SciPy 2024
July 8 - July 14, 2024

Proceedings of the 23
Python in Science Conference
ISSN: 2575-9752

Published Jul 10, 2024

Correspondence to
Sam Morley
sam.morley@maths.ox.ac.uk

Open Access @0®

Copyright © 2024 Morley &
Lyons. This is an open-access
article distributed under the
terms of the Creative Commons

Attribution 4.0 International li-

cense, which enables reusers
to distribute, remix, adapt, and
build upon the material in any
medium or format, so long as

attribution is given to the cre-

ator.

https://doi.org/10.25080/DXWY3560

RoughPy

Streaming data is rarely smooth

Sam Morley’ , and Terry Lyons’

TUniversity of Oxford

Abstract

Rough path theory is a branch of mathematics arising out of stochastic analysis. One of the
main tools of rough path analysis is the signature, which captures the evolution of an unpara-
metrised path including the order in which events occur. This turns out to be a useful tool
in data science applications involving sequential data. RoughPy is our new Python package
that aims change the way we think about sequential streamed data, by viewing it through the
lens of rough paths. In RoughPy, data is wrapped in a stream object which can be composed
and queried to obtain signatures that can be used in analysis. It also provides a platform for
further exploration of the connections between rough path theory and data science.

Keywords sequential data, unparametrised paths, time series, rough paths, signatures,
data science, machine learning, signature kernels, Log-ODE method

1. INTRODUCTION

Sequential data appears everywhere in the modern world: text, finance, health records,
radio (and other electromagnetic spectra), sound (and speech), etc. Traditionally, these
data are tricky to work with because of the exponential complexity and different scales
of the underlying process. Until recently, with the development of transformers and large
language models, it has been difficult to capture the long-term pattern whilst also capturing
the short-term fine detail. Rough path theory gives us tools to work with sequential, ordered
data in a mathematically rigorous way, which should provide a means to overcome some of
the inherent complexity of the data. In this paper, we introduce a new package RoughPy for
working with sequential data through the lens of rough path theory, where we can perform
rigourous analyses and explore different ways to understand sequential data.

Rough paths arise in the study of controlled differential equations (CDEs), which generalise
ordinary differential equations (ODEs) and stochastic differential equations [1], [2]. These
are equations of the form dY, = f(Y;,dX,), subject to an initial condition Y, = y,,, that model
anon-linear system driven by a input path X. One simple CDE turns out to be critical to the
theory:

s, =S, ®dX, S,=1. (1)

The solution of this equation is called the signature of X. It is analogous to the exponential
function for ODEs, in that the solution of any CDE can be expressed in terms of the signature
of the driving path. When the path X is sufficiently regular, the signature can be computed
directly as a sequence of iterated integrals. In other cases, we can still solve CDEs if we are
given higher order data that can be used in place of the iterated integrals. A path equipped
with this higher order data is called a rough path.

The signature turns out to be a useful summary of sequential data. It captures the order of
events but not the necessarily the rate at which these events occur. The signature is robust
to irregular sampling and provides a fixed-size view of the data, regardless of how many

July 10, 2024 320


https://en.wikipedia.org/wiki/Open_access
https://en.wikipedia.org/wiki/Open_access
https://doi.org/10.25080/DXWY3560
https://orcid.org/0000-0001-5971-7418
https://orcid.org/0000-0001-5971-7418
mailto:sam.morley@maths.ox.ac.uk
mailto:sam.morley@maths.ox.ac.uk
https://orcid.org/0000-0002-9972-2809
https://orcid.org/0000-0002-9972-2809
mailto:terry.lyons@maths.ox.ac.uk
mailto:terry.lyons@maths.ox.ac.uk
mailto:sam.morley@maths.ox.ac.uk
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

RoughPy Morley & Lyons, 2024

observations are used to compute it. This means the signature can be a useful feature map
to be used in machine learning for sequential data. There are numerous examples of using
signatures of analysing sequential data outlined in Section 2.

Besides signatures, there are two other rough path-based methods that have found their
way into data science in recent years. These are the signature kernel and neural CDEs. Both
of these enjoy the same robustness of the signature, and expand the range of applications
of rough path-based methods. We give a short overview of these methods in Section 1.2.

There are several Python packages for computing signatures of sequential data, including
esig [3], iisignature [4], and signatory [5]. These packages provide functions for computing
signatures from raw, structured data presented in an n x d array, where d is the dimension
of the stream and n is the number of samples. This means the user is responsible for
interpreting the data as a path and arranging the computations that need to be done.

RoughPy is a new package for working with sequential data and rough paths. The design
philosophy for this package is to shift the emphasis from simply computing signatures on
data to instead work with streams. A stream is a view of some data as if it were a rough
path, that can be queried over intervals to obtain a signature. The actual form of the data is
abstracted away in favour of stream objects that closely resemble the mathematics. The aim
is to change the way that users think about sequential data and advance the understanding
of path-like data analysis.

On top of the streams, RoughPy also provides concrete implementations for elements of the
various algebras associated with rough path analysis. These include free tensor algebras,
shuffle tensor algebras, and Lie algebras (Section 1.1). This allows the user to easily manip-
ulate signatures, and other objects, in a more natural manner. This allows us to quickly
develop methods by following the mathematics.

The paper is organised as follows. In the remainder of this section, we give a brief overview
of the mathematics associated with rough path theory, and provide some additional detail
for the signature kernel and neural CDEs. In Section 2 we list several recent applications of
signatures and rough path-based methods in data science applications. These applications
should serve to motivate the development of RoughPy. Finally, in Section 3 we give a more
detailed overview of the RoughPy library, the types and functions it contains, and give an
example of how it can be used.

RoughPy is open source (BSD 3-Clause) and available on GitHub https://github.com/datasig-
ac-uk/roughpy.

1.1. Mathematical background

In this section we give a very short introduction to signatures and rough path theory that
should be sufficient to inform the discussion in the sequel. For a far more comprehensive
and rigorous treatment, we refer the reader to the recent survey [6]. For the remainder of
the paper, we write V for the vector space R¢, where d > 1.

A path in V is a continuous function X : [a,b] — V, where a < b are real numbers. For the
purposes of this discussion, we shall further impose the condition that all paths are of
bounded variation. The value of a path X at some parameter ¢ € [a, ] is denoted X,.

The signature of X is an element of the (free) tensor algebra. For n > 0, the nth tensor
power of V is defined recursively by V®° = R, V®! = V, and V®"*! = V @ V®" for n > 1. For
example, V®? is the space of d x d matrices, and V®3 is the space of d x d x d tensors. The
tensor algebra over V is the space

T((V)) = {z = (zg,7,...) : 7, € VI Vj > 0} (2)
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equipped with the tensor product ® as multiplication. The tensor algebra is a Hopf algebra,
and comes equipped with an antipode operation «y, : T((V)) — T((V)). It contains a group
G(V) of elements under tensor multiplication and the antipode. The members of G(V) are
called group-like elements. For each n > 0, we write T"(V) for the truncated tensor algebra of
degree n, which is the space of all z = (z, zy, ...) such that z; = 0 whenever j > n. Similarly,
we write T>"((V)) for the subspace of elements x = (z,, z;, ...) where z; = 0 whenever j <
n, which is an ideal in T((V)) and T"(V) = T((V'))/T>"((V)). The truncated tensor algebra is
an algebra, when given the truncated tensor product, obtained by truncating the full tensor
product.

The signature S(X),, of a path X : [a,b] — V over a subinterval [s,t) C [a,b] is S(X),, =
(1,8,(X),, ) € G(V) where for each m > 1, S,,(X),, is given by the iterated (Riemann-
Stieltjes) integral

S(X), = // dX, ®dX, ®..®dX, . (3)

s<uy <ug<...<u,, <t

The signature respects concatenation of paths, meaning S(X), , = S(X),,, ® S(X),,; for any
s < u < t. This property is usually called Chen’s relation. Two paths have the same signature
if and only if they differ by a tree-like path [7]. The signature is translation invariant, and it
is invariant under reparametrisation.

The dual of T((V)) is the shuffle algebra Sh(V). This is the space of linear functionals
T((V)) — R and consists of sequences (A, A,,...) with A\,e (V*)®* and where A, = 0 for all
k larger than some N. (Here V* denotes the dual space of V. In our notation V* =V.)
The multiplication on Sh(V) is the shuffle product, which corresponds to point-wise multi-
plication of functions on the path. Continuous functions on the path can be approximated
(uniformly) by shuffle tensors acting on G(V) on the signature. This is a consequence of
the Stone-Weierstrass theorem. This property is sometimes referred to as universal non-
lineararity.

There are several Lie algebras associated to T((V)). Define a Lie bracket on T((V')) by the
formula [z,y] =z Q@ y —y Q@ x, for z,y € T((V)). We define subspaces L,, of T((V)) for each
m > 0 inductively as follows: L, = {0}, L, = V, and, for m > 1,

Ly =span{lz,y] 2 € V,y € L,,}. )
The space of formal Lie series £(V) over V is the subspace of T((V)) containing sequences of

the form (¢,,¢,,---), where ¢; € L; for each j > 0. Note that £(V) C T>°(V). For any « € T(V)
we define

O p®n o) (_1)n—1 on
exp(z) = Z e and log(l+x) = Z " (5)
n=0 : n=1

For any path X, we have LogSig(X), , := log(S(X),,) € £(V), and we call this the log-signa-
ture of X over [s,t). This is an alternative representation of the path, but doesn’t enjoy the
same unievrsal non-linearity of the signature.

1.2. Rough paths in data science

Now we turn to the applications of rough path theory to data science. Our first task is
to form a bridge between sequential data and paths. Consider a finite, ordered sequence
{(t;,®y,....,ty, zy)} of observations, where ¢, € R, and «; € V. (More generally, we might
consider z; € £(V) instead. That is, data that already contains higher-order information.
In our language, it is a genuine rough path.) We can find numerous paths that interpolate
these observations; a path X : [¢,,t5] — V such that, for each j, X, = ;. The simplest inter-
polation is to take the path that is linear between adjacent observations.
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Once we have a path, we need to be able to compute signatures. For practical purposes, we
truncate all signatures (and log-signatures) to a particular degree M, which we typically
call the depth. The dimension of the ambient space d is usually called the width. Using
linear interpolation, we can compute the iterated integrals explicitly using a free tensor
exponential of the difference of successive terms:

(@)1 — wj)®j- (6)

.ME
| =

Il
o
<

SigM([tj,th)) = expM(ij —a:j) = ;

J

Here, and in the remainder of the paper, we shall denote the empirical signature over
an interval I by Sig(I) and the log-signature as LogSig(I). We can compute the signature
over arbitrary intervals by taking the product of the these terms, using the multiplicative
property of the signature.

1.2.1. The signature transform:

Most of the early applications of rough paths in data science, the (truncated) signature was
used as a feature map [8]. This provides a summary of the path that is independent of
the parameterisation and the number of observations. Unfortunately, the signature grows
geometrically with truncation depth. If d > 1, then the dimension of TM (V') is

dM+1 -1

M
d" = — 7
mzo pa— (7)

The size of the signature is a reflection of the complexity of the data, where data with a
higher complexity generally needs a higher truncation level and thus a larger signature. It
is worth noting that this still represents a significant compression of stream information in
many cases.

For some applications, it might be possible to replace the signature with the log-signature.
The log-signature is smaller than the signature, but we lose the universal non-linearity
property of the signature. Alternatively, we might turn to other techniques that don’t
require a full calculation of the signature (such as the signature kernel below). As the
connection between rough paths and data science becomes more mathematically mature,
we will likely find new ways to use the signature without requiring its full size.

1.2.2. Signature kernels:

Kernel methods are useful tools for learning with sequential data. Mathematically, a kernel
on a set W is a positive-definite function k¥ : W x W — R. Kernels are often quite easy to
evaluate because of the kernel trick, which involves embedding the data in a inner product
space, with a feature map, in which the kernel can be evaluated by simply taking an inner
product. Informally, kernels measure the similarity between two points. They are used in a
variety of machine learning tasks such as classification.

The signature kernel is a kernel induced on the space of paths by combining the signature
with an inner product defined on the tensor algebra [9]. The theory surrounding the signa-
ture kernel has been expanded several times since their introduction [10], [11]. Typically,
the inner product on T((V')) will itself by derived from an inner product on V, extended to
the tensor algebra.

Signatures are infinite objects, so we can’t simply evaluate inner products on the tensor
algebra. Fortunately, we can approximate the signature kernel by taking inner products of
truncated signatures. Even better, it turns out that, in certain cases, the signature kernel
can be realised as the solution to a partial differential equation (PDE) of Goursat type. This
means the full signature kernel can be computed from raw data without needing to compute
full signatures [12].
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In fact, in recent preprint, it has been shown that there are higher order solvers for
signature kernels by rewriting the kernel solution of a system of PDEs of Goursat type
[13]. A critical part of their method involves the adjoint of both left and right free tensor
multiplication, which are not available in any current package for computing signatures.
These functions are provided by RoughPy.

1.2.3. Neural controlled differential equations:

Neural CDEs are a method for modelling irregular time series. We consider CDEs of the form
dY; = f(¥;) dX, (8)

where f, is a neural network. We can treat the path Y as “hidden state” that we can tune
using data to understand the relationship between the driving path X, and some response.
Neural CDEs can be regarded as a continuous-time analogue of a recurrent neural network
[14].

Neural CDEs initially showed some promising results on several benchmarks but now lag
behind current state-of-the-art approaches to time series modelling. The latest iteration of
neural CDEs are the recently introduced Log-neural controlled differential equations [15],
which make use of the Log-ODE method for solving rough differential equations in order
to boost the performance of neural CDEs.

2. CURRENT APPLICATIONS OF ROUGH PATHS

In this section we enumerate several applications where rough paths have been used to
develop or improve methods. This list presented here is certainly not exhaustive. In addition
to the literature cited below, there are numerous additional references and worked exam-
ples, in the form of Jupyter notebooks, available on the DataSig website (https://datasig.ac.
uk/examples).

2.1. Detecting interference in radio astronomy data

Radio frequency interference (RFI) is a substantial problem in the field of radio astronomy.
Even small amounts of RFI can obscure the faint signals generated by distant stellar objects
and events. The problem of identifying RFI in a signal falls into a class of semi-supervised
learning tasks called novelty (or anomaly) detection. Rough path methods have been applied
to develop a novelty detection framework based on rough path methods to detect RFI
in radio astronomy data from several radio telescopes [16]. Their result show that their
framework is effective at detecting even faint RFI within the test data. This work is based
on a general novelty detection framework [17].

Signatures kernels have also been used for a similar problem of detecting malware by
inspecting the streaming tree of processes on a computer system T. Cochrane, P. Foster,
V. Chhabra, M. Lemercier, T. Lyons, and C. Salvi [18]. Their method uses a support vector
machine classifier to identify processes that are malicious compared to “normal” behaviour
learned via training on a corpus of normality.

2.2. Tracking mood via natural language processing

One application of rough paths in natural language processing has been in the domain of
mental health [19], [20]. In this work, the authors present a model for identifying changes
in a person’s mood based on their online textual content. Many mental health conditions
have symptoms that manifest in the (textual) expression, so this could be a powerful tool
for mental health professionals to identify changes in patients and intervene before the
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state develops. Their model achieves state-of-the-art performance vs existing models on
two datasets.

2.3. Predicting battery cell degradation

Another recent application of signatures is to predict the degradation of lithium-ion cells
[21]. They use signature features to train a model that can accurately predict the end of life
of a cell using relatively low-frequency sampling compared to existing models. They also
observed that the performance at higher frequency was comparable to other models.

2.4. Prediction of sepsis in intensive care data

One of the first effective demonstrations of the utility of signatures and rough paths based
methods in healthcare was in the 2019 PhysioNet challenge [22]. In this contest, teams were
invited to develop models to predict sepsis in patients from intensive care unit data. In this
challenge, a team utilising signatures to enhance predictive power placed first in the official
phase of the challenge. Since then, signatures and other rough path based approaches have
been used in several other clinical contexts [20], [23], [24]. Clinical data is often irregularly
sampled and often exhibits a high degree of missingness, but it can also be very high-
frequency and dense. Rough path based methods can handle these data in an elegant way,
and retain the structure of long and short term dependencies within the data.

2.5. Human action recognition

The task of identifying a specific action performed by a person from a short video clip is
very challenging. Signatures derived from landmark data extracted from the video has been
used to train classification models that achieved state-of-the-art performance compared
with contemporary models [25], [26], [27]. (See also preprint papers [28], [29].) Also in the
domain of computer vision, signatures have been used to produce lightweight models for
image classification [30] and in handwriting recognition tasks [31].

3. ROUGHPY

RoughPy is a new library that aims to support the development of connections between
rough path theory and data science. It represents a shift in philosophy from simple compu-
tations of signatures for sequential data, to a representation of these data as a rough path.
The design objectives for RoughPy are as follows:

1. provide a class that presents a rough path view of some source of data as a rough
path, exposing methods for querying the data over intervals to get a signature or log-
signature;

2. provide classes and functions that allow the users to interact with the signatures and
other algebraic objects in a natural, mathematical manner;

3. all operations should be differentiable and objects should be interoperable with
objects from machine learning, such as TensorFlow (JAX) and PyTorch.

The first two objectives are simple design and implementation problems. The final objective
presents the most difficulty, especially interoperability between RoughPy and common
machine learning libraries. There are array interchange formats for NumPy-like arrays,
such as the Python Array API standard [32] and the DLPack protocol [33]. These provide
part of the picture, but in order for them to be fully supported, RoughPy must support a
variety of compute backends such as CUDA (NVidia), ROCm/HIP (AMD), and Metal (Apple).

RoughPy is a substantial library with numerous components, mostly written in C++ with
a Python interface defined using Pybind11 [34]. The original design of the library closely
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followed the C++ template libraries libRDE and libalgebra [35], although it has seen many
iterations since.

In the remainder of this section, we discuss some of the core components of RoughPy, give
an example of using RoughPy, and discuss the future of RoughPy.

3.1. Free tensors, shuffle tensors, and Lie objects

In order to properly support rough path based methods and allow users to write code based
on mathematical concepts, we provide realisations of several algebra types. The algebras
provided in RoughPy are FreeTensor, ShuffleTensor, and Lie, which define elements of a
particular free tensor algebra, shuffle tensor algebra, and Lie algebra respectively. Each of
these algebras is initialized with a width, depth, and scalar coefficient type, encapsulated
in a Context object.

In addition to the algebra classes, RoughPy provides a number of supporting functions, in-
cluding antipodes and half-shuffle products for FreeTensor/ShuffleTensor objects, and adjoint
operators for left free tensor multiplication. These are operations that are frequently used
in the theory of rough paths, and will likely be necessary in developing new applications
later (as in the signature kernels).

RoughPy algebras are designed around a flexible scalar ring system that allows users to
perform calculations with different accuracy, or derive expressions by using polynomial
coefficients. For most applications, single or double precision floating point numbers will
provide a good balance between performance and accuracy. (Double precision floats are
the default.) When more precision is required, rational coefficients can be used instead.
These are backed by GMP rationals for fast, arbitrary precision rational arithmetic [36].
Polynomial coefficients can be used to derive formulae by performing calculations. This is
a powerful technique for understanding the terms that appear in the result, particularly
whilst testing and debugging.

3.2. Intervals

RoughPy is very careful in the way it handles intervals. All intervals in RoughPy are half-
open, meaning that they include one end point but not the other; they are either clopen
la,b) :={t:a <t <b}oropencl(a,b] :={t:a<t< b} Besides the type (clopen or opencl), all
intervals must provide methods for retrieving the infimum (e in the above notation) and
the supremum (b above) of the interval as double precision floats. This is enforced by means
of an abstract base class Interval. The main concrete interval types are Reallnterval, an
interval with arbitrary real endpoints, and DyadicInterval, as described below. For brevity,
we shall only consider clopen intervals.

A dyadic interval is an interval D} := [k/2", (k + 1)/2"), where k, n are integers. The number
nis often described as the resolution of the interval. The family of dyadic intervals of a fixed
resolution n partition the real line so that every real number ¢ belongs to a unique dyadic
interval D¥. Moreover, the family of all dyadic intervals have the property that two dyadic
intervals are either disjoint or one contains the other (including the possibility that they
are equal).

In many cases, RoughPy will granularise an interval into a dyadic intervals. The dyadic
granularisation of [a, b) with resolution = is [k, /2", k,/2") where k; = max{k : k/2" < a} and
ky = max{k : k/2™ < b}. In effect, the dyadic granularisation is the result of “rounding” each
end point to the included end of the unique dyadic interval that contain it.
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3.3. Streams

Streams are central to RoughPy. A RoughPy Streanm is a rough path view of some underlying
data. It provides two key methods to query the object over intervals to retrieve either a
signature or log-signature. Importantly, once constructed, the underlying data is inacces-
sible except by querying via these methods. Streams are designed to be composed in various
ways, such as by concatenation, in order to build up more complex streams. A Stream is
actually a (type-erasing) wrapper around a more minimal StreamInterface abstract class.

We construct streams by a factory function associated with each different StreamInterface,
which might perform some compression of the underlying data. For example, a basic
StreamInterface is the LieIncrementStream, which can be constructed using the associated
from_increments factory function (a static method of the class), which accepts an n x d array
of increment data. These data will typically be the differences between successive values
of the data (but could also include higher-order Lie terms). This is similar to the way that
libraries such as esig, iisignature, and signatory consume data.

RoughPy streams cache the result of log-signature queries over dyadic intervals so they
can be reused in later calculations. To compute the log-signature over any interval I, we
granularise at a fixed stream resolution n to obtain the interval I = [k, /2", k,/2"), and then
compute

ky—1
LogSig(I) = log ( H exp(LogSig(D’kL))) . (9)
k=k,
The LogSig(D}) terms on the right-hand-side are either retrieved from the cache, or
computed from the underlying source. This is essentially the Campbell-Baker-Hausdorff
formula applied to the log-signatures at the finest level. In practice, we can actually reduce
the number of terms in the product, by merging complementary dyadic intervals that
appear in the granularisation. We further optimise by using a fused multiply-exponential
(Aexp(B)) operation.

Signatures are always computed by first computing the log-signature and then exponentiat-
ing. Directly computing the signature as a product of exponentials of (cached) log-signatures
might accumulate enough numerical errors to drift slightly from a group-like tensor. That is,
the result might not actually be a true signature. Taking the logarithm and then exponenti-
ating back to obtain the signature has the effect of correcting this numerical drift from a
true signature.

Aside from the basic LieIncrementStream, there are several other implementations of the
StreamInterface currently available in RoughPy. The BrownianStream approximates Brownian
motion by generating normal distributed increments over dyadic intervals of arbitrary
resolution on demand, forming a reasonable approximation of true Brownian motion. The
ExternalDataStream is an interface for loading data from various external sources, such as
from a database or specialised data format. Currently, only sound files are supported but
we plan to extend support for other sources as the need arises. This will certainly include
“online” data sources such as computer peripheral devices (e.g. microphones).

The other main StreamInterface implementation is the PiecewiseAbelianStream, which is
an important construction from CDE. A piecewise Abelian path, or log-linear path, is an
example of a smooth rough path, which generalises piecewise linear approximations of an
arbitrary stream. Formally, an Abelian path Y is a pair ([a,b),y) wherea <band y € £(V).
The log-signature over an arbitrary interval [u,v) C [a,b) is given by

v—Uu

LogSig(Y).,, = ;— - (10)
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A piecewise Abelian path is the concatenation of finitely many Abelian paths with adjacent
intervals. For any rough path X and partition {a = t, < ¢; < ... <ty = b} thereis a piecewise
Abelian approximation for this path given by

{([tH,tj),LogSig(X)tHJj) j=1,...N}. (11)

This construction turns out to be vital for computing signature kernels [32] and for solving
CDEs [2], [15]. In particular, this construction can be used to compress data at some degree,
which can the be used in computations at a higher degree.

3.4. Example

In this section we show a very simple example of how to use RoughPy to construct a stream
and compute a signature. This example is similar to the first few steps of the tutorial found
in the RoughPy documentation. RoughPy can be installed using pip, where prebuilt wheels
are available for Windows, Linux, and MacOs:

pip install roughpy

We refer the reader to this documentation for much more detail. We will construct a stream
in R?% by taking each letter in a word, “scipy” in this example, as the increments of a path:

import numpy as np

text = "scipy"
increments = np.zeros((5, 26), dtype="int8")
for i, ¢ in enumerate(text):

increments[i, ord(c) - 971 =1

Now we import RoughPy and construct a Stream using the factory mentioned above. One
other critical ingredient is the algebra Context, which is used to set up a consistent set
of algebra objects with the desired width (26), truncation level (2), and coefficient type
(Rational).

import roughpy as rp

ctx = rp.get context(width=26, depth=2,
coeffs=rp.Rational)
stream = rp.LieIncrementStream.from increments(
increments, ctx=ctx)

Now we can compute the signature of the stream over the whole domain of the stream [0, 4]
by omitting the interval argument:

sig = stream.signature()

print(sig)

# { 1() 1(3) 1(9) 1(16) 1(19) 1(25) 1/2(3,3)

# 1(3,9) 1(3,16) 1(3,25) 1/2(9,9) 1(9,16)
1(9,25) 1/2(16,16) 1(16,25) 1(19,3) 1(19,9)
1(19,16) 1/2(19,19) 1(19,25) 1/2(25,25) }

#

#
The first term of the signature is always 1, and the empty parentheses indicate the empty
tensor word. The next five terms correspond to the counts of each unique letter that
appears, the number in parentheses indicates the letter (with a being 1). The final terms
indicate the order in which each pair of letters appear in the word. For instance, the term
1(3,9) indicates that a c appears before an i.
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Remark 1.

It turns out that most words in the English language can be distinguished using only
their level 2 signatures. The first level signatures groups words into anagrams. The
second level signature counts the occurrences of each ordered pair of letters. There
are relatively few words that require level 3 data. From the standard Linux dictionary,
containing around 80,000 words, there are two pairs of words that require the level
3 terms: “toot” and “otto”, and “naan” and “anna”. This is shown in the RoughPy docu-
mentation. Similar patterns can be observed in other languages too, including French,
Spanish, German, Russian, and Lithuanian.

This is only the beginning of the story. From here, we can use the signatures to compute the
similarity between streams, via the signature kernel for instance, or used as features in a
variety of machine learning problems. More detailed examples of how to use signatures in
data science are given on the DataSig website https://datasig.ac.uk/examples.

3.5. The future of RoughPy

RoughPy is continuously evolving. At time of writing, the current version uses libalgebra
and libalgebra-lite (Ilibalgebra with fewer templates) for computations. Unfortunately, this
made it difficult to achieve the differentiability and computation device support that we
want. We are currently changing the way we implement vectors and algebras to provide
the support for on-device computation that we want. Making the operations differentiable
is crucial for machine learning, and will be the biggest challenge.

Long term, we need to expand support for signature kernels and CDEs. As applications of
these tools grow in data science, we will need to devise new methods for computing kernels,
or solving CDEs. We will also build a framework for constructing and working with linear
maps, and homomorphisms. For example, one very useful linear map is the extension of
the log function to the whole tensor algebra.

4. CONCLUSIONS

The use of rough path theory in data science is rapidly expanding and provides a different
way to view sequential data. Signatures, and other methods arising from rough path theory,
are already used in a wide variety of applications, with great effect. The next steps in
overcoming the difficulty in modeling sequential data will require a change of perspective.
Viewing these data through the lens of rough path theory might provide this change.

RoughPy is a new Python library for working with streamed data using rough path methods.
Itis designed to abstract away the form and source of data so that analysis can be performed
by querying path-like objects. This approach is much closer to the mathematics. It also
allows users to interact with the various algebras associated with rough paths (free tensor
algebra, shuffle tensor algebra, Lie algebra) in a natural way. RoughPy is under active
development, and a long list of improvements and extensions are planned.
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