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Abstract

Air pollution is a pressing ecological issue with significant impacts on both public health and
the environment. Poor air quality is a major contributor to respiratory diseases and is linked
to millions of deaths annually, but many countries cannot afford air monitoring equipment.
This lack of data makes it difficult to assess the health and environmental risks resulting from
pollutant exposure. To address this problem, we present a multimodal model to inexpen-
sively predict air quality levels in densely populated areas. Our research leverages both satel-
lite imagery and meteorological data to create accurate air quality predictions. We sourced
urban and suburban satellite imagery from the National Agriculture Imaging Program, me-
teorological data from Open-Meteo, and air quality data from OpenWeatherMap, to create a
dataset named AQISet. AQISet is publicly available and free to download. The goal was for the
model to implicitly learn spatial features in each image, such as roads, greenery, and bodies
of water, and then combine this info with meteorological data to predict AQI. Using multiple
computer vision techniques, the model was able to predict AQI with a mean absolute error
of 16 AQI and a classification accuracy of 77% based on the EPA’s AQI standards categories.
Our results establish a baseline for AQI prediction from satellite imagery and are a vast im-
provement over state-of-the-art pre-trained general computer vision models.
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1. Introduction
The process of respiration is essential for all living organisms, as it enables them to produce energy.
Consequently, access to clean air is fundamental for life to be sustained. Exposure to air pollution can
lead to a multitude of health issues such as respiratory ailments, cardiovascular diseases, and in severe
cases, death [1].

Despite concerted global efforts to mitigate air pollution in recent decades, a startling statistic from 2019
shows that 99% of the world’s population resides in areas that fail to meet the World Health
Organization’s air quality standards [2]. This alarming situation has led to over 4 million deaths
annually, predominantly in low and middle-income countries, which account for 89% of these fatalities
linked to ambient air pollution.

Air Quality Index (AQI), a metric of air pollution developed by the United States Environmental
Protection Agency (EPA), quantifies air pollution levels [3]. AQI is computed based on measurements of
several pollutants, chiefly particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), ozone (O3), carbon
monoxide (CO), and sulfur dioxide (SO2). These pollutants arise from a variety of sources such as man-
made emissions from fossil fuels, as well as natural sources like smoke from volcanoes and wildfires.

Ground-based air quality monitors are typically used to measure the concentration of each pollutant
over a certain time frame. These devices vary in size, from small household units to medium and large
static monitors strategically positioned around cities, offering continuous data from selected urban
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locations. These types of sensors utilize active measurement
techniques, which use physical or chemical methods to analyze the
air in a given area automatically. These sensors can be extremely
expensive to manufacture and operate, and costs can range from
15,000 dollars to 40,000 dollars per sensor [4]. This high cost poses a
onsiderable challenge to lesser developed regions of the world
where governments may struggle to afford many air quality
monitors to monitor urban and suburban areas adequately.
According to the United Nations International Children’s
Emergency Fund (UNICEF), only about 6% and 24% of children live
within 50km of an air quality monitor in Africa and South America
respectively [5]. The lack of AQI data in developing countries can
lead to unnecessary pollutant exposure and affect regulatory
processes, as authorities struggle to assess pollution levels and take
appropriate actions.

Pollutant Health Risks

Particulate Matter Irritation of airways, aggravated asthma, and
lung cancer.

NO2 Inflammation of airways, worsened cough
reduced lung function, and increased asthma
attacks.

O3 Chest pain, coughing, throat irritation, and
congestion.

CO Headache, nausea, rapid breathing, dizziness,
and confusion.

SO2 Irritation of eyes, nose, throat, and airways,
and aggravation of asthma and emphysema.

Table 1.  Health Risks of Air Pollutants

2. Previous Work
Other scientists have conducted experiments using satellite data to
predict air pollution levels in certain areas. Scheibenreif et al. used
imagery and remote sensing measurements from the European
Space Agency’s Sentinel satellites and a two-stream deep neural
network to predict levels of nitrogen dioxide, one of the major
pollutants in computing the AQI [6]. Rowley et. al built off of this
approach and used the Sentinel satellites along with NO2 ground
monitoring stations to predict levels of NO2, O3, and PM10 [7]. They
also included a fully connected neural network that utilized
additional data such as population and altitude. This project aims to
provide a more general prediction of air quality by directly
predicting the AQI rather than the pollutants that comprise it.

3. Dataset Creation
At the time this research was conducted, there were no publicly
available datasets that included satellite imagery with time, location,
AQI, and meteorological data. To train our model, we compiled our
own dataset, AQISet, by retrieving data from different sources [8].
We started by collecting the most inflexible of the three, satellite
imagery. Since 2002, the US Department of Agriculture has operated
the National Agriculture Imagery Program (NAIP), which collects
high-resolution imagery across the United States from urban and

suburban regions [9]. This data is accessible through Google Earth
Engine, a geospatial analysis program that allows users to write
Python code to export imagery [10]. We gathered longitude and
latitude data for the 100 largest cities in America and then wrote a
script to collect 100 1km by 1km images from each city, each with
1m per pixel resolution. We utilized 25 parallel processes to export
all of the imagery. Since the NAIP dataset did not have complete
coverage of all the areas we targeted, only 7,621 images were
gathered out of an attempted 10,000, but this amount was still
suitable for our dataset and model. A sample image is below:

Figure 1.  A sample satellite image in AQISet.

Alongside the imagery, we also collected the time and location of
capture for each image so that we could use the timestamp and
coordinates of the images to pair them up with AQI and
meteorological data. The air quality data was retrieved from
OpenWeatherMap, a service that provides global weather and
environmental data via API calls. [11]. However, OpenWeatherMap
provides pollutant concentrations rather than directly providing
AQI values, so we converted the concentrations to AQI in the data
preprocessing. The first step was to convert the units of each
pollutant from 𝜇g/m3 to ppb [12]. The equation is as follows:

𝑀𝐴𝐸 =
𝜇𝑔/𝑚3

12.187𝑀
+ (273.15 + 𝐶) (1)

Where M is the molecular weight of the pollutant and C is the
surface temperature in ◦C. Then, we converted these concentrations
to an AQI value using an equation and a table of breakpoints
provided by the EPA [13]. The equation is as follows [14]:

𝐴𝑄𝐼 =
𝐼ℎ𝑖 − 𝐼𝑙𝑜
𝐶ℎ𝑖 −𝐶𝑙𝑜

(𝐶 − 𝐶𝑙𝑜) + 𝐼𝑙𝑜 (2)

Where C is the pollutant concentration, Chi is the concentration
breakpoint greater than or equal to equal to C, Clo is the breakpoint
less than or equal to C, and Chi and Clo are the corresponding AQI
breakpoints of Chi and Clo respectively.

Finally, the overall AQI is simply the maximum AQI calculated for
each pollutant. These AQI values were paired with each image based
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on time and location. For our meteorological data, we collected four
different factors: wind speed, humidity, temperature, and rain. Rain
was further split up into 3 categories, a sum of precipitation over 24
hours, 8 hours, and 1 hour. A table of their respective effects on AQI
is below.

Weather Factor Effects on AQI

Rain Rain can wash away particulate matter,
cleansing the air.

Temperature Higher temperatures accelerate
photochemical reactions, resulting in more
ground level O3

Humidity Water vapor can serve as nuclei for small
particles, which can result in the formation of
larger particulates.

Wind Speed Higher wind speeds can disperse pollutants
by blowing them away.

Table 2.  Effects of Meteorological Factors on AQI

This data was retrieved via API calls to Open-Meteo [15], a
meteorological data service, and then paired up with each image in a
similar manner to the AQI data.

4. Materials
The model was built in Python 3.11.4 using the PyTorch library for
machine learning. All of the data was processed using the Pandas
library. Smaller testing of the model (less than 5 epochs) was
conducted on Michigan State University’s (MSU) CVLab GPU server,
using 4 Titan V GPUs. Larger tests were run using an NVIDIA V100
Tensor Core GPU from MSU’s High Power Computing Center with
the UNIX command-line interface. The model uses a learning rate of
0.001 and a batch size of 64 images.

5. Methods
Our model is split into two parts: the image network and the tabular
network. The basis of our image network is ResNet-50, a 50-layer
convolutional neural network pre-trained for image classification
tasks [16]. Although our problem is fundamentally that of
regression, the main goal of the image network is to implicitly learn
certain features of an image to produce an accurate prediction such
as the amount of greenery, roads, cars, buildings, and bodies of
water present. These can all affect the overall AQI of an area, and it
is crucial to use a deep network so that it is able to learn these
complex features in the image. We modified ResNet-50 to include an
extra channel of input (which will be discussed later) and increased
its initial convolution kernel size from 7x7 to 8x8 to help the model
capture broader areas of information from the image while
decreasing computational complexity. The output from the modified
ResNet-50 is then passed through three fully connected layers with
Swish activation. We chose to use Swish over other popular
activation functions such as Rectified Linear Unit (ReLU) due to
Swish’s non-linearity, which allows the model to learn complex
relationships between inputs and outputs.

The tabular network is a multilayer perceptron that takes the
amount of rain, humidity, temperature, and wind speed as input.
These four factors were selected due to their direct effect on and
strong correlation with AQI.

Figure 2.  R2 values of various meteorological factors and AQI.

The outputs from the image network and the tabular data network
are then combined, passed through a few more layers - again with
Swish activation - and are eventually narrowed down to a layer with
one neuron which holds the AQI prediction.

Figure 3.  AQINet model architecture.

In the model above, the larger the block, the greater the amount of
neurons in the layer. The blocks decrease in size, effectively
narrowing down the data passed through each layer until there is a
single neuron left.

Before we trained and tested the AQINet model, we had to resolve a
major issue stemming from our dataset: AQI imbalance. AQI values
are not evenly distributed in the real world, and this is reflected in
our dataset as seen below.

Figure 4.  AQI value frequencies in AQISet.

The majority of the AQI values range from 25 to 50 AQI, and this
imbalance will lead our model to simply predict from the small
range of AQI values that are the most frequent. Consequently, the
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model will be rewarded for a majority of its predictions, and will not
learn. There are two methods we took to approach this.

The first method is using upsampling to even out the AQI
distribution by taking more samples of images with infrequent AQIs.
Instead of feeding our model the entire 1000px by 1000px image, we
take N 224x224 patches from the image. N is proportional to the
inverse of our frequency graph so that images with infrequent AQI
are sampled much more than those with common AQI, effectively
evening out AQI distribution in our data.

The second method we use is a weighted loss function to punish the
model more for incorrect guesses on infrequent AQI. We started
with a standard Mean Squared Error (MSE) loss, the square of the
difference between the model’s prediction and the ground truth AQI.
Then, we computed some weight for each AQI, W, to scale our MSE
loss by. W is defined as follows:

𝑊𝑖 = (𝑁(𝜇, 𝜎2) ∗ 𝐹(𝐴𝑖))
−1 (3)

Where N is a Gaussian kernel with 𝜇 mean frequency and 𝜎 2
variance, F is our frequency distribution, and 𝐴𝑖 is the ground truth
AQI for patch i. The asterisk (∗) in the equation represents a
convolution, rather than multiplication. This convolution serves to
smooth our frequency distribution so that our weights are calculated
based on large changes in the frequency rather than small
inconsistencies. This is illustrated in the graph below.

Figure 5.  The smoothed AQI frequency distribution.

After computing this weight, the total loss for an image with n
patches is simply the sum of the weights multiplied by MSE loss:

𝐿𝑜𝑠𝑠 =
𝑘
𝑛
∑
𝑛

𝑖=0
𝑊𝑖(𝑥𝑖 − 𝑦𝑖)

2 (4)

In this equation, k is a scalar applied to the function to prevent the
loss from becoming very small since often W will be significantly
less than 1. A very small loss will adversely affect the training of our
model by diminishing the gradients and slowing down the learning.
Together both the upsampling and weighted loss solve the issue of
data imbalance, and allow the model to predict the full range of AQI
values (0-500).

A minor issue with our dataset arises from the limited variance in
AQI values at each location from which images were sourced. In
each city, the proximity of image capture points—often just a few
kilometers apart—resulted in numerous images from nearby areas
exhibiting identical AQI values since the data would come from the
same sensor. This presents a challenge for our model, as it could lead
to overfitting, with the model erroneously predicting specific AQI
values that frequently appear in the dataset. To address this, we
introduced a range of noise, varying from −5 to +5 AQI, to each
patch taken from an image. We used a Gaussian noise distribution
across all of the patches, ensuring that the mean AQI across the
patches was equivalent to the original AQI. This noise introduction
aims to improve our model’s robustness, ensuring better
generalization when it inevitably encounters new data in testing.

One discernible feature of poor air quality in images is the haziness
or subtle blurring effect caused by dust and other airborne
particulates. To capture this trait, we use a 2D Fourier transform to
transform our RGB image input into the frequency domain, thereby
adding a fourth channel to our image network. The frequency
domain is particularly effective in highlighting the haziness of an
image since it can reflect it in its low-frequency components. We
first converted the RGB image to grayscale by averaging the values
from the red, green, and blue input channels. Then, we normalize
each pixel value to range from 0-1 rather than 0-255 to improve
computational speed. We then treat the pixel values as a stream of
numbers, or a signal. This signal is decomposed into sine and cosine
waves using the Fast Fourier Transform (FFT). The resulting
projected FFT image generally appears darker in areas representing
low frequencies, indicative of smooth transitions over time, and
brighter in areas with high frequencies, corresponding to finer
details in the image. This transformed image is subsequently fed into
the model for analysis. Below are a few examples of these
transformations.

Figure 6.  Imagery and their Fourier transforms. The top image contains haze,
which results in a darker frequency domain. The AQI for the top image is 185,
while the bottom image’s AQI is 52.

6. Results
In testing, AQINet outperforms ResNet-50 in both Mean Absolute
Error and classification accuracy. AQI - more than a 48%
improvement. Classification accuracy was based on whether the
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Figure 7.  AQI MAE for ResNet-50 vs. AQINet.

model could place an image into its corresponding AQI category,
based on the EPA’s table of AQI categories [14].

Figure 8.  Classification Accuracy for ResNet-50 vs. AQINet.

7. Conclusion
This research represents a significant step forward in addressing the
pressing issue of air pollution and its consequences for public
health. By harnessing the power of satellite imagery and
meteorological data, the developed multimodal model, AQINet,
offers an inexpensive solution for predicting air quality levels in
developing areas. This model has shown impressive results,
achieving a mean absolute error of 16 AQI (on a scale from 0-500)
and a classification accuracy of 77%, based on the EPA’s AQI
standards categories.

The ability to predict AQI from satellite imagery has the potential to
revolutionize air quality monitoring, especially in regions with
limited access to expensive air quality sensors. This approach can
provide a cost-effective means of obtaining widespread air quality
data, offering substantial benefits for both researchers and
policymakers.

Alongside AQINet, we also presented AQISet, a dataset with over
7600 satellite images paired with their AQI and various
meteorological data from the time and location of capture. This
dataset can help future researchers continue to tackle the issues of
air quality monitoring by developing their own models. AQISet is
publicly available on GitHub [8].

Together, AQINet and AQISet provide a solid foundation for future
endeavors in air quality prediction using remote sensing data.
Further enhancements and refinements of the model could lead to
even more accurate and robust predictions, ultimately contributing

to the improvement of air quality and the well-being of communities
around the world.

I would like to acknowledge Dr. Xiaoming Liu and Dr. Feng Liu for
providing me with a great introduction to computer vision, as well
as the rest of the CV Lab for their help during my research.
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