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Time-domain EM response of a UXO
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Time-domain EM response of a UXO
UXO

not UXO

timetraditional approach: use inversion to get these and then
classify by comparing L(t) with ordnance library
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Survey and system
UltraTEMA-4 system:

4 transmitters

12 receivers (3-component)

27 time channels

Height above seabed: ~1 m
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Can we classify directly from EM data?

Convolutional neural networks (CNNs)
● Convolutional filters look at spatial / temporal 

features in the data 

Training EM data for UXO classification: 
● Available library of ordnance objects with 

polarizations
● Fast geophysical simulations
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Convolutional Neural Networks (CNNs)

Neural network

Supervised classification problem
provided data with labels, construct a function (network) that outputs labels given input data

predicted

true

Features   Input  
Class 
probabilities

Image 
segmentation

11



Convolutional Neural Networks (CNNs)

How do we translate these things to the UXO classification problem?
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Defining label masks

Magnitude for each transmitter
Sum of 
magnitudes Label mask 

color is different 
for each class
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Application to a line of data
Input features are created by using a sliding window:
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Application to a line of data
Input features are created by using a sliding window:
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Application to a line of data
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Application to a line of data

Single acquisition line with three objects (classification results)
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Training dataset: dipole forward model

7 classes:
● background
● 155 mm
● 105 mm
● 81 mm
● 60 mm
● 40 mm
● clutter

# of realizations:
● Training (multi-class): 400,000
● Validation: 10,000

Randomly assign:
● Target class
● Location
● Orientation
● Noise level: approximate from 

background areas in the field data

3 m 

2.5 x W 
0.5 m

19W - width of the system

1.5 x W



Clutter design

20

Physics-based parameterization of EM 
decay:

9 parameters in total:

1. Estimate values for UXOs in 
ordnance library

2. Define a distance threshold
3. Fill the remaining space with clutter 

objects



Field data - Sequim Bay test site (2022)

● 7 acquisition lines

● Current workflow requires seawater response removed

● Some ISOs present, we used only UXO objects to train (e.g. medium ISO ~ 81mm)
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Get correlated noise using a binary classifier

22get spatially correlated noise from this subset of field data 

object



Classification map (output of CNN)
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Predicted labels vs truth labels - field data

predicted label
ground truth
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Predicted labels vs truth labels - field data

predicted label
ground truth
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● Discriminated clutter



Predicted labels vs truth labels - field data

predicted label
ground truth
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● Discriminated clutter
● Did not miss any UXO



Predicted labels vs truth labels - field data

predicted label
ground truth
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● Discriminated clutter
● Did not miss any UXO
● Classified to closest object in training dataset 



Concluding remarks:

● Key points:
○ image-segmentation architecture
○ clutter design and correlated noise are important

● Some limitations:
○ not trained to handle multiple objects in the same window
○ objects used to generate synthetic data should be close to the objects on the field

● Future work: 
○ explore multi-target scenario (maybe instance segmentation)
○ combining with traditional approach
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Backup slides
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Convolutional neural networks (CNNs)
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Mathematically:



Convolutional Neural Networks (CNNs)

Neural network
predicted

true

Features   Input  

Measure: cross entropy loss

trainable parameters

Class 
probabilities

Training 
define an optimization problem to estimate network parameters
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Convolutional Neural Networks

How do we translate these things to the UXO classification problem?
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Probability layer and classification
probability

point-wise classification according to 
max probability
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eight different classes:

background 155 mm 105mm 81mm 60mm 40mm clutter0 clutter1
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Anomaly detection (binary classifier)
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Anomaly detection (binary classifier)

36get spatially correlated noise from this subset of field data 

object
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main goal: add realistic noise to the multi-class training dataset

Anomaly detection TOI classification

Working with field data: two step workflow



Classification map (probability output) probability
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Divide in cells to get a single probability value per cell:
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Divide in cells to get a single probability value per cell:

Get average probability for cell and assign final label
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average
probabilities

Assign label with highest 
probability: “81 mm”

probability



Blindgrid 2021 
Sequim Bay
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Blindgrid 2021 
Sequim Bay
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Blindgrid 2021 
Sequim Bay
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Predicted labels

● Missed only 1 UXO 
(out of 15)

● 11 out of 16 clutter 
labeled correctly



Clutter design L1 and L2

L3 disk

PCA was helpful to decide whether clutter objects are very close to UXOs:
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