
Open Access | https://doi.org/10.25080/NRPV2311

SciPy 2024
July 8 - July 14, 2024

Proceedings of the 23nd

Python in Science Conference
ISSN: 2575-9752

Any notebook served: authoring and sharing
reusable interactive widgets
Trevor Manz ¹ , Nils Gehlenborg ¹ , and Nezar Abdennur

2,3

¹ Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA, ² Department of
Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, USA, ³ Department
of Systems Biology, UMass Chan Medical School, Worcester, MA, USA

Published Jul 10, 2024

Correspondence to
Trevor Manz
trevor_manz@g.harvard.edu

Open Access

Copyright © 2024 Manz et
al.. This is an open-access
article distributed under the
terms of the Creative Commons
Attribution 4.0 International li-
cense, which enables reusers
to distribute, remix, adapt, and
build upon the material in any
medium or format, so long as
attribution is given to the cre-
ator.

Abstract

The open-source Jupyter project has fostered a robust ecosystem around notebook-based
computing, resulting in diverse Jupyter-compatible platforms (e.g., JupyterLab, Google Colab,
VS Code). Jupyter Widgets extend these environments with custom visualizations and inter-
active elements that communicate directly with user code and data. While this bidirectional
communication makes the widget system powerful, its architecture is currently tightly cou-
pled to platforms. As a result, widgets are complex and error-prone to author and distribute,
limiting the potential of the wider widget ecosystem. Here we describe the motivation and
approach behind the anywidget project, a specification and toolset for portable and reusable
web-based widgets in interactive computing environments. It ensures cross-platform com-
patibility by using the web browser’s built-in module system to load these modules from the
notebook kernel. This design simplifies widget authorship and distribution, enables rapid
prototyping, and lowers the barrier to entry for newcomers. Anywidget is compatible with
not just Jupyter-compatible platforms but any web-based notebook platform or authoring
environment and is already adopted by other projects. Its adoption has sparked a widget
renaissance, improving reusability, interoperability, and making interactive computing more
accessible.

Keywords Computational Notebooks, Jupyter, Widgets, Python, JavaScript, Data
Visualization, Interactive Computing

1. Introduction
Computational notebooks combine live code, equations, prose, visualizations, and other
media within a single environment. The Jupyter project [1], [2] has been instrumental the
success of notebooks, which have become the tool of choice for interactive computing in
data science, research, and education. Key to Jupyter’s widespread adoption is its modular
architecture and standardization of interacting components, which have fostered an exten0
sive ecosystem of tools that reuse these elements. For example, the programs responsible
for executing code written in notebooks, called kernels, can be implemented by following
the Jupyter Messaging Protocol [3]. This design allows users to install kernels for various
different languages and types of computation. Similarly, Jupyter’s open0standard notebook
format (.ipynb) ensures that notebooks can be shared and interpreted across different
platforms [4].

Jupyter’s modular architecture has also supported innovation in notebook front ends —
the user interfaces (UIs) for editing and executing code, as well as inspecting kernel outputs.
The success of the classic Jupyter Notebook [1] spurred the development of several similar
Jupyter0compatible platforms (JCPs), such as JupyterLab, Google Colab, and Visual Studio
Code. These platforms provide unique UIs and editing features while reusing Jupyter’s other

July 10, 2024 247

https://en.wikipedia.org/wiki/Open_access
https://en.wikipedia.org/wiki/Open_access
https://doi.org/10.25080/NRPV2311
https://orcid.org/0000-0001-7694-5164
https://orcid.org/0000-0001-7694-5164
mailto:trevor_manz@g.harvard.edu
mailto:trevor_manz@g.harvard.edu
https://orcid.org/0000-0003-0327-8297
https://orcid.org/0000-0003-0327-8297
mailto:nils@hms.harvard.edu
mailto:nils@hms.harvard.edu
https://orcid.org/0000-0001-5814-0864
https://orcid.org/0000-0001-5814-0864
mailto:nezar.abdennur@umassmed.edu
mailto:nezar.abdennur@umassmed.edu
mailto:trevor_manz@g.harvard.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Any notebook served: authoring and sharing reusable interactive widgets | Manz et al., 2024

standardized components. This interoperability allows users to choose the platform that
best suits their needs, while retaining a familiar interactive computing experience with the
ability to share notebooks. Furthermore, the separation of computation from UI offers users
a wide selection of both front ends and kernels. However, the proliferation of JCPs has led to
significant challenges for Jupyter Widgets, a key component of interactive user interfaces
in Jupyter.

Jupyter Widgets extend notebook outputs with interactive views and controls for objects
residing in the kernel [5]. For instance, the ipywidgets library, besides defining the
widget communication protocol, provides basic form elements like buttons, sliders, and
dropdowns to adjust individual variables. Other community projects offer interactive visu0
alizations for domain0specific needs, such as 3D volume rendering (ipyvolume), biological
data exploration [6], [7], [8], and mapping (ipyleaflet, pydeck, lonboard), which users can
update by executing other code cells or interact with in the UI to update properties in the
kernel.

Widgets are unique among Jupyter components in that they consist of two separate
programs — kernel0side code and front0end code — that communicate directly via custom
messages Figure 1, rather than through a mediating Jupyter process. With widgets, commu0
nication is bidirectional: a kernel action (e.g., the execution of a notebook cell) can update
the UI, such as causing a slider to move, while a user interaction (e.g., dragging a slider),
can drive changes in the kernel, like updating a variable. This two0way communication
distinguishes widgets from other interactive elements in notebook outputs, such as HTML
displays, which cannot communicate back and forth with the kernel.

Widgets are intended to be pluggable components, similar to kernels. However, only the
protocol for communication between kernel and front0end widget code, known as the
Jupyter Widgets Message Protocol, is standardized. Critical components, such as the distri0
bution format for front0end modules and methods for discovering, loading, and executing
these modules, remain unspecified. As a result, JCPs have adopted diverse third0party
module formats, installation procedures, and execution models to support widgets. These
inconsistencies place the onus on widget authors to ensure cross0JCP compatibility.

Note
In this paper, we define a Jupyter Widget as consisting of a pair of programs: kernel0
side and front0end, which communicate via the Jupyter Widget Message Protocol. While
Python0only widget classes exist, which wrap other Jupyter Widgets as dependencies,

Figure 1. Jupyter Widget conceptual architecture.

July 10, 2024 248

https://github.com/jupyter-widgets/ipywidgets
https://github.com/widgetti/ipyvolume
https://github.com/jupyter-widgets/ipyleaflet
https://github.com/visgl/deck.gl/tree/master/bindings/pydeck
https://developmentseed.org/lonboard/
https://github.com/jupyter-widgets/ipywidgets/blob/c65dc47/packages/schema/messages.md

Any notebook served: authoring and sharing reusable interactive widgets | Manz et al., 2024

this paper focuses on those with dedicated front0end code, where the challenges
described apply.

JCPs load front0end widget code by searching in various external sources, such as local
file systems or Content Distribution Networks (CDNs) while kernel0side (Python) code loads
and runs in the kernel Figure 2. These access patterns split the distribution of custom
widgets between Python and JavaScript package registries, complicating releases and
requiring widget authors to understand both packaging ecosystems. This division creates
challenges, especially in shared, multi0user environments like JupyterHub. Since kernels
cannot host static assets, users cannot independently install widgets or manage versions.
Instead, widget front0end code must be pre0installed on the Jupyter webserver, typically by
an administrator. Consequently, users are restricted to administrator0installed widgets and
versions, unable to upgrade or add new ones independently.

These limitations make widget development complex and time0consuming, demanding
expertise in multiple domains. They make user experiences across JCPs frustrating and
unreliable. The high barrier to entry discourages new developers and domain scientists
from contributing to widgets, limiting growth and diversity in the ecosystem. This leaves
a small group of authors responsible for adapting their code for cross0JCP compatibility,
hindering widget reliability and maintainability.

2. Methodology
The anywidget project simplifies the authoring, sharing, and distribution of Jupyter Wid0
gets by (i) introducing a standard for widget front0end code based on the web browser’s

Figure 2. Without anywidget, to ensure compatibility, authors must transform their JavaScript code for
each JCP. Since JCPs load front-end widget code from a webserver rather than the kernel, widget front-
end and Python code must also be packaged separately and installed consistently on any given platform.
Missing puzzle pieces represent missing front-end extensions for specific target JCPs. The misshapen blue
piece represents an incorrectly built or broken extension. Both situations contribute to fragmented JCP
support.

July 10, 2024 249

https://jupyter.org/hub
https://github.com/manzt/anywidget

Any notebook served: authoring and sharing reusable interactive widgets | Manz et al., 2024

Figure 3. With anywidget, developers author a single, standard portable ES module (AFM), which
is loaded from the kernel and executed using the browser’s native module system. For existing JCPs,
anywidget provides a front-end adapter to load and execute these standardized modules, while new
platforms can add native AFM support directly. Widget kernel-side code and AFM can be run directly from
within notebooks, from source files, or distributed as single Python packages. With anywidget, each JCP
consumes the same AFM, and widget authors can compose an AFM directly or target AFM through a build
step to take advantage of advanced tools.

native module system, (ii) loading these modules from the kernel, and (iii) providing the
necessary “glue code” to adapt existing JCPs to load and execute these components Figure 3.
This separation of concerns allows widget authors to write portable code that runs consis0
tently across JCPs without manual installation steps.

Packaging custom Jupyter Widgets is complex due to the need to adapt JavaScript source
code for various module systems used by JCPs. Initially, JavaScript lacked a built0in module
system, leading JCPs to adopt diverse third0party solutions. Without a standardized widget
front0end format, authors transform their code for each JCP. In the context of Jupyter
Notebook and JupyterLab, this problem is described in the Jupyter Widgets documentation
[9] as follows:

Because the API of any given widget must exist in the kernel, the kernel is the natural
place for widgets to be installed. However, kernels, as of now, don’t host static assets.
Instead, static assets are hosted by the webserver, which is the entity that sits between
the kernel and the front0end. This is a problem because it means widgets have compo0
nents that need to be installed both in the webserver and the kernel. The kernel
components are easy to install, because you can rely on the language’s built0in tools.
The static assets for the webserver complicate things, because an extra step is required
to let the webserver know where the assets are.

ECMAScript (ES) modules, introduced in 2015, are an official standard for packaging
JavaScript code for reuse [10]. While most JCPs predate its standardization, ES modules
are universally supported by browsers today. By adopting ES modules, anywidget is able
to use the browser’s native import mechanism to load and execute widget front0end code
from the Jupyter kernel, thereby bypassing those used by JCPs and eliminating third0party
dependencies. This approach not only overcomes many development challenges, but also

July 10, 2024 250

Any notebook served: authoring and sharing reusable interactive widgets | Manz et al., 2024

export default {
 initialize({ model }) {
 // Set up shared state or event handlers.
 return () => {
 // Optional: Called when the widget is destroyed.
 }
 },
 render({ model, el }) {
 // Render the widget's view into the el HTMLElement.
 return () => {
 // Optional: Called when the view is destroyed.
 }
 }
}

Figure 4. An anywidget front-end module (AFM) with initialization and rendering lifecycle methods.
For familiarity, AFM methods use naming conventions from traditional Jupyter Widgets; however, AFM
narrows down the APIs provided to these methods, making it easier to load and execute AFMs in new
environments. Methods: The initialize and render methods correspond to different stages in the widget’s
lifecycle. During model initialization, a front-end model is created and synchronized with the kernel. In
the rendering stage, each notebook cell displaying a widget object renders an independent view based on
the synced model state. Arguments: The interface of model is restricted to a minimal set of methods for
communicating with the kernel (retrieving, updating, and responding to value changes). The el argument
is a standard web HTMLElement.

eliminates installation procedures for front0end code. Consequently, developers can proto0
type and share widgets directly within notebooks, making them more reliable and easier
to use.

An anywidget front0end module (AFM) is an ES module with a default export defining
widget behavior. This export includes lifecycle methods, or “hooks,” for managing a widget’s
lifecycle stages: initialization, rendering, and destruction Figure 4. AFM lifecycle methods
receive the interfaces required for kernel communication and notebook output modifica0
tions as arguments, rather than creating them internally or relying on global variables
provided by the JCP. This practice, known as dependency injection [11], improves AFM
portability by making integration interfaces explicit. New runtimes can support AFMs by
implementing the required APIs, and existing JCPs can refactor their internals without
breaking existing (any)widgets. For projects that want to take advantage of advanced front0
end tooling, anywidget also provides authoring utilities to write AFMs such as “bridge”
libraries for popular web frameworks [12].

Widget authorship is particularly challenging due to the need to integrate front0end code
that communicates with kernel code in a heterogeneous set of environments. The anywid0
get project addresses these challenges by focusing on the standardization, development,
and distribution of widget front0end modules, including the associated API to communicate
with a computational kernel. The anywidget Python package serves as an adapter library
that turns each JCP into an AFM0compatible host environment. Finally, the anywidget
project provides additional tooling to help developers evolve their prototypes into mature
packages [12].

An additional goal for an interactive computing paradigm like widgets is composability. For
example, ipywidgets provides utilities to link widgets together or lay out grids of widgets
on the page. These primitives allow widgets to derive from others, enabling reuse of front0
end and kernel integrations in new ways. Importantly, Jupyter Widgets authored with
the anywidget Python package extend from ipywidgets, making them interoperable with
core ipywidgets and traditional custom widgets. By aligning with ipywidgets, anywidget
promotes composability and prevents fragmentation of the ecosystem.

July 10, 2024 251

https://observablehq.com/\@manzt/afm-narrowing-widget-front-end-apis
https://developer.mozilla.org/en-US/docs/Web/HTML/Element

Any notebook served: authoring and sharing reusable interactive widgets | Manz et al., 2024

3. Features
Adhering to predictable standards benefits both developers and end users in many other
ways beyond JCP interoperability, such as…

3.1. Web Over Libraries

Front0end libraries change rapidly and often introduce breaking changes, whereas the web
platform remains more backward0compatible. Traditional Jupyter Widgets require exten0
sions from UI libraries provided by JCPs, coupling widget implementations to third0party
frameworks. In contrast, AFM defines a minimal set of essential interfaces focused on (1)
communicating with the kernel and (2) modifying notebook output cells, without dictating
models for state or UI. It allows widgets to be defined without dependencies, reducing
boilerplate and preventing lock0in. Authors may still use third0party JavaScript libraries or
tooling, but these are no longer necessary for JCP compatibility, publishing, or user instal0
lation.

3.2. Rapid Iteration

The web ecosystem’s adoption of ES modules has led to new technologies that enhance
developer experience and enable rapid prototyping. One such innovation is hot module
replacement (HMR), a method that uses the browser’s module graph to dynamically update
applications without reloading the page or losing state. Since traditional Jupyter Widgets
rely on legacy module systems, they cannot benefit from HMR and instead require full page
clearance, reload, and re0execution to see changes during development. By contrast, any0
widget is able to provide opt0in HMR, implemented through the Jupyter messaging protocol,
in order to support live development of custom widgets without any front0end tooling. For
example, adjusting a widget’s appearance, such as a chart’s color scheme, updates the view
instantly without re0executing cells or refreshing the page.

3.3. Progressive Development

Anywidget makes it possible to prototype widgets directly within a notebook since all widget
code is loaded from the kernel. Custom widgets can start as a few code cells and transition to
separate files, gradually evolving into standalone scripts or packages – just like kernel0side
programs Figure 3. In contrast, developing traditional Jupyter Widgets is a cumbersome
process limited to the Jupyter Notebook and JupyterLab platforms. It involves using a
project generator [13], [14] to bootstrap a project with over 50 files, creating and installing
a local Python package, bundling JavaScript code, and manually linking build outputs to
install extensions [15]. By removing these barriers, anywidget accelerates development
and allows prototypes to grow into robust tools over time. In fact, as of January 2024, the
JavaScript cookiecutter [13] project has been deprecated and directs users to use anywidget
instead.

3.4. Simplified Publishing

Serving AFMs and other static assets from the kernel removes the need to publish widget
kernel0side and front0end code separately and coordinate their releases. For example,
many JCPs retrieve traditional widget Javascript code from npm, misusing the registry for
distributing specialized programs rather than reusable JavaScript modules. Instead, with
anywidget, developers can publish a widget (kernel0side module, AFM, and stylesheets) as
a unified package to the distribution channels relevant to the kernel language, such as the
Python Package Index. Consolidating the distribution process this way greatly simplifies
publishing and discovery.

July 10, 2024 252

https://www.npmjs.com/
https://pypi.org/

Any notebook served: authoring and sharing reusable interactive widgets | Manz et al., 2024

4. Impact and Outlook
Anywidget fills in the specification gaps for Jupyter Widgets by embracing open standards
and carefully separating developer concerns. It defines an API for authoring portable
and reusable widget components that decouples widget authorship from JCPs, resulting
in multiple downstream benefits. First, anywidget—not widget authors—ensures compat0
ibility and interoperability across existing JCPs, and authors can focus on important
features rather than wrestle with build configuration and tooling. Anywidget’s adapter
layer simply loads and executes standardized front0end modules, meaning that the compat0
ibility afforded does not introduce overhead to the runtime performance of a widget itself.
A widget authored with anywidget has the same performance characteristics as a widget
tediously (and correctly) authored using the traditional Jupyter Widgets system. Second,
by circumventing bespoke JCP import systems and loading web0standard ES modules from
the kernel, anywidget does away with manual installation steps and delivers an improved
developer experience during widget authorship. Third, anywidget unifies and simplifies
widget distribution. Widgets can be prototyped and shared as notebooks, or mature into pip0
installable packages and distributed like other tools in the Python data science ecosystem.
End users benefit from standardization because widgets are easy to install and behave
consistently across platforms.

Since its release, anywidget has led to a proliferation of widgets and a more diverse widget
ecosystem Figure 5. New widgets range from educational tools for experimenting with toy
datasets (e.g., DrawData) to high0performance data visualization libraries (e.g., Lonboard,
Jupyter0Scatter [16], Mosaic [17]) and research projects enhancing notebook interactivity
(e.g., Persist [18], cev [19]). Many of these tools use anywidget’s binary data transport to
enable efficient interactive visualization with minimal overhead by avoiding JSON serial0
ization. Existing widget projects have also migrated to anywidget (e.g., higlass0python,
ipyaladin) and other libraries have introduced or refactored existing widget functionality to
use anywidget (e.g., Altair [20]) due to the simplified distribution and authoring capabilities.

Figure 5. Custom Jupyter Widgets per year as of September 2, 2024. Projects are tracked in a semi-
automated process, combining daily code searches against GitHub with manual verification, at https://
github.com/manzt/anywidget-usage. See repository for details and contribution guidelines.

July 10, 2024 253

https://github.com/koaning/drawdata
https://developmentseed.org/lonboard/latest/
https://jupyter-scatter.dev/
https://github.com/uwdata/mosaic
https://github.com/visdesignlab/persist/
https://github.com/OzetteTech/comparative-embedding-visualization
https://github.com/higlass/higlass-python
https://github.com/cds-astro/ipyaladin
https://github.com/vega/altair
https://github.com/manzt/anywidget-usage
https://github.com/manzt/anywidget-usage

Any notebook served: authoring and sharing reusable interactive widgets | Manz et al., 2024

The portable widget standard also extends the anywidget ecosystem to platforms beyond
Jupyter. Popular web frameworks and dashboarding libraries such as Voila, Panel, Shiny
for Python, and Solara support Jupyter Widgets, and therefore also allow users to embed
anywidgets in standalone web applications. Efforts are underway to add more specialized,
built0in support for AFM as well. For example, marimo, a new reactive notebook for Python,
is standardizing its third0party plugin API on AFM, allowing anywidgets to run natively
without additional “glue code.” Developers of the Panel web0application framework are
also exploring deeper integration with AFM to enable reuse with their kernel0side reactivity
systems.

AFM’s standardization of widget front0end code extends reusability beyond the Python
ecosystem. Its API structure is intentionally agnostic to backend processing, enabling cre0
ative and dynamic ways of hosting AFM0based widgets. Many simple widgets can function
without any compute backend, while more complex ones can be upgraded with a compu0
tational backend when necessary. This flexibility allows for innovative hosting solutions
across diverse platforms, from fully static web pages to full0stack web applications. By
decoupling front0end interactivity from backend complexity, AFM empowers developers
to create scalable, platform0independent scientific visualizations and tools, adaptable to a
wide range of computational requirements and user scenarios.

A current limitation of anywidget is that using relative file imports for local dependencies
requires bundling into a single ES module, which introduces a build step and prevents
shipping AFM source code directly. This build step can be avoided by using a single file and
loading third0party dependencies via URLs, though larger projects may still benefit from
bundling. Notably, traditional widgets always require a build step and mandate using a
specific bundler (Webpack) with a bespoke multi0JCP configuration. In contrast, anywidget
makes bundling optional and targets a single standard ES module, which can be produced
easily from a variety of bundlers. Future browser support for importmaps may enable
local dependencies without bundling, simplifying anywidget development further as web
standards evolve.

Tools for data visualization and interactivity have greater impact when compatible with
more platforms, but achieving compatibility involves trade0offs [21]. The full capabilities of
the widget system, such as bidirectional communication, are often inaccessible to authors
due to development difficulty and maintenance efforts. Adopting standards can minimize
these impediments, enabling both broad compatibility and advanced capabilities for users.
A recent article enumerates these challenges and advocates for standardized solutions to
democratize the creation of notebook visualization tools across notebook platforms [21].
Anywidget addresses this by introducing a standard that removes friction in widget devel0
opment and sharing, making authorship practical and accessible.

Acknowledgements

We thank Talley Lambert for his contributions to the project, and David Kouril for his
suggestions on the manuscript and figures. We also thank the anywidget community as well
as members of the Abdennur and HIDIVE labs for helpful discussions.

Funding

TM, NG, and NA acknowledge funding from the National Institutes of Health (UM1
HG011536, OT2 OD033758, R33 CA263666, R01 HG011773).

July 10, 2024 254

https://github.com/voila-dashboards/voila
https://github.com/holoviz/panel
https://github.com/posit-dev/py-shiny
https://github.com/posit-dev/py-shiny
https://github.com/widgetti/solara
https://github.com/marimo-team/marimo
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script/type/importmap

Any notebook served: authoring and sharing reusable interactive widgets | Manz et al., 2024

References

[1] T. Kluyver et al., “Jupyter Notebooks – a publishing format for reproducible computational workflows,” in
Positioning and Power in Academic Publishing: Players, Agents and Agendas, F. Loizides and B. Scmidt, Eds., 2016,
pp. 87–90. doi: 10.3233/97801061499064901087.

[2] B. E. Granger and F. Pérez, “Jupyter: Thinking and Storytelling With Code and Data,” Comput. Sci. Eng., vol. 23,
no. 2, pp. 7–14, 2021, doi: 10.1109/MCSE.2021.3059263.

[3] “Jupyter Client documentation.” [Online]. Available: https://jupyter0client.readthedocs.io/en/stable/

[4] “nbformat documentation.” [Online]. Available: https://nbformat.readthedocs.io/en/stable/format_description.
html

[5] “Jupyter documentation.” [Online]. Available: https://docs.jupyter.org/en/latest/projects/architecture/content0
architecture.html

[6] T. Manz, S. L’Yi, and N. Gehlenborg, “Gos: a declarative library for interactive genomics visualization in Python,”
Bioinformatics, vol. 39, no. 1, p. btad50, 2023, doi: 10.1093/bioinformatics/btad050.

[7] T. Manz et al., “Viv: multiscale visualization of high0resolution multiplexed bioimaging data on the web,” Nat.
Methods, vol. 19, no. 5, pp. 515–516, 2022, doi: 10.1038/s41592002200148207.

[8] M. S. Keller, I. Gold, C. McCallum, T. Manz, P. V. Kharchenko, and N. Gehlenborg, “Vitessce: a framework for
integrative visualization of multi0modal and spatially0resolved single0cell data,” 2021. doi: 10.31219/osf.io/y8thv.

[9] “Low Level Widget Explanation.” [Online]. Available: https://ipywidgets.readthedocs.io/en/stable/examples/
Widget%20Low%20Level.html

[10] yu Shu0Guo, M. Ficarra, K. Gibbons, and E. community, “ECMAScript® Language Specification.” [Online]. Avail0
able: https://262.ecma0international.org/14.0/

[11] M. Fowler, “Inversion of Control Containers and the Dependency Injection Pattern.” [Online]. Available: https://
martinfowler.com/articles/injection.html

[12] T. Manz, N. Abdennur, and N. Gehlenborg, “anywidget: reusable widgets for interactive analysis and visualization
in computational notebooks.” OSF Preprints, 2024. doi: 10.31219/osf.io/tw9sg.

[13] “widget0cookiecutter.” [Online]. Available: https://github.com/jupyter0widgets/widget0cookiecutter

[14] “widget0ts0cookiecutter.” [Online]. Available: https://github.com/jupyter0widgets/widget0ts0cookiecutter

[15] “Anywidget documentation cookiecutter comparison.” [Online]. Available: https://anywidget.dev/blog/
introducing0anywidget/#a0solution0with0crumbs

[16] F. Lekschas and T. Manz, “Jupyter Scatter: Interactive Exploration of Large0Scale Datasets,” Journal of Open Source
Software, vol. 9, no. 101, p. 7059, 2024, doi: 10.21105/joss.07059.

[17] J. Heer and D. Moritz, “Mosaic: An Architecture for Scalable & Interoperable Data Views,” IEEE Trans. Vis.
Comput. Graph., vol. 30, no. 1, pp. 436–446, 2024, doi: 10.1109/TVCG.2023.3327189.

[18] K. Gadhave, Z. Cutler, and A. Lex, “Persist: Persistent and reusable interactions in computational notebooks,”
2023. doi: 10.31219/osf.io/9x8eq.

[19] T. Manz, F. Lekschas, E. Greene, G. Finak, and N. Gehlenborg, “A General Framework for Comparing Embedding
Visualizations Across Class0Label Hierarchies,” 2024, doi: 10.31219/osf.io/puxnf.

[20] J. VanderPlas et al., “Altair: Interactive Statistical Visualizations for Python,” Journal of Open Source Software,
vol. 3, no. 32, p. 1057, 2018, doi: 10.21105/joss.01057.

[21] Z. J. Wang, D. Munechika, S. Lee, and D. H. Chau, “SuperNOVA: Design Strategies and Opportunities for Interactive
Visualization in Computational Notebooks,” in Extended Abstracts of the 2024 CHI Conference on Human Factors
in Computing Systems, in CHI EA '24. New York, NY, USA, 2024, pp. 1–17. doi: 10.1145/3613905.3650848.

July 10, 2024 255

https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1109/MCSE.2021.3059263
https://jupyter-client.readthedocs.io/en/stable/
https://nbformat.readthedocs.io/en/stable/format_description.html
https://nbformat.readthedocs.io/en/stable/format_description.html
https://docs.jupyter.org/en/latest/projects/architecture/content-architecture.html
https://docs.jupyter.org/en/latest/projects/architecture/content-architecture.html
https://doi.org/10.1093/bioinformatics/btad050
https://doi.org/10.1038/s41592-022-01482-7
https://doi.org/10.31219/osf.io/y8thv
https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20Low%20Level.html
https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20Low%20Level.html
https://262.ecma-international.org/14.0/
https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html
https://doi.org/10.31219/osf.io/tw9sg
https://github.com/jupyter-widgets/widget-cookiecutter
https://github.com/jupyter-widgets/widget-ts-cookiecutter
https://anywidget.dev/blog/introducing-anywidget/#a-solution-with-crumbs
https://anywidget.dev/blog/introducing-anywidget/#a-solution-with-crumbs
https://doi.org/10.21105/joss.07059
https://doi.org/10.1109/TVCG.2023.3327189
https://doi.org/10.31219/osf.io/9x8eq
https://doi.org/10.31219/osf.io/puxnf
https://doi.org/10.21105/joss.01057
https://doi.org/10.1145/3613905.3650848

	Introduction
	Methodology
	Features
	Web Over Libraries
	Rapid Iteration
	Progressive Development
	Simplified Publishing

	Impact and Outlook
	Acknowledgements
	References

