
Open Access | https://doi.org/10.25080/VPNX1595

SciPy 2024
July 8 - July 14, 2024

Proceedings of the 23nd

Python in Science Conference
ISSN: 2575-9752

Evaluating Probabilistic Forecasters with
sktime and tsbootstrap — Easy-to-Use,
Configurable Frameworks for Reproducible
Science
Benedikt Heidrich ¹ , Sankalp Gilda ² , and Franz Kiraly ¹

¹ sktime, ² DevelopYours, LLC

Published Jul 10, 2024

Correspondence to
Benedikt Heidrich
benedikt.heidrich@sktime.net

Open Access

Copyright © 2024 Heidrich et
al.. This is an open-access
article distributed under the
terms of the Creative Commons
Attribution 4.0 International li-
cense, which enables reusers
to distribute, remix, adapt, and
build upon the material in any
medium or format, so long as
attribution is given to the cre-
ator.

Abstract

Evaluating probabilistic forecasts is complex and essential across various domains, yet no
comprehensive software framework exists to simplify this task. Despite extensive literature
on evaluation methodologies, current practices are fragmented and often lack reproducibil-
ity. To address this gap, we introduce a reproducible experimental workflow for evaluating
probabilistic forecasting algorithms using the sktime package. Our framework features
a unified software API for forecasting algorithms, a simple specification language for com-
plex algorithms, including meta-algorithms like bootstrapping, probabilistic performance
metrics, and standardized evaluation workflows. We demonstrate the framework’s efficacy
through a study evaluating prediction intervals added to point forecasts. Our results high-
light the improved prediction accuracy and reliability of combined approaches. We provide
reusable code and invite contributions from the research community to extend our experi-
ments and tackle computational challenges for broader studies.

Keywords time series, machine learning, benchmarking

1. Introduction
Making probabilistic forecasts is challenging, and evaluating probabilistic forecasts, or the
algorithms that produce them, is even more difficult.

A significant body of literature focuses on developing robust meta-methodologies for
evaluation. This includes evaluation metrics such as the Continuous Ranked Probability
Score (CRPS) [1] and their properties, like properness, as well as benchmarking setups and
competitions like the Makridakis competitions [2], [3]. This meta-field builds upon a broader
primary field that develops methodologies for algorithms producing probabilistic forecasts,
encompassing classical methods, uncertainty estimation techniques like bootstrap or con-
formal intervals, and modern deep learning and foundation models [4], [5], [6], [7].

Despite the critical importance of evaluating probabilistic forecasts in various domains,
including finance, energy, healthcare, and climate science, no comprehensive software
framework or interface design has emerged to cover all these needs with a simple workflow
or specification language. For instance, the reproducing code for the Makridakis compe-
titions—while extensive in scope—relies on forecasts generated from disparate software
interfaces. Similar issues are found in other benchmarking studies, where code availability
is often limited or nonexistent [8], [9]. This lack of unified interfaces makes it challenging
for practitioners in both industry and academia to contribute to or verify the growing body
of evidence.

July 10, 2024 78

https://en.wikipedia.org/wiki/Open_access
https://en.wikipedia.org/wiki/Open_access
https://doi.org/10.25080/VPNX1595
https://orcid.org/0000-0002-1923-0848
https://orcid.org/0000-0002-1923-0848
mailto:benedikt.heidrich@sktime.net
mailto:benedikt.heidrich@sktime.net
https://orcid.org/0000-0002-3645-4501
https://orcid.org/0000-0002-3645-4501
mailto:sankalp@developyours.com
mailto:sankalp@developyours.com
mailto:franz.kiraly@sktime.net
mailto:franz.kiraly@sktime.net
mailto:benedikt.heidrich@sktime.net
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Evaluating Probabilistic Forecasters with sktime and tsbootstrap | Heidrich et al., 2024

To address these limitations, we present a simple, reproducible experimental workflow
for evaluating probabilistic forecasting algorithms using sktime [10]. As of 2024, the sktime
package provides the most comprehensive collection of time series-related algorithms in
unified interfaces and stands out as the only major, non-commercially governed framework
for time series forecasting.

The key components of this reproducible benchmarking framework are:

• A unified software API for forecasting algorithms, mirroring a unified mathematical
interface.

• Composite forecasters (meta-algorithms), such as adding prediction intervals via time
series bootstrapping, which themselves follow the same forecasting interface from
both software and mathematical perspectives.

• A first-order language that allows for the unambiguous specification of even complex
forecasting algorithms.

• A unified software API for probabilistic performance metrics, covering metrics for
distribution as well as interval or quantile forecasts.

• A standardized workflow for obtaining benchmark result tables for combinations of
algorithms, metrics, and experimental setups.

To demonstrate the efficacy and ease of use of sktime in benchmarking probabilistic
forecasters, we conducted a small study exploring the performance of various meta-
algorithms (wrappers) that add prediction intervals to point forecasters. We investigated
a range of forecasters, including Naive Forecasting and AutoTheta models [11], along with
probabilistic wrappers such as Conformal Intervals and BaggingForecaster with different
bootstrapping methods. For the bootstrapping methods, we use the tsbootstrap library [12],
[13].

The study’s goal was to evaluate the effectiveness of these combined approaches in improv-
ing prediction accuracy and reliability.

We conducted experiments on several common datasets, including Australian electricity
demand [14], sunspot activity [15], and US births [16]. These datasets represent different
time frequencies and characteristics.

Our paper is accompanied by easily reusable code, and we invite the open research and
open-source communities to contribute to extending our experiments or using our code to
set up their own. As is often the case in modern data science, computational power is a
limiting factor, so we hope to leverage the SciPy conference to plan a more comprehensive
set of studies.

The remainder of this paper is organized as follows: In Section 3, we describe the forecasting
methods and probabilistic wrappers used in our experiments. Section 4.2 provides an
overview of the datasets used for evaluation. In Section 4.3, we present the experimental
results and discuss the performance of the combined approaches. Finally, in Section 5, we
conclude the paper and outline directions for future research.

2. sktime and tsbootstrap for Reproducible Experiments
In this section, we summarize the key design principles used for reproducible benchmark-
ing in sktime. Thereby, from a software perspective, it is worth noting that sktime [10],
[17] contains multiple native implementations, including naive methods, all probability
wrappers, and pipeline composition, but also provides a unified interface across multiple
packages in the time series ecosystem, e.g.:

July 10, 2024 79

Evaluating Probabilistic Forecasters with sktime and tsbootstrap | Heidrich et al., 2024

• tsbootstrap [12], [13]: A library for time series bootstrapping methods, integrated
with sktime.

• statsforecast [18]: A library for statistical and econometric forecasting methods,
featuring the Auto-Theta algorithm.

• statsmodels [19]: A foundational library for statistical methods, used for the desea-
sonalizer and various statistical primitives.

This hybrid use of sktime as a framework covering first-party (itself), second-party
(tsbootstrap), and third-party (statsmodels, statsforecast) packages is significant. Credit goes
to the maintainers and implementers of these packages for implementing the contained
algorithms that we can interface.

2.1. Unified Interface

In sktime and tsbootstrap, algorithms and mathematical objects are treated as first-class
citizens. All objects of the same type, such as forecasters, follow the same interface. This
consistency ensures that every forecaster is exchangeable with any other. The same holds
for all bootstrapping methods in tsbootstrap. Thus, they are easily exchangeable enabling
simple and fast experimentation.

Forecasters are objects with fit and predict methods, allowing both the target time series
(endogenous data) and the time series that influence the target time series (exogenous data)
to be passed. For example, the following code (Program 1) specifies a forecaster, fits it, and
makes predictions.

A crucial design element in the above is that line 9 can specify any forecaster - for instance,
ARIMA or ExponentialSmoothing, and the rest of the code will work without modification.

Currently, sktime supports the construction of 82 individual forecasters. Some of these are
implemented directly in sktime, but sktime also provides adapters providing a unified API
to forecasting routines from other libraries, such as gluonts and prophet. Each forecaster
is parametric, with configurations ranging from 1 to 47 parameters across different fore-
casters. A list of forecasters can be obtained or filtered via the all_estimators utility.

importing the necessary modules
from sktime.datasets import load_airline
from sktime.forecasting.naive import NaiveForecaster

load exemplary data
y = load_airline()

specifying the forecasting algorithm
forecaster = NaiveForecaster(strategy="last", sp=12)

fitting the forecaster -- forecast y into the future, 3 steps ahead
forecaster.fit(y, fh=[1, 2, 3])

querying predictions
y_pred = forecaster.predict()

Program 1. Exemplary code for fitting and predicting with a forecaster

from sktime.registry import all_estimators

get all forecasters
all_forecasters = all_estimators("forecaster")

get all forecasters that support prediction intervals
all_estimators("forecaster", filter_tags={"capability:pred_int": True})

Program 2. Code to list all forecaster and all probabilistic forecasters (tag=capability:pred_int)

July 10, 2024 80

Evaluating Probabilistic Forecasters with sktime and tsbootstrap | Heidrich et al., 2024

importing the necessary modules
from sktime.datasets import load_airline
from sktime.forecasting.naive import NaiveForecaster

load exemplary data
y = load_airline()

specifying the forecasting algorithm
forecaster = NaiveForecaster(strategy="last", sp=12)

fitting the forecaster -- forecast y into the future, 3 steps ahead
forecaster.fit(y, fh=[1, 2, 3])

making interval predictions
y_pred_int = forecaster.predict_interval()
making distribution predictions
y_pred_proba = forecaster.predict_proba()

Program 3. Exemplary probabilistic forecast with NaiveForecaster

To better filter the forecasters (as well as the other estimators such as classifiers and
regressors) based on their properties and capabilities and to control their behaviour, sktime
implements a tag system. Each estimator, such as a forecaster, has a dict _tags, with a string
as a key describing the name and a value of an arbitrary type describing the property. This
type system enables an easy identification of all probabilistic forecasters, since they are
tagged with the "capability:pred_int" tag. Currently, 45 of the 82 forecasters support proba-
bilistic prediction modes (Program 2), such as prediction intervals, quantile predictions, or
full distributional predictions:

More details can be found in the official tutorials (an overview of notebooks and tutorials is
provided on our homepage). Creating algorithms with compatible APIs is straightforward.

sktime and tsbootstrap provide fill-in extension templates for creating algorithms in a
compatible interface, which can be shared in a third-party code base and indexed by sktime,
or contributed directly to sktime.

2.2. Reproducible Specification Language

All objects in sktime are uniquely specified by their construction string, which serves as
a reproducible blueprint. Algorithms are intended to be stable and uniquely referenced
across versions; full replicability can be achieved by freezing Python environment versions
and setting random seeds.

For example, the specification string NaiveForecaster(strategy="last", sp=12) uniquely spec-
ifies a native implementation of the seasonal last-value-carried-forecaster, with seasonality
parameter 12.

Typical sktime code specifies the forecaster as Python code, but it can also be used as a string
to store or share specifications. The registry.craft utility converts a Python string into an
sktime object, ensuring easy reproducibility:

which can be used to copy a full specification from a research paper and immediately
construct the respective algorithm in a Python environment, even if full code has not been
shared by the author.

from sktime.registry import craft
forecaster = craft('NaiveForecaster(strategy="last", sp=12)')

Program 4. Code to craft a forecaster from a string

July 10, 2024 81

https://www.sktime.net/en/latest/users.html
https://github.com/sktime/sktime/tree/main/extension_templates

Evaluating Probabilistic Forecasters with sktime and tsbootstrap | Heidrich et al., 2024

importing the necessary modules
from sktime.datasets import load_airline
from sktime.forecasting.naive import NaiveForecaster
from sktime.forecasting.conformal import ConformalIntervals

load exemplary data
y = load_airline()

specifying the forecasting algorithm
forecaster = ConformalIntervals(NaiveForecaster(strategy="last", sp=12))

fitting the forecaster -- forecast y into the future, 3 steps ahead
forecaster.fit(y, fh=[1, 2, 3])

making interval predictions
y_pred_int = forecaster.predict_interval()

Program 5. Code to add conformal prediction intervals to a forecaster

This approach makes it extremely easy to share specifications reproducibly, simplifying the
often convoluted process of describing algorithms in research papers.

2.3. Meta-Algorithms and Composability

sktime provides not only simple algorithms as objects in unified interfaces but also meta-
algorithms, such as data processing pipelines or algorithms that add interval forecast
capability to existing forecasting algorithms. Importantly, these composites also follow
unified interfaces.

This leads to a compositional specification language with rich combinatorial flexibility.
For example, the following code adds conformal prediction interval estimates to the
NaiveForecaster (Program 5):

The conformal prediction interval fits multiple instances of the wrapped forecaster on
parts of the time series using window sliding. In particular, each forecaster’s instance 𝑖 is
fit on the time series 𝑦1:𝑡𝑖 , where 𝑡𝑖 ≠ 𝑡𝑗. Afterwards, the residuals are computed on the
remaining time series 𝑦𝑡𝑖+1:𝑛, where 𝑛 is the length of the time series. Out of these residuals,
the prediction intervals are computed. The resulting algorithm possesses fit, predict, and -
added by the wrapper - predict_interval, as well as the capability:pred_int tag.

Data transformation pipelines can be constructed similarly, or with an operator-based
specification syntax (Program 6):

This creates a forecasting algorithm that first computes differences, then re-
move the seasonality (deseasonalize) by assuming a periodicity of 12. Then the

importing the necessary modules
from sktime.datasets import load_airline
from sktime.forecasting.naive import NaiveForecaster
from sktime.transformations.series.detrend import Deseasonalizer
from sktime.transformations.series.difference import Differencer

load exemplary data
y = load_airline()

pipeline = Differencer() * Deseasonalizer(sp=12) * NaiveForecaster(strategy="last")

fitting the forecaster -- forecast y into the future, 3 steps ahead
pipeline.fit(y, fh=[1, 2, 3])

making interval predictions
y_pred_int = pipeline.predict()

Program 6. Code to construct a pipeline with a differencer and a seasonalizer

July 10, 2024 82

Evaluating Probabilistic Forecasters with sktime and tsbootstrap | Heidrich et al., 2024

importing the necessary modules
from sktime.datasets import load_airline
from sktime.forecasting.naive import NaiveForecaster
from sktime.performance_metrics.forecasting.probabilistic import CRPS
from sktime.split import temporal_train_test_split

load exemplary data
y = load_airline()
y_train, y_test = temporal_train_test_split(y, test_size=36)

specifying the forecasting algorithm
forecaster = NaiveForecaster(strategy="last", sp=12)

fitting the forecaster -- forecast y into the future, 3 steps ahead
forecaster.fit(y_train, fh=y_test.index)

making interval predictions
y_pred_int = forecaster.predict_interval()
making distribution predictions
y_pred_proba = forecaster.predict_proba()

Initialise the CRPS metric
crps = CRPS()

Calculate the CRPS
crps(y_test, y_pred_proba)

Program 7. Code to make probabilistic forecasts and calculate the CRPS

NaiveForecaster(strategy="last") uses the last value as prediction for the next value (last-
value-carry-forward method). Finally it adds the seasonality back and inverts the first
differences. As before, the resulting forecaster provides unified interface points and is
interchangeable with other forecasters in sktime.

2.4. Probabilistic Metrics

In sktime, evaluation metrics are first-class citizens. Probabilistic metrics compare the
ground truth time series with predictions, representing probabilistic objects such as predic-
tive intervals or distributions. For example:

Tags control the type of probabilistic prediction expected, such as "scitype:y_pred" with the
value "pred_proba" for CRPS.

2.5. Benchmarking and Evaluation

Our benchmarking framework involves a standardized workflow for obtaining benchmark
result tables for combinations of algorithms, metrics, and experimental setups. Here is an
example of how to add forecasters and tasks:

This approach ensures that our benchmarking process is both comprehensive and repro-
ducible.

2.6. Prior Work

The design principles of sktime draw inspiration from several established machine learn-
ing frameworks. Notably, scikit-learn in Python [20], mlr in R [21], and Weka [22] have
pioneered the use of first-order specification languages and object-oriented design patterns
for machine learning algorithms.

sktime extends these foundational ideas by introducing specialized interfaces for time series
forecasting, including both point and probabilistic forecasts. It also incorporates unique
features such as:

• Probabilistic forecasters and associated metrics interfaces

July 10, 2024 83

Evaluating Probabilistic Forecasters with sktime and tsbootstrap | Heidrich et al., 2024

Example code to add forecasters and tasks

Import the necessary modules
from sktime.benchmarking.forecasting import ForecastingBenchmark
from sktime.datasets import load_airline
from sktime.forecasting.naive import NaiveForecaster
from sktime.performance_metrics.forecasting.probabilistic import CRPS
from sktime.split import SlidingWindowSplitter

Initialise the benchmark object
benchmark = ForecastingBenchmark()

Add a forecaster to the benchmark
benchmark.add_estimator(
 estimator=NaiveForecaster(strategy="last", sp=12),
 estimator_id="naive_forecaster"
)

Initialise the Splitter
cv_splitter = SlidingWindowSplitter(
 step_length=12,
 window_length=24,
 fh=range(12)
)

Add a task to the benchmark
A task is a combination of a dataset loader, a splitter, and a list of metrics
benchmark.add_task(
 load_airline,
 cv_splitter,
 [CRPS()]
)

Run the benchmark
benchmark.run("result.csv")

Program 8. Example usage of the ForecastingBenchmark in sktime.

• Reproducibility patterns and APIs
• Meta-algorithms for enhanced composability
• Inhomogeneous API composition for flexible algorithmic design

Additionally, the R/fable package [23] has contributed similar concepts specifically tailored
to forecasting, which sktime has expanded upon or adapted to fit within its framework.

By leveraging and building upon these prior works, sktime offers a comprehensive and
adaptable toolkit for time series forecasting, fostering reproducible research and facilitat-
ing extensive benchmarking and evaluation. For a detailed analysis of design patterns in
AI framework packages and innovations in sktime, see [24].

Figure 1. Benchmarking and evaluation framework

July 10, 2024 84

Evaluating Probabilistic Forecasters with sktime and tsbootstrap | Heidrich et al., 2024

3. Algorithmic Setup
In this section, we describe the forecasting algorithms used in our experiments. Our
methods combine traditional forecasting models with uncertainty estimation wrappers,
showcasing the benchmarking and model specification capabilities of sktime. This study
serves as an invitation to the scientific Python community to engage and contribute to a
more systematic study with reproducible specifications.

3.1. Forecasting Pipeline

Each forecaster is wrapped in a Differencer and a Deseasonalizer as preprocessing steps to
improve stationarity. These preprocessors are necessary because some forecasters require
the time series to be stationary (i.e., the properties of the time series at time 𝑡 + 1, 𝑡 + 2, …,
𝑡 + 𝑛 do not depend on the observation at time 𝑡 [25]) and non-seasonal.

• Differencer: Computes first differences, which are inverted after forecasting by cumu-
lative summing.

• Deseasonalizer(sp=data_sp): Removes the seasonal component, which is added back
after forecasting. It estimates the trend by applying a convolution filter to the data,
removing the trend, and then averaging the de-trended series for each period to return
the seasonal component.

All used forecasters are point forecasters, i.e., for each time step they provide one value
(point), and no information about the uncertainty of the forecast. Thus, they are combined
with one of the probabilistic wrappers to generate prediction intervals or quantile forecasts.

The partial pipeline specification, illustrated in Figure 2, is:

Differencer() * Deseasonalizer(sp=data_sp) * wrapper(forecaster)

where variable parts are wrapper, forecaster, and data_sp. These components are varied
as described below. Note the code for running the whole benchmark is provided in the
Section 4.

3.2. Component Forecasting Models

We use several component forecasting models in this study, each with unique character-
istics:

• NaiveForecaster(strategy, sp): Uses simple heuristics for forecasting. The strategy
parameter allows selecting the type of algorithm:

‣ mean: Uses the mean of the last 𝑁 values, with seasonal periodicity sp if passed.

Figure 2. The forecasting pipeline used for all the forecasters

July 10, 2024 85

Evaluating Probabilistic Forecasters with sktime and tsbootstrap | Heidrich et al., 2024

‣ last: Uses the last observed, with seasonal periodicity sp if passed.
‣ drift: Fits a line between the first and last values of the considered window and

extrapolates forward.
• StatsForecastAutoTheta(sp): A variant of the Theta model of V. Assimakopoulos and K.

Nikolopoulos [26] with automated parameter tuning, from the statsforecast library.

3.3. Probabilistic Wrappers

We use the following probabilistic wrappers to enhance the forecasting models:

• ConformalIntervals(forecaster, strategy): Uses conformal prediction methods G.
Shafer and V. Vovk [27] to produce non-parametric prediction intervals. Variants of the
method are selected by the strategy parameter: Empirical and Empirical Residual
use training quantiles, with the latter using symmetrized residuals. Conformal imple-
ments the method of G. Shafer and V. Vovk [27], and Conformal Bonferroni applies
the Bonferroni correction [28] .

• BaggingForecaster(bootstrap_transformer, forecaster): Provides probabilistic forecasts
by bootstrapping time series and aggregating the bootstrap forecasts [25], [29]. The
BaggingForecaster takes a bootstrap algorithm bootstrap_transformer, a first-class object
in sktime. Various bootstrap algorithms with their parameters are applied in the study.

• NaiveVariance(forecaster): Uses a sliding window to compute backtesting residuals,
aggregated by forecasting horizon to a variance estimate. The mean is obtained from
the wrapped forecaster, and variance from the pooled backtesting estimate.

• SquaringResiduals(forecaster, residual_forecaster): Uses backtesting residuals on the
training set, squares them, and fits the residual_forecaster to the squared residu-
als. Forecasts of residual_forecaster are used as variance predictions, with mean
predictions from forecaster, to obtain a normal distributed forecast. In this study,
residual_forecaster is always NaiveForecaster(strategy="last").

3.4. Bootstrapping Techniques

Bootstrapping methods generate multiple resampled datasets from the original time series
data, which can be used as part of wrappers to estimate prediction intervals or predictive
distributions. In this study, we use bootstrap algorithms from tsbootstrap [12], [13],
sktime [10], and scikit-learn [20] compatible framework library dedicated to time series
bootstrap algorithms. sktime adapts these algorithms via the TSBootstrapAdapter, used as
bootstrap_transformer in BaggingForecaster.

• MovingBlockBootstrap: Divides the time series data into overlapping blocks of a fixed
size and resamples these blocks to create new datasets. The block size is chosen to
capture the dependence structure in the data.

• BlockDistributionBootstrap: Generates bootstrapped samples by fitting a distribution
to the residuals of a model and then generating new residuals from the fitted distrib-
ution. This method assumes that the residuals follow a specific distribution, such as
Gaussian or Poisson, and handles dependencies by resampling blocks of residuals. To
create a new time series, the bootstrapped residuals are added to the model’s fitted
values.

• BlockResidualBootstrap: Designed for time series data where a model is fit to the data,
and the residuals (the difference between the observed and predicted data) are boot-
strapped. This method is particularly useful when a good model fit is available for the
data. The bootstrapped samples are created by adding the bootstrapped residuals to
the model’s fitted values.

• BlockStatisticPreservingBootstrap: Generates bootstrapped time series data while pre-
serving a specific statistic of the original data. This method handles dependencies by

July 10, 2024 86

Evaluating Probabilistic Forecasters with sktime and tsbootstrap | Heidrich et al., 2024

resampling blocks of data while ensuring that the preserved statistic remains consis-
tent.

In this study, these bootstrapping techniques are used to estimate the distribution of
forecasts and generate robust prediction intervals and predictive distributions as part of
the BaggingForecaster.

3.5. Evaluation Metrics

We evaluate the performance of our forecasting models using the following metrics:

• CRPS - Continuous Ranked Probability Score [30] measures the accuracy of probabilistic
forecasts by comparing the predicted distribution to the observed values. The CRPS
for a real-valued forecast distribution 𝑑 and an observation 𝑦 can be defined as:

CRPS(𝑑, 𝑦) = 𝑬[| 𝑋 − 𝑦 |] − 1
2
𝑬[| 𝑋 −𝑋′ |], (1)

where 𝑋 and 𝑋′ are independent random variables with distribution 𝑑.
• PinballLoss - the pinball loss, also known as quantile loss [31], evaluates the accuracy

of quantile forecasts by penalizing deviations from the true values based on specified
quantiles. For quantile forecasts 𝑞1,…, 𝑞𝑘 at levels 𝜏1,…, 𝜏𝑘 and an observation 𝑦, the
Pinball Loss is defined as:

𝐿(𝑞, 𝑦) = 1
𝑘
∑
𝑘

𝑖=1
max(𝜏𝑖(𝑦 − 𝑞𝑖), (1 − 𝜏𝑖)(𝑞𝑖 − 𝑦)) (2)

The experiment uses the Pinball Loss at quantiles 0.05, and 0.95.
• AUCalibration - The Area between the calibration curve and the diagonal assesses how

well the prediction intervals capture the true values. For observations 𝑦1,…, 𝑦𝑛 and
corresponding distributional predictions with quantile functions 𝑄1,…,𝑄𝑛 (where
𝑄𝑖 = 𝐹−1𝑖 for the cdf 𝐹𝑖), the AUCalibration is defined as:

AUC(𝑄:, 𝑦:) =
1
𝑁
∑
𝑁

𝑖=1
| 𝑐(𝑖) −

𝑖
𝑁
|, (3)

where 𝑐𝑖 := 𝑄𝑖(𝑦𝑖), and 𝑐(𝑖) is the 𝑖-th order statistic of 𝑐1,…, 𝑐𝑁 .
• IntervalWidth - width of prediction intervals, or sharpness measures the concentration

of the prediction intervals. More concentrated intervals indicate higher confidence in
the forecasts. Sharpness is desirable because it indicates precise predictions. Sharp-
ness is calculated as the average width of the prediction intervals.

• EmpiricalCoverage - Empirical coverage measures how much of the observations are
within the predicted interval. It is computed as the proportion of observations that fall
within the prediction, providing a direct measure of the reliability of the intervals. A
prediction interval ranging from the 5th to the 95th quantile should cover 90% of the
observations. I.e., the empirical coverage should be close to 0.9.

• runtime - Besides metrics that assess the quality of the forecast, average runtime for
an individual fit/interence run is also reported. Runtime measures the computational
efficiency of the forecasting methods, which is crucial for practical applications.

4. Experiments
In this section, we describe the experimental setup, the datasets, the evaluation metrics, and
the experimental procedures. We explain how the experiments are designed to compare
the performance of different forecasting methods.

July 10, 2024 87

Evaluating Probabilistic Forecasters with sktime and tsbootstrap | Heidrich et al., 2024

4.1. Experimental Setup

To perform the benchmarking study, we use the framework described in Section 3. The
benchmarking compares different probabilistic wrappers on different datasets and with
different forecasters regarding CRPS, Pinball Loss, AUCalibration, and Runtime.

To enable easy replication of the experiments, we provide for each used forecaster, and
wrapper the hyperparameters by providing the used Python object instantiation in Table 1.
Note, that the parameter seasonal periodicity (sp) is dataset dependent and is set to 48 for
the Australian Electricity Dataset and 1 for the other datasets.

To create the cross validation folds, we use the SlidingWindowSplitter from sktime. The
instantiation of the splitter for each dataset is shown in Table 3. Figure 3 is showing the
resulting cross validation folds for the tree datasets. The properties of the datasets are
summarized in Table 2.

(a) (b) (c)
Figure 3. The splits used for the evaluation on the three datasets. Blue indicates the training data, and
orange indicates the test data. The splits are created using the parameters from Table 2 and Table 3

4.2. Datasets

We evaluate our forecasting methods and probabilistic wrappers on several diverse time
series datasets, each offering unique characteristics:

• Australian Electricity Demand [14]: Half-hourly electricity demand data for five
states of Australia: Victoria, New South Wales, Queensland, Tasmania, and South
Australia, useful for high-frequency data evaluation.

• Sunspot Activity [15]: Weekly observations of sunspot numbers, ideal for testing
forecasting robustness on long-term periodic patterns.

• US Births [16]: Daily birth records in the United States, with a clear seasonal pattern,
suitable for daily data performance assessment.

4.3. Results

In this section, we present the results of our experiments. We evaluate the performance of
the forecasting methods combined with probabilistic wrappers on the datasets described
in Section 4.2.

To increase the conciseness, we calculated the rank of each probabilistic wrapper for each
combination of forecaster, metric, and dataset. Afterwards, for each metric, probabilistic
wrapper and dataset, we have calculated the average across all forecasters and time series.
In the following, we present the results for each dataset separately, except for the runtime,
which is the same for all three experiments. Thus, we describe it only for the Australian
Electricity Demand dataset.

4.3.1. Performance on Australian Electricity Demand:

The results for the Australian electricity demand dataset are summarized in Table 4. We
compare the performance of different forecasting models and probabilistic wrappers using
the previously described evaluation metrics.

The ranked based evaluation show that diverse results regarding the different metrics.
E.g. while CI Empirical Residual performs best on CRPS, it is only mediocre regarding the

July 10, 2024 88

Evaluating Probabilistic Forecasters with sktime and tsbootstrap | Heidrich et al., 2024

Table 1. The table lists the specification strings for the estimators used in the study. Note that a full
pipeline consists of pre-processing, wrapper, and base forecaster, as detailed in Section 3.
Some of the parameters are determined by the used dataset: sp is 48 for the Autralian Electricity Dataset
and 1 for the other. The sample_freq is 0.005 for the Australian Electricity Dataset and 0.1 for the other.

Role Name Hyperparameters

Base Forecaster Naive last NaiveForecaster(strategy="last",
sp=sp)

Base Forecaster Naive mean NaiveForecaster(strategy="mean",
sp=sp)

Base Forecaster Naive drift NaiveForecaster(strategy="drift",
sp=sp)

Base Forecaster Theta StatsForecastAutoTheta(season_length=sp)

Wrapper CI Empirical ConformalIntervals(forecaster,
sample_frac=sample_frac)

Wrapper CI Empirical residuals ConformalIntervals(forecaster,
sample_frac=sample_frac,
method="empirical_residual")

Wrapper CI Conformal ConformalIntervals(forecaster,
sample_frac=sample_frac,
method="conformal")

Wrapper CI Bonferroni ConformalIntervals(forecaster,
sample_frac=sample_frac,
method="conformal_bonferroni")

Wrapper BaggingForecaster BaggingForecaster(ts_bootstrap_adapter,
forecaster))

Wrapper Naive Variance NaiveVariance(forecaster,
initial_window=14*sp))

Wrapper Squaring Residuals SquaringResiduals(forecaster,
initial_window=14*sp))

Forecasting Pipeline Pipeline Differencer(1) *
Deaseasonalizer(sp=sp) * Wrapper

ts_bootstrap_adapter TSBootstrapAdapter TSBootstrapAdapter(tsbootsrap)

tsbootstrap Moving Block Bootstrap MovingBlockBootstrap()

tsbootstrap Block Residual Bootstrap BlockDistributionBootstrap()

tsbootstrap Block Statistic Preserving Bootstrap BlockStatisticPreservingBootstrap()

tsbootstrap Block Distribution Bootstrap BlockDistributionBootstrap()

Pinball Loss and the AUCalibration. On PinballLoss, the best method is CI Empirical and
on AUCalibration, it is Moving Block Bootstrap. Regarding the runtime, the fastest method

Table 2. To perform the evaluation, we used three datasets. Due to the different frequencies and lengths,
we used different parameters for the Sliding Window Splitter to create the cross-validation folds. This
table presents the parameters used for each dataset.

Dataset Forecast
Horizon

Step Width Window
Size

Cutout Pe1
riod

Number of
Folds

Seasonal
Periodicity

Australian
Electricity
Demand

48 1440 1440 Last Year 12 48

Sunspot Ac-
tivity

28 395 365 Last 40
Years

12 1

US Births 28 395 365 Whole
Time Series

12 1

July 10, 2024 89

Evaluating Probabilistic Forecasters with sktime and tsbootstrap | Heidrich et al., 2024

Table 3. The code instantiation of the cross-validation splits used for the evaluation on the three datasets.
The parameters are taken from Table 2.

Dataset CV splitter

Australian Electricity Demand SlidingWindowSplitter(step_length=48*30,
window_length=48*30,fh=range(48))

Sunspot Activity SlidingWindowSplitter(step_length=395,
window_length=365,fh=range(28))

US Births SlidingWindowSplitter(step_length=395,
window_length=365,fh=range(28))

Table 4. Performance of forecasting methods on the Australian electricity demand dataset

Wrapper CRPS Pinball Loss AUCalibration Runtime

Fallback 9.45 9.66 5.61 1.00

Naive Variance 7.75 7.20 7.15 10.00

Squaring Residuals 7.45 6.20 5.05 11.00

Block Distribution Bootstrap 4.08 3.15 6.82 7.83

Block Residual Bootstrap 4.30 5.58 5.84 8.32

Block Statistic Preserving Bootstrap 4.25 5.87 6.15 7.29

Moving Block Bootstrap 6.12 6.51 4.26 6.00

CI Conformal 5.75 5.40 5.69 3.92

CI Empirical 3.79 2.63 6.97 3.30

CI Empirical Residual 2.37 5.42 5.35 3.49

CI Bonferroni 10.50 8.05 6.70 3.70

is the fallback probabilistic prediction of the base forecaster. The slowest methods are
NaiveVariance and SquaringResiduals. Furthermore, it seems that the ConformalIntervals
are slightly faster than the BaggingForecasters.

4.3.2. Performance on Sunspot Activity:

Table 5 shows the performance of our methods on the sunspot activity dataset. The long-
term periodic patterns in this dataset provide a challenging test for our forecasting models.

The ranked based evaluation show that BaggingForecaster with the Block Distribution
Bootstrap scores clearly best regarding the CRPS and Pinball Loss, and AUCalibration.

4.3.3. Performance on US Births:

The results for the US births dataset are presented in Table 6. This dataset, with its clear
seasonal pattern, allows us to assess the models’ ability to handle daily data. The ranked
based evaluation show that BaggingForecaster with the Block Distribution Bootstrap scores
best regarding the CRPS and Pinball Loss. Regarding the AUCalibration, the best score is
achieved by CI Conformal.

5. Discussion and Conclusion
Our experiments demonstrate that the benchmarking framework in sktime provides an
easy-to-use solution for reproducible benchmarks. We showed this by conducting simple
benchmark studies of probabilistic wrappers for point forecasts on three different systems
and make the corresponding code available at: https://github.com/sktime/code_for_paper_
scipyconf24/tree/main.

July 10, 2024 90

https://github.com/sktime/code
https://github.com/sktime/code_for_paper_scipyconf24/tree/main
https://github.com/sktime/code_for_paper_scipyconf24/tree/main

Evaluating Probabilistic Forecasters with sktime and tsbootstrap | Heidrich et al., 2024

Table 5. Performance of forecasting methods on the sunspot activity dataset

Wrapper CRPS PinballLoss AUCalibration Runtime

Fallback 9.00 7.25 9.50 1.00

Naive Variance 6.50 6.25 7.75 10.00

Squaring Residuals 8.00 8.00 4.75 11.00

Block Distribution Bootstrap 1.00 1.00 3.00 7.25

Block Residual Bootstrap 6.00 6.25 5.00 6.75

Block Statistic Preserving Bootstrap 5.50 7.00 2.50 6.25

Moving Block Bootstrap 5.75 5.75 7.50 5.00

CI Conformal 4.75 4.50 6.75 4.50

CI Empirical 5.50 4.00 7.25 4.50

CI Empirical Residual 3.50 8.00 6.25 4.25

CI Bonferroni 10.50 8.00 5.75 5.50

Table 6. Performance of forecasting methods on the US births dataset

Wrapper CRPS PinballLoss AUCalibration Runtime

Fallback 9.25 9.50 7.88 1.00

Naive Variance 6.25 5.75 6.25 10.00

Squaring Residuals 9.50 8.50 6.50 11.00

Block Distribution Bootstrap 1.00 1.00 8.25 7.25

Block Residual Bootstrap 3.75 5.75 5.50 7.00

Block Statistic Preserving Bootstrap 5.50 6.00 7.38 6.25

Moving Block Bootstrap 5.75 5.25 5.12 4.75

CI Conformal 6.00 6.00 4.75 4.25

CI Empirical 5.50 4.50 4.88 4.75

CI Empirical Residual 3.00 6.00 5.00 5.25

CI Bonferroni 10.50 7.75 4.50 4.50

Regarding our benchmark study, we note that this is a limited study primarily aimed at
showcasing the capabilities of the proposed framework. Therefore, future work should
include a comprehensive hyperparameter search to identify the best parameters for the
probabilistic wrappers. Additionally, further bootstrapping methods need to be explored,
as well as other wrappers such as generative neural networks, including Generative Adver-
sarial Networks, Variational Autoencoders, or Invertible Neural Networks [32], [33].

Besides extending the range of wrappers, we also plan to include additional point forecast-
ers as base models, such as AutoARIMA, in our study. Furthermore, the number of examined
datasets should be expanded to provide a more comprehensive evaluation. Finally, we did
not perform a grid search on the hyperparameters for the wrappers, which means that with
different hyperparameters, their performance and runtime might change.

In conclusion, the sktime evaluation modules enable the performance of reproducible
forecasting benchmarks. We demonstrated its applicability in a small benchmarking study
that compares different probabilistic wrappers for point forecasters. In future work, we
aim to collaborate with the scientific community to integrate more wrappers and conduct
a broader benchmark study on this topic.

July 10, 2024 91

Evaluating Probabilistic Forecasters with sktime and tsbootstrap | Heidrich et al., 2024

References

[1] T. Gneiting and M. Katzfuss, “Probabilistic forecasting,” Annual Review of Statistics and Its Application, vol. 1, pp.
125–151, 2014, doi: https://doi.org/10.1146/annurev-statistics-062713-085831.

[2] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “The M4 Competition: 100,000 time series and 61 forecasting
methods,” International Journal of Forecasting, vol. 36, no. 1, pp. 54–74, 2020, doi: https://doi.org/10.1016/j.
ijforecast.2019.04.014.

[3] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “M5 accuracy competition: Results, findings, and conclusions,”
International Journal of Forecasting, vol. 38, no. 4, pp. 1346–1364, 2022, doi: https://doi.org/10.1016/j.ijforecast.
2021.11.013.

[4] Y. Chen, Y. Kang, Y. Chen, and Z. Wang, “Probabilistic forecasting with temporal convolutional neural network,”
Neurocomputing, vol. 399, pp. 491–501, 2020, doi: https://doi.org/10.1016/j.neucom.2020.03.011.

[5] J. Nowotarski and R. Weron, “Recent advances in electricity price forecasting: A review of probabilistic forecast-
ing,” Renewable and Sustainable Energy Reviews, vol. 81, pp. 1548–1568, 2018, doi: https://doi.org/10.1016/j.rser.
2017.05.234.

[6] K. Rasul et al., “Lag-llama: Towards foundation models for time series forecasting,” arXiv preprint
arXiv:2310.08278, 2023, doi: https://doi.org/10.48550/arXiv.2310.08278.

[7] A. Das, W. Kong, R. Sen, and Y. Zhou, “A decoder-only foundation model for time-series forecasting,” arXiv preprint
arXiv:2310.10688, 2023, doi: https://doi.org/10.48550/arXiv.2310.10688.

[8] H. Semmelrock, S. Kopeinik, D. Theiler, T. Ross-Hellauer, and D. Kowald, “Reproducibility in Machine Learning-
Driven Research.” [Online]. Available: https://arxiv.org/abs/2307.10320

[9] F. J. Király, B. Mateen, and R. Sonabend, “NIPS - Not Even Wrong? A Systematic Review of Empirically
Complete Demonstrations of Algorithmic Effectiveness in the Machine Learning and Artificial Intelligence Liter-
ature.” [Online]. Available: https://arxiv.org/abs/1812.07519

[10] F. Király et al., “sktime/sktime: v0.29.0.” [Online]. Available: https://doi.org/10.5281/zenodo.11095261

[11] E. Spiliotis, V. Assimakopoulos, and S. Makridakis, “Generalizing the theta method for automatic forecasting,”
European Journal of Operational Research, vol. 284, no. 2, pp. 550–558, 2020, doi: https://doi.org/10.1016/j.ejor.
2020.01.007.

[12] S. Gilda, “tsbootstrap.” [Online]. Available: https://doi.org/10.5281/zenodo.10866090

[13] S. Gilda, B. Heidrich, and F. Kiraly, “tsbootstrap: Enhancing Time Series Analysis with Advanced Bootstrapping
Techniques.” 2024. doi: https://doi.org/10.48550/arXiv.2404.15227.

[14] R. Godahewa, C. Bergmeir, G. Webb, R. Hyndman, and P. Montero-Manso, “Australian Electricity Demand
Dataset.” [Online]. Available: https://doi.org/10.5281/zenodo.4659727

[15] R. Godahewa, C. Bergmeir, G. Webb, R. Hyndman, and P. Montero-Manso, “Sunspot Daily Dataset (without Missing
Values).” [Online]. Available: https://doi.org/10.5281/zenodo.4654722

[16] R. Godahewa, C. Bergmeir, G. Webb, R. Hyndman, and P. Montero-Manso, “US Births Dataset.” [Online]. Available:
https://doi.org/10.5281/zenodo.4656049

[17] M. Löning, A. Bagnall, S. Ganesh, V. Kazakov, J. Lines, and F. J. Király, “sktime: A unified interface for machine
learning with time series,” arXiv preprint arXiv:1909.07872, 2019, doi: https://doi.org/10.48550/arXiv.1909.07872.

[18] Federico Garza, “StatsForecast: Lightning fast forecasting with statistical and econometric models.” [Online].
Available: https://github.com/Nixtla/statsforecast

[19] J. Perktold et al., “statsmodels/statsmodels: Release 0.14.2.” [Online]. Available: https://doi.org/10.5281/zenodo.
10984387

[20] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” the Journal of machine Learning research, vol. 12,
pp. 2825–2830, 2011, doi: https://doi.org/10.48550/arXiv.1201.0490.

[21] B. Bischl et al., “mlr: Machine Learning in R,” Journal of Machine Learning Research, vol. 17, no. 170, pp. 1–5,
2016, doi: https://doi.org/10.48550/arXiv.1609.06146.

[22] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The WEKA data mining software: an
update,” SIGKDD Explor. Newsl., vol. 11, no. 1, pp. 10–18, 2009, doi: 10.1145/1656274.1656278.

[23] M. O'Hara-Wild, R. Hyndman, and E. Wang, “fable: Forecasting Models for Tidy Time Series,” 2024. [Online].
Available: https://fable.tidyverts.org/

[24] F. J. Király, M. Löning, A. Blaom, A. Guecioueur, and R. Sonabend, “Designing machine learning toolboxes:
Concepts, principles and patterns,” arXiv preprint arXiv:2101.04938, 2021, doi: https://doi.org/10.48550/arXiv.
2101.04938.

[25] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and practice. OTexts, 2018.

[26] V. Assimakopoulos and K. Nikolopoulos, “The theta model: a decomposition approach to forecasting,” Interna-
tional Journal of Forecasting, vol. 16, no. 4, pp. 521–530, 2000, doi: https://doi.org/10.1016/S0169-2070(00)00066-2.

July 10, 2024 92

https://doi.org/https://doi.org/10.1146/annurev-statistics-062713-085831
https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014
https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014
https://doi.org/https://doi.org/10.1016/j.ijforecast.2021.11.013
https://doi.org/https://doi.org/10.1016/j.ijforecast.2021.11.013
https://doi.org/https://doi.org/10.1016/j.neucom.2020.03.011
https://doi.org/https://doi.org/10.1016/j.rser.2017.05.234
https://doi.org/https://doi.org/10.1016/j.rser.2017.05.234
https://doi.org/https://doi.org/10.48550/arXiv.2310.08278
https://doi.org/https://doi.org/10.48550/arXiv.2310.10688
https://arxiv.org/abs/2307.10320
https://arxiv.org/abs/1812.07519
https://doi.org/10.5281/zenodo.11095261
https://doi.org/https://doi.org/10.1016/j.ejor.2020.01.007
https://doi.org/https://doi.org/10.1016/j.ejor.2020.01.007
https://doi.org/10.5281/zenodo.10866090
https://doi.org/https://doi.org/10.48550/arXiv.2404.15227
https://doi.org/10.5281/zenodo.4659727
https://doi.org/10.5281/zenodo.4654722
https://doi.org/10.5281/zenodo.4656049
https://doi.org/https://doi.org/10.48550/arXiv.1909.07872
https://github.com/Nixtla/statsforecast
https://doi.org/10.5281/zenodo.10984387
https://doi.org/10.5281/zenodo.10984387
https://doi.org/https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/https://doi.org/10.48550/arXiv.1609.06146
https://doi.org/10.1145/1656274.1656278
https://fable.tidyverts.org/
https://doi.org/https://doi.org/10.48550/arXiv.2101.04938
https://doi.org/https://doi.org/10.48550/arXiv.2101.04938
https://doi.org/https://doi.org/10.1016/S0169-2070(00)00066-2

Evaluating Probabilistic Forecasters with sktime and tsbootstrap | Heidrich et al., 2024

[27] G. Shafer and V. Vovk, “A tutorial on conformal prediction.,” Journal of Machine Learning Research, vol. 9, no. 3,
2008, doi: https://doi.org/10.48550/arXiv.0706.3188.

[28] P. Sedgwick, “Multiple significance tests: the Bonferroni correction,” BMJ, vol. 344, 2012, doi: 10.1136/bmj.e509.

[29] C. Bergmeir, R. J. Hyndman, and J. M. Benítez, “Bagging exponential smoothing methods using STL decomposition
and Box–Cox transformation,” International Journal of Forecasting, vol. 32, no. 2, pp. 303–312, 2016, doi: https://
doi.org/10.1016/j.ijforecast.2015.07.002.

[30] J. E. Matheson and R. L. Winkler, “Scoring Rules for Continuous Probability Distributions,” Management Science,
vol. 22, no. 10, pp. 1087–1096, 1976, doi: 10.1287/mnsc.22.10.1087.

[31] I. Steinwart and A. Christmann, “Estimating conditional quantiles with the help of the pinball loss,” 2011, doi:
https://doi.org/10.48550/arXiv.1102.2101.

[32] K. Phipps, B. Heidrich, M. Turowski, M. Wittig, R. Mikut, and V. Hagenmeyer, “Generating probabilistic forecasts
from arbitrary point forecasts using a conditional invertible neural network,” Applied Intelligence, pp. 1–29, 2024,
doi: https://doi.org/10.1007/s10489-024-05346-9.

[33] Y. Wang, G. Hug, Z. Liu, and N. Zhang, “Modeling load forecast uncertainty using generative adversarial net-
works,” Electric Power Systems Research, vol. 189, p. 106732, 2020, doi: https://doi.org/10.1016/j.epsr.2020.106732.

July 10, 2024 93

https://doi.org/https://doi.org/10.48550/arXiv.0706.3188
https://doi.org/10.1136/bmj.e509
https://doi.org/https://doi.org/10.1016/j.ijforecast.2015.07.002
https://doi.org/https://doi.org/10.1016/j.ijforecast.2015.07.002
https://doi.org/10.1287/mnsc.22.10.1087
https://doi.org/https://doi.org/10.48550/arXiv.1102.2101
https://doi.org/https://doi.org/10.1007/s10489-024-05346-9
https://doi.org/https://doi.org/10.1016/j.epsr.2020.106732

	Introduction
	sktime and tsbootstrap for Reproducible Experiments
	Unified Interface
	Reproducible Specification Language
	Meta-Algorithms and Composability
	Probabilistic Metrics
	Benchmarking and Evaluation
	Prior Work

	Algorithmic Setup
	Forecasting Pipeline
	Component Forecasting Models
	Probabilistic Wrappers
	Bootstrapping Techniques
	Evaluation Metrics

	Experiments
	Experimental Setup
	Datasets
	Results
	Performance on Australian Electricity Demand
	Performance on Sunspot Activity
	Performance on US Births

	Discussion and Conclusion
	References

