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Abstract

Nuclear Magnetic Resonance (NMR) is a fundamental tool in chemistry for elucidating the
molecular structure of unidentified substances. The evaluation of 13C NMR spectra can be
challenging due to the numerous factors that affect the peaks and their locations (chemical
shifts). Chemists can use NMR spectroscopy in synthesizing new molecules to confirm the
identity of the molecule produced. Since the NMR spectrum for the molecule does not exist,
the chemists cannot compare their spectra with preexisting spectra to verify their results.
To address this, an algorithm that predicts the chemical shifts of the 13C NMR spectra for
compounds based on their molecular structure emerges as a solution, generating artificial
spectra for comparison with real ones. This paper delineates a method to formulate such an
algorithm using machine learning techniques. Multiple graph neural networks and a classical
neural network underwent training on an NMR database to predict the chemical shifts of the
13C NMR spectra for several molecules. The accuracy of each neural network was tested by
analyzing the difference between the predictions and the actual chemical shift values in the
database using Mean Absolute Error (MAE). Notably, the graph neural networks had a higher
accuracy and precision than the classical neural network. Among them, the Graph Trans-
former Network emerges as the most proficient performer. Chemists can utilize the Graph
Transformer Network model to validate the synthesis of new compounds within a margin of
error of approximately 2.599 ppm.

Keywords Nuclear Magnetic Resonance, Carbon-13, Machine Learning

1. Introduction
Nuclear magnetic resonance (NMR) spectroscopy is an effective technique to deduce the molecular
structure of a chemical compound. The NMR machine produces a spectrum that can be used in the
process of structure elucidation. To predict the molecular structure, the relevant spectral features of the
graph, such as the peak locations (chemical shifts), splitting pattern of the peaks, and the integration of
the peaks, must be extracted and analyzed [1]. Interpreting the meaning behind the spectral features of
the graph can help determine the structure of the molecule as the spectral features are affected by
electron deshielding from electronegative atoms, magnetic anisotropy from pi bonds, and hydrogen
bonding [1]. However, the process of unraveling the spectral features of the NMR spectra based on the
molecular structure of the sample can be complex as there are many factors that affect the peaks of the
NMR spectra. Machine learning algorithms can be used to predict the spectral features of the NMR
spectra of an organic compound based on its chemical structure [2]. The algorithm would learn the
relationship between atoms and bonds in a molecule, and how it affects the NMR spectra of that
molecule. Simple neural network algorithms simplify molecules by encapsulating each atom’s features
within a vector, albeit at the cost of losing significant information about interatomic interactions.
However, a more effective approach to representing molecules for machine learning algorithms emerges
with the utilization of graphs [2]. The graph is composed of nodes, which represent the atoms, that are
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connected by edges, which represent the bonds between atoms. A
graph neural network is a machine learning algorithm that can be
used to simulate a compound by mapping out the molecular
structure of the compound on a graph. Furthermore, they can be
used to predict the chemical shifts of 13C NMR spectra for carbon
compounds more accurately than a classic neural network [2]. The
graph neural network algorithm can help scientists while they are
producing a new compound as they could use the algorithm to
verify if they made the correct compound. Previous studies have
shown that graph neural networks are effective in predicting the
chemical shifts of 13C NMR spectra [2]. In this study, I aim to
further improve the accuracy of the graph neural networks by
introducing novel architectural frameworks that incorporate
comprehensive data from both nodes and edges within each graph.
The algorithm is tested by comparing the actual chemical shift
values of 13C NMR spectra with the predicted chemical shift values
from the algorithm for various carbon compounds. The actual
chemical shift values of the 13C NMR spectra is obtained from the
NMRShiftDb2 database.

2. Methods

2.1. Data Preprocessing

The dataset used in this paper is the NMRShiftDB2 database, which
contains the NMR spectra data for 17,473 unique molecules. Some
molecules have spectral data for 13C NMR spectra, other molecules
have spectral data for 1H NMR spectra, while the rest of them have
spectral data for both 13C NMR and 1H NMR spectra. Since I am
only analyzing 13C NMR spectra, I went through the database and
removed the molecules that do not have data for 13C NMR spectra.
Only 7,304 molecules in the dataset had data for 13C NMR spectra.

Node Feature Data Type

Atomic Number Integer (1-118)

Number of Neighbors Integer

Formal Charge Integer

Hybridization One-hot encoded (sp, sp2, sp3, 
sp3𝑑1, sp3𝑑2)

Aromaticity One-hot encoded (yes, no)

Total Numer of Hydrogens Integer

Number of Radical Electrons Integer

In Ring One-hot encoded (yes, no)

Chirality One-hot encoded (clockwise,
counterclockwise, no)

Table 1.  Node features

Edge Feature Data Type

Bond Type One-hot encoded (single, aromatic, double)

In Ring One-hot encoded (yes, no)

Is Conjugated One-hot encoded (yes, no)

Table 2.  Edge Features

Each molecule in the dataset is represented as a graph to be used by
the different graph neural networks. The nodes of a graph represent
the different atoms in a molecule and the edges of a graph represent
the bonds between each atom in a molecule. Let 𝑒𝑖,𝑗 represent an
edge of a graph where 𝑖 represents the initial node and 𝑗 represents
the terminal node. Since the bonds in a molecule are undirected, the
edges in the graph are also undirected, so 𝑒𝑖,𝑗 = 𝑒𝑗,𝑖. I went through
each bond in the molecule and noted the indices of the atom in the
bond using two 1 × 2 arrays and combined them in one array in the
format, [[i, j], [j, i]]. The edge indices are extracted using the
RDKit Python library by using the SMILES string of each molecule.
The SMILES string encodes the molecular structure of a compound
in a string object for the computer to read it. I combined all the edge
indices in one matrix and stored it in a torch.Tensor object using
the PyTorch Geometric Python library.

Let 𝑛 represent a node in a graph. Each node in a graph has nine
node features stored in a 1 × 9 array. The different node features can
be shown in Table 1. All the node features are extracted using the
RDKit Python library by using the SMILES string of each molecule.
The different node feature arrays for each graph are combined into a
multidimensional matrix torch.Tensor object using the PyTorch
Geometric Python library. Let 𝑁  represent the multidimensional
matrix whose dimensions are the 
(number of atoms in the molecule) × 9. The matrix 𝑁  contains all
the node features in a molecule such that 𝑛 ∈ 𝑁 .

Figure 1.  Example of a Molecular Graph

In Figure 1 the selected node 𝑛1 illustrates an example of a node
feature array with nine elements. The elements refer to the features
in Table 1. The selected edge 𝑒1,2 shows an example of an edge
feature array with three elements and an adjacency list with two 
1 × 2 arrays. The elements in the edge feature array refer to the
features in Table 2. There are two arrays for every edge as they are
undirected. Each node is labeled with a 0 or 1, where 0 represents
the node is not carbon and 1 represents the node is carbon. The
binary values are stored in the mask array.

Let 𝑒 represent an edge in a graph. Each edge in a graph has three
edge features stored in a 1 × 3 array. The different edge features can
be shown in Table 2. All the edge features are extracted using the
RDKit Python library by using the SMILES string of each molecule.
The different edge feature arrays for each graph are combined into a
multidimensional matrix torch.Tensor object using the PyTorch
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Geometric Python library. Let 𝐸 represent the multidimensional
matrix whose dimensions are the 
(number of atoms in the molecule) × 3. The matrix 𝐸 contains all
the edge features in a molecule such that 𝑒 ∈ 𝐸.

While going through the atoms in the molecule, I stored the atom
indices of carbon atoms in an array where the integer 1 indicated
that the atom is carbon and the integer 0 indicated that the atom is
not carbon. These arrays are called masks and it helps the graph
neural networks to identify the nodes that represent the NMR-active
atoms in a molecule. The mask array is stored in a torch.Tensor
object. Let m represent the mask array whose dimensions are the 
1 × (number of atoms in the molecule). After obtaining all the
torch.Tensor objects for a molecule, I created an object for each
graph that combined the torch.Tensor objects for node features,
edge features, edge indices, and masks to be used as input for the
graph neural networks. Figure 1 shows an example of how the
molecules are encoded into graphs where each node and edge
represent the atoms and bonds respectively, and each node is labeled
with a binary mask to determine whether an atom is carbon or not.

2.2. Graph Neural Networks

To predict the chemical shifts of 13C NMR spectra for carbon
compounds, I utilized several different types of graph neural
networks. The graph neural networks take in the graphs of the
different molecules as the input and output an array of the predicted
chemical shifts with size 1 × (number of atoms in the molecule)
for each molecule. The neural networks used Mean Absolute Error
(MAE) to calculate the loss for the chemical shifts by subtracting the
predicted chemical shifts with the actual chemical shifts and taking
the absolute value of the difference. Then, the neural networks find
the average error of all the chemical shifts for every molecule in a
set. The following equation describes how MAE is calculated:

𝐿 =
∑𝑚∈𝐷 ∑𝑦𝑎∈𝑚| 𝑦𝑝 − 𝑦𝑎 |

∑𝑚∈𝐷 ∑𝑦𝑎∈𝑚 𝑎 (1)

where 𝐷 is a set of molecules, 𝑚 is a molecule in the set 𝐷, 𝑦𝑎 is the
actual chemical shift of one atom in the molecule 𝑚, and 𝑦𝑝 is the
predicted chemical shift for that one atom. After each layer in the
graph neural networks, a layer normalization, dropout, and ReLU
function is applied to the data, respectively. The layer normalization
transforms the data to be on a similar scale and is used to stabilize
and speed up the training process [3]. The dropout function
randomly ignores a certain number of nodes in the next layer to
prevent overfitting in the graph neural network [4]. The ReLU
function ensures nonlinearity and prevents the gradients in the
graph neural networks from becoming too small by removing
negative values in the data.

2.3. Graph Transformer Network

One of the graph neural networks used was a Graph Transformer
Network. The Graph Transformer Network is a specific type of
graph neural network that updates the node features of one node
based on the features of its neighboring nodes. The neural network
performs an Equation 2 that combines the node features of one node
with the node features of its neighboring nodes. For the Graph
Transformer Network used in this paper, I took the sum of the node

features of the neighboring nodes. Along with the aggregation
function, the Graph Transformer Network uses a Equation 3 that
performs a dot product with the neighboring node features to
determine which of the neighboring nodes are important for the
chemical shift prediction. The weights for the self-attention
mechanism is learnable and it gets updated as the Graph
Transformer Network is training. In addition to the aggregation
function and self-attention mechanism, the Graph Transformer
Network multiplies more learnable weights to the node being
updated and its neighboring nodes.

The following equation shows how the Graph Transformer Network
updates each node in a graph [5]:

𝑥′𝑖 = 𝑊1𝑥𝑖 + ∑
𝑗∈𝑁(𝑖)

𝛼𝑖,𝑗 ⋅ 𝑊2𝑥𝑗 (2)

where 𝑥𝑖 is the node before being updated, 𝑁(𝑖) is the neighboring
nodes, 𝑎𝑖,𝑗 is the self-attention mechanism, and 𝑊1 & 𝑊2 are the
learnable weights multiplied to each node. The Graph Transformer
Network determines the learnable self-attention mechanism using
the following function [5]:

𝛼𝑖,𝑗 = softmax(
(𝑊3𝑥𝑖)

𝑇 (𝑊2𝑥𝑗)√
𝑑

) (3)

where 𝑥𝑖 is the node before being updated, 𝑥𝑗 is a neighboring node,
and 𝑊3 & 𝑊4 are the learnable weights multiplied to each node in
the self-attention mechanism. The softmax function normalizes the
self-attention mechanisms from all the neighboring nodes to have a
sum of 1. The self-attention mechanism divides by 

√
𝑑 inside the

softmax function to maintain a standard normal distribution by
keeping a variance of 1 and mean of 0.

2.4. Graph Attention Network

One of the other graph neural networks used in this paper is the
Graph Attention Network. The Graph Attention Network is similar
to the Graph Transformer Network, except that it uses different
functions (Equations Equation 4 & Equation 5) to update each node
and calculate the self-attention mechanisms.

The Graph Attention Network uses the following function to update
each node in the graph [5]:

𝑥′𝑖 = 𝛼𝑖,𝑗 ⋅ 𝑊𝑥𝑖 + ∑
𝑗∈𝑁(𝑖)

𝛼𝑖,𝑗 ⋅ 𝑊𝑥𝑗 (4)

where the learnable weights are the same throughout the entire
function instead of the function for the Graph Transformer Network
that uses two different learnable weights. The Graph Attention
Network also applies a dot product to the self-attention mechanism
and the node being updated.

The Graph Attention Network uses the following function to
calculate the self-attention mechanism [5]:

𝛼𝑖,𝑗 =
exp(LeakyReLU(𝑎𝑇 (𝑊𝑥𝑖 | | 𝑊𝑋𝑗 | | 𝑊2𝑒𝑖,𝑗)))

∑𝑘∈𝑁(𝑖) exp(LeakyReLU(𝑎𝑇 (𝑊𝑥𝑖 | | 𝑊𝑋𝑘 | | 𝑊2𝑒𝑖,𝑘)))(5)
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where 𝑒𝑖,𝑗 is the edge feature of the edge connecting nodes 𝑥𝑖 and 
𝑥𝑗 , 𝑊2 is the learnable weights for the edge features, and 𝑎 is the
learnable attention vector that determines the weight of each
neighboring node. The LeakyReLU function has the same
functionality as the ReLU function, but allows for negative values at
a low magnitude [6]. The exp() function is used to normalize the
self-attention mechanisms instead of the softmax function in the
Graph Transformer Network, and gets rid of negative values. The | |
operation in the function concatenates the three arrays.

2.5. Graph Convolution Network

The last graph neural network used in this paper is the Graph
Convolutional Network (GCN). The GCN is different from the Graph
Attention Network and Graph Transformer Network as it does not
have a self-attention mechanism and uses a different function to
update the nodes in a graph. The GCN updates nodes in the graph
using the following function [5]:

𝑥′𝑖 = 𝑊𝑇 ∑
𝑗∈𝑁(𝑖)

(
𝑒𝑖,𝑗

√𝐸𝑖𝐸𝑗
) (6)

where

𝐸𝑖 = 1 + ∑
𝑗∈𝑁(𝑖)

(𝑒𝑖,𝑗) (7)

where 𝑒𝑖,𝑗 is the edge feature of the edge connecting nodes 𝑥𝑖 and 
𝑥𝑗 . The GCN only uses the edge features in the graph and does not
consider the features of the neighboring nodes. The GCN is less
complex than the Graph Attention Network and Graph Transformer
Network as it uses less data from the graph and only has one set of
learnable weights.

2.6. Training, Validation, and Testing

The training, validation, and testing of the graph neural networks
were performed by splitting the dataset into 80, 10, and 10 percent
for the training, validation, and test sets, respectively. Then, the
training, validation, and test sets were split into equal size batches
for the graph neural networks to be trained faster. The graph neural
networks went through one hundred epochs during the training
process, where each epoch iterated through the entire training set
once. In order to ensure that the loss was decreasing, at the end of
each epoch, the graph neural networks went through the validation
set and printed the average loss from the validation set using MAE.
At the end of the one hundred epochs, the graph neural networks
went through the test set and printed the average loss from the test
set using MAE to determine the performance of each graph neural
network.

3. Results and Discussion
The different graph neural networks were tested several times to
determine the graph neural network with the best performance. The
Multi-Layer Perceptron (MLP) is a classical neural network model
that does not use graphs as input [7]. I used the MLP as a
benchmark test for the other graph neural networks to compare the
performance of graph neural networks with regular neural
networks. To assess the neural networks, I ran each neural network

10 times through the training, validation, and test cycle. In each
trial, I randomized the seed for weight initialization to obtain a
range of values for the test loss using MAE (Equation Equation 1).
The results of each neural network can be seen in Table 3. The test
loss values for each neural network represents the average test loss
over the 10 trials, plus or minus the standard deviation. The results
show that the Graph Transformer Network has the best
performance compared to the other neural networks. The average
test loss for the Graph Transformer Network was 2.599 ppm, which
is not better than the existing graph neural networks from previous
works but is close [2]. The loss is significantly low as the 13C NMR
spectra has chemical shift values ranging from 0 ppm to 220 ppm.
The other graph neural networks passed the benchmark test by
having lower average test losses than the Multi-Layer Perceptron
neural network. This proves that graph neural networks are superior
to classic neural networks in predicting the chemical shifts of 13C
NMR spectra for carbon compounds. The difference in test loss
between the Graph Convolutional Network and the other two graph
neural networks shows that the self-attention mechanisms greatly
improve the performance of the graph neural networks. The
increased accuracy of the Graph Transformer Network over the
Graph Attention Network reveals that using more sets of learnable
weights improves the performance of the graph neural network. The
plots in Figure 2, Figure 3, Figure 4, and Figure 5 further
demonstrate the performance of the Graph Transformer Network
over the other neural networks for predicting the chemical shifts of
13C NMR spectra (Figure 2, Figure 3, Figure 4, and Figure 5).

Figure 2.  Performance of Graph Transformer Network

Figure 3.  Performance of Multi-Layer Perceptron

Figure 4.  Performance of Graph Convolutional Network

For plot (a) in Figure 2, Figure 3, Figure 4, and Figure 5, the neural
network is more accurate if the data is closer to the line, 𝑦 = 𝑥
(Figure 2, Figure 3, Figure 4, and Figure 5). The Graph Transformer
Network is the most accurate while the Multi-Layer Perceptron is
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Figure 5.  Performance of Graph Attention Network

the least accurate. Also, the Graph Attention Network is more
accurate than the Graph Convolutional Network. The variance of
the data in the plots in Figure 2, Figure 3, Figure 4, and Figure 5
reveal the preciseness of eachneural network (Figure 2, Figure 3,
Figure 4, and Figure 5). The Graph Transformer Network is the most
precise with 2.74% of its data being outliers, and the Multi-Layer
Perceptron is the least precise with 39.98% of its data being outliers.
The Graph Attention Network is more precise than the Graph
Convolutional Network as 11.91% of the data from the Graph
Attention Network are outliers and 31.76% of the data from the
Graph Convolutional Network are outliers. The test loss numbers in
Table 3 explains the pattern above as the Graph Transformer
Network has the lowest test loss and the Multi-Layer Perceptron has
the highest test loss. The plot (b) in Figure 2, Figure 3, Figure 4, and
Figure 5 shows the accuracy of the neural networks for predicting
the chemical shifts of 13C NMR spectra for molecules with varying 8
amounts of atoms (Figure 2, Figure 3, Figure 4, and Figure 5). The
plot shows that the neural networks can more accurately predict the
chemical shift values of 13C NMR spectra for molecules containing
more atoms. This is due to the increase in data for each molecule as
the atoms increase, causing the neural networks to produce more
accurate predictions.

Neural Network Test Loss (ppm)

Graph Transformer Network 2.599 ± 0.3169

Multi-Layer Perceptron 9.152 ± 2.543

Graph Convolutional Network 8.639 ± 1.619

Graph Attention Network 4.488 ± 1.379

Table 3.  Performance of Neural Networks

4. Conclusion
In this study, I predicted the chemical shifts of 13C NMR spectra for
carbon compounds using neural networks aiming to assist chemists
with confirming the synthesis of new compounds. Leveraging a
database of molecules with the chemical shifts of their associated
13C NMR spectra, I trained and tested the neural networks. These
encompassed three different types of graph neural networks and a
classical neural network to test whether the graph neural networks
can perform better than the classical neural network. I encoded each
molecule in a graph, where the nodes are the atoms of the molecules
and the edges are the bonds between the atoms, as input for the
graph neural networks. I used MAE to evaluate the performance of
each neural network. The Graph Transformer Network had a MAE
of 2.599 ppm, the Multi-Layer Perceptron had a MAE of 9.152 ppm,
the Graph Convolutional Network had a MAE of 8.639 ppm, and the
Graph Attention Network had a MAE of 4.488 ppm. The Graph
Transformer Network had the best accuracy for predicting the

chemical shifts and all three of the graph neural networks
performed better than the classical neural network.

The performance of the Graph Transformer Network is not superior
but is close to the performance of existing methods, which has a
MAE of 1.355 ppm [2]. The model for the Graph Transformer
Network can be used by chemists for verifying the synthesization of
new molecules. The performance of the neural networks can be
improved by training them with a larger database. For future work, I
can test the algorithm for predicting the chemical shifts of other
types of NMR spectra and improve the performance of the graph
neural by utilizing different architectures.
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