
Open Access | https://doi.org/10.25080/TCFJ5130

SciPy 2024
July 8 - July 14, 2024

Proceedings of the 23nd

Python in Science Conference
ISSN: 2575-9752

ITK-Wasm
Matthew McCormick ¹ , and Paul Elliott ¹

¹ Kitware, Inc.

Published Jul 10, 2024

Correspondence to
Matthew McCormick
matt@mmmccormick.com

Open Access

Copyright © 2024 McCormick &
Elliott. This is an open-access
article distributed under the
terms of the Creative Commons
Attribution 4.0 International li-
cense, which enables reusers
to distribute, remix, adapt, and
build upon the material in any
medium or format, so long as
attribution is given to the cre-
ator.

Abstract

In recent years, WebAssembly (Wasm) has emerged as a widely-supported technology that
offers high performance, compact binary size, support for multiple languages, hardware
independence, security, and universal platform support, enabling developers to bring near-
native speeds and portability to applications for the web and beyond. ITK-Wasm brings
WebAssembly’s capabilities to scientific computing by combining the Insight Toolkit (ITK) and
WebAssembly to enable high-performance spatial analysis across programming languages
and hardware architectures.

In the scientific Python ecosystem, ITK-Wasm packages work in a web browser via Pyodide
but also in system-level environments through the WebAssembly System Interface (WASI).
ITK-Wasm bridges WebAssembly with scientific Python through simple, fundamental Python
and NumPy-based data structures and Pythonic function interfaces. These interfaces can be
accelerated through graphics processing units (GPU) or neural processing unit (NPU) imple-
mentations when available.

Beyond Python, ITK-Wasm’s integration of the WebAssembly Component Model launches
scientific computing into a new world of interoperability, enabling the creation of accessible
and sustainable multi-language projects that are easily distributed anywhere.

Keywords reproducibility, sustainability, accessibility, interoperability, numpy, polyglot,
spatial computing, visualization, imaging, meshes, pointsets, itk, webassembly, wasm

1. Introduction

1.1. Motivation

In the quest for enhanced interoperability and sustainability in scientific computing,
WebAssembly (Wasm) emerges as a transformative technology. Wasm offers a universal,
efficient compilation target, enabling high-performance computing across varied program-
ming languages and hardware architectures [1], [2], [3]. This innovation is pivotal for
scientific research, where analytical interoperability, tool sustainability, and computational
efficiency are paramount. Wasm’s journey began with asm.js and evolved through Wasm
and the WebAssembly System Interface (WASI).

1.2. Brief history of Wasm

Asm.js was introduced by Alon Zakai via the Emscripten toolchain as a subset of JavaScript
designed for high performance [4]. It allowed developers to write code in languages like
C and C++, compile it to asm.js, and run it in the browser with near-native performance.
Asm.js achieved this by using a statically-typed subset of JavaScript that enabled optimiza-
tions by the JavaScript engine.

The predecessor to ITK-Wasm, ITK.js, supported compilation of C/C++ code into asm.js to
enable reproducible, sustainable scientific computing in a web browser. An illustrative
ITK.js application are interactive figures to replicate results from an open science article

July 10, 2024 256

https://en.wikipedia.org/wiki/Open_access
https://en.wikipedia.org/wiki/Open_access
https://doi.org/10.25080/TCFJ5130
https://orcid.org/0000-0001-9475-3756
https://orcid.org/0000-0001-9475-3756
mailto:matt@mmmccormick.com
mailto:matt@mmmccormick.com
https://orcid.org/0009-0000-8749-3327
https://orcid.org/0009-0000-8749-3327
mailto:paul.elliott@kitware.com
mailto:paul.elliott@kitware.com
mailto:matt@mmmccormick.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

ITK-Wasm | McCormick & Elliott, 2024

Figure 1. Open science interactive figures built with ITK.js, the predecessor to ITK-Wasm [6]. The sustain-
ability and accessibility of this interactive open science figure are remarkable, thanks to the utilization of
open web technologies. These technologies, based on open standards, ensure compatibility across different
systems and long-term support. This web application has continued to function flawlessly for over nine
years without any maintenance, demonstrating its resilience and sustainability. It is hosted for free, with
computations running directly on the reader’s system, eliminating the need for server-side resources. The
application requires zero installation and can be accessed with just a few clicks, allowing users to easily
reproduce results or apply the technique to their own data.

on an imaging denoising technique called anisotropic non-linear diffusion [5]. Results on a
simple webpage, hosted for free on GitHub Pages, are dynamically generated by the reader’s
web browser, using the same code and data presented in the article. Presets load input data
and set analysis parameters to dynamically reproduce the article’s figures. Additionally,
readers can modify parameters to observe their effects or run the algorithm on their own
image data.

The key performance improvement with asm.js was its ability to utilize the JavaScript
engine’s just-in-time (JIT) compilation to execute code faster than traditional JavaScript.
However, asm.js had limitations, including verbose code and the overhead of JavaScript’s
garbage collection and dynamic typing.

WebAssembly emerged from the limitations of asm.js. Announced in 2015 and reaching its
initial MVP (Minimum Viable Product) in 2017, Wasm provides a compact binary format
that could be executed at near-native speed [3], [7]. This innovation marked a significant
leap in web performance, enabling complex applications to run efficiently in the browser.

July 10, 2024 257

ITK-Wasm | McCormick & Elliott, 2024

Key features of Wasm include [7]:

Security

• Safe to execute
• Maintains the sandboxing paradigms of web browsers

Portability

• Language-, hardware-, and platform-independent
• Deterministic and easy to reason about
• Simple interoperability with the Web platform

Speed

• Fast to execute
• Maximally compact
• Easy to decode, validate and compile
• Easy to generate for producers
• Streamable and parallelizable

The WebAssembly System Interface (WASI), introduced by the WebAssembly Community
Group, extends Wasm’s capabilities beyond the browser [8]. WASI provides a standardized
system interface for WebAssembly, enabling it to interact with the underlying operating
system. This development was crucial for running Wasm in desktop, server, and other non-
browser environments.

Key features of WASI include:

• File system access
• Network access
• A modular architecture

With WASI, WebAssembly can be used to develop portable, high-performance applications
that run anywhere. A plethora of WASI runtimes are available that vary in their focus, such
as embedding in programming languages, specialized hardware such as field-programma-
ble gate arrays (FPGAs), embedded devices, security, speed, or high performance computing
(HPC) environments [9], [10], [11].

1.3. Wasm and scientific computing

Throughout its evolution, WebAssembly has focused on performance improvements. Some
notable advancements relevant to scientific computing include:

• Bulk memory operations: efficient copy and movement of data in memory
• SIMD support: Single Instruction, Multiple Data (SIMD) capabilities, allowing Wasm to

perform parallel operations on multiple data points simultaneously with specialized
instruction support available on modern CPUs

• Multithreading support: support for operating system threads and atomics for CPU
parallelism

The evolution of WebAssembly from asm.js to Wasm to WASI has been marked by contin-
uous improvements in performance, interoperability, and support for a wide range of
programming languages and deployment environments. This journey has transformed We-
bAssembly into a versatile and powerful technology, capable of running high-performance
applications anywhere, from the browser to the cloud.

Wasm has been embraced in commercial and industrial contexts for web applications,
game development, edge computing, and server-side computing. However, its adoption in

July 10, 2024 258

ITK-Wasm | McCormick & Elliott, 2024

scientific computing has been more limited. This is partly due to the established reliance
specialized software stacks in the scientific community. Additionally, the integration of
Wasm into existing scientific workflows requires overcoming challenges related to data
interoperability, toolchain compatibility, and the inertia of entrenched computational prac-
tices.

Enter ITK-Wasm, a pioneering resource that marries the Insight Toolkit (ITK) and open
standards to seemlessly integrate Wasm for high-performance scientific spatial analysis
or visualization[12], [13], [14]. ITK-Wasm supports both Emscripten-based Wasm in a web
browser or WASI-SDK Wasm for system-level environments. ITK-Wasm is crafted to adhere
to Wasm community standards, thereby facilitating the creation of Wasm modules that are
simple, performant, portable, modular, and interoperable.

ITK-Wasm provides infrastructure that empowers research software engineers to:

• Build scientific C/C++ codes to Wasm
• Generate idiomatic programming language bindings, packages, and documentation
• Bridge Wasm with

‣ Local filesystems
‣ Canonical scientific programming data interfaces such as NumPy arrays
‣ Traditional scientific file formats with an emphasis on multi-dimensional spatial

data
• Transfer data efficiently in and out of the Wasm runtime
• Support asynchronous and parallel execution of processing pipelines in way that is easy

to understand and implement

2. Methods

2.1. Overview

ITK-Wasm provides powerful, joyful tooling for scientific computation in Wasm through a
number of distinct but related parts.

1. C++ core tooling
2. Build environment Docker images
3. A Node.js CLI to build Wasm, generate language bindings, run tests, and publish

packages
4. Small, language-specific libraries that facilicate idiomatic integration
5. Scientific file format support
6. Artificial intelligence and the semantic web integration

This tooling supports a straightforward programming model that aligns with functional
programming paradigms and leverages Wasm’s simple stack-based virtual machine and
Component Model architecture. All tooling is built around two key concepts:

1. Interface Types: High-level, programming-language types for scientific computing,
derived from Wasm’s low-level types.

2. Processing Pipelines: Functions implemented in Wasm modules that operate on
these interface types.

2.2. C++ core

ITK-Wasm’s C++ core tooling provides:

1. Fundamental numerical methods and multi-dimensional scientific data structures
2. An elegant, modern interface to create processing pipelines
3. A bridge to interoperable web techologies

July 10, 2024 259

ITK-Wasm | McCormick & Elliott, 2024

4. A bridge to Web3 and traditional desktop computing

These are embodied in the C++ core with:

1. ITK
2. CLI11
3. Glaze
4. libcbor

The Insight Toolkit (ITK) is an open-source, cross-platform library that provides developers
with an extensive suite of software tools based on a proven, spatially-oriented architecture
for processing scientific data in two, three, or more dimensions [M. McCormick, X. Liu, J.
Jomier, C. Marion, and L. Ibanez [13]]. ITK includes fundamental numerical libraries, such
as Eigen. ITK’s C++ template-based architecture inherently helps keep Wasm modules small
while enabling the compiler to add extensive performance optimizations. The itk-wasm
GitHub repository is also an ITK Remote Module, WebAssemblyInterface, that implements
Wasm-interface specific functionality. As an ITK Remote Module, wasm interface capabil-
ities are available in an easily consumed library form. To access wasm interface function-
ality in a build configuration,

find_package(ITK
 COMPONENTS
 WebAssemblyInterface
 # Other desired components
)
include(${ITK_USE_FILE})

add_executable(a-wasm-pipeline ${srcs})
target_link_libraries(a-wasm-pipeline PUBLIC ${ITK_LIBRARIES})

Glaze provides an elegent C++ JSON interface. This library was integrated as it is not
only extremely fast but also small as a header-only library, which is critical for efficient
WebAssembly deployment. The ability to read and write interface types to files, providing
a bridge to Web3 and traditional desktop computing, is built on libcbor, which is another
tiny footprint library.

Wasm module C++ processing pipelines are written with CLI11′s simple and intuitive argu-
ment parsing interface [15]. A C++ Wasm processing pipeline is defined with the familiar
context of a command line executable. Processing pipelines can be built with native binary
toolchains into usable command line executables, which facilites development and debug-
ging. CLI11 extensions for the interface types and parsing enable an efficient embedding
interface in addition to the command line interface. All modules support an --interface-
json flag that outputs a description of the module’s interface for binding generation.

2.3. Build environment Docker images

Build environment Docker images encapsulate

1. The ITK-Wasm C++ core
2. An Emscripten or WASI toolchain
3. Additional Wasm tools and configurations

These itkwasm/emscripten and itkwasm/wasi Docker images are dockcross images – Docker
images with pre-configured C++ cross-compiling toolchains that enable easy-application,
reproducible builds, and a clean separation of the build environment, source tree, and build
artifacts [16].

July 10, 2024 260

ITK-Wasm | McCormick & Elliott, 2024

These images include not only the CMake pre-configured toolchains, but pre-built versions
of the ITK-Wasm C++ core. Moreover, Wasm tools for optimization, debugging, system exe-
cution, and testing are bundled. A number of build and system configurations are included
to for optimized and debuggable builds.

2.4. Command line interface (CLI)

An itk-wasm Node.js command line interface (CLI) drives

• Wasm module builds
• Generation of language bindings and language package configurations
• Testing for Wasm binaries

New projects are typically created with the create-itk-wasm CLI:

npx create-itk-wasm

The create-itk-wasm tool, which can be used interactively or programmatically, will generate
C++ code with the required ITK-Wasm CLI11 interfaces, other support configuration files
such as CMake build configuration scripts, a package.json file, language binding generation,
and testing.

2.5. Language-specific libraries and idiomatic bindings

Small, language-specific libraries are used by generated bindings to provide simple, clean,
performant, and idiomatic interfaces in the host languages.

In TypeScript / JavaScript, this is the NPM itk-wasm package and in Python this is the PyPI
itkwasm package.

TypeScript / JavaScript bindings and packages are generated from Emscripten toolchain
builds of ITK-Wasm. TypeScript bindings are generated along with an NPM package.json to
support package builds and deployment. Bindings are generated that support both browser-
based execution and server-side execution in Node.js. Build scripts are provided to build
TypeScript to JavaScript and also generate a demo app with an HTML interface. JavaScript
bindings load Zstandard-compressed versions the Wasm modules on-demand in a web
worker to support progressive and performant execution.

Python packages for new modules are generated for both system execution and web
brower-execution. In the browser, Pyodide-compatible packages provide client-side web
app scripting in Python, including via PyScript, and sustainable, scalable Jupyter deploy-
ments via JupyterLite. At a system level, Linux, macOS, and Windows operating systems are
supported on x86_64 and ARM via wasmtime-py.

2.5.1. Python environment dispatch:

Bindings produce a primary, pip-installable Python package. In browser environments,
this will pull a corresponding Emscripten-enabled Python package. For system Python
distributions, this will bring in a corresponding WASI-enabled Python package. When
GPU-accelerated implementations of functions are available in other packages along with
required hardware and software, simply pip-installing the accelerator package will cause
function calls to invoke accelerated overrides registered with modern package metadata,
Figure 2.

July 10, 2024 261

ITK-Wasm | McCormick & Elliott, 2024

Figure 2. Cross-platform, cross-environment support with optional non-Wasm accelerator packages is
made possible by a generated environment dispatch Python package, a WASI-based Python package, and
a Pyodide package. The Pyodide package does not have typical Pyodide-Emscripten ABI limitations due
to the application of principals from the Wasm Component Model.

2.5.2. Browser and system APIs:

While synchronous functions are available in system packages, browser packages provide
asynchronous functions for non-blocking, performant execution in the JavaScript runtime
event loop. These functions are called with modern Python’s async / await support.

For example, to install the itkwasm-compress-stringify package:

System

pip install itkwasm-compress-stringify

Browser

In Pyodide, e.g. the Pyodide REPL or JupyterLite,

import micropip
await micropip.install('itkwasm-compress-stringify')

In the browser, call the async *_async function with the await keyword.

System

from itkwasm_compress_stringify import compress_stringify

data = bytes([33,44,55])
compressed = compress_stringify(data)

Browser

July 10, 2024 262

https://docs.python.org/3/library/asyncio-task.html
https://pypi.org/project/itkwasm-compress-stringify/
https://pyodide.org/en/stable/console.html
https://jupyterlite.readthedocs.io/en/latest/try/lab

ITK-Wasm | McCormick & Elliott, 2024

from itkwasm_compress_stringify import compress_stringify_async

data = bytes([33,44,55])
compressed = await compress_stringify_async(data)

2.6. Traditional file format support

Assistance for handling data serialized in file formats plays a crucial role in enabling
comprehensive analysis using a variety of software tools.

ITK-Wasm offers IO modules designed to interact with various standard scientific image
and mesh file formats. These modules allow for the loading of data into the language-native
interface type bindings.

Scientific image file formats supported include:

• AIM,ISQ
• BioRad
• BMP
• DICOM
• DICOM Series
• ITK HDF5
• JPEG
• GIPL (Guy’s Image Processing Lab)
• LSM
• MetaImage
• MGH
• MINC 2.0
• MRC
• NIfTI
• NRRD
• VTK legacy file format for images
• Varian FDF

Scientific mesh file formats supported include:

• BYU
• FreeSurfer surface, binary and ASCII
• OFF
• STL
• SWC Neuron Morphology
• OBJ
• VTK legacy file format for vtkPolyData

In addition to supporting external file formats, ITK-Wasm also introduces its own file
formats. These ITK-Wasm file formats are optimized and offer a direct correspondence to
spatial interface types, utilizing a straightforward JSON + binary array buffer format.

Execution pipeline WebAssembly modules only support ITK-Wasm formats by default – this
ensures that size of the WebAssembly pipeline binary is minimal. When using ITK-Wasm
pipelines on with the command line interface, Wasm modules from the image-io and mesh-
io packages can transform data in other formats into the format supported by all ITK-Wasm
modules.

ITK-Wasm formats can be output in a directory or bundled in a single .cbor file. The
Concise Binary Object Representation (CBOR) format supports JSON + binary array data

July 10, 2024 263

https://www.scanco.ch/imexport.html
https://www.bio-rad.com/
https://en.wikipedia.org/wiki/BMP_file_format
https://dicom.nema.org/
https://dicom.nema.org/
https://www.hdfgroup.org/
https://en.wikipedia.org/wiki/JPEG_File_Interchange_Format
https://www.ncbi.nlm.nih.gov/pubmed/12956259
https://www.openwetware.org/wiki/Dissecting_LSM_files
https://itk.org/Wiki/ITK/MetaIO/Documentation
https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/MghFormat
https://en.wikibooks.org/wiki/MINC/SoftwareDevelopment/MINC2.0_File_Format_Reference
http://www.ccpem.ac.uk/mrc_format/mrc_format.php
https://nifti.nimh.nih.gov/nifti-1
http://teem.sourceforge.net/nrrd/format.html
https://www.vtk.org/VTK/img/file-formats.pdf
https://github.com/InsightSoftwareConsortium/ITKIOFDF
http://www.eg-models.de/formats/Format_Byu.html
http://www.grahamwideman.com/gw/brain/fs/surfacefileformats.htm
https://en.wikipedia.org/wiki/OFF_%28file_format%29
https://en.wikipedia.org/wiki/STL_%28file_format%29
https://swc-specification.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Wavefront_.obj_file
https://www.vtk.org/wp-content/uploads/2015/04/file-formats.pdf
https://cbor.io/

ITK-Wasm | McCormick & Elliott, 2024

in the data schema, is extremely small and lightweight in implementations, has support
across programming languages, is highly performant, and provides a link to Web3 storage
mechanisms.

ITK-Wasm file formats are available in ITK-Wasm IO functions but also in C++ via the
WebAssemblyInterface ITK module. This module can be enabled in an ITK build by setting
the -DModule_WebAssemblyInterface:BOOL=ON flag in CMake. And, loading and conversion is also
available native-binary Python bindings via the itk-webassemblyinterface Python package.

2.7. Artificial Intelligence and the Semantic Web

An ITK-Wasm LinkML [17] model provides FAIR definitions of the interface types that
enable high-performance, portable, sustainable, and reproducible spatial analysis.

The interface types include:

• BinaryFile - Representation of a binary file on a filesystem. For performance reasons,
use BinaryStream when possible, instead of BinaryFile.

• BinaryStream - Representation of a binary stream. For performance reasons, use
BinaryStream when possible, instead of BinaryFile.

• Image - Representation of an N-dimensional scientific image.
• JsonCompatible - A type that can be represented in JSON.
• Mesh - Representation of an N-dimensional mesh.
• PointSet - Representation of a set of N-dimension points.
• PolyData - Representation of a polydata, 3D geometric data for rendering that repre-

sents a collection of points, lines, polygons, and/or triangle strips.
• TextFile - Representation of a text file on a filesystem. For performance reasons, use

TextStream when possible, instead of TextFile.
• TextStream - Representation of a text stream. For performance reasons, use

TextStream when possible, instead of TextFile.
• Transform - Representation of a parametric spatial transformation that can be applied

to an Image, Mesh, PointSet, PolyData.

This model, combined with ITK-Wasm’s architecture, can perform analysis and visualiza-
tion using natural language inputs provided to large-language artificial intelligence models.
LinkML’s Pydantic models and TypeScript models enable interfaces like the Bioimage
Chatbot [18], [19] to semantically understand the needs of biologists without programming
knowledge, allowing the system to execute desired operations or generate scripts for batch
execution.

3. Results

3.1. Example application: generation of multiscale OME-Zarr images

A notable application of ITK-Wasm is the generation of Figure 3, a cloud-optimized bioimag-
ing format with broad international adoption [21], [22]. To generate OME-Zarr’s multiscale
representation of multidimensional bioimages, anti-aliasing filters must be applied.

As detailed by the Nyquist-Shannon Sampling Theorem, high frequency content in an image
must be reduced before downsampling to avoid Figure 5.

In the NGFF-Zarr package [23], ITK-Wasm anti-aliasing filters efficiently produce OME-Zarr
images suitable for Pyodide, JupyterLite, traditional CPython environments, or analysis
and visualization with other programming languages. While ITK-Wasm supports making
general scientific C++ codes accessibly in wasm, in this example we will examine how the
itk::DiscreteGaussianImageFilter is applied to address this problem [13], [24], [25].

July 10, 2024 264

https://ipld.io/docs/codecs/known/dag-cbor/
https://ipld.io/docs/codecs/known/dag-cbor/
https://pypi.org/project/itk-webassemblyinterface/
https://pypi.org/project/itk-webassemblyinterface/
https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem

ITK-Wasm | McCormick & Elliott, 2024

Figure 3. Visible Male [20] frozen head computed tomography (CT) OME-Zarr volume, generated with
ITK-Wasm. There are three resolution scales, which can be selected with the Image Scale buttons. Reduced
resolutions are smoothed with a gaussian filter to avoid aliasing artifacts.

We apply the N-dimensional gaussian convolution filter:

𝐺(𝒙; 𝜎) = 1
(2𝜋𝜎2)𝑛/2

exp(−| 𝒙 |2

2𝜎2) (1)

Where:

• 𝐺(𝒙; 𝜎) is the Gaussian filter function
• 𝒙 is an n-dimensional vector representing spatial coordinates
• 𝜎 is the standard deviation of the Gaussian distribution
• 𝑛 is the number of dimensions
• | 𝒙 |2 is the squared Euclidean norm of 𝒙

For downsampling, we use 𝜎2 = (𝑘2 − 12)/(2√2 ln(2))
2
 where 𝑘 is the downsampling factor,

which is optimal [26].

3.2. C++ pipeline definition

The C++ wasm pipeline function, a pure function, is defined as a CLI11 executable [15]. It
uses an itk::wasm::Pipeline interface definition that operates on itk::wasm interface types.

July 10, 2024 265

ITK-Wasm | McCormick & Elliott, 2024

Figure 4. A comparison of NRRD (Nearly Raw Raster Data), a traditional scientific image file format to
the OME-Zarr scientific image file format, a modern, web-friendly file format. NRRD is a single, monolithic
file with header and image pixel data formats concatenated. The header has a bespoke format and the
pixel data is often compressed with the zlib compression codec. In contrast, OME-Zarr has a hierarchical
structure, sometimes encoded in folders and files. Metadata is stored in JSON files. Image pixel data is
stored in separate N-dimensional chunks that are compressed with fast, high compression ratio modern
codecs like LZ4 or Zstd. Additionally, the image is represented at multiple resolutions. OME-Zarr’s
chunk, highly-compressed, multiscale representation makes it ideal for uses cases like cloud-computing
or extremely large images. However, this requires generation of the reduced resolution scales.

int main(int argc, char * argv[])
{
 itk::wasm::Pipeline pipeline("downsample", "Apply a smoothing anti-alias filter and subsample the
input image.", argc, argv);

 return itk::wasm::SupportInputImageTypes<PipelineFunctor,
 uint8_t,
 int8_t,
 uint16_t,
 int16_t,
 uint32_t,
 int32_t,
 uint64_t,
 int64_t,
 float,
 double
 >
 ::Dimensions<2U, 3U, 4U, 5U>("input", pipeline);
}

Here downsample defines the name of the pipeline function. A description for the pipeline is
also provided – this propagates to command line and language interface documentation.

In this function, we use the itk::wasm::SupportInputImageTypes utility to dispatch compile-
time optimized pipeline based on the pixel type and dimension of the input image. This
ensures excellent performance while limiting the wasm module binary size, critical for
performance and distribution, to the code that is used by the pipeline.

Next, pipeline inputs, outputs, and parameters are defined:

July 10, 2024 266

http://teem.sourceforge.net/nrrd/format.html
https://ngff.openmicroscopy.org/
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/LZ4*(compression_algorithm)
https://en.wikipedia.org/wiki/Zstd

ITK-Wasm | McCormick & Elliott, 2024

Figure 5. Aliasing artifacts at the second resolution scale. With naive subsampling (top) aliasing artifacts
introduce noise in the image at frequencies not supported by the sampling frequency. With gaussian anti-
aliasing filtering prior to downsampling (bottom), signal fidelity is preserved.

template<typename TImage>
class PipelineFunctor
{
public:
 int operator()(itk::wasm::Pipeline & pipeline)
 {
 using ImageType = TImage;
 constexpr unsigned int ImageDimension = ImageType::ImageDimension;

 using InputImageType = itk::wasm::InputImage<ImageType>;

July 10, 2024 267

ITK-Wasm | McCormick & Elliott, 2024

 InputImageType inputImage;
 pipeline.add_option("input", inputImage, "Input image")
 ->required()->type_name("INPUT_IMAGE");

 std::vector<unsigned int> shrinkFactors { 2, 2 };
 pipeline.add_option("-s,--shrink-factors", shrinkFactors, "Shrink factors")
 ->required()->type_size(ImageDimension);

 std::vector<unsigned int> cropRadius;
 pipeline.add_option("-r,--crop-radius", cropRadius, "Optional crop radius in pixel units.")
 ->type_size(ImageDimension);

 using OutputImageType = itk::wasm::OutputImage<ImageType>;
 OutputImageType downsampledImage;
 pipeline.add_option("downsampled", downsampledImage, "Output downsampled image")
 ->required()->type_name("OUTPUT_IMAGE");

 ITK_WASM_PARSE(pipeline);

The types used are integers, floating point numbers, std containers of the same, or itk::wasm
interface types. Long flags define parameter names in their language bindings, and their
descriptions are propagated to their documentation.

The pipeline interface syntax can be generated from a set of interactive prompts provided
by the create-itk-wasm CLI tool.

Once ITK_WASM_PARSE(pipeline) is called, input argument parsing and error handling is
performed and the input pipeline options are populated with their values. During CLI
execution, this means reading input files. When used with language bindings, files are not
used and inputs are populated with in-memory content that was lowered into the wasm
module with internal itk_wasm* functions.

Next comes the computational logic of the pipeline:

 using GaussianFilterType = itk::DiscreteGaussianImageFilter<ImageType, ImageType>;
 auto gaussianFilter = GaussianFilterType::New();
 gaussianFilter->SetInput(inputImage.Get());

 [...]
 ITK_WASM_CATCH_EXCEPTION(pipeline, shrinkFilter->UpdateLargestPossibleRegion());

 typename ImageType::ConstPointer result = shrinkFilter->GetOutput();
 downsampledImage.Set(result);

 return EXIT_SUCCESS;

In this example, we are using ITK library C++ functionality, but this can be arbitrary C+
+ code.

The .Get() and .Set() methods on the interface types supply the C++ interface to the input
values for computation and outputs. When the output interface type’s destructors are
called, they are written to files on disk in a CLI context or prepared for wasm module lifting
in an embedded language context.

The build is configured with simple, standard CMake:

July 10, 2024 268

ITK-Wasm | McCormick & Elliott, 2024

cmake_minimum_required(VERSION 3.16)
project(itkwasm-downsample LANGUAGES CXX)

find_package(ITK REQUIRED
 COMPONENTS
 WebAssemblyInterface
 ITKSmoothing
[...]

add_executable(downsample downsample.cxx)
target_link_libraries(downsample PUBLIC ${ITK_LIBRARIES})

The same C++ and CMake code can be used for a native toolchain along with the wasm
toolchain builds. This facilitates rapid development and easy debugging with native devel-
opment tooling.

Additionally, CTest tests can be defined for native or WASI execution, e.g.:

enable_testing()

add_test(NAME downsample
 COMMAND downsample
 ${CMAKE_CURRENT_SOURCE_DIR}/test/data/input/cthead1.png
 ${CMAKE_CURRENT_BINARY_DIR}/cthead1_downsampled.png
 --shrink-factors 2 2
)

In the WASI case, ITK-Wasm enables execution via a wasm interpreter and by enabling
interpreter access to local input and output file directories.

3.3. Command line invocation

If our example downsample pipeline module is built into a native binary, help output is
Figure 6:

❯ ./downsample --help

The equivalent invocation with the wasmtime wasm runtime for the WASI wasm module
built from the same sources is:

❯ wasmtime run ./downsample.wasi.wasm --help

Where a native binary invocation is:

❯ ./downsample \
 ./vm_head.iwi.cbor ./downsampled.iwi.cbor \
 --shrink-factors 4 4 2

The equivalent wasm module invocation is:

July 10, 2024 269

https://wasmtime.dev/

ITK-Wasm | McCormick & Elliott, 2024

Figure 6. Wasm module help invocation and generated help output.

❯ wasmtime run --dir=./ -- ./downsample.wasi.wasm \
 ./vm_head.iwi.cbor ./downsampled.iwi.cbor \
 --shrink-factors 4 4 2

All ITK-Wasm pipeline modules also support an --interface-json flag, which allows a
module to self-describe its interface for documentation and language binding generation,
described in the following sections.

July 10, 2024 270

ITK-Wasm | McCormick & Elliott, 2024

❯ wasmtime run ./downsample.wasi.wasm --interface-json
{
 "description": "Apply a smoothing anti-alias filter and subsample the input image.",
 "name": "downsample",
 "version": "0.1.0",
 "inputs": [
 {
 "description": "Input image",
 "name": "input",
 "type": "INPUT_IMAGE",
 "required": true,
 "itemsExpected": 1,
 "itemsExpectedMin": 1,
 "itemsExpectedMax": 1,
 "default": ""
 }
],
 "outputs": [
 {
 "description": "Output downsampled image",
 "name": "downsampled",
 "type": "OUTPUT_IMAGE",
 "required": true,
 "itemsExpected": 1,
 "itemsExpectedMin": 1,
 "itemsExpectedMax": 1,
 "default": ""
 }
],
 "parameters": [
 [...]
 {
 "description": "Shrink factors",
 "name": "shrink-factors",
 "type": "UINT",
 "required": true,
 "itemsExpected": 2,
 "itemsExpectedMin": 2,
 "itemsExpectedMax": 1073741824,
 "default": "[2,2]"
 },
 [...]
]
}

3.4. Generating TypeScript packages from ITK-Wasm modules

One of the toolchains that ITK-Wasm supports is Emscripten. To facilitate seamless integra-
tion with modern web development, we generate TypeScript packages from Emscripten-
generated wasm modules. These packages include Node.js bindings for server-side execu-
tion and browser-compatible interfaces for client-side execution.

3.4.1. Node.js bindings:

For server-side execution, our Node.js bindings provide direct access to the wasm module’s
functionality. Local filesystem paths are made available to the wasm module, enabling
pipelines to operate on files stored on the server. This allows developers to leverage ITK-
Wasm pipelines in a Node.js environment, ideal for tasks such as image processing or
analysis on a server.

3.4.2. Browser bindings:

In the browser, our bindings support pipelines that operate on files using the File object,
as well as a custom BinaryFile object. The BinaryFile object consists of a string path and a
Uint8Array binary, enabling efficient binary data transfer between the browser and wasm

July 10, 2024 271

ITK-Wasm | McCormick & Elliott, 2024

module. This allows developers to create web applications that interact with ITK-Wasm
pipelines, enabling tasks such as image filtering and segmentation in the browser.

Figure 7. JavaScript and TypeScript package README rendered on npmjs.com.

July 10, 2024 272

https://www.npmjs.com/package/\@itk-wasm/downsample
https://www.npmjs.com/package/\@itk-wasm/downsample
https://www.npmjs.com/package/\@itk-wasm/downsample
http://npmjs.com

ITK-Wasm | McCormick & Elliott, 2024

3.4.3. TypeScript Interface Types:

Our TypeScript interface types are designed to be idiomatic classes comprised of JSON-
compatible JavaScript types and TypedArrays. This ensures seamless interaction between
the wasm module and TypeScript code, enabling developers to write efficient, natural, and
type-safe code.

3.4.4. WebWorker-based execution:

To prevent interruption of the main user interface thread and support asynchronous
background wasm compilation, pipelines are executed in a WebWorker when running in
the browser. This ensures a responsive user experience while ITK-Wasm pipelines are
executing.

3.4.5. Parallelism with WebWorkerPool:

For tasks that require parallel processing, a compatible WebWorkerPool is available. This
enables developers to leverage multiple CPU cores to accelerate computationally intensive
tasks, such as image registration and segmentation.

3.4.6. Automated package configuration:

From an ITK-Wasm project, we generate a complete TypeScript/JavaScript package config-
uration. This includes:

• TypeScript Bindings: Generated for both Node.js and browser environments.
• TypeScript Compilation Configuration: Pre-configured for optimal performance and

compatibility.
• NPM Package Configuration: Ready for Figure 7.

3.4.7. Documentation and demo app:

To facilitate adoption and ease of use, we generate:

• README: A concise introduction to the project and its capabilities.
• Docsify Documentation: Detailed API documentation for the pipeline APIs.
• Demo App: An Figure 8 for sample data or user-provided data, allowing developers to

experiment with API parameters and visualize results.

By providing a comprehensive set of tools and configurations, we empower developers
to harness the full potential of ITK-Wasm in modern web applications, streamlining the
development of scientific imaging and analysis tools.

3.5. Seamless Integration with Python Ecosystem

3.5.1. Browser-based Pyodide Packages:

We leverage the Emscripten toolchain to generate bindings for browser-based Pyodide
Python packages. This enables seamless integration of ITK-Wasm with Pyodide, allowing
developers to utilize ITK’s algorithms in web-based Python applications.

3.5.2. Cross-Platform Compatibility with WASI:

For system applications, we provide a WASI-based Python package that ensures cross-
platform compatibility across all major platforms and architectures. This broadens the
reach of ITK-Wasm, enabling developers to deploy ITK-based applications on a wide range
of systems.

July 10, 2024 273

ITK-Wasm | McCormick & Elliott, 2024

Figure 8. Interactive live API demo application.

3.5.3. GPU Acceleration with cuCIM:

To further enhance performance, we utilize the dispatch Python package’s capabilities in
conjunction with a cuCIM accelerator package. This enables GPU acceleration, to enable
improvements the execution speed, especially in applications where bulk data resides on
the GPU, which is often the case for AI-enabled workflows.

3.5.4. API Documentation and Pythonic Interfaces:

We generate API documentation for the simple, Pythonic interfaces, ensuring that develop-
ers can easily understand and utilize ITK-Wasm’s functionality. The interfaces are designed
to be intuitive and easy to use, streamlining the development process.

July 10, 2024 274

https://github.com/rapidsai/cucim

ITK-Wasm | McCormick & Elliott, 2024

Figure 9. Downsample example package virtual environment size. ITK-Wasm WASI packages are simple,
small, self-contained, and have minimal dependencies. The associated accessibility and sustainability for
software that depends on these packages is reflected by the virtual environment size. When compared to
a native binary or CUDA-based implementations, the WASI implementation has significantly reduced size
and complexity.

3.5.5. Efficient Serialization for Parallel Computing:

The interface types’ Python representation are built using Python data classes, comprising
standard Python data types and NumPy arrays. This design enables trivial and efficient

Figure 10. Downsample example performance comparison between ITK-Wasm WASI, an equivalent ITK
Python native binary implementation, and the ITK-Wasm CuCIM implementation. Executed on an Ryzen
9, 7940HS CPU, NVIDIA RTX 4070 Laptop GPU, Ubuntu 24.04 Linux system. Mean and standard deviation
for ten iterations. While in this particular example the currently single-threaded WASI implementation is
significantly slower than the native binary implementation, multi-threaded improvements with the native
binaries hold promise for when this is enabled on the WASI binary (future work). NVIDIA CUDA-based
ITK-Wasm CuCIM, applied without any other code changes when the itkwasm-downsample-cucim package
is installed, demonstrates easy access to GPU acceleration when NVIDIA GPUs and CUDA software is
available.

July 10, 2024 275

ITK-Wasm | McCormick & Elliott, 2024

Figure 11. Generated API documentation describes the Pythonic interfaces.

serialization, making it ideal for parallel computing with Dask. Developers can leverage this
capability to scale their applications and tackle large-scale computing tasks.

3.5.6. Broad Applicability in Scientific Computing:

The utility of ITK-Wasm extends beyond web applications, as it can be seamlessly integrated
into desktop applications like 3D Slicer [27]. This versatility demonstrates the broad applic-
ability of ITK-Wasm in the scientific computing ecosystem, making it an invaluable tool for
researchers and developers alike.

4. Discussion
WebAssembly was designed with interoperability in mind. Initially supporting languages
like C and C++, the ecosystem has grown to include Rust, Go, Python, and more. This broad
language support makes WebAssembly a versatile tool for developers across different
domains.

ITK-Wasm’s approach, which focuses on bringing wasm’s capabilities to scientific software,
excels in sustainability and composability thanks to small, self-contained, and idiomatic
packages that are platform-agnostic and have minimal dependencies. This design enables
outstanding computational reproducibility.

Future work will focus on enhanced integration of wasm community tools and standards:

1. Multi-language Support: Support for bindings and package generation in additional
languages like Java, C#, and Rust, broaden wasm module applicability.

2. WebAssembly Interface Types: Standardizes the way Wasm modules interact with
each other and with host environments, simplifying the integration process. We plan
to bridge our interface types with the emerging Wasm Interface Type (WIT) defin-
ition.

3. Component Model: An emerging standard that aims to improve modularity and
reuse of Wasm components, further enhancing interoperability. Further instrumen-
tation with the Component Model standard will enable generation of composite

July 10, 2024 276

ITK-Wasm | McCormick & Elliott, 2024

Figure 12. The itkwasm-downsample Python package in a traditional native desktop application, 3D Slicer.

processing pipeline wasm modules that could be built from wasm component mod-
ules written in multiple languages.

ITK-Wasm provides a robust framework for scientific computing that leverages
WebAssembly’s strengths. The framework bridges the gap between web-based and native
applications, enabling high-performance, cross-platform scientific analysis. By integrating
the principals of the WebAssembly Component Model, ITK-Wasm enhances interoperability
and sustainability, allowing scientific Python to thrive in a multi-language ecosystem.

5. Conclusion
ITK-Wasm stands at the forefront of fostering interoperability, multi-language program sup-
port, sustainability, accessibility, and reproducibility in scientific computing. By integrating
the WebAssembly Component Model, ITK-Wasm not only enhances scientific Python’s
capabilities but also sets a new standard for developing and distributing multi-language
projects. The future of scientific computing is bright with ITK-Wasm’s contributions to the
field, providing a universal platform for spatial analysis and visualization.

6. Links:
• Documentation: https://wasm.itk.org/
• Source code: https://github.com/InsightSoftwareConsortium/ITK-Wasm

Acknowledgments

The development of ITK-Wasm has been supported, in part, by the National Institute of
Mental Health (NIMH) of the National Institutes of Health (NIH) under the BRAIN Initiative
award number 1RF1MH126732.

July 10, 2024 277

https://wasm.itk.org/
https://github.com/InsightSoftwareConsortium/ITK-Wasm
https://braininitiative.nih.gov/
https://projectreporter.nih.gov/project_info_description.cfm?aid=10259930

ITK-Wasm | McCormick & Elliott, 2024

References

[1] A. Rossberg, Ed., “WebAssembly Core Specification,” Dec. 2019. [Online]. Available: https://www.w3.org/TR/
wasm-core-1/

[2] A. Rossberg, Ed., “WebAssembly Core Specification,” Apr. 2022. [Online]. Available: https://www.w3.org/TR/
wasm-core-2/

[3] A. Haas et al., “Bringing the web up to speed with WebAssembly,” SIGPLAN Not., vol. 52, no. 6, pp. 185–200, 2017,
doi: 10.1145/3140587.3062363.

[4] A. Zakai, “Emscripten: an LLVM-to-JavaScript compiler,” in Proceedings of the ACM International Conference
Companion on Object Oriented Programming Systems Languages and Applications Companion, in OOPSLA '11.
Portland, Oregon, USA, 2011, pp. 301–312. doi: 10.1145/2048147.2048224.

[5] J.-m. Mirebeau, J. Fehrenbach, L. Risser, and S. Tobji, “Anisotropic Diffusion in ITK,” The Insight Journal, 2014,
doi: 10.54294/en3833.

[6] M. McCormick, “Anisotropic Diffusion LBR.” [Online]. Available: https://insightsoftwareconsortium.github.io/
ITKAnisotropicDiffusionLBR/

[7] A. Rossberg et al., “Bringing the web up to speed with WebAssembly,” Commun. ACM, vol. 61, no. 12, pp. 107–115,
2018, doi: 10.1145/3282510.

[8] Dan Gohman et al., “WebAssembly/WASI: v0.2.2.” [Online]. Available: https://zenodo.org/doi/10.5281/zenodo.
4323446

[9] “The WebAssembly System Interface (WASI).” [Online]. Available: https://wasi.dev/

[10] M. Chadha, N. Krueger, J. John, A. Jindal, M. Gerndt, and S. Benedict, “Exploring the Use of WebAssembly in HPC,”
in Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming,
in PPoPP '23. <conf-loc>, <city>Montreal</city>, <state>QC</state>, <country>Canada</country>, </conf-loc>,
2023, pp. 92–106. doi: 10.1145/3572848.3577436.

[11] Y. Zhang, M. Liu, H. Wang, Y. Ma, G. Huang, and X. Liu, “Research on WebAssembly Runtimes: A Survey,” 2024,
[Online]. Available: http://arxiv.org/abs/2404.12621

[12] M. McCormick, “itk-wasm: high-performance spatial analysis in a web browser, Node.js, and reproducible
execution across programming languages and hardware architectures..” [Online]. Available: https://zenodo.org/
doi/10.5281/zenodo.3688880

[13] M. McCormick, X. Liu, J. Jomier, C. Marion, and L. Ibanez, “ITK: enabling reproducible research and open science,”
Front. Neuroinform., vol. 8, p. 13, 2014, doi: 10.3389/fninf.2014.00013.

[14] L. Ibanez et al., “InsightSoftwareConsortium/ITK: ITK 5.4 Release Candidate 4: ALL THE DICOMs.” [Online].
Available: https://zenodo.org/doi/10.5281/zenodo.889843

[15] Henry Schreiner et al., “CLIUtils/CLI11: Version 2.4.2: Build systems.” [Online]. Available: https://zenodo.org/doi/
10.5281/zenodo.804964

[16] D. Developers, “dockcross: Cross compiling toolchains in Docker images.” [Online]. Available: https://github.com/
dockcross/dockcross

[17] S. Moxon et al., “LinkML.” [Online]. Available: https://zenodo.org/doi/10.5281/zenodo.5703670

[18] W. Lei, C. Fuster-Barceló, G. Reder, A. Muñoz-Barrutia, and W. Ouyang, “BioImage.IO Chatbot: A Community-
Driven AI Assistant for Integrative Computational Bioimaging,” 2023, doi: 10.48550/ARXIV.2310.18351.

[19] W. Lei, C. Fuster-Barceló, G. Reder, A. Muñoz-Barrutia, and W. Ouyang, “BioImage.IO Chatbot: A Community-
Driven AI Assistant for Integrative Computational Bioimaging.” [Online]. Available: https://zenodo.org/doi/10.
5281/zenodo.10032227

[20] National Library of Medicine, “The Visible Human Project: Visible Human Male.” [Online]. Available: https://
www.nlm.nih.gov/research/visible/visible_human.html

[21] J. Moore et al., “OME-Zarr: a cloud-optimized bioimaging file format with international community support,”
Histochemistry and Cell Biology, vol. 160, no. 3, pp. 223–251, 2023, doi: 10.1007/s00418-023-02209-1.

[22] J. Moore et al., “OME-NGFF: a next-generation file format for expanding bioimaging data-access strategies,”
Nature Methods, vol. 18, no. 12, pp. 1496–1498, 2021, doi: 10.1038/s41592-021-01326-w.

[23] Matt McCormick, Benedikt Best, and Tom Birdsong, “thewtex/ngff-zarr: ngff-zarr 0.8.7.” [Online]. Available:
https://zenodo.org/doi/10.5281/zenodo.8092821

[24] H. J. Johnson, M. M. McCormick, L. Ibáñez, and Insight Software Consortium, The ITK Software Guide: Introduction
and development guidelines. Kitware, 2015. [Online]. Available: https://play.google.com/store/books/details?id=
JmzwrQEACAAJ

[25] H. J. Johnson, M. M. McCormick, L. Ibáñez, and Insight Software Consortium, The ITK Software Guide: Design and
functionality. Kitware, 2015. [Online]. Available: https://play.google.com/store/books/details?id=SMwdrgEACAAJ

July 10, 2024 278

https://www.w3.org/TR/wasm-core-1/
https://www.w3.org/TR/wasm-core-1/
https://www.w3.org/TR/wasm-core-2/
https://www.w3.org/TR/wasm-core-2/
https://doi.org/10.1145/3140587.3062363
https://doi.org/10.1145/2048147.2048224
https://doi.org/10.54294/en3833
https://insightsoftwareconsortium.github.io/ITKAnisotropicDiffusionLBR/
https://insightsoftwareconsortium.github.io/ITKAnisotropicDiffusionLBR/
https://doi.org/10.1145/3282510
https://zenodo.org/doi/10.5281/zenodo.4323446
https://zenodo.org/doi/10.5281/zenodo.4323446
https://wasi.dev/
https://doi.org/10.1145/3572848.3577436
http://arxiv.org/abs/2404.12621
https://zenodo.org/doi/10.5281/zenodo.3688880
https://zenodo.org/doi/10.5281/zenodo.3688880
https://doi.org/10.3389/fninf.2014.00013
https://zenodo.org/doi/10.5281/zenodo.889843
https://zenodo.org/doi/10.5281/zenodo.804964
https://zenodo.org/doi/10.5281/zenodo.804964
https://github.com/dockcross/dockcross
https://github.com/dockcross/dockcross
https://zenodo.org/doi/10.5281/zenodo.5703670
https://doi.org/10.48550/ARXIV.2310.18351
https://zenodo.org/doi/10.5281/zenodo.10032227
https://zenodo.org/doi/10.5281/zenodo.10032227
https://www.nlm.nih.gov/research/visible/visible_human.html
https://www.nlm.nih.gov/research/visible/visible_human.html
https://doi.org/10.1007/s00418-023-02209-1
https://doi.org/10.1038/s41592-021-01326-w
https://zenodo.org/doi/10.5281/zenodo.8092821
https://play.google.com/store/books/details?id=JmzwrQEACAAJ
https://play.google.com/store/books/details?id=JmzwrQEACAAJ
https://play.google.com/store/books/details?id=SMwdrgEACAAJ

ITK-Wasm | McCormick & Elliott, 2024

[26] M. J. Cardoso, M. Modat, T. Vercauteren, and S. Ourselin, “Scale Factor Point Spread Function Matching: Beyond
Aliasing in Image Resampling,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015,
Springer International Publishing, 2015, pp. 675–683. doi: 10.1007/978-3-319-24571-3_81.

[27] A. Fedorov et al., “3D Slicer as an image computing platform for the Quantitative Imaging Network,” Magnetic
Resonance Imaging, vol. 30, no. 9, pp. 1323–1341, 2012, doi: 10.1016/j.mri.2012.05.001.

July 10, 2024 279

https://doi.org/10.1007/978-3-319-24571-3_81
https://doi.org/10.1016/j.mri.2012.05.001

	Introduction
	Motivation
	Brief history of Wasm
	Wasm and scientific computing

	Methods
	Overview
	C++ core
	Build environment Docker images
	Command line interface (CLI)
	Language-specific libraries and idiomatic bindings
	Python environment dispatch
	Browser and system APIs

	Traditional file format support
	Artificial Intelligence and the Semantic Web

	Results
	Example application: generation of multiscale OME-Zarr images
	C++ pipeline definition
	Command line invocation
	Generating TypeScript packages from ITK-Wasm modules
	Node.js bindings
	Browser bindings
	TypeScript Interface Types
	WebWorker-based execution
	Parallelism with WebWorkerPool
	Automated package configuration
	Documentation and demo app

	Seamless Integration with Python Ecosystem
	Browser-based Pyodide Packages
	Cross-Platform Compatibility with WASI
	GPU Acceleration with cuCIM
	API Documentation and Pythonic Interfaces
	Efficient Serialization for Parallel Computing
	Broad Applicability in Scientific Computing

	Discussion
	Conclusion
	Links:
	Acknowledgments
	References

