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Abstract

Histopathological images, which are digitized images of human or animal tissue, contain
insights into disease state. Typically, a pathologist will look at a slide under a microscope
to make decisions about prognosis and treatment. Due to the high complexity of the data,
applying automatic image analysis is challenging. Often, human intervention in the form of
manual annotation or quality control (QC) is required. Additionally, the data itself varies con-
siderably in available features, size, and shape. Thus, a streamlined and interactive approach
is a necessary part of any digital pathology pipeline. We present PredX-Tools, a suite of simple
and easy to use python GUI applications which facilitate analysis of histopathological images
and provide a no-code platform for data scientists and researchers to perform analysis on
raw and transformed data.
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1. Introduction
Histopathological image analysis reveals insights into disease state and has potential to
harness the immensely complex and heterogeneous tumor microenvironment to guide un!
derstanding of disease progression, response to treatment, and aid in patient stratification
for clinical trials [1], [2], [3], [4], [5]. However, applying automatic image analysis routines
continues to be challenging [6], [7]. Often, human intervention in the form of manual anno!
tation or quality control (QC) is required. Additionally, the data itself varies considerably in
available features, size, and shape. For example, the available biomarkers vary in quantity
between datasets, with some having only a few channels and others having hundreds or
more. Images vary from small core samples (∼1 MB) to massive whole slides images (∼
100 GB). Some datasets may contain data of multiple types with additional considerations
for aligning the data to a common reference frame. Thus, a streamlined and interactive
approach is a necessary part of any digital pathology pipeline [8].

We present PredX!Tools, a suite of simple and easy to use python GUI applications which
facilitate all parts of a digital pathology pipeline, from image QC and labeling to visualiza!
tion and analysis of results to allow for a deeper understanding of the data. By utilizing
open!source python libraries and utilities, we have created a suite of tools that fit seamlessly
into our analysis pipeline, require minimal expertise to run, and are easy to develop new
features for, to account for the ever!changing landscape of histopathological image analysis.

2. Background
Raw data takes the form of multi!channel images, ranging in depth from 3 channels (RGB)
up to several hundreds or even thousands. Although specifics of the routine vary depending
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on the available data and the underlying biological questions, every experiment follows a
similar procedure. Images must be registered, normalized, and denoised by a data scientist.
Registration is the process of aligning subsequent sections of tissue in space via rotation and
translation or affine transformation to match keypoints between images. Then, a researcher
performs nuclei and or cell segmentation, where each nuclear and cellular object has a
boundary automatically drawn around it. Additionally, other objects in the images may be
segmented, such as tumor beds or other biological structures present in the image. Next,
features are extracted for the segmented objects and stored in data tables. Common cell
level features include a measurement of biomarker strength within the cell boundaries,
or morphological measurements about the cell object like its area or ellipticity. Finally,
these tables of features, which include the spatial location of the objects, may be analyzed
by machine learning scientists to derive answers to mechanistic questions or to find differ!
ences between populations.

While there have been attempts at fully automating this procedure, it is nearly impossible
to design routines that can account for all forms of variation across datasets. As an
example, expected size of a cell may vary wildly between different types of cancer, and thus
having one threshold for calling a cell ‘large’ or ‘small’ is challenging. Thus, for optimal
performance on new data, it is ideal to have a human!in!the!loop to perform manual QC,
parameter tuning, and probing of the data to mitigate the error that arises when performing
analysis on new datasets. This leads to a higher confidence in any results that may be found.
To facilitate this, simple and easy to use tools must be developed to allow field experts to
interact with the data with minimal effort. Oftentimes users may not be comfortable or
familiar with programming, and thus it is far more efficient to design no!code interactive
environments to facilitate interaction with the data for non!coding domain experts.

Other tools have been developed to address these needs (see Table 1), however none cover
all our needs and many are rigid and allow custom integration only through script writing.
There is a need for a stripped down suite of modular solutions that both fits specifically
our needs for analysis, while also being modular and easy to develop to fit arising needs
and challenges that come with new data. Hence, we have developed our own in!house suite
of solutions that allows an expert user to plug directly into our highly complex analysis
pipelines, both to check quality of generated results and allow deeper exploration of the
data. More specifically, we are addressing 4 separate needs required in our analysis routine.
First, we provide an environment for gathering ground truth labels from an expert with
CellLabeler. Second, we provide a simple hub for analyzing the quality of raw and pre!
processed image data with PixelExplorer. Third, we created CellExplorer for visualizing data
tables of cellular object features and phenotypes, as well as the ability to fit models and
export modified versions of the data tables. Last, a simple and easy to use app for perform!
ing complex spatial analysis of the cellular or nuclear objects is provided in SpaceExplorer.
All apps were created with PySimpleGUI [9], alongside other open source python libraries
Matplotlib [10], NumPy [11], pandas [12], [13], scikit!learn [14], [15], SciPy [16], Tifffile [17],
and zarr [18].

3. CellLabeler
We introduce CellLabeler, a flexible and easy to configure GUI application for the purpose
of gathering expert annotations on histopathological image data. One common issue in the
space of histopathological image analysis is the lack of labeled datasets. Due to the wide
heterogeneity of the data, it is often the case that the existing labeled datasets are useless
for the dataset in question. For example, current analysis may be focused on a panel of bio!
markers that are unique from any labeled dataset in the public domain. Alternatively, one
may be working with a tissue or disease type that has little or no representation in public
domain datasets. Thus, it proves useful to have a tool to quickly and efficiently provide

July 10, 2024 107



Predx-Tools: Dispelling the Mystery in Histopathological Image Processing  | Falkenstein et al.,
2024

Software View Raw Label Pixel
analysis

Mask gen�
eration

Pheno�
typing

Spatial
analysis

Easy de�
velop�
ment

Fiji [19] Yes* Yes Yes Yes No No Yes

QuPath [20] Yes Yes Yes Yes Yes No Yes

CellProfiler
[21]

Yes* No Yes Yes Yes Yes Yes

Ilastik
[22]

Yes* Yes Yes Yes Yes No No

Predx�
Tools

Yes Yes Yes Yes Yes Yes Yes

Table 1.  Comparison of available softwares.

“*” = Limitation on image size

labels to new data to be used for either quality control purposes (labeling a segmentation
as good or bad) or for training a machine learning algorithm (labeling a cell by its type).

A configuration json file must be created for each project. Within the configuration file,
the user specifies the possible labels that can be assigned to each object, the type of image
data (RGB or N!stack) and which channels to show by default (N!stack only). The input data
consists of cropped images of each object to be labeled, as well as an optional list of marker
names in the image (N!stack only).

Once the experiment has begun and the data is loaded, the user will be shown an image and
is asked to provide a label. The potential labels are listed in a table, and can be clicked to
assign that label to the current image. To enable faster assignment of labels, the number pad
may also be used to assign labels. The user can also take time to modify which biomarkers
are being displayed, as well as which color each biomarker is assigned to (N!stack only).
By default, the object to be labeled has its boundary drawn on the image, however this can
be toggled on and off. Once a label has been assigned to the current image, the user can
either click next or use the right arrow to navigate to the next image (similarly, left arrow
or back to navigate to the previous labeled image). After each step, a simple save file is
generated which tracks the labeled objects, and thus progress is never lost. It is simple to
load a previously saved project to pick up where you left off. This provides a simple and
easy to use app for gathering labels for objects for the purposes of training an algorithm or
performing QC.

Figure 1.  The interface for CellLabeler.
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4. PixelExplorer
We have also created PixelExplorer as a way to quickly perform basic analysis on pixel level
data in raw or pre!processed histopathological datasets. Analyzing biomarker distributions
and fitting models is a crucial step of preprocessing and quality control of histopathological
imaging data. In brightfield imaging, one may want to analyze the distribution of raw RGB
signals before and after normalization or stain deconvolution, where the individual stains
are separated out from the RGB into separate channels. In mIF or IMC data, it is crucial to
understand the behavior and dynamic range of the various biomarkers and how they are
affected by normalization and noise reduction methods.

The input data for PixelExplorer is simply a folder containing the .tif (or any other open
source microscopy image format, such as .ome.tif, .svs, etc.) files to be analyzed, as well as
a CSV file containing the names of the channels in the image (if not specified in the image
metadata). With this, the user can quickly iterate through a set of tasks crucial to the pre!
processing and QC pipeline.

Once the experiment begins, the user will first select one or more of the available images
provided in the data folder. Next, selecting from the list of available biomarkers will popu!
late the histogram in the center of the screen. The histogram can have its parameters easily
tweaked, such as setting ranges of the x axis, number of bins, log of the y axis, or density
plot. Additionally, the user can choose to hide pixel values above or below a threshold.
The subsample rate of pixels can be adjusted to balance the tradeoff between runtime and
accuracy (for larger images, it may take several seconds to sample the pixels and plot them).

Further, any arbitrary transformation can be performed on the raw pixel values before
plotting them. By default, a log2 transform is applied to transform the data from range [1,
2^16] to [0, 16]. However, any valid line of python code can be added to the ‘Data transfor!
mations’ tab to be applied to the data prior to plotting. This can be helpful to visualize the
effect different transformations have on the underlying distribution.

Additionally, one can fit a Gaussian Mixture Model to the current distribution using the right
panel by simply specifying the number of mixture components and pressing enter. This will
fit a model to the data being plotted, meaning the model will be fit to the data after the
transformation is applied and after any pixels above or below the desired thresholds are
removed. This tool is very useful due to the fact that biomarker distributions in the log space
can be effectively modeled by a mixture of gaussians [23], [24]. With this, one may derive
a model for ‘foreground’ and ‘background’ signals of the images. With this knowledge, the
user may want to generate a ‘foreground’ or ‘background’ mask using the Thresholding
function available in the app. The user can type in a value, select whether to threshold
above or below the value, and then export a binary mask which is 1 for pixels that pass the
threshold and 0 elsewhere. This mask may then be used in downstream analysis, where they
may be used to focus on parts of the image which may exhibit certain behavior (e.g. thresh!
olding Ki67, a biomarker which measure cellular proliferation or reproduction, which may
be associated with tumoral regions). While these masks may be derived automatically, it
may be desirable to define one by thresholding manually.

With PixelExplorer, the user obtains a better understanding of the biomarker signal behav!
ior, how it has responded to the various preprocessing steps in the backend pipeline, and
can fit models and derive thresholds for further downstream analysis.

5. CellExplorer
To address the need of quickly analyzing tabular data of cell features, we developed CellEx!
plorer, another GUI which allows for fast and flexible basic analysis of nuclear or cellular
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Figure 2.  The interface for PixelExplorer.

feature tables. After the preprocessing and feature extraction pipelines are complete, what
remains is one CSV file per image, each containing cell level features. These features may
contain information about the object shape and morphology (H&E, IHC) or a measure of the
biomarker signal (mIF, IMC). With these feature tables as input, several types of analysis
are available using the CellExplorer GUI. CellExplorer requires as input a folder containing
all of the CSV files to be analyzed. The CSV files contain rows of cellular features. Similar to
PixelExplorer, when the app launches, the user will select one or more patient samples and
a feature column to begin visualizing the distributions. The histogram visualization has the
same controls as those found in PixelExplorer. Additionally, the user can define thresholds
on the features and view counts or ratios of positive cells or nuclei. Thresholded phenotypes
can then be exported as new columns in the CSV input files. Again, a Gaussian Mixture
Model can be fit to the current distribution.

CellExplorer also contains some additional features more useful in the context of analyzing
cellular data, as opposed to pixel data. These features are gated behind popup windows,
accessed via buttons at the bottom of the screen (Figure 4). This is to allow the main panel
of the GUI to be more streamlined and simple, and the more advanced analysis methods
hidden in popups. This also allows for modular programming design, allowing different
modules to be developed and deployed as new popup windows. Phenotypes may be a part
of the input data (columns in the CSV with ‘Positive’ in the name), or may be generated
as previously mentioned. These phenotypes can be selected and shown as a pie chart to
view relative frequencies of the phenotypes. Phenotypes may be generated using multiple
features.

6. SpaceExplorer
After cells have been assigned a phenotype label, it is advantageous to analyze the spatial
composition of the cell types. This involves quantifying the degree with which the cells
cluster together or repel each other relative to some background distribution. That is, we
may discover that tumor cells are clustered tightly together with other tumor cells, or
that immune cells may be surrounded by many tumor cells, but few other immune cells.
These spatial relationships reveal the underlying mechanisms driving the tumor microen!
vironment [2]. However, biomarker panels may include a large number of biomarkers, and
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Figure 3.  The interface for CellExplorer.

Figure 4.  An example of a popup window in CellExplorer. This interface allows for bivariate plots of the
biomarker values.

parsing the magnitude of statistics generated by pairwise analysis can be cumbersome.
Thus, there is a need for a fast and interactive way of viewing and analyzing the various
spatial statistics that can reveal insights into the tumor microenvironment.

To this end, we have created SpaceExplorer to enable a user to quickly generate a variety of
spatial statistics on singular phenotypes or pairs of phenotypes, and to generate high quality
figures. Specifically, SpaceExplorer functions similarly to CellExplorer, in that it reads as
input a CSV file, this time containing binary assignments of phenotypes for each cell. That
is, each row corresponds to a cell, and each column says whether that cell is positive or
negative for that phenotype (IE tumor cell, T cell, etc.).

Once the data is read in, the user has a few options to explore. The user may select from
the samples list one or more samples to compute scores for. Then, the user may select 1 or
2 cell types to perform spatial point!pattern analysis on. This analysis attempts to describe
the clustering or dispersing behavior of events relative to a random point pattern, and has
shown promise in other fields for describing spatial distributions of events [25], [26], [27].

Additional analysis methods include the pointwise mutual information [28], which analyzes
the probability that two events co!occur (in this case, 2 cell types being spatially close
together) relative to a background distribution, as well as the spatial neighbors enrichment
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analysis, which performs permutation tests and computes z!scores to assign a score for how
often 2 events are co!occurring [29].

7. Conclusion
Here we have described Predx!Tools, our suite of easy to use and flexible GUI applications
for interfacing with histopathological image data at various stages of processing. We
developed these tools to fit the needs that arose from working with a large variety of
histopathological datasets and understanding the variability that must be accounted for.
These tools improve workflows and allow for a deeper understanding of the complex data.
All tools were built with python and open!source python libraries.
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