
Open Access | https://doi.org/10.25080/JFYN3740

SciPy 2024
July 8 - July 14, 2024

Proceedings of the 23nd

Python in Science Conference
ISSN: 2575-9752

Funix - The laziest way to build GUI apps in
Python
Forrest Sheng Bao ¹ , Mike Qi ² , Ruixuan Tu ³ , and Erana Wan ⁴

¹ Founder, Textea, Inc., ² Engineer, Textea, Inc., ³ Undergraduate student, Dept. of Computer Sciences,
University of Wisconsin-Madison, ⁴ MS student, Dept. of Computer Science, University of Southern
California

Published Jul 10, 2024

Correspondence to
Forrest Sheng Bao
forrest.bao@gmail.com

Open Access

Copyright © 2024 Bao et al.. This
is an open-access article distrib-
uted under the terms of the
Creative Commons Attribution
4.0 International license, which
enables reusers to distribute,
remix, adapt, and build upon
the material in any medium or
format, so long as attribution is
given to the creator.

Abstract

The rise of machine learning (ML) and artificial intelligence (AI), especially the generative
AI (GenAI), has increased the need for wrapping models or algorithms into GUI apps. For
example, a large language model (LLM) can be accessed through a string-to-string GUI app
with a textbox as the primary input. Most of existing solutions require developers to manually
create widgets and link them to arguments/returns of a function individually. This low-level
process is laborious and usually intrusive. Funix automatically selects widgets based on the
types of the arguments and returns of a function according to the type-to-widget mapping
defined in a theme, e.g., bool to a checkbox. Consequently, an existing Python function
can be turned into a GUI app without any code changes. As a transcompiler, Funix allows
type-to-widget mappings to be defined between any Python type and any React component
and its props, liberating Python developers to the frontend world without needing to know
JavaScript/TypeScript. Funix further leverages features in Python or its ecosystem for building
apps in a more Pythonic, intuitive, and effortless manner. With Funix, a developer can make
it (a functional app) before they (competitors) fake it (in Figma or on a napkin).

Keywords type hints, docstrings, transcompiler, frontend development

1. Introduction
Presenting a model or algorithm as a GUI application is a common need in the scientific and
engineering community. For example, a large language model (LLM) is not accessible to the
general public until it is wrapped with a chat interface, consisting of a text input and a text
output. Since most scientists and engineers are not familiar with frontend development,
which is JavaScript/TypeScript-centric, there have been many solutions based on Python,
one of the most popular programming languages in scientific computing, especially AI.
Examples include ipywidgets, Streamlit, Gradio, Reflex, Dash, and PyWebIO. Most of these
solutions follow the conventional GUI programming philosophy, requiring developers to
manually select widgets from a widget library and associate them with the arguments and
returns of an underlying function, commonly referred to as the “callback function.”

This approach has several drawbacks. First, it is manual and repetitive. A developer needs
to manually create widgets, align them with the signature of the callback function, and
maintain the alignment manually should any of the two changes. Second, the choice of
widgets is limited to those provided by a specific GUI library, as expanding the widget library
requires significant knowledge and effort that the target users are unlikely to possess.
Third, these solutions do not leverage the features of the Python language itself to automate
or streamline the process. For example, most existing solutions require developers to man-
ually specify the labels of widgets, even though such information is often already available
in the Parameters or Args sections of a function’s Docstrings, which are common in Python

July 10, 2024 1 of 22

https://en.wikipedia.org/wiki/Open_access
https://en.wikipedia.org/wiki/Open_access
https://doi.org/10.25080/JFYN3740
mailto:forrest.bao@gmail.com
mailto:forrest.bao@gmail.com
mailto:yazawazier@gmail.com
mailto:yazawazier@gmail.com
mailto:turx2003@gmail.com
mailto:turx2003@gmail.com
mailto:erana@gmail.com
mailto:erana@gmail.com
mailto:forrest.bao@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://ipywidgets.readthedocs.io/en/stable/
https://streamlit.io/
https://www.gradio.app/
https://reflex.dev/
https://dash.plotly.com/
https://www.pyweb.io/
https://numpydoc.readthedocs.io/en/latest/format.html\#params
https://google.github.io/styleguide/pyguide.html\#doc-function-args

Funix - The laziest way to build GUI apps in Python | Bao et al., 2024

hello.py
def hello(your_name: str) -> str:
 return f"Hello, {your_name}."

Program 1. A hello, world! example in Funix. It is an ordinary Python function with nothing special to
Funix. The corresponding GUI app is shown in Figure 1.

Figure 1. The app generated from Program 1 by the command funix hello.py via Funix. Funix can be
installed as simple as pip install funix.

development. As a result, scientific developers, such as geophysicists, neurobiologists, or
machine learning engineers, whose jobs are not building apps, are not able to quickly fire
up apps to present their models, algorithms, or discoveries to the world.

To address these drawbacks, Funix was created to automatically launch apps from existing
Python functions. We observed that the choice of a widget is correlated with the type of the
function’s input/output that it is associated with. For example, a checkbox is only suitable for
Boolean types. Funix automatically selects widgets based on the types of the function’s argu-
ments and returns. In the default theme of Funix, Python native types such as str, bool, and
Literal are mapped to an input box, a checkbox, and a set of radio buttons in the MUI library,
respectively. Common scientific types like pandas.DataFrame and matplotlib.figure.Figure are
mapped to tables (MUI’s DataGrid) and charts (in mpld3). A variable’s type can be specified
via type-hinting, which is a common practice in Python development, or inferred, which
Funix plans to support in the future.

Unlike many of its peers, Funix does not have its own widget library. Any React component
can be bound to a Python type. A type-to-widget mapping can be redefined or created [on-
the-fly](#Supporting a new type on the fly using the new funix type decorator) or via a
reusable [theme](#Defining and using themes). Additionally, the properties (i.e., props) of
the frontend widget can be configured in Python via JSON. In this sense, Python becomes
a surface language for web development. The frontend development world, dominated by

hello.py
import typing # Python native
import ipywidgets # popular UI library

def input_widgets_basic(
 prompt: str = "Who is Oppenheimer?",
 advanced_features: bool = True,
 model: typing.Literal['GPT-3.5', 'GPT-4.0', 'Falcon-7B'] = 'GPT-4.0',
 max_token: range(100, 200, 20) = 140,
 openai_key: ipywidgets.Password = "1234556",
) -> str:
 pass

Program 2. An advanced input widgets example in Funix. The input panel of the corresponding GUI
app is shown in Figure 2. In this example, Funix not only uses Python native types but also types from
ipywidgets, a popular UI library in Jupyter.

July 10, 2024 2 of 22

http://funix.io
https://mui.com/
https://github.com/mpld3/mpld3
https://react.dev/

Funix - The laziest way to build GUI apps in Python | Bao et al., 2024

Figure 2. The input panel of the app generated from Program 2 by Funix, showing a variety of input
widgets.

JavaScript/TypeScript, is now accessible to Python developers who previously couldn’t tap
into it.

The centralized management of appearances using themes is an advantage of Funix over
many of its peers. A theme allows for the automatic launching of apps and ensures consis-
tent GUI appearances across different apps. To change the appearance of an app, simply
select a different theme. For further customization, a theme can be extended using the
popular JSON format. Often, a Funix developer can leverage themes developed by others to
support new types or widgets, similar to how most scientists use LaTeX classes or macros
created by others to properly typeset their papers.

More than a GUI generator, Funix is a transcompiler – a program that translates source
code from one language to another – which generates both the backend and frontend of an
application. Funix wraps the Python function into a Flask app for the backend and generates
React code for the frontend. The two ends communicate via WebSocket.

In addition to types, Funix leverages other features of the Python language and ecosystem
to further automate app building. Docstrings, commonly used in Python, are utilized by
Funix to control the UI appearance. For example, the annotation of an argument in the
Args (Google-style) or Parameters (Numpy-style) section of a docstring is used as the label or
tooltip to explain the argument to the app user. Funix also assigns new meanings to certain

July 10, 2024 3 of 22

https://en.wikipedia.org/wiki/Source-to-source_compiler
https://google.github.io/styleguide/pyguide.html\#doc-function-args
https://numpydoc.readthedocs.io/en/latest/format.html\#params

Funix - The laziest way to build GUI apps in Python | Bao et al., 2024

keywords and types in Python within the context of app building. For instance, global is used
for states and sessions, yield for streaming, and each class becomes a multi-page app where
pages share data via the self variable. These concepts are detailed in Section Section 5.

In summary, Funix has the following cool features for effortless app building in Python:

1. Automatic, type-based GUI generation controlled by themes
2. Exposing any React component to Python developers
3. Leveraging Python’s native features to make app building more intuitive, minimizing

the need to learn new concepts specific to Funix.

2. Motivation: the demand to rapidly launch low-interactivity
and plain-looking apps at scale
When it comes to GUI app development, there is a trade-off between simplicity and versa-
tility. JavaScript/TypeScript-based web frontend frameworks like React, Angular, and Vue.js
offer great versatility. However, their versatility is often beyond the reach of most scientists
and engineers, except for frontend or full-stack developers, and is usually overkill for most
scientific and engineering applications.

As machine learning researchers, we have observed that a significant number of scientific
applications share two common features:

1. The underlying logic is a straightforward input-output process – thus complex inter-
activity, such as dynamically updating an input widget based on user input in another
input widget, is not needed.

2. The app itself is not the end goal but a means to it – thus it is not worthy to spend time
on building the app.

Existing Python-based solutions such as Streamlit or Gradio do a great job addressing the
first feature but are still too complicated for the second one, requiring developers to read
their documentation and add code before an app can be launched. In particular, a developer
needs to manually select and configure widgets and/or link them to the arguments and
returns of a function. This low-level process is laborious. Since versatility is already sacri-
ficed for simplicity in Python-based app building, why not trade it further for even more
simplicity?

Funix pushes simplicity to the extreme. In the Program 1 example above, an app is launched
without requiring any learning or code modification. To achieve this simplicity, Funix
leverages common Python development practices, such as type hints (or type inference) and
docstrings, to save developers from extra work or learning. Funix does not aim to become a
Domain Specific Language (DSL), because it treats the Python programming language itself
(including the typing hint syntax and docstring styles) as a surface language for GUI app
building.

Because Funix is designed for quickly firing up apps that model straightforward input-
output processes, a Funix-generated app consists of two panels: the arguments of the
underlying function on the left, input panel and the Section 5.3 on the right, output panel
(Program 1 and Figure 1). A more complex process can be decomposed into simple input-
output processes and embodied into Section 5.5. The underlying or callback function will
be called after the user plugs in the arguments and click the “Run” button. The result will
be displayed in the output panel.

We would also like to argue that the rise of Generative AI (GenAI) is simplifying GUIs, as
natural languages are becoming a prominent interface between humans and computers.
For example, a text-to-image generation app (Figure 3) only needs a string input and an

July 10, 2024 4 of 22

https://react.dev/
https://angular.dev/
https://vuejs.org/

Funix - The laziest way to build GUI apps in Python | Bao et al., 2024

import openai # pip install openai
import IPython

def dalle(Prompt: str = "a flying cat on a jet plane")
 -> IPython.display.Image:
 client = openai.OpenAI() # defaults to os.environ.get("OPENAI_API_KEY")
 response = client.images.generate(Prompt)
 return response.data[0].url

Program 3. Source code for the Dall-E app in Funix. The corresponding GUI app is shown in Figure 3.

Figure 3. A Dall-E app generated by Funix by simply wrapping OpenAI’s image generation API with a
str-to-Image function. Source code in Program 3.

image output. In this sense, Funix and its Python-based peers will be able to meet many
needs, both in scientific computing and more general applications, in the future.

3. Funix’s default mapping from Python types to React compo-
nents
Like CSS, Funix controls the GUI appearance based on the types. Under the hood, Funix
transcompiles the signature of a function into React code. Currently, Funix depends on the
type hint for every argument or return of a function. In the future, it will support type
inference or tracing.

The default mapping from basic Python types to React components is given in Table 1.
In particular, we leverage the semantics of Literal and List[Literal] for single-choice
and multiple-choice selections. Two apps exhibiting the diversity of widgets are shown in
Figure 2 and Figure 9.

Because Funix is a transcompiler, it leverages multimedia types already defined in
popular Python libraries such as ipywidgets (Jupyter’s input widgets), IPython (Jupyter’s
display system), pandas, and matplotlib. ipywidgets and IPython types are mapped to MUI
components rather than their respective components for being React compatible. Figure 4
illustrates a data-plot-from-tabular-data app that maps a pandas.DataFrame to a table and a
matplotlib.figure.Figure to a chart.

July 10, 2024 5 of 22

Funix - The laziest way to build GUI apps in Python | Bao et al., 2024

Python type As an input (argument) or output (return) Widget

str Input MUI TextField

bool Input MUI Checkbox or Switch

int Input MUI TextField

float Input MUI TextField or Slider

Literal Input MUI RadioGroup if number of elements is below 8; Select otherwise

range Input MUI Slider

List[Literal] Input An array of MUI Checkboxes if the number of elements is below 8;
AutoComplete otherwise

str Output Plain text

bool Output Plain text

int Output Plain text

float Output Plain text

Table 1. Default mapping from basic Python types to components.

Python type As an input (argument) or output (re�
turn)

Widget

ipywidgets.Password Input MUI TextField with type="password"

ipywidgets.Image Input React Dropzone combine with MUI Compo-
nents

ipywidgets.Video Input React Dropzone combine with MUI Compo-
nents

ipywidgets.Audio Input React Dropzone combine with MUI Compo-
nents

ipywidgets.FileUpload Input React Dropzone combine with MUI Compo-
nents

IPython.display.HTML Output Raw HTML

IPython.display.Markdown Output React Markdown

IPython.display.JavaScript Output Raw JavaScript

IPython.display.Image Output MUI CardMedia with component=img

IPython.display.Video Output MUI CardMedia with component=video

IPython.display.Audio Output MUI CardMedia with component=audio

matplotlib.figure.Figure Output mpld3

pandas.DataFrame & pandera.typing.DataFrame Input & Output MUI DataGrid

Table 2. Default mapping from common multimedia/MIME types to components.

4. Customizing the type-to-widget mapping

Note
Introducing a new type-to-widget mapping or modifying an existing one should not be
the job of most Funix users but advanced users or user interface specialists. This is like

July 10, 2024 6 of 22

https://mui.com/material-ui/react-text-field/
https://mui.com/material-ui/react-checkbox/
https://mui.com/material-ui/react-switch/
https://mui.com/material-ui/react-text-field/
https://mui.com/material-ui/react-text-field/
https://mui.com/material-ui/react-slider/
https://mui.com/material-ui/react-radio-button/
https://mui.com/material-ui/react-select/
https://mui.com/material-ui/react-slider/
https://mui.com/material-ui/react-checkbox/
https://mui.com/material-ui/react-autocomplete/
https://mui.com/material-ui/react-text-field/
https://react-dropzone.js.org/
https://react-dropzone.js.org/
https://react-dropzone.js.org/
https://react-dropzone.js.org/
https://github.com/remarkjs/react-markdown
https://mui.com/material-ui/react-card/\#media
https://mui.com/material-ui/react-card/\#media
https://mui.com/material-ui/react-card/\#media
https://mpld3.github.io/
https://mui.com/x/react-data-grid/

Funix - The laziest way to build GUI apps in Python | Bao et al., 2024

import pandas, matplotlib.pyplot
from numpy import arange, log
from numpy.random import random

def table_and_plot(
 df: pandas.DataFrame = pandas.DataFrame({
 "a": arange(500) + random(500)/5,
 "b": random(500)-0.5 + log(arange(500)+1),
 "c": log(arange(500)+1) })
) -> matplotlib.figure.Figure:

 fig = matplotlib.pyplot.figure()
 matplotlib.pyplot.plot(df["a"], df["b"], 'b')
 matplotlib.pyplot.plot(df["a"], df["c"], 'r')

 return fig

Program 4. A Python functions with a pandas.DataFrame input and a matplotlib.figure.Figure output. The
corresponding GUI app is shown in Figure 4. The default values populate the table with random numbers.

Figure 4. A data-plot-from-tablular-data app generated from Program 4 by Funix. The input panel con-
tains a table (pandas.DataFrame) and the output panel contains a chart (matplotlib.figure.Figure). Both the
table and the chart are interactive/editable. As far as we know, no other Python-based solutions supports
editable tables as inputs.

most scientists who write papers in LaTeX do not develop the LaTeX classes or macros
but just use them.

The default mapping from Python types to React components is detailed in the section
above. To expand or modify an existing mapping, Funix provides two approaches: the on-
the-fly, Section 4.1 and the reusable, Section 4.2.

As a transcompiler that generates React code, Funix does not have its own widget library.
Instead, developers can choose any React component on the market (as for now, only some
MUI components are supported.) to use as the widget for a Python type. Additionally, Funix
allows configuring the properties (props) of the frontend widget in Python via JSON. In this
way, Funix bridges the Python world with the frontend world, making Python or JSON the
surface language for React-based frontend development.

4.1. Supporting a new type on the fly using the new_funix_type decorator

Program 5 defines a new type blackout, which a special case (as indicated by the inheritance)
of str and binds it with a widget. Following the convention in the frontend world, Funix
identifies a widget by its module specifier in npm, the de facto package manager in the

July 10, 2024 7 of 22

Funix - The laziest way to build GUI apps in Python | Bao et al., 2024

from funix import new_funix_type
@new_funix_type(
 widget = {
 "widget": "@mui/material/TextField",
 "props": {
 "type": "password",
 "placeholder": "Enter a secret here."
 }
 }
)
class blackout(str):
 def print(self):
 return self + " is the message."

def hoho(x: blackout = "Funix Rocks!") -> str:
 return x.print()

Program 5. An example of introducing a new type, binding it to a widget, and using it.

frontend world. In Program 5, the widget is identified as @mui/material/TextField. Properties
of the widget supported by its library for configuration can be modified in the new_funix_type
decorator as well. As mentioned earlier, this allows a Pythonista to tap into a React compo-
nent without frontend development knowledge.

The on-the-fly approach is only applicable when introducing a new type, e.g., a custom class.
To modify the widget choice for an existing type, a theme must be used.

4.2. Defining and using themes

A type-to-widget mapping can be reused and centralized managed via a theme, which is a
simple JSON file. An example is given in Program 6 below where the Python’s native types
str, int, and float are bound to three widgets. In this exmaple, besides using npm module
specifier, Funix shorthand strings inputbox and slider are also used.

There are two ways to apply a theme: script-wide and function-wide. The script-wide
approach (Program 7) applies a default theme to all functions in a script. The function-wide
approach (Program 8) applies a theme to a specific function. In either case, the theme can
be referred to by a web URL, a local file path, or a name/alias. If no theme is specified, Funix
uses its default theme.

To refer to a theme by its name or alias, it must be imported. The alias can be set when
importing. A theme can be imported from a web URL, a local file path, or a JSON dictionary
defining a theme (Program 9).

{
 "name": "grandma's secret theme", // space and punctuation allowed
 "widgets": {
 "str": "inputbox", // Funix' shorthand, non-parametric
 "int": "slider[0,100,2]", // Funix' shorthand, parametric
 "float": {
 "widget": "@mui/material/Slider",
 // using MUI's widget
 // https://mui.com/material-ui/api/slider
 "props": {
 // config props of the frontend widget
 "min": 0,
 "max": 100,
 "step": 0.1
 }
 }
 }
}

Program 6. An example theme.

July 10, 2024 8 of 22

Funix - The laziest way to build GUI apps in Python | Bao et al., 2024

import funix

funix.set_default_theme("http://example.com/sunset_v2.json") # from web URL

funix.set_default_theme("../../sunset_v2.json") # from local file

funix.set_default_theme("grandma's secret theme") # from a name/alias

Program 7. Three ways to apply a theme script-wide.

import funix

@funix.funix(theme = "http://example.com/sunset.json") # from web URL
def foo():
 pass

@funix.funix(theme = "../../themes/sunset.json") # from local file
def foo():
 pass

@funix.funix(theme = "grandma's secret theme") # from a name/alias
def foo():
 pass

Program 8. Three ways to apply a theme function-wide.

5. Building apps Pythonically
Funix leverages the language features of Python and common practices in Python devel-
opment to make app building in Python more intuitive and efficient.

5.1. Default values as placeholders

Python supports default values for keyword arguments. Funix directly uses them as the
placeholder values for corresponding widgets. For example, default values in Program 2
are prefilled in Figure 2. A more complex example is the pandas.DataFrame initated with numpy
columns in Program 4 are prefilled into the table in Figure 4. In contrast, Funix’ peer solu-
tions require developers to provide the placeholder values the second time in the widget
initiation.

funix.import_theme(
 "http://example.com/my_themes.json", # from web URL
 alias = "my_favorite_theme" # alias is optional
)

funix.import_theme(
 "../../themes/my_themes.json", # from local file
 alias = "my_favorite_theme" # alias is optional
)

theme_json = { # a Funix theme definition
 "name": "grandma's secret theme"
 "widgets" : {
 "range" : "inputbox"
 }
}

funix.import_theme(
 theme_json, # from a JSON theme definition
 alias = "granny's secret theme" # alias is optional
)

Program 9. Three ways to import a theme. Note that theme importing is optional. The only benefit is to
refer to a theme by its name or alias for easy switching.

July 10, 2024 9 of 22

Funix - The laziest way to build GUI apps in Python | Bao et al., 2024

def foo(x: str, y: int) -> str:
 """## What happens when you multiply a string with an integer?

 Try it out below.

 Parameters

 x : str
 A string that you want to repeat.
 y : int
 How many times you want to repeat.

 Examples

 >>> foo("hello ", 3)
 "hello hello hello "
 """
 return x * y

Program 10. An example of a function with a Google-style docstring. The corresponding GUI app is
shown in Figure 5.

5.2. Making use of docstrings

Docstrings are widely used in the Python community. Information in docstrings is often
needed in the GUI of an app. For example, the annotation of each argument can be displayed
as a label or tooltip to explain the meaning of the argument to the app user. Therefore, Funix
automatically incorporates selected information from docstrings into apps, eliminating the
need for developers to manually add it, as required by other solutions.

Different sections of docstrings will be transformed into various types of information on
the frontend. The docstring above the first headed section (e.g., Parameters in Program 10)
will be rendered as Markdown. Argument annotations in the Args section will become
labels in the UI. The Examples section will provide prefilled example values for users to try
out. Funix currently supports only Google-style and Numpy-style docstrings. Supports for
sections beyond Args/Parameters and Examples and styles will be added in the future.

5.3. Output layout in print and return

In Funix, by default, the return value of a function becomes the content of the output
panel. A user can control the layout of the output panel by returning strings, including f-
strings, in Markdown and HTML syntaxes. Markdown and HTML strings must be explicitly
specified as IPython.display.Markdown and IPython.display.HTML, respectively. Otherwise, the

Figure 5. An app with input panel customized by Docstrings.

July 10, 2024 10 of 22

Funix - The laziest way to build GUI apps in Python | Bao et al., 2024

from IPython.display import Markdown, HTML
from typing import Tuple
from funix import funix

@funix(print_to_web=True)
def foo(income: int = 200000, tax_rate: float= 0.45) -> Tuple[Markdown, HTML]:
 print (f"## Here is your tax breakdown: \n")

 tax_table = (
 " | Item | $$$ | \n"
 " | --- | --- | \n"
 f"| Income | {income} | \n"
 f"| Tax | -{tax_rate * income : .3f} | \n"
 f"| Net Income | {income - tax_rate * income : .3f} | \n\n"
)

 return tax_table, "If you have any question, contact IRS."

Program 11. Use print and return to control the output layout. The corresponding GUI app is shown in
Figure 6.

raw strings will be displayed. Since Python supports multiple return values, you can mix
Markdown and HTML strings in the return statement.

Quite often, we need to print out some information before a function reaches its return
statement. The print function, a built-in feature of Python, is frequently used for this pur-
pose. Funix extends this convenience by redirecting the output of print to the output panel
of an app. Printout strings in Markdown or HTML syntax will be automatically rendered
after syntax detection. To avoid conflicting with the default behavior of printing to stdout,
printing to the web needs to be explicitly enabled using a Boolean decorator parameter
print_to_web (See Program 11).

5.4. Streaming based on yield

In the GenAI era, streaming is a common method for returning lengthy text output from an
AI model. Instead of inventing a new mechanism to support streaming, Funix repurposes
the yield keyword in Python to stream a function’s output. The rationale is that return and
yield are highly similar, and return is already used to display the final output in a Funix-
powered app.

Figure 6. An app with output panel customized by print and return. Source code in Program 11.

July 10, 2024 11 of 22

Funix - The laziest way to build GUI apps in Python | Bao et al., 2024

import time

def stream() -> str:
 """
 ## Streaming demo in Funix

 To see it, simply click the "Run" button.
 """
 message = "We the People of the United States, in Order to form a more perfect Union, establish
Justice, insure domestic Tranquility, provide for the common defence, promote the general Welfare, and
secure the Blessings of Liberty to ourselves and our Posterity, do ordain and establish this Constitution
for the United States of America. "

 for i in range(len(message)):
 time.sleep(0.01)
 yield message[0:i]

Program 12. Python keyword yield is repurposed for streaming in Funix. The corresponding GUI app is
shown in Figure 7.

Figure 7. The streaming demo in Funix. Source code in Program 12.

5.5. States, sessions, and multi-page apps

5.5.1. A simple approach by using global:

In Funix, maintaining states is as simple as updating a global variable. By leveraging the
semantics of global variables which are a native feature of the Python language, Funix saves
developers the burden of learning something new in Funix.

A security risk is that there is only one backend server for the Funix app and consequently
a global variable is accessible by all browser sessions of the app. To eliminate this risk,
Funix provides a simple command-line flag -t at the launch of the Funix app to sessionize

from IPython.display import Markdown

secret_word = "funix"
used_letters = [] # a global variable to maintain the state/session

def guess_letter(Enter_a_letter: str) -> Markdown:
 letter = Enter_a_letter # rename
 global used_letters # state/session as global
 used_letters.append(letter)
 answer = "".join([
 (letter if letter in used_letters else "_")
 for letter in secret_word
])
 return f"### Hangman \n `{answer}` \n\n ---- \n ### Used letters \n {', '.join(used_letters)}"

Program 13. A simple Hangman game in Funix that uses the global keyword to maintain the state. This
solution is much shorter than using peer solutions, such as in Gradio.

July 10, 2024 12 of 22

https://www.gradio.app/guides/state-in-blocks

Funix - The laziest way to build GUI apps in Python | Bao et al., 2024

all global variables. If the developer on purpose wants to share the data among different
connections, the -t flag can be omitted.

5.5.2. Multi-page apps from classes:

A special but useful case that requires maintaining states is multi-page apps. A multi-page
app consists of multiple pages or tabs that share the same variable space. Values of variables
set on one page can be accessed on another page.

Without reinventing the wheel, Funix supports this need by turning a Python class into a
multi-page app. Each member function of the class becomes a page of the multi-page app,
and pages can exchange data via the self variable. Specifically, the constructor (__init__)
becomes the landing page of the multi-page app. Since each instance of the class is inde-
pendent, the multi-page app is automatically sessionized for different connections from
browsers without needing to set the -t flag.

Program 14 is a Python class of three member methods, which are turned into three pages
of the GUI app by Funix (Figure 8). The GIF shows that values of self.a set in either the
contructor or updated in the set method can be accessed in the get method. In this approach,
a Funix developer does not need to learn anything new and can easily build a mulit-page
app from the OOP principles they are already familiar with.

from funix import funix_method
from IPython.display import Markdown, HTML

class A:
 @funix_method(print_to_web=True)
 def __init__(self, a: int):
 self.a = a
 print(f"`self.a` has been initialized to {self.a}")

 def set(self, b: int) -> Markdown:
 """Update the value for `self.a`. """
 old_a = self.a
 self.a = b
 return (
 "| var | value |\n"
 "| ----| ------|\n"
 f"| `a` before | {old_a} |\n"
 f"| `a` after | {self.a} |"
)

 def get(self) -> HTML:
 """Check the value of `self.a`. """
 return f"The value of <code>self.a</code> is <i>{self.a}</i>. "

Program 14. A simple multi-page app in Funix leveraging OOP. The corresponding GUI app is shown in
Figure 8.

Figure 8. A multiplage app generated by Funix from a class of three member methods including the
constructor. Source code in Program 14

July 10, 2024 13 of 22

Funix - The laziest way to build GUI apps in Python | Bao et al., 2024

from funix import funix
from typing import Literal, List

@funix(
 widgets={
 "animal": "inputbox",
 "activities": "inputbox",
 }
)
def sentence_builder(
 count: range(2, 21) = 4,
 animal: Literal["cat", "dog", "bird"] = "cat",
 countries: List[Literal["USA", "Japan", "Pakistan"]] = ["USA", "Pakistan"],
 location: Literal["park", "zoo", "road"] = "park",
 activities: List[Literal["ran", "swam", "ate", "slept"]] = ["swam", "slept"],
 in_morning: bool = False
) -> str:
 return f"""The {count} {animal}s from {" and ".join(countries)} went to the {location} where they
{" and ".join(activities)} until the {"morning" if in_morning else "night"}"""

Program 15. The Funix implementation of a sentence builder. The funix decorator overwrites the theme-
based widgets choices of two arguments.

6. The Funix decorators
Although Funix relies on the Python language (including type hints and docstrings) to define
GUI apps, there are still some aspects of an app’s appearance and behavior that remain
uncovered. This is where the @funix decorator comes into play. One example, as mentioned
above (Section 5.3), is redirecting the print output from stdout to the output panel of an app.
Here, we provide a few more examples. For full details on Funix decorators, please refer to
the Funix reference manual.

6.1. Overriding the type-based widget choice

Funix uses types to determine the widgets. However, there may be needs to manually pick
a widget. The @funix dectorator has a widgets parameter for this purpose.

Program 15 is an example to temporarily override the widget choice for two variables
of the types Literal and List[Literal] respectively. The corresponding app (Figure 9) is a
sentence builder. The Funix-based code is much shorter and more human-readable than its
Gradio-based counterpart, thanks to leveraging the Python-native features like automatic
rendering the return strings or default values.

6.2. Automatic re-run triggered by input changes

As mentioned earlier, Funix is suitable for straightforward input-output processes. Such a
process is triggered once when the “Run” button is clicked. This may work for many cases
but in many other cases, we may want the output to be updated following the changes in
the input end automatically. To do so, simply toggle on the autorun parameter in the @funix
decorator. This will activate the “continuously run” checkbox on the input panel.

6.3. Conditional visibility

Although interactivity is not a strong suit of Funix for reasons aforementioned, Funix still
supports some common interactivity features. One of them is “conditional visibility” which
reveal some widgets only when certain conditions are met (Program 17 and Figure 11).

July 10, 2024 14 of 22

http://funix.io
https://www.gradio.app/playground?demo=Sentence_Builder\&code=aW1wb3J0IGdyYWRpbyBhcyBncgoKCmRlZiBzZW50ZW5jZV9idWlsZGVyKHF1YW50aXR5LCBhbmltYWwsIGNvdW50cmllcywgcGxhY2UsIGFjdGl2aXR5X2xpc3QsIG1vcm5pbmcpOgogICAgcmV0dXJuIGYiIiJUaGUge3F1YW50aXR5fSB7YW5pbWFsfXMgZnJvbSB7IiBhbmQgIi5qb2luKGNvdW50cmllcyl9IHdlbnQgdG8gdGhlIHtwbGFjZX0gd2hlcmUgdGhleSB7IiBhbmQgIi5qb2luKGFjdGl2aXR5X2xpc3QpfSB1bnRpbCB0aGUgeyJtb3JuaW5nIiBpZiBtb3JuaW5nIGVsc2UgIm5pZ2h0In0iIiIKCgpkZW1vID0gZ3IuSW50ZXJmYWNlKAogICAgc2VudGVuY2VfYnVpbGRlciwKICAgIFsKICAgICAgICBnci5TbGlkZXIoMiwgMjAsIHZhbHVlPTQsIGxhYmVsPSJDb3VudCIsIGluZm89IkNob29zZSBiZXR3ZWVuIDIgYW5kIDIwIiksCiAgICAgICAgZ3IuRHJvcGRvd24oCiAgICAgICAgICAgIFsiY2F0IiwgImRvZyIsICJiaXJkIl0sIGxhYmVsPSJBbmltYWwiLCBpbmZvPSJXaWxsIGFkZCBtb3JlIGFuaW1hbHMgbGF0ZXIhIgogICAgICAgICksCiAgICAgICAgZ3IuQ2hlY2tib3hHcm91cChbIlVTQSIsICJKYXBhbiIsICJQYWtpc3RhbiJdLCBsYWJlbD0iQ291bnRyaWVzIiwgaW5mbz0iV2hlcmUgYXJlIHRoZXkgZnJvbT8iKSwKICAgICAgICBnci5SYWRpbyhbInBhcmsiLCAiem9vIiwgInJvYWQiXSwgbGFiZWw9IkxvY2F0aW9uIiwgaW5mbz0iV2hlcmUgZGlkIHRoZXkgZ28/IiksCiAgICAgICAgZ3IuRHJvcGRvd24oCiAgICAgICAgICAgIFsicmFuIiwgInN3YW0iLCAiYXRlIiwgInNsZXB0Il0sIHZhbHVlPVsic3dhbSIsICJzbGVwdCJdLCBtdWx0aXNlbGVjdD1UcnVlLCBsYWJlbD0iQWN0aXZpdHkiLCBpbmZvPSJMb3JlbSBpcHN1bSBkb2xvciBzaXQgYW1ldCwgY29uc2VjdGV0dXIgYWRpcGlzY2luZyBlbGl0LiBTZWQgYXVjdG9yLCBuaXNsIGVnZXQgdWx0cmljaWVzIGFsaXF1YW0sIG51bmMgbmlzbCBhbGlxdWV0IG51bmMsIGVnZXQgYWxpcXVhbSBuaXNsIG51bmMgdmVsIG5pc2wuIgogICAgICAgICksCiAgICAgICAgZ3IuQ2hlY2tib3gobGFiZWw9Ik1vcm5pbmciLCBpbmZvPSJEaWQgdGhleSBkbyBpdCBpbiB0aGUgbW9ybmluZz8iKSwKICAgIF0sCiAgICAidGV4dCIsCiAgICBleGFtcGxlcz1bCiAgICAgICAgWzIsICJjYXQiLCBbIkphcGFuIiwgIlBha2lzdGFuIl0sICJwYXJrIiwgWyJhdGUiLCAic3dhbSJdLCBUcnVlXSwKICAgICAgICBbNCwgImRvZyIsIFsiSmFwYW4iXSwgInpvbyIsIFsiYXRlIiwgInN3YW0iXSwgRmFsc2VdLAogICAgICAgIFsxMCwgImJpcmQiLCBbIlVTQSIsICJQYWtpc3RhbiJdLCAicm9hZCIsIFsicmFuIl0sIEZhbHNlXSwKICAgICAgICBbOCwgImNhdCIsIFsiUGFraXN0YW4iXSwgInpvbyIsIFsiYXRlIl0sIFRydWVdLAogICAgXQopCgppZiBfX25hbWVfXyA9PSAiX19tYWluX18iOgogICAgZGVtby5sYXVuY2goKQo=

Funix - The laziest way to build GUI apps in Python | Bao et al., 2024

Figure 9. The sentence builder app in Funix. Source code in Program 15. Gradio-based version here.

6.4. Rate limiting

import matplotlib.pyplot, matplotlib.figure
from ipywidgets import FloatRangeSlider
import numpy
from funix import funix

@funix(autorun=True)
def sine(omega: FloatRangeSlider[0, 4, 0.1]) -> matplotlib.figure.Figure:
 fig = matplotlib.pyplot.figure()
 x = numpy.linspace(0, 20, 200)
 y = numpy.sin(x * omega)
 matplotlib.pyplot.plot(x, y, linewidth=5)
 return fig

Program 16. A sine wave plotter that re-visualizes the function whenever input changes, kept on using
the autorun parameter in @funix decorator. The corresponding GUI app is shown in Figure 10.

Figure 10. A sine wave generator with the autorun parameter toggled on. Source code in Program 16.

July 10, 2024 15 of 22

https://www.gradio.app/playground?demo=Sentence_Builder\&code=aW1wb3J0IGdyYWRpbyBhcyBncgoKCmRlZiBzZW50ZW5jZV9idWlsZGVyKHF1YW50aXR5LCBhbmltYWwsIGNvdW50cmllcywgcGxhY2UsIGFjdGl2aXR5X2xpc3QsIG1vcm5pbmcpOgogICAgcmV0dXJuIGYiIiJUaGUge3F1YW50aXR5fSB7YW5pbWFsfXMgZnJvbSB7IiBhbmQgIi5qb2luKGNvdW50cmllcyl9IHdlbnQgdG8gdGhlIHtwbGFjZX0gd2hlcmUgdGhleSB7IiBhbmQgIi5qb2luKGFjdGl2aXR5X2xpc3QpfSB1bnRpbCB0aGUgeyJtb3JuaW5nIiBpZiBtb3JuaW5nIGVsc2UgIm5pZ2h0In0iIiIKCgpkZW1vID0gZ3IuSW50ZXJmYWNlKAogICAgc2VudGVuY2VfYnVpbGRlciwKICAgIFsKICAgICAgICBnci5TbGlkZXIoMiwgMjAsIHZhbHVlPTQsIGxhYmVsPSJDb3VudCIsIGluZm89IkNob29zZSBiZXR3ZWVuIDIgYW5kIDIwIiksCiAgICAgICAgZ3IuRHJvcGRvd24oCiAgICAgICAgICAgIFsiY2F0IiwgImRvZyIsICJiaXJkIl0sIGxhYmVsPSJBbmltYWwiLCBpbmZvPSJXaWxsIGFkZCBtb3JlIGFuaW1hbHMgbGF0ZXIhIgogICAgICAgICksCiAgICAgICAgZ3IuQ2hlY2tib3hHcm91cChbIlVTQSIsICJKYXBhbiIsICJQYWtpc3RhbiJdLCBsYWJlbD0iQ291bnRyaWVzIiwgaW5mbz0iV2hlcmUgYXJlIHRoZXkgZnJvbT8iKSwKICAgICAgICBnci5SYWRpbyhbInBhcmsiLCAiem9vIiwgInJvYWQiXSwgbGFiZWw9IkxvY2F0aW9uIiwgaW5mbz0iV2hlcmUgZGlkIHRoZXkgZ28/IiksCiAgICAgICAgZ3IuRHJvcGRvd24oCiAgICAgICAgICAgIFsicmFuIiwgInN3YW0iLCAiYXRlIiwgInNsZXB0Il0sIHZhbHVlPVsic3dhbSIsICJzbGVwdCJdLCBtdWx0aXNlbGVjdD1UcnVlLCBsYWJlbD0iQWN0aXZpdHkiLCBpbmZvPSJMb3JlbSBpcHN1bSBkb2xvciBzaXQgYW1ldCwgY29uc2VjdGV0dXIgYWRpcGlzY2luZyBlbGl0LiBTZWQgYXVjdG9yLCBuaXNsIGVnZXQgdWx0cmljaWVzIGFsaXF1YW0sIG51bmMgbmlzbCBhbGlxdWV0IG51bmMsIGVnZXQgYWxpcXVhbSBuaXNsIG51bmMgdmVsIG5pc2wuIgogICAgICAgICksCiAgICAgICAgZ3IuQ2hlY2tib3gobGFiZWw9Ik1vcm5pbmciLCBpbmZvPSJEaWQgdGhleSBkbyBpdCBpbiB0aGUgbW9ybmluZz8iKSwKICAgIF0sCiAgICAidGV4dCIsCiAgICBleGFtcGxlcz1bCiAgICAgICAgWzIsICJjYXQiLCBbIkphcGFuIiwgIlBha2lzdGFuIl0sICJwYXJrIiwgWyJhdGUiLCAic3dhbSJdLCBUcnVlXSwKICAgICAgICBbNCwgImRvZyIsIFsiSmFwYW4iXSwgInpvbyIsIFsiYXRlIiwgInN3YW0iXSwgRmFsc2VdLAogICAgICAgIFsxMCwgImJpcmQiLCBbIlVTQSIsICJQYWtpc3RhbiJdLCAicm9hZCIsIFsicmFuIl0sIEZhbHNlXSwKICAgICAgICBbOCwgImNhdCIsIFsiUGFraXN0YW4iXSwgInpvbyIsIFsiYXRlIl0sIFRydWVdLAogICAgXQopCgppZiBfX25hbWVfXyA9PSAiX19tYWluX18iOgogICAgZGVtby5sYXVuY2goKQo=

Funix - The laziest way to build GUI apps in Python | Bao et al., 2024

import typing
import openai
import funix

@funix.funix(
 conditional_visible=[
 {
 "when": {"show_advanced": True,},
 "show": ["max_tokens", "model", "openai_key"]
 }
]
)
def ChatGPT_advanced(
 prompt: str,
 show_advanced: bool = False,
 model : typing.Literal['gpt-3.5-turbo', 'gpt-3.5-turbo-0301']= 'gpt-3.5-turbo',
 max_tokens: range(100, 200, 20)=140,
 openai_key: str = ""
) -> str:
 completion = openai.ChatCompletion.create(
 messages=[{"role": "user", "content": prompt}],
 model=model,
 max_tokens=max_tokens,
)
 return completion["choices"][0]["message"]["content"]

Program 17. Conditional visibility in @funix decorator. App in action is shown in Figure 11.

Figure 11. An advanced ChatGPT app that only displays advanced options when the show_advanced
checkbox is checked. Source code in Program 17.

July 10, 2024 16 of 22

Funix - The laziest way to build GUI apps in Python | Bao et al., 2024

from funix import funix

def __compute_tax(salary: float, income_tax_rate: float) -> int:
 return salary * income_tax_rate

@funix(
 reactive={"tax": __compute_tax}
)
def after_tax_income_calculator(
 salary: float,
 income_tax_rate: float,
 tax: float) -> str:
 return f"Your take home money is {salary - tax} dollars,\
 for a salary of {salary} dollars, \
 after a {income_tax_rate*100}% income tax."

Program 18. A reactive app.

Figure 12. A reactive app in Funix. Source code in Program 18.

When an app is exposed, a common concern is how to avoid abuses. Rate limiting is a
common measure to this. Funix’s @funix decorator supports rate limiting based on both
browser sessions and time.

6.5. Reactive apps

Funix can dynamically prefill widgets based on information from other widgets. We call this
“reactive.” An example is given in Program 18. The tax argument of the function is populated
automatically based on the values of salary and income_tax_rate as the user enters.

6.6. Showing source code

Lastly, togging on show_source parameter in @funix can enable the source code of your app
to be displayed.

7. Jupyter support
Jupyter is a popular tool for Python development. Funix supports turning a Python function/
class defined in a Jupyter cell into an app inside Jupyter. To do so, simply add the @funix
decorator to the function/class definition and run the cell (Figure 13).

8. Showcases
Lastly, please allow us to use some examples to demonstrate the convenient and power of
Funix in quickly prototyping apps. If there is any frontend knowledge needed, it is only
HTML.

8.1. Wordle

The source code can be found here. In Funix, only simple HTML code that changes the
background colors of tiles of letters according to the rules of the game Wordle is needed. A
GIF showing the game in action is in Figure 14.

July 10, 2024 17 of 22

https://github.com/TexteaInc/funix/blob/develop/examples/games/wordle.py

Funix - The laziest way to build GUI apps in Python | Bao et al., 2024

Figure 13. Funix working in Jupyter.

8.2. ChatGPT multi-turn

Funix does not have a chat widget, because it is so easy (less than 10 lines in Program 19)
to build one using simple alignment controls in HTML. The only thing Funix-specific in the
code is using the @funix decorator to change the arrangement of the input and output panels
from the default left-right to top-down for a more natural chat experience.

Figure 14. The Wordle game implemented in Funix. Source code here.

July 10, 2024 18 of 22

https://github.com/TexteaInc/funix/blob/develop/examples/games/wordle.py

Funix - The laziest way to build GUI apps in Python | Bao et al., 2024

import IPython
from openai import OpenAI
import funix

client = OpenAI()

messages = [] # list of dicts, dict keys: role, content, system. Maintain the conversation history.

def __print_messages_html(messages):
 printout = ""
 for message in messages:
 if message["role"] == "user":
 align, left, name = "left", "0%", "You"
 elif message["role"] == "assistant":
 align, left, name = "right", "30%", "ChatGPT"
 printout += f'<div style="position: relative; left: {left}; width: 70%">{name}:
{message["content"]}</div>'
 return printout

@funix.funix(
 direction="column-reverse",
)
def ChatGPT_multi_turn(current_message: str) -> IPython.display.HTML:
 current_message = current_message.strip()
 messages.append({"role": "user", "content": current_message})
 completion = client.chat.completions.create(messages=messages)
 chatgpt_response = completion.choices[0].message.content
 messages.append({"role": "assistant", "content": chatgpt_response})

 return __print_messages_html(messages)

Program 19. Multiturn chatbot using Funix.

8.3. Multimodal inputs

Funix extends the support to ipywidgets.{Image, Audio, File, Video} to allow drag-and-drop
of multimedia files or push-to-capture audio or video from the computer’s microphone or
webcam.

8.4. Vector stripping in bioinformatics

A vector is a nucleotide sequence that is appended to a nucleotide sequence of interest for
easy handling or quality control. It is added before the sequencing process and should be
removed after the sequence is read. Vector stripping is the process of removing vectors. A
vector stripping app only involves simple data structures, such as strings, lists of strings,
and numeric parameters. This is a sweet spot of Funix.

Because the bioinformatics part of vector stripping is lengthy, we only show the interface
function in Program 21 and the full source code can be found here. pandas.DataFrame’s are
used in both the input and output of this app, allowing biologists to batch process vector
stripping by copy-and-pasting their data to Excel or Google Sheets, or uploading/download-
ing CSV files.

9. Conclusion
In this paper, we introduce the philosophy and features of Funix. Funix is motivated by
the observations in scientific computing that many apps are straightforward input-output
processes and the apps are meant to be disposable at a large volume. Therefore, Funix’
goal is to enable developers, who are experts in their scientific domains but not in frontend
development, to build apps by continue doing what they are doing, without code modifica-
tion or learning anything new. To get this goal, Funix leverages the language features of the
Python language, including docstrings and keywords, to automatically generate the GUIs
for apps and control the behaviors of the app. Funix tries to minimize reinventing the wheel

July 10, 2024 19 of 22

https://github.com/TexteaInc/funix/blob/develop/examples/bioinformatics/vector_strip.py

Funix - The laziest way to build GUI apps in Python | Bao et al., 2024

Figure 15. A multi-turn chatbot in Funix in action. Source code in Program 19.

by being a transcompiler between the Python word and the React world. Not only does it
expose developers to the limitless resources in the frontend world, but it also minimizes
the learning curve. Funix is still a very early-stage project. As an open-source project, we
welcome feedback and contributions from the community.

Acknowledgments

Funix is not the first to exploit variable types for automatical UI generation. Python Fire
by Google is a Python library that automatically generates command line interfaces (CLIs)
from the signatures of Python functions. Funix extends the idea from CLI to GUIs. interact
in ipywidgets infers types from default values of keyword arguments and picks widgets
accordingly. But it only supports five types/widgets (bool, str, int, float, and Dropdown
menus) and is not easy to expand the support. We’d like to thank the developers of these
projects for their inspiration.

July 10, 2024 20 of 22

https://github.com/google/python-fire
https://github.com/google/python-fire
https://ipywidgets.readthedocs.io/en/latest/examples/Using%20Interact.html

Funix - The laziest way to build GUI apps in Python | Bao et al., 2024

import openai
import base64
from ipywidgets import Image

client = openai.OpenAI()

def image_reader(image: Image) -> str:
"""
What's in the image?

Drag and drop an image and see what GPT-4o will say about it.
"""

Based on https://platform.openai.com/docs/guides/vision
with only one line of change
response = client.chat.completions.create(
 model="gpt-4o",
 messages=[
 {
 "role": "user",
 "content": [
 {"type": "text", "text": "What's in this image?"},
 {"type": "image_url",
 "image_url": {
 "url":f"data:image/png;base64,{base64.b64encode(image).decode()}",
 },
 },
],
 }
],
)
return response.choices[0].message.content

Program 20. A multimodal input demo in Funix built by simply wrapping OpenAI’s GPT-4o demo code
into a function with an ipywidgets.Image input and a str output. The corresponding GUI app is shown in
Figure 16.

Figure 16. Funix maps a ipywidgets.{Image, Audio, Video, File}-type arguments to a drag-and-drop file
uploader with push-to-capture ability from the microphone or webcam of the computer. The corresponding
source code is in Program 20.

July 10, 2024 21 of 22

Funix - The laziest way to build GUI apps in Python | Bao et al., 2024

def remove_3_prime_adapter(
 adapter_3_prime: str="TCGTATGCCGTCTTCTGCTT",
 minimal_match_length: int = 8,
 sRNAs: pandas.DataFrame = pandas.DataFrame(
 {
 "sRNAs": [
 "AAGCTCAGGAGGGATAGCGCCTCGTATGCCGTCTTCTGC", # shorter than full 3' adapter
 "AAGCTCAGGAGGGATAGCGCCTCGTATGCCGTCTTCTGCTT", # full 3' adapter
 # additional seq after 3' adapter,
 "AAGCTCAGGAGGGATAGCGCCTCGTATGCCGTCTTCTGCTTCTGAATTAATT",
 "AAGCTCAGGAGGGATAGCGCCTCGTATG", # <8 nt io 3' adapter
 "AAGCTCAGGAGGGATAGCGCCGTATG", # no match at all
]
 }
),
 #) -> pandera.typing.DataFrame[OutputSchema]:
) -> pandas.DataFrame:

 ## THE BODY HIDDEN

 return pandas.DataFrame(
 {"original sRNA": sRNAs["sRNAs"], "adapter removed": list(return_seqs)}
)

Program 21. The function that is turned into a vector stripping app by Funix.

July 10, 2024 22 of 22

	Introduction
	Motivation: the demand to rapidly launch low-interactivity and plain-looking apps at scale
	Funix's default mapping from Python types to React components
	Customizing the type-to-widget mapping
	Supporting a new type on the fly using the new_funix_type decorator
	Defining and using themes

	Building apps Pythonically
	Default values as placeholders
	Making use of docstrings
	Output layout in print and return
	Streaming based on yield
	States, sessions, and multi-page apps
	A simple approach by using global
	Multi-page apps from classes

	The Funix decorators
	Overriding the type-based widget choice
	Automatic re-run triggered by input changes
	Conditional visibility
	Rate limiting
	Reactive apps
	Showing source code

	Jupyter support
	Showcases
	Wordle
	ChatGPT multi-turn
	Multimodal inputs
	Vector stripping in bioinformatics

	Conclusion
	Acknowledgments

