
Open Access  | https://doi.org/10.25080/DDJJ4932

SciPy 2024
July 8 - July 14, 2024

Proceedings of the 23nd

Python in Science Conference
ISSN: 2575-9752

Orchestrating Bioinformatics Workflows
Across a Heterogeneous Toolset with Flyte
Pryce Turner ¹

¹ Union AI

Published Jul 10, 2024

Correspondence to
Pryce Turner
pryce.turner@gmail.com

Open Access

Copyright © 2024 Turner. This
is an open-access article distrib-
uted under the terms of the
Creative Commons Attribution
4.0 International license, which
enables reusers to distribute,
remix, adapt, and build upon
the material in any medium or
format, so long as attribution is
given to the creator.

Abstract

While Python excels at prototyping and iterating quickly, it’s not always performant enough
for whole-genome scale data processing. Flyte, an open-source Python-based workflow
orchestrator, presents an excellent way to tie together the myriad tools required to run bioin-
formatics workflows. Flyte is a Kubernetes native orchestrator, meaning all dependencies
are captured and versioned in container images. It also allows you to define custom types
in Python representing genomic datasets, enabling a powerful way to enforce compatibility
across tools. Finally, Flyte provides a number of different abstractions for wrapping these
tools, enabling further standardization. Computational biologists, or any scientists process-
ing data with a heterogeneous toolset, stand to benefit from a common orchestration layer
that is opinionated yet flexible.

Keywords flyte, orchestration, bioinformatics

1. Introduction
Since the sequencing of the human genome [1], and as other wet lab processes have scaled
in the last couple decades, computational approaches to understanding the living world
have exploded. The firehose of data generated from all these experiments led to algorithms
and heuristics developed in low-level high-performance languages such as C and C++. Later
on, industry standard collections of tools like the Genome Analysis ToolKit (GATK) [2] were
written in Java. A number of less performance intensive offerings such as MultiQC [3] are
written in Python; and R is used extensively where it excels: visualization and statistical
modeling. Finally, newer deep-learning models and Rust based components are entering
the fray.

Different languages also come with different dependencies and approaches to dependency
management, interpreted versus compiled languages for example handle this very differ-
ently. They also need to be installed correctly and available in the user’s PATH for execution.
Moreover, compatibility between different tools in bioinformatics often falls back on
standard file types expected in specific locations on a traditional filesystem. In practice
this means searching through datafiles or indices available at a particular directory and
expecting a specific naming convention or filetype.

In short, bioinformatics suffers from the same reproducibility crisis [4] as the broader
scientific landscape. Standardizing interfaces, as well as orchestrating and encapsulating
these different tools in a flexible and future-proof way is of paramount importance on this
unrelenting march towards larger and larger datasets.

2. Methods
Solving these problems using Flyte is accomplished by capturing dependencies flexibly
with dynamically generated container images, defining custom types to enforce at the task

July 10, 2024 309

https://en.wikipedia.org/wiki/Open_access
https://en.wikipedia.org/wiki/Open_access
https://doi.org/10.25080/DDJJ4932
mailto:pryce.turner@gmail.com
mailto:pryce.turner@gmail.com
mailto:pryce.turner@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Orchestrating Bioinformatics Workflows Across a Heterogeneous Toolset with Flyte  | Turner, 2024

boundary, and wrapping tools in Flyte tasks. Before diving into the finer points, a brief
primer on Flyte is advised. While the introduction in the docs is a worthwhile read before
continuing, here is a more concise “hello world” example:

from flytekit import task, workflow

@task
def greet() -> str:
  return "Hello"

@task
def say(greeting: str, name: str) -> str:
    return f"{greeting}, {name}!"

@workflow
def hello_world_wf(name: str = "world") -> str:
    greeting = greet()
    res = say(greeting=greeting, name=name)
    return res

Tasks are the most basic unit of work in Flyte. They are pure-Python functions and their
interface is strongly typed in order to compose the workflow. The workflow itself is actually
a domain-specific language that statically compiles a directed-acyclic graph (DAG) based
on the dependencies between the different tasks. There are different flavors of tasks and
workflows as we’ll see later, but this is the core concept.

The following example details a bioinformatics workflow built using Flyte. All code is
drawn from the ever-evolving unionbio Github repository. There are many more datatypes,
tasks and workflows defined there. Questions are always welcome and contributions are of
course encouraged!

2.1. Images

While it’s possible to run Flyte tasks and workflows locally in a Python virtual environment,
production executions in Flyte run on a Kubernetes cluster. As a kubernetes native orches-
trator, all tasks run in their own (typically single-container) pods using whatever image is
specified in the @task decorator. Capturing dependencies in container images has been a
standard for some time now, but this is taken a step further with ImageSpec. ImageSpec
lets you easily define a base image and additional dependencies right alongside your task
and workflow code. Additional dependencies from PyPI, Conda, or apt are supported out-of-
box. Arbitrary RUN commands are also available for base images lacking Debian’s package
manager, or to accomplish virtually anything not currently implemented. Finally, while
envd is the default builder, other backends like a local Docker daemon or even remote
builders are available should the need arise.

These ImageSpec definitions are loosely coupled to your workflow code and are built
automatically when tasks are registered or run on a Flyte cluster. ImageSpec reduces the
complexity inherent in manually authoring a Dockerfile and enables a more streamlined
approach to building images without the need for an additional build step and configuration
update to reference the latest image. This coupling and reduced complexity makes it easier
to build single-purpose images instead of throwing everything into one monolithic image.

July 10, 2024 310

https://docs.flyte.org/en/latest/introduction.html
https://github.com/unionai-oss/unionbio
https://kubernetes.io/
https://docs.flyte.org/en/latest/user\_guide/customizing\_dependencies/imagespec.html\#imagespec
https://github.com/tensorchord/envd


Orchestrating Bioinformatics Workflows Across a Heterogeneous Toolset with Flyte  | Turner, 2024

main_img = ImageSpec(
    name="main",
    platform="linux/amd64",
    python_version="3.11",
    packages=["flytekit"],
    conda_channels=["bioconda"],
    conda_packages=[
        "samtools",
        "bcftools",
        "fastp",
        "bowtie2",
        "gatk4",
        "fastqc",
    ],
    registry="docker.io/unionbio",
)

folding_img = ImageSpec(
    name="protein",
    platform="linux/amd64",
    python_version="3.11",
    packages=["flytekit", "transformers", "torch"],
    conda_channels=["bioconda", "conda-forge"],
    conda_packages=[
        "prodigal",
        "biotite",
        "bioPython",
        "py3Dmol",
        "matplotlib",
    ],
    registry="docker.io/unionbio",
)

The main image has a lot of functionality and could arguably be pared down. It contains
a number of very common low-level tools, along with GATK and a couple aligners [5].
The protein image on the other hand, only contains a handful of tools related to a very
specific protein folding and visualization workflow. Unless using a remote builder, these
images are built locally and then pushed to the registry specified. They will persist in the
builder’s local registry and leverage the builder’s cache until cleaned-up. Once built, they
are Open Container Initiative (OCI) compliant container images like any other, allowing you
to compose them as you see fit. The main image could be used as the base for the folding
image, for example. Another very simple but powerful use case would be to Flytify any off-
the-shelf image by simply specifying a Python version and adding flytekit as a package.

Currently, a subset of the full Dockerfile functionality has been reimplemented in Image-
Spec. A typical Dockerfile could include pulling Micromamba binaries, creating and
activating an environment, before finally installing the relevant packages. ImageSpec’s
opinionated approach enables a simpler experience by handling this kind of boilerplate
code behind-the-scenes. ImageSpec is also context aware in the same way docker build is,
meaning a source_root containing a lock or env file can be specified and installed if you
want to keep your local environment in sync. The images submodule of the unionbio repo
puts this in practice, with different source roots used in test and production.

ImageSpecs can be specified in the task decorator alongside any infrastructure
requirements in a very granular fashion:

July 10, 2024 311

https://github.com/unionai-oss/unionbio/blob/main/images.py
https://docs.flyte.org/en/latest/user\_guide/productionizing/customizing\_task\_resources.html\#customizing-task-resources
https://docs.flyte.org/en/latest/user\_guide/productionizing/customizing\_task\_resources.html\#customizing-task-resources


Orchestrating Bioinformatics Workflows Across a Heterogeneous Toolset with Flyte  | Turner, 2024

@task(
    container_image=folding_img,
    requests=Resources(cpu="4", mem="32Gi", gpu="1"),
    accelerator=GPUAccelerator("nvidia-tesla-v100"),
    )
def predict_structure(seq: str):
  fold_protein(seq)

This image will be built and uploaded when your tasks and workflows are registered to a
Flyte cluster.

2.2. Datatypes

Having rich data types to enforce compatibility at the task boundary is essential to these
wrapped tools working together. Flyte supports arbitrary data types through Python’s
dataclasses library. Genomics pipelines typically pass around one or many large text files
related to the same sample. Data types capturing these files allow us to reason about them
and their metadata more easily across tasks, as well as enforce naming conventions.

Importantly, Flyte abstracts the object store, allowing you to load these assets into pods
wherever is most convenient for your tool. This not only makes it easier to work with these
files, but also safer as you’re working with ephemeral storage during execution instead of a
shared production filesystem. In a shared filesystem, unintended side-effects could mutate
artifacts unrelated to the current production run. This can be mitigated in a number of
ways, such as setting up an empty directory for every experiment or restricting permissions
to files after a run is complete. In an ephemeral setting however, inputs of interest are
materialized at the beginning of the task and any relevant outputs are serialized to a unique
prefix in the object store when the task completes. Any unintended modifications disappear
when the pod is deleted.

Sequencers employ different strategies to produce millions of short strings representing
DNA fragments called reads. One such strategy is single-read sequencing, which produces
one sequencing read per DNA fragment. This is appropriate for simpler analyses such
as profiling or for analyzing less complex genomes. Paired-end sequencing, on the other
hand, produces two reads representing both sequencing directions of the DNA fragment.
This is essential in applications such as “de novo” assembly which involves re-assembling
these reads into a whole genome without a known reference as a guide. It also unlocks the
detection of larger variations, typically longer insertions or deletions.

Regardless of the sequencing strategy, these reads are captured in one or a pair of FastQ
files, an example of which is given below:

@SRR001666.1 071112_SLXA-EAS1_s_7:5:1:817:345 length=72
GGGTGATGGCCGCTGCCGATGGCGTCAAATCCCACCAAGTTACCCTTAACAACTTAAGGGTTTTCAAATAGA
+SRR001666.1 071112_SLXA-EAS1_s_7:5:1:817:345 length=72
IIIIIIIIIIIIIIIIIIIIIIIIIIIIII9IG9ICIIIIIIIIIIIIIIIIIIIIDIIIIIII>IIIIII/
@SRR001666.2 071112_SLXA-EAS1_s_7:5:1:801:338 length=72
GTTCAGGGATACGACGTTTGTATTTTAAGAATCTGAAGCAGAAGTCGATGATAATACGCGTCGTTTTATCAT
+SRR001666.2 071112_SLXA-EAS1_s_7:5:1:801:338 length=72
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII6IBIIIIIIIIIIIIIIIIIIIIIIIGII>IIIII-I)8I

Two reads are present here, characterized by the nucleobases A, C, T, and G. The other lines
contain metadata and quality information. Here is the dataclass that encapsulates these
files and any salient information about them:

July 10, 2024 312

https://thesequencingcenter.com/knowledge-base/what-are-paired-end-reads/
https://thesequencingcenter.com/knowledge-base/de-novo-assembly/
https://en.wikipedia.org/wiki/FASTQ\_format


Orchestrating Bioinformatics Workflows Across a Heterogeneous Toolset with Flyte  | Turner, 2024

@dataclass
class Reads(DataClassJSONMixin):

    sample: str
    filtered: bool | None = None
    filt_report: FlyteFile | None = None
    uread: FlyteFile | None = None
    read1: FlyteFile | None = None
    read2: FlyteFile | None = None

    def get_read_fnames(self):
        filt = "filt." if self.filtered else ""
        return (
            f"{self.sample}_1.{filt}fastq.gz",
            f"{self.sample}_2.{filt}fastq.gz",
        )

    def get_report_fname(self):
        return f"{self.sample}_fastq-filter-report.json"

    @classmethod
    def make_all(cls, dir: Path):
      ...

We’re capturing a few important aspects: whether the reads have been filtered and the
results of that operation, as well as if they’re paired-end reads or not. Paired-end reads
will populate the read1 and read2 attributes. If they are unpaired then a single FastQ file
representing a sample’s reads is defined in the uread field. The presence or absence of these
attributes implicitly disambiguates the sequencing strategy.

Additionally, the make_all function body has been omitted for brevity, but it accepts a
directory and returns a list of these objects based on it’s contents. In the other direction, a
get_read_fnames method is defined to standardize naming conventions based on The 1000
Genomes Project guidelines.

FlyteFile, along with FlyteDirectory, represent a file or directory in a Flyte aware context.
These types handle serialization and deserialization into and out of the object store. They
re-implement a number of common filesystem operations like open(), which returns a
streaming handle, for example. Simply returning a FlyteFile from a task will automatically
upload it to whatever object store is defined. This unassuming piece of functionality is one
of Flyte’s key strengths: abstracting data management so researchers can focus on their
task code. Since dataflow in Flyte is a first-class construct, having well defined inputs and
outputs at the task boundary makes authoring workflows that much more reliable.

In order to accomplish sequencing in a sensible timeframe, reads generation is massively
parallelized [6]. This dramatically improves the throughput, but removes crucial informa-
tion regarding the location of those reads. In order to recover that information, the reads are
aligned to a known reference genome, producing an Alignment file, which we also capture
in a dataclass:

July 10, 2024 313

https://www.internationalgenome.org/faq/what-are-your-filename-conventions


Orchestrating Bioinformatics Workflows Across a Heterogeneous Toolset with Flyte  | Turner, 2024

@dataclass
class Alignment(DataClassJSONMixin):

    sample: str
    aligner: str
    format: str | None = None
    alignment: FlyteFile | None = None
    alignment_idx: FlyteFile | None = None
    alignment_report: FlyteFile | None = None
    sorted: bool | None = None
    deduped: bool | None = None
    bqsr_report: FlyteFile | None = None

    def _get_state_str(self):
        state = f"{self.sample}_{self.aligner}"
        if self.sorted:
            state += "_sorted"
        if self.deduped:
            state += "_deduped"
        return state

    def get_alignment_fname(self):
        return f"{self._get_state_str()}_aligned.{self.format}"

    @classmethod
    def make_all(cls, dir: Path):
      ...

Compared to the Reads dataclass, the attributes captured here are of course only relevant
to Alignments. However, the methods that interact with the local filesystem and enforce
naming conventions remain. In the next section, we’ll look at tasks that actually carry out
this alignment.

2.3. Tasks

While Flyte tasks are written in Python, there are a few ways to wrap arbitrary tools.
ShellTasks are one such way, allowing you to define scripts as multi-line strings in Python.
For added flexibility around packing and unpacking data types before and after execution,
Flyte also ships with a subproc_execute function which can be used in vanilla Python tasks.
Finally, arbitrary images can be used via a ContainerTask and avoid any flytekit depen-
dency altogether.

Bowtie2 [7], a fast and memory efficient aligner, is used to carry out the aforementioned
alignments. Before alignment can be carried out efficiently, an index must be generated
from the reference genome. Indices are generated by pre-processing the reference into a
data structure that enables rapid lookup of a match to a given read. Bowtie2 uses an FM-
index which combines the Burrows-Wheeler Transform (BWT) with a suffix array. Broadly
speaking, BWT enables compression of the data while the suffix array allows for efficient
lookup of substrings. Here is a ShellTask creating a bowtie2 index directory from a genome
reference file:

July 10, 2024 314

https://docs.flyte.org/en/latest/user\_guide/customizing\_dependencies/raw\_containers.html\#raw-containers
https://www.cs.jhu.edu/~langmea/resources/lecture\_notes/bwt\_and\_fm\_index.pdf
https://www.cs.jhu.edu/~langmea/resources/lecture\_notes/bwt\_and\_fm\_index.pdf


Orchestrating Bioinformatics Workflows Across a Heterogeneous Toolset with Flyte  | Turner, 2024

bowtie2_index = ShellTask(
    name="bowtie2-index",
    debug=True,
    requests=Resources(cpu="4", mem="10Gi"),
    metadata=TaskMetadata(retries=3, cache=True, cache_version=ref_hash),
    container_image=main_img,
    script="""
    mkdir {outputs.idx}
    bowtie2-build {inputs.ref} {outputs.idx}/bt2_idx
    """,
    inputs=kwtypes(ref=FlyteFile),
    output_locs=[
        OutputLocation(var="idx", var_type=FlyteDirectory, location="/tmp/bt2_idx")
    ],
)

This task uses the main_img defined above; it also accepts a FlyteFile and outputs a FlyteDi-
rectory. Another important feature to highlight here is caching, which saves us valuable
compute for inputs that rarely change. Since the alignment index for a particular aligner
only needs to be generated once for a given reference, we’ve set the cache_version to a
hash of the reference’s URI. As long as the reference exists at that URI, this bowtie indexing
task will complete immediately and return that index. To perform the actual alignment, a
regular Python task is used with a Flyte-aware subprocess function to call the bowtie CLI.

@task(container_image=main_img, requests=Resources(cpu="4", mem="10Gi"))
def bowtie2_align_paired_reads(idx: FlyteDirectory, fs: Reads) -> Alignment:
    idx.download()
    ldir = Path(current_context().working_directory)

    alignment = Alignment(fs.sample, "bowtie2", "sam", sorted=False, deduped=False)
    al = ldir.joinpath(alignment.get_alignment_fname())
    rep = ldir.joinpath(alignment.get_report_fname())

    cmd = [
        "bowtie2",
        "-x",
        f"{idx.path}/bt2_idx",
        "-1",
        fs.read1.path,
        "-2",
        fs.read2.path,
        "-S",
        al,
    ]

    result = subproc_execute(cmd)

    # Bowtie2 alignment writes stats to stderr
    with open(rep, "w") as f:
        f.write(result.error)

    alignment.alignment = FlyteFile(path=str(al))
    alignment.alignment_report = FlyteFile(path=str(rep))

    return alignment

Since Python tasks are the default task type, they’re the most feature rich and stable. The
main advantage to using one here is to unpack the inputs and construct the output type.

The resulting alignments are then deduplicated, sorted, recalibrated and reformatted.
While important, these tasks are similarly implemented to the above alignment function
and as such are omitted to focus on the next major step: variant calling. Variant calling has
such a diversity of approaches that any meaningful exploration of the landscape is out of
scope. However, the central purpose is to distill the aligned reads into a set of likely relevant
loci that deviate from the reference. This is accomplished by aggregating information like

July 10, 2024 315

https://docs.flyte.org/en/latest/user\_guide/development\_lifecycle/caching.html\#caching


Orchestrating Bioinformatics Workflows Across a Heterogeneous Toolset with Flyte  | Turner, 2024

quality scores and the number of reads covering a given location, called a pileup, to come
to consensus around a most likely call.

@task(container_image=main_img_fqn)
def haplotype_caller(ref: Reference, al: Alignment) -> VCF:
    ref.aggregate()
    al.aggregate()
    vcf_out = VCF(sample=al.sample, caller="gatk-hc")
    vcf_fn = vcf_out.get_vcf_fname()
    vcf_idx_fn = vcf_out.get_vcf_idx_fname()

    hc_cmd = [
        "gatk",
        "HaplotypeCaller",
        "-R",
        ref.get_ref_path(),
        "-I",
        al.alignment.path,
        "-O",
        vcf_fn,
    ]

    subproc_execute(hc_cmd)
    
    vcf_out.vcf = FlyteFile(path=vcf_fn)
    vcf_out.vcf_idx = FlyteFile(path=vcf_idx_fn)
    
    return vcf_out

GATK’s HaplotypeCaller is used to perform variant calling by accepting an Alignment and
Reference object and producing a Variant Call Format (VCF) file. VCFs are another common
tabular text file, with each row representing a variant present in the input sequences and
its alternate in the reference, along with a quality score and extensible columns for adding
additional information. Variants can range from single-nucleotide polymorphisms (SNPs)
to much larger structural variations mentioned above. Once variants are called, they can be
further filtered downstream for certain characteristics, or against one of the many curated
databases, to arrive at a set of actionable insights.

3. Results
A real world variant discovery workflow demonstrates how to tie all these disparate parts
together. Starting with a directory containing raw FastQ files, we’ll perform quality-control
(QC), filtering, index generation, alignment, calling, and conclude with a final report of all
the steps. Here’s the code:

July 10, 2024 316



Orchestrating Bioinformatics Workflows Across a Heterogeneous Toolset with Flyte  | Turner, 2024

from flytekit import workflow, dynamic, map_task
from flytekit.types.directory import FlyteDirectory
from flytekit.types.file import FlyteFile
from unionbio.tasks.utils import prepare_raw_samples
from unionbio.tasks.fastqc import fastqc
from unionbio.tasks.fastp import pyfastp
from unionbio.tasks.bowtie2 import bowtie2_idx, bowtie2_align_samples
from unionbio.tasks.callers import hc_call_variants
from unionbio.tasks.multiqc import render_multiqc

@workflow
def variant_discovery_wf(seq_dir: FlyteDirectory, ref_path: FlyteFile) -> FlyteFile:
    
    # Generate FastQC reports and check for failures
    fqc_out = fastqc(seq_dir=seq_dir)
    samples = prepare_raw_samples(seq_dir=seq_dir)

    # Map out filtering across all samples and generate indices
    filtered_samples = map_task(pyfastp)(rs=samples)

    # Explicitly define task dependencies
    fqc_out >> filtered_samples

    # Generate a bowtie2 index or load it from cache
    bowtie2_idx = bowtie2_index(ref=ref_path)

    # Generate alignments using bowtie2
    sams = bowtie2_align_samples(idx=bowtie2_idx, samples=filtered_samples)

    # Call variants
    vcfs = hc_call_variants(ref=ref_path, als=sams)

    # Generate final multiqc report with stats from all steps
    return render_multiqc(fqc=fqc_out, filt_reps=filtered_samples, sams=sams, vcfs=vcfs)

To help make sense of the flow of tasks, here is a screenshot from the Flyte UI that offers a
visual representation of the different steps:

FastQC [8], an extremely common QC tool, is wrapped in a ShellTask and starts off the
workflow by generating a report for all FastQ formatted reads files in a given directory. That
directory is then turned into Reads objects via the prepare_raw_samples task. Those samples
are passed to fastp for adapter removal and filtering of duplicate or low quality reads. FastP
[9] is wrapped in a Python task which accepts a single Reads object. This task is then used in
a map task to parallelize the processing of however many discrete samples were present in

Figure 1.  Table listing the various tasks of the workflow alongside task type, status, completion time,
and runtime

July 10, 2024 317

https://docs.flyte.org/en/latest/user\_guide/advanced\_composition/map\_tasks.html\#map-task


Orchestrating Bioinformatics Workflows Across a Heterogeneous Toolset with Flyte  | Turner, 2024

Figure 2.  Workflow DAG showing the tasks as color-coded nodes with connections between them repre-
senting dependencies

the input directory. Flyte relies on the flow of strongly-typed inputs and outputs to assemble
the workflow; since there is no implicit dependency between filtering and QC, we make this
relationship explicit with the “>>” operator.

Once pre-processing is complete, alignment can take place. First, bowtie2_index generates
an index if one is not already cached. Since the bowtie2 alignment task processes samples
one at a time, it was wrapped in a dynamic workflow to process a list of inputs. Dynamics
are another parallelism construct, similar to map tasks with some key differences: they are
more flexible than map tasks at the expense of some efficiency. Similarly, variant calling is
performed across all samples using HaplotypeCaller. Lastly, MultiQC [3], produces a final
report of all the different steps in the workflow. Certain task definitions are omitted for the
sake of cogency, they are all fully-defined in the unionbio repo.

Despite being a fairly parsimonious workflow, it’s important to highlight how many differ-
ent languages are seamlessly integrated. The preprocessing tools are written in Java and C/
C++. Alignment is carried out with a mix of Perl and C++. HaplotypeCaller is implemented
purely in Java. Finally, the reporting tool is implemented in Python. While this simplicity
affords easy understanding of task-flow from the code, the Flyte console provides excellent
visualizations to best understand it’s structure:

Finally, it’s helpful to inspect a timeline of the execution which highlights a few things.
Since this workflow was run several times over the course of capturing these figures, the
fastqc task was cached in previous runs. It’s also clear from this figure which tasks were
run in parallel in contrast to those which had dependencies on upstream outputs. Finally,
the overall runtime is broken down into it’s separate parts. Since this was run on test data,
everything executed fairly quickly.

4. Conclusion
Different steps in a bioinformatics pipeline often require tools with significantly different
characteristics. As such, different languages are employed where their strengths are best
leveraged. Regardless of which language or framework is used, ImageSpec captures those
dependencies in an OCI-compliant image for use in Flyte workflows and beyond in a very
ergonomic way. Defining dataclasses with FlyteFiles and additional metadata frees the data
flow from the trappings of a traditional filesystem, while Flyte handles serialization so we

Figure 3.  Execution timeline listing individual task runtimes in context of overall workflow runtime

July 10, 2024 318

https://docs.flyte.org/en/latest/flyte\_fundamentals/tasks\_workflows\_and\_launch\_plans.html\#specifying-dependencies-without-passing-data
https://docs.flyte.org/en/latest/user\_guide/advanced\_composition/dynamic\_workflows.html\#dynamic-workflows
https://flyte.org/blog/map-tasks-in-flyte


Orchestrating Bioinformatics Workflows Across a Heterogeneous Toolset with Flyte  | Turner, 2024

can easily operate in a cloud native paradigm. With dependencies handled in a robust
way and the data interface standardized, wrapping arbitrary tools in Flyte tasks produces
reusable and composable components that behave predictably. Tying all of this into a
common orchestration layer presents an enormous benefit to the developer experience and
consequently the reproducibility and extensibility of the research project as a whole.

References

[1] J. C. Venter et al., “The Sequence of the Human Genome,” Science, vol. 291, no. 5507, pp. 1304–1351, 2001, doi:
10.1126/science.1058040.

[2] G. A. Van der Auwera et al., “From FastQ Data to HighConfidence Variant Calls: The Genome Analysis Toolkit Best
Practices Pipeline,” Current Protocols in Bioinformatics, vol. 43, no. 1, 2013, doi: 10.1002/0471250953.bi1110s43.

[3] P. Ewels, MM̊ . Magnusson, S. Lundin, and M. Käller, “MultiQC: summarize analysis results for multiple tools and
samples in a single report,” Bioinformatics, vol. 32, no. 19, pp. 3047–3048, 2016, doi: 10.1093/bioinformatics/
btw354.

[4] M. Baker, “1,500 scientists lift the lid on reproducibility,” Nature, vol. 533, no. 7604, pp. 452–454, 2016, doi:
10.1038/533452a.

[5] J. Armstrong, I. T. Fiddes, M. Diekhans, and B. Paten, “Whole-Genome Alignment and Comparative Annotation,”
Annual Review of Animal Biosciences, vol. 7, no. 1, pp. 41–64, 2019, doi: 10.1146/annurev-animal-020518-115005.

[6] J. C. Venter, M. D. Adams, G. G. Sutton, A. R. Kerlavage, H. O. Smith, and M. Hunkapiller, “Shotgun Sequencing of
the Human Genome,” Science, vol. 280, no. 5369, pp. 1540–1542, 1998, doi: 10.1126/science.280.5369.1540.

[7] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome,” Genome Biology, vol. 10, no. 3, 2009, doi: 10.1186/gb-2009-10-3-r25.

[8] S. Andrews, F. Krueger, A. Segonds-Pichon, L. Biggins, C. Krueger, and S. Wingett, “FastQC.” Babraham Institute,
Babraham, UK, 2012.

[9] S. Chen, “Ultrafast onepass FASTQ data preprocessing, quality control, and deduplication using fastp,” iMeta, vol.
2, no. 2, 2023, doi: 10.1002/imt2.107.

July 10, 2024 319

https://doi.org/10.1126/science.1058040
https://doi.org/10.1002/0471250953.bi1110s43
https://doi.org/10.1093/bioinformatics/btw354
https://doi.org/10.1093/bioinformatics/btw354
https://doi.org/10.1038/533452a
https://doi.org/10.1146/annurev-animal-020518-115005
https://doi.org/10.1126/science.280.5369.1540
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1002/imt2.107

	Introduction
	Methods
	Images
	Datatypes
	Tasks

	Results
	Conclusion
	References

