined

f (x) = wT Φ(x)+b (1)

where Φ(x) denotes a nonlinear function. The w is the weight
vector, and scalar b is the bias. Thus, the margin separation into
two half spaces can be defined

{
yi =−1 if wT Φ(xi)+b≤−1
yi = 1 if wT Φ(xi)+b≥ 1

If the data is linearly separable, we can find a hyperplane such that

yi f (xi)≥ 1

If we scale the hyperplane in Equation 1, we get the margin that
is 2
‖w‖ . Since maximizing 2

‖w‖ is equivalent to minimizing ‖w‖2 , the
hard margin SVM that seeks a maximum margin can be written as
a linear program:

minimize ‖w‖
2

subject to yi(wT Φ(x)+b)≥ 1

In practice, the data is not always linearly separable. In such
data, by allowing some misclassified points, we can get larger
margins. Some previous theoretical and experimental study shows
that larger margin will generally perform better than hard margin
SVM [ASA08]. We can define the slack variables ξi > 0 to allow
errors.

yi(wT Φ(x)+b)≥ 1−ξi

Now, adding control parameter C, we can rewrite the previous
linear program:

minimize ‖w‖
2 +C ∑m

i=1 ξi

subject to yi(wT Φ(x)+b)≥ 1−ξi
ξi > 0

where m is the number of points. C controls the conflicting
objectives, maximizing the margin and minimizing the sum of

Fig. 6: Glade-3 for creating the GUI for hurricane prediction.

errors. When C is large, a large penalty is given to errors, it reduces
the margin that minimizes the error term. When C is small, it
allows more errors resulting in margin increase.

PyML

PyML is a machine learning library that focuses on SVM and
kernel methods. As other python packages such as scikit-learn,
shogun, orange, and mlpy, PyML efficiently wraps the state of the
art SVM library, libsvm. PyML provides several dataset containers
that hold class labels and a collection of data patterns. The
Numpy array object concatenating our hurricane data can be easily
converted to VectorDataSet in PyML. Since we have observed the
significant difference between hurricane and non-hurricane data
patterns, we apply a simple linear kernel for classification. Based
on the dataset and linear kernel, the SVM is trained for hurricane
prediction.

PyGTK and Glade for User Interface

For converting the raw data, training SVM, and finally predicting
hurricanes, a simple interface prototype can be easily constructed
by using PyGTK and Glade-3. Glade is a rapid application
development tool to enable fast user interface design. Glade-3
tool in Figure 6 makes it easy to create the base UI for hurricane
prediction. Instead of writing the codes for the placement, color, or
type of each widget, the UI created in Glade-3 is stored in XML,
and the XML file is loaded in the python program with PyGTK.
This saves a fair amount of time for creating the GUI. The user
interface is composed of right side inputs and buttons for GFS data
and tracks file selection and converting with some options and for
training a classifier and saving or loading the trained classifier.
When a trained classifier is ready, the bottom interface is used
to predict hurricanes after selecting the GFS data to apply to the
classifier. The major part of the UI plots prediction results on a
map by using Basemap. Check buttons on the bottom menu are
for plotting options. The following code snippet shows the simple
usage to load the glade UI (the prototype codes will be available
on http://www.cs.colostate.edu/~lemin/hurricane/):
import gtk, gobject, cairo
import gtk.glade

gladefile = "HurricaneUI.glade"
builder = gtk.Builder()
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Fig. 7: ROC curve for the support vector machine.

builder.add_from_file(gladefile)
self.window = builder.get_object("mainWindow")
builder.connect_signals(self)

Basemap to locate hurricane and prediction

Basemap is an add-on toolkit for Matplotlib that enables plotting
data over map projections. Coastlines, political boundaries, lon-
gitude and latitude grid lines are available in several different
resolutions. Provided map projection coordinates and plotting
functions make it easy to visualize predicted locations and actual
hurricanes on the globe. Figure 8 shows the GUI for hurricane
prediction. Orthogonal Basemap for the globe is projected in the
middle of the interface and when the trained SVM is applied to
the test data, it can show the hurricane locations as well as the
predicted hurricane locations depending on the display options.
Basemap on the interface can be loaded as below:

from mpl_toolkits.basemap import Basemap

self.map = Basemap(projection='ortho',
lat_0 = lat, lon_0 = lon,
resolution = 'l',
area_thresh = 1000., ax=ax)

self.map.drawcoastlines(ax=self.ax)
self.map.drawcountries(ax=self.ax)
self.map.drawlsmask(land_color='yellowgreen',

ocean_color='#CCFFFF',
lakes=True, ax=self.ax)

Hurricane Prediction

Using 2008 GFS data and hurricane tracks, we ran a simple
experiment for hurricane prediction. Running the codes below for
5-fold cross-validation achieves 0.9998 of success rate (0.8458
balanced success rate). The almost square ROC curve (Figure 7)
shows the accuracy of the proposed framework. The computed
ROC/ROC_50 scores are 0.999808 and 0.916524 respectively.

import PyML as pyml

data = pyml.VectorDataSet(filen, labelsColumn=0)
s = pyml.SVM()
result = s.cv(data)

Fig. 8: Hurricane prediction and actual hurricanes. Blue circles
indicate predicted hurricane locations, and red circles indicate the
actual hurricane locations.

Now, we train SVM with four days of GFS data and hurricane
tracks from July 1st to July 4th in 2008. The trained SVM predicts
hurricane locations of one and half months later. It is tested
on the data for August 29th when Hurricane Gustav neared the
west side of Cuba, and it predict the actual hurricane or near
hurricane locations successfully. Even with a short period time for
training samples, it found all hurricane locations without an error
in testing data: the prediction picks 21 grid cells including all four
hurricane locations. Figure 8 shows that even with over estimation
of hurricane locations, it predicts all the hurricanes. Furthermore,
the false positives are neighboring locations that can be the area
that hurricanes affect the atmospheric conditions close to the data
pattern of true hurricane locations. Training and prediction is done
simply by reading data files and calling train() and test() functions:

import PyML as pyml

data = pyml.VectorDataSet(filen, labelsColumn=0)
s = pyml.SVM()
s.train(data) # training
test_data = pyml.VectorDataSet(testfn, labelsColumn=0)
result = s.test(test_data) # prediction

Conclusion

In summary, we presented the hurricane prediction problem, how
it can be tackled objectively with a machine learning approach,
and how python packages are applied to prototype the hurricane
prediction. For the proposed approached, meteorologists do not
need to select features of interests anymore. To show this, various
python packages are used for fast and efficient prototyping that
solves the hurricane prediction problem: Numpy for converting
GFS data and hurricane tracks, Matplotlib for analyzing the
data patterns, PyML for binary classification of hurricanes, and
PyGTK, Glade, and Basemap for the graphical user interface.

This machine learning approach will be able to contribute
developing fast and objective adaptation model for hurricane
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prediction without manual feature selection. Although the con-
nection between global warming and hurricanes is not clear, some
research such as [WAL04] points out that changes in the number
of storms and the maximum intensities are likely to happen as
climate changes. Considering the hurricane changes over time,
online adaptation models for hurricane prediction needs to be
investigated. The various python packages will be an excellent
choice for use in future research as well.
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IMUSim - Simulating inertial and magnetic sensor
systems in Python

Martin J. Ling‡∗, Alex D. Young‡

F

Abstract—IMUSim is a new simulation package developed in Python to model
Inertial Measurement Units, i.e. devices which include accelerometers, gyro-
scopes and magnetometers. It was developed in the course of our research
into algorithms for IMU-based motion capture, and has now been released
under the GPL for the benefit of other researchers and users. The software
generates realistic sensor readings based on trajectory, environment, sensor
and system models. It includes implementaions of various relevant processing
algorithms and mathematical utilities, some of which may be useful elsewhere.
The simulator makes extensive use of NumPy, SciPy, SimPy, Cython, Matplotlib
and Mayavi. The rapid development enabled by these tools allowed the project
to be completed as a side project by two researchers. Careful design of an
object-oriented API for the various models involved in the simulation allows
the software to remain flexible and extensible while requiring users to write a
minimum amount of code to use it.

Index Terms—simulation, IMU, accelerometer, gyroscope, magnetometer

Introduction

Inertial sensors—accelerometers and gyroscopes—are becoming
increasingly ubiquitous in a wide range of devices and appli-
cations. In particular, they are often used to automatically find
and track the orientation of a device. For this role they may be
combined with a magnetometer, which can sense the direction of
the Earth’s magnetic field. Such a combination can determine the
device’s full 3D orientation, including compass heading. Devices
designed specifically around these sensors are called Inertial
Measurement Units (IMUs), though readers may be more familiar
with them in modern smartphones, tablets and gaming controllers,
which use the orientation and movements of the device as a user
input mechanism.

Outside of consumer devices inertial and magnetic sensors find
a wide range of uses. They are used for attitude tracking in aircraft,
spacecraft, in many types of robotic systems, and in stabilised
platforms for cameras and weapons. In engineering and industry
they are used to detect and monitor vibrations, impacts, collisions
and other events. They have also been widely used in healthcare, to
monitor and classify the activities of a patient and to detect events
such as falls. In biology and agriculture, they have been used to
provide the same capabilities on animals. The list of applications
of these sensors continues to grow, with more uses being found
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as their cost, size and power requirements decrease. However, as
newer and more ambitious applications push towards the limits of
sensor capabilities, development becomes harder.

Our own research over the past few years has focused on
motion capture of the human body using networks of wearable
IMUs. Most motion capture methods are based on cameras,
and consequently have limited tracking areas and problems with
occlusion. By instead tracking movements using IMUs on the
body, motion capture can be freed from these limitations. How-
ever, achieving accurate tracking with this approach is a difficult
problem and remains an active topic of research.

During our work in this area we invested a large amount of
effort in designing, building and debugging both hardware and
software to test our ideas. Some other research groups did similar
work, on their own platforms, whilst further researchers developed
algorithms which were tested only in their own simulations. We
were not readily able to compare our methods in controlled
experiments, and new researchers could not easily enter the field
without investing significant time and money in the necessary
infrastructure.

In our view, a significant obstacle for the development of
advanced inertial/magnetic sensing applications has been a lack
of useful simulation tools to allow a sensor system to be de-
signed, modelled and tested before expensive and time-consuming
hardware work is required. Ad-hoc simulations are sometimes
developed for individual applications or hardware but due to their
very specific nature these are rarely shared, and even if they are,
hard to reuse. As a result, most simulations are created from
scratch and tend towards being simplistic.

We therefore decided that a useful contribution we could make
to this field would be an openly available simulation framework,
that could continuously evolve to support state-of-the-art work
with the best available methods and models. We hence wanted
to keep the design as flexible, extensible and general purpose as
possible.

Although most other researchers in this area were using
MATLAB, we decided that Python would be the best platform for
developing our simulator. Ease and speed of development were
essential since we would be undertaking the project with just
two people, and alongside our main research. We also felt that
a popular general purpose language with a supporting open source
ecosystem, rather than a proprietary tool, was the appropriate
choice given the project’s goals.

After several months we released our first version under the
GPL in April 2011, and presented a paper [Young2011] that
discussed the work from a primarily scientific perspective. In



64 PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

contrast, this paper focuses on the Python implementation and
our experiences during its development.

Overview

The goal of IMUSim is to allow inertial/magnetic sensor systems
to be tested in simulations that are quick to develop yet as realistic
as possible, reducing development time, cost, and risk in both
academic research and commercial development.

The key function of the software is hence to generate realistic
readings for sensors in simulated scenarios. The readings obtained
from an inertial or magnetic sensor at a given instant depend on
several factors:

• The trajectory followed by the sensor through space: its
position and rotation at a given moment, and derivatives
of these—in particular angular velocity and linear acceler-
ation.

• The surrounding environment: in particular the gravita-
tional and magnetic fields present.

• The nature of the sensor itself: its sensitivity, measurement
range, bias, etc.

• The analogue-to-digital converter (ADC) used to sample
the sensor output: its range, resolution, linearity, etc.

• Random noise associated with either the sensor or ADC.

We simulate all of these factors, taking an object-oriented ap-
proach. For each factor involved—e.g. trajectory, sensor, magnetic
field—we provide an abstract class defining a model interface, and
classes implementing specific models. All the models involved in
the simulation can thus be easily interchanged, and extended or
replaced as required.

In addition to just the model classes required to obtain simu-
lated sensor readings, the IMUSim package also includes:

• A basic framework of model classes for simulating multi-
device wireless systems with distributed processing.

• Implementations of existing processing algorithms for
inertial and magnetic sensor data, including methods for
sensor calibration, orientation estimation, body posture
reconstruction and position estimation.

• General purpose mathematical utilities useful for imple-
menting models and processing algorithms.

• 2D and animated 3D visualisation tools.

Rather than developing a specific UI for the simulator which
would inevitably be restrictive, we designed the package to be
easily used interactively via the [IPython] shell, or by scripting.
A tutorial [Ling2011] has been written which aims to quickly
introduce the use of the simulator through interactive examples
with IPython, assuming some knowledge of the field but no pre-
vious Python experience. This tutorial accompanies the full API
reference, which is generated using Epydoc from comprehensive
docstrings included in the code.

The implementation makes extensive use of [NumPy], [SciPy],
[SimPy], [Matplotlib], [MayaVi] and [Cython], and in general
aims to use existing libraries wherever possible. In a few cases
we have implemented limited amounts of functionality that could
have been reused from elsewhere. Reasons for doing this have
included performance (e.g. our fast Cython quaternion math
implementation), maintaining ease of use and consistency of the
API, or limiting the installation prerequisites to the common and
well-supported libraries included in the main scientific Python
distributions.

A quick example

In this section we look briefly at the IMUSim software starting
from the user’s perspective, and then at some aspects of the
implementation. We begin by looking at a simple example script,
which simulates an idealised IMU following a randomly generated
trajectory, sampling its sensors at 100Hz:
# Import all public symbols from IMUSim
from imusim.all import *

# Create a new simulation
sim = Simulation()

# Create a randomly defined trajectory
trajectory = RandomTrajectory()

# Create an instance of an ideal IMU
imu = IdealIMU(simulation=sim, trajectory=trajectory)

# Define a sampling period
dt = 0.01

# Set up a behaviour that runs on the simulated IMU
behaviour = BasicIMUBehaviour(platform=imu,

samplingPeriod=dt)

# Set the time inside the simulation
sim.time = trajectory.startTime

# Run the simulation till the desired end time
sim.run(trajectory.endTime)

The package has been designed to make simple tasks like this
quick to write, and to only require lengthy setup code for a
simulation when unusual and complex things are required. The
imusim.all package automatically imports all public symbols
from the various subpackages of imusim. The Simulation ob-
ject wraps up the three things required for an individual simulation
run: simulation engine, environment model, and random number
generator (RNG). Unless told otherwise, it includes a randomly
seeded RNG and a default environment model with nominal values
for Earth’s gravity and magnetic field. The IdealIMU class
models a complete IMU device with accelerometer, magnetometer,
gyroscope and supporting hardware components, all using ideal
models. BasicIMUBehaviour implements the most common
software functionality required on an IMU—sampling all its
sensors at regular intervals, storing the resulting values and,
if specified in options to its constructor, passing them on to
processing algorithms.

The behavioural code accesses the simulated hardware it has
been given through a defined API, allowing it to be written in
straightforward Python code as if running on real hardware. The
simulated hardware components then post events to the SimPy
simulation engine as necessary to model their functionality. In
this case, the main events will be the samples requested from the
sensors via the ADC. At the moments these samples are taken,
the sensor models will request information from the trajectory
and environment models to which they are attached, as needed to
compute their outputs. The ADC model will in turn process each
value, and generate a final reading. After each event is simulated
the simulation time advances directly to the next requested event.
Depending on the user’s computer and the complexity of the
simulation, time may pass from a little faster to very much slower,
compared to real time.

We display some progress output to keep the user informed. In
the simple case above the simulation is quick:

Simulating...
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Fig. 1: Accelerometer readings for an ideal accelerometer following
a randomly curving trajectory.

Simulated 0.1s of 1.8s ( 5%).
Estimated time remaining 0.4s
...
Simulation complete.
Simulated 1.8 seconds in 0.4 seconds.

The user can now interactively explore the results via the same
objects that were used in the simulation. For example, plotting the
accelerometer samples from the IMU:

>>> plot(imu.accelerometer.rawMeasurements)

plus appropriate labels, gives the graph shown in Figure 1. Plotting
uses the normal facilities of Matplotlib, but IMUSim provides its
own plot function. This adds special support for its own data
types whilst retaining backward compatibility.

Data types

The parameter passed to plot above was a TimeSeries object,
one of the basic data types we developed for IMUSim. It represents
timestamped scalar, vector or quaternion values with optional
uncertainty information. We developed the TimeSeries class
initially as a simple container, because we found that when plot-
ting or otherwise passing around such data, it was often difficult
or awkward to keep track of the correct combinations. We later
included support for adding data sequentially, which is useful for
storing data as it is generated by the simulation. New data points
are appended to a list internally, with contiguous NumPy array
versions generated only when required.

A TimeSeries thus provides two essential attributes,
timestamps and values. The timestamps attribute is an
array of time values in ascending order:

>>> imu.accelerometer.rawMeasurements.timestamps
array([ 0.01, 0.02, ..., 1.79, 1.8 ])

These are times at which the samples were taken. In this case
they are uniformly distributed but any sequence of times may
be represented. The sample values themselves are found in the
values attribute:

>>> imu.accelerometer.rawMeasurements.values
array([[ 66.705814 , ..., -204.6486176 ],

[ -93.40026896, ..., -155.16993659],
[ 116.56420017, ..., 117.56964057]])

Note the shape of this array, which is 3xN where N is the number
of timestamps. IMUSim uses column vectors, in order to work
correctly with matrix multiplication and other operations. Arrays
of vector data are therefore indexed first by component and then
by sample number. A single vector would be represented as a 3x1
array. IMUSim provides a vector function to concisely construct
these:

>>> vector(1,2,3)
array([[ 1.],

[ 2.],
[ 3.]])

The other important data type is the quaternion, which is a
mathematical construct with four components that can be used to
represent a rotation in 3D space; see [Kuipers2002] for an in-depth
treatment. Quaternions offer a more compact and usually more
computationally efficient representation than rotation matrices,
while avoiding the discontinuities and singularities associated with
Euler angle sequences. IMUSim provides its own Quaternion
class. Although a number of quaternion math implementations
in Python already exist, we developed our own in Cython for
performance reasons, due to the large number of quaternion
operations used in the simulator. We hope this component will
prove to be usefully reusable.

Quaternions can be constructed directly, converted to and from
from other rotation representations such as Euler angle sequences
and rotation matrices, used in mathematical expressions, and
applied to perform specific operations on vectors:

>>> q1 = Quaternion(0, 1, 0, 0)
>>> q1.toMatrix()
matrix([[ 1., 0., 0.],

[ 0., -1., 0.],
[ 0., 0., -1.]])

>>> q2 = Quaternion.fromEuler((45, 10, 30), order='zyx')
>>> q1 * q2
Quaternion(-0.2059911, 0.8976356, -0.3473967, 0.176446)
>>> q2.rotateVector(vector(1,2,3))
array([[ 0.97407942],

[ 1.30224882],
[ 3.36976517]])

As mentioned, the TimeSeries class can also be used with
quaternion values. The rotations of the random trajectory used in
the previous example simulation were generated from a time series
of quaternion key frames:

>>> trajectory.rotationKeyFrames.values
QuaternionArray(

array([[-0.04667, -0.82763, 0.29852, -0.47300],
[-0.10730, -0.81727, 0.33822, -0.45402],
...,
[ 0.40666, -0.04250, 0.80062, 0.43796],
[ 0.42667, -0.01498, 0.82309, 0.37449]]))

Arrays of quaternions are represented using the special
QuaternionArray class, also implemented in Cython, which
wraps an Nx4 NumPy array of the component values. Quaternion
arrays provide support for applying quaternion math operations
efficiently over the whole array.

Trajectory models

The data types we have just introduced form the basis for our
trajectory model interface. A trajectory defines the path of an
object through space, and also its changing rotation, over time.
To allow simulating inertial and magnetic sensors, a trajectory
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needs to provide position and rotation, and their first and second
derivatives, at any given time. A trajectory must also give the start
and end of the period for which it is defined. In this case we will
look at a trajectory’s parameters at its starting time, which is a
scalar in seconds:

>>> t = trajectory.startTime
>>> t
3.8146809461460811

The position, velocity and acceleration methods of a trajectory
provide vector values, in SI units, at given times:

>>> trajectory.position(t) # m
array([[-10.36337587],

[ 4.63926506],
[ -0.17801693]])

>>> trajectory.velocity(t) # m/s
array([[ 30.79525389],

[-20.9180481 ],
[ 2.68236355]])

>>> trajectory.acceleration(t) # m/s^2
array([[ 178.30674569],

[ -15.11472827],
[ 15.54901256]])

The rotation at time t is a quaternion, but its derivatives—angular
velocity and acceleration—are vectors:

>>> trajectory.rotation(t)
Quaternion(-0.046679, -0.82763, 0.29852, -0.47300)
>>> trajectory.rotationalVelocity(t) # rad/s
array([[-2.97192064],

[ 2.97060751],
[-7.32688967]])

>>> trajectory.rotationalAcceleration(t) # rad/s^2
array([[ -8.46813312],

[ 19.43475152],
[-31.28760834]])

Note that angular accelerations may be required, even when only
angular velocity sensors (gyroscopes) and linear accelerometers
are simulated. This is because sensors may be placed at offsets
from a trajectory, e.g. on the surface of a rigid body is whose centre
is following the trajectory. In the equation for linear acceleration
at an offset from a centre of rotation, an angular acceleration term
is present.

Any object which implements the methods above at can be
used as a trajectory model by IMUSim. The trajectory can be
defined in advance, or may be defined as a simulation progresses,
e.g. by simulating the effect of some control system. The simulator
will only call the trajectory methods for a time when all events
prior to that time have been simulated.

Since defining realistic trajectory models is one of the most
difficult aspects of IMU simulation, much of the code in IMUSim
is devoted to assisting with this. In particular, we provide tools for
defining trajectories from existing motion capture data in various
formats. Using such data requires the creation of continuous time
trajectories, with realistic derivatives, from discrete time position
and/or rotation information.

From sampled position data, interpolated values and deriva-
tives can be obtained by fitting three independent cubic spline
functions to the x, y, and z components of the data, using the
splrep and splev functions from scipy.interpolate.
Obtaining usable rotational derivatives from sampled rotations is
more complicated. The most common forms of quaternion interpo-
lation, the SLERP [Shoemake1985] and SQUAD [Shoemake1991]
algorithms, are continuous only in rotation and angular velocity

Fig. 2: Interpolated trajectories from motion capture data, for the
lower body of a walking human. The source data was in BVH format
at 120 Hz. The model posture is displayed at 5 Hz, and the velocity
vector obtained for the right foot is displayed at 50 Hz.

respectively, and hence cannot provide a continuous angular accel-
eration. We developed a Cython implementation of the quaternion
B-spline algorithm of [Kim1995], which provides the necessary
continuity.

For both position and rotation data, it is usually necessary to
use smoothing splines to avoid overfitting to noisy capture data, if
realistic derivative values are to be obtained. Appropriate smooth-
ing can be achieved by providing expected standard deviations of
the input data. Our code then provides the appropriate parameters
to splrep.

In many applications sensors are used to measure the move-
ments of jointed but otherwise rigid structures, such as the human
skeleton or a jointed robotic arm. We therefore provide specific
trajectory classes for modelling articulated rigid-body systems,
that obey their kinematic constraints. In particular, these classes
are useful to work with human motion capture data, which is often
pre-processed to fit this type of model and stored accordingly, in
formats such as BVH and ASF/AMC. We provide loaders for these
file formats, and splining wrapper classes that make it a simple to
obtain physically consistent trajectories from such data. Figure
2 illustrates model trajectories and a derivative obtained in this
manner, rendered using IMUSim’s 3D visualisation tools, which
are based on MayaVi.

Environment models

The second factor affecting sensor readings is the environment.
Accelerometers sense gravity, and magnetometers sense magnetic
field, both of which can vary with position and time. We may
also want to simulate radio transmissions from a wireless IMU,
the propagation of which will depend on its surroundings. All of
these considerations are described by an Environment object,
to which we assign models for each aspect of the environment
relevant to the simulation.

If not otherwise specified, each Simulation is created with
a default environment, including simple models of the gravita-
tional and magnetic fields at the Earth’s surface. Both are subclass
instances of the abstract VectorField class, which defines
an interface for time-varying vector fields. Field values can be
obtained by calling the models with a position vector and time:

>>> p = trajectory.position(t)
>>> sim.environment.gravitationalField(p, t) # m/s^2
array([[ 0. ],

[ 0. ],
[ 9.81]])

>>> sim.environment.magneticField(p, t) # in Tesla
array([[ 1.71010072e-05],

[ 0.00000000e+00],
[ 4.69846310e-05]])
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Fig. 3: Unstructured measurements of magnetic field distortion used
to initialise an interpolated field model.

On Earth, and within a small area, it is generally sufficient to
model gravity as a constant field. For Earth’s magnetic field,
approximate values for a given location can be obtained from
the International Geomagnetic Reference Field model [IGRF] and
passed to the EarthMagneticField constructor. However,
local distortions can be very significant, so we provide means
for modelling varying fields. The SolenoidMagneticField
class simulates the magnetic field around a single ideal solenoid,
using the equations of [Derby2010]. More complex fields can be
modelled by superposition of multiple solenoids. Alternatively,
known field values at certain positions can be used to create an in-
terpolating field model. This requires an R3→R3 interpolation on
an unstructured grid, for which we use the Natural Neighbour al-
gorithm described in [Hemsley2009]. Our code provides a wrapper
for the C implementation of this algorithm [interpolate3d]. Figure
3 illustrates a real set of field measurements around the floor of
a steel-framed building. The code allows detailed measurements
such as these to be employed in simulations.

Sensor and device models

Real sensors suffer from noise, bias, misalignment, cross-axis
sensitivity and many other undesirable effects. To acheive a
realistic simulation we need to model these. IMUSim includes
generic parametric models for imperfect sensors, and also specific
models of some real sensor components, with parameters derived
from measurements and datasheet information. All sensor models
implement the interface of the abstract Sensor class. This defines
three methods to be implemented, each of which is a function of
time:

• trueValues returns a vector of values,
one for each axis, that would be measured by
an ideal sensor of this type. The units of these
values are those of the sensed quantity (e.g.
acceleration or angular rate).

• sensedVoltages returns the vector of ana-
logue output voltages of the sensor at a
given time. This method will internally call
trueValues, and transform the result via
some model of the sensor’s transfer function.
The result should include deterministic effects,
but exclude random noise; i.e. it should be an
ensemble mean of the voltages the sensor might
actually output at that moment.

• noiseVoltages returns randomly generated
noise that is additionally measured by the sen-
sor, following an appropriate distribution. Noise
values are taken from an individual RNG for
the sensor, that is by default seeded from the
main simulation RNG, but can be instead seeded
explicitly. Running a new simulation with the
same initial seed value for the sensor RNG will
generate the same noise for that sensor, allowing
repeatability with fine-grained control.

One reason for keeping these functions separate is to simplify
the composition of different classes to create a sensor model.
Usually trueValues is inherited from an abstract superclass
such as Magnetometer, while sensedVoltages may be
inherited from another class implementing the transfer function,
and noiseVoltages may come from yet another class. Addi-
tionally, having true and noiseless values independently accessible
is helpful for comparison and testing.

The final simulated voltage output is the sum of
sensedVoltages and noiseVoltages. In reality, the output
voltage is then converted to a digital value by an ADC, which
has limited range and resolution and thus clips and quantises the
values, as well as adding its own noise. Although somtimes sensor
devices have an ADC combined on the same chip, others are
interchangeable, and we therefore model ADCs with their own
classes separately from sensors.

Another issue in real hardware is that samples are never taken
at the exact times requested, because of the inevitable inaccuracy
of the IMU’s hardware timers. For this reason we also support
modelling of imperfect hardware timers.

All of these components can be brought together to create a
model of a specific device. The IdealIMU we used earlier is an
example, with ideal models for all the components of a standard
IMU. IMUSim also includes a model, produced from measured
parameters, of the real Orient-3 IMU we developed during our
research at Edinburgh [Orient]. This allows users to test algorithms
with a realistic model of a complete IMU device ’out of the box’.

The component-based API, including various parametric mod-
els and abstract classes implementing common functionality, is
designed to make it easy to model a new type of device with a
minimum of code. This is the same philosophy we have taken
with all parts of the simulator design. For the simulator to be
relevant to a wide range of users, and thereby gain an active user
base who will contribute to its development, its design must be
adaptable enough to support any usage and users must be able to
develop new models with minimal difficulty.

A more realistic simulation

Our first example script showed a very unrealistic simulation, with
an idealised device following a simple random trajectory. We will
now show a brief example of how using IMUSim, much more
realistic simulations can be produced with still very little code.
This script simulates an Orient-3 IMU attached to the right foot
of a walking human:

# Import symbols from IMUSim
from imusim.all import *

# Define a sampling period
dt = 0.01

# Create an instance of a realistic IMU model
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imu = Orient3IMU()

# Create a new environment
env = Environment()

# Define a procedure for calibrating an IMU in our
# selected environment
calibrator = ScaleAndOffsetCalibrator(

environment=env, samples=1000,
samplingPeriod=dt, rotationalVelocity=20)

# Calibrate the IMU
cal = calibrator.calibrate(imu)

# Import motion capture data of a human
sampledBody = loadBVHFile('walk.bvh',

CM_TO_M_CONVERSION)

# Convert to continuous time trajectories
splinedBody = SplinedBodyModel(sampledBody)

# Create a new simulation
sim = Simulation(environment=env)

# Assign the IMU to the simulation
imu.simulation = sim

# Attach the IMU to the subject's right foot
imu.trajectory = splinedBody.getJoint('rfoot')

# Set the starting time of the simulation
sim.time = splinedModel.startTime

# Set up the behaviour to run on the IMU
BasicIMUBehaviour(platform=imu, samplingPeriod=dt,

calibration=cal, initialTime=sim.time)

# Run the simulation
sim.run(splinedModel.endTime)

At 16 lines of code, this is only twice the length of the previous
example, but is based on:

• a real human motion, imported from motion
capture data and transformed to usable trajecto-
ries.

• an empirically obtained model of a real IMU
design, including noise and other imperfections.

• a simulation of a real calibration procedure.

Further information on the new steps appearing in this exam-
ple—including IMU calibration, and more on the use of motion
capture data, of which much is freely available—can be found in
the IMUSim tutorial [Ling2011].

Plotting the measurements of the accelerometer in this simula-
tion, using the calibration obtained for the IMU, results in Figure
4. Compare the appearance of this data to that from the previous,
more simplistic simulation in Figure 1.

Data processing algorithms

Obtaining realistic sensor data in simulations is one of IMUSim’s
key goals, but the package is also intended to support the compar-
ison, development and selection of algorithms for processing this
data. Implementations are included for a number of existing pub-
lished algorithms. These may be useful as-is in some applications.
They may also be used to compare new methods. We encourage
users publishing new methods to contribute implementations of
their algorithms themselves, and publish the scripts used for
their experiments. This allows their results to be reproduced, and

Fig. 4: Simulated accelerometer readings for an Orient-3 IMU
attached to the right foot of a walking human.

reduces the risk that their work will be misrepresented by an
incorrect reimplementation by another researcher.

In addition to the library of existing published methods, we
have tried to provide some generally useful tools for working with
sensor data. In particular, we include generic implementations
of the standard linear Kalman filter, the Unscented Transform,
and the Unscented Kalman Filter. These are widely useful state
estimation and nonlinear system tools, and could be usefully
transferred to SciPy or another library.

Validation and testing

In order to test the accuracy of our simulations, we have conducted
some experiments to directly compare our simulated sensor values
with those measured by real IMUs. To achieve this, we used
an optical motion capture system to capture the movements of
a subject who was also wearing wireless IMUs. In addition to
the normal markers on the subject, the positions and rotations of
the IMUs themselves were tracked using three markers attached
to each IMU. From the optical capture data we produced a rigid
body model of the subject, which was used via the methods we
have described to obtain simulated sensor data. We also sampled
the magnetic field in the capture area, using the magnetometer of
an IMU swept around the capture volume whilst being tracked by
the optical system. These measurements, seen in Figure 3, were
used to generate an interpolated field model of the capture area
which was also used in the simulation.

In our experiments we obtained correlations of r2 > 0.95
between simulated and measured values for all three types of sen-
sors—accelerometers, gyroscopes and magnetometers. More de-
tail on these experiments and results can be found in [Young2011].

The software is accompanied by test scripts designed to be
used with the nosetests tool. In total the current version runs
over 30,000 test cases, which aim to verify the correct behaviour
of the code. The tests include checking simulated sensor values
against real ones obtained in the experiments described above,
to ensure that after any code change the simulator still meets its
published claims of accuracy.

We also generate code coverage reports from the tests and use
these to identify untested code paths. Unfortunately at present it
is not straightforward to obtain test coverage for the Cython parts
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of the code; some unofficial code to do this is in circulation, but
official future support for this in the coverage module would be
helpful.

Conclusion

We have presented IMUSim, a simulation framework for inertial
and magnetic sensor systems, and looked at some of the details
of its Python implementation. The package has been designed to
meet the simultaneous goals of:

• enabling accurate simulations,
• remaining as flexible and extensible as possible,
• minimising the amount of code that users must

write.

This is achieved by careful design of an object-oriented API
for the various models required in the simulation.

The project was completed in a matter of months by two
researchers alongside other work. We believe this demonstrates
well the rapid development enabled by Python and its increasing
range of scientific libraries. In the process of development we
created some contributions which may be of wider use, and could
be moved to more general purpose libraries. These include:

• fast Cython classes for quaternion mathemat-
ics, including efficient quaternion arrays and B-
spline fitting of quaternion values.

• generic implementations of the Kalman Filter,
Unscented Transform, and Unscented Kalman
Filter.

• a TimeSeries class for representing extend-
able time series of scalars, vectors or quaternions
with covariance information, and an enhanced
plot command that accepts these.

• 3D vector field interpolation from unstructured
field samples, based on a wrapping of an existing
C library for natural neighbour interpolation.

The IMUSim source code is available from the project website
at http://www.imusim.org/, under the GPLv3 license. The software
is supported by a tutorial, API reference, users mailing list, and
test suite.
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Using Python to Construct a Scalable Parallel
Nonlinear Wave Solver
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Abstract—Computational scientists seek to provide efficient, easy-to-use tools
and frameworks that enable application scientists within a specific discipline to
build and/or apply numerical models with up-to-date computing technologies
that can be executed on all available computing systems. Although many tools
could be useful for groups beyond a specific application, it is often difficult and
time consuming to combine existing software, or to adapt it for a more general
purpose. Python enables a high-level approach where a general framework can
be supplemented with tools written for different fields and in different languages.
This is particularly important when a large number of tools are necessary, as is
the case for high performance scientific codes. This motivated our development
of PetClaw, a scalable distributed-memory solver for time-dependent nonlinear
wave propagation, as a case-study for how Python can be used as a high-
level framework leveraging a multitude of codes, efficient both in the reuse of
code and programmer productivity. We present scaling results for computations
on up to four racks of Shaheen, an IBM BlueGene/P supercomputer at King
Abdullah University of Science and Technology. One particularly important issue
that PetClaw has faced is the overhead associated with dynamic loading leading
to catastrophic scaling. We use the walla library to solve the issue which does
so by supplanting high-cost filesystem calls with MPI operations at a low enough
level that developers may avoid any changes to their codes.

Index Terms—parallel, scaling, finite volume, nonlinear waves, PyClaw, Pet-
Claw, Walla

Introduction

Nowadays, highly efficient, robust, and reliable open source
implementations of many numerical algorithms are available to
computational scientists. However, different tools needed for a
single project may not be available in a single package and may
even be implemented in different programming languages. In this
case, a common solution is to re-implement the various tools
required in yet another software package. This approach is quite
expensive in terms of effort, since a completely new code must
be written, tested, and debugged. An alternative approach is to
bring together the existing software tools by wrapping them in
a small code based on abstractions compatible with all of them
and able to interface with each programming language involved.
The latter approach has the advantage that only a small amount
of relatively high-level code needs to be written and debugged;
the bulk of the work will still be done by the reliable, tested
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packages. In this paper, PyClaw and PetClaw are presented as
examples of the philosophy that bridging well-established codes
with high-level maintainable code is an alternative approach that
leads to advantages in usability, extensibility, and maintainability
when compared to completely custom built scientific software.

PyClaw and PetClaw are implemented in the Python program-
ming language, and this choice of language has been essential to
their success, for multiple reasons. Python is an interpreted script-
ing language that has become recognized in the scientific comput-
ing community as a viable alternative to Matlab, Octave, and other
languages that are specialized for scientific work [cai2005]. For
instance, Python (with the numpy package) possesses a natural
and inuitive syntax for mathematical operations, has a built-
in user-friendly interactive debugger, and allows simulation and
visualization to be integrated into a single environment. At the
same time, Python is a powerful, elegant, and flexible language.
Furthermore, there exist many Python packages that make it
simple to incorporate code written in C, C++, and Fortran into
Python programs. Python has been suggested as particularly useful
in enabling reproducible computational research [leveque2009].

PyClaw and PetClaw Design and Implementation

PyClaw and PetClaw are designed to facilitate the implementation
of new algorithms and methods in the existing framework estab-
lished in the well-known software package Clawpack [clawpack].
Clawpack is used to solve linear and nonlinear hyperbolic systems
of partial differential equations using a Godunov type method with
limiters and is written primarily in Fortran. It has been freely
available since 1994 and has more than 7,000 registered users in a
large variety of applications. The goal in the design of PyClaw and
PetClaw is to provide interfaces to Clawpack that will facilitate
the use of advanced parallel strategies, algorithm improvements,
and other possible enhancements that may be field specific to the
original algorithms available in Clawpack.

PyClaw

PyClaw is based on the principles of abstraction and careful
definition of interfaces. These principles have allowed a broad
range of extensions to be developed for PyClaw in a short
period of time with wide success. The basic building blocks of
PyClaw involve the separation of the data structures representing
the gridded data and the domain and the solution operators that
advance the gridded data to the end-time requested. Both of these
abstraction layers also implement accessors that can be overridden
to provide advance functionality, a feature used in PetClaw.
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Fig. 1: PyClaw Solution structure.

The Solution class represents a snap-shot of the gridded data
at a single instance in time. The class acts as a container object
with possibly multiple Grid objects in the case of adaptive mesh
refinement or nested grids, both of which the Clawpack algorithms
are capable of. Furthermore, the Grid objects also contain a set of
Dimension objects that define the domain that each Grid is defined
on. Using this hierarchical class structure allows the gridded data
in PyClaw to not only represent relatively arbitrarily complex
gridded data but also allows individual components of the data
structures to be sub-classed without the knowledge of the rest of
the data structure. This is why the implementation of a package
like PetClaw is as transparent as it is to the end-user. An example
of a Solution object can be seen in figure 1.

The Solver class is the numerical realization of a solution
operator mapping the initial condition, represented by a Solution
object, to a later time. The base Solver class defines a basic set of
interfaces that must be implemented in order for the infrastructure
included in PyClaw to evolve the Solution object forward in time.
For instance, the routine:

evolve_to_time(solution,t)

will operate on the Solution object solution and do the necessary
operations to evolve it forward in time. This is accomplished
through appropriate time stepping in the base Solver object and the
definition of a step() routine that the particular sub-class of Solver
has implemented. This basic algorithm can be seen in figure 2.

We expect the PyClaw code to be more easily maintainable and
extensible than Clawpack, for reasons based on the difference be-
tween the Fortran 77 and Python languages [logg2010]. Fortran 77
codes generally require very long lists of arguments to subroutines,
because of the lack of dynamic memory allocation and structured
data types. This often leads to bugs when a subroutine interface
is changed, because it is challenging to ensure that the function
call is modified correctly throughout the program. In contrast,
Python allows the use of extremely simple argument lists, since
it has dynamic memory allocation, is object-oriented, and allows
for default argument values to be pre-specified. This difference has
already allowed the simple integration of different algorithms into
a single framework (PyClaw). The Fortran versions of these pro-
grams share only a small fraction of code and require significantly
different setup by the user, but in PyClaw switching between them
is trivial.

The solvers currently available are the 2nd-order algorithms
of Clawpack and the high order algorithms found in SharpClaw
[sharpclaw]. Clawpack is based on a Lax-Wendroff approach plus
TVD limiters, while SharpClaw is based on a method of lines
approach using weighted essentially non-oscillatory (WENO) re-
construction and high order Runge-Kutta methods. The abstract

Other Solver

Solution at 

Solver

Solution at 

Riemann 
Solver

Boundary 
Conditions

Source 
Terms

Fig. 2: PyClaw architecture flow with solver structures.

Solver class has been carefully designed to allow these solvers to
be swapped trivially, i.e. by using either:

solver = pyclaw.ClawSolver2D()

for Clawpack, or:

solver = pyclaw.SharpClawSolver2D()

for SharpClaw. This allows the user to easily compare the perfor-
mance of different methods.

Another very useful abstraction managed by PyClaw is that
of the implementation language. The 1D PyClaw solvers contain
a complete implementation of both the Clawpack and SharpClaw
algorithms, written entirely in Python. This is useful for rapidly
prototyping, debugging, and testing modifications or new options,
since new algorithms for hyperbolic PDEs are typically developed
in a 1D setting. Since this code is written using numpy and
vectorization, it is tolerably fast, but still significantly slower
than compiled C or Fortran (vectorized numpy code is similar
in speed to vectorized MATLAB code). For production runs, the
user can easily switch to the more efficient wrapped Fortran codes.
This is handled simply by setting the kernel_language attribute
of the Solver object to "Python" or "Fortran" (the latter being
the default). Even more efficient CUDA implementations of these
kernels are in preparation. The benefit of this design is that the
user does not need to know multiple programming languages in
order to take advantage of different implementations.

PetClaw

Nilsen et. al. have suggested Python as a good high-level language
for use in parallelization of scientific codes because it allows
for extensive reuse of serial code and little effort (related to
parallelism) from the end user [nilsen2010].

PetClaw is designed to use PETSc to add parallel functionality
to PyClaw with both of these objectives in mind. This means
that the (serial) PyClaw code should not need modification to
accommodate PetClaw extensions and that within PetClaw all
parallel operations should be handled by PETSc data structures
in a way that is transparent to the user. Python makes both of
these goals achievable within an elegant framework.

By implementing all necessary parallel code in Python, Nilsen
demonstrated approximately 90% parallel efficiency for various
applications on up to 50 processors. Because we need to go three
orders of magnitude further in parallel scaling, PetClaw design
goes beyond the approach suggested in [nilsen2010] and related
works, by handing off all parallel operations to a widely used,
robust library (PETSc) written in a compiled language. Because
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Fig. 3: Modular structure of the PetClaw code, with a focus on the
orthogonality of the Fortran kernels from the parallel decomposition
through PETSc.

Fig. 4: Class inheritance diagram for PetClaw solvers.

PETSc is very actively developed and maintained for use in many
scientific codes and on many hardware platforms, this also means
that PetClaw developers don’t have to worry about portability or
maintenance of the parallel routines and can instead focus on the
numerical algorithms that are particular to PetClaw.

An even more significant advantage gained by interfacing with
PETSc that may be leveraged in the future is access to a variety of
efficient parallel solvers.

Python language features and multiple inheritance have been
used to make running parallel simulations with PetClaw very
simple. The only difference between a serial PyClaw script and
a PetClaw script that runs on tens of thousands of cores is
exchanging:

import pyclaw

for:

import petclaw as pyclaw

Arrays for the solution and for coefficients that vary in space
are represented by numpy arrays in PyClaw but by a custom
distributed Vec class in PETSc. Using the property Python lan-
guage feature, this difference is completely transparent to the user.
Parallel solver classes are implemented via multiple inheritance;
in most cases, a parallel solver is created merely by subclassing
the corresponding serial solver as well as a base parallel solver
class PetSolver; no further attributes or methods need to be
implemented. As a result, the entire PetClaw extension consists
of less than 300 lines of code.

Figre 4 shows how serial and parallel functionality, as well as
algorithmic and dimensional differences, are implemented in an
orthogonal way using class inheritance.

Software Engineering

One of the potential indirect benefits of developing a code in
Python is exposure to the generally high level of software engi-
neering practices maintained by the Python community. Primarily
as a result of this exposure, PyClaw includes a suite of regression
tests that currently cover 57% of the code and are being expanded.
The Python package nose is used to easily run the tests or any
desired subset of them. Code development is coordinated using
the distributed version control software Git and the code hosting
website Github. The project has an active issue tracker where
bugs are reported and new features are suggested, as well as
an online forum (petclaw-dev@googlegroups.com) where more
detailed discussions take place. Finally, online documentation
including both reference material and tutorials is maintained using
the Python package Sphinx, which allows, among other things,
for mathematical expressions to be included in inline code docu-
mentation and automatically rendered using LaTeX when viewed
online. While many of these practices and features would be taken
for granted in industrial codes, they are not standard in academic
scientific codes [wilson2006].

2D Performance Results

For PetClaw performance assessment with 2D problems, we have
conducted on-core serial experiments to compare the performance
of PetClaw code with the corresponding pure Fortran code, Claw-
pack. We have also performed weak scaling experiments to study
the scalability of PetClaw on up to four racks of the Shaheen
system. Corresponding results for PetClaw simulations in 1D may
be found in [petclaw11].

On-Core Performance

We consider two systems of equations in our serial performance
tests. The first is the system of 2D linear acoustics and the
second is the 2D shallow water (SW) equations. The acoustics
test involves a very simple Riemann solver and is intended to
highlight any performance difficulties arising from the Python
code overhead. The shallow water test involves a more typical,
costly Riemann solver (specifically, a Roe solver with entropy
fix) and should be considered as more representative of realistic
nonlinear application problems.

Table 1 shows an on-core serial comparison between the
Fortran-only Clawpack code and the corresponding hybrid Pet-
Claw implementation for two systems of equations in two different
platforms. Both codes rely on similar Fortran kernels that differ
only in the array layout. The tests on the first platform were
compiled for the x86_64 instruction set using gfortran 4.5.1
(4.5.1 20100506 (prerelease)). Each result was timed on a single
core of a Quad-Core Intel Xeon 2.66GhZ Mac Pro workstation
equipped with 8x2 GB 1066MHz DDR3 RAM. The same tests
were conducted on Shaheen, on a single core of a Quad-Core
PowerPC 450 processor with 4GB of available RAM. IBM XLF
11.1 Fortran compiler was used to produce a PowerPC 450d
binray code in the latter platform. On both platforms, the compiler
optimization flag -O3 was set. Because most of the computational
cost is in executing the low-level Fortran kernels, the difference
in performance is relatively minor with the difference owing
primarily to the Python overhead in PetClaw. Interestingly, while
the relative acoustics performance between the two codes was
similar for both versions of gfortran, a significant difference was
observed in the relative performance of the codes on the shallow
water example, depending on the compiler version.
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Processor Clawpack PetClaw Ratio
Acoustics Intel Xeon 28s 41s 1.5
Shallow Water Intel Xeon 79s 99s 1.3
Acoustics PowerPC

450
192s 316s 1.6

Shallow Water PowerPC
450

714s 800s 1.1

TABLE 1: Timing results in seconds for on-core serial experiment
of an acoustics and shallow water problems implemented in both
Clawpack and PetClaw for Intel Xeon and PowerPC 450 machines.

Parallel Performance

In our parallel performance tests, we consider the same acoustics
2D linear system used in the serial runs to represent an application
where the communication over computation ratio can be relatively
high due to the simplicity of its Riemann solver. We also tested 2D
Euler equations of compressible fluid dynamics as a more realistic
nonlinear application problem that has a relatively expensive
Riemann solver.

Table 2 shows the execution time for both experiments as
the number of cores increases from one core up to 16 thousand
cores (four racks of BlueGene/P), with the ratio of work per core
fixed. The acoustics problem used involves 178 time steps on a
square grid with 160,000 (400x400) grid cells per core. The Euler
problem used involves 67 time steps on a grid also with 160,000
grid cells per core. The first column for each test indicates the
simulation time excluding the load time required to import Python
modules. The second column indicates the total simulation time,
including Python module imports.

Excellent scaling is observed for both tests, apart from the
dynamic loading. Profiling of the acoustics example shows that
the small loss of efficiency is primarily due to the communication
of the CFL number, which requires a max global reduce operation
that is done each time step, and also partly due to the communi-
cation of ghost cell values between adjacent domains at each time
step.

In contrast, the total job time reveals the very poor scaling of
the dynamic loading time. For the largest jobs considered, this load
time is roughly one hour, which is significant though generally
not excessive relative to typical simulation times, since the CFL
condition means that large simulations of hyperbolic problems
necessarily require long run times in order for waves to propagate
across the full domain. Nevertheless, this inefficiency remains as a
disadvantage for high performance Python codes. Although much
longer simulations can to some extent justify the start up time
required for dynamic loading of Python, this loading time severely
impacts parallel scaling, motivating the development of Walla to
address this challenge.

Addressing the Catastrophic Loading Problem with Walla

Catastrophic scaling has been observed in applications written in
all languages when they perform dynamic linking and loading
on large distributed systems. Python applications are particularly
prone to poor scaling due to systems issues as they tend to strongly
exercise dynamic linking and loading. At the same time, Python
applications provide excellent models for examining possible solu-
tions to catastrophic dynamic link and load times [pynamic2007].

Python applications are particularly prone to poor scaling due
to system overheads. They generally exercise the sort of dynamic

Acoustics Euler
Cores No. Evolve Solution Total Evolve Solution Total
1 76.7 154 98.9 124
4 69 152 101.1 123
16 71.7 164 103.2 142
64 73.7 217 103.0 184
256 74 407 103.4 465
1024 75 480 103.9 473
4096 76.6 898 104.9 953
16384 79.6 3707 112.9 3616

TABLE 2: Timing results in seconds from scaling comparisons of the
acoustics and Euler test problems for the time required for evolving
the solution and the communication between processes. The total time
includes the overhead due to the dynamic loading in Python and
reveals the catastrophic dynamic loading problem.
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Fig. 5: Parallel efficiency results of a 2D acoustics problem and a 2D
Euler problem for evolving the solution to the final time. These times
does not include the dynamic load time of Python.
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linking and loading that creates contention for file data and
metadata. In general, the farther you scale, the worse the impact on
application load times becomes. This problem is well understood
and benchmarks, such as in Lawrence Livermore National Labora-
tory’s Pynamic, which help to describe and understand the extent
to which an application may be impacted on a particular system
[pynamic2007]. Conversely, Python applications can highlight the
deficits and make it an apt platform to explore solutions.

The CPython interpreter’s process for importing modules is
very I/O and metadata intensive. If dynamically linked, the over-
head of loading a module is further increased as Python must
work through the operating system software stack before the inter-
preter may continue. This process is generally ignored by Python
developers as single system file I/O performance is reasonable
compared to the costs of computation. In large distributed systems
used for scientific computation, the problem is turned on its head
with file I/O, unless parallel file I/O is available, presenting a
fairly substantial bottleneck. Even where parallel I/O is available,
the emphasis has been on the reading and writing of application
data in a way that optimizes for file system bandwidth, generally
favoring large reads and writes.

Walla’s Approach

The Walla project attempts to take advantage of the high speed
interconnects normally used for interprocess communication to
speed dynamic loading without alteration of user codes. The
project originated on IBM’s Blue Gene/P platform where load
times at 8,192 nodes exceeded 45 minutes for a large Python code
called GPAW. Initial efforts were focused on using the low-level
interface to the Blue Gene/P’s high performance networks with the
goal of being able to use Walla to speed all aspects of loading by
coming in before the loading of MPI libraries. Due to community
interest and feedback, the original codebase was abandoned in
favor of using MPI for all communications ensuring portability
between systems and eliminating any licensing restrictions created
by use of vendor code.

In the Walla design, the CPython importer and the glibc libdl
are replaced with versions that have been modified such that only
a single rank performs metadata intensive tasks and file system
I/O. Modifications are generally kept to a minimum with fopen
and stat being replaced with versions that rely on MPI rank 0 to
perform the actual fopen and stat calls, then broadcast the result
to all other nodes. While wasteful of memory, the glibc fmemopen
function is used to produce a file handle returned by the fopen
replacement. At no time do nodes other than MPI rank 0 access
Python modules or libraries via the filesystem, eliminating much
of the overhead and contention that is caused by large number of
ranks attempting to perform loads simultaneously.

There are a handful of caveats to using Walla. First, users must
be in a situation where I/O is more expensive than broad- cast
operations. While initial numbers show no significant performance
hit from using Walla at small node counts, this is not guaranteed.
Second, MPI_Init must already be called at the time Walla is first
invoked. As Walla relies on MPI, it cannot be used to load MPI
itself. The file handle generated by fmemopen does not contain
and cannot be used to generate a file descriptor as the file handle
is created in user space and file descriptors require the allocation
of resources by the kernel. While the the handle is sufficient for
use with most codes, this does create compatibility issues when
an application contains calls expecting a file descriptor. Finally,
some thought has to be given to the bandwidth available through

I/O networks versus the MPI broadcast otherwise it becomes easy
to replace one slow loading interface with another.

Despite the need for substantial reengineering of the CPython
importer internals, almost all changes should eventually be trans-
parent to end users and require no changes to user Python codes.
The runtime environment requires changes to the site.py to ensure
the loading of MPI and replace the native importer with the
Walla importer. For compatibility reasons, libdl is not completely
replaced; users should link libwalla before the glibc libdl to ensure
that the symbols for dlopen, dlsym, and dlclose resolve back to
libwalla rather than libdl.

Blue Gene/P Implementation

The Blue Gene/P platform presents additional difficulties due to
I/O shipping since Blue Gene/P nodes have no local storage. At
boot, operating system images get broadcasted directly into a
node’s memory with I/O nodes receiving a lightweight version of
Linux that mounts remote file systems over a 10 Gigabit Ethernet
link to a site’s storage infrastructure. All Blue Gene/P nodes have
three bidirectional 850MBps connections to a collective network
designed for one-to-all high-bandwidth communications. When a
compute node performs an I/O function, the operation is shipped
to the I/O node via a collective network link, then processed on
the I/O node, and the result returned to the compute node.

While metadata operations are easily reduced and eliminated
with Walla on the Blue Gene, developers need to watch for calls
that would remain local under Linux, but will be shipped on
the Blue Gene such as read, seek, and close operations despite
being pointed at a local memory buffer. This leads to the need to
eliminate or replace read and write calls in code loading libraries
and importing modules with code that directly maps or executes
the contents of the broadcasted buffers. Eliminating any trace
of function shipping has been a major focus of reworking the
CPython importer on the Blue Gene/P platform.

Conclusions and Future Directions

We have described and demonstrated an example of using Python
as the means to bind and extend the well-established hyperbolic
PDE code Clawpack. The serial and parallel performance of the
resulting codes are remarkable given the relatively small amount
of coding (300 lines) required to turn a serial Fortran code into
a scalable parallel one. This is much preferable to the alternative,
more traditional approach of ex- tending legacy codes directly
for high-performance computing applications using hand-coded
APIs, which would be more time-consuming and more difficult to
maintain.

One of the drawbacks to the approach proposed is the con-
tention that can be caused by dynamic loading stresses on many
high-performance systems. The approach introduced by Walla is a
promising answer to this problem and preliminary results suggest
that it may be a solution for Python codes suffering from poor
scalability on distributed systems.
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Michael M. McKerns‡∗, Leif Strand‡, Tim Sullivan‡, Alta Fang‡, Michael A.G. Aivazis‡

F

Abstract—Key questions that scientists and engineers typically want to address
can be formulated in terms of predictive science. Questions such as: "How
well does my computational model represent reality?", "What are the most
important parameters in the problem?", and "What is the best next experiment
to perform?" are fundamental in solving scientific problems. mystic is a
framework for massively-parallel optimization and rigorous sensitivity analysis
that enables these motivating questions to be addressed quantitatively as
global optimization problems. Often realistic physics, engineering, and materials
models may have hundreds of input parameters, hundreds of constraints, and
may require execution times of seconds or longer. In more extreme cases,
realistic models may be multi-scale, and require the use of high-performance
computing clusters for their evaluation. Predictive calculations, formulated as
a global optimization over a potential surface in design parameter space, may
require an already prohibitively large simulation to be performed hundreds, if
not thousands, of times. The need to prepare, schedule, and monitor thousands
of model evaluations, and dynamically explore and analyze results, is a chal-
lenging problem that requires a software infrastructure capable of distributing
and managing computations on large-scale heterogeneous resources. In this
paper, we present the design behind an optimization framework, and also
a framework for heterogeneous computing, that when utilized together, can
make computationally intractable sensitivity and optimization problems much
more tractable. The optimization framework provides global search algorithms
that have been extended to parallel, where evaluations of the model can be
distributed to appropriate large-scale resources, while the optimizer centrally
manages their interactions and navigates the objective function. New methods
have been developed for imposing and solving constraints that aid in reducing
the size and complexity of the optimization problem. Additionally, new algorithms
have been developed that launch multiple optimizers in parallel, thus allowing
highly efficient local search algorithms to provide fast global optimization. In this
way, parallelism in optimization also can allow us to not only find global minima,
but to simultaneously find all local minima and transition points -- thus providing
a much more efficient means of mapping out a potential energy surface.

Index Terms—predictive science, optimization, uncertainty quantification, verifi-
cation, validation, sensitivity analysis, parallel computing, distributed computing,
heterogeneous computing

Introduction

Recently, a unified mathematical framework for the rigorous con-
struction and solution of uncertainty quantification (UQ) problems
was formulated [OSS11]. This framework, called Optimal Un-
certainty Quantification (OUQ), is based on the observation that,
given a set of assumptions and information about the problem,
there exist optimal bounds on the uncertainties. These bounds are
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obtained as extreme values of well-defined optimization problems
that correspond to extremizing probabilities of failure subject
to the constraints imposed by scenarios compatible with the
information set.

An accompanying software framework that implements these
rigorous UQ/OUQ methods is now posed.

A rigorous quantification of uncertainty can easily require
several thousands of model evaluations f (x). For all but the
smallest of models, this requires significant clock time -- a model
requiring 1 minute of clock time evaluated 10,000 times in a
global optimization will take 10,000 minutes (∼ 7 days) with a
standard optimizer. Furthermore, realistic models are often high-
dimensional, highly-constrained, and may require several hours to
days even when run on a parallel computer cluster. For studies
of this size or larger to be feasible, a fundamental shift in how
we build optimization algorithms is required. The need to provide
support for parallel and distributed computing at the lowest level
-- within the optimization algorithm -- is clear. Standard optimiza-
tion algorithms must be extended to parallel. The need for new
massively-parallel optimization algorithms is also clear. If these
parallel optimizers are not also seamlessly extensible to distributed
and heterogeneous computing, then the scope of problems that can
be addressed will be severely limited.

While several robust optimization packages exist [JOP01],
[KROOO], there are very few that provide massively-parallel
optimization [BMM10], [EKL02], [MAT09] -- the most notable
effort being DAKOTA [DAKOT], which also includes methods for
uncertainty quantification [DAKUQ]. A rethinking of optimization
algorithms, from the ground up, is required to dramatically lower
the barrier to massively-parallel optimization and rigorous uncer-
tainty quantification. The construction and tight integration of a
framework for heterogeneous parallel computing is required to
support such optimizations on realistic models. The goal should
be to enable widespread availablility of these tools to scientists
and engineers in all fields.

Several of the component pieces of such a framework for
predictive science already exist, while a few key pieces must
be constructed -- furthermore, these packages must then be as-
sembled and integrated. Python [GVRPY] is a natural integration
environment, and is one that readily supports the dynamic nature
of working across heterogeneous resources. By requiring this
framework be pure-Python, many of the barriers to running on
a new platform are removed. multiprocessing [MPROC],
mpi4py [MPI4P], and pp [VVPPP] are selected for commu-
nication mechanisms, both due to their high level of feature
coverage and their relative ease of installation. NumPy [NUMPY]
is used for algorithmic efficiency, and SymPy [SYM11] is used
to provide an alternate interface for building constraints. Many of
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the optimization algorithms leverage SciPy [JOP01]; however like
the use of Matplotlib [MATPL] for plotting, SciPy is an optional
dependency.

This paper will discuss the modifications to the mystic
[MHA09] optimization framework required to provide a simple in-
terface to massively parallel optimization, and also to the pathos
[MBA10] framework for staging and launching optimizations on
heterogeneous resources. These efforts leverage pyre [MAGA1]
-- an component integration framework for parallel computing,
which has recently been extended to distributed communication
and management with hydra (part of this development effort).
This paper will also overview a new mathematical framework
[OSS11], [ALL11], [KLL11], [LOO08] for the quantification of
uncertainties, which provides a formulation of UQ problems as
global optimization problems.

Rigorous Uncertainty Quantification

Following [LOO08], we specifically take a certification point of
view of uncertainty quantification. For definiteness, we consider
systems whose operation can be described in terms of N scalar
performance measures (Y1, . . . ,YN) =Y ∈RN . The response of the
system is taken as stochastic due to the intristic randomness of
the system, or randomness in the input parameters defining the
operation of the system, or both. Suppose that the outcome Y ∈ A
constitutes a satisfactory outcome for the system of interest, for
some prescribed measureable admissible set A ⊆ RN . Hence, we
are interested in determining the probability of failure (PoF) P[Y ∈
Ac].

Evidently, for an upper bound to be useful, it must also be tight
(i.e. it must be close to the actual PoF of the system) and accessible
by some combination of laboratory and computational means. In
[ALL11], [KLL11], a methodology for a rigorous determination
of tight upper bounds on the probability of failure for complex
systems is presented, and is summarized below.

We consider a response function Y = F(X) that maps con-
trollable system inputs X to performance measures Y , and relies
on a probability of failure (PoF) upper bounds of the concen-
tration of measure (CoM) type [BBL04], [LED01], [MCD89]. If
McDiarmid’s inequality [MCD89] (i.e. the bounded differences
inequality) is used to bound PoF, the system may then be certified
on the sole knowledge of ranges of its input parameters -- without
a priori knowledge of their probability distributions, its mean
performance E[Y ] = M and a certain measure DG = U of the
spread of the response, known as system diameter, which provides
a rigorous quantitative measure of the uncertainty in the response
of the system.

A model is regarded as Y = F(X) that approximates the
response Y = G(X) of the system. An upper bound on the system
diameter -- and thus on the uncertainty in the response of the sys-
tem -- then follows from the triangle inequality DG ≤DF +DG−F ,
and U = DF +DG−F can be taken as a new -- and conservative
-- measure of system uncertainty. In this approach, the total
uncertainty of the system is the sum of the predicted uncertainty
(i.e. the variability in performance predicted by the model as
quantified by the model diameter DF ), and the modeling-error
uncertainty (i.e. the discrepancy between model prediction and
experiment as quantified by the modeling-error diameter DG−F .

In [LOO08], PoF upper bounds of the CoM type were for-
mulated by recourse to McDiarmid’s inequality. In its simplest
version, this inequality pertains to a system characterized by N real

random inputs X = (X1, . . . ,XN) ∈ E ⊆ RN and a single real per-
formance measure Y ∈ R. Suppose that the function G : RN → R
describes the response function of the system. Suppose that the
system fails when Y ≤ a, where a is a threshold for the safe
operation of the system. Then, a direct application of McDiarmid’s
inequality gives the following upper bound on the PoF of the
system:

P[G≤ a]≤ exp
(
−2

M2

U2

)
(1)

where
M = (E[G]−a)+ (2)

is the design margin and

U = DG (3)

is the system uncertainty. In (3), DG is the diameter of the response
function. From (1) it follows that the system is certified if

exp
(
−2

M2

U2

)
≤ ε

where ε is the PoF tolerance, or, equivalently, if

CF =
M
U
≥

√

log

√
1
ε

(4)

where CF is the confidence factor. In writing (2) and subsequently,
we use the function x+ := max(0,x). We see from the preceding
expressions that McDiarmid’s inequality supplies rigorous quan-
titative definitions of design margin and system uncertainty. In
particular, the latter is measured by system diameter DG, which
measures the largest deviation in performance resulting from
arbitrarily large perturbations of one input parameter at a time.
Within this simple framework, rigorous certification is achieved
by the determination of two--and only two--quantities: the mean
performance E[G] and the system diameter DG.

McDiarmid’s inequality is a result in probability theory that
provides an upper bound on the probability that the value of
a function depending on multiple independent random variables
deviates from its expected value. A central device in McDiarmid’s
inequality is the diameter of a function. We begin by recalling that
the oscillation osc( f ,E) of a real function f : E → R over a set
E ∈ R is

osc( f ,E) = sup{| f (y)− f (x)| : x,y ∈ E} (5)

Thus, osc( f ,E) measures the spread of values of f that may be
obtained by allowing the independent variables to range over its
entire domain of definition. For functions f : E ⊂ RN → R of
several real values, component-wise suboscillations can be defined
as

osci( f ,E) = sup{| f (y)− f (x)| : x,y ∈ E, x j = y j for j 6= i} (6)

Thus osci( f ,E) measures the maximum oscillation among all one-
dimensional fibers in the direction of the ith coordinate. The
diameter D( f ,E) of the function f : E → R is obtained as the
root-mean square of its component-wise suboscillations:

D( f ,E) =

(
n

∑
i=1

osc2
i ( f ,E)

)1/2

(7)

and it provides a measure of the spread of the range of the function.
Thus (6) also us to regard osci( f ,E) as a subdiameter of the
system corresponding to variable Xi, where the subdiameter can be
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regarded as a measure of uncertainty contributed by the variable
Xi to the total uncertainty of the system.

The attractiveness of the McDiarmid CoM approach to UQ
relies on the requirement of tractable information on response
functions (sub-diameters) and measures (independence and mean
response). Above, it is described how to "plug" this information
into McDiarmid’s concentration inequality to obtain an upper
bound on probabilies of deviation. One may wonder if it is possible
to obtain an "optimal" concentration inequality, especially when
the available information may not necessarily be sub-diameters
and mean values. A general mathematical framework for optimally
quantifying uncertainties based only on available information has
been proposed [OSS11], and will be summarized here. Assume,
for instance, that one wants to certify that

P[G≥ a]≤ ε (8)

based on the information that osci(G,E) ≤ Di, X = (X1, . . . ,XN),
E[G] ≤ 0 and that the inputs Xi are independent under P. In this
situation, the optimal upper bound U (AMD) on the PoF P[G≥ a]
is the solution of the following optimization problem

U (AMD) = sup
( f ,µ)∈AMD

µ[ f (X)≥ a] (9)

subject to constraints provied by the information set

AMD =




( f ,µ)

∣∣∣∣∣∣∣∣

f : E1×·· ·×EN → R,
µ ∈M (E1)⊗·· ·⊗M (EN),

Eµ [ f ]≤ 0,
osci( f ,E)≤ Di





(10)

where M (Ek) denotes the set of measures of probability on Ek.
Hence, McDiarmid’s inequality is the statement that

U (AMD)≤ exp
(
−2

a2

∑N
i=1 D2

i

)
(11)

Similarly, for any other set of information A , we have an optimal
(i.e.) least upper bound on the probability of deviation

U (A ) = sup
( f ,µ)∈A

µ[ f (X)≥ a] (12)

The idea is that in practical applications, the available information
does not determine (G,P) uniquely, but does determine a set
A such that (G,P) ∈ A and such that any ( f ,µ) ∈ A could
a priori be (G,P). This mathematical framework, called optimal
uncertainty quantification (OUQ), is based on the observation that,
given a set of assumptions and information about the problem,
there exist optimal bounds on uncertainties; these are obtained
as extreme values of well-defined optimization problems corre-
sponding to extremizing probabilities of failure, or of deviations,
over the feasible set A . Observe that this framework does not
implicitly impose inappropriate assumptions, nor does it repudiate
relevant information. Indeed, as demonstrated in (10 and 11) for
the CoM approach, OUQ can pose a problem that incorporates
the assumptions utilized in other common UQ methods (such
as Bayesian inference [LJH99]) and provide a rigorous optimal
bound on the uncertainties.

Although some OUQ problems can be solved analytically,
most must be solved numerically. To that end, the reduction
theorems of [OSS11] reduce the infinite-dimensional feasible set
A to a finite-dimensional subset A∆ that has the key property that
the objective function (PoF) has the same lower and upper extreme
values over A∆ as over A .

Fig. 1: Conceptual diagram for an optimizer. The cost function
provides a difference metric that accepts input parameters x and
produces a cost E.

For example, the reduction for AMD in (10) is to pass to
measures µ = µ1⊗ ·· ·⊗ µN such that each marginal measure µi
is supported on at most two points of the parameter space Ei, i.e.
µi is a convex combination of two Dirac measures (point masses).
Having reduced the set of feasible measures µ , the set of feasible
response functions f is also reduced, since we only care about the
values of f on the finite support of µ and nowhere else.

We refer the reader to [OSS11] for the more general reduction
theorems. The essential point is that if the information/constraints
take the form of ni inequalities of the form Eµi [φ j]≤ 0 (for some
test functions φ j) and n′ inequalities of the form Eµ [φ j]≤ 0, then
it is enough to consider µi with support on 1+ni +n′ points of Ei.

The reduction theorems leave us with a finite-dimensional
optimization problem in which the optimization variables are
suitable parametrizations of the reduced feasible scenarios ( f ,µ).

A Highly-Configurable Optimization Framework

We have built a robust optimization framework (mystic)
[MHA09] that incorporates the mathematical framework described
in [OSS11], and have provided an interface to prediction, cer-
tification, and validation as a framework service. The mystic
framework provides a collection of optimization algorithms and
tools that lowers the barrier to solving complex optimization prob-
lems. mystic provides a selection of optimizers, both global and
local, including several gradient solvers. A unique and powerful
feature of the framework is the ability to apply and configure
solver-independent termination conditions --- a capability that
greatly increases the flexibility for numerically solving problems
with non-standard convergence profiles. All of mystic’s solvers
conform to a solver API, thus also have common method calls
to configure and launch an optimization job. This allows any of
mystic’s solvers to be easily swapped without the user having
to write any new code.

The minimal solver interface:
# the function to be minimized and the initial values
from mystic.models import rosen as my_model
x0 = [0.8, 1.2, 0.7]

# configure the solver and obtain the solution
from mystic.solvers import fmin
solution = fmin(my_model, x0)

The criteria for when and how an optimization terminates are of
paramount importance in traversing a function’s potential well.
Standard optimization packages provide a single convergence
condition for each optimizer. mystic provides a set of fully
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customizable termination conditions, allowing the user to discover
how to better navigate the optimizer through difficult terrain.
Optimizers can be further configured through several methods for
choosing the InitialPoints.

The expanded solver interface:

# the function to be minimized and initial values
from mystic.models import rosen as my_model
x0 = [0.8, 1.2, 0.7]

# get monitor and termination condition objects
from mystic.monitors import Monitor, VerboseMonitor
stepmon = VerboseMonitor(5)
evalmon = Monitor()
from mystic.termination import ChangeOverGeneration
COG = ChangeOverGeneration()

# instantiate and configure the solver
from mystic.solvers import NelderMeadSimplexSolver
solver = NelderMeadSimplexSolver(len(x0))
solver.SetInitialPoints(x0)
solver.SetGenerationMonitor(stepmon)
solver.SetEvaluationMonitor(evalmon)
solver.Solve(my_model, COG)

# obtain the solution
solution = solver.bestSolution

# obtain diagnostic information
function_evals = solver.evaluations
iterations = solver.generations
cost = solver.bestEnergy

# modify the solver configuration, and continue
COG = ChangeOverGeneration(tolerance=1e-8)
solver.Solve(my_model, COG)

# obtain the new solution
solution = solver.bestSolution

mystic provides progress monitors that can be attached to an
optimizer to track progress of the fitted parameters and the value
of the cost function. Additionally, monitors can be customized
to track the function gradient or other progress metrics. Moni-
tors can also be configured to record either function evaluations
or optimization iterations (i.e. generations). For example, us-
ing VerboseMonitor(5) in the SetGenerationMonitor
method will print the bestEnergy to stdout every five gen-
erations.

Constraints Toolkit

mystic provides a method to constrain optimization to be within
an N-dimensional box on input space, and also a method to
impose user-defined parameter constraint functions on any cost
function. Thus, both bounds constraints and parameter constraints
can be generically applied to any of mystic’s unconstrained
optimization algorithms. Traditionally, constrained optimization
problems tend to be solved iteratively, where a penalty is applied
to candidate solutions that violate the constraints. Decoupling the
solving of constraints from the optimization problem can greatly
increase the efficiency in solving highly-constrained nonlinear
problems -- effectively, the optimization algorithm only selects
points that satisfy the constraints. Constraints can be solved
numerically or algebraically, where the solving of constraints can
itself be cast as an optimization problem. Constraints can also be
dynamically applied, thus altering an optimization in progress.

Penalty-based methods indirectly modify the candidate so-
lution by applying a change in energy ∆E = k · p(~x) to the

Fig. 2: Optimization analysis viewers available in mystic.

Fig. 3: Basic components provided in the optimizer toolkit. Several
wrapper classes are also provided for binding components, while
factory classes are provided for generating components.

unconstrained cost function f (~x) when the constraints are violated.
The modified cost function φ is thus written as:

φ(~x) = f (~x)+ k · p(~x) (13)

Set-based methods directly modify the candidate solution by
applying a constraints solver c that ensures the optimizer will
always select from a set of candidates that satisfy the constraints.
The constraints solver has an interface ~x ′ = c(~x), and the cost
function becomes:

φ(~x) = f (c(~x)) (14)

Adding parameter constraints to a solver is as simple as building a
constraints function, and using the SetConstraints method.
Additionally, simple bounds constraints can also be applied
through the SetStrictRanges method:
# a user-provided constraints function
def constrain(x):
x[1] = x[0]
return x

# the function to be minimized and the bounds
from mystic.models import rosen as my_model
lb = [0.0, 0.0, 0.0]
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ub = [2.0, 2.0, 2.0]

# get termination condition object
from mystic.termination import ChangeOverGeneration
COG = ChangeOverGeneration()

# instantiate and configure the solver
from mystic.solvers import NelderMeadSimplexSolver
solver = NelderMeadSimplexSolver(len(x0))
solver.SetRandomInitialPoints(lb, ub)
solver.SetStrictRanges(lb, ub)
solver.SetConstraints(constrain)
solver.Solve(my_model, COG)

# obtain the solution
solution = solver.bestSolution

mystic provides a simple interface to a lot of underlying
complexity -- thus allowing a non-specialist user to easily access
optimizer configurability and high-performance computing with-
out a steep learning curve. This feature must also be applied to the
application of constraints on a function or measure. The natural
syntax for a constraint is one of symbolic math, hence mystic
leverages SymPy [SYM11] to construct a symbolic math parser
for the translation of the user’s input into functioning constraint
code objects:
# a user-provided constraints function
constraints = """
x2 = x1
"""
from mystic.constraints import parse
constrain = parse(constraints)

The constraints parser is a constraints factory method that can
parse multiple and nonlinear constraints, hard or soft (i.e. "∼")
constraints, and equality or inequality (i.e. ">") constraints.

Similar tools exist for creating penalty functions, including
a SetPenalty method for solvers. Available penalty methods
include the exterior penalty function method [VEN09], the aug-
mented Lagrange multiplier method [KSK94], and the logarithmic
barrier method [JJB03]. At the low-level, penalty functions are
bound to the cost function using mystic’s functionWrapper
method.

It is worth noting that the use of a constraints solver c does
not require the constraints be bound to the cost function. The
evaluation of the constraints are decoupled from the evaluation of
the cost function -- hence, with mystic, highly-constrained opti-
mization decomposes to the solving of K independent constraints,
followed by an unconstrained optimization over only the set of
valid points. This method has been shown effective for solving
optimization problems where K ≈ 200 [OSS11].

Seamless Migration to Parallel Computing

mystic is built from the ground up to utilize parallel and dis-
tributed computing. The decomposition of optimization algorithms
into their component parts allow this decomposition to not only
be in an abstraction layer, but across process-space. mystic
provides a modelFactory method that convers a user’s model
to a service. We define a service to be an entity that is callable by
globally unique identifier. Services can also be called by proxy. In
mystic, services also include infrastructure for monitoring and
handling events. An optimization is then composed as a network
of interacting services, with the most common being the user’s
model or cost function being mapped over parallel resources.

mystic provides several stock models and model factories
that are useful for testing:

Fig. 4: Conceptual diagram for a service-based model. Here, the job
is the fundamental commodity of work, and is the object on which
the service is based -- in mystic, this is typically the user’s model
or a cost function. Services have a global unique identifier, and thus
can easily be called by proxy. Note that services may not be located
on the machine that requested the service be spawned. Services also
can be imbued with infrastructure for monitoring and handling events.
Monitors write to a stream that can be piped into another object, such
as a logger or one of mystic’s viewers.

Fig. 5: Use of a modelFactory to cast a user’s model F(x) as a
service. The model and experimental data G are then bound with a
costFactory to produce a cost function. A costFactory can
accept a raw user’s model, a model proxy, or a model service (as
shown here). A typical metric is |F(x)−G|2.

# generate a model from a stock 'model factory'
from mystic.models.lorentzian import Lorentzian
lorentz = Lorentzian(coeffs)

# evaluate the model
y = lorentz(x)

Model factory methods insert pathos infrastructure, thus casting
a model as a callable service that has been imbued with pathos
infrastructure as shown in Figure (4). The default launcher
and map included in mystic are functionally equivalent to
execution and map within the standard Python distribution. Any
user-provided function can be cast as a service through the use of
a modelFactory:

# a user-provided model function
def identify(x)
return x

# add pathos infrastructure (included in mystic)
from mystic.tools import modelFactory, Monitor
evalmon = Monitor()
my_model = modelFactory(identify, monitor=evalmon)

# evaluate the model
y = my_model(x)

# evaluate the model with a map function
from mystic.tools import PythonMap
my_map = PythonMap()
z = my_map(my_model, range(10))



BUILDING A FRAMEWORK FOR PREDICTIVE SCIENCE 81

A Framework for Heterogeneous Computing

We have developed a computational job management framework
(pathos) [MBA10] that offers a simple, efficient, and consistent
user experience in a variety of heterogeneous environments from
multi-core workstations to networks of large-scale computer clus-
ters. pathos provides a single environment for developing and
testing algorithms locally -- and enables the user to execute the
algorithms on remote clusters, while providing the user with full
access to their job history. pathos primarily provides the com-
munication mechanisms for configuring and launching parallel
computations across heterogenous resources. pathos provides
stagers and launchers for parallel and distributed computing,
where each launcher contains the syntactic logic to configure
and launch jobs in an execution environment. Some examples of
included launchers are: a queue-less MPI-based launcher, a SSH-
based launcher, and a multiprocessing launcher. pathos
also provides a map-reduce algorithm for each of the available
launchers, thus greatly lowering the barrier for users to extend
their code to parallel and distributed resources. pathos provides
the ability to interact with batch schedulers and queuing systems,
thus allowing large computations to be easily launched on high-
performance computing resources. One of the most powerful
features of pathos is sshTunnel, which enables a user to
automatically wrap any distributed service calls within an SSH
tunnel.

pathos is divided into four subpackages: dill (a utility
for serialization of Python objects), pox (utilities for filesystem
exploration and automated builds), pyina (a MPI-based parallel
mapper and launcher), and pathos (distributed parallel map-
reduce and SSH communication).

pathos utilizes pyre, which provides tools for connecting
components and managing their interactions. The core component
used by pathos is a service -- a callable object with a config-
urable connection mechanism. A service can utilize Launcher
and Monitor objects (which provide abstraction to execution
and logging, respectively), as well as Strategy objects (which
provide abstraction patterns for coupling services). A standard
interface for services enables massively parallel applications that
utilize distributed resources to be constructed from a few simple
building blocks. A Launcher contains the logic required to
initiate execution on the current execution environment. The
selection of launcher will determine if the code is submitted to
a batch queue, run across SSH tunneled RPC connections, or
run with MPI on a multiprocessor. A Strategy provides an
algorithm to distribute the workload among available resources.
Strategies can be static or dynamic. Examples of static strategies
include the equalportion strategy and the carddealer
strategy. Dynamic strategies are based on the concept of a worker
pool, where there are several workload balancing options to
choose from. Strategies and launchers can be coupled together to
provide higher-level batch and parallel-map algorithms. A Map
interface allows batch processing to be decoupled from code
execution details on the selected platforms, thus enabling the same
application to be utilized for sequential, parallel, and distributed
parallel calculations.

Globally Unique Message Passing

We must design for the case where an optimizer’s calculation
spans multiple clusters, with a longevity that may exceed the
uptime of any single cluster or node. hydra enables any Python

object to obtain a network address. After obtaining an address,
an object can asynchronously exchange messages with other
objects on the network. Through the use of proxy objects, sending
messages to remote objects is easy as calling an instance method
on a local object. A call to a proxy transparently pickles the
function name along with the arguments, packages the message
as a datagram, and sends it over the network to the remote
object represented by the proxy. On the recieving end, there is
a mechanism for responding to the sender of the current message.
Since message sending is asynchronous, an object responds to a
message by sending another message.

The modelFactory method essentially provides mystic
with a high-level interface for a pathos server, with an option to
bind a monitor directly to the service. The lower-level construction
of a distributed service, using SSH-based communication, is as
follows:
# a user-provided model function
def identify(x)
return x

# cast the model as a distributed service
from pathos.servers import sshServer
id = 'foo.caltech.edu:50000:spike42'
my_proxy = sshServer(identify, server=id)

# evaluate the model via proxy
y = my_proxy(x)

Parallel map functions are built around available launchers, pro-
viding a high-level interface to launching several copies of a
model in parallel. The creation of a parallel map that will draw
from a pool of two local workers and all available IPC servers at
'foo.caltech.edu' is shown below:
# a user-provided model function
def identify(x)
return x

# select and configure a parallel map
from pathos.maps import ipcPool
my_map = ipcPool(2, servers=['foo.caltech.edu'])

# evaluate the model in parallel
z = my_map(identify, range(10))

Serialization

dill extends Python’s pickle module for serializing and de-
serializing Python objects to the majority of the built-in Python
and NumPy types. Serialization is the process of converting an
object to a byte stream, the inverse of which is converting a byte
stream back to a Python object hierarchy.

dill provides the user the same interface as the pickle
module, and also includes some additional features. In addition to
pickling Python objects, dill provides the ability to save the state
of an interpreter session in a single command. Hence, it would be
feasible to save a interpreter session, close the interpreter, ship the
pickled file to another computer, open a new interpreter, unpickle
the session and thus continue from the "saved" state of the original
interpreter session.

Filesystem Interaction

pox provides a collection of utilities for navigating and manipu-
lating filesystems. This module is designed to facilitate some of
the low level operating system interactions that are useful when
exploring a filesystem on a remote host, where queries such as
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Fig. 6: Conceptual diagram for heterogeneous job management. A
distributed parallel map function is used to copy a service n times
on N machines. If the object being mapped is not a service, then the
services manager is omitted from the diagram -- the jobs still undergo
a distributed launch, but are managed at the machine level.

"what is the root of the filesystem?", "what is the user’s name?",
and "what login shell is preferred?" become essential in allowing
a remote user to function as if they were logged in locally.
While pox is in the same vein of both the os and shutil
built-in modules, the majority of its functionality is unique and
compliments these two modules.

pox provides Python equivalents of several unix shell com-
mands such as "which" and "find". These commands allow au-
tomated discovery of what has been installed on an operating
system, and where the essential tools are located. This capability
is useful not only for exploring remote hosts, but also locally as a
helper utility for automated build and installation.

Several high-level operations on files and filesystems are also
provided. Examples of which are: finding the location of an
installed Python package, determining if and where the source
code resides on the filesystem, and determining what version the
installed package is.

pox also provides utilities to enable the abstraction of com-
mands sent to a remote filesystem. In conjunction with a registry
of environment variables and installed utilites, pox enables the
user to interact with a remote filesystem as if they were logged in
locally.

Distributed Staging and Launching

pathos provides methods for configuring, launching, monitor-
ing, and controlling a service on a remote host. One of the
most basic features of pathos is the ability to configure and
launch a IPC-based service on a remote host. pathos seeds the
remote host with a small portpicker script, which allows the
remote host to inform the localhost of a port that is available for
communication.

Beyond the ability to establish a IPC service, and then post
requests, is the ability to launch code in parallel. Unlike parallel
computing performed at the node level (typically with MPI),
pathos enables the user to launch jobs in parallel across het-
erogeneous distributed resources. pathos provides a distributed
map-reduce algorithm, where a mix of local processors and

distributed IPC services can be selected. pathos also provides a
very basic automated load balancing service, as well as the ability
for the user to directly select the resources.

A high-level interface is provided which yields a map-reduce
implementation that hides the IPC internals from the user. For
example, with ipcPool, the user can launch their code as a
distributed parallel service, using standard Python and without
writing a line of server or parallel batch code. pathos also
provides tools to build a custom Map. In following code, the map
is configured to 'autodetect' the number of processors, and
only run on the localhost:
# configure and build map
from pathos.launchers import ipc
from pathos.strategies import pool
from pathos.tools import mapFactory
my_map = mapFactory(launcher=ipc, strategy=pool)

IPC servers and communication in general is known to be
insecure. However, instead of attempting to make the IPC com-
munication itself secure, pathos provides the ability to automat-
ically wrap any distributes service or communication in an SSH
tunnel. SSH is a universally trusted method. Using sshTunnel,
pathos has launched several distributed calculations on clusters
at National Laboratories, and to date has performed test cal-
culations that utilize node-to-node communication between two
national lab clusters and a user’s laptop. pathos allows the user
to configure and launch at a very atomistic level, through raw
access to ssh and scp. Any distributed service can be tunneled,
therefore less-secure methods of communication can be provided
with secure authentication:
# establish a tunnel
from pathos.tunnel import sshTunnel
uid = 'foo.caltech.edu:12345:tunnel69'
tunnel_proxy = sshTunnel(uid)

# inspect the ports
localport = tunnel_proxy.lport
remoteport = tunnel_proxy.rport

# a user-provided model function
def identify(x)
return x

# cast the model as a distributed service
from pathos.servers import ipcServer
id = 'localhost:%s:bug01' % localport
my_proxy = ipcServer(identify, server=id)

# evaluate the model via tunneled proxy
y = my_proxy(x)

# disconnect the tunnel
tunnel_proxy.disconnect()

Parallel Staging and Launching

The pyina package provides several basic tools to make MPI-
based high-performance computing more accessable to the end
user. The goal of pyina is to allow the user to extend their own
code to MPI-based high-performance computing with minimal
refactoring.

The central element of pyina is the parallel map-reduce
algorithm. pyina currently provides two strategies for executing
the parallel-map, where a strategy is the algorithm for distributing
the work list of jobs across the availble nodes. These strategies
can be used "in-the-raw" (i.e. directly) to provide map-reduce to
a user’s own MPI-aware code. Further, pyina provides several
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map-reduce implementations that hide the MPI internals from the
user. With these Map objects, the user can launch their code in
parallel batch mode -- using standard Python and without ever
having to write a line of Parallel Python or MPI code.

There are several ways that a user would typically launch
their code in parallel -- directly with mpirun or mpiexec,
or through the use of a scheduler such as torque or slurm.
pyina encapsulates several of these launching mechanisms as
Launchers, and provides a common interface to the different
methods of launching a MPI job. In the following code, a custom
Map is built to execute MPI locally (i.e. not to a scheduler) using
the carddealer strategy:
# configure and build map
from pyina.launchers import mpirun
from pyina.strategies import carddealer as card
from pyina.tools import mapFactory
my_map = mapFactory(4, launcher=mpirun, strategy=card)

New Massively-Parallel Optimization Algorithms

In mystic, optimizers have been extended to parallel whenever
possible. To have an optimizer execute in parallel, the user only
needs to provide the solver with a parallel map. For example,
extending the Differential Evolution [SKP95] solver to parallel is
involves passing a Map to the SetEvaluationMap method. In
the example below, each generation has 20 candidates, and will
execute in parallel using MPI with 4 workers:
# the function to be minimized and the bounds
from mystic.models import rosen as my_model
lb = [0.0, 0.0, 0.0]
ub = [2.0, 2.0, 2.0]

# get termination condition object
from mystic.termination import ChangeOverGeneration
COG = ChangeOverGeneration()

# select the parallel launch configuration
from pyina.maps import MpirunCarddealer
my_map = MpirunCarddealer(4)

# instantiate and configure the solver
from mystic.solvers import DifferentialEvolutionSolver
solver = DifferentialEvolutionSolver(len(lb), 20)
solver.SetRandomInitialPoints(lb, ub)
solver.SetStrictRanges(lb, ub)
solver.SetEvaluationMap(my_map)
solver.Solve(my_model, COG)

# obtain the solution
solution = solver.bestSolution

Another type of new parallel solver utilizes the
SetNestedSolver method to stage a parallel launch of
N optimizers, each with different initial conditions. The following
code shows the BuckshotSolver scheduling a launch of
N = 20 optimizers in parallel to the default queue, where 5 nodes
each with 4 processors have been requested:
# the function to be minimized and the bounds
from mystic.models import rosen as my_model
lb = [0.0, 0.0, 0.0]
ub = [2.0, 2.0, 2.0]

# get monitor and termination condition objects
from mystic.monitors import LoggingMonitor
stepmon = LoggingMonitor(1, 'log.txt')
from mystic.termination import ChangeOverGeneration
COG = ChangeOverGeneration()

# select the parallel launch configuration

Fig. 7: Conceptual diagram for a carddealer-DE optimizer. The
optimizer contains a map function that stages n copies of the user’s
model F(x) in parallel across distributed resources.

Fig. 8: Conceptual diagram for a lattice-Powell optimizer.
N Powell’s local-search optimizers are launched in parallel, with
each optimizer starting from the center of a different lattice cuboid
in parameter space. A buckshot-Powell optimizer is similar;
however, instead utilizes a uniform random distribution of initial
values.

from pyina.maps import TorqueMpirunCarddealer
my_map = TorqueMpirunCarddealer('5:ppn=4')

# instantiate and configure the nested solver
from mystic.solvers import PowellDirectionalSolver
my_solver = PowellDirectionalSolver(len(lb))
my_solver.SetStrictRanges(lb, ub)
my_solver.SetEvaluationLimits(50)

# instantiate and configure the outer solver
from mystic.solvers import BuckshotSolver
solver = BuckshotSolver(len(lb), 20)
solver.SetRandomInitialPoints(lb, ub)
solver.SetGenerationMonitor(stepmon)
solver.SetNestedSolver(my_solver)
solver.SetSolverMap(my_map)
solver.Solve(my_model, COG)

# obtain the solution
solution = solver.bestSolution

Probability and Uncertainty Tooklit

The software framework presented in this paper was designed to
solve UQ problems. Calculation of the upper and lower bounds
for probability of failure is provided as a framework service. The
McDiarmid subdiameter is a model-based measure of sensitivity,
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Fig. 9: Coupling an iterative partitioning algorithm with a sensitivity
calculation enables the discovery of critical regions in parameter
space.

and is cast within mystic as a global optimization. Diameter
calculations can be coupled with partitioning algorithms, and
used to discover regions of critical behavior. Optimization over
probability measures is also available as a framework service, and
is utilized in (OUQ) calculations of optimal bounds.

The minimization or maximization of a cost function is the
basis for performing most calculations in mystic. The optimizer
generates new trial parameters, which are evaluated in a user-
provided model function against a user-provided metric. Two
simple difference metrics provided are: metric = |F(x)−G|2,
where F is the model function evaluated at some trial set of fit
parameters P , and G is the corresponding experimental data -
- and metric = |F(x)− F(y)|2, where x and y are two slightly
different sets of input parameters (6).

mystic provides factory methods to automate the genera-
tion of a cost function from a user’s model. Conceptually, a
costFactory is as follows:

# prepare a (F(X) - G)**2 a metric
def costFactory(my_model, my_data):
def cost(param):

# compute the cost
return ( my_model(param) - my_data )**2

return cost

Suboscillations (6), used in calculations of rigorous sensitivity
(such as Di/D), can also be cast as a cost metric:

# prepare a (F(X) - F(X'))**2 cost metric
def suboscillationFactory(my_model, i):

def cost(param):

# get X and X' (Xi' is appended to X at param[-1])
x = param[:-1]
x_prime = param[:i] + param[-1:] + param[i+1:-1]

# compute the suboscillation
return -( my_model(x) - my_model(x_prime) )**2

return cost

The diameter D (7) is the root-mean square of its component-
wise suboscillations. The calculation of the diameter is per-
formed as a nested optimization, as shown above for the
BuckshotSolver. Each inner optimization is a calculation of
a component suboscillation, using the a global optimizer (such

Fig. 10: Optimal uncertainty quantification is an optimization of
probability measures over design parameter space. Collapse of prob-
ability masses corresponds to the determination of the critical design
parameters.

as DifferentialEvolutionSolver) and the cost metric
shown above.

The optimization algorithm takes a set of model parameters
P and the current measure of oscillation O(P) as inputs, and
produces an updated P . The optimization loop iterates until the
termination conditions are satisfied.

When the global optimization terminates the condition
O(P)<−(osc2

i +ε) is satisfied, and the final set P is composed
of X and X ′.

OUQ problems can be thought of optimization problems where
the goal is to find the global maximum of a probability function
µ[H ≤ 0], where H ≤ 0 is a failure criterion for the model
response function H. Additional conditions in an OUQ problem
are provided as constraints on the information set. Typically, a
condition such as a mean constraint on H, m1 ≤ Eµ [H]≤m2, will
be imposed on the maximization. After casting the OUQ problem
in terms of optimization and constraints, we can plug these terms
into the infrastructure provided by mystic.

Optimal uncertainty quantification (OUQ) is maximization
over a probability distribution, and not over a standard difference
metric. Therefore the fundamental data structure is not the user-
provided model function, but is a user-configured probability
measure. For example, a discrete measure is represented by a
collection of support points, each with an accompanying weight.
Measures come with built-in methods for calculating the mass,
range, and mean of the measure, and also for imposing a mass,
range, and mean on the measure. Measures also have some very
basic operations, including point addition and subtraction, and the
formation of product measures.

Global optimizations used in solving OUQ problems are
composed in the same manner as shown above for the
DifferentialEvolutionSolver. The cost function, how-
ever, is not formulated as in the examples above -- OUQ is an
optimization over product measures, and thus uses mystic’s
product_measure class as the target of the optimization.
Also as shown above, the bounds constraints are imposed with
the SetStrictRanges method, while parameter constraints
(composed as below) are imposed with the SetConstraints
method. The union set of these constraints defines the set A .



BUILDING A FRAMEWORK FOR PREDICTIVE SCIENCE 85

So for example, let us define the feasable set

A =



( f ,µ)

∣∣∣∣∣∣

f = my_model : ∏3
i=1[lbi,ubi]→ R,

µ =
⊗3

i=1 µi ∈
⊗3

i=1 M ([lbi,ubi]),
mlb ≤ Eµ [f]≤ mub



 (15)

which reduces to the finite-dimensional subset

A∆ =



( f ,µ) ∈A

∣∣∣∣∣∣

for ~x and ~y ∈∏3
i=1[lbi,ubi],

and ~w ∈ [0,1],
µi = wiδxi +(1−wi)δyi



 (16)

where ~x = some (x1,x2,x3), ~y = some (y1,y2,y3), and ~w =
some (w1,w2,w3).

To solve this OUQ problem, we first write the code for the
bounds, cost function, and constraints -- then we plug this code
into a global optimization script, as noted above.

OUQ requires the user provide a list of bounds
that follow the formatting convention that mystic’s
product_measure.load uses to build a product measure
from a list of input parameters. This roughly follows the definition
of a product measure as shown in equation (16), and also is
detailed in the comment block below:

# OUQ requires bounds in a very specific form...
# param = [wxi]*nx + [xi]*nx \
# + [wyi]*ny + [yi]*ny \
# + [wzi]*nz + [zi]*nz
npts = (nx,ny,nz)
lb = (nx * w_lower) + (nx * x_lower) \

+ (ny * w_lower) + (ny * y_lower) \
+ (nz * w_lower) + (nz * z_lower)

ub = (nx * w_upper) + (nx * x_upper) \
+ (ny * w_upper) + (ny * y_upper) \
+ (nz * w_upper) + (nz * z_upper)

The constraints function and the cost function typically require the
use of measure mathematics. In the example below, the constraints
check if measure.mass ≈ 1.0; if not, the the measure’s mass
is normalized to 1.0. The second block of constraints below check
if m1 ≤ Eµ [H]≤ m2, where m1 = target_mean − error and
m2 = target_mean + error; if not, an optimization is per-
formed to satisfy this mean constraint. The product_measure
is built (with load) from the optimization parameters param, and
after all the constraints are applied, flatten is used to extract
the updated param:

from mystic.math.measures import split_param
from mystic.math.dirac_measure import product_measure
from mystic.math import almostEqual

# split bounds into weight-only & sample-only
w_lb, m_lb = split_param(lb, npts)
w_ub, m_ub = split_param(ub, npts)

# generate constraints function
def constraints(param):
prodmeasure = product_measure()
prodmeasure.load(param, npts)

# impose norm on measures
for measure in prodmeasure:
if not almostEqual(float(measure.mass), 1.0):
measure.normalize()

# impose expectation on product measure
E = float(prodmeasure.get_expect(my_model))
if not (E <= float(target_mean + error)) \
or not (float(target_mean - error) <= E):
prodmeasure.set_expect((target_mean, error), \

my_model, (m_lb, m_ub))

# extract weights and positions
return prodmeasure.flatten()

The PoF is calculated in the cost function with the pof method:

# generate maximizing function
def cost(param):
prodmeasure = product_measure()
prodmeasure.load(param, npts)
return MINMAX * prodmeasure.pof(my_model)

We find the supremum (as in 12) when MINMAX=-1 and, upon
solution, the function maximum is -solver.bestEnergy.
We find the infimum when MINMAX=1 and, upon solution, the
function minimum is solver.bestEnergy.

Future Developments

Many of the features presented above are not currently in released
versions of the code. Of primary importance is to migrate these
features from development branches to a new release.

The next natural question beyond "what is the sensitivity of
a model to an input parameter?" is "how does the correlation
between input parameters affect the outcome of the model?".
Methods for calculating parameter correlation will be very useful
in analysis of results. Another natural question is how to handle
uncertainty in the data.

New partitioning algorithms for the discovery of regions of
critical behavior will be added to mystic. Currently the only
partitioning rule drives the optimizer toward partitioning space
such that the upper bounds of a "piecewise-McDiarmid" type are
iteratively tightened [STM11]. We will extend the partitioning
algorithm not to refine the diameter, but to discover regions where
the diameters meet a set of criteria (such as: regions where there
are two roughly equal subdiameters that account for 90% or
more of the total diameter (i.e. automated discovery of regions
where two parameters compete to govern the system behavior).
mystic will also further expand its base of available statistical
and measure methods, equation solvers, and also make avail-
able several more traditional uncertainty quantification methods.
mystic will continue to expand its base of optimizers, with par-
ticular emphasis on new optimization algorithms that efficiently
utilize parallel computing. mystic currently has a few simple
parallel optimization algorithms, such as the LatticeSolver
and BuckshotSolver solvers; however, algorithms that utilize
a variant of game theory to do speculation about future itera-
tions (i.e. break the paradigm of an iteration being a blocker
to parallelism), or use parallelism and dynamic constraints to
allow optimizers launched in parallel to avoid finding the same
minimum twice, are planned. Parallelism in optimization also
allows us to not only find the global minima, but to simultaneously
find all local minima and transition points -- thus providing a
much more efficient means of mapping out a potential energy
surface. Solving uncertainty quantification problems requires a lot
of computational resources and often must require a minimum
of both model evaluations and accompanying experiments, so we
also have to keep an eye on developing parallel algorithms for
global optimization with overall computational efficiency.

pathos includes utilities for filesystem exploration and auto-
mated builds, and a utility for the serialization of Python objects,
however these framework services will need to be made more
robust as more platforms and more extensive objects and codes
are tackled. Effort will continue on expanding the management
and platform capabilities for pathos, unifying and hardening
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the map interface and providing load balancing for all types of
connections. The high-level interface to analysis circuits will be
extended to encompass new types of logic for combining and
nesting components (as nested optimizers are utilized in many ma-
terials theory codes). Monitoring and logging to files and databases
across parallel and distributed resources will be migrated from
mystic and added as pathos framework services.

Summary

A brief overview of the mathematical and software components
used in building a software framework for predictive science is
presented.
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PyStream: Compiling Python onto the GPU

Nick Bray‡∗

F

Abstract—PyStream is a static compiler that can radically transform Python
code and run it on a Graphics Processing Unit (GPU). Python compiled to
run on the GPU is ~100,000x faster than when interpreted on the CPU. The
PyStream compiler is specially designed to simplify the development of real-
time rendering systems by allowing the entire rendering system to be written
in a single, highly productive language. Without PyStream, GPU-accelerated
real-time rendering systems must contain two separate code bases written in
two separate languages: one for the CPU and one for the GPU. Functions
and data structures are not shared between the code bases, and any common
functionality must be redundantly written in both languages. PyStream unifies
a rendering system into a single, Python code base, allowing functions and
data structures to be transparently shared between the CPU and the GPU. A
single, unified code base makes it easy to create, maintain, and evolve a high-
performance GPU-accelerated application.

Index Terms—pystream, compiling python, gpu

Introduction

High-performance computer hardware can be difficult to program
because ease of programming is often traded for raw performance.
For example, graphics processing units (GPUs) are traditionally
programmed in languages that either restrict memory use or
explicitly expose the memory hierarchy to the programmer. The
OpenGL Shading Language (GLSL) is an example of the first, and
OpenCL is an example of the second. Neither type of language
is particularly easy to use, rather they are designed to address a
potential bottleneck for GPU architectures: memory bandwidth.
GPUs pack enough functional units into a single chip that overall
performance can easily be limited by the memory subsystem’s
ability to feed data to the functional units.

Ease of programming is not the only issue when using
GPU-specific languages. These languages are specialized for
performance-critical numeric computations and are not suitable
for writing a complete application. For instance, these languages
cannot load data from disk or provide a graphical user interface.
Instead, GPU languages typically provide APIs to interoperate
with a different, general-purpose language. Using these APIs
results in an application with two code bases, each with distinct
semantics. Additional glue code is also required overcome the
impedance mismatch between the code bases. Glue code is used to
remap and transfer data structures from one code base to another.
Glue code is also used to invoke functions across the language
boundary.
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Fig. 1: Naïve background color.

Fig. 2: Background color calculation using shared code.

Constructing a GPU-accelerated application with two code
bases and glue code has a number of software engineering costs.
For instance, any data transferred between the CPU and the GPU
must have its structure defined in both languages and have glue
code to remap and transfer the data. Any modification to such a
data structure will require modifying all its definitions. Certain
functions may also need to be duplicated so they can be used
in each code base. For example, Figure 1 shows a rendering
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system where the background color - calculated on the CPU -
does not take into account the color processing performed on the
GPU. Figure 2 shows the same rendering system, but with the
color-processing code duplicated on the CPU and applied to the
background color. Ultimately, applications that incorporate GPU-
specific languages tend to resist change because data structures
and functions in two code bases must be kept in sync. This
complicates the process of maintaining and evolving such an
application.

PyStream

PyStream [Bra10] is a static source-to-source compiler that trans-
lates Python code into GLSL for use in real-time graphical render-
ing. PyStream also generates the glue code necessary to seamlessly
invoke the generated GLSL code from a Python application.
PyStream allows applications incorporating GPU-accelerated real-
time rendering to be written as a single, unified Python code base.
This allows the high productivity of the Python language to be
used while also gaining the performance of GPU acceleration.
PyStream sidesteps the problems that arise from having two code
bases, which would otherwise diminish the productivity gains of
using Python.

Programming a GPU with Python allows the use of object-
oriented programming, polymorphic functions, and other pro-
gramming language features that are often not available in GPU-
specific languages. Python also has the advantage of being more
concise. In practice, Python code is roughly five to seven times
more terse than the corresponding GLSL code.

Language Restrictions

PyStream can compile a restricted subset of Python onto the
GPU. Restrictions are necessary to make the compilation process
tractable. Restrictions are also necessary because of the fundamen-
tal limitations of modern GPU hardware. PyStream’s restricted
subset of Python provides, at minimum, the functionality of GLSL
but with the syntax, semantics, and abstraction mechanisms of
Python, as well as complete integration with Python applications.
PyStream requires the following to translate code onto a GPU:

• A closed world.
• No global side effects.
• No recursive function calls.
• Bounded memory usage.

To statically compile a Python program, a closed world must
be created. If a program can call a function that the compiler
knows nothing about, then the compiler must assume that the
function can have arbitrary side effects: rewriting globals, classes,
and other data structures. In such a situation, a static compiler
cannot prove anything about the program and therefore cannot
transform it in any meaningful way. To prevent this situation,
PyStream disallows the execution of unknown code. Dynamic
code compilation and execution, such as through the use of exec
and eval, is forbidden. In addition, modules are imported at
compile time and assumed to never change thereafter.

GLSL has several restrictions, when compared to Python, and
they are adopted by PyStream so that it can generate GLSL
code. For instance, GLSL programs are constrained to have no
global side effects. Code compiled by PyStream must behave the
same. GLSL does not allow recursive function calls because it is
designed to run on hardware without a call stack. This restriction

Fig. 3: An image produced by the example rendering system.

is adopted by PyStream. Similarly, GLSL is designed to run in
an environment where memory is statically allocated for each
processor. PyStream in turn requires that the code it compiles
have bounded memory usage, allowing the compiler to statically
allocate memory.

In practice, the most significant of these restrictions appears to
be the need for bounded memory usage. This restriction prevents
the use of recursive data structures and most mutable list,
dict, and set objects. For example, if a program appends to
a list inside of a loop, the compiler will be unable to determine
the maximum size of the list. Future improvements to the compiler
may allow it to bound the number of loop iterations in some cases,
this problem is equivalent to the halting problem in the general
case.

Most of these restrictions are applied after the compiler opti-
mizes a program. For example, a highly polymorphic function may
initially appear to be recursive, but this recursion can disappear
once the function has been duplicated and specialized for the
different situations in which it is called. As will be discussed
later, PyStream uses a novel approach for representing Python
programs. This approach treats the Python interpreter as part
of the program being compiled. There are often recursive calls
through the interpreter, such as when the addition of a vector type
is implemented in terms of the addition of its scalar elements.
This pattern is so pervasive that disallowing recursive calls before
optimizations are applied would disallow most Python programs.
Problematically, disallowing recursive calls after compilation re-
quires that a programmer must understand how the compiler
behaves. Although this conceit is undesirable, it is necessary.

PyStream currently does not support a number of Python
features, including exceptions and closures. These features will
be supported in the future.

PyStream in Practice

A real-time rendering system was developed with the PyStream
compiler to validate the design of the compiler. The example ren-
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dering system implements the core algorithms used by the game
Starcraft 2 [Fil08]. Rendering systems typically use many different
algorithms to produce a final image. These algorithms are divided
into shader programs that that are executed on batches of data sent
to the GPU. The example rendering system contains 8 different
shader programs. A shader programs is further subdivided into
several individual shaders that process different kinds of data,
such as vertices in a 3D model or pixels being written into an
image. The code for one of the shader programs in the example
rendering system is included below.
class AmbientPass(ShaderProgram):

def shadeVertex(self, context, pos, texCoord):
context.position = pos
return texCoord,

def shadeFragment(self, context, texCoord):
# Sample the underlying geometry
g = self.gbuffer.sample(texCoord)
# Sample the ambient occlusion
ao = self.ao.texture(texCoord).xyz
# Calculate the lighting
ambientLight = self.env.ambientColor(g.normal)*ao
# Modulate the output
color=vec4(g.diffuse*ambientLight, 1.0)
context.colors = (color,)

This shader program performs a specific kind of lighting cal-
culation for the example rendering system. PyStream’s shader
programs are a Pythonic version of GLSL’s shader programs. The
previous shader program is implemented as a class that contains
two shader methods: a vertex shader and a fragment shader. The
first two arguments for each shader are special. The self argu-
ment holds data that is constant during the execution of the shader.
The context argument holds an object with shader-specific
fields. For example, colors written to the context.colors
field inside of a fragment shader will be written into the image(s)
being rendered after the shader has been executed. All subsequent
arguments correspond to streams of data being fed into the shader.
Return values correspond to streams of data produced by the
shader.

Python’s abstraction mechanisms are used throughout the
example rendering system. For instance, algorithms for calculating
how light reflects off surfaces are encapsulated in polymorphic
Material objects. This allows the appearance of a surface to
be controlled by composing a shader object with different types
of material objects. Rendering systems often contain custom code
generators [Mit07] because the GPU-specific language they are
using does not natively support polymorphism.

Compiling Python

PyStream takes a novel approach to compiling Python that is
simpler and more flexible than previous approaches [Sal04],
[Pyp11]. The key to PyStream’s approach is that it keeps its
internal representation of the program it is compiling as simple
as possible. Compiling Python can be potentially complicated
because the language is filled with numerous special cases. For
example, adding two objects together can result in the __add__
method being called on the first object, the __radd__ method
being called on the second object, or an exception being thrown.
More precisely, the interpreter can do all of the above for a single
operation if both methods exist but return NotImplemented.
Calling either method can result in arbitrary code being executed
and can have arbitrary side effects, so the precise definition of the

addition operator is both complicated and ambiguous. Any rela-
tionship between Python’s addition operator and the mathematical
concept of addition is a convention and not an intrinsic part of the
language. Virtually every Python operation can execute arbitrary
code, even operations such as reading an attribute of an object.

Prior to PyStream, Python compilers attempted to embed ex-
tensive knowledge of Python’s semantics into their algorithms. For
example, every analysis algorithm and optimization would need
to implicitly understand how the interpreter dispatched addition
operations. Typically this knowledge was not precise, and did not
cover every corner case. PyStream takes a different approach.
Instead of trying to embed a complete knowledge of Python’s
semantics into its algorithms, it treats the interpreter as if it
were a library being called by the Python program. This allows
PyStream to easily and accurately analyze Python’s complex
semantics without complicating the compiler. The consequence
of this approach is that PyStream appears to process three times
as much code as other Python compilers. This extra code would
need to be evaluated one way or the other, PyStream evaluates it
explicitly as code rather than implicitly inside the compiler.

Because PyStream treats the interpreter as part of the program,
standard optimizations such as dead code elimination and function
inlining are extremely effective at eliminating Python’s run time
overhead. Interpreter functions are initially quite complicated, but
they are typically optimized down to a single operation and later
inlined. In addition to the standard optimizations, several Python-
specific transformations are also performed. For example, method
calls are optimized to eliminate the creation of bound method
objects wherever possible.

Mapping Python onto the GPU

After analyzing and optimizing a program, PyStream then maps
it onto the GPU. One of the biggest challenges in mapping a
Python shader program onto the GPU is the presence of memory
operations. GLSL does not support pointers in any form: the
address of an objects cannot be taken, and function arguments
are passed by value. Python, on the other hand, hold every object
by reference. PyStream bridges this semantic gap by eliminating
as many memory operations as possible and then emulating the
rest.

Before even trying to map a program onto the GPU, PyStream
aggressively eliminates as many memory operations as possible.
If PyStream can eliminate every memory operation, translating
the program into GLSL is trivial. The optimizations PyStream
performs are a mixture of load/store elimination and shader-
specific transformations such as flattening the input and output
data structures for each shader into a list of local variables.
In practice, these optimization eliminate almost all the memory
operations in the example rendering system.

It is not always possible to eliminate every memory operation,
however. PyStream uses two different strategies to emulate the
remaining memory operations. If an object is never modified or
is only held by a single reference at a time, PyStream copies
the object as needed rather than treating it as a distinct memory
location. If an object is held by multiple references and also
modified, PyStream places it in an array of objects and uses an
index into the array as a pointer to the object.

Performance

The example rendering system demonstrates that PyStream is
quite effective at compiling Python shaders. A manual inspection
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Fig. 4: Performance of the example rendering system as the number
of objects drawn is increased.

of the generated GLSL code reveals that it is close to what would
be written by hand. Quantitatively, PyStream provides a massive
speedup for the compiled shaders. The following table shows
the time taken to draw one million pixels with a Python shader
program when it is interpreted on the CPU versus when it is
compiled onto the GPU. Measurements were taken on a AMD
Athlon 64 X2 3800+ CPU with a NVidia 9800 GT GPU running
Windows XP and Python 2.6.4.

Shader CPU GPU Speedup
material 220.5 s 5.62 ms 39,211x
skybox 35.5 s 0.81 ms 43,568x

ssao 444.9 s 1.44 ms 308,958x
bilateral 429.1 s 1.49 ms 288,956x
ambient 64.1 s 0.84 ms 76,310x

light 127.1 s 0.95 ms 133,789x
blur 74.2 s 0.54 ms 138,692x
post 442.6 s 9.57 ms 46,272x

average 180.8 s 1.23 ms 146,712x
On average, the shaders in the example rendering system

run 146,712x faster when compiled onto the GPU than when
interpreted on the CPU. The CPU timings are synthetic and only
measure the execution time of the shader code and neglect the
time required to sample textures and other functionality in the
rendering system. The GPU timings take all costs into account,
so the speedup is understated. Five orders of magnitude speedup
is reasonable, however. Compiling an optimized Python program
into C can provide two orders of magnitude speedup [Sal04]. For
unoptimized programs taking full advantage of Python’s abstrac-
tion mechanisms, an additional order of magnitude of speedup
can be achieved because a static compiler can inline functions and
globally optimize the program whereas an interpreter always pays
the abstraction overhead. Switching from a CPU to a GPU can
easily provide another two orders of magnitude speedup for real-
time rendering, a task the GPU was designed for. Taken together,
this easily explains the net speedup.

Figure 4 shows the performance of the example rendering
system, in frames per second (FPS), as the number of objects
drawn increases. Drawing more objects requires more compu-
tation, and will naturally reduce the rate at which images are
produced. Rendering systems may be bottlenecked by factors other
than computation; they can also be limited by the rate that glue
code can transfer data to the GPU. PyStream can generate glue
code for both OpenGL 2 and OpenGL 3. OpenGL 3 has features

that let it transfer data more efficiently to the GPU. As seen in
the figure, these features can offer a ~20% speed improvement
when the rendering system is bottlenecked by its glue code. This
demonstrates an interesting benefit of PyStream: future proofing.
PyStream can take advantage of new features offered by GPUs
and GPU APIs without requiring modifications to the rendering
system.

Conclusion

PyStream takes a unique approach to high-performance high-level
programming. The compiler can map a significant portion of a
general-purpose language onto a GPU, and allow a complete
GPU-accelerated application to be written with a single code
base. This demonstrates that productive high-level languages and
high performance are not mutually exclusive, even for critical
computational kernels.
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Bringing Parallel Performance to Python with
Domain-Specific Selective Embedded Just-in-Time

Specialization
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Abstract—Today’s productivity programmers, such as scientists who need to
write code to do science, are typically forced to choose between productive
and maintainable code with modest performance (e.g. Python plus native li-
braries such as SciPy [SciPy]) or complex, brittle, hardware-specific code that
entangles application logic with performance concerns but runs two to three
orders of magnitude faster (e.g. C++ with OpenMP, CUDA, etc.). The dynamic
features of modern productivity languages like Python enable an alternative
approach that bridges the gap between productivity and performance. SEJITS
(Selective, Embedded, Just-in-Time Specialization) embeds domain-specific
languages (DSLs) in high-level languages like Python for popular computational
kernels such as stencils, matrix algebra, and others. At runtime, the DSLs
are "compiled" by combining expert-provided source code templates specific
to each problem type, plus a strategy for optimizing an abstract syntax tree
representing a domain-specific but language-independent representation of the
problem instance. The result is efficiency-level (e.g. C, C++) code callable
from Python whose performance equals or exceeds that of handcrafted code,
plus performance portability by allowing multiple code generation strategies
within the same specializer to target different hardware present at runtime, e.g.
multicore CPUs vs. GPUs. Application writers never leave the Python world, and
we do not assume any modification or support for parallelism in Python itself.

We present Asp ("Asp is SEJITS for Python") and initial results from sev-
eral domains. We demonstrate that domain-specific specializers allow highly-
productive Python code to obtain performance meeting or exceeding expert-
crafted low-level code on parallel hardware, without sacrificing maintainability or
portability.

Index Terms—parallel programming, specialization

Introduction

It has always been a challenge for productivity programmers,
such as scientists who write code to support doing science, to
get both good performance and ease of programming. This is
attested by the proliferation of high-performance libraries such
as BLAS, OSKI [OSKI] and FFTW [FFTW], by domain-specific
languages like SPIRAL [SPIRAL], and by the popularity of the
natively-compiled SciPy [SciPy] libraries among others. To make
things worse, processor clock scaling has run into physical limits,
so future performance increases will be the result of increasing
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hardware parallelism rather than single-core speedup, making
programming even more complex. As a result, programmers must
choose between productive and maintainable but slow-running
code on the one hand, and performant but complex and hardware-
specific code on the other hand.

The usual solution to bridging this gap is to provide com-
piled native libraries for certain functions, as the SciPy package
does. However, in some cases libraries may be inadequate or
insufficient. Various families of computational patterns share the
property that while the strategy for mapping the computation onto
a particular hardware family is common to all problem instances,
the specifics of the problem are not. For example, consider a
stencil computation, in which each point in an n-dimensional grid
is updated with a new value that is some function of its neighbors’
values. The general strategy for optimizing sequential or parallel
code given a particular target platform (multicore, GPU, etc.) is
independent of the specific function, but because that function
is unique to each application, capturing the stencil abstraction
in a traditional compiled library is awkward, especially in the
efficiency level languages typically used for performant code (C,
C++, etc.) that don’t support higher-order functions gracefully.

Even if the function doesn’t change much across applications,
work on auto-tuning [ATLAS] has shown that for algorithms with
tunable implementation parameters, the performance gain from
fine-tuning these parameters compared to setting them naively can
be up to 5×. [SC08] Indeed, the complex internal structure of auto-
tuning libraries such as the Optimized Sparse Kernel Interface
[OSKI] is driven by the fact that often runtime information is nec-
essary to choose the best execution strategy or tuning-parameter
values.

We therefore propose a new methodology to address this
performance-productivity gap, called SEJITS (Selective Em-
bedded Just-in-Time Specialization) [Cat09]. This methodology
embeds domain-specific languages within high-level languages,
and the embedded DSLs are specialized at runtime into high-
performance, low-level code by leveraging metaprogramming
and introspection features of the host languages, all invisibly to
the application programmer. The result is performance-portable,
highly-productive code whose performance rivals or exceeds that
of implementations hand-written by experts.

The insight of our approach is that because each embedded
DSL is specific to just one type of computational pattern (stencil,
matrix multiplication, etc.), we can select an implementation
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strategy and apply optimizations that take advantage of domain
knowledge in generating the efficiency-level code. For example,
returning to the domain of stencils, one optimization called time
skewing [Wonn00] involves blocking in time for a stencil applied
repeatedly to the same grid. This transformation is not meaningful
unless we know the computation is a stencil and we also know the
stencil’s "footprint," so a generic optimizing compiler would be
unable to identify the opportunity to apply it.

We therefore leverage the dynamic features of modern lan-
guages like Python to defer until runtime what most libraries
must do at compile time, and to do it with higher-level domain
knowledge than can be inferred by most compilers.

Asp: Approach and Mechanics

High-level productivity or scripting languages have evolved to
include sophisticated introspection and FFI (foreign function in-
terface) capabilities. We leverage these capabilities in Python to
build domain- and machine-specific specializers that transform
user-written code in a high-level language in various ways to
expose parallelism, and then generate code for a a specific machine
in a low-level language. Then, the code is compiled, linked, and
executed. This entire process occurs transparently to the user; to
the user, it appears that an interpreted function is being called.

Asp (a recursive acronym for "Asp is SEJITS for Python")
is a collection of libraries that realizes the SEJITS approach in
Python, using Python both as the language in which application
programmers write their code (the host language) and the lan-
guage in which transformations and code generation are carried
out (the transformation language). Note that in general the host
and transformation languages need not be the same, but Python
happily serves both purposes well.

Specifically, Asp provides a framework for creating Python
classes (specializers), each of which represents a particular com-
putational pattern. Application writers subclass these to express
specific problem instances. The specializer class’s methods use
a combination of pre-supplied low-level source code snippets
(templates) and manipulation of the Python abstract syntax tree
(AST, also known as a parse tree) to generate low-level source
code in an efficiency-level language (ELL) such as C, C++ or
CUDA.

For problems that call for passing in a function, such as the
stencil example above, the application writer codes the function
in Python (subject to some restrictions) and the specializer class
iterates over the function’s AST to lower it to the target ELL and
inline it into the generated source code. Finally, the source code
is compiled by an appropriate conventional compiler, the resulting
object file is dynamically linked to the Python interpreter, and the
method is called like a native library.

Python code in the application for which no specializer ex-
ists is executed by Python as usual. As we describe below, a
recommended best practice for creating new specializers is that
they include an API-compatible, pure-Python implementation of
the kernel(s) they specialize in addition to providing a code-
generation-based implementation, so that every valid program
using Asp will also run in pure Python without Asp (modulo
removing the import directives that refer to Asp). This allows the
kernel to be executed and debugged using standard Python tools,
and provides a reference implementation for isolating bugs in the
specializer.

One of Asp’s primary purposes is separating application and
algorithmic logic from code required to make the application run
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Fig. 1: Separation of concerns in Asp. App authors write code that is
transformed by specializers, using Asp infrastructure and third-party
libraries.

fast. Application writers need only program with high-level class-
based constructs provided by specializer writers. It is the task of
these specializer writers to ensure the constructs can be specialized
into fast versions using infrastructure provided by the Asp team
as well as third-party libraries. An overview of this separation is
shown in Figure 1.

An overview of the specialization process is as follows. We
intercept the first call to a specializable method, grab the AST of
the Python code of the specializable method, and immediately
transform it to a domain-specific AST, or DAST. That is, we
immediately move the computation into a domain where problem-
specific optimizations and knowledge can be applied, by applying
transformations to the DAST. Returning once again to the stencil,
the DAST might have nodes such as "iterate over neighbors" or
"iterate over all stencil points." These abstract node types, which
differ from one specializer to another, will eventually be used
to generate ELL code according to the code generation strategy
chosen; but at this level of representation, one can talk about
optimizations that make sense for stencils specifically as opposed
to those that make sense for iteration generally.

After any desired optimizations are applied to the domain-
specific (but language- and platform-independent) representation
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1 1 1
1 1 1
1 1 1

→

0 0 0
0 4 0
0 0 0

from stencil_kernel import *

class ExampleKernel(StencilKernel):
def kernel(self, in_grid, out_grid):
for x in out_grid.interior_points():
for y in in_grid.neighbors(x, 1):
out_grid[x] = out_grid[x] + in_grid[y]

in_grid = StencilGrid([5,5])
in_grid.data = numpy.ones([5,5])
out_grid = StencilGrid([5,5])
ExampleKernel().kernel(in_grid, out_grid)

Fig. 2: Example stencil application. Colored source lines match up to
nodes of same color in Figure 4.

of the problem, conversion of the DAST into ELL code is handled
largely by CodePy [CodePy]. Finally, the generated source code
is compiled by an appropriate downstream compiler into an object
file that can be called from Python. Code caching strategies avoid
the cost of code generation and compilation on subsequent calls.

In the rest of this section, we outline Asp from the point of
view of application writers and specializer writers, and outline the
mechanisms the Asp infrastructure provides.

Application Writers

From the point of view of application writers, using a specializer
means installing it and using the domain-specific classes defined
by the specializer, while following the conventions outlined in
the specializer documentation. Thus, application writers never
leave the Python world. As a concrete example of a non-trivial
specializer, our structured grid (stencil) specializer provides a
StencilKernel class and a StencilGrid class (the grid over which
a stencil operates; it uses NumPy internally). An application
writer subclasses the StencilKernel class and overrides the func-
tion kernel(), which operates on StencilGrid instances. If the
defined kernel function is restricted to the class of stencils outlined
in the documentation, it will be specialized; otherwise the program
will still run in pure Python.

An example using our stencil specializer’s constructs is shown
in Figure 2.

Specializer Writers

Specializer writers often start with an existing implementation of
a solution, written in an ELL, for a particular problem type on
particular hardware. Such solutions are devised by human experts
who may be different from the specializer writer, e.g. numerical-
analysis researchers or auto-tuning researchers. Some parts of
the solution which remain the same between problem instances,
or the same with very small changes, can be converted into
templates, which are simply ELL source code with a basic macro
substitution facility, supplied by [Mako], for inserting values into
fixed locations or "holes" at runtime.

Other parts of the ELL solution may vary widely or in a
complex manner based on the problem instance. For these cases,
a better approach is to provide a set of rules for transforming the
DAST of this type of problem in order to realize the optimizations
present in the original ELL code. Finally, the specializer writer
provides high-level transformation code to drive the entire process.

Specializer writers use Asp infrastructure to build their
domain-specific translators. In Asp, we provide two ways to

generate low-level code: templates and abstract syntax tree (AST)
transformation. For many kinds of computations, using templates
is sufficient to translate from Python to C++, but for others, phased
AST transformation allows application programmers to express
arbitrary computations to specialize.

In a specializer, the user-defined kernel is first translated into
a Python AST, and analyzed to see if the code supplied by the
application writer adheres to the restrictions of the specializer.
Only code adhering to a narrow subset of Python, characterizing
the embedded domain-specific language, will be accepted. Since
specializer writers frequently need to iterate over ASTs, the Asp
infrastructure provides classes that implement a visitor pattern on
these ASTs (similar to Python’s ast.NodeTransformer) to
implement their specialization phases. The final phase transforms
the DAST into a target-specific AST (e.g, C++ with OpenMP ex-
tensions). The Example Walkthrough section below demonstrates
these steps in the context of the stencil kernel specializer.

Specializer writers can then use the Asp infrastructure to
automatically compile, link, and execute the code in the final AST.
In many cases, the programmer will supply several code variants,
each represented by a different ASTs, to the Asp infrastructure.
Specializer-specific logic determines which variant to run; Asp
provides functions to query the hardware features available (num-
ber of cores, GPU, etc.). Asp provides for capturing and storing
performance data and caching compiled code across runs of the
application.

For specializer writers, therefore, the bulk of the work consists
of exposing an understandable abstraction for specializer users,
ensuring programs execute whether specialized or not, writing
test functions to determine specializability (and giving the user
meaningful feedback if not), and expressing their translations as
phased transforms.

Currently, specializers have several limitations. The most im-
portant current limitation is that specialized code cannot call back
into the Python interpreter, largely because the interpreter is not
thread safe. We are implementing functionality to allow serialized
calls back into the interpreter from specialized code.

In the next section, we show an end-to-end walkthrough of an
example using our stencil specializer.

Example Walkthrough

In this section we will walk through a complete example of a
SEJITS translation and execution on a simple stencil example. We
begin with the application source shown in Figure 2. This simple
two-dimensional stencil walks over the interior points of a grid and
for each point computes the sum of the four surrounding points.

This code is executable Python and can be run and debugged
using standard Python tools, but is slow. By merely modifying
ExampleKernel to inherit from the StencilKernel base class, we
activate the stencil specializer. Now, the first time the kernel()
function is called, the call is redirected to the stencil specializer,
which will translate it to low-level C++ code, compile it, and then
dynamically bind the machine code to the Python environment and
invoke it.

The translation performed by any specializer consists of five
main phases, as shown in Figure 3:

1) Front end: Translate the application source into a domain-
specific AST (DAST)

2) Perform platform-independent optimizations on the
DAST using domain knowledge.
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Backend compiler
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Fig. 3: Pipeline architecture of a specializer.

3) Select a platform and translate the DAST into a platform-
specific AST (PAST).

4) Perform platform-specific optimizations using platform
knowledge.

5) Back end: Generate low-level source code, compile, and
dynamically bind to make available from the host lan-
guage.

As with any pipeline architecture, each phase’s component is
reusable and can be easily replaced with another component, and
each component can be tested independently. This supports port-
ing to other application languages and other hardware platforms,
and helps divide labor between domain experts and platform
performance experts. These phases are similar to the phases of
a typical optimizing compiler, but are dramatically less complex
due to the domain-specific focus and the Asp framework, which
provides utilities to support many common tasks, as discussed in
the previous section.

In the stencil example, we begin by invoking the Python
runtime to parse the kernel() function and produce the ab-
stract syntax tree shown in Figure 4. The front end walks
over this tree and matches certain patterns of nodes, replacing
them with other nodes. For example, a call to the function
interior_points() is replaced by a domain-specific Stencil-
Interior node. If the walk encounters any pattern of Python nodes
that it doesn’t handle, for example a function call, the translation
fails and produces an error message, and the application falls back
on running the kernel() function as pure Python. In this case,
the walk succeeds, resulting in the DAST shown in Figure 4. Asp
provides utilities to facilitate visiting the nodes of a tree and tree
pattern matching.

The second phase uses our knowledge of the stencil domain
to perform platform-independent optimizations. For example, we
know that a point in a two-dimensional grid has four neighbors
with known relative locations, allowing us to unroll the innermost
loop, an optimization that makes sense on all platforms.

The third phase selects a platform and translates to a platform-
specific AST. In general, the platform selected will depend on
available hardware, performance characteristics of the machine,
and properties of the input (such as grid size). In this example
we will target a multicore platform using the OpenMP framework.
At this point the loop over the interior points is mapped down to
nested parallel for loops, as shown in Figure 5. The Asp framework

Call
interior_points

For x

Call
neighbors(x,1)

For y

:=

out_grid[x] +

out_grid[x] in_grid[y]

StencilInterior
out_grid, x

StencilNeighbor
in_grid, y, 1

:=

out_grid[x] +

out_grid[x] in_grid[y]

Fig. 4: Left: Initial Python abstract syntax tree. Right: Domain-
specific AST.

:=

Initialize
variables

:= := :=

block scope {... }

parallel for(...)

parallel for(...)

Fig. 5: Platform-specific AST.

provides general utilities for transforming arithmetic expressions
and simple assignments from the high-level representation used
in DASTs to the low-level platform-specific representation, which
handles the body of the loop.

Because the specializer was invoked from the first call of
the kernel() function, the arguments passed to that call are
available. In particular, we know the dimensions of the input grid.
By hardcoding these dimensions into the AST, we enable a wider
variety of optimizations during all phases, particularly phases 4
and 5. For example, on a small grid such as the 8x8 blocks
encountered in JPEG encoding, the loop over interior points may
be fully unrolled.

The fourth phase performs platform-specific optimizations.
For example, we may partially unroll the inner loop to reduce
branch penalties. This phase may produce several ASTs to support
run-time auto-tuning, which times several variants with different
optimization parameters and selects the best one.

Finally, the fifth phase, the backend, is performed entirely by
components in the Asp framework and the CodePy library. The
PAST is transformed into source code, compiled, and dynamically
bound to the Python environment, which then invokes it and
returns the result to the application. Interoperation between Python
and C++ uses the Boost.Python library, which handles marshalling
and conversion of types.

The compiled kernel() function is cached so that if the
function is called again later, it can be re-invoked directly without
the overhead of specialization and compilation. If the input grid
dimensions were used during optimization, the input dimensions
must match on subsequent calls to reuse the cached version.
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Results

SEJITS claims three benefits for productivity programmers. The
first is performance portability. A single specializer can include
code generation strategies for radically different platforms, and
even multiple code variants using different strategies on the
same platform depending on the problem parameters. The GMM
specializer described below illustrates this advantage: a single
specializer can produce code either for NVIDIA GPUs (in CUDA)
or x86 multicore processors (targeting the Cilk Plus compiler), and
the same Python application can run on either platform.

The second benefit is the ability to let application writers
work with patterns requiring higher-order functions, something
that is cumbersome to do in low-level languages. We can inline
these functions into the emitted source code and let the low-level
compiler optimize the solution using the maximum available infor-
mation. Our stencil specializer, as described below, demonstrates
this benefit; the performance of the generated code reaches 87%
of the achievable memory bandwidth of the multicore machine on
which it runs.

The third benefit is the ability to take advantage of auto-
tuning or other runtime performance optimizations even for
simple problems. Our matrix-powers specializer, which com-
putes {x,Ax,A2x, ...,Akx} for a sparse matrix A and vector x
(an important computation in Krylov-subspace solvers), demon-
strates this benefit. Its implementation uses a recently-developed
communication-avoiding algorithm for matrix powers that runs
about an order of magnitude faster than Python+SciPy (see
performance details below) while remaining essentially API-
compatible with SciPy. Beyond the inherent performance gains
from communication-avoidance, a number of parameters in the
implementation can be tuned based on the matrix structure in each
individual problem instance; this is an example of an optimization
that cannot easily be done in a library.

Stencil

To demonstrate the performance and productivity effectiveness
of our stencil specializer, we implemented two different com-
putational stencil kernels using our abstractions: a 3D laplacian
operator, and a 3D divergence kernel. For both kernels, we run
a simple benchmark that iteratively calls our specializer and
measures the time for applying the operator (we ensure the cache
is cleared in between calls). Both calculations are memory-bound;
that is, they are limited by the available bandwidth from memory.
Therefore, in accordance to the roofline model [SaWi09], we
measure performance compared to measured memory bandwidth
performance using the parallel STREAM [STREAM] benchmark.

Figure 6 shows the results of running our kernels for a 2563

grid on a single-socket quad-core Intel Core i7-840 machine
running at 2.93 GHz, using both the OpenMP and Cilk Plus
backends. First-run time is not shown; the code generation and
compilation takes tens of seconds (mostly due to the speed of the
Intel compiler). In terms of performance, for the 3D laplacian,
we obtain 87% of peak memory bandwidth, and 64% of peak
bandwidth for the more cache-unfriendly divergence kernel, even
though we have only implemented limited optimizations. From
previous work [Kam10], we believe that, by adding only a few
more tuning parameters, we can obtain over 95% of peak per-
formance for these kernels. In contrast, pure Python execution is
nearly three orders of magnitude slower.

In terms of productivity, it is interesting to note the difference
in LoC between the stencils written in Python and the produced
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Fig. 6: Performance as fraction of memory bandwidth peak for two
specialized stencil kernels. All tests compiled using the Intel C++
compiler 12.0 on a Core i7-840.

Fig. 7: Runtimes of GMM variants as the D parameter is varied on
an Nvidia Fermi GPU (lower is better). The specializer picks the best-
performing variant to run.

low-level code. Comparing the divergence kernel with its best-
performing produced variant, we see an increase from five lines
to over 700 lines--- an enormous difference. The Python version
expresses the computation succinctly; using machine character-
istics to express fast code requires expressing the stencil more
verbosely in a low-level language. With our specialization infras-
tructure, programmers can continue to write succinct code and
have platform-specific fast code generated for them.

Gaussian Mixture Modeling

Gaussian Mixture Models (GMMs) are a class of statistical
models used in a wide variety of applications, including image
segmentation, speech recognition, document classification, and
many other areas. Training such models is done using the Ex-
pectation Maximization (EM) algorithm, which is iterative and
highly data parallel, making it amenable to execution on GPUs
as well as modern multicore processors. However, writing high
performance GMM training algorithms are difficult due to the
fact that different code variants will perform better for different
problem characteristics. This makes the problem of producing
a library for high performance GMM training amenable to the
SEJITS approach.

A specializer using the Asp infrastructure has been built by
Cook and Gonina [Co10] that targets both CUDA-capable GPUs
and Intel multicore processors (with Cilk Plus). The special-
izer implements four different parallelization strategies for the
algorithm; depending on the sizes of the data structures used
in GMM training, different strategies perform better. Figure 7
shows performance for different strategies for GMM training on
an NVIDIA Fermi GPU as one of the GMM parameters are varied.
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Fig. 8: Overall performance of specialized GMM training versus
original optimized CUDA algorithm. Even including specializer over-
head, the specialized EM training outperforms the original CUDA
implementation.

Fig. 9: Left: Naive Akx computation. Communication required at
each level. Right: Algorithm PA1 for communication-avoiding matrix
powers. Communication occurs only after k levels of computation, at
the cost of redundant computation.

The specializer uses the best-performing variant (by using the
different variants to do one iteration each, and selecting the best-
performing one) for the majority of iterations. As a result, even
if specialization overhead (code generation, compilation/linking,
etc.) is included, the specialized GMM training algorithm outper-
forms the original, hand-tuned CUDA implementation on some
classes of problems, as shown in Figure 8.

Matrix Powers

Recent developments in communication-avoiding algorithms
[Bal09] (AF: need canonical citation here, as well as specific
cite for Erin and Nick’s CA-matrix powers presentation at Euro-
SomethingOrOther) have shown that the performance of parallel
implementations of several algorithms can be substantially im-
proved by partitioning the problem so as to do redundant work in
order to minimize inter-core communication. One example of an
algorithm that admits a communication-avoiding implementation
is matrix powers [Hoe10]: the computation {x,Ax,A2x, ...,Akx}
for a sparse matrix A and vector x, an important building block
for communication-avoiding sparse Krylov solvers. A specializer
currently under development enables efficient parallel computation
of this set of vectors on multicore processors.

The specializer generates parallel communication avoiding
code using the pthreads library that implements the PA1 [Hoe10]

kernel to compute the vectors more efficiently than just repeatedly
doing the multiplication A× x. The naive algorithm, shown in
Figure 9, requires communication at each level. However, for
many matrices, we can restructure the computation such that
communication only occurs every k steps, and before every
superstep of k steps, all communication required is completed.
At the cost of redundant computation, this reduces the number
of communications required. Figure 9 shows the restructured
algorithm.

The specializer implementation further optimizes the PA1
algorithm using traditional matrix optimization techniques such
as cache and register blocking. Further optimization using vector-
ization is in progress.

Future directions
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Fig. 10: Results comparing communication-avoiding CG with our
matrix powers specializer and SciPy’s default solver, run on an Intel
Nehalem machine.

To see what kinds of performance improvements are possi-
ble using the specialized communication-avoiding matrix powers
kernel, Morlan implemented a conjugate gradient (CG) solver
in Python that uses the specializer. Figure 10 shows the re-
sults for three test matrices and compares performance against
scipy.linalg.solve which calls the LAPACK dgesv rou-
tine. Even with just the matrix powers kernel specialized, the CA
CG already outperforms the native solver routine used by SciPy.

Related Work

Allowing domain scientists to program in higher-level languages
is the goal of a number of projects in Python, including SciPy
[SciPy] which brings Matlab-like functionality for numeric com-
putations into Python. In addition, domain-specific projects such
as Biopython [Biopy] and the Python Imaging Library (PIL) [PIL]
also attempt to hide complex operations and data structures behind
Python infrastructure, making programming simpler for users.

Another approach, used by the Weave subpackage of SciPy,
allows users to express C++ code that uses the Python C API as
strings, inline with other Python code, that is then compiled and
run. Cython [Cython] is an effort to write a compiler for a subset
of Python, while also allowing users to write extension code in C.
Another instance of the SEJITS approach is Copperhead [Cat09],
which implements SEJITS targeting CUDA GPUs for data parallel
operations.

The idea of using multiple code variants, with different op-
timizations applied to each variant, is a cornerstone of auto-
tuning. Auto-tuning was first applied to dense matrix computations
in the PHiPAC (Portable High Performance ANSI C) library
[PHiPAC]. Using parametrized code generation scripts written in
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Perl, PHiPAC generated variants of generalized matrix multiply
(GEMM) with loop unrolling, cache blocking, and a number
of other optimizations, plus a search engine, to, at install time,
determine the best GEMM routine for the particular machine.
After PHiPAC, auto-tuning has been applied to a number of
domains including sparse matrix-vector multiplication (SpMV)
[OSKI], Fast Fourier Transforms (FFTs) [SPIRAL], and multicore
versions of stencils [KaDa09], [Kam10], [Tang11], showing large
improvements in performance over simple implementations of
these kernels.

Conclusion

We have presented a new approach to bridging the "productiv-
ity/efficiency gap": rather than relying solely on libraries to allow
productivity programmers to remain in high-level languages, we
package the expertise of human experts as a collection of code
templates in a low-level language (C++/OpenMP, etc.) and a set
of transformation rules to generate and optimize problem-specific
ASTs at runtime. The resulting low-level code runs as fast or faster
than the original hand-produced version.

Unlike many prior approaches, we neither propose a stan-
dalone DSL nor try to imbue a full compiler with the intelligence
to "auto-magically" recognize and optimize compute-intensive
problems. Rather, the main contribution of SEJITS is separation
of concerns: expert programmers can express implementation
optimizations that make sense only for a particular problem (and
perhaps only on specific hardware), and package this expertise in
a way that makes it widely reusable by Python programmers. Ap-
plication writers remain oblivious to the details of specialization,
making their code simpler and shorter as well as performance-
portable.

We hope that our promising initial results will encourage oth-
ers to contribute to building up the ecosystem of Asp specializers.
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Abstract—The research contained herein yielded an open source interpolation
library implemented in and designed for use with the Python programming
language. This library, named smbinterp, yields an interpolation to an arbitrary
degree of accuracy. The smbinterp module was designed to be mesh agnostic. A
plugin system was implemented that allows end users to conveniently and con-
sistently present their numerical results to the library for rapid prototyping and in-
tegration. The library includes modules that allow for its use in high-performance
parallel computing environments. These modules were implemented using built-
in Python modules to simplify deployment. This implementation was found to
scale linearly to approximately 180 participating compute processes.

Index Terms—n-th-order accurate general interpolation, distributed calculation
schemes, multiphysics simulation

Introduction and Background

As engineers attempt to find numeric solutions to large physical
problems, simulations involving multiple physical models or phe-
nomena, known as multiphysics simulations, must be employed.
This type of simulation often involves the coupling of disparate
computer codes. When modeling physically different phenomena
the numeric models used to find solutions to these problems
employ meshes of varying topology and density in their implemen-
tation. For example, the unstructured/structured mesh interfaces
seen in the combustor/turbo machinery interface [Sha01], or the
coupling of Reynolds-Averaged Navier-Stokes and Large Eddy
Simulation (RANS/LES) codes in Computational Fluid Dynamics
(CFD) [Med06]. A similar situation with disparate meshes arises
in the analysis of helicopter blade wake and vortex interactions,
as for example when using the compressible flow code SUmb and
the incompressible flow code CDP [Hah06]. When this is the case,
and the mesh elements do not align, the engineer must perform
interpolation from the upstream code to the downstream code.

Frameworks exist that perform interpolation for multiphysics
simulations. In general, frameworks of this variety try to solve
two problems. First, the framework should rapidly calculate the
interpolation. Secondly, the interpolation should be accurate.

CHIMPS (Coupler for High-performance Integrated Multi-
Physics Simulations) is a Fortran API (with Python bindings)
that implements an efficient Distributed Alternating Digital Tree
for rapid distributed data lookup [Alo06], [Hah09]. By default,
CHIMPS can only provide the user with linear (second-order
accurate) interpolations. While CHIMPS can provide third-order
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and higher accurate interpolations, it is not automatic; higher-
order interpolations are only performed if the engineer supplies
the CHIMPS API with higher-order terms. If this information is
unavailable, then CHIMPS can only yield linear interpolations.

Another interpolation framework exists that can perform au-
tomatic higher-order interpolation. AVUSINTERP [Gal06] (Air
Vehicles Unstructured/Structured Interpolation Tool) is a tool that
provides linear and quadratic interpolations requiring only the
physical values at points in a donor mesh, i.e. no a priori knowl-
edge of higher-order terms. While this framework implements a
superior interpolation scheme to the tri-linear interpolation found
in CHIMPS, AVUSINTERP was not implemented in a parallel
fashion, nor does it allow for the engineer to arbitrarily choose the
order of the interpolation past third-order accuracy.

The research presented herein describes the development of
a library that is a union of the best parts of the aforementioned
tools. Namely, this research provides a library, named smbinterp,
that implements the interpolation of a physical value from a
collection of donor points to a destination point and performs
this interpolation to an arbitrary degree of accuracy. The library
can perform this interpolation in both two- and three-dimensional
space. Also, the library was designed and implemented to be
used in a high-performance parallel computing environment. The
smbinterp library is implemented as a python module that builds
upon the numpy and scipy libraries and presents an API for use in
multiphysics simulation integration. The library is released under
the GPL, and project is available on github [smbinterp].

Method

The numerical method implemented in smbinterp was first pro-
posed by Baker [Bak03]. This interpolation method comprises the
adjustment of a linear interpolation by a least squares estimate of
higher-order terms. The Baker interpolation of the physical value
of interest (denoted q) to the point Ξ is defined by:

q(Ξ) = qlinear(Ξ)+ f (Ξ), (1)

where qlinear is the linear interpolation, and f (Ξ) is an estimation
of the higher-order error terms. The following explanation is
specific to two-dimensional space; three-dimensional space is
treated in [McQ11].

The participating geometry required to implement this method
in two spatial dimensions is shown in figure 1. The blue points
(R) and green points (S) represent points in a source mesh, and the
red point Ξ is the point to which an interpolation is desired. 4R
represents a simplex that surrounds the destination point Ξ, and
S1..m is a collection of extra points surrounding the simplex R. The
triangles A1−A3 represent the areas formed by Ξ and 4R.
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Fig. 1: Planar Simplex used in Baker’s Interpolation Scheme

Barycentric coordinates , denoted φ j(Ξ), are used to perform
the linear interpolation. In geometric terms, the barycentric coor-
dinates of a point in a simplex are the values of the normalized
areas A j/Atotal opposite the vertex R j in the simplex 4R.

The barycentric coordinates define the influence that each
point in the simplex 4R contributes to the linear interpolation.
In other words, the ratio of A j/Atotal represents the influence from
0 ≤ φ ≤ 1 that q(R j) has over the linear interpolant. If Ξ = R j,
the value of qlinear(Ξ) should then be influenced entirely by the
known value of q(R j). If Ξ is placed in such a way as to give

A1
Atotal

= A2
Atotal

= A3
Atotal

, the value q(R j) at each point R j contributes
equally to the calculated value of qlinear(Ξ).

The linear interpolant, which requires the simplex 4R and Ξ
as inputs, is defined as

qlinear(4R,Ξ) =
N+1

∑
j=1

q(R j)φ j(Ξ), (2)

where N + 1 is the number of points in a simplex (3 in two-
dimensional space, and 4 in three-dimensional space). The values
of the basis functions φ j(Ξ) is the only unknown in equation 2.

To solve for φ j(Ξ) a system of linear equations will be defined
involving the points in the simplex R j, Ξ, and equation 2. If q(Ξ)
is a constant, q1 = q2 = q3 = qlinear = qconstant , and equation 2 can
be modified by dividing by qconstant , that is:

φ1 +φ2 +φ3 = 1. (3)

Furthermore, the basis functions must be calculated so that equa-
tion 2 also interpolates geometric location of the point Ξ, hence

R1xφ1(Ξ)+R2xφ2(Ξ)+R3xφ3(Ξ) = Ξx (4)

R1yφ1(Ξ)+R2yφ2(Ξ)+R3yφ3(Ξ) = Ξy. (5)

The values of the basis functions φ j(Ξ) can be found by solv-
ing the following system of linear equations involving equations
3, 4 and 5:




1 1 1
R1x R2x R3x
R1y R2y R3y






φ1(Ξ)
φ2(Ξ)
φ3(Ξ)


=




1
Ξx
Ξy


 , (6)

which yields the values for φ j(Ξ), providing a solution for equa-
tion 2.

At this point the first of two unknowns in equation 1 have
been solved, however the least squares approximation of error
terms f (Ξ) remains unknown. If q(Ξ) is evaluated at any of the
points R j in the simplex, then q(R j) is exact, and there is no need
for an error adjustment at R j, hence f (Ξ) = 0. Similarly, if q(Ξ)
is being evaluated along any of the opposite edges to Rι of the
simplex 4R, the error term should have no influence from φι(Ξ),
as Aι = 0. This condition is satisfied when expressing the error
terms using the linear basis functions as

f (Ξ) = aφ1(Ξ)φ2(Ξ)+bφ2(Ξ)φ3(Ξ)+ cφ3(Ξ)φ1(Ξ). (7)

In equation 7 the three double products of basis functions are
the set of distinct products of basis functions that are quadratic
in the two spatial dimensions x and y, and zero when evaluated
at each of the verticies in 4R. This term represents a third-
order accurate approximation for the error up to and including the
quadratic terms. This equation introduces three unknowns whose
values must be solved, namely a,b, and c.

Recall that Sk,k = 1,2, . . . ,m is the set of m points surrounding
Ξ that are not in the simplex R j. A least squares system of
equations is defined using the values of the basis functions at these
points, the values of a linear extrapolation for each of those points
using the simplex 4R, and the values of a,b, and c in equation 7.
Define A as (a,b,c)T . Applying least squares theory a, b, and c
are found by inverting the following 3×3 matrix:

BT A = BT w. (8)

The matrix B is defined using the identical basis function pattern
as in equation 7. Denote φ j(Sk) as the value of φ j evaluated using
equation 2 and the data point Sk (in lieu of Ξ). The matrix B in
equation 8 is thus defined:

B =




φ1(S1)φ2(S1) φ2(S1)φ3(S1) φ1(S1)φ3(S1)
φ1(S2)φ2(S2) φ2(S2)φ3(S2) φ1(S2)φ3(S2)

...
...

...
φ1(Sm)φ2(Sm) φ2(Sm)φ3(Sm) φ1(Sm)φ3(Sm)


 . (9)

The value of q(Sk) is known a priori (values of q at each point Sk
in the donor mesh). The value of qlinear(Sk) (the linear extrapolant)
can also be calculated using equation 2. Define w in equation 8 as

w =




q(S1)−qlinear(4R,S1)
q(S2)−qlinear(4R,S3)

...
q(Sm)−qlinear(4R,Sm)


 . (10)

Equation 8 is populated with the information from each of the
surrounding points in Sk, then the unknown A can be calculated.
Knowing A, equation 7 is evaluated for f (Ξ). Subsequently the
previously calculated value of qlinear(Ξ) and the recently calcu-
lated value of f (Ξ) are used to solve equation 1 for q(Ξ).

There exist known limitations to this least squares-based in-
terpolation method. First a change in vertex stencil will generally
yield a discontinuity in interpolation results. While this property
makes this method insufficient for graphical applications, it has
been shown to yield sufficiently accurate results to be used in
engineering applications [Bak03], [Gal06].

Secondly, while solutions to the linear system in equation
2 are well-behaved, certain vertex configurations can lead to a
singular system of equations in equation 7. These pathological
vertex configurations occur when more than n− 1 of the extra
points lie on one extended edge of the simplex4R [Bak03]. If this



100 PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

occurs, the covariance matrix BT B will be singular, the solution
will not be unique, and the error approximation will not generally
aid in improving the interpolation.

Extension of this method into three dimensions is non-trivial,
and is explained in depth in [McQ11]. A pattern exists to define
any error approximation function f (Ξ) and covariance matrix
BT B parametrized by order of approximation and dimension.
Define ν as the desired order of accuracy less one (i.e. for cubic
interpolation ν is 3). As defined above, N is the spatial degree.
The pattern for the combinations of basis functions that are used
to define f (Ξ) is collection of ν-th ordered combinations of N+1
basis functions φ j that are unique and non-duplicate, triplicate, etc.
The following code implements this pattern:
1 from itertools import product
2

3 @memoize
4 def pattern(simplex_size, nu):
5 r = []
6 for i in product(xrange(simplex_size),
7 repeat = nu):
8 if len(set(i)) !=1:
9 r.append(tuple(sorted(i)))

10 unique_r = list(set(r))
11 return unique_r

The dynamic calculation of the basis function pattern in this
fashion is powerful, in that it can be calculated for any arbitrary
ν , and for any spatial dimension (although only N of 2 and 3
are dealt with herein). However, for each point Ξ the calculation
of the pattern must be performed once for the calculation of
f (Ξ) and once per extra point Sk participating in the current
interpolation for each row in the B matrix. There is only one
valid pattern per set of inputs N and ν , which must both remain
constant throughout a single interpolation. The calculation of
the pattern is a computationally intensive operation, and so a
caching mechanism has been implemented in smbinterp that only
calculates the pattern if it has not been previously calculated. This
concept is known as memoization, and is implemented using the
following function wrapper:
1 from functools import wraps
2

3 def memoize(f):
4 cache = {}
5 @wraps(f)
6 def memf(simplex_size, nu):
7 x = (simplex_size, nu)
8 if x not in cache:
9 cache[x] = f(simplex_size, nu)

10 return cache[x]
11 return memf

Baker’s method gives a reasonable interpolation solution for a
general cloud of points. However, the method suggested by Baker
for the vertex selection algorithm for the terms4R and Sk consists
of simply selecting the points nearest Ξ. While this is the most
general point selection algorithm, it can lead to the aforementioned
pathological vertex configurations. This configuration is prevalent
when the source mesh is composed of a regular grid of vertices,
and must be addressed if the method is to yield a good interpola-
tion.

Furthermore a mesh may have been designed to capture the
gradient information, and therefore the mesh topology should be
respected. Simply selecting the closest points to Ξ would yield
inferior results. By selecting the more topologically (according to
the mesh) adjacent points the information intended to be captured
in the mesh’s design will be preserved.

Fig. 2: Flowchart of the Parallelization Architecture

A plugin architecture was implemented in smbinterp which
yields the requisite flexibility needed to avoid the pathological
grid configurations and gives the engineers complete control over
the point selection algorithms. The base class for all grid objects
that desire to use the interpolation methods is defined as follows:

1 class grid(object):
2 def __init__(self, verts, q):
3 self.verts = np.array(verts)
4 self.tree = KDTree(self.verts)
5

6 self.q = np.array(q)
7

8 self.cells = {}
9 self.cells_for_vert = defaultdict(list)

10

11 def get_containing_simplex(self, Xi):
12 # ...
13 return simplex
14

15 def get_simplex_and_nearest_points(self,
16 Xi, extra_points = 3):
17 # ...
18 return simplex, extra_points

The cells and cells_for_verts data structures are used when search-
ing for a containing simplex. The structures are populated with
connectivity information before a round of interpolations. The
method employed in the default implementation for the location
of the containing simplex in an upstream mesh is straight forward:
first the spatial tree structure is used to find the location of the
nearest vertex to the point of interest, then the cells are recursively
visited in topologically adjacent order and tested for inclusion of
the point Ξ.

The selection of the extra points Sk is also implemented in the
base grid class. The default algorithm simply queries the kdtree
structure for (N + 1)+m points and discards the points that are
already in the simplex 4R.

Plugins are defined as classes that inherit from the base grid
object, and that implement the requisite functionality to populate
the cells and cells_for_vert data structures. If either of the default
simplex and vertex selection methods do not provide the desired
functionality they could be overridden in the derived class to
provide a more tuned 4R and Sk selection algorithms. This gives
engineers complete control over point selection and makes the
interpolation library mesh agnostic.

A parallel mechanism for calculating q(Ξ) was implemented
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in smbinterp. As is illustrated in figure 2, a stream of requested
interpolations are presented to a queuing mechanism that then
distributes the task of calculating the interpolations to a set of
minions.

The server.py application implements the four queues required
to implement this method: a queue for tasks to be performed, a
queue for results, and two queues for orchestrating the control of
a round of interpolations between a master and a set of minions.
Masters and minions authenticate and connect to these four queues
to accomplish the tasks shown in the flowchart in figure 2. The
master.py script is responsible for orchestrating the submission of
interpolations and events associated with starting and stopping a
set of interpolations. Each of the minions has access to the entire
domain and are responsible for performing the interpolations
requested by the end user.

The crux of the solution lies in providing the minions with
a steady stream of work, and a pipeline into which the resultant
interpolations can be returned. The mechanism developed in sm-
binterp uses built-in Python modules to minimize the deployment
expense. The multiprocessing module provides a manager class
which facilitates the access of general objects to authenticated
participants over a network. The built-in Queue objects, which im-
plement a multi-producer, multi-consumer first-in-first-out queue,
are presented to the minions and masters using the functionality
in the manager class.

Results and Discussion of Results

The root mean square (RMS) of the errors was used to determine
the accuracy of the smbinterp module. A continuous function
whose values varied smoothly in the test domain was required
to calculate the error; the following equation was used:

q(x,y) = (sin(xπ)cos(yπ))2 . (11)

A plot of this function is found in figure 3. Each error εi was cal-
culated as the difference between the actual value (from equation
11) and calculated interpolations (at each point in the destination
domain using smbinterp), or εi(Ξ) = qexact(Ξ)−qcalculated(Ξ).

Fig. 3: Plot of Equation 11

A mesh resolution study was performed to determine how the
RMS of error varied with mesh density. The source mesh was
generated using gmsh, and the lowest-resolution mesh is shown
in figure 4. The results of this study are show in figure 5. A
collection of 1000 random points were used as the destination
for interpolation.

Fig. 4: Lowest-resolution test mesh

Figure 5 plots the relationship between mesh spacing and RMS
of error of all interpolations in the collection of destination ver-
texes. The x-axis represents the spacing between the regular mesh
elements. The y-axis was calculated by performing interpolation
from each resolution of mesh to a static collection of random
points. The lines in each plot are representative of the slope that
each collection of data should follow if the underlying numerical
method is truly accurate to the requested degree of accuracy. As an
example, the collection of points for ν of 2 should be third-order
accurate, and should follow a line with slope of 3; this is closely
demonstrated in the plots.

Fig. 5: RMS of Error vs. Mesh Spacing

Figure 5 shows the results of the resolution study for the two-
dimensional test case meshes. The three dimensional test case
meshes yielded similar results and are presented in [McQ11].
As the meshes were refined the RMS of error decreased. The
fourth- and sixth-order results (ν of 3 and 5) matched the slope
lines almost exactly, whereas the third- and fifth-order results were
slightly lower than expected for that level of accuracy.

As mesh element size decreased, the RMS of error decreased
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as well. The RMS of error for the highest ν decreased more than
that of the lowest ν . The RMS of error of the most coarse mesh
(far right) ranges within a single order of magnitude, whereas the
RMS of errors at the most fine spacing (far left) span four orders
of magnitude. The results exhibit a slight banding, or unevenness
between each order. Also, the data very closely matches the plotted
lines of slope, indicating that the order of accuracy is indeed
provided using this numerical method.

The rate at which error decreases as the average mesh element
size decreases in figure 5 is indicative of the order of accuracy of
the numerical method implemented in smbinterp. There is slight
banding for the two-dimensional meshes between quadratic and
cubic interpolation, and again for quartic an quintic interpolation.
While this indicates that the method does not perfectly interpolate
to those orders of accuracy, in general increasing the ν parameter
of the smbinterp library provides a more accurate interpolation.
Furthermore, the cases where the points diverge from the slope of
appropriate order, the divergence occurs in a favorable direction
(i.e. less error). Also, the fine meshes experience a more significant
decrease in RMS of error than the coarse meshes while increasing
the order of approximation, ν . While this is an intuitive result, it
emphasizes the notion that mesh density should be chosen to best
match the underlying physical systems and to provide optimally
accurate results.

The parallel algorithm employed by smbinterp was found to
scale quasi-linearly to approximately 180 participating minion.py
processes. Speedup is defined as the ratio of time to execute
an algorithm sequentially (T1) divided by the time to execute
the algorithm with p processors [WSU], or Sp = T1

Tp
. A parallel

algorithm is considered to have ideal speedup if Sp = p.
A more meaningful parameter for instrumenting the perfor-

mance of a parallel algorithm is known as the efficiency of the
algorithm, denoted Ep. Efficiency of a parallel algorithm is defined
as the speedup divided by the number of participating processors,
or Ep =

Tp
p . The efficiency of an algorithm ranges from 0 to 1, and

is shown for smbinterp in figure 6.

Fig. 6: Efficiency (Ep) of the Parallel Algorithm

The parallelization algorithm employed by the smbinterp li-
brary has near-linear speedup up to approximately 128 partici-
pating minions. It has an efficiency above 90 percent up to 181
participating nodes, but the efficiency drops substantially when
using more minions. If an algorithm does not have an efficiency

of 1, it is usually indicative of communication overhead or bot-
tlenecks of some form. It was observed that the cpu utilization
of the server.py script increased linearly up to 181 minions (CPU
utilization of 200%), but then did not increase past that point. The
implementation of the server.py script represents the bottleneck of
this implementation.

Conclusions

The smbinterp module was developed to provide a high-
performance interpolation library for use in multiphysics simula-
tions. The smbinterp module provides an interpolation for a cloud
of points to an arbitrary order of accuracy. It was shown, via a
mesh resolution study, that the algorithm (and implementation
thereof) provides the the end user with the expected level of
accuracy, i.e. when performing cubic interpolation, the results are
fourth-order accurate, quartic interpolation is fifth-order accurate,
etc.

The smbinterp module was designed to be mesh agnostic.
A plugin system was implemented that allows end users to
conveniently and consistently present their numerical results to
the library for rapid prototyping and integration.

The smbinterp module was designed with parallel computing
environments in mind. The library includes modules that allow
for its use in high-performance computing environments. These
modules were implemented using built-in Python modules to
simplify deployment. This implementation was found to scale
linearly approximately 180 participating compute processes. It is
suggested to replace the queuing mechanism with a more high-
performance queuing library (e.g. ØMQ) and a more advanced
participant partitioning scheme to allow the library to scale past
this point.
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Google App Engine Python
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Abstract—In recent years, one of the fastest growing trends in information
technology has been the move towards cloud computing. The scalable concept
of computing resources on demand allows applications to dynamically react to
increased usage instead of having to keep resources in reserve that are often
not in use but are still paid for. There are several popular entrants into this market
including Google App Engine. Modeled after Google’s own architecture for
building applications, Google App Engine (GAE) provides a scalable solution for
web-based applications and services including data storage, communications,
application deployment and monitoring, and management tools. With GAE,
developers have the option of writing applications using an API exposed to
Python. The same benefits of using Python in other applications are available in
the cloud.

Index Terms—cloud computing, web, google, application development

Overview

To assist developers in writing their applications, GAE provides a
variety of frameworks and services which will be discussed later.
An broad look at the entire application structure is in order first.

GAE can be broken down into three pieces: your application,
the SDK and tools, and the server itself. The application is
configured by a set of files using the YAML ("Yet Another Markup
Language" or the recursive "YAML Ain’t Markup Language")
specification. The main configuration file must be named app.yaml
and contains metadata about the application such as the name of
the application and the version number. The application name must
be unique across all of GAE. Google provides a service to look up
available application names at registration. The application name
will also be a subdomain of appspot.com where the application’s
default version will be. Also in the app.yaml file is a set of
mappings. Both scripts and static content can be mapped to URL
endpoints. There are built-in modules and other options such as
security settings which can be configured in app.yaml as well.

Several important tools are provided by the SDK for GAE.
Primary among these are appcfg and dev_appserver. The appcfg
tool is used to deploy applications to the server based on the
configuration in the app.yaml file. Other functions the appcfg
tool includes are to download the code and server logs for an
application and to manage cron jobs and datastore indexes. The
other important tool is dev_appserver. The dev_appserver tool is a
local development server that emulates the services of GAE. Not
all services are equally emulated. For example, the cron service
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does not run locally. Also, the email service simply dumps a trace
of the message contents to the logs. Two other tools of note are
the bulkloader and remote_api_shell. The bulkloader is useful for
migrating large amounts of existing data to GAE all at one time.
The remote_api_shell provides an interactive Python session with
the live datastore.

The GAE server exposes the API and services that your
application is built upon and is emulated by the local development
server. Among the most important services is the datastore. GAE
also exposes an HTTP stack in webapp. Other services such as the
task queue, federated identity with Google and GMail accounts,
email and XMPP messaging exist.

webapp

The webapp framework is a Python library to handle network
traffic using the HTTP protocol. With webapp, the application de-
fines request handlers that are mapped to endpoints using both the
app.yaml settings as well as a set of URL routes defined within the
request handler itself. Each handler is a class derived from a base
RequestHandler class provided by webapp. The RequestHandler
class primarily defines methods for handling the different HTTP
methods (e.g. get, post). Also within the RequestHandler class are
objects representing the request and response for the current HTTP
transmission so the application can retrieve the URI requested or
the status code and also return data to the caller or redirect to
another resource. When the blobstore is needed, webapp defines
a group of handlers to be used specifically with uploading data to
the blobstore.
from google.appengine.ext import webapp

from google.appengine.ext.webapp import util

class MyHandler(webapp.RequestHandler):
def get(self):

# get data from the datastore,
#render a template ...
self.response.out.write(data)

if __name__ == '__main__':
application =

webapp.WSGIApplication(
[('/.*', MyHandler)]

)
util.run_wsgi_app(application)

Data Storage

GAE gives developers several avenues of data storage. For long
term storage, data is persisted into the datastore and blobstore.
Short term storage is available in the memcache.

The datastore is one of the most prominent services of GAE.
The datastore is intended for structured table storage. While the
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datastore uses tables, it is not a relational database. The non-
relational nature of the the datastore puts it in the category of
"NoSQL" in the opinions of some. Unlike the popular NoSQL
databases MongoDB and CouchDB, the datastore is referred to
as "column oriented". MongoDB and CouchDB are document-
oriented and schema-less and do not define a formal data model
for the documents. The GAE datastore requires a data model but
is more flexible. The tables - or "kinds" to use GAE terms - are
defined by a classes derived from a base Model class from the
db module. This Model class has all of the CRUD (create, read,
update and delete) operations built in. The developer then has
only to define the properties of the kind along with data types, and
options such as if the property is required and its length.
from google.appengine.ext import db

class Product(db.Model):
name = db.StringProperty(required=True)

price = db.FloatProperty(default=0.99)
suppliers = db.StringListProperty()

Please notice the unusual yet useful StringListProperty. The GAE
datastore can have columns that are lists. There is also a ListProp-
erty type for non-string values.

Adding a kind to the datastore needs no preparation from the
developer, other than to define the kind. Simply call the put method
on an instance of the kind and the first time the datastore will take
care of all the housekeeping to define the kind in the datastore.
product = Product()
# initialize required properties
product.put()

While the datastore does require a data model, the model can be
defined or extended after the kind class has been defined. The
Expando class in the db module has this capability.

For querying the datastore, there exists a simple language
called GQL (Google Query Language) that as the name suggests,
is similar to SQL. GQL has several limitations, mainly that it
can only retrieve data. All other operations (insert, update, delete)
must be performed programmatically. Selects can be performed
programmatically as well but GQL provides a simpler way. GQL
also has a few enhancements over SQL such as bound parameters
that are referenced by position or name. The following code
demonstrates this:
db.GqlQuery(

"select * from Product where name = :1",
"Gadget")

db.GqlQuery(
"select * from Product where price <= :price_point",

price_point=1.99)

The datastore also supports indexing. For simple queries, indexes
are constructed by the datastore. Simple queries include those with
only equality comparisons, and those with only one inequality
comparison or one sort orders. Other queries must be defined
manually. These are in another YAML configuration file called
index.yaml. When the index.yaml file is deployed along with
the app, the datastore will examine the definitions and build the
indexes. Progress can be monitored through the online web control
panel for GAE. Manually defining an index is not a lot of work
because if GAE requires an index for a query that has not been
defined, it will return an error along with a suggested definition.
TextProperty and BlobProperty columns cannot be indexed. As
is the case with relational databases, it is best to define indexes
before GAE notices.

A complement to the datastore is the blobstore. The blobstore
is intended to persist unstructured binary data such as images.
A blob has a maximum size of 2 gigabytes. These blobs are
immutable. Once created, blobs can be read or deleted but not
modified. There is also no way to reference a blob from the
datastore. The datastore does support the BlobProperty column
type but that blob is stored in the datastore. The blobstore is
separate. Managing blobs can only be done through the online
control panel for the app. Here the user can view, download and
delete blobs. The only way to get blobs into the datastore is
through a web form. There is experimental support for writing files
to the blob. This would be useful for creating blobs in response to
a cron job or something else that does not require a user to start it.

For short term storage of small values exists the memcache.
Entries in the memcache are simple key/value pairs. Entries stored
in the memcache will eventually expire. By default, GAE keeps
entries as long as there is enough memory. If an application begins
to consume a lot of memory, older entries will be freed to make
room for newer ones. Also, in the event of a system failure, entries
will not be retained as they are stored in memory, not persisted to
disk. Memcache values can be no more than 1MB in size.

Task Management

Most request to GAE should be short lived. There is a 30 second
limit on HTTP requests. In the logs, requests are flagged as
lengthy when they begin to exceed about 500ms. Anything more
than 30 seconds will throw an exception and the request will be
terminated. If a longer running task is needed, an application can
start a background worker. These have a maximum time limit of
10 minutes. Creating a new worker is easy: call a method on
the taskqueue API and pass it the endpoint of the worker along
with an object of any parameters. There does not appear to be a
mechanism using the default method of processing queues to have
a callback method for notification of when a worker is complete.
Using pull queues, an application can take over the method of
processing queues itself. With pull queues there is a REST API so
that the processing can be external to GAE.

If the task requires even more time, it can be handled by
a backend. A backend is a separate GAE instance which has
no constraints on time to run. Furthermore, backends are more
configurable and have access to more resources such as memory
and CPU. For applications using pull queues, tasks can be passed
to a backend. Backends can consume large amounts of resources
so there is an extra charge for them. They are billed in 15
minute increments up until the backend has been idle for 15
minutes. A backend can be resident meaning it must be shut down
explicitly or dynamic meaning it will start in response to code
and shut down after it have been idle for 15 minutes. Neither
seems to have an impact on the hourly rate though. Backends
do not scale automatically as normal GAE instances do. The
number of backends is allocated explicitly in a configuration file
(backends.yaml).

The last method of background processing GAE has is cron
jobs. Cron jobs on GAE work similar to cron jobs on UNIX-based
systems. In GAE, a configuration file named cron.yaml defines
the tasks to be run. The cron.yaml file has entries for the endpoint
of the task and the frequency of the task. The task frequency is
expressed using a format that is more verbose than the UNIX
crontab format but is also easier to interpret. For example to have
a task run every 24 hours:
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"every 24 hours"
is the expression to use in the cron.yaml file. More specific

expressions such as the following are also possible:
"1st tue of november 0:00"
There are two differences to consider when using cron jobs on

GAE. First is that cron jobs do not run in the local development
environment. You can view what jobs are defined and access the
endpoints for them but the schedule will not be followed. Second,
cron jobs always run on the default version of the application. If
you define a cron job in a development version of an app, it will
not be run to avoid conflicts with the default version. Cron jobs
always call endpoints using HTTP GET.

To remove a cron job from an application, remove its entry
from cron.yaml and deploy the application. To remove all jobs
from an application, deploy a cron.yaml without any job entries.

Application Environment

On the server, GAE hosts and serves applications at a subdomain
of appspot.com that is the same as the registered application name
in the app.yaml file. The official version of Python on GAE is
2.5.2. However, experience has shown that using 2.5.4 has no
problems. There have been accounts of applications targeting
2.6 and 2.7 working with the development server. While these
applications might run locally, any code that is specific to the
later versions will not run on GAE. The development environment
makes no attempt to ensure that the supported version of Python
is being used. The Python Standard Library is available with a few
exceptions. First several libraries such as PyYAML and simplejson
have been added. Also, for security reasons, there are libraries
which are not allowed such as marshal and socket. Importing these
libraries will not cause an exception but import nothing so is the
equivalent of a null operation. Any pure Python code that does not
have dependencies on C extensions within the constraints above
will run on GAE.

The SDK has versions for Windows, Mac OS X and Linux.
On Windows and OS X there is a GUI launcher to access some
of the command line tools. The launcher is helpful if more than
one version of Python is running on the machine. The launcher
has a setting to specify the location of Python to use with GAE
on the development server. The development server also gives a
console in the web control panel to run Python statements against
the currently running application. The GAE SDK is also open
source although modifying the source code will most likely result
in an application which will fail to run correctly on the remote
server.

Other Notable Features

GAE has a number of unique features that are outside the scope of
this paper. The following are a few that deserve to be mentioned.
First, it is worth knowing that there are two other languages
supported by GAE, Java and Go. Go is a programming language
developed by Google and described as a hybrid between C++
and Python. Go is experimental at the time of this writing. The
features between the Python and Java runtimes are close to being
identical. Python has a small lead as it was the first language for
GAE. GAE also supports federated identity using Google accounts
so anyone with a GMail or Google account can be authenticated
using GAE with only a few lines of code. Also included with
GAE is a profiling package called AppStats. Using this tool, very
detailed timelines about the requests the application processes

can be analyzed. The call stacks are also recorded and can be
navigated through a web-based interface. AppStats works on both
the remote server and local development environments. Finally, a
new experimental library called ProtoRPC was recently added to
the SDK. ProtoRPC simplifies the workflow for creating REST-
based web services using GAE.

Conclusion

Benefits of using Python on GAE let developers prototype and
develop applications in the cloud using familiar web technologies.
A notable benefit is that GAE will support a free quota to test
applications on the server before enabling billing. In addition,
GAE integrates very well with the Python libraries for GData
to access services such as Google Finance, Google Spreadsheets,
Google Sites, and Picasa. Finally, there are several maintained
application frameworks running on top of GAE that extend its
functionality.

Google App Engine is a very thorough platform with many
features. This paper has discussed only a few of them. To get
more information, the reader is encouraged to visit http://code.
google.com/appengine to register for a free developer account, get
the documentation, SDK and sample code as well as information
about the new pricing model for later this year when GAE leaves
beta.
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Abstract—We introduce the new time series analysis features of scik-
its.statsmodels. This includes descriptive statistics, statistical tests and sev-
eral linear model classes, autoregressive, AR, autoregressive moving-average,
ARMA, and vector autoregressive models VAR.

Index Terms—time series analysis, statistics, econometrics, AR, ARMA, VAR,
GLSAR, filtering, benchmarking

Introduction

Statsmodels is a Python package that provides a complement to
SciPy for statistical computations including descriptive statistics
and estimation of statistical models. Beside the initial models, lin-
ear regression, robust linear models, generalized linear models and
models for discrete data, the latest release of scikits.statsmodels
includes some basic tools and models for time series analysis.
This includes descriptive statistics, statistical tests and several
linear model classes: autoregressive, AR, autoregressive moving-
average, ARMA, and vector autoregressive models VAR. In this
article we would like to introduce and provide an overview of the
new time series analysis features of statsmodels. In the outlook
at the end we point to some extensions and new models that are
under development.

Time series data comprises observations that are ordered along
one dimension, that is time, which imposes specific stochastic
structures on the data. Our current models assume that obser-
vations are continuous, that time is discrete and equally spaced
and that we do not have missing observations. This type of data
is very common in many fields, in economics and finance for
example, national output, labor force, prices, stock market values,
sales volumes, just to name a few.

In the following we briefly discuss some statistical properties
of the estimation with time series data, and then illustrate and
summarize what is currently available in statsmodels.

Ordinary Least Squares (OLS)

The simplest linear model assumes that we observe an endogenous
variable y and a set of regressors or explanatory variables x, where
y and x are linked through a simple linear relationship plus a noise
or error term

yt = xtβ + εt
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In the simplest case, the errors are independently and identically
distributed. Unbiasedness of OLS requires that the regressors and
errors be uncorrelated. If the errors are additionally normally
distributed and the regressors are non-random, then the resulting
OLS or maximum likelihood estimator (MLE) of β is also nor-
mally distributed in small samples. We obtain the same result, if
we consider consider the distributions as conditional on xt when
they are exogenous random variables. So far this is independent
whether t indexes time or any other index of observations.

When we have time series, there are two possible extensions
that come from the intertemporal linkage of observations. In the
first case, past values of the endogenous variable influence the
expectation or distribution of the current endogenous variable, in
the second case the errors εt are correlated over time. If we have
either one case, we can still use OLS or generalized least squares
GLS to get a consistent estimate of the parameters. If we have
both cases at the same time, then OLS is not consistent anymore,
and we need to use a non-linear estimator. This case is essentially
what ARMA does.

Linear Model with autocorrelated error (GLSAR)

This model assumes that the explanatory variables, regressors,
are uncorrelated with the error term. But the error term is an
autoregressive process, i.e.

E(xt ,εt) = 0

εt = a1εt−1 +a2εt−1 + ...+akεt−k

An example will be presented in the next section.

Linear Model with lagged dependent variables (OLS, AR, VAR)

This group of models assume that past dependent variables, yt−i,
are included among the regressors, but that the error term are not
serially correlated

E(εt ,εs) = 0, for t 6= s

yt = a1yt−1 +a2yt−1 + ...+akyt−k + xtβ + εt

Dynamic processes like autoregressive processes depend on ob-
servations in the past. This means that we have to decide what to
do with the initial observations in our sample where we do nnt
observe any past values.

The simplest way is to treat the first observation as fixed, and
analyse our sample starting with the k-th observation. This leads
to conditional least squares or conditional maximum likelihood
estimation. For conditional least squares we can just use OLS to
estimate, adding past endog to the exog. The vector autoregressive
model (VAR) has the same basic statistical structure except that
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we consider now a vector of endogenous variables at each point in
time, and can also be estimated with OLS conditional on the initial
information. (The stochastic structure of VAR is richer, because
we now also need to take into account that there can be contempo-
raneous correlation of the errors, i.e. correlation at the same time
point but across equations, but still uncorrelated across time.) The
second estimation method that is currently available in statsmodels
is maximum likelihood estimation. Following the same approach,
we can use the likelihood function that is conditional on the first
observations. If the errors are normaly distributed, then this is
essentially equivalent to least squares. However, we can easily
extend conditional maximum likelihood to other models, for
example GARCH, linear models with generalized autoregressive
conditional heteroscedasticity, where the variance depends on the
past, or models where the errors follow a non-normal distribution,
for example Student-t distributed which has heavier tails and is
sometimes more appropriate in finance.

The second way to treat the problem of intial conditions is
to model them together with other observations, usually under
the assumption that the process has started far in the past and
that the initial observations are distributed according to the long
run, i.e. stationary, distribution of the observations. This exact
maximum likelihood estimator is implemented in statsmodels
for the autoregressive process in statsmodels.tsa.AR, and for the
ARMA process in statsmodels.tsa.ARMA.

Autoregressive Moving average model (ARMA)

ARMA combines an autoregressive process of the dependent
variable with a error term, moving-average or MA, that includes
the present and a linear combination of past error terms, an
ARMA(p,q) is defined as

E(εt ,εs) = 0, for t 6= s

yt = µ +a1yt−1 + ...+akyt−p + εt +b1εt−1 + ...+bqεt−q

As a simplified notation, this is often expressed in terms of lag-
polynomials as

φ(L)yt = ψ(L)εt

where
φ(L) = 1−a1L1−a2L2− ...−akLp

ψ(L) = 1+b1L1 +b2L2 + ...+bkLq

L is the lag or shift operator, Lixt = xt−i,L0 = 1. This is the same
process that scipy.lfilter uses. Forecasting with ARMA models has
become popular since the 1970’s as Box-Jenkins methodology,
since it often showed better forecast performance than more
complex, structural models.

Using OLS to estimate this process, i.e. regressing yt on past
yt−i, does not provide a consistent estimator. The process can
be consistently estimated using either conditional least squares,
which in this case is a non-linear estimator, or conditional maxi-
mum likelihood or with exact maximum likelihood. The difference
between conditional methods and exact MLE is the same as de-
scribed before. statsmodels provides estimators for both methods
in tsa.ARMA which will be described in more detail below.

Time series analysis is a vast field in econometrics with a
large range of models that extend on the basic linear models with
the assumption of normally distributed errors in many ways, and
provides a range of statistical tests to identify an appropriate model
specification or test the underlying assumptions.

Besides estimation of the main linear time series models,
statsmodels also provides a range of descriptive statistics for
time series data and associated statistical tests. We include an
overview in the next section before describing AR, ARMA and
VAR in more details. Additional results that facilitate the usage
and interpretation of the estimated models, for example impulse
response functions, are also available.

OLS, GLSAR and serial correlation

Suppose we want to model a simple linear model that links the
stock of money in the economy to real GDP and consumer price
index CPI, example in Greene (2003, ch. 12). We import numpy
and statsmodels, load the variables from the example dataset
included in statsmodels, transform the data and fit the model with
OLS:
import numpy as np
import scikits.statsmodels.api as sm
tsa = sm.tsa # as shorthand

mdata = sm.datasets.macrodata.load().data
endog = np.log(mdata['m1'])
exog = np.column_stack([np.log(mdata['realgdp']),

np.log(mdata['cpi'])])
exog = sm.add_constant(exog, prepend=True)

res1 = sm.OLS(endog, exog).fit()

print res1.summary() provides the basic overview of the
regression results. We skip it here to safe on space. The Durbin-
Watson statistic that is included in the summary is very low
indicating that there is a strong autocorrelation in the residuals.
Plotting the residuals shows a similar strong autocorrelation.

As a more formal test we can calculate the autocorrelation, the
Ljung-Box Q-statistic for the test of zero autocorrelation and the
associated p-values:
acf, ci, Q, pvalue = tsa.acf(res1.resid, nlags=4,

confint=95, qstat=True,
unbiased=True)

acf
#array([1., 0.982, 0.948, 0.904, 0.85])
pvalue
#array([3.811e-045, 2.892e-084,

6.949e-120, 2.192e-151])

To see how many autoregressive coefficients might be relevant, we
can also look at the partial autocorrelation coefficients
tsa.pacf(res1.resid, nlags=4)
#array([1., 0.982, -0.497, -0.062, -0.227])

Similar regression diagnostics, for example for heteroscedastic-
ity, are available in statsmodels.stats.diagnostic. Details on these
functions and their options can be found in the documentation and
docstrings.

The strong autocorrelation indicates that either our model is
misspecified or there is strong autocorrelation in the errors. If we
assume that the second is correct, then we can estimate the model
with GLSAR. As an example, let us assume we consider four lags
in the autoregressive error.
mod2 = sm.GLSAR(endog, exog, rho=4)
res2 = mod2.iterative_fit()

iterative_fit alternates between estimating the autoregressive pro-
cess of the error term using tsa.yule_walker, and feasible sm.GLS.
Looking at the estimation results shows two things, the parameter
estimates are very different between OLS and GLS, and the
autocorrelation in the residual is close to a random walk:
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res1.params
#array([-1.502, 0.43 , 0.886])
res2.params
#array([-0.015, 0.01 , 0.034])

mod2.rho
#array([ 1.009, -0.003, 0.015, -0.028])

This indicates that the short run and long run dynamics might be
very different and that we should consider a richer dynamic model,
and that the variables might not be stationary and that there might
be unit roots.

Stationarity, Unit Roots and Cointegration

Loosely speaking, stationarity means here that the mean, variance
and intertemporal correlation structure remains constant over time.
Non-stationarities can either come from deterministic changes like
trend or seasonal fluctuations, or the stochastic properties of the
process, if for example the autoregressive process has a unit root,
that is one of the roots of the lag polynomial is on the unit circle.
In the first case, we can remove the deterministic component by
detrending or deseasonalization. In the second case we can take
first differences of the process,

Differencing is a common approach in the Box-Jenkins
methodology and gives rise to ARIMA, where the I stands for
integrated processes, which are made stationary by differencing.
This lead to a large literature in econometrics on unit-root testing
that tries to distinguish deterministic trends from unit roots or
stochastic trends. statsmodels provides the augmented Dickey-
Fuller test. Monte Carlo studies have shown that it is often the
most powerful of all unit roots test.

To illustrate the results, we just show two results. Testing the
log of the stock of money with a null hypothesis of unit roots
against an alternative of stationarity around a linear trend, shows
an adf-statistic of -1.5 and a p-value of 0.8, so we are far away
from rejecting the unit root hypothesis:
tsa.adfuller(endog, regression="ct")[:2]
(-1.561, 0.807)

If we test the differenced series, that is the growth rate of
moneystock, with a Null hypothesis of Random Walk with drift,
then we can strongly reject the hypothesis that the growth rate has
a unit root (p-value 0.0002)
tsa.adfuller(np.diff(endog), regression="c")[:2]
(-4.451, 0.00024)

ARMA processes and data

The identification for ARIMA(p,d,q) processes, especially choos-
ing the number of lagged terms, p and q, to include, remains
partially an art. One recommendation in the Box-Jenkins method-
ology is to look at the pattern in the autocorrelation (acf) and
partial autocorrelation (pacf) functions

scikits.statsmodels.tsa.arima_process contains a class
that provides several properties of ARMA processes
and a random process generator. As an example,
statsmodels/examples/tsa/arma_plots.py can be used to plot
autocorrelation and partial autocorrelation functions for different
ARMA models.

This allows easy comparison of the theoretical properties of
an ARMA process with their empirical counterparts. For example,
define the lag coefficients for an ARMA(2,2) process, generate a
random process and compare observed and theoretical pacf:

Fig. 1: ACF and PACF for ARMA(p,q) This illustrated that the pacf
is zero after p terms for AR(p) processes and the acf is zero after q
terms for MA(q) processes.

import scikits.statsmodels.tsa.arima_process as tsp
ar = np.r_[1., -0.5, -0.2]; ma = np.r_[1., 0.2, -0.2]
np.random.seed(123)
x = tsp.arma_generate_sample(ar, ma, 20000, burnin=1000)
sm.tsa.pacf(x, 5)
array([1., 0.675, -0.053, 0.138, -0.018, 0.038])

ap = tsp.ArmaProcess(ar, ma)
ap.pacf(5)
array([1., 0.666, -0.035, 0.137, -0.034, 0.034])

We can see that they are very close in a large gener-
ated sample like this. ArmaProcess defines several additional
methods that calculate properties of ARMA processes and to
work with lag-polynomials: acf, acovf, ar, ar_roots, arcoefs,
arma2ar, arma2ma, arpoly, from_coeffs, from_estimation, gener-
ate_sample, impulse_response, invertroots, isinvertible, isstation-
ary, ma, ma_roots, macoefs, mapoly, nobs, pacf, periodogram. The
sandbox has a FFT version of some of this to look at the frequency
domain properties.

ARMA Modeling

Statsmodels provides several helpful routines and models for
working Autoregressive Moving Average (ARMA) time-series
models, including simulation and estimation code. For example,
after importing arima_process as ap from scikits.statsmodels.tsa
we can simulate a series1

>>> ar_coef = [1, .75, -.25]
>>> ma_coef = [1, -.5]
>>> nobs = 100
>>> y = ap.arma_generate_sample(ar_coef,
... ma_coef, nobs)
>>> y += 4 # add in constant

We can then estimate an ARMA model of the series
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>>> mod = tsa.ARMA(y)
>>> res = arma_mod.fit(order=(2,1), trend='c',
... method='css-mle', disp=-1)
>>> arma_res.params
array([ 4.0092, -0.7747, 0.2062, -0.5563])

The estimation method, ’css-mle’, indicates that the starting pa-
rameters from the optimization are to be obtained from the con-
ditional sum of squares estimator and then the exact likelihood is
optimized. The exact likelihood is implemented using the Kalman
Filter.

Filtering

We have recently implemented several filters that are commonly
used in economics and finance applications. The three most popu-
lar method are the Hodrick-Prescott, the Baxter-King filter, and the
Christiano-Fitzgerald. These can all be viewed as approximations
of the ideal band-pass filter; however, discussion of the ideal band-
pass filter is beyond the scope of this paper. We will [briefly review
the implementation details of each] give an overview of each of
the methods and then present some usage examples.

The Hodrick-Prescott filter was proposed by Hodrick and
Prescott [HPres], though the method itself has been in use across
the sciences since at least 1876 [Stigler]. The idea is to separate a
time-series yt into a trend τt and cyclical compenent ζt

yt = τt +ζt

The components are determined by minimizing the following
quadratic loss function

min
{τt}

T

∑
t

ζ 2
t +λ

T

∑
t=1

[(τt − τt−1)− (τt−1− τt−2)]
2

where τt = yt − ζt and λ is the weight placed on the penalty
for roughness. Hodrick and Prescott suggest using λ = 1600 for
quarterly data. Ravn and Uhlig [RUhlig] suggest λ = 6.25 and
λ = 129600 for annual and monthly data, respectively. While
there are numerous methods for solving the loss function, our
implementation uses scipy.sparse.linalg.spsolve to find the solu-
tion to the generalized ridge-regression suggested in Danthine and
Girardine [DGirard].

Baxter and King [BKing] propose an approximate band-pass
filter that deals explicitly with the periodicity of the business cycle.
By applying their band-pass filter to a time-series yt , they produce
a series y∗t that does not contain fluctuations at frequencies higher
or lower than those of the business cycle. Specifically, in the
time domain the Baxter-King filter takes the form of a symmetric
moving average

y∗t =
K

∑
k=−K

akyt−k

where ak = a−k for symmetry and ∑K
k=−K ak = 0 such that the

filter has trend elimination properties. That is, series that contain
quadratic deterministic trends or stochastic processes that are
integrated of order 1 or 2 are rendered stationary by application of
the filter. The filter weights ak are given as follows

a j = B j +θ for j = 0,±1,±2, . . . ,±K

B0 =
(ω2−ω1)

π

B j =
1

π j
(sin(ω2 j)− sin(ω1 j)) for j = 0,±1,±2, . . . ,±K

where θ is a normalizing constant such that the weights sum to
zero

θ =
−∑ j=−KK b j

2K +1

and

ω1 =
2π
PH

,ω2 =
2π
PL

with the periodicity of the low and high cut-off frequencies given
by PL and PH , respectively. Following Burns and Mitchell’s []
pioneering work which suggests that US business cycles last from
1.5 to 8 years, Baxter and King suggest using PL = 6 and PH =
32 for quarterly data or 1.5 and 8 for annual data. The authors
suggest setting the lead-lag length of the filter K to 12 for quarterly
data. The transformed series will be truncated on either end by K.
Naturally the choice of these parameters depends on the available
sample and the frequency band of interest.

The last filter that we currently provide is that of Christiano
and Fitzgerald [CFitz]. The Christiano-Fitzgerald filter is again
a weighted moving average. However, their filter is asymmetric
about t and operates under the (generally false) assumption that
yt follows a random walk. This assumption allows their filter to
approximate the ideal filter even if the exact time-series model of
yt is not known. The implementation of their filter involves the
calculations of the weights in

y∗t = B0yt +B1yt+1 + · · ·+BT−1−tyT−1 + B̃T−tyT+

B1yt−1 + · · ·+Bt−2y2 + B̃t−1y1

for t = 3,4, ...,T −2, where

B j =
sin( jb)− sin( ja)

π j
, j ≥ 1

B0 =
b−a

π
,a =

2π
Pu

,b =
2π
PL

B̃T−t and B̃t−1 are linear functions of the B j’s, and the values for
t = 1,2,T − 1, and T are also calculated in much the same way.
See the authors’ paper or our code for the details. PU and PL are
as described above with the same interpretation.

Moving on to some examples, the below demonstrates the API
and resultant filtered series for each method. We use series for
unemployment and inflation to demonstrate 2. They are tradi-
tionally thought to have a negative relationship at business cycle
frequencies.

>>> from scipy.signal import lfilter
>>> data = sm.datasets.macrodata.load()
>>> infl = data.data.infl[1:]
>>> # get 4 qtr moving average
>>> infl = lfilter(np.ones(4)/4, 1, infl)[4:]
>>> unemp = data.data.unemp[1:]

To apply the Hodrick-Prescott filter to the data 3, we can do

>>> infl_c, infl_t = tsa.filters.hpfilter(infl)
>>> unemp_c, unemp_t = tsa.filters.hpfilter(unemp)

The Baxter-King filter 4 is applied as

>>> infl_c = tsa.filters.bkfilter(infl)
>>> unemp_c = tsa.filters.bkfilter(unemp)

The Christiano-Fitzgerald filter is similarly applied 5

>>> infl_c, infl_t = tsa.filters.cfilter(infl)
>>> unemp_c, unemp_t = tsa.filters.cfilter(unemp)
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Fig. 2: Unfiltered Inflation and Unemployment Rates 1959Q4-2009Q1

Fig. 3: Unfiltered Inflation and Unemployment Rates 1959Q4-2009Q1

Fig. 4: Unfiltered Inflation and Unemployment Rates 1959Q4-2009Q1

Fig. 5: Unfiltered Inflation and Unemployment Rates 1959Q4-2009Q1

Statistical Benchmarking

We also provide for another frequent need of those who work with
time-series data of varying observational frequency--that of bench-
marking. Benchmarking is a kind of interpolation that involves
creating a high-frequency dataset from a low-frequency one in a
consistent way. The need for benchmarking arises when one has
a low-frequency series that is perhaps annual and is thought to
be reliable, and the researcher also has a higher frequency series
that is perhaps quarterly or monthly. A benchmarked series is a
high-frequency series consistent with the benchmark of the low-
frequency series.

We have implemented Denton’s modified method. Origi-
nally proposed by Denton [Denton] and improved by Cholette
[Cholette]. To take the example of turning an annual series into
a quarterly one, Denton’s method entails finding a benchmarked
series Xt that solves

min
{Xt}

T

∑
t

(
Xt

It
− Xt−1

It−1

)2

subject to
T

∑
t=2

Xt = Ay y = {1, . . . ,β}

That is, the sum of the benchmarked series must equal the annual
benchmark in each year. In the above Ay is the annual benchmark
for year y, It is the high-frequency indicator series, and β is the
last year for which the annual benchmark is available. If T > 4β ,
then extrapolation is performed at the end of the series. To take
an example, given the US monthly industrial production index
and quarterly GDP data, from 2009 and 2010, we can construct a
benchmarked monthly GDP series

>>> iprod_m = np.array([ 87.4510, 86.9878, 85.5359,
84.7761, 83.8658, 83.5261, 84.4347,
85.2174, 85.7983, 86.0163, 86.2137,
86.7197, 87.7492, 87.9129, 88.3915,
88.7051, 89.9025, 89.9970, 90.7919,
90.9898, 91.2427, 91.1385, 91.4039,
92.5646])

>>> gdp_q = np.array([14049.7, 14034.5, 14114.7,
14277.3, 14446.4, 14578.7, 14745.1,
14871.4])
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>>> gdp_m = tsa.interp.dentonm(iprod_m, gdp_q,
freq="qm")

Modeling multiple time series: Vector autoregressive (VAR)
models

It is common in finance, economics, and other fields to model rela-
tionships among multiple time series. For example, an economist
may wish to understand the impact of monetary policy on inflation
and unemployment. A widely used tool for analyzing multiple
time series is the vector autoregressive (VAR) model. At each
time point we observe a K-vector Yt of data points, one for each
time series. These can be modeled similar to an AR process as
above

Yt = A1Yt−1 + . . .+ApYt−p + εt .

In this case, the coefficients Ai are square matrices. As with prior
models, the error εt is typically assumed to be normally distributed
and uncorrelated over time. This model can be estimated by
MLE or equivalently by OLS, either case as a single regression
or by noticing that the model decouples into K separate linear
regressions, one for each time series.

We have recently written a comprehensive implementation of
VAR models on stationary data following [Lütkepohl]. In addition
to estimation, we are also interested in

• Analysis of impulse responses (the effect of a unit shock
to one variable on all of the others)

• Statistical tests: whiteness and normality of residuals,
Granger-causality

• Lag order selection: how many lags Yt−i to include
• Multi-step forecasting and forecast error variance decom-

position

We will illustrate some of the VAR model features on the
macrodata data set in statsmodels. Here is a code snippet to
load the data and fit the model with two lags of the log-differenced
data:

mdata = sm.datasets.macrodata.load().data
mdata = mdata[['realgdp','realcons','realinv']]
names = mdata.dtype.names
data = mdata.view((float,3))
data = np.diff(np.log(data), axis=0)

model = VAR(data, names=names)
res = model.fit(2)

As with most other models in statsmodels, res.summary()
provides a console output summary of the estimated coefficients
and other standard model diagnostics. The data itself can be
visualized by a number of plotting functions:

>>> res.plot_sample_acorr()

Impulse responses can be generated and plotted thusly:

>>> irf = res.irf(10) # 10 periods
>>> irf.plot()

n-step ahead forecasts can similarly be generated and plotted:

>>> res.plot_forecast(5)

The forecast error variance decomposition can also be computed
and plotted like so

>>> res.fevd().plot()

Fig. 6: VAR sample autocorrelation

Fig. 7: VAR impulse response functions

Fig. 8: VAR 5 step ahead forecast
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Fig. 9: VAR Forecast error variance decomposition

Various tests such as testing Granger causality can be carried out
using the results object:

>>> res.test_causality('realinv', 'realcons')
H_0: ['realcons'] do not Granger-cause realinv
Conclusion: reject H_0 at 5.00% significance level
{'conclusion': 'reject',
'crit_value': 3.0112857238108273,
'df': (2, 579),
'pvalue': 3.7842822166888971e-10,
'signif': 0.05,
'statistic': 22.528593566083575}

Obviously we are just providing a flavor of some of the features
available for VAR models. The statsmodels documentation has
a more comprehensive treatment of the feature set. We plan to
continue implementing other related models for multiple time
series, such as the vector error correction models (VECM) for
analyzing cointegrated (non-stationary) time series data. Other
more sophisticated models in the recent time series literature could
also be implemented within the same framework.

Conclusions

statsmodels development over the last few years has been focused
on building correct and tested implementations of the standard
suite of econometric models available in other statistical com-
puting environments, such as R. However, there is still a long
road ahead before Python will be on the same level library-
wise with other computing environments focused on statistics
and econometrics. We believe that, given the wealth of powerful
scientific computing and interactive research tools coupled with
the excellent Python language, statsmodels can make Python
become a premier environment for doing applied statistics and
econometrics work. Future work will need to integrate all of these
tools to create a smooth and intuitive user experience compara-
ble to industry standard commercial and open source statistical
products.

We have built a foundational set of tools for several ubiquitous
classes of time series models which we hope will go a long way
toward meeting the needs of applied statisticians and econometri-
cians programming in Python.

1. Notice that the AR coefficients and MA coefficients, both include a 1 for
the zero lag. Further, the signs on the AR coefficients are reversed versus those
estimated by tsa.ARMA due to the differing conventions of scipy.signal.lfilter.
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Improving efficiency and repeatability of lake volume
estimates using Python
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Abstract—With increasing population and water use demands in Texas, ac-
curate estimates of lake volumes is a critical part of planning for future water
supply needs. Lakes are large and surveying them is expensive in terms of
labor, time and cost. High spatial resolution surveys are prohibitive to conduct,
hence lake are usually surveyed along widely spaced survey lines. While this
choice reduces the time spent in field data collection, it increases the time
required for post processing significantly. Standard spatial interpolation tech-
niques available in commercial software are not well suited to this problem
and a custom procedure was developed using in-house Fortran software. This
procedure involved difficult to repeat manual manipulation of data in graphical
user interfaces, visual interpretation of data and a laborious manually guided
interpolation process. Repeatibility is important since volume differences derived
from multiple surveys of individual reservoirs provides estimates of capacity loss
over time due to sedimentation. Through python scripts that make use of spatial
algorithms and GIS routines available within various Python scientific modules,
we first streamlined our original procedure and then replaced it completely
with a new pure python implementation. In this paper, we compare the original
procedure, the streamlined procedure and our new pure python implementation
with regard to automation, efficiency and repeatability of our lake volumetric
estimates. Applying these techniques to Lake Texana in Texas, we show that
the new pure python implementation reduces data post processing time from
approximately 90 man hours to 8 man hours while improving repeatability and
maintaining accuracy.

Index Terms—gis, spatial interpolation, hydrographic surveying, bathymetry,
lake volume, reservoir volume, anisotropic, inverse distance wieghted, sedimen-
tation

Introduction

With increasing population and water use demands in Texas,
accurate estimates of lake volumes is a critical part of planning for
future water supply needs. In order to correctly manage surface
water supplies for the State of Texas, it is vital that managers
and state water planners have accurate estimates of reservoir
volumes and capacity loss rates due to sedimentation. To address
these issues, in 1991 the Texas Legislature authorized the Texas
Water Development Board (TWDB) to develop a cost-recovery
hydrographic surveying program. The program is charged with
determining reservoir storage capacities, sedimentation levels,
sedimentation rates, and available water supply projections to
benefit Texas. Since its inception, staff in the hydrographic survey
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‡ Texas Water Development Board

Copyright © 2011 Tyler McEwen et al. This is an open-access article dis-
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program have completed more than 125 lake surveys. Included in
each survey report are updated elevation-area-capacity tables and
bathymetric contour maps.

Lakes are large and surveying them is expensive in terms of
labor, time and cost. Over the years, the Texas Water Development
Board (TWDB) has settled on a 500 ft spacing of survey lines
oriented perpendicular to an assumed relic stream channel for
hydrographic data collection as a good balance between survey
effort and level of data coverage. While this choice reduces the
time spent in data collection, it significantly increases the time
needed for post-survey processing. Currently, a typical major
reservoir (greater than 5,000 acre-feet) survey can consume any-
where between 1 to 7 weeks of time in field data collection and 2 to
8 weeks of time in data post-survey processing before a volumetric
estimate is available.

Volumetric estimate algorithms available in commercial soft-
ware are usually based on the Delaunay triangulation method
for actual survey points bounded by digitized lake boundary at
a known elevation. When applied to data collected with widely
spaced survey lines, these techniques tend to underestimate the
true volume of the lake. To overcome this issue, TWDB pre-
conditions the survey point dataset by inserting additional arti-
ficial points in between survey lines and using directional linear
interpolation to estimate the bathymetry at the inserted points.
Delaunay triangulation of the resulting dataset gives a more
accurate estimate of lake volume. This technique makes use of
the assumption that the profile of the lake between each set of
survey lines is similar to that of the survey lines. Figure REF
shows the improvement in the representation of the bathymetry of
the lake that can be obtained by such preconditioning. Previous
surveys have shown that the improved bathymetric representation
of the lake increase volume estimates [Furn08].

While effective in improving volume estimates, this technique
as currently implemented has a number of flaws. Notably, it de-
pends on exact positions of survey points and hence is difficult to
apply repeatibly for repeat surveys of lakes. In addition, it requires
manual visual interpretation and manipulation of data in graphical
user interfaces as well as a laborious guided interpolation process.

Standard TWDB Surveying Technique

TWDB hydrographic surveys are conducted using a boat mounted
single beam multi-frequency (200, 50 and 24 kHz) sub-bottom
profiling sonar echo sounder integrated with differential global
positioning system (DGPS) equipment along preplanned survey
lines. Survey planning, operationally defined here as the spac-
ing and orientation of pre-planned survey lines, is likely to
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Fig. 1: Survey lines used for the 2010 hydrographic survey of Lake
Texana

affect volumetric calculations if there are notable bathymetric
changes between surveyed lines. In many cases, however, reservoir
bathymetry will not be known before the survey, and survey lines
must be planned based on an interpretation of the reservoir shape
in map-view and the presumed location and orientation of the
submerged stream channel. Previous TWDB surveys have been
conducted using lines spaced at from 100 ft to 1000 ft intervals
[TWDB06], [TWDB09], [TWDB09b]. Analyses of these surveys
showed that greater volumes are obtained from surveys conducted
with higher density line spacin. However, with suitable post
processing the lower 500 ft resolution survey density is sufficient
to accurately estimate the volume of the lake [Furn06], [Furn10].

Figure 1 exibits TWDB standard bathymetric survey data
collection along survey lines spaced 500 feet apart and oriented
perpendicular to the assumed location of the submerged river
channel (usually taken to be along the centerline of the lake).
Radial lines are utilized when the shape of the lake and presumed
shape of the submerged river channel curve. Data post processing
is then used to improve the representation of the bathymetry
between survey lines.

Data processing with HydroEdit

Over the years, the TWDB has developed several post processing
routines that have been packaged together in an in-house Fortran
program, HydroEdit. HydroEdit contains modules to integrate boat
GPS and sonar bathymetric data, calculate sediment thicknesses,
extrapolate into regions with no survey data, convert data between

Fig. 2: Example of a single HydroEdit guided interpolation

projected and geographic coordinate systems, merge data files
and generate the preconditioned dataset for volumetric estimates
[Furn06], [Furn08].

One of the primary functions of the Hydroedit is to perform is
to insert extra artificial survey points and interpolate bathymetric
data to those points. Using ArcGIS software, areas of desired inter-
polation from one survey line segment to an adjacent survey line
segment are visually located and their point identification numbers
are manually recorded into a text file along with parameters that
control the number of artificial survey lines to be inserted between
the adjacent survey lines and the density of points to be inserted on
each artificial survey line. HydroEdit then linearly interpolates the
bathymetry from the adjacent survey line segments to the points
on the artificial segments. In addition, HydroEdit allows for more
complicated interpolations for locations where there is evidence
that where a river may curve or double back between survey
lines. These require more complicated procedures that include the
creation and export of a polygon feature in ArcGIS, as well as text
entries in the HydroEdit input file. Figure 2 shows an example of
the visual inspection required for a single HydroEdit interpolation
between adjacent survey line segments. The portion of the input
text file corresponding to this interpolation is as follows:

Section1
53 54 0
Section2
53 79049 79060 3 0
54 78326 78315 3 0

This procedure has to be followed for every pair of adjacent survey
lines in the dataset. In some cases, survey lines must be broken
into multiple segments in order to capture a relic river channel
than may require interpolation in a direction different from the
rest of the transect. This is laborious work and is the cause of the
majority of the time consumed in the data post-survey processing.
The dependance of the technique on 4 individual survey points
on adjacent survey line segments makes the interpolation survey
specific requiring that new input files be created if a lake is
resurveyed. This is both time consuming and prone to parts of the
lake bathymetry being interpolated differently in repeat surveys.
In addition, the technique starts to break down when survey lines
intersect or are at sharp angles to each other. In addition, the
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Fig. 3: Line-automated polygons and polylines for the lower portion
of Lake Texana

density of the inserted artificial interpolated survey points is not
consistent across the lake with some areas of high density and
other areas of no interpolations. This is demonstrated in Figure 6.

Line-automated HydroEdit Using Python

Seeking to improve upon the lengthy and tedious process re-
quired to manually create a HydroEdit input text file, Python was
utilized to automatically generate the HydroEdit input text file
after manually drawing paired interpolation guide-lines in ArcGIS.
This technique was named line-automated HydroEdit and was an
interim step used to improve efficiency without having to abandon
the HydroEdit codebase.

The line-automated HydroEdit algorithm is implemented
through these simplified steps. Initially, the paired interpolation
guide lines are drawn as polyline features and associated attribute
fields are populated in ArcGIS. The attribute fields control inter-
polation options required in the HydroEdit input file. Next, the
density of vertices for the interpolation guide lines is increased
to ensure identification of the intersections with survey points.
The intersection of the paired interpolation guide lines and survey
lines are found efficiently using the KDTree algorithm available
in scipy.spatial. Once the intersection points are identified the
polyline attributes are used along with survey line metadata to
autogenerate the corresponding entries in the HydroEdit input file.
Figure 3 shows examples of paired guide lines used for the Line-
automated HydroEdit interpolation of Lake Texana.

Anisotropic Elliptical Inverse Distance Weighting (AEIDW)

Merwade discusses at length how river channel bed morphology is
anisotropic in that the bathymetric variability is greater transverse
to the flow direction than along the flow direction. In addition,
the direction of this anisotropy is not consistent; it varies with the

orientation of the channel as exhibited by any sinous channel. He
proposes and elliptical inverse distance weighting algorithm that
follows this anisotropy as a simpler and computationally more
efficient technique than anisotropic kriging [Merw06]. AEIDW
involves first transforming the survey point dataset from cartesian
coordinates to a flow oriented s-n coordinate system; Where n
is the perpendicular distance of a point from a defined channel
centerline and s is the distance along the centerline. Looking
downstream points to the left of the centerline are assigned a
positive n and points to the right a negative n, s is always positive.
Since the flow direction is now always along the s coordinate, this
transformation has the effect of removing the variation in direction
of anisotropy.

Inverse Distance Weighting(IDW) is a form of interpolation
the value at a point is approximated by a weighted average of
observed values within an circular search neighborhood, whose
radius is defined by the range of a fixed number of closest points. A
common weighting function is the inverse of the distance squared.
Elliptical Inverse Distance Weighting(EIDW) modifies the search
radius to an ellipse by modifying the distance used in IDW by an
elliptical measure of distance. By orienting the mmajor axis of this
ellipse along the s axis where the topographic variability is lower,
a point along the direction of flow will have greater predictive
control at the point of interest than one transverse to flow at the
same distance.

To increase the computational efficiency of the algorithm,
rather than calculate the elliptical measure of distance, we multiply
the n coordinates of the transformed dataset by the inverse of the
ellipse’s eccentricity. This trick along with the use of a KDTree
to find the points within the search radius make the python
implementation of AIEDW significantly faster than regular IDW
interpolation algorithms in commerical packages.

Applying AEIDW to a Lake

The AEIDW python implementation was originally designed to
generate bathymetric representations of river channels. For lakes,
the technique is by segmenting the lake and applying AEIDW to
each segment. For each lake segment a centerline polyline and a
bounding polygon is drawn in ArcGIS. In practice, a segment
is drawn for the original river channel, the main stem of the
lake and each of the secondary stems. A high resolution grid of
artificial survey points is generated that covers the entire lake. A
python script cycles through the segments and applies AEIDW
based on the segment centerline and interpolates data survey lines
to artificial survey points that lie within the segment bounding
polygon. Figure 4 shows the polygons and associated polylines
for the lower portion of Lake Texana.

Lake Texana

The Palmetto Bend Dam was completed in 1979, impounding
the Navidad River and creating Lake Texana [TWDB74]. At
approximately 9,727 acres, Lake Texana is a small to medium
major reservoir in Texas; the minimum acreage of major reservoirs
in Texas is 5,000 acres.

TWDB collected bathymetric data for Lake Texana between
January 12 and March 4, 2010. The daily average water surface
elevations during that time ranged between 43.89 and 44.06 feet
above mean sea level (NGVD29). During the survey, team mbers
collected nearly 244,000 individual data points over cross-sections
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Fig. 4: AEIDW segment polygons and centerline polylines for the
lower portion of Lake Texana

Fig. 5: USGS topographic map with delineated stream channel (A)
and TWDB delineation of USGS stream channel of Lake Texana

totaling approximately 160 miles in length. Figure 2 shows where
data collection occurred during the survey.

Figure 5 (A) below shows the USGS 24,000 scale topographic
map and USGS delineated stream channel. Figure 5 (B) shows the
TWDB delineation of USGS stream channel. These maps where
used to guide the drawing of the Line-automated HydroEdit guide
lines and the AIDW river centerline. This type of information is
alwailable for some lakes in Texas, but not all.

Results

As a baseline for comparison, using HydroEdit, Lake Texana
had approximately 3050 manually entered interpolations requiring

approximately 90 man hours to complete. The overall increase
in the estimated volume due to this post processing was 3.11%.
In comparing methods,first we look at density and distribution of
artificial survey points in the three methods. As can be seen from
Figure 6, both the HydroEdit and the Line-automated HydroEdit
methods have inconsistant point density. However much care is
taken, the dependence of the basic HydroEdit technique on pairs of
points on adjacent survey lines inevitably causes large variations in
the artificial survey line density. These means that certain regions
of the lake may not be interpolated well. The AEIDW technique on
the otherhand allows for uniform point density throughout the each
lake segment and allows for increased density in highly variable
areas like near the stream channel.

Fig. 6: Comparison of artificial survey point density

Figures 7, 8 and 9, compare bathymetric contour maps of the
lower, upper part of the lakes and as well as an area of high channel
sinuousity respectively. The comparisons of the lower and upper
regions of the lake show that all three methods capture the major
features of the lake reasonably well. HydroEdit, AEIDW do an
excellent job of delineating the main stem river channel along with
its sinuosity, while line-automated Hydroedit is able to capture the
major features but not the details. This becomes even more evident
when we look at Figure 9, here it can be seen that HydroEdit and
AEIDW are able to correctly connect the deep areas in the original
survey data into the sinous relic stream channel that can be seen
on the USGS topographical maps.

Differences can also be seen between all three methods near
the lake boundaries. This is due to a difference in the current

Fig. 7: Comparison of Interpolation Methods for the lower part of
Lake Texana
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Fig. 8: Comparison of Interpolation Methods for the upper part of
Lake Texana

Fig. 9: Comparison of interpolation methods for a section of Lake
Texana with a sinous channel

omplementations of extrapolations to the shore between the three
methods and does not effect the volume estimates significantly.

Analysis shows a 63% reduction of processing time by using
the line-automated HydroEdit method for Lake Texana when
compared to the original HydroEdit method. Using the AEIDW
method resulted in a 91% and 76% reduction of processing
time when when compared to the original HydroEdit and line-
automated Hydroedit methods. A summary and comparison table
is presented in Table 1. The table shows that all three methods
add volume to the lake volumetric estimate. The volume added by
the line-automated HydroEdit method is lower probably due to it
not capturing much of the sinousity of the relic stream channel.
The remaining variance between AIEDW and HydroEdit can be

Interpolation Method Volume
(acre-feet)

Increase in
Lake Volume

Hours for
completion

Delaunay Triangulation 156,283 <--> 0
HydroEdit 161,139 3.27% 90
Line-automated
HydroEdit

159,845 2.28% 33

AEIDW (eccentric-
ity=1/25)

161,693 3.46% 8

TABLE 1: Comparison of interpolation methods.

explained by differences in the way boundaries have been handled.

Conclusions

The pure python AEIDW method for estimating lake volumes
shows a drastic increase in post-survey processing efficiency
when compared to both the original HydroEdit method and
the line-automated HydroEdit. In addition, the new technique
is completely independant of the exact survey line locations,
being defined completely by a best available description of lake
morphology. This enhances the efficieny and accuracy of volume
estimates of repeat surveys of the same lake, thus also improving
sedimentation rate analyses.

The original HydroEdit fortran codebase ran over 10,000 lines
of code (loc). by using available scientific, GIS and file handling
modules available in Python the new suite of python tools being
used for lake hydrographic survey analysis runs less than 1000
loc, besides being much easier for new staff to pick. This order
of magnitude reduction in code complexity has allowed the the
TWDB hydrosurvey program to rapidly innovate new techniques
to improve the efficieny and accuracy of lake hydrographic sur-
veys.
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