
Open Access  | https://doi.org/10.25080/FGCJ9164

SciPy 2024
July 8 - July 14, 2024

Proceedings of the 23nd

Python in Science Conference
ISSN: 2575-9752

multinterp
A Unified Interface for Multivariate Interpolation in the Scientific
Python Ecosystem

Alan Lujan 
1,2

¹ Johns Hopkins University, ² Econ-ARK

Published Jul 10, 2024

Correspondence to
Alan Lujan
alanlujan91@gmail.com

Open Access

Copyright © 2024 Lujan. This
is an open-access article distrib-
uted under the terms of the
Creative Commons Attribution
4.0 International license, which
enables reusers to distribute,
remix, adapt, and build upon
the material in any medium or
format, so long as attribution is
given to the creator.

Abstract

Multivariate interpolation is a fundamental tool in scientific computing used to approximate
the values of a function between known data points in multiple dimensions. Despite its
importance, the Python ecosystem offers a fragmented landscape of specialized tools for this
task. This fragmentation hinders code reusability, experimentation, and efficient deployment
across diverse hardware. The multinterp package was developed to address this challenge.
It provides a unified interface for various grids used for interpolation (regular, irregular,
and curvilinear), supports multiple backends (CPU, parallel, and GPU), and includes tools for
multivalued interpolation and interpolation of derivatives. This paper introduces multinterp,
demonstrates its capabilities, and invites the community to contribute to its development.

Keywords multivariate, interpolation, gpu, rectilinear, curvilinear, scattered

1. Introduction
In scientific computing, interpolation is a fundamental method used to approximate new
data points within a range of known functional data points. When this concept is applied to
functions with multiple variables, it is known as multivariate interpolation. This technique
is crucial for various scientific applications, including data analysis, numerical modeling,
and visualizing complex datasets.

Over time, the scientific Python ecosystem has developed various specialized tools for
multivariate interpolation. These powerful tools are spread across different packages, each
designed for specific purposes and for distinct data types. This scattering of tools across
multiple packages creates challenges for researchers and practitioners.

One major issue is the inconsistency of interfaces across different packages. The varying
syntax and usage patterns make it difficult for users to switch between interpolation
methods or compare their performance effectively. Additionally, many existing tools are
designed for CPU-only execution, lacking GPU acceleration or parallel processing support.
This limitation can significantly impact performance, especially when dealing with large
datasets or complex interpolation tasks.

Another challenge stems from the restricted functionality of some packages. Certain tools
focus solely on specific types of interpolation, such as those for structured data, while
lacking support for advanced features like multivalued interpolation or derivative calcula-
tions. This specialization often forces researchers to use multiple packages to cover all their
interpolation needs, leading to an inefficient workflow. The need to learn and integrate
various packages increases development time and introduces potential inconsistencies in
the codebase.

July 10, 2024 1

https://en.wikipedia.org/wiki/Open_access
https://en.wikipedia.org/wiki/Open_access
https://doi.org/10.25080/FGCJ9164
https://orcid.org/0000-0002-5289-7054
https://orcid.org/0000-0002-5289-7054
mailto:alanlujan91@gmail.com
mailto:alanlujan91@gmail.com
mailto:alanlujan91@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


multinterp  | Lujan, 2024

The multinterp package was developed to address these challenges to provide a comprehen-
sive framework for multivariate interpolation in python with several key features. It offers
a unified interface for various interpolation grids, including regular (rectilinear), irregular
(unstructured), and curvilinear grids, allowing users to easily switch between different grid
types without changing their code structure.

Furthermore, multinterp supports multiple backends, including CPU (using numpy and scipy),
parallel processing (using numba), and GPU acceleration (using cupy, pytorch, and jax). This
flexibility enables users to optimize performance based on their available computational
resources. The package also includes tools for multivalued interpolation and interpolation
of derivatives, expanding its utility for a wide range of scientific applications.

Perhaps most importantly, multinterp provides a consistent API that allows easy switching
between different interpolation methods and backends. This feature simplifies code devel-
opment and facilitates experimentation with various interpolation techniques and perfor-
mance optimization strategies.

In the following sections, we will introduce the main concepts of grid interpolation, demon-
strate the capabilities of multinterp for different types of grids, and compare its performance
with existing tools. We will conclude by discussing the project’s current state and inviting
community contributions to further development.

2. Background and Concepts
Before diving into the specifics of multinterp, it is crucial to understand some fundamental
concepts in multivariate interpolation and the challenges they present.

2.1. Interpolation Basics

At its core, interpolation is about approximating functional values between known data
points. This might involve drawing a line or curve between points in one dimension.
The process becomes more complex in multiple dimensions, involving surfaces or hyper-
surfaces.

2.2. Grid Types

The arrangement of known data points, called the grid, significantly influences the choice
of interpolation method and its computational efficiency. In multinterp, we consider three
main types of grids:

1. Rectilinear Grids: These are the simplest and most common. Data points form a
regular pattern along each dimension, though the spacing between points may vary.
Moreover, these grids can be represented by the cross product of 1-dimensional
vectors, making them easy to work with.

2. Curvilinear Grids: These maintain a structured relationship between neighboring
points, but the grid lines may be curved or warped. Their main advantage is that these
grids are monotonic in each coordinate dimension, allowing for an easy and efficient
transformation into a rectilinear grid.

3. Unstructured Grids: These have irregularly spaced data points with no inherent
structure. They are often encountered in experimental data collection or adaptive
numerical methods. Interpolation on unstructured grids is more challenging and
requires more sophisticated algorithms.

2.3. Existing Interpolation Methods

Various methods exist for interpolation, each with its strengths and limitations:

July 10, 2024 2



multinterp  | Lujan, 2024

Table 1.  Grids and structures implemented in “multinterp”.

Grid Structure Geometry

Rectilinear Regular Rectangular mesh

Curvilinear Regular Quadrilateral mesh

Unstructured Irregular Random

• Nearest Neighbor: Assigns the value of the nearest known point or a weighted
average of the nearest few points. Simple but can be inaccurate.

• Linear/Multilinear: Assumes a linear relationship between points. Fast but can miss
complex patterns.

• Polynomial: Higher-order polynomials are used to fit the data. It can capture more
complex relationships but may oscillate between points.

• Spline: Uses piecewise polynomials. Offers a balance between smoothness and accu-
racy.

• Radial Basis Function (RBF): Uses a sum of radially symmetric functions. Useful for
scattered data.

Each of these methods may be implemented differently for different grid types, leading
to the fragmentation in the Python ecosystem that multinterp aims to address. multinterp
currently mainly implements multilinear interpolation and aims to add more methods and
grid types in the future.

3. The multinterp Package
The multinterp package is a unified framework for multivariate interpolation in python,
designed to address the challenges outlined in the previous sections. It offers several key
features:

1. Unified Interface: A consistent API for interpolation, regardless of data structure or
desired backend, reducing the learning curve and promoting code reusability. This
consistency extends across different grid types (rectilinear, curvilinear, and unstruc-
tured), allowing users to switch between grid types with minimal code changes.

2. Hardware Adaptability: Seamless support for CPU (numpy, scipy), parallel (numba), and
GPU (cupy, pytorch, jax) backends, empowering users to optimize performance based
on their computational resources.

3. Broad Functionality: Tools for regular/rectilinear interpolation, multivalued inter-
polation, and derivative calculations, addressing a wide range of scientific problems.

The multinterp package offers several advantages over existing tools:

1. Flexibility: Unlike specialized packages that focus on specific grid types or interpo-
lation methods, multinterp provides a unified framework that can handle various grid
types and interpolation scenarios.

2. Performance: By supporting multiple backends, including GPU acceleration,
multinterp can offer significant performance improvements over CPU-only imple-
mentations, especially for large datasets. Our benchmarks show up to 10x speedup
for large 3D grids when using GPU backends.

3. Ease of Use: The consistent API across different grid types and backends simplifies
the learning curve and makes it easier for users to experiment with different
approaches. For instance, switching from CPU to GPU interpolation often requires
changing a single parameter.

Currently, multinterp primarily implements multilinear interpolation, which balances sim-
plicity, speed, and accuracy for many applications. This method is particularly efficient for

July 10, 2024 3



multinterp  | Lujan, 2024

rectilinear grids. The core implementation uses efficient numpy operations for fast compu-
tation.

However, we recognize the limitations of multilinear interpolation, such as its inability to
capture complex, non-linear relationships in the data. Future development plans include
implementing additional interpolation methods such as polynomial, spline, and radial basis
function interpolation. These methods can offer improved accuracy for certain types of
data, albeit at the cost of increased computational complexity.

The multinterp package is currently in its beta stage, but it offers a strong foundation and
welcomes community contributions to reach its full potential. We invite collaboration to
improve documentation, expand the test suite, and ensure the codebase aligns with the
highest standards of Python package development.

4. Rectilinear Interpolation
Rectilinear grids are the foundation of many scientific computing applications. They are
simple yet powerful, allowing for efficient data representation and manipulation. In a recti-
linear grid, data points form a regular pattern along each dimension, though the spacing
between points may vary.

4.1. The Basics of Rectilinear Grids

A rectilinear grid in 2D can be thought of as a sheet of graph paper where the lines might
not be evenly spaced. In 3D, you can imagine a stack of these sheets, again with potentially
varying spacing between them. Mathematically, we can represent a 2D rectilinear grid using
two 1D arrays of increasing values:

𝑥 = [𝑥0, 𝑥1, 𝑥2, ..., 𝑥𝑛]
𝑦 = [𝑦0, 𝑦1, 𝑦2, ..., 𝑦𝑚]

(1)

where 𝑥𝑖 < 𝑥𝑗 and 𝑦𝑖 < 𝑦𝑗 for all 𝑖 < 𝑗. The full grid is then represented by the tensor product
𝑥 × 𝑦, resulting in dimensions 𝑛 ×𝑚.

This structure allows for efficient interpolation algorithms, as we can quickly locate the
nearest known values to predict the function’s behavior in unknown spaces. This is because
we only need to search each dimension once and independently of the other.

4.2. Multilinear Interpolation with multinterp

The multinterp package provides a straightforward yet powerful implementation of multi-
linear interpolation. It supports various backends, including numpy, scipy, numba, cupy, pytorch,
and jax, allowing users to choose the most suitable option for their computational environ-
ment.

Figure 1.  Transformation between non-uniform and uniform rectilinear grids. This process is critical to
efficient interpolation on rectilinear grids.

July 10, 2024 4



multinterp  | Lujan, 2024

At the heart of multinterp’s rectilinear interpolation is the map_coordinates function from
scipy.ndimage. This function is versatile, taking an array of input values and an array of
coordinates and returning interpolated values at those coordinates. Here is how it works:

• The input array contains known values on a coordinate (index) grid. For example,
input[i,j,k] is the known value at coordinate (i,j,k).

• The coordinates array contains fractional coordinates where we want to interpolate.
For instance, coordinates[0] = (1.5, 2.3, 3.1) indicates we want to interpolate at a
point between integer grid coordinates.

However, real-world functions are often not defined on a simple coordinate grid. This is
where multinterp’s get_coordinates function comes in. It maps the functional input grid
(defined on real numbers) and the coordinate grid (defined on non-negative integers).

Let us look at a practical example to see how this works:

import `numpy` as np
from multinterp import MultivariateInterp

# Define a function to interpolate
def squared_coords(x, y):
    return x**2 + y**2

# Create a non-uniform rectilinear grid
x_grid = np.geomspace(1, 11, 11) - 1
y_grid = np.geomspace(1, 11, 11) - 1
x_mat, y_mat = np.meshgrid(x_grid, y_grid, indexing="ij")

# Evaluate the function on this grid
z_mat = squared_coords(x_mat, y_mat)

# Create the interpolator
interp = MultivariateInterp(z_mat, [x_grid, y_grid])

# Define points for interpolation
x_new, y_new = np.meshgrid(
 np.linspace(0, 10, 11),
 np.linspace(0, 10, 11),
    indexing="ij",
)

# Perform interpolation
z_interp = interp(x_new, y_new)

In this example, we use a squared coordinates function (x^2+y^2) as our test case. This
function is chosen because it produces a simple curved surface in 3D, making it easy to
verify the interpolation results visually. We create a non-uniform grid using geomspace,
which gives us more points near the origin and fewer points farther out. This non-uniform
grid demonstrates multinterp’s ability to handle varying grid spacings effectively.

The MultivariateInterp class encapsulates the interpolation process, making it easy to create
an interpolator and apply it to new points. This object-oriented approach allows for easy
reuse and chaining of operations, as seen in the next section on derivatives.

4.3. Derivatives

The multinterp package also allows calculating derivatives of the interpolated function
defined on a rectilinear grid. This is done by using the function get_grad, which wraps
numpy’s gradient function to calculate the gradient of the interpolated function at the given
coordinates.

Consider the following function along with its analytical derivatives:

July 10, 2024 5



multinterp  | Lujan, 2024

def trig_func(x, y):
    return y * np.sin(x) + x * np.cos(y)

def trig_func_dx(x, y):
    return y * np.cos(x) + np.cos(y)

def trig_func_dy(x, y):
    return np.sin(x) - x * np.sin(y)

First, we create a sample input gradient and evaluate the function at those points. Notice
that we are not using the analytical derivatives to create the interpolation function. Instead,
we will use these to compare the results of the numerical derivatives.

x_grid = np.geomspace(1, 11, 1000) - 1
y_grid = np.geomspace(1, 11, 1000) - 1
x_mat, y_mat = np.meshgrid(x_grid, y_grid, indexing="ij")

z_mat = trig_func(x_mat, y_mat)

Now, we generate a different grid, which will be used as our query points.

x_new, y_new = np.meshgrid(
 np.linspace(0, 10, 1000),
 np.linspace(0, 10, 1000),
    indexing="ij",
)

Then, we can compare our interpolation function with the analytical function and see that
these are very close to each other.

mult_interp = MultivariateInterp(z_mat, [x_grid, y_grid], backend="cupy")
z_mult_interp = mult_interp(x_new, y_new).get()
z_true = trig_func(x_new, y_new)

We can use the method .diff(argnum) of MultivariateInterp to evaluate numerical deriva-
tives, which provides an object-oriented way to compute gradients. For example, calling
mult_interp.diff(0) returns a MultivariateInterp object that represents the numerical deriv-
ative of the function with respect to the first argument on the same input grid.

July 10, 2024 6



multinterp  | Lujan, 2024

We can now compare the numerical and analytical derivatives and see that these are indeed
very close to each other.

dfdx = mult_interp.diff(0)
z_dfdx = dfdx(x_new, y_new).get()
dfdx_true = trig_func_dx(x_new, y_new)

Similarly, we can compute the derivatives with respect to the second argument and see that
they produce an accurate result.

dfdy = mult_interp.diff(1)
z_dfdy = dfdy(x_new, y_new).get()
dfdy_true = trig_func_dy(x_new, y_new)

The choice of returning object-oriented interpolation functions for the numerical deriva-
tives is beneficial, as it allows for reusability without re-computation and easy chaining of
operations. For example, we can compute the function’s second derivative with respect to
the first argument by calling mult_interp.diff(0).diff(0).

4.4. Multivalued Interpolation

Finally, the multinterp package allows for multivalued interpolation on rectilinear grids via
the MultivaluedInterp class.

Consider the following multivalued function:

July 10, 2024 7



multinterp  | Lujan, 2024

def squared_coords(x, y):
    return x**2 + y**2

def trig_func(x, y):
    return y * np.sin(x) + x * np.cos(y)

def multivalued_func(x, y):
    return np.array([squared_coords(x, y), trig_func(x, y)])

As before, we can generate values on a sample input grid and create a grid of query points.

x_grid = np.geomspace(1, 11, 1000) - 1
y_grid = np.geomspace(1, 11, 1000) - 1
x_mat, y_mat = np.meshgrid(x_grid, y_grid, indexing="ij")

z_mat = multivalued_func(x_mat, y_mat)

x_new, y_new = np.meshgrid(
 np.linspace(0, 10, 1000),
 np.linspace(0, 10, 1000),
    indexing="ij",
)

MultivaluedInterp can easily interpolate the function at the query points and avoid repeated
calculations.

July 10, 2024 8



multinterp  | Lujan, 2024

from multinterp.rectilinear._multi import MultivaluedInterp

mult_interp = MultivaluedInterp(z_mat, [x_grid, y_grid], backend="cupy")
z_mult_interp = mult_interp(x_new, y_new).get()
z_true = multivalued_func(x_new, y_new)

5. Curvilinear Interpolation
A curvilinear grid is a regular grid whose input coordinates are curved or warped in some
regular way. However, simple transformations can nevertheless transform it into a regular
grid. That is, every quadrangle in the grid can be transformed into a rectangle by remapping
its vertices. There are two approaches to curvilinear interpolation in multinterp: the first
requires a “point location” algorithm to determine which quadrangle the input point lies in,
and the second requires a “dimensional reduction” algorithm to generate an interpolated
value from the known values in the quadrangle.

Suppose we have a collection of values for an unknown function and their respective
coordinate points. For illustration, assume the values come from the following function:

July 10, 2024 9



multinterp  | Lujan, 2024

Figure 2.  A curvilinear grid can be transformed into a rectilinear grid by simply remapping its vertices.

def function_1(x, y):
    return x * (1 - x) * np.cos(4 * np.pi * x) * np.sin(4 * np.pi * y**2) ** 2

The points are randomly scattered in the unit square and have no regular structure. This is
achieved by randomly shifting a well-structured grid at every point.

rng = np.random.default_rng(0)
warp_factor = 0.01
x_list = np.linspace(0, 1, 20)
y_list = np.linspace(0, 1, 20)
x_temp, y_temp = np.meshgrid(x_list, y_list, indexing="ij")
rand_x = x_temp + warp_factor * (rng.random((x_list.size, y_list.size)) - 0.5)
rand_y = y_temp + warp_factor * (rng.random((x_list.size, y_list.size)) - 0.5)
values = function_1(rand_x, rand_y)

Suppose we want to interpolate this function on a rectilinear grid, a process called “regrid-
ding.”

grid_x, grid_y = np.meshgrid(
 np.linspace(0, 1, 100),
 np.linspace(0, 1, 100),
    indexing="ij",
)

We use multinterp’s Warped2DInterp and Curvilinear2DInterp classes to do this. The class takes
the following arguments:

• values: an ND-array of values for the function at the points
• grids: a list of ND-arrays of coordinates for the points
• backend: the backend to use for interpolation currently only scipy and numba are sup-

ported for Warped2DInterp, and only scipy is supported for Curvilinear2DInterp for now.

from multinterp.curvilinear import Curvilinear2DInterp, Warped2DInterp

warped_interp = Warped2DInterp(values, (rand_x, rand_y), backend="numba")
warped_interp.warmup()

Once we create the interpolator objects, we can evaluate the functions on the query grids
and compare their time performance.

July 10, 2024 10



multinterp  | Lujan, 2024

start = time()
warped_grid = warped_interp(grid_x, grid_y)
print(f"Warped interpolation took {time() - start:.5f} seconds")

curvilinear_interp = Curvilinear2DInterp(values, (rand_x, rand_y))
start = time()
curvilinear_grid = curvilinear_interp(grid_x, grid_y)
print(f"Curvilinear interpolation took {time() - start:.5f} seconds")

Now, we can compare the interpolation results with the original function. Below, we plot the
original function and the known sample points. Notice that the points are almost rectilinear
but have been randomly shifted to create a more challenging interpolation problem.

plt.imshow(function_1(grid_x, grid_y).T, extent=(0, 1, 0, 1), origin="lower")
plt.plot(rand_x.flat, rand_y.flat, "ok", ms=2, label="input points")
plt.title("Original")
plt.legend(loc="lower right")

Then, we can look at the result for each interpolation method and compare it to the original
function.

July 10, 2024 11



multinterp  | Lujan, 2024

fig, axs = plt.subplots(1, 3, figsize=(9, 6))
titles = ["Original", "WarpedInterp", "CurvilinearInterp"]
grids = [function_1(grid_x, grid_y), warped_grid, curvilinear_grid]

for ax, title, grid in zip(axs.flat, titles, grids):
    im = ax.imshow(grid.T, extent=(0, 1, 0, 1), origin="lower")
    ax.set_title(title)

plt.tight_layout()
plt.show()

In short, multinterp’s Warped2DInterp and Curvilinear2DInterp classes are helpful for interpo-
lating functions on curvilinear grids with a quadrilateral structure but are not perfectly
rectangular.

6. Unstructured Interpolation
Suppose we have a collection of values for an unknown function and their respective
coordinate points. For illustration, assume the values come from the following function:

def function_1(u, v):
    return u * np.cos(u * v) + v * np.sin(u * v)

The points are randomly scattered within a square and have no regular structure.

Figure 3.  Unstructured grids are irregular and often require a triangulation step, which might be
computationally expensive and time-consuming.

July 10, 2024 12



multinterp  | Lujan, 2024

rng = np.random.default_rng(0)
rand_x, rand_y = rng.random((2, 1000)) * 3
values = function_1(rand_x, rand_y)

Suppose we want to interpolate this function on a rectilinear grid.

grid_x, grid_y = np.meshgrid(
 np.linspace(0, 3, 100),
 np.linspace(0, 3, 100),
    indexing="ij",
)

We use multinterp’s UnstructuredInterp class to do this. The class takes the following argu-
ments:

• values: an ND-array of values for the function at the points
• grids: a list of ND-arrays of coordinates for the points
• method: the interpolation method to use, with options “nearest”, “linear”, “cubic” (for

2D only), and “rbf”. The default is 'linear'.

The UnstructuredInterp class is an object-oriented wrapper around scipy.interpolate’s func-
tions for multivariate interpolation on unstructured data, which are NearestNDInterpolator,
LinearNDInterpolator, CloughTocher2DInterpolator, and RBFInterpolator. The advantage of us-
ing multinterp’s UnstructuredInterp class is that it provides a consistent interface for all these
methods, making it easier to switch between them and other interpolators in the multinterp
package.

nearest_interp = UnstructuredInterp(values, (rand_x, rand_y), method="nearest")
linear_interp = UnstructuredInterp(values, (rand_x, rand_y), method="linear")
cubic_interp = UnstructuredInterp(values, (rand_x, rand_y), method="cubic")
rbf_interp = UnstructuredInterp(values, (rand_x, rand_y), method="rbf")

Once we create the interpolator objects, we can use them using the __call__ method, which
takes as many arguments as there are dimensions.

nearest_grid = nearest_interp(grid_x, grid_y)
linear_grid = linear_interp(grid_x, grid_y)
cubic_grid = cubic_interp(grid_x, grid_y)
rbf_grid = rbf_interp(grid_x, grid_y)

Now, we can compare the interpolation results with the original function. Below, we plot
the original function and the known sample points.

July 10, 2024 13



multinterp  | Lujan, 2024

Then, we can look at the result for each interpolation method and compare it to the original
function.

July 10, 2024 14



multinterp  | Lujan, 2024

Finally, multinterp also provides a set of interpolators organized around the concept of
regression. As a demonstration, below, we use a RegressionUnstructuredInterp interpolator,
which uses a Gaussian Process regression model from scikit-learn [1] to interpolate the
function defined on the unstructured grid. The RegressionUnstructuredInterp class takes the
same arguments as the UnstructuredInterp class but requires the user to specify the regres-
sion model to use.

July 10, 2024 15



multinterp  | Lujan, 2024

from multinterp import RegressionUnstructuredInterp

gaussian_interp = RegressionUnstructuredInterp(
 values,
 (rand_x, rand_y),
    model="gaussian-process",
    std=True,
)

gaussian_grid = gaussian_interp(grid_x, grid_y)

7. Performance Comparisons
We conducted a series of benchmarks to assess the performance of multinterp and compare
it with existing tools. The benchmarks evaluated the interpolation speed and accuracy of
multinterp across different grid sizes, dimensions, and backends.

7.1. Benchmark Setup

The benchmarks were conducted using the following setup:

• Test Function: A multivariate function with a known analytical solution generated
the input data.

• Grid Sizes: The input data was generated on grids of varying sizes, ranging from 10x10
to 1000x1000.

• Dimensions: The benchmarks were conducted for both 2D and 3D grids.
• Backends: The benchmarks were run using different backends, including CPU (numpy

and scipy), parallel (numba), and GPU (cupy, pytorch, and jax).

7.2. Comparison with scipy.interpolate.RegularGridInterpolator

The first set of benchmarks compares the performance of multinterp with
scipy.interpolate.RegularGridInterpolator, a widely-used interpolation library in the scien-
tific Python ecosystem. The benchmarks were conducted for both 2D and 3D grids, and the
results are presented in the following figures.

July 10, 2024 16



multinterp  | Lujan, 2024

7.3. Backend Comparison

The second set of benchmarks compares the performance of different backends in
multinterp. The benchmarks were conducted for both 2D and 3D grids, and the results are
presented in the following figures.

7.4. Discussion

The benchmark results demonstrate that multinterp outperforms
scipy.interpolate.RegularGridInterpolator for 2D and 3D grids, especially for larger grid
sizes. This is likely due to the efficient implementation of multinterp’s core functions, such
as map_coordinates and get_coordinates.

The backend comparison shows that GPU backends (cupy, pytorch, and jax) can provide
significant performance improvements for large grid sizes, especially in 3D. However, data
transfer overhead between the CPU and GPU can make GPU backends slower for smaller
grid sizes. Parallel backends (numba) can also provide performance improvements for CPU-
bound tasks, but the benefits are less pronounced than those of GPU backends.

Overall, the benchmark results highlight the advantages of multinterp regarding perfor-
mance and flexibility. The package offers a unified interface for various types of interpo-
lation, supports multiple backends, and includes tools for multivalued interpolation and
interpolation of derivatives.

8. Future Work and Contributions
The multinterp package is currently in its beta stage, and there are several areas where
future development and community contributions would be valuable.

8.1. Planned Features

1. Additional Interpolation Methods: Implement support for additional interpolation
methods, such as spline, polynomial, inverse distance weight, and radial basis func-
tion interpolation. This will give users more options to handle various types of data
and interpolation requirements.

2. Optimization and Performance Improvements: Continue to optimize the core
functions of multinterp to improve performance and efficiency, particularly for large
datasets and high-dimensional interpolation.

3. Documentation and Examples: Expand the documentation and provide more ex-
amples to demonstrate the capabilities of multinterp, including comparisons between
different interpolation methods and grid types.

4. Extended Grid Support: Enhance support for complex grid types and improve inter-
polation efficiency on unstructured grids.

8.2. Community Contributions

We welcome contributions from the community to help improve the multinterp package.
There are several ways to contribute:

1. Code Contributions: Submit pull requests to add new features, fix bugs, or improve
the documentation.

2. Issue Reporting: Report any issues or bugs you encounter using multinterp.
3. Testing: Help expand the test suite to ensure the package works correctly across

various scenarios.
4. Documentation: Contribute to the documentation by writing tutorials, examples, or

improving the existing documentation.

July 10, 2024 17



multinterp  | Lujan, 2024

To get started with contributing, please refer to our Contribution Guidelines for detailed in-
formation on our development process, coding standards, and how to submit pull requests.

8.3. Documentation and Resources

For more information about multinterp, please refer to the following resources:

• Source Code: The source code is hosted on GitHub at https://github.com/alanlujan91/
multinterp

• Issue Tracker: Report bugs or request features on our GitHub Issues page
• Contribution Guidelines: Learn how to contribute at CONTRIBUTING.md
• Examples: A collection of Jupyter notebooks with usage examples can be found in the

examples directory of our GitHub repository

We encourage users to explore these resources and contact the community through our
GitHub Discussions for any questions or feedback.

9. Conclusion
Multivariate interpolation is a cornerstone of scientific computing, yet the Python ecosys-
tem [2] presents a fragmented landscape of tools. While individually powerful, these
packages often lack a unified interface. This fragmentation makes it difficult for researchers
to experiment with different interpolation methods, optimize performance across diverse
hardware, and handle varying data structures (regular, rectilinear, curvilinear, unstruc-
tured).

The multinterp project seeks to change this. Its goal is to provide a unified, comprehensive,
and flexible framework for multivariate interpolation in python. This framework will
streamline workflows by offering:

• Unified Interface: A consistent API for interpolation, regardless of data structure or
desired backend, reducing the learning curve and promoting code reusability.

• Hardware Adaptability: Seamless support for CPU (numpy C. R. Harris et al. [3], scipy P.
Virtanen et al. [4]), parallel (numba S. K. Lam, A. Pitrou, and S. Seibert [5]), and GPU (cupy
R. Okuta, Y. Unno, D. Nishino, S. Hido, and C. Loomis [6], pytorch A. Paszke et al. [7], jax
J. Bradbury et al. [8]) backends, empowering users to optimize performance based on
their computational resources.

• Broad Functionality: Tools for regular/rectilinear interpolation, multivalued interpo-
lation, and derivative calculations, addressing a wide range of scientific problems.

The multinterp package (https://github.com/alanlujan91/multinterp) is currently in its beta
stage. It offers a strong foundation but welcomes community contributions to reach its full
potential. We invite collaboration to improve documentation, expand the test suite, and
ensure the codebase aligns with the highest standards of Python package development.

References

[1] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” Journal of machine learning research: JMLR, pp.
2825–2830, Feb. 2011.

[2] T. E. Oliphant, “Python for Scientific Computing,” Computing in science & engineering, vol. 9, no. 3, pp. 10–20, 2007,
doi: 10.1109/MCSE.2007.58.

[3] C. R. Harris et al., “Array programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020, doi:
10.1038/s41586-020-2649-2.

[4] P. Virtanen et al., “SciPy 1.0: fundamental algorithms for scientific computing in Python,” Nature methods, vol. 17,
no. 3, pp. 261–272, 2020, doi: 10.1038/s41592-019-0686-2.

July 10, 2024 18

https://github.com/alanlujan91/multinterp/blob/main/docs/CONTRIBUTING.md
https://github.com/alanlujan91/multinterp
https://github.com/alanlujan91/multinterp
https://github.com/alanlujan91/multinterp/issues
https://github.com/alanlujan91/multinterp/blob/main/docs/CONTRIBUTING.md
https://github.com/alanlujan91/multinterp/tree/main/examples
https://github.com/alanlujan91/multinterp/discussions
https://github.com/alanlujan91/multinterp
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2


multinterp  | Lujan, 2024

[5] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: a LLVM-based Python JIT compiler,” in Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC, in LLVM '15. New York, NY, USA, Nov. 2015, pp. 1–6. doi:
10.1145/2833157.2833162.

[6] R. Okuta, Y. Unno, D. Nishino, S. Hido, and C. Loomis, “CuPy: A NumPy-Compatible Library for NVIDIA GPU
Calculations.” 2017.

[7] A. Paszke et al., “PyTorch: An imperative style, high-performance deep learning library,” arXiv [cs. LG], pp. 8026–
8037, Dec. 2019.

[8] J. Bradbury et al., “JAX: composable transformations of Python+NumPy programs.” 2018.

July 10, 2024 19

https://doi.org/10.1145/2833157.2833162

	Introduction
	Background and Concepts
	Interpolation Basics
	Grid Types
	Existing Interpolation Methods

	The multinterp Package
	Rectilinear Interpolation
	The Basics of Rectilinear Grids
	Multilinear Interpolation with multinterp
	Derivatives
	Multivalued Interpolation

	Curvilinear Interpolation
	Unstructured Interpolation
	Performance Comparisons
	Benchmark Setup
	Comparison with scipy.interpolate.RegularGridInterpolator
	Backend Comparison
	Discussion

	Future Work and Contributions
	Planned Features
	Community Contributions
	Documentation and Resources

	Conclusion
	References

