
Open Access | https://doi.org/10.25080/KMXN4784

SciPy 2024
July 8 - July 14, 2024

Proceedings of the 23nd

Python in Science Conference
ISSN: 2575-9752

How the Scientific Python ecosystem helps
answer fundamental questions of the
Universe
Matthew Feickert ¹ , Nikolai Hartmann ² , Lukas Heinrich ³ ,
Alexander Held ¹ , Vangelis Kourlitis ³ , Nils Krumnack ⁴ , Giordon Stark ⁵

, Matthias Vigl ³ , and Gordon Watts ⁶

¹ University of Wisconsin--Madison, ² Ludwig Maximilians Universitat, ³ Technical University of Munich,
⁴ Iowa State University, ⁵ Santa Cruz Institute for Particle Physics, ⁶ University of Washington

Published Jul 10, 2024

Correspondence to
Matthew Feickert
matthew.feickert@cern.ch

Open Access

Copyright © 2024 Feickert et
al.. This is an open-access
article distributed under the
terms of the Creative Commons
Attribution 4.0 International li-
cense, which enables reusers
to distribute, remix, adapt, and
build upon the material in any
medium or format, so long as
attribution is given to the cre-
ator.

Abstract

The ATLAS experiment at CERN explores vast amounts of physics data to answer the most
fundamental questions of the Universe. The prevalence of Python in scientific computing
motivated ATLAS to adopt it for its data analysis workflows while enhancing users’ experience.
This paper will describe to a broad audience how a large scientific collaboration leverages the
power of the Scientific Python ecosystem to tackle domain-specific challenges and advance
our understanding of the Cosmos. Through a simplified example of the renowned Higgs
boson discovery, attendees will gain insights into the utilization of Python libraries to discrim-
inate a signal in immersive noise, through tasks such as data cleaning, feature engineering,
statistical interpretation and visualization at scale.

Keywords ATLAS, particle physics, Scikit-HEP

1. Introduction
The field of high energy physics (HEP) is devoted to the study of the fundamental forces
of Nature and their interactions with matter. To study the structure of the Universe on
the smallest scales requires the highest energy density environments possible — similar
to those of the early Universe. These extreme energy density environments are created at
the CERN international laboratory, in Geneva, Switzerland, using the Large Hadron Collider
(LHC) to collide “bunches” of billions of protons at a center-of-mass energy of

√
𝑠 = 13 TeV.

The resulting collisions are recorded with building-sized particle detectors positioned
around the LHC’s 27 km ring that are designed to measure subatomic particle properties.
Given the rarity of the subatomic phenomena of interest, the rate of the beam crossings is a
tremendous 40 MHz to maximize the number of high quality collisions that can be captured
and read out by the detectors. Even with real-time onboard processing (“triggering”) of the
experiment detector readout to save only the most interesting collisions, detectors like the
ATLAS experiment [1] still produce multiple petabytes of data per year. These data are then
further filtered through selection criteria on the topology and kinematic quantities of the
particle collision “events” recorded into specialized datasets for different kinds of physics
analysis. The final datasets that physicists use in their physics analyses in ATLAS is still on
the order of hundreds of terabytes, which poses challenges of compute scale and analyst
time to efficiently use while maximizing physics value.

Traditionally, the ATLAS and the other LHC experiment have created experiment-specific
custom C++ frameworks to handle all stages of the data processing pipeline, from the initial

July 10, 2024 280

https://en.wikipedia.org/wiki/Open_access
https://en.wikipedia.org/wiki/Open_access
https://doi.org/10.25080/KMXN4784
https://orcid.org/0000-0003-4124-7862
https://orcid.org/0000-0003-4124-7862
mailto:matthew.feickert@cern.ch
mailto:matthew.feickert@cern.ch
https://orcid.org/0000-0003-0047-2908
https://orcid.org/0000-0003-0047-2908
mailto:nikolai.hartmann@cern.ch
mailto:nikolai.hartmann@cern.ch
https://orcid.org/0000-0002-4048-7584
https://orcid.org/0000-0002-4048-7584
mailto:lukas.heinrich@cern.ch
mailto:lukas.heinrich@cern.ch
https://orcid.org/0000-0002-8924-5885
https://orcid.org/0000-0002-8924-5885
mailto:alexander.held@cern.ch
mailto:alexander.held@cern.ch
https://orcid.org/0000-0001-6568-2047
https://orcid.org/0000-0001-6568-2047
mailto:evangelos.kourlitis@cern.ch
mailto:evangelos.kourlitis@cern.ch
mailto:nils.erik.krumnack@cern.ch
mailto:nils.erik.krumnack@cern.ch
https://orcid.org/0000-0001-6616-3433
https://orcid.org/0000-0001-6616-3433
mailto:kratsg@gmail.com
mailto:kratsg@gmail.com
https://orcid.org/0000-0003-2281-3822
https://orcid.org/0000-0003-2281-3822
mailto:matthias.vigl@cern.ch
mailto:matthias.vigl@cern.ch
https://orcid.org/0000-0002-0753-7308
https://orcid.org/0000-0002-0753-7308
mailto:gwatts@uw.edu
mailto:gwatts@uw.edu
mailto:matthew.feickert@cern.ch
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Scientific Python helps answer fundamental questions of the Universe | Feickert et al., 2024

construction of high-level physics objects from the raw data to the final statistical analyses.
Motivated by the broad success of the Scientific Python ecosystem across many domains of
science, and the rise of the Scikit-HEP ecosystem of Pythonic tooling for particle physics [2],
[3] and community tools produced by the Institute for Research and Innovation in Software
for High Energy Physics (IRIS-HEP) [4], [5], there has been a broad community-driven
shift in HEP towards use of the Scientific Python ecosystem for analysis of physics data —
a PyHEP ecosystem [6]. The use of dataframes and array programming for data analysis
has enhanced the user experience while providing efficient computations without the need
of coding optimized low-level routines. The ATLAS collaboration is further extending this
ecosystem of tooling to include high-level custom Python bindings to the low level C++
frameworks using nanobind [7]. Collectively, these tools are modernizing the methods which
researchers are engaging data analysis at large scale and providing a novel end-to-end
analysis ecosystem for the ATLAS collaboration.

2. Employing the Scientific Python ecosystem
The multiple stages of physics data processing and analysis map onto different parts of
the Scientific Python ecosystem. This begins with the highly-structured but jagged nature
of the event data in HEP. The data structure of each event consists of variable length lists
of physics objects (e.g. electrons, collections of tracks from charged objects). To study the
properties of the physics objects in a statistical manner, a fixed event analysis procedure is
repeated over billions of events. This has traditionally motivated the use of “event loops”
that implicitly construct event-level quantities of interest and leveraged the C++ compiler to
produce efficient iterative code. This precedent made it difficult to take advantage of array
programming paradigms that are common in Scientific Python given NumPy [8] vector
operations. The Scikit-HEP library Awkward Array [9] provides a path forward by providing
NumPy-like idioms for nested, variable-sized (JSON-like) data and also brings analysts into
an array programming paradigm [10].

With the ability to operate on HEP data structures in an array programming — or “colum-
nar” — approach, the next step is to be able to read and write with the HEP domain specific
ROOT [11] file format — which has given the particle physics community columnar data
structures with efficient compression since 1997 [12]. This is accomplished with use of
the uproot library [13], which allows for efficient transformation of ROOT data to NumPy
or Awkward arrays. The data is then filtered through kinematic and physics signature
motivated selections using Awkward manipulations and queries to create array collections
that contain the passing events. Through intense detector characterization and calibration
efforts, the ATLAS collaboration has developed robust methods and tooling to apply correc-
tions to the data and evaluate systematic uncertainties. For instance, corrections to the
signal collected by a specific calorimeter subsystem along with systematic uncertainties
due to the imperfect knowledge of the subsystem. Given the custom nature of the detector
and correction implementations, these corrections are implemented in custom C++ libraries
in the ATLAS software framework, Athena [14], [15]. To expose these C++ libraries to
the Pythonic tooling layer, custom Python bindings are written using nanobind for high
efficiency, as seen in Figure 1.

To contend with the extreme data volume, efficient distributed computing is an essential
requirement. Given the success of Dask [17] in the Scientific Python ecosystem, and its
ability to be deployed across both traditional batch systems and cloud based infrastructure
with Kubernetes, the Scikit-HEP ecosystem has built extensions to Dask that allow for native
Dask collections of Awkward arrays [18] and computing multidimensional boost-histogram
objects [19] with Dask collections [20]. Using Dask and these extensions, the data selection
and systematic correction workflow is able to be horizontally scaled out across ATLAS
collaboration compute resources to provide the data throughput necessary to make analysis

July 10, 2024 281

Scientific Python helps answer fundamental questions of the Universe | Feickert et al., 2024

Figure 1. The data access abstract interface from the high level user facing Python API to the ATLAS
Event Data Model (EDM) access library that exposes the shared ATLAS combined performance (CP) tools
for reconstruction, identification, and measurement of physics objects. [16]

feasible. This is often achieved through use of the high level coffea columnar analysis
framework [21] which was designed to integrate with Dask and these HEP specific Dask
extensions.

The resulting data objects that are returned to analysts are histograms of physics quantity
distributions — such as the reconstructed invariant-mass of a collection of particles or
particle momentum. Using the hist library [22] for higher level data exploration and
manipulation, physicists are then able to efficiently further manipulate the data distribu-
tions using tooling from the broader Scientific Python ecosystem and create domain-centric
visualizations using the mplhep [23] extension of Matplotlib [24]. From these high level data
representations of the relevant physics, physicists are then able to serialize the distributions
and use them for the final stages of data analysis and statistical modeling and inference.

3. Uncovering the Higgs boson
The most famous and revolutionary discovery in particle physics this century is the discov-
ery of the Higgs boson — the particle corresponding to the quantum field that gives mass
to fundamental particles through the Brout-Englert-Higgs mechanism — by the ATLAS and
CMS experimental collaborations in 2012. [25], [26] This discovery work was done using
large amounts of customized C++ software, but in the following decade the state of the PyHEP
community has advanced enough that the workflow can now be done using community
Python tooling. To provide an overview of the Pythonic tooling and functionality, a high
level summary of a simplified analysis workflow [27] of a Higgs “decay” to two intermediate
𝑍 bosons that decay to charged leptons (ℓ) (i.e. electrons (𝑒) and muons (𝜇)), 𝐻 → 𝑍𝑍∗ → 4ℓ,
on ATLAS open data [28] is summarized in this section.

3.1. Loading data

Given the size of the data, the files used in a real analysis will usually be cached at a
national level “analysis facility” where the analysis code will run. Using coffea, uproot, and
Dask, these files can then be efficiently read and the tree structure of the data can populate
Awkward arrays.

3.2. Cleaning and selecting data

Once the data is in Awkward arrays, additional selections need to be applied before it can be
analyzed. Only physics objects of adequate quality are kept for further analysis and those
should reconstruct the topology of interest. In this particular case, due to the decay of the
Higgs boson to two leptons, the data selected contain four charged leptons grouped in two
opposite flavor lepton pairs (so that the total charge is zero, as the Higgs and the 𝑍-bosons
are electrically neutral). Additionally, in order to compare various kinds of simulated data,
the events need to be normalized/weighted given their relative appearance in reality and
the amount of actual data collected by the experiment.

July 10, 2024 282

Scientific Python helps answer fundamental questions of the Universe | Feickert et al., 2024

from coffea.nanoevents import NanoEventsFactory, PHYSLITESchema

def get_uris_from_cache(): ...

def filter_name(name):
 return name in (
 "AnalysisElectronsAuxDyn.pt",
 "AnalysisElectronsAuxDyn.eta",
 "AnalysisElectronsAuxDyn.phi",
 "AnalysisElectronsAuxDyn.m",
 "AnalysisElectronsAuxDyn.charge",
 ...,
)

file_uris = get_uris_from_cache(...)

uproot used internally to read files into Awkward arrays
events_mc = NanoEventsFactory.from_root(
 file_uris,
 schemaclass=PHYSLITESchema,
 uproot_options=dict(filter_name=filter_name),
 permit_dask=True,
).events()

Program 1. Using coffea, tree structured ROOT files are read with uproot from an efficient file cache, and
the relevant branches for physics are filtered out into Awkward arrays. The operation is scaled out on a
Dask cluster for read performance.

These selection and weighting can then be implemented in an analysis specific coffea
processor, and then the processor can be executed used a Dask executor to horizontally
scale out the analysis selection across the available compute.

3.3. Feature engineering: The invariant mass

In order to discriminate the events of interest, i.e. candidates of the Higgs boson decay,
from the vast background which has the same experimental signature, a discriminating
feature is constructed. The example shown uses a simple, physics-inspired discriminant the
“invariant mass” but the methods used can use complex feature engineering that involve
machine learning methods to calculate more efficient discriminants. The invariant mass
is the mass of a system that remains constant regardless of the system’s motion or the
reference frame in which it is measured. Invariant mass is derived from the energy and
momentum of a system of particles and is a fundamental property of the system:

𝑚 =
√𝐸2 − 𝑝(𝑐)2

𝑐2
(1)

where 𝐸 and 𝑝 is the total energy and momentum of the particles, respectively.

By detecting and measuring the energies and momenta of the detected particles at the
experiment, we can reconstruct the invariant mass of the decay system. Particle systems
originating from the decay of the Higgs boson will have a characteristic value of the
invariant mass, which after the discovery in 2012 we know it is about 125 GeV/𝑐2. This is
the quantity that will allow us to discriminate from particle systems that originate from
background processes.

3.4. Measurement uncertainties

One of the most expensive operations that happens during the event selections is the com-
putation of systematic variations of the events to accommodate for imperfect knowledge of
the detector systems. This in practice requires applying complex, experiment specific cor-

July 10, 2024 283

Scientific Python helps answer fundamental questions of the Universe | Feickert et al., 2024

import awkward as ak
import hist
import vector
from coffea import processor
from distributed import Client

def get_xsec_weight(sample, infofile):
 """Returns normalization weight for a given
sample."""
 lumi = 10_000 # pb^-1
 xsec_map = infofile.infos[sample] # dictionary with
event weighting information
 xsec_weight = (lumi * xsec_map["xsec"]) /
(xsec_map["sumw"] * xsec_map["red_eff"])
 return xsec_weight

def lepton_filter(lep_charge, lep_type):
 """Filters leptons: sum of charges is required to
be 0, and sum of lepton types 44/48/52.
 Electrons have type 11, muons have 13, so this
means 4e/4mu/2e2mu.
 """
 sum_lep_charge = ak.sum(lep_charge, axis=1)
 sum_lep_type = ak.sum(lep_type, axis=1)
 good_lep_type = ak.any(
 [sum_lep_type == 44, sum_lep_type == 48,
sum_lep_type == 52], axis=0
)
 return ak.all([sum_lep_charge == 0, good_lep_type],
axis=0)

class HZZAnalysis(processor.ProcessorABC):
 """The coffea processor used in this analysis."""

 def __init__(self):
 pass

 def process(self, events):
 # The process function performs columnar operations
on the events
 # passed to it and applies all the corrections
and selections to
 # either the simulation or the data (e.g.
get_xsec_weight and
 # lepton_filter). All the event level data
selection occurs here
 # and returns accumulators with the selections.

 vector.register_awkward()
 # type of dataset being processed, provided via
metadata (comes originally from fileset)
 dataset_category =
events.metadata["dataset_name"]

 # apply a cut to events, based on lepton charge
and lepton type
 events = events[lepton_filter(events.lep_charge,
events.lep_typeid)]

 # construct lepton four-vectors
 leptons = ak.zip(
 {
 "pt": events.lep_pt,
 "eta": events.lep_eta,
 "phi": events.lep_phi,
 "energy": events.lep_energy,

 },
 with_name="Momentum4D",
)

 # calculate the 4-lepton invariant mass for each
remaining event
 # this could also be an expensive calculation
using external tools
 mllll = (
 leptons[:, 0] + leptons[:, 1] + leptons[:,
2] + leptons[:, 3]
).mass / 1000

 # create histogram holding outputs, for data
just binned in m4l
 mllllhist_data = hist.Hist.new.Reg(
 num_bins,
 bin_edge_low,
 bin_edge_high,
 name="mllll",
 label="$\mathrm{m_{4l}}$ [GeV]",
).Weight() # using weighted storage here for
plotting later, but not needed

 # three histogram axes for MC: m4l, category,
and variation (nominal and
 # systematic variations)
 mllllhist_MC = (
 hist.Hist.new.Reg(
 num_bins,
 bin_edge_low,
 bin_edge_high,
 name="mllll",
 label="$\mathrm{m_{4l}}$ [GeV]",
)
 .StrCat([k for k in fileset.keys() if k !=
"Data"], name="dataset")
 .StrCat(
 ["nominal", "scaleFactorUP",
"scaleFactorDOWN", "m4lUP", "m4lDOWN"],
 name="variation",
)
 .Weight()
)

 # ...
 # fill histograms based on dataset_category
 # ...

 return {"data": mllllhist_data, "MC":
mllllhist_MC}

 def postprocess(self, accumulator):
 pass

Program 2. A coffea processor designed to make physics motivated event selections to create accumulators of the 4-lepton invariant mass.

July 10, 2024 284

Scientific Python helps answer fundamental questions of the Universe | Feickert et al., 2024

import awkward as ak

from atlascp import EgammaTools # ATLAS CP tool Python nanobind bindings

def get_corrected_mass(energyCorrectionTool, electrons, sys=None):
 electron_vectors = ak.zip(
 {
 "pt": energyCorrectionTool(electrons, sys=sys).newPt,
 "eta": electrons.eta,
 "phi": electrons.phi,
 "mass": electrons.m,
 },
 with_name="Momentum4D",
)
 return (electron_vectors[:, 0] + electron_vectors[:, 1]).mass / 1000 # GeV

energy_correction_tool = EgammaTools.EgammaCalibrationAndSmearingTool()
...
configure and initialize correction algorithm
...
energy_correction_tool.initialize()

corrected_m_Res_UP = get_corrected_mass(
 energy_correction_tool, electrons, "Res_up"
).compute()

Program 3. Simplified example of what the Python API for a systematic correction tool with a columnar
implementation looks like.

rections to each event, using algorithms implemented in C++. Historically these tools were
implemented for an event loop processing paradigm, but with recent tooling additions, as
shown in Figure 1, efficient on-the-fly systematic corrections can be computed for array
programming paradigms.

The following provides an example of high level Python APIs that provide handles to these
tools to use in the workflows described so far. These tools are efficient enough to be able to
apply multiple systematic variations in analysis workflows, as seen in Figure 2.

3.5. The “discovery” plot

After running the coffea processors, the resulting data from the selections is accumulated
into boost-histogram objects, as seen visualized in Figure 3.

These histograms are then serialized into files with uproot and used by the statistical
modeling and inference libraries pyhf [29], [30] and cabinetry [31] to build binned statistical
models and efficiently fit the models to the observed data using vectorized computations
and the optimization library iminuit [32] for full uncertainties on all model parameters. The
resulting best-fit model parameters — such as the scale factor on the signal component of
the model corresponding to the normalization on the Higgs contributions — are visualized
in Figure 4, where good agreement between the model predictions and the data is observed.
The signal component, clearly visible above the additional “background” components of
the model, are Higgs boson events, with an observed count in agreement with theoretical
expectations.

4. Conclusions
When the Higgs boson was discovered in 2012, the idea of being able to perform real
Pythonic data analysis in HEP, let alone efficient analysis, was viewed as unfeasible. Though
investment in the broader Scientific Python ecosystem, and development of the domain
specific pieces in the Scikit-HEP organization the field of particle physics successfully cre-

July 10, 2024 285

Scientific Python helps answer fundamental questions of the Universe | Feickert et al., 2024

Figure 2. Example of the reconstructed dilepton invariant mass distribution in simulation with the
electron reconstruction and identification efficiency scale factor (SF) and corrections to the energy reso-
lution (res) energy scale (scale) computed on-the-fly using the nanobind Python bindings to the ATLAS C++
correction tools. The total variation in the systematic corrections is plotted as a hashed band. [16]

ated a PyHEP ecosystem of robust tooling. Further investment by the ATLAS collaboration
has resulted in new performant tooling for complex systematic corrections that will allow
for more full and complex operations to be performed entirely within a Python workflow,
helping to further reduce the time to insight for physics analysts.

import hist
import mplhep

mplhep.histplot(
 all_histograms["data"], histtype="errorbar", color="black", label="Data"
)
hist.Hist.plot1d(
 all_histograms["MC"][:, :, "nominal"],
 stack=True,
 histtype="fill",
 color=["purple", "red", "lightblue"],
)

Program 4. Using mplhep, hist, and matplotlib the post-processed histograms of the simulation and the
data are visualized in advance of any statistical inference of best-fit model parameters.

July 10, 2024 286

Scientific Python helps answer fundamental questions of the Universe | Feickert et al., 2024

Figure 3. Using mplhep, hist, and matplotlib the post-processed histograms of the simulation and the
data are visualized in advance of any statistical inference of best-fit model parameters.

import cabinetry
import numpy as np

config = cabinetry.configuration.load("config.yml")

cabinetry.templates.collect(config)
cabinetry.templates.postprocess(config) # optional post-processing (e.g. smoothing)
workspace = cabinetry.workspace.build(config)

model, data = cabinetry.model_utils.model_and_data(workspace)
fit_results = cabinetry.fit.fit(model, data)

create post-fit model prediction
postfit_model = cabinetry.model_utils.prediction(model, fit_results=fit_results)

binning to use in plot
plot_config = {
 "Regions": [
 {
 "Name": "Signal_region",
 "Binning": list(np.linspace(bin_edge_low, bin_edge_high, num_bins + 1)),
 }
]
}

figure_dict = cabinetry.visualize.data_mc(
 postfit_model, data, config=plot_config, save_figure=False
)

modify x-axis label
fig = figure_dict[0]["figure"]
fig.axes[1].set_xlabel("m4l [GeV]")

Program 5. Using cabinetry, pyhf, and matplotlib the data and the post-fit model prediction are visu-
alized.

July 10, 2024 287

Scientific Python helps answer fundamental questions of the Universe | Feickert et al., 2024

Figure 4. Using cabinetry, pyhf, and matplotlib the data and the post-fit model prediction are visualized.

July 10, 2024 288

Scientific Python helps answer fundamental questions of the Universe | Feickert et al., 2024

References

[1] ATLAS Collaboration, “The ATLAS Experiment at the CERN Large Hadron Collider,” JINST, vol. 3, p. S8003, 2008,
doi: 10.1088/1748-0221/3/08/S08003.

[2] E. Rodrigues and others, “The Scikit HEP Project – overview and prospects,” EPJ Web Conf., vol. 245, p. 6028, 2020,
doi: 10.1051/epjconf/202024506028.

[3] Henry Schreiner, Jim Pivarski, and Eduardo Rodrigues, “Awkward Packaging: building Scikit-HEP,” in Proceed-
ings of the 21st Python in Science Conference, Meghann Agarwal, Chris Calloway, Dillon Niederhut, and David
Shupe, Eds., 2022, pp. 115–120. doi: 10.25080/majora-212e5952-012.

[4] P. Elmer, M. Neubauer, and M. D. Sokoloff, “Strategic Plan for a Scientific Software Innovation Institute (S2I2) for
High Energy Physics,” 2017.

[5] J. Albrecht and others, “A Roadmap for HEP Software and Computing R&D for the 2020s,” Comput. Softw. Big Sci.,
vol. 3, no. 1, p. 7, 2019, doi: 10.1007/s41781-018-0018-8.

[6] HEP Software Foundation, “Python in HEP (PyHEP) HSF Working Group.” [Online]. Available: https://hepsoftwa
refoundation.org/workinggroups/pyhep.html

[7] W. Jakob, “nanobind: tiny and efficient C++/Python bindings.” [Online]. Available: https://github.com/wjakob/
nanobind

[8] C. R. Harris et al., “Array programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, 2020, doi: https://
doi.org/10.1038/s41586-020-2649-2.

[9] J. Pivarski et al., “Awkward Array.” 2018. doi: 10.5281/zenodo.4341376.

[10] N. Hartmann, J. Elmsheuser, and G. Duckeck, “Columnar data analysis with ATLAS analysis formats,” EPJ Web
Conf., vol. 251, p. 3001, 2021, doi: 10.1051/epjconf/202125103001.

[11] R. Brun and F. Rademakers, “ROOT: An object oriented data analysis framework,” Nucl. Instrum. Meth. A, vol.
389, pp. 81–86, 1997, doi: 10.1016/S0168-9002(97)00048-X.

[12] J. Pivarski, P. Elmer, and D. Lange, “Awkward Arrays in Python, C++, and Numba,” EPJ Web Conf., vol. 245, p. 5023,
2020, doi: 10.1051/epjconf/202024505023.

[13] J. Pivarski et al., “Uproot.” 2017. doi: 10.5281/zenodo.4340632.

[14] ATLAS Collaboration, The ATLAS Collaboration Software and Firmware. ATL-SOFT-PUB-2021-001, 2021. [Online].
Available: https://cds.cern.ch/record/2767187

[15] ATLAS Collaboration, “Athena.” 2021. doi: 10.5281/zenodo.4772550.

[16] V. Kourlitis et al., “Using Legacy ATLAS C++ Calibration Tools in Modern Columnar Analysis Environments - Poster
for ACAT 2024,” Geneva, 2024. [Online]. Available: https://indico.cern.ch/event/1330797/contributions/5796636/

[17] Dask Development Team, “Dask: Library for dynamic task scheduling,” 2016. [Online]. Available: https://dask.
pydata.org/

[18] dask-awkward Development Team, “dask-awkward.” [Online]. Available: https://github.com/dask-contrib/dask-
awkward

[19] H. Schreiner et al., “boost-histogram.” 2018. doi: 10.5281/zenodo.3492034.

[20] dask-histogram Development Team, “dask-histogram.” [Online]. Available: https://github.com/dask-contrib/
dask-histogram

[21] L. Gray et al., “coffea.” [Online]. Available: https://github.com/CoffeaTeam/coffea

[22] H. Schreiner, S. Liu, and A. Goel, “hist.” [Online]. Available: https://github.com/scikit-hep/hist

[23] A. Novak, H. Schreiner, and M. Feickert, “mplhep.” [Online]. Available: https://github.com/scikit-hep/mplhep

[24] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing in Science & Engineering, vol. 9, no. 3, pp. 90–
95, 2007, doi: https://doi.org/10.1109/MCSE.2007.55.

[25] ATLAS Collaboration, “Observation of a new particle in the search for the Standard Model Higgs boson with the
ATLAS detector at the LHC,” Phys. Lett. B, vol. 716, p. 1, 2012, doi: 10.1016/j.physletb.2012.08.020.

[26] CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,”
Phys. Lett. B, vol. 716, p. 30, 2012, doi: 10.1016/j.physletb.2012.08.021.

[27] A. Held et al., “IRIS-HEP Analysis Grand Challenge.” [Online]. Available: https://doi.org/10.5281/zenodo.7274936

[28] ATLAS Collaboration, “ATLAS 13 TeV samples collection at least four leptons (electron or muon), for 2020 Open
Data release.” CERN Open Data Portal, 2020. doi: 10.7483/OPENDATA.ATLAS.2Y1T.TLGL.

[29] L. Heinrich, M. Feickert, and G. Stark, “pyhf: v0.7.6.” [Online]. Available: https://doi.org/10.5281/zenodo.1169739

[30] L. Heinrich, M. Feickert, G. Stark, and K. Cranmer, “pyhf: pure-Python implementation of HistFactory statistical
models,” Journal of Open Source Software, vol. 6, no. 58, p. 2823, 2021, doi: 10.21105/joss.02823.

[31] A. Held and M. Feickert, “cabinetry.” [Online]. Available: https://doi.org/10.5281/10.5281/zenodo.4742752

July 10, 2024 289

https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1051/epjconf/202024506028
https://doi.org/10.25080/majora-212e5952-012
https://doi.org/10.1007/s41781-018-0018-8
https://hepsoftwarefoundation.org/workinggroups/pyhep.html
https://hepsoftwarefoundation.org/workinggroups/pyhep.html
https://github.com/wjakob/nanobind
https://github.com/wjakob/nanobind
https://doi.org/https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.4341376
https://doi.org/10.1051/epjconf/202125103001
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1051/epjconf/202024505023
https://doi.org/10.5281/zenodo.4340632
https://cds.cern.ch/record/2767187
https://doi.org/10.5281/zenodo.4772550
https://indico.cern.ch/event/1330797/contributions/5796636/
https://dask.pydata.org/
https://dask.pydata.org/
https://github.com/dask-contrib/dask-awkward
https://github.com/dask-contrib/dask-awkward
https://doi.org/10.5281/zenodo.3492034
https://github.com/dask-contrib/dask-histogram
https://github.com/dask-contrib/dask-histogram
https://github.com/CoffeaTeam/coffea
https://github.com/scikit-hep/hist
https://github.com/scikit-hep/mplhep
https://doi.org/https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.5281/zenodo.7274936
https://doi.org/10.7483/OPENDATA.ATLAS.2Y1T.TLGL
https://doi.org/10.5281/zenodo.1169739
https://doi.org/10.21105/joss.02823
https://doi.org/10.5281/10.5281/zenodo.4742752

Scientific Python helps answer fundamental questions of the Universe | Feickert et al., 2024

[32] H. Dembinski et al., “iminuit.” [Online]. Available: https://github.com/scikit-hep/iminuit

July 10, 2024 290

https://github.com/scikit-hep/iminuit

	Introduction
	Employing the Scientific Python ecosystem
	Uncovering the Higgs boson
	Loading data
	Cleaning and selecting data
	Feature engineering: The invariant mass
	Measurement uncertainties
	The "discovery" plot

	Conclusions
	References

