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Abstract

This article demonstrates practical approaches to fully type-hinting generic NumPy arrays
and StaticFrame DataFrames, and shows how the same annotations can improve code quality
with both static analysis and runtime validation.
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As tools for Python type annotations (or hints) have evolved, more complex data structures
can be typed, improving maintainability and static analysis. Arrays and DataFrames, as
complex containers, have only recently supported complete type annotations in Python.
NumPy [1] 1.22 introduced generic specification of arrays and dtypes. Building on NumPy’s
foundation, StaticFrame [2] 2.0 introduced complete type specification of DataFrames,
employing NumPy primitives and variadic generics. This article demonstrates practical
approaches to fully type-hinting arrays and DataFrames, and shows how the same annota-
tions can improve code quality with both static analysis and runtime validation.

1. Type Hints Improve Code Quality
Type hints [3] improve code quality in a number of ways. Instead of using variable names
or comments to communicate types, Python-object-based type annotations provide main-
tainable and expressive tools for type specification. These type annotations can be tested
with type checkers such as mypy [4] or pyright [5], quickly discovering potential bugs without
executing code.

The same annotations can be used for runtime validation. While reliance on duck-typing
over runtime validation is common in Python, runtime validation is more often needed
with complex data structures such as arrays and DataFrames. For example, an interface
expecting a DataFrame argument, if given a Series, might not need explicit validation as
usage of the wrong type will likely raise. However, an interface expecting a 2D array of
floats, if given an array of Booleans, might benefit from validation as usage of the wrong
type may not raise.

Many important typing utilities are only available with the most-recent versions of Python.
Fortunately, the typing-extensions [6] package back-ports standard library utilities for older
versions of Python. A related challenge is that type checkers can take time to implement
full support for new features: many of the examples shown here require mypy 1.9.0, released
just a few months ago.

2. Elemental Type Annotations
Without type annotations, a Python function signature gives no indication of the expected
types. For example, the function below might take and return any types:
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def process0(v, q): ... # no type information

By adding type annotations, the signature informs readers of the expected types. With mod-
ern Python, user-defined and built-in classes can be used to specify types, with additional
resources (such as Any, Iterator, cast(), and Annotated) found in the standard library typing
module. For example, the interface below improves the one above by making expected
types explicit:

def process0(v: int, q: bool) -> list[float]: ...

When used with a type checker like mypy, code that violates the specifications of the type
annotations will raise an error during static analysis (shown as comments, below). For
example, providing an integer when a Boolean is required is an error:

x = process0(v=5, q=20)
# tp.py: error: Argument "q" to "process0"
# has incompatible type "int"; expected "bool"  [arg-type]

Static analysis can only validate statically defined types. The full range of runtime inputs
and outputs is often more diverse, suggesting some form of runtime validation. The best
of both worlds is possible by reusing type annotations for runtime validation. While there
are libraries that do this (e.g., typeguard and beartype), StaticFrame offers CallGuard, a tool
specialized for comprehensive array and DataFrame type-annotation validation.

A Python decorator is ideal for leveraging annotations for runtime validation. CallGuard
offers two decorators: @CallGuard.check, which raises an informative Exception on error, or
@CallGuard.warn, which issues a warning.

Further extending the process0 function above with @CallGuard.check, the same type annota-
tions can be used to raise an Exception (shown again as comments) when runtime objects
violate the requirements of the type annotations:

import static_frame as sf

@sf.CallGuard.check
def process0(v: int, q: bool) -> list[float]:
    return [x * (0.5 if q else 0.25) for x in range(v)]

z = process0(v=5, q=20)
# static_frame.core.type_clinic.ClinicError:
# In args of (v: int, q: bool) -> list[float]
# └── Expected bool, provided int invalid

While type annotations must be valid Python, they are irrelevant at runtime and can be
wrong: it is possible to have correctly verified types that do not reflect runtime reality. As
shown above, reusing type annotations for runtime checks ensures annotations are valid.

3. Array Type Annotations
Python classes that permit component type specification are “generic”. Component types
are specified with positional “type variables”. A list of integers, for example, is annotated
with list[int]; a dictionary of floats keyed by tuples of integers and strings is annotated
dict[tuple[int, str], float].
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With NumPy 1.20, ndarray and dtype become generic. The generic ndarray requires two argu-
ments, a shape and a dtype. As the usage of the first argument is still under development,
Any is commonly used. The second argument, dtype, is itself a generic that requires a type
variable for a NumPy type such as np.int64. NumPy also offers more general generic types
such as np.integer[Any].

For example, an array of Booleans is annotated np.ndarray[Any, np.dtype[np.bool_]]; an
array of any type of integer is annotated np.ndarray[Any, np.dtype[np.integer[Any]]].

As generic annotations with component type specifications can become verbose, it is prac-
tical to store them as type aliases (here prefixed with “T”). The following function specifies
such aliases and then uses them in a function.

from typing import Any
import numpy as np

TNDArrayInt8 = np.ndarray[Any, np.dtype[np.int8]]
TNDArrayBool = np.ndarray[Any, np.dtype[np.bool_]]
TNDArrayFloat64 = np.ndarray[Any, np.dtype[np.float64]]

def process1(
        v: TNDArrayInt8,
        q: TNDArrayBool,
        ) -> TNDArrayFloat64:
    s: TNDArrayFloat64 = np.where(q, 0.5, 0.25)
    return v * s

As before, when used with mypy, code that violates the type annotations will raise an error
during static analysis. For example, providing an integer when a Boolean is required is an
error:

v1: TNDArrayInt8 = np.arange(20, dtype=np.int8)
x = process1(v1, v1)
# tp.py: error: Argument 2 to "process1" has incompatible type
# "ndarray[Any, dtype[floating[_64Bit]]]"; expected "ndarray[Any, dtype[bool_]]"  [arg-type]

The interface requires 8-bit signed integers (np.int8); attempting to use a different sized
integer is also an error:

TNDArrayInt64 = np.ndarray[Any, np.dtype[np.int64]]
v2: TNDArrayInt64 = np.arange(20, dtype=np.int64)
q: TNDArrayBool = np.arange(20) % 3 == 0
x = process1(v2, q)
# tp.py: error: Argument 1 to "process1" has incompatible type
# "ndarray[Any, dtype[signedinteger[_64Bit]]]"; expected "ndarray[Any,
dtype[signedinteger[_8Bit]]]"  [arg-type]

While some interfaces might benefit from such narrow numeric type specifications,
broader specification is possible with NumPy’s generic types such as np.integer[Any],
np.signedinteger[Any], np.float[Any], etc. For example, we can define a new function that
accepts any size signed integer. Static analysis now passes with both TNDArrayInt8 and
TNDArrayInt64 arrays.
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TNDArrayIntAny = np.ndarray[Any, np.dtype[np.signedinteger[Any]]]
def process2(
        v: TNDArrayIntAny, # a more flexible interface
        q: TNDArrayBool,
        ) -> TNDArrayFloat64:
    s: TNDArrayFloat64 = np.where(q, 0.5, 0.25)
    return v * s

x = process2(v1, q) # no mypy error
x = process2(v2, q) # no mypy error

Just as shown above with elements, generically specified NumPy arrays can be validated at
runtime if decorated with CallGuard.check:

@sf.CallGuard.check
def process3(v: TNDArrayIntAny, q: TNDArrayBool) -> TNDArrayFloat64:
    s: TNDArrayFloat64 = np.where(q, 0.5, 0.25)
    return v * s

x = process3(v1, q) # no error, same as mypy
x = process3(v2, q) # no error, same as mypy
v3: TNDArrayFloat64 = np.arange(20, dtype=np.float64) * 0.5
x = process3(v3, q) # error
# static_frame.core.type_clinic.ClinicError:
# In args of (v: ndarray[Any, dtype[signedinteger[Any]]],
# q: ndarray[Any, dtype[bool_]]) -> ndarray[Any, dtype[float64]]
# └── ndarray[Any, dtype[signedinteger[Any]]]
#     └── dtype[signedinteger[Any]]
#         └── Expected signedinteger, provided float64 invalid

StaticFrame provides utilities to extend runtime validation beyond type checking. Using
the typing module’s Annotated class [7], we can extend the type specification with one or
more StaticFrame Require objects. For example, to validate that an array has a 1D shape of
(24,), we can replace TNDArrayIntAny with Annotated[TNDArrayIntAny, sf.Require.Shape(24)].
To validate that a float array has no NaNs, we can replace TNDArrayFloat64 with
Annotated[TNDArrayFloat64, sf.Require.Apply(lambda a: ~a.insna().any())].

Implementing a new function, we can require that all input and output arrays have the
shape (24,). Calling this function with the previously created arrays raises an error:

from typing import Annotated

@sf.CallGuard.check
def process4(
        v: Annotated[TNDArrayIntAny, sf.Require.Shape(24)],
        q: Annotated[TNDArrayBool, sf.Require.Shape(24)],
        ) -> Annotated[TNDArrayFloat64, sf.Require.Shape(24)]:
    s: TNDArrayFloat64 = np.where(q, 0.5, 0.25)
    return v * s

x = process4(v1, q) # types pass, but Require.Shape fails
# static_frame.core.type_clinic.ClinicError:
# In args of (v: Annotated[ndarray[Any, dtype[int8]], Shape((24,))], q: Annotated[ndarray[Any,
dtype[bool_]], Shape((24,))]) -> Annotated[ndarray[Any, dtype[float64]], Shape((24,))]
# └── Annotated[ndarray[Any, dtype[int8]], Shape((24,))]
#     └── Shape((24,))
#         └── Expected shape ((24,)), provided shape (20,)

4. DataFrame Type Annotations
Just like a dictionary, a DataFrame is a complex data structure composed of many compo-
nent types: the index labels, column labels, and the column values are all distinct types.
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A challenge of generically specifying a DataFrame is that a DataFrame has a variable
number of columns, where each column might be a different type. The Python TypeVarTuple
variadic generic specifier [8], first released in Python 3.11, permits defining a variable
number of column type variables.

With StaticFrame 2.0, Frame, Series, Index and related containers become generic. Support
for variable column type definitions is provided by TypeVarTuple, back-ported with the
implementation in typing-extensions for compatibility down to Python 3.9.

A generic Frame requires two or more type variables: the type of the index, the type of the
columns, and zero or more specifications of columnar value types specified with NumPy
types. A generic Series requires two type variables: the type of the index and a NumPy type
for the values. The Index is itself generic, also requiring a NumPy type as a type variable.

With generic specification, a Series of floats, indexed by dates, can be annotated with
sf.Series[sf.IndexDate, np.float64]. A Frame with dates as index labels, strings as column la-
bels, and column values of integers and floats can be annotated with sf.Frame[sf.IndexDate,
sf.Index[np.str_], np.int64, np.float64].

Given a complex Frame, deriving the annotation might be difficult. StaticFrame offers the
via_type_clinic interface to provide a complete generic specification for any component at
runtime:

>>> v4 = sf.Frame.from_fields([range(5), np.arange(3, 8) * 0.5],
columns=('a', 'b'), index=sf.IndexDate.from_date_range('2021-12-30', '2022-01-03'))
>>> v4
<Frame>
<Index>         a       b         <<U1>
<IndexDate>
2021-12-30      0       1.5
2021-12-31      1       2.0
2022-01-01      2       2.5
2022-01-02      3       3.0
2022-01-03      4       3.5
<datetime64[D]> <int64> <float64>

# get a string representation of the annotation
>>> v4.via_type_clinic
Frame[IndexDate, Index[str_], int64, float64]

As shown with arrays, storing annotations as type aliases permits reuse and more concise
function signatures. Below, a new function is defined with generic Frame and Series argu-
ments fully annotated. A cast is required as not all operations can statically resolve their
return type.

TFrameDateInts = sf.Frame[sf.IndexDate, sf.Index[np.str_], np.int64, np.int64]
TSeriesYMBool = sf.Series[sf.IndexYearMonth, np.bool_]
TSeriesDFloat = sf.Series[sf.IndexDate, np.float64]

def process5(v: TFrameDateInts, q: TSeriesYMBool) -> TSeriesDFloat:
    t = v.index.iter_label().apply(lambda l: q[l.astype('datetime64[M]')]) # type: ignore
    s = np.where(t, 0.5, 0.25)
    return cast(TSeriesDFloat, (v.via_T * s).mean(axis=1))

These more complex annotated interfaces can also be validated with mypy. Below, a Frame
without the expected column value types is passed, causing mypy to error (shown as com-
ments, below).
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TFrameDateIntFloat = sf.Frame[sf.IndexDate, sf.Index[np.str_], np.int64, np.float64]
v5: TFrameDateIntFloat = sf.Frame.from_fields([range(5), np.arange(3, 8) * 0.5],
columns=('a', 'b'), index=sf.IndexDate.from_date_range('2021-12-30', '2022-01-03'))

q: TSeriesYMBool = sf.Series([True, False],
index=sf.IndexYearMonth.from_date_range('2021-12', '2022-01'))

x = process5(v5, q)
# tp.py: error: Argument 1 to "process5" has incompatible type
# "Frame[IndexDate, Index[str_], signedinteger[_64Bit], floating[_64Bit]]"; expected
# "Frame[IndexDate, Index[str_], signedinteger[_64Bit], signedinteger[_64Bit]]"  [arg-type]

To use the same type hints for runtime validation, the sf.CallGuard.check decorator can be
applied. Below, a Frame of three integer columns is provided where a Frame of two columns
is expected.

# a Frame of three columns of integers
TFrameDateIntIntInt = sf.Frame[sf.IndexDate, sf.Index[np.str_], np.int64, np.int64, np.int64]
v6: TFrameDateIntIntInt = sf.Frame.from_fields([range(5), range(3, 8), range(1, 6)],
columns=('a', 'b', 'c'), index=sf.IndexDate.from_date_range('2021-12-30', '2022-01-03'))

x = process5(v6, q)
# static_frame.core.type_clinic.ClinicError:
# In args of (v: Frame[IndexDate, Index[str_], signedinteger[_64Bit], signedinteger[_64Bit]],
# q: Series[IndexYearMonth, bool_]) -> Series[IndexDate, float64]
# └── Frame[IndexDate, Index[str_], signedinteger[_64Bit], signedinteger[_64Bit]]
#     └── Expected Frame has 2 dtype, provided Frame has 3 dtype

It might not be practical to annotate every column of every Frame: it is common for inter-
faces to work with Frame of variable column sizes. TypeVarTuple supports this through the
usage of unpack operator *tuple[] expressions (introduced in Python 3.11, back-ported
with the Unpack annotation). For example, the function above could be defined to take
any number of integer columns with that annotation Frame[IndexDate, Index[np.str_],
*tuple[np.int64, ...]], where *tuple[np.int64, ...]] means zero or more integer columns.

The same implementation can be annotated with a far more general specification of colum-
nar types. Below, the column values are annotated with np.number[Any] (permitting any type
of numeric NumPy type) and a *tuple[] expression (permitting any number of columns):
*tuple[np.number[Any], ...]. Now neither mypy nor CallGuard errors with either previously
created Frame.

TFrameDateNums = sf.Frame[sf.IndexDate, sf.Index[np.str_], *tuple[np.number[Any], ...]]

@sf.CallGuard.check
def process6(v: TFrameDateNums, q: TSeriesYMBool) -> TSeriesDFloat:
    t = v.index.iter_label().apply(lambda l: q[l.astype('datetime64[M]')]) # type: ignore
    s = np.where(t, 0.5, 0.25)
    return tp.cast(TSeriesDFloat, (v.via_T * s).mean(axis=1))

x = process6(v5, q) # a Frame with integer, float columns passes
x = process6(v6, q) # a Frame with three integer columns passes

As with NumPy arrays, Frame annotations can wrap Require specifications in Annotated
generics, permitting the definition of additional run-time validations.

5. Type Annotations with Other Libraries
While StaticFrame might be the first DataFrame library to offer complete generic specifica-
tion and a unified solution for both static type analysis and run-time type validation, other
array and DataFrame libraries offer related utilities.
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Neither the Tensor class in PyTorch (2.4.0), nor the Tensor class in TensorFlow (2.17.0) support
generic type or shape specification. While both libraries offer a TensorSpec object that can
be used to perform run-time type and shape validation, static type checking with tools like
mypy is not supported.

As of Pandas 2.2.2, neither the Pandas Series nor DataFrame support generic type specifica-
tions. A number of third-party packages have offered partial solutions. The pandas-stubs
library, for example, provides type annotations for the Pandas API, but does not make the
Series or DataFrame classes generic. The pandera library [9] permits defining DataFrameSchema
classes that can be used for run-time validation of Pandas DataFrames. For static-analysis
with mypy, pandera offers alternative DataFrame and Series subclasses that permit generic
specification with the same DataFrameSchema classes. This approach does not permit the ex-
pressive opportunities of using generic NumPy types or the unpack operator for supplying
variadic generic expressions.

6. Conclusion
Python type annotations can make static analysis of types a valuable check of code quality,
discovering errors before code is even executed. Up until recently, an interface might take
an array or a DataFrame, but no specification of the types contained in those containers
was possible. Now, complete specification of component types is possible in NumPy and
StaticFrame, permitting more powerful static analysis of types.

Providing correct type annotations is an investment. Reusing those annotations for runtime
checks provides the best of both worlds. StaticFrame’s CallGuard runtime type checker is
specialized to correctly evaluate fully specified generic NumPy types, as well as all generic
StaticFrame containers.
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